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Abstract

Accurate models and simulation results of advanced Li-ion batteries and cells are of vital interest
in powertrain electrification demands, stationary storage applications as well as in the experi-
mental quantification of Li-ion batteries. Various models with different complexities are possible.
The range of such models varies from the fully coupled electrochemical thermal model describing
the dynamics of the battery in terms of partial differential equations (PDE) over Reduced Order
Models (ROM) as simplification of the PDE model up to Equivalent Circuit Models (ECM)
which use a phenomenological description of the electrical behavior in terms of ordinary diffe-
rential equations. This work presents a short overview of some ECMs followed by a first imple-
mentation of an extended ECM with a simplified thermal model in Matlab®/Simulink®/Sim-
scape™ . The identification problem of the structure and the parameters of an ECM is discussed
in terms of the Current Interruption Technique (CIT). Several test cases are simulated with an
example of an ECM.

Equivalent Circuit Models for Li-ion Batteries

Li-ion batteries are widely used in today’s electric vehicles (EV), hybrid electric vehicles (HEV),
cell phones and many other industrial applications. Very often it is necessary to control the battery
or whole battery packs with a Battery Management System (BMS) to provide useful and im-
portant information about the battery system like the State of charge (SOC) to predict the range
of'an EV/ HEV or the temperature to avoid thermal runaway as the worst case scenario in battery
applications. Therefore accurate models and simulations are of high importance. In the following
a short overview of mathematical models for Li-ion batteries is given. This work is focused on
Equivalent Circuits Models (ECM) which are the state of the art in modern BMS, but can also
be used for the extraction of experimental data of Li-ion batteries.

For the description of the dynamical behavior of Li-ion batteries a large range of mathematical-
physical models exists. Starting with the electrochemical-thermal model, see [1], [2] and the
references therein, a spatio-temporal description of the concentration of the Li-ions and potentials
in the electrodes as well as the temperature distribution of the battery is given in terms of a multi-
scale, multiphysics system of elliptic and parabolic differential equations using homogenization
methods. This model is able to capture almost all physical relevant phenomena at the expense of

' Matlab®/Simulink®/ SimscapeTM are registered trademarks of The Mathworks Inc.
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corresponding complexity with respect to spatial and temporal resolution. As a consequence it
cannot be applied in BMS today due to its high complexity.

A possible ansatz to reduce this complexity is the use of Reduced Order Models (ROM) which can
be derived from the previous model using some simplification assumptions like the eigenfunction
expansion method [3]. One possible candidate is the Single Particle Model (SPM) which is able
to reproduce the dynamics of the original model in some ranges with good agreement and with
less complexity. The corresponding partial differential equations can be converted into ordinary
differential equations by the methods of lines (MOL) to reach less complexity. But these equations
are also complex in comparison to the Equivalent Circuit Models (ECM).

An ECM model describes the pure electrical behavior of the battery in terms of voltages, currents,
resistances and capacitances. Using the theory of passive electrical networks the resulting equa-
tions are a low dimensional system of ordinary differential equations which is in general nonlin-
ear, since the system parameter depends on temperature T and state of charge SOC. Due to these
dependencies an extended ECM model is used together with an additional differential equation
for the SOC and a simplified temperature model in form of a linear inhomogeneous differential
equation. These models are able to capture the essential electrical phenomena with good accu-
racy and less complexity. They consist only of passive electrical elements and are easy to embed
in BMS for real time application to ensure safe and reliable operation conditions. An overview of
ECMs can be found in [4, 5].

In general most of the ECMs can be described by the Thevenin-Model. The general structure of a
Thevenin-ECM is shown in Figure 1. It contains two voltage sources. The first one describes the
open circuit voltage of the battery; the second one describes parasitic voltages. Furthermore is con-
tains several parallel resistors and capacitors which represent polarizations like electrochemical or
concentration polarization mechanisms in the battery. The resistor Ro describes the ohmic
resistance of the battery and Rp describes additional parasitic effects. This can be used to model
thermal runaway with an ECM, where Rp becomes of low impedance for rising temperatures,
which can result in a short circuit in the battery. All parameter of this circuit depend on SOC
and temperature 7. So a simplified temperature model in form of an ordinary differential equation
is used for the SOC.
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Fig. 1: General Thevenin model.
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Mathematical Description and Implementation

Using the passive electrical network theory the general Thevenin model can be described as a
system of n + 2 nonlinear ordinary differential equations and one algebraic equation:
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where Ri, Ci, Ui, I;, i=1, ... n denote the corresponding resistors, capacitors, voltages and currents
of each RC-branch. Uoc is the open circuit voltage, I, the load current and U, the terminal voltage,
Ro is the ohmic resistance of the battery and the current lp, the voltage Up and the resistor Rp
describe parasitic effects in the battery. T, Ta are the temperature and the ambient temperature, Rt
, Cr the convection resistance and the heat capacity respectively, Q the power dissipated inside
the cell and SOC the state of charge and Cq the total charge of the battery.
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Fig. 2: The Simulink®/Simscape™ realization of the Thevenin model.
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This system of equations can be rewritten in more general form using the state space approach:

ax
- f(x,u,p), x(0) =xo 5)
y = gsxup) (6)

with f: Q x Qu x Q, > Qrc R™ and g8 : Qx x Q, X Q, — Q, € R, where the manifolds Qy ¢
R™2 Q, € R?, Q, € R*"? are suitable chosen. Furthermore u = (I, Ta, Q)T € R*, x = (Uy, . . .,
Un, SOC, T )T € ]Rnﬂ, y= U.eRand pP= (R, ..., Rn, Ci,...,Cn Uoc )T € R2n+2, pP= p(SOC, T)
denotes the input, state-space, output and parameter vector respectively. In this description the
parasitic effects are neglected, all other constants not mentioned in the parameter vector p are
assumed to be constant.

The Matlab®/Simulink®/Simscape™ environment is an ideal tool to implement this system of
differential and algebraic equations. For simulation purposes a Thevenin-model with two relaxa-
tion mechanisms is implemented. The corresponding electrical network in Simulink® can be seen
in Figure 2. For the passive electrical elements a library is programmed using Simscape™ and
lookup-tables are used in approximation of the nonlinear functions f and g. The main difficulty is
that the nonlinear functions f and g are in general not completely known due to the dependence
of the passive electrical elements of the ECM on the SOC and the temperature T. This problem
can be solved by using lookup-tables for the passive elements of the ECM. Lookup-tables are able
to approximate these functions via interpolation and extrapolation in the simulation task. These
tables can be filled via the experimental Current Interruption Technique (CIT), where for known
SOC and temperature T charge and discharge curves of real batteries are measured and from these
curves the polarization mechanism, relaxation times, numerical values for resistances and capa-
citances can be extracted. For more details see [6, 7, 8].

Simulation of a Pouch Cell

For the Simulink®/Simscape™ implementation of the model first simulations of a pouch cell with
the dimensions 0.0084 x 0.215 x 0.22 m® at ambient temperature T, = 25 °C were performed for
the driving profiles Artemis Road and Artemis Urban [9]. Corresponding simulation results are
shown in Figure 3 and statistical values in Table 1. The simulated battery is first charged to SOC
= 1 over charging time t. = 1200s and then the corresponding profile is applied in the simulation
using the ode15s solver from Matlab® and the battery is completely discharged to SOC = 0.

Tab. 1: Mean value and standard deviation from simulation.
Tin['C]| Stdrin[ C] SOC | Stdc ULin [V]| Stdy, in [V] ILin[A]| Std in[A]
Road : 29.48 1.96 0.59 0.29 2.87 0.30 -13.52 17.05
Urban: 36.29 4.14 0.49 0.30 2.83 0.41 -16.97 41.36
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Fig. 3: Simulation of Artemis Road (upper graph) and Artemis Urban profile (lower graph).

Conclusion and Outlook

Using the Simulink®/Simscape™ implementation of an ECM model offers a quick and easy pos-
sibility to simulate the electrical-thermal dynamical behavior of Li-ion batteries based on look-up
tables coming from experimental measurements. It is planned to measure more look-up tables for
different types of Li-ion batteries and to perform corresponding simulations. Also parasitic effects
will be taken into account for simulations of thermal runaway with ECM models in the near future.
Furthermore, it is planned to extend the Simulink®/Simscape™ implementation for whole battery
stacks and packs. Additionally, the Simulink®/ Simscape™ implementation will be extended in a
way that an optimization of the model parameter in comparison to a specific experimental mea-
surement with arbritary load profile will be possible due to an Least Squares fit.
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