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Abstract We introduce trimmed likelihood estimators for processes given by a
stochastic differential equation for which a transition density is known or can be
approximated and present an algorithm to calculate them. To measure the fit of
the observations to a given stochastic process, two performance measures based
on the trimmed likelihood estimator are proposed. The approach is applied to
crack growth data which are obtained from a series of photos by backtracking
large cracks which were detected in the last photo. Such crack growth data
are contaminated by several outliers caused by errors in the automatic image
analysis. We show that trimming 20% of the data of a growth curve leads to
good results when 100 obtained crack growth curves are fitted with the Ornstein-
Uhlenbeck process and the Cox-Ingersoll-Ross processes while the fit of the
Geometric Brownian Motion is significantly worse. The method is sensitive in
the sense that crack curves obtained under different stress conditions provide
significantly different parameter estimates.
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1 Introduction

The motivation of this paper is the analysis of micro crack growth data
obtained from photos of the surface of a steel specimen exposed to cyclic load.
A simple model for crack growth is given by the Paris-Erdogan equation
(see e.g. Pook, 1999)

d a
d N

=C (∆σ
√

a)m, (1)

where a is the crack length, N the number of load cycles, C and m are usually
unknown constants and ∆σ = σmax−σmin is the range of the cyclic stress am-
plitude. Since crack growth is not a deterministic process, several stochastic
versions of the Paris-Erdogan equation were developed (see e.g. Ortiz and
Kiremidjian, 1988; Ray and Tangirala, 1996; Nicholson et al, 2000; Wu and
Ni, 2004; Chiquet et al, 2009; Hermann et al, 2016a,b). Often only mod-
els are developed but no statistical analysis is presented. For example, the
books of Sobczyk and Spencer (1992), Castillo and Fernández-Canteli (2009),
Sánchez-Silva and Klutke (2016) are full of models but besides some simple
statistical methods not much is provided.

One approach is to extend equation (1) with an additive stochastic term
leading to a stochastic differential equation (SDE), see e.g. Lin and Yang (1983),
Sobczyk and Spencer (1992), Wu and Ni (2004), Zárate et al (2012), Hermann
et al (2016a,b). The advantage of a SDE is that several statistical methods
were developed already, at least for some of them, see e.g. Sørensen (2004) or
Iacus (2008). In particular, likelihood methods were proposed as in Pedersen
(1995), Beskos et al (2006), Pastorello and Rossi (2010), Sun et al (2015),
Höök and Lindström (2016). However, the choice of the SDE is still a problem.
Moreover, usually the crack growth data are not so nice and numerous as those
of Virkler et al (1979), who collected 68 series with 164 measurements in a
laborious study. These measurements are nice since they do not include many
big jumps and errors in contrast to other crack growth data as those considered in
Kustosz and Müller (2014) and Hermann et al (2016a) where additionally less
than ten series were observed.

With automatic detection of crack growth from photos, it is possible to obtain
a much larger number of series of crack growth data, and the data collection
is much less laborious. The resulting large data sets allow a better analysis
of the crack growth and the corresponding fatigue behavior of the material.
However, those data sets contain several errors originating from the automatic
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detection process. For example, these errors are caused by scratches and contam-
inations of the material, blurred photos, shadows on the photos and other image
processing problems, and they lead to outliers in the crack growth curves. In
particular, they can generate crack growth data series whose growth curves are
not strictly increasing.

To cope with such outliers, we propose to use trimmed likelihood estimators
for SDEs. Trimmed likelihood estimators for independent observations were
introduced by Hadi and Luceño (1997). They extend the least median of squares
estimator and the least trimmed squares estimators of Rousseeuw (1984) and
Rousseeuw and Leroy (1987) by replacing the likelihood functions of the normal
distribution by likelihood functions of other distributions. Müller and Neykov
(2003) applied them for generalized linear models and other applications can be
found for example in Neykov et al (2007), Cheng and Biswas (2008), Neykov
et al (2014), Müller et al (2016). Because of the trimming of a proportion of the
data, trimmed likelihood estimators can deal with an amount of outliers up to
the trimming proportion. We use trimmed likelihood estimators here to define
two measures for the performance of a fit of a SDE to the data. One performance
measure is based on the median of absolute deviations of predictions and the
other is based on the coverage rate of prediction intervals.

The paper is organized as follows. In Section 2, the trimmed likelihood
estimator together with its computation is introduced and the two performance
measures based on the trimmed likelihood estimator are proposed. Section 3
provides the application to crack growth data obtained from photos. Therefore,
at first, it is described how crack growth curves can be obtained by backtracking
long cracks which were detected in the last photo in a series of photos. Then
the fits of three SDEs to these curves are obtained with trimmed likelihood esti-
mators with different trimming rates and are compared via the two performance
measures. Moreover, the fits of curves from two experiments with different
stress conditions lead to significantly different parameter estimates so that the
approach can be used to distinguish between different stress conditions. Finally,
Section 4 discusses the results and some further extensions.
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2 Trimmed likelihood estimators for SDEs

2.1 Trimmed likelihood estimators and their computation

A stochastic extension of the Paris-Erdogan equation (1) is given by the stochas-
tic differential equation

dXt = b(Xt ,θ)+ s(Xt ,θ)dBt

where the time-continuous stochastic process (Xt)t≥0 provides the crack size, b
and s are known functions, (Bt)t≥0 is the standard Brownian Motion, and θ is
an unknown parameter vector. Special cases are given by

dXt = (θ1 +θ2Xt)dt +θ3X γ

t dBt ,

with θ = (θ1,θ2,θ3,γ)
′ ⊂ R4 which include the Ornstein-Uhlenbeck process

(γ = 0), the Cox-Ingersoll-Ross process (γ = 0.5), and the Geometric Brownian
Motion (θ1 = 0,γ = 1), see e.g. Iacus (2008). The process is observed at time
points 0≤ t0 < t1 < .. . < tN providing observations xt0 , ...,xtN .

The idea of trimming is to use only a subset I = {n(1), . . . ,n(I)} of
{0,1, . . . ,N} with 0 ≤ n(1) < n(2) < .. . < n(I) ≤ N. Since the conditional
distribution of Xtn(i+1) given Xtn(i) is often known or at least can be approximated,
we set

pθ (xtn(i+1) |xtn(i))

for the transition density of the conditional distribution or its approximation.
Then the likelihood function for the observation vector xI := (xtn(1) , ...,xtn(I))
is given by

lθ (xI ) =
I−1

∏
i=1

pθ (xtn(i+1) |xtn(i)).

If I = {0,1, . . . ,N} then the classical maximum likelihood estimator is given by

θ̂ := argmax
θ

lθ (xI ).

We can also define the maximum likelihood for any subset I ⊂ {0,1, . . . ,N} as
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θ̂(I ) := argmax
θ

lθ (xI )

so that θ̂(I ) = θ̂ if I = {0,1, . . . ,N}. A H-trimmed likelihood estimator is
then defined as (see e.g. Hadi and Luceño, 1997; Müller and Neykov, 2003)

θ̂H := θ̂(IH) with IH ∈ argmax{l
θ̂(I )

(xI ); I ∈JH},

where JH := {I ⊂ {0,1, . . . ,N}; ]I = N−H +1} and ]A denotes the num-
ber of elements of a set A. In the H-trimmed likelihood estimator, the H most
unlikely observations are trimmed, i.e. not used. If H = 0, i.e. no observation is
trimmed, then we get again the maximum likelihood estimator so that θ̂0 = θ̂ .

The trimming number H should be chosen such that it is larger than the
expected number of outliers. Values up to N

2 are possible, but it is very unlikely
that almost the half of observations are outliers. Therefore, reasonable values
for H are 10% to 30% of the sample size.
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Fig. 1 Remaining transitions between observations (blue and green lines) if the observation at tn(i)
(blue dot) or at tn(i+1) (green dot), respectively, is trimmed because the transition density pi+1|i
(transition given by the red line) is small, for the case i = 1 (on the left), i ∈ {2, . . . , I− 2} (in the
middle), i = I−1 (on the right).

If N is small or H is very small then the H-trimmed likelihood estimator can be
calculated by considering all subsets I ∈JH . If this is too time consuming
then approximate algorithms based on a genetic algorithm and a concentration
step as proposed in Neykov and Müller (2003) or based on a special selective
iteration as proposed in Rousseeuw and Driessen (2006) can be used. However
the concentration step is here much more complicated as in the case of indepen-
dent observations since a single transition density pi+1|i := pθ (xtn(i+1) |xtn(i)) is
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influenced by two observations, see Figure 1. Hence if pθ (xtn(i+1) |xtn(i)) is small,
it is not clear whether xtn(i+1) or xtn(i) should be trimmed. Hence we propose the
following procedure as concentration step.

As in the independent case, the concentration step starts with an initial subset
I0 with N−H + 1 elements and provides a new subset I∗ with N−H + 1
elements. Set for simplicity θ = θ̂(I0) and define the transition densities

p j|i := p j|i(I ) := pθ (xtn( j) |xtn(i)) for j > i and pi := pi+1|i

for any set I = {n(1), . . . ,n(I)} with 0≤ n(1)< n(2)< .. . < n(I)≤ N. The
idea is now to start with the complete sample, i.e. I (0) = {0,1, . . . ,N}, where
no observation is trimmed. Then observations one after another are removed
until a set I∗ with N−H +1 elements is obtained. For that, only the transition
densities p j|i depending on θ = θ̂(I0) are used.

The algorithm for the concentration step is given in Algorithm 1. The last
step mentioned in the last 3 lines before the output of this algorithm is necessary
since l

θ̂(I (H))
(xI (H))< l

θ̂(I0)
(xI0) could happen so that I (H) is worse than

I0. This is in contrast to the concentration step for independent observations
where the resulting trimmed likelihood is never worse then the starting trimmed
likelihood.

A pseudo code of the genetic algorithm for the optimization is given by
Algorithm 2.

The efficiency of the genetic algorithm depends heavily on the population
size M, the maximum bound for the repetitions, and the efficiency of the
concentration step. The complexity of the concentration step is mainly given
by the difficulty of calculating the transition densities. If they are not given
explicitly, as this is often the case but not in our approach, then they must be
simulated. This could be very time consuming. Then the concentration step
should not be used too often. This means that a smaller "population size" M
and more "mutations" with higher k should be used. However, in general, the
higher M and the maximum repetition bound is, the more likely it is to find the
correct maximum. It is clear that a larger M and a larger maximum repetition
bound increase the computation time drastically. Moreover, even for high M
and high maximum repetition bound, it can happen that the correct maximum is
not found. Hence as soon as it is possible to calculate all

(N+1
H

)
possible subsets

I ∈JH then this should be preferred.
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Algorithm 1 Calculation for the concentration step
1: Input: I0, θ̂(I0), t0, t1, . . . , tN , xt0 ,xt1 , . . . ,xtN , H.
2:
3: I (0) = {0,1, . . . ,N}, I(0) = N +1
4:
5: for h = 0,1, . . . ,H−1 do
6:
7: I = I (h), I = I(h)
8: Determine the ordered transition densities inside I = {n(1), . . . ,n(I)}, i.e.

pπ(1) ≥ pπ(2) ≥ . . .≥ pπ(I−1) with {π(1),π(2), . . . ,π(I−1)}= {1,2, . . . , I−1}.

9:
10: if π(I−1) = 1 then (see left figure in Figure 1)
11: if p3|1 ≤ p3|2 then I (h+1) = I \{n(1)}
12: else I (h+1) = I \{n(2)}
13: end if
14: end if
15:
16: if π(I−1) = I−1 then (see right figure in Figure 1)
17: if pI−1|I−2 ≤ pI|I−2 then I (h+1) = I \{n(I−1)}
18: else I (h+1) = I \{n(I)}
19: end if
20: end if
21:
22: if i := π(I−1) ∈ {2, . . . , I−2} then (see middle figure in Figure 1)
23: if pi+2|i · pi|i−1 ≤ pi+2|i+1 · pi+1|i−1 then I (h+1) = I \{n(i)}
24: else I (h+1) = I \{n(i+1)}
25: end if
26: end if
27:
28: h = h+1 and I(h) = I−1.
29:
30: end for
31:
32: if l

θ̂(I (H))
(xI (H))> l

θ̂(I0)
(xI0 ) then I∗ = I (H)

33: else I∗ = I0

34: end if
35:
36: Output: I∗.
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Algorithm 2 Genetic algorithm
1: Input: t0, t1, . . . , tN , xt0 ,xt1 , . . . ,xtN , H.
2:
3: Start with M sets I1, . . . ,IM ∈JH .
4:
5: repeat
6:
7: Concentration: Calculate I1∗, . . . ,IM∗ with the concentration procedure from I1, . . . ,IM .
8: Replace I1, . . . ,IM by I1∗, . . . ,IM∗, i.e. Im←Im∗, m = 1, . . . ,M.
9:

10: Mutation: Exchange in each set I1, . . . ,IM ∈JH randomly k elements.
11: ⇒ Get further sets IM+1, . . . ,I2M ∈JH .
12:
13: Recombination: Choose randomly N−H +1 elements of unions Im∪IM+m, m = 1, . . . ,M.
14: ⇒ Get further sets I2M+1, . . . ,I3M ∈JH .
15:
16: Selection: Determine from I1, . . . ,I3M the M sets with largest l

θ̂(I )
(xI ).

17: Rename them as I1, . . . ,IM .
18:
19: until
20: l

θ̂(I )
(xI ) is not improved anymore or a given number of repetitions is reached.

21:
22: Output: θ̂(I ) with largest l

θ̂(I )
(xI ).

2.2 Performance measures based on trimmed likelihood estimators

To define performance measures for the goodness-of-fit of the models esti-
mated with the H-trimmed likelihood estimator θ̂H , let be IH = {n(1), . . . ,
n(N −H + 1)} ∈ argmax{l

θ̂(I )
(xI ); I ∈ JH}. If the transition density

pθ (xtn(i+1) |xtn(i)) is known or is given as approximation then the conditional
expectation Eθ (Xtn(i+1) |Xtn(i) = xtn(i)) and the conditional quantiles

li+1(θ) := F−1
n(i+1),θ

(
α

2

∣∣∣Xtn(i) = xtn(i)

)
,

ui+1(θ) := F−1
n(i+1),θ

(
1− α

2

∣∣∣Xtn(i) = xtn(i)

)
with Fn(i+1),θ (x) := Pθ

(
Xtn(i+1) ≤ x|Xtn(i) = xtn(i)

)
can be determined.
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The first performance measure is the median absolute deviation (MedAD)
defined as

MedAD := median

(
|xtn(2)−E

θ̂H
(Xtn(2) |Xtn(1) = xtn(1))|

∆1
, . . . ,

|xtn(N−H+1)−E
θ̂H
(Xtn(N−H+1) |Xtn(N−H)

= xtn(N−H)
)|

∆N−H

)
.

The absolute deviations are divided by ∆i := tn(i+1)− tn(i) to take into account
the different time differences tn(i+1)− tn(i) between the used observations.

The second performance measure is given by the (1−α)-prediction intervals
for Xtn(i+1) based on the former observations xtn(i) for i = 1, . . . ,N −H. If θ

is known then a (1−α)-prediction interval for Xtn(i+1) is [li+1(θ),ui+1(θ)], i.e.
Pθ (Xtn(i+1) ∈ [li+1(θ),ui+1(θ)]|Xtn(i) = xtn(i))≥ 1−α is satisfied. If θ is unknown
then an estimate for θ can be used. Here we use the H-trimmed likelihood
estimator θ̂H as plug-in estimate. As performance measure, the mean length or
the coverage rate of the prediction intervals could be used. But it is better to use
a combination of both. Hence the second performance measure is defined by

ISα :=
1

N−H

N−H

∑
i=1

Sα(li+1(θ̂H),ui+1(θ̂H);xtn(i+1))

∆i

where Sα(l,u;x) := (u− l)+ 2
α
(l− x)1{x<l}+

2
α
(x− u)1{x>u} is the interval

score of Gneiting and Raftery (2007) for prediction or confidence intervals.
Thereby, 1{...} denotes the indicator function. For prediction, as used here, the
interval score Sα(l,u;x) combines the length u− l of the prediction interval
[l,u] with a penalty depending on α for the case that the predicted value x is not
lying in [l,u]. Since larger time differences tn(i+1)− tn(i) lead to larger prediction
intervals and smaller coverage rates and thus larger interval scores, we again
divide the interval scores by ∆i.

Remark 1 For example, the conditional distribution of Xtn(i+1) given Xtn(i)

is a normal distribution with mean
(

xtn(i) +
θ1
θ2

)
eθ2tn(i+1) − θ1

θ2
and variance

θ 2
3 (e

2θ2tn(i+1)−1)
2θ2

for the Ornstein-Uhlenbeck process, a log-normal distribu-

tion with mean xtn(i)e
θ2tn(i+1) and variance x2

tn(i)e
2θ2tn(i+1)(eθ 2

3 tn(i+1) − 1) for the
Geometric Brownian Motion, and non-central χ2 distribution with mean
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(
xtn(i)+

θ1
θ2

)
eθ2tn(i+1)−θ1

θ2
and variance xtn(i)

θ 2
3 (e

2θ2tn(i+1)−e
θ2tn(i+1) )

θ2
+

θ1θ 2
3 (1−e

θ2tn(i+1) )2

2θ 2
2

for the Cox-Ingersoll-Ross process (see e.g. Iacus, 2008).

Remark 2 If the conditional distributions of Xtn(i+1) given Xtn(i) are not known,
then approximations of the SDE can be used. The Euler-Maruyama approxima-
tion provides for example (see e.g. Iacus, 2008)

Xtn(i+1)−Xtn(i) ≈ b(Xtn(i) ,θ)∆i + s(Xtn(i) ,θ)
√

∆i Ei

where Ei has a standard normal distribution so that pθ (xtn(i+1) |xtn(i))≈ pN(µi,σ2
i )
,

where µi := xtn(i)+b(xtn(i) ,θ)∆i, σi := s(xtn(i) ,θ)
√

∆i, and pN(µ,σ2) is the density
of the normal distribution with expectation µ and variance σ2. In particular, we
have Eθ (Xtn(i+1) |Xtn(i) = xtn(i))≈ xtn(i) +b(xtn(i) ,θ)∆i. Hence the H-trimmed like-
lihood estimator can be calculated via the densities of the approximated normal
distributions and the performance measures can be based on the expectations
and quantiles of the approximated normal distributions.

Fig. 2 Surface of an unstressed steel specimen (left) and after 18 000 load cycles (right) of a tension-
compression-experiments with an external stress of 400 MPa (= 400 N/mm2).
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3 Application to crack growth data from photos

3.1 Obtaining crack growth data from photos

Figure 2 shows two photos of the surface of a steel specimen (Specimen 31), one
before the specimen was exposed to cyclic load and one after 18 000 load cycles.
During the 18 000 load cycles, a large number of micro cracks has appeared,
visible by lower (blacker) pixel values. There exist several other photos at other
time points, in this case for example after 1 000, 2 000, 3 000, 4 000, 5 000,
6 000, 7 000, 8 000, 9 000, 10 000, 12 000, 14 000, 16 000 load cycles. For more
details of the photos and the underlying experiment, see Müller et al (2011).

The first step is to detect the micro cracks in each of these photos by an
existing crack detection algorithm as given for example by Purcell (1983), Cheu
(1984), Buckley and Yang (1997), Fletcher et al (2003), Iyer and Sinha (2005),
Fujita et al (2006), Yamaguchi and Hashimoto (2010), Gunkel et al (2012),
Wilcox et al (2016), Amhaz et al (2016). All crack detection methods using
black-and-white photos base on the fact that cracks appear as darker areas in
the photos. Therefore, so called crack clusters can be defined as connected sets
of pixel positions where the pixels values are lying below a given threshold
value. Simple crack detection methods as the UTHSCSA Image Tool of Wilcox
et al (2016) use the orientation and maximum length of smallest rectangles
and ellipses containing the crack clusters as crack orientation and crack length.
However, the precision concerning the crack length is not high in such ap-
proaches since the real crack lengths are often much larger. This happens in
particular when the crack has a zigzag structure or a tree like structure with
ramifications. Hence, more sophisticated crack detection methods are necessary
to detect such structures. For example, the method of Amhaz et al (2016) is able
to detect cracks with their ramifications. However, this method does not provide
a measure for the length of a crack. The length of a crack is given by the crack
detection algorithm of the package crackrec of Gunkel et al (2012), which
is an R package (R Core Team, 2015) and free available at Müller (2016). This
algorithm determines at first the so called crack clusters. Then a so called crack
path in a crack cluster is the longest path which can be found by Dijkstra’s
shortest path algorithm connecting arbitrary pixel positions of the crack cluster.
This method was used here in the first step for detecting the cracks.

Figure 3 shows the detected cracks after 1 000, 3 000, 6 000, 10 000, 14 000,
18 000 load cycles in a cutout of the images. The detected paths are marked in
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Fig. 3 Detected cracks in a cutout of the image after 1 000, 3 000, 6 000, 10 000, 14 000, 18 000 load
cycles where T stands for the time in 1 000 load cycles

black in Figure 3. The start and the end point of a crack path are connected by
a straight line to highlight the crack paths. This figure shows clearly how the
number of detected cracks increases and how existing cracks becomes longer
when the number of load cycles increases. Thereby, cracks can become longer
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also by the fusion of two or more cracks. Similar results will be obtained by
other crack detection tools which provide crack lengths.

The second step is to backtrack large cracks which were detected at the end.
Large cracks could mean large crack clusters or long crack paths if paths are
detected. However, since all crack paths are surrounded by crack clusters and
paths are thin, the backtracking is based on crack clusters. Hence this step can
be performed also by crack detection methods which provide only crack clusters
as that of Wilcox et al (2016).

The backtracking step is iterative. Assume that there are time points t0 <
t1 < .. . < tN for which detected cracks exist. For any chosen crack at time tn
with 1 ≤ n ≤ N, all detected crack clusters at time tn−1 are calculated which
intersect with the chosen crack cluster. Then the largest crack is chosen as the
predecessor of the chosen crack and becomes the starting crack for the next
iteration. Thereby, largest crack can mean the cluster with the largest number of
pixels or the cluster with the longest detected path in the cluster. The K largest
cracks at the last time point tN are used as starting cracks.

If, for example, cracks are determined by crackrec of Gunkel et al
(2012) then the Kn detected crack clusters Cn(1), . . .Cn(Kn) of an image at
time tn are given as a list called crackclusters which includes Kn matri-
ces Mn(k) ∈ ℜ2×nn(k) of the corresponding pixel positions for k = 1, . . . ,Kn.
Moreover, the list element cracks is a 6×Kn matrix which provides, for each
of the Kn clusters, the number nn(k) of pixels in the cluster, the length of the
detected crack path in the cluster and the start and end points of the detected
crack path. Hence, the largest cracks can easily be determined independently of
whether the size is measured in number of pixels of the cluster or the length of
the crack path.
Assume that CN(1), . . .CN(K) are the K largest clusters at the last time point
tN . Then the proposed algorithm is given by Algorithm 3. The iteration Line
11 to Line 38 of this algorithm is demonstrated in Figure 4. On the right-hand
side of this figure, the chosen crack k at a time point tn = 18000 load cycles
is given in green by its crack path. It is seen that the surrounding black area
does not follow completely the path so that the corresponding crack cluster is
much larger. The left-hand side of Figure 4 provides the detected crack paths
at time point tn−1 = 16000 load cycles which is the nearest predecessor time
point with an available photo. All detected crack paths are marked in blue, red,
and green. All paths of the predecessor candidates, i.e. of crack clusters which
intersect with the chosen crack cluster on the right-hand side, are marked in red
and green. Clearly the green one is the longest predecessor so that it is chosen
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Algorithm 3 Backtracking algorithm
1: Input: List of crack clusters given by Mn(k) ∈ ℜ2×nn(k) for k = 1, . . . ,Kn, n = 1, . . . ,N, list of

corresponding crack lengths/sizes Ln(k) ∈ℜ for k = 1, . . . ,Kn, n = 1, . . . ,N, K number of largest
cracks at time N which should be backtracked.

2:
3: P = NULL . Contains the cluster numbers of all largest predecessors of clusters k = 1, . . . ,K.
4:
5: for k0 = 1, . . . ,K do
6: n = N
7: P(k0) = NULL . Contains the cluster numbers of all largest predecessors of cluster k0.
8:
9: while n≥ 1 do

10:
11: if n = N then k = k0.
12: end if
13: p = FALSE . Indicates whether cluster k at time n has a predecessor at time n−1.
14: Pk = NULL . Contains the cluster numbers of all predecessors of cluster k.
15:
16: for ν = 1, . . . ,nn(k) do, . i.e. for any column Mn(k)[,ν ] ∈ℜ2 of Mn(k) do,
17: for j = 1, . . . ,Kn−1 do
18: µ = 1
19: while µ ≤ nn−1( j) do
20: if Mn(k)[,ν ] = Mn−1( j)[,µ] then,
21: . i.e. if column Mn(k)[,ν ] equals to a column of Mn−1( j), i.e. if
22: . cluster k of time n and cluster j of time n−1 contain the same pixel,
23: p = T RUE
24: Pk = c(Pk, j) . Cluster number j is added to the vector of predecessors.
25: µ = nn−1( j)+1 . Stops the loop since cluster j is predecessor.
26: else µ = µ +1
27: end if
28: end while
29: end for
30: end for
31:
32: if p=FALSE then, . i.e. cluster k has no predecessor,
33: n = 0 . Stops the loop over the time points.
34: else
35: j0 = argmax{Ln−1( j); j in Pk}
36: . Determines j0 as the largest crack within the predecessor candidates.
37: k = j0, P(k0) = c(P(k0), j0), n = n−1
38: end if
39:
40: end while
41:
42: P = list(P,P(k0))

43: end for
44:
45: Output: P, i.e. list of vectors Pk0 ∈ℜm(k0) containing the m(k0) numbers of predecessor crack

clusters of crack cluster k0 at the end, k0 = 1, . . . ,K.
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Fig. 4 Right: Chosen crack in green after 18 000 load cycles. Left: All detected cracks paths after
16 000 load cycles in blue, red, green. All predecessor cracks of the crack on the right in red and green,
and the largest predecessor in green.

as predecessor crack and provides the new k for the next iteration. Its crack
path is quite different from the green crack on the right-hand side since the
crack cluster on the right-hand side is not given around one line. But it is the
predecessor crack in any case, using the number of pixels in the cluster as well
as the path length as crack size.

Note that a high increase of crack lengths happens in particular if two
or more crack clusters become connected. The larger crack clusters are the
more likely the union of several crack clusters is. Hence in the beginning
(e.g. for load cycles from 6 000 to 10 000 in Figure 3), there are not much
changes in the crack clusters and crack lengths, and these changes are mainly
caused by growth of the single crack clusters. Much more changes appear
later (e.g. for load cycles 10 000 to 18 000 in Figures 3 and 4) when crack
clusters are merged.

For getting crack growth curves, one can use the number of pixels of the
crack cluster as well as the length of the crack path in the cluster independently
how the predecessor crack was obtained. Figure 5 shows two resulting crack
growth curves based on lengths of crack paths. The one on the left-hand side
looks quite reasonable since it is almost strictly increasing. However, the one
on the right-hand side is not a real growth curve. Deviations from a strictly
increasing growth curve are caused by several sources of errors which appear
in the automatic calculation of the crack growth from the photos:
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Fig. 5 Two resulting crack growth curves.

Fig. 6 A large contamination (left) and different sharpness of photos (right).

• A single image may consist of several photos as can be seen easily in the left-
hand image of Figure 2, where 54 single photos were pieced together. This is
sometimes necessary when the area of interest is so large that it could not be
caught by one photo. The boundaries of the singles photos are clearly visible
because of shadows at the boundaries and different illuminations. One error
source in that particular case is that the pieces are not put together exactly.
This can split a single cracks in several cracks or several disconnected cracks
are detected as one crack.

• Images at different time points may differ in their location so that they have to
be shifted so that the pixel positions correspond to the same part of the image.
The calculation of the shift may be erroneous. This can lead to misspecified
backtracked clusters.

• Shadows and different illuminations cause problems in detecting the crack
clusters. This can happen between images at different time points but also
between different pieces of an image as can be seen in the left-hand side of
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Figure 6. This can influence the detection of cracks as well as the backtrack-
ing of clusters.

• The sharpness of the single photos can differ between time points and pieces
as can be seen in the right-hand side of Figure 6. An influence on the detection
of cracks and the backtracking of clusters is here also possible.

• The surface usually contains some pits, scratches and other contaminations
of the material which are falsely detected as cracks by an automatic crack
detection method. Pits are visible in the left-hand image of Figure 2 as black
spots. A big contamination can be seen in the top of this image. This is also
presented in the left-hand side of Figure 6. It provides already in the first
image a large crack which shows almost no increase of growth over time.
Moreover the corresponding “crack” is included in the 100 largest cracks
detected at the end. Hence, some detected cracks are no real cracks. This can
influence the backtracking of crack clusters. However, more important is that
some long cracks detected at the end may not be cracks.
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Fig. 7 Untrimmed predicted (expected) values and prediction intervals using an OU model for the
curve on the right-hand of Figure 5
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Fig. 8 10% trimmed predicted (expected) values and prediction intervals using an OU model for the
curve on the right-hand of Figure 5
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Fig. 9 20% trimmed predicted (expected) values and prediction intervals using an OU model for the
curve on the right-hand of Figure 5
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3.2 Performance measures for the crack growth data

Figure 7 shows the predicted (expected) values and prediction intervals using the
classical untrimmed maximum likelihood estimator for an Ornstein-Uhlenbeck
process (OU) for the path on the right-hand side of Figure 5. This path is not
monotone because of extreme outlying observations. These outliers cause bad
fits for the Ornstein-Uhlenbeck process using the classical maximum likelihood
estimator so that the performance measure MedAE is equal to 5.55 and the
performance measure based on the interval score IS0.05 is 30.12. Using an 10%-
trimmed estimator leads to the result shown in Figure 8 with improved MedAE
of 3.45 because one observation is trimmed. However, the performance measure
based on the interval score has increased to 48.78 since the prediction intervals
became smaller so that the 7’th prediction interval is more far away from the
observed value as for the untrimmed estimator. If 20%, i.e. two observations,
are trimmed then the performance measure based on the interval score has
decreased to the very small value of 8.79 since all prediction intervals include
the observations as seen in Figure 9. However, here the MedAE is worse than for
using the untrimmed estimator. This extreme example shows that trimming some
few observations improves the two performance measures differently. Here,
a higher trimming rate is necessary to improve both performance measures
simultaneously.
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Fig. 10 Boxplots of the median absolute deviations (MedAD) of the growth curves of the 100 largest
cracks in Specimen 31 fitted by three SDEs without trimming, 10% trimming and 20% trimming.
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Fig. 11 Boxplots of the interval score IS0.05 of the growth curves of the 100 largest cracks in Specimen
31 fitted by three SDEs without trimming, 10% trimming and 20% trimming.

However, most crack growth curves are not so contaminated as the one on
the right-hand side of Figure 5. 20% trimming and even 10% trimming lead
to reasonable fits of an Ornstein-Uhlenbeck process, a Cox-Ingersoll-Ross
process, or a Geometric Brownian Motion for the majority of the 100 crack
growth curves which are backtracked from the 100 largest detected cracks at
the end. This can be seen from the boxplots in Figure 10 for the 100 obtained
performance measures based on the median absolute deviation (MedAD) and
in Figure 11 for the 100 obtained performance measures IS0.05 based on the
interval score. Thereby, 20% trimming leads to the best result for both per-
formance measures, and this is independent whether an Ornstein-Uhlenbeck
process, a Cox-Ingersoll-Ross process, or a Geometric Brownian Motion is
fitted. However, the Geometric Brownian Motion provides the largest perfor-
mance meausure while the performance measures for the Ornstein-Uhlenbeck
process and the Cox-Ingersoll-Ross process are very similar. The same result
was obtained when the method was applied to a series of photos of another
specimen (Specimen 10) which was exposed to lower stress so that photos are
availabe at 29 time points and the crack growth curves are more flat.

The boxplots indicate that the performance measures of the growth curves
of the 100 largest cracks do not follow a normal distribution which was also
confirmed by Shapiro-Wilk tests. Therefore, to test whether the trimming im-
proves the performance, a closed testing principle based on the H-test (Kruskal-
Wallis test) and followed by two Wilcoxon rank-sum tests (Mann-Whitney
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U-tests) was applied. Table 1 clearly shows that there is a significant difference
between no trimming, 10% trimming, and 20% trimming for both performance
measures and all three regarded processes. Again only the results for Specimen
31 are presented in Table 1. But for Specimen 10, the P-values are either the
same or even smaller.

Tab. 1 P-values of H-tests and Wilcoxon-Rang-Sum tests for the performance measures obtained
from Specimen 31 based on no trimmimg (P0), 10% trimming (P10), and 20% trimming (P20).

Null hypothesis P0 = P10 = P20 P0 ≤ P10 P10 ≤ P20
Test procedure H-test Rank-Sum Rank-Sum

MedAE (OU) < 0.0001 0.0005 0.0010
MedAE (CIR) < 0.0001 0.0012 0.0052

MedAE (GBM) < 0.0001 < 0.0001 0.0125
Interval Score (OU) < 0.0001 < 0.0001 < 0.0001
Interval Score (CIR) < 0.0001 < 0.0001 < 0.0001

Interval Score (GBM) < 0.0001 < 0.0001 < 0.0001

Tab. 2 Comparison between the performance measures POU , PCIR, PGBM applied to the three stochastic
processes with 20% trimming in Specimen 31.

Nullhypothesis Test MedAE Interval Score

POU = PCIR = PGBM H-Test < 0.0001 < 0.0001
POU = PCIR Rank-Sum 0.8498 0.6087
POU = PGBM Rank-Sum < 0.0001 < 0.0001
PCIR = PGBM Rank-Sum < 0.0001 < 0.0001

Table 2 provides the P-values of a closed testing principle based on the
H-test and followed by two Wilcoxon rank-sum tests for testing the equality
of the performance measures for the three processes if 20% trimming is used.
The results are shown for Specimen 31, but are the same for Specimen 10. As
indicated by the boxplots, there is no significant difference between the Ornstein-
Uhlenbeck process and the Cox-Ingersoll-Ross process. However, both differ
significantly from the Geometric Brownian Motion. An explanation for this
result is the number of unknown parameters. While the Ornstein-Uhlenbeck
process and the Cox-Ingersoll-Ross process possess three unknown parameters,
the Geometric Brownian Motion has only two unknown parameters because the
slope term satisfies θ1 = 0. This makes the Geometric Brownian Motion less
flexible for fitting data and the slope term seems to be important for the fit.



22 Christine H. Müller and Stefan H. Meinke

Finally, it was tested whether the three parameters of the processes with
best fit with 20% trimming, i.e. the Ornstein-Uhlenbeck process and the Cox-
Ingersoll-Ross, are different for the two specimens. The estimated parameters
are given in Table 3 and the test results in Table 4. This shows that there is no
significant difference in the drift term θ2 whereas the slope term θ1 and the
diffusion term θ3 are significantly higher for higher stress. Note that Sepcimen
10 was exposed to an external stress of 360 MPa and Specimen 31 to 400 MPa.

Tab. 3 Median of the estimated parameters of the Ornstein-Uhlenbeck processes and the Cox-Ingersoll-
Ross processes using 20% trimming for Specimens 10 and 31

Specimen (Process) med(θ̂1) med(θ̂2) med(θ̂3)

10 (OU) 2.2779 0.0814 1.6697
31 (OU) 6.4637 0.0799 3.4209

Difference -4.1858 0.0016 -1.7512

10 (CIR) 2.0858 0.0709 0.4636
31 (CIR) 6.5832 0.0985 0.7547

Difference -4.4974 −0.0275 -0.2911

Tab. 4 P-values for a two-sided Wilcoxon-Rank-Sum test in order to check whether the estimated
parameters are significantly different between Specimens 10 and 31 for the Ornstein-Uhlenbeck
process and the Cox-Ingersoll-Ross process.

Nullhypothesis θ
(10)
1 = θ

(31)
1 θ

(10)
2 = θ

(31)
2 θ

(10)
3 = θ

(31)
3

Ornstein-Uhlenbeck < 0.0001 0.5486 < 0.0001
Cox-Ingersoll-Ross < 0.0001 0.9229 < 0.0001

4 Discussion

We introduced trimmed likelihood estimators for processes given by stochastic
differential equations and showed how they can be computed efficiently. To
study their performance on a large data set, we proposed an automatic detection
method to obtain crack growth data from a series of photos by backtracking
large cracks detected in the last photo. The application of the trimmed like-
lihood estimators to these data showed that these estimators can deal with a
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high amount of contamination of the data caused by the automatic detection
method. In particular, the fits obtained of 100 crack growth curves measured
by two proposed performance measures were significantly better for trimming
20% than 10% of the data of a growth curve. For simplicity, only the fits of
the Ornstein-Uhlenbeck process, the Cox-Ingersoll-Ross process, and the Ge-
ometric Brownian Motion were studied. But similarly other processes can be
fitted. Within the regarded three processes, the Ornstein-Uhlenbeck process and
the Cox-Ingersoll-Ross process provided the best fits and estimated parameters
which differ significantly between different stress conditions. Hence the influ-
ence of the stress conditions on these parameters may be used in future work to
predict the damage development of material by analyzing cracks detected from
photos as described in this paper.
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