

26th International Conference on Nuclear Engineering ICONE26-81713 Novotel London West, London W6 8DR, England 22-26 July 2018

Effect of oxygen concentration in static Pb-Bi eutectic on corrosion behavior of aluminum-alloyed austenitic steels at 550 °C for 1000 h

Valentyn Tsisar ^a, Carsten Schroer ^a, Zhangjian Zhou ^b, Olaf Wedemeyer ^a, Aleksandr Skrypnik ^a, Jürgen Konys ^a

- a. Karlsruhe Institute of Technology (KIT), Institute for Applied Materials Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- b. School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

INSTITUTE FOR APPLIED MATERIALS – APPLIED MATERIALS PHYSICS (IAM-WPT)

LIQUID-METALS AS A FUNCTIONAL MEDIA FOR NOVEL REACTORS

SYSTEM "LIQUID Pb-Bi EUTECTIC / STEEL"

I.V. Gorynin et al. Met. Sci. Heat Treat. 41 (9) (1999) 384-388

Main corrosion modes

1. Dissolution

- Leaching of Ni, Cr and Fe
- 2. Oxidation
 - Formation of Fe-based scale

OXIDATION OF STEELS IN Pb-Bi EUTECTIC

- □ Bi-layer scale, with outer Fe_3O_4 (magnetite spinel) and inner $Fe(Fe,Cr)_2O_4$ spinel-type oxide layers, typically forms on the surface of steels in contact with oxygen-containing Pb and Pb-Bi melts
- Growth of scale is governed by the outward diffusion of iron cations
- Inward growth of Fe-Cr spinel at the oxide/steel interface could be accessed from the *dissociative growth theory*: vacancies generated by outward diffusion of iron cations precipitate at the oxide/steel interface forming cavities (pores) into which the oxide dissociates with evaporating oxygen providing further oxidation of steel (S. Mrowec, Corrosion Science 7 (1967) 563-578).

EXAMPLE OF SCALE EVOLUTION WITH TIME

Flowing Pb-Bi (2 m/s), 10⁻⁷ mass%O, 400°C

- ---- Initial steel / liquid Pb-Bi interface
- Degradation of scale with time results in initiation of local dissolution attack
- Re-healing of scale does not take place
- The long-term viability of protective scale on the surface of steels facing Pb melts is one of the main task for successful application of oxygen-controlled Pb melts

Dissolution attack as a result of scale failure

EFFECT OF ALLOYING ON CORROSION

Transfer from Fe-based bi-layer scale to single layer oxide films based on Cr, Si, Al is highly desirable

Karlsruhe Institute of Technology

Solubility of pure metals in LBE as a function of temperature

Alloying elements in steels which might improve oxidation resistance are typically highly soluble in HLM

EFFECT OF ALLOYING ON OXIDATION IN Pb MELTS

Cr-alloyed steels

Effect of Cr content on scale composition, morphology and thickness

Cr content in the steel (mass%)

- □ Conditions: T≤570°C, C[O]_{HLM}>Fe₃O₄
- Thickness of bi-layer scale decreases with increasing Cr content in the material
- □ Formation of single-layer Cr-rich oxide film is a short-time period (incubation)

Silicon alloyed steels

Yuji Kurata / Journal of Nuclear Materials 437 (2013) 401-408

- Static Pb-Bi at 550°C with 10⁻⁵ mass%O, ~1300h
- The Si addition reduces the scale thickness under the high oxygen condition
- □ The Si addition has no significant effect under the low oxygen condition (10⁻⁸ mass%O)

- Flowing LBE, 550°C, 10⁻⁶ mass%O, 15028 h
- □ Intensive development of IOZ after long-term exposure

C. Schroer et al. / Journal of Nuclear Materials 469 (2016) 162–176

Static Pb, 650°C, 10⁻³ mass%O, 50 h
 Extreme oxidation with formation of non-

protective thick scale totally penetrated by Pb V. Tsisar / PhD (2005)

Aluminum-alloyed F/M steels

Static Pb, Fe-10Cr-6Al-RE alloy, 550 °C, 10⁻⁷ wt.% oxygen, 10000h

J. Ejenstam, P. Szakálos /Journal of Nuclear Materials 443 (2013) 161–170

- Thin Al-rich oxide layer, formed at the metaloxide interface, prevented Pb penetration into the bulk steel at least up to 10000 h
- Synergetic effect of Cr and Al is important for formation of protective oxide film
- Preliminary results shows a potential for using Alalloyed steels at higher temperatures (>550 °C)
- Tests in dynamic HLM are necessary to investigate viability of alumina films and it selfhealing abilities

Static Pb, Fe-12Cr-7Al alloy, 600 °C, 10⁻⁶ wt.% oxygen, 1830h

Aluminum-alloyed austenitic steels

Alumina-Forming Austenitic (AFA) stainless steels with improved creep resistance (strengthening with Laves phases and carbides) and oxidation resistance due to formation of Al₂O₃ at high temperatures in gaseous media are under developing (Y. Yamamoto et al., Metall and Mat Trans A 42 (2011) 922–931)

Fe-14Cr-14Ni-2.5Al-1.6Mn-2.5Mo-0.9Nb

Static Pb, 550°C, 10⁻⁷ wt.% oxygen, one year

J. Ejenstam, P. Szakálos. Journal of Nuclear Materials 461 (2015) 164–170

- Thin (<100 nm) protective Al-rich oxide film was formed on the14Ni AFA alloy after one year indicating that this alloy is a potential candidate for use in Pb-cooled reactors
- Tests in flowing oxygen-controlled HLM are of interest to show the longterm viability of protective oxide film on the alloy surface

Karlsruhe Institute of Technology

Fe-14Cr-25Ni-3.5Al-2Mn-2Mo-2.5Nb

Static Pb-Bi, at 520°C, 10⁻⁹≤ [O] ≤ 5x10⁻⁴, 1850 h

M. Roy, L. Martinelli, K. Ginestar et al., Journal of Nuclear Materials 468 (2016) 153-163
Bi-layer magnetite scale formed on the AFA alloy shows that there is no substantial gain in using this alloy in comparison with conventional austenitic steels not-alloyed by AI

CHEMICAL COMPOSITION AND STRUCTURE OF AUSTENITIC STEELS ALLOYED BY ALUMINUM

(Fe-Bal.)	Cr	Ni	Мо	Mn	Si	AI	Nb	С
# 1-AINbC	11.7 (+0.02)	18.0 (⊹0.02)	1.99 (+0.003)	0.0887 (+0.0003)	0.401 (+0.0006)	2.32	0.577	0.0086
	(±0.02) 11.7	(±0.02) 18.0	(±0.003) 2.00	(±0.0003) 0.118	(±0.0008) 0.377	(±0.008) 2.90	(±0.003)	(±0.0003) 0.0300
# 3-Al	(±0.02)	(±0.05)	(±0.007)	(±0.0005)	(±0.0009)	(±0.010)	<0.001	(±0.0006)

Fe-18Ni-12Cr-AINbC

Fe-18Ni-12Cr-Al

School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

APPARATUS FOR STATIC CORROSION TESTS IN HEAVY LIQUID METALS

CONDITIONS OF CORROSION TESTS

Constant:

- volume of Pb-Bi eutectic (2 kg)
- ratio of Pb-Bi volume to surface of samples is 25 cm
- temperature 550°C
- exposure time ~1000 h
- Varying oxygen concentration in Pb-Bi eutectic
 - Test 1: 10⁻¹¹ 10⁻¹² mass%O
 - Test 2: 10⁻¹⁰ mass%O
 - Test 3: 10⁻⁹ mass%O
 - Test 4: 10⁻⁸ mass%O
 - Test 5: 10⁻⁶ mass%O

POST-TEST QUANTIFICATION OF CORROSION LOSS USING METALLOGRAPHIC METHOD FOR CYLINDRICAL SPECIMENS

- 1. Measurement of initial diameter in a laser micrometer (0.1 µm resolution)
- 2. Measurement of post-test diameter (12th measurements with rotation angle 15°) or radius of unaffected material on cross-section
- 3. Measurement of thickness of corrosion zones (1 µm resolution)
- 4. % of occurrence of different corrosion modes
- 5. Extra measurements for determination of maximum depth of corrosion attack

RESULTS OF CORROSION TESTS #1-4

MORPHOLOGY AND CORROSION ZONES

COMPOSITION OF

Spongy corrosion zone is a ferrite layer depleted substantially in Ni and Cr, in comparison with initial steel composition, and penetrated by Pb and Bi

CORROSION TEST 5

corrosion trend on Fe-18Ni-12Cr-Al steel

CORROSION TEST 5

Characterization of general corrosion appearance (79%) on Fe-18Ni-12Cr-AINbC steel

Cr/Al-rich oxide film (on 79% of surface appearance) is formed on steel surface indicating synergetic effect of Cr and Al on the formation of oxide layer

18

CORROSION TEST 5

Characterization of local corrosion appearances (21%) on Fe-18Ni-12Cr-AINbC steel

- □ Local protrusions of bi-layer magnetite scale or inner Fe-Cr-Al-O spinel are observed
- Local accelerated oxidation is observed on 21% of surface

CORROSION TEST 5 Characterization of general corrosion appearance on Fe-18Ni-12Cr-AI steel

- Pure dissolution attack (ferrite layer on 33% of surface) and dissolution in combination with oxidation (42% of surface) reflects the general corrosion trend on Fe-18Ni-12Cr-Al steel
- Oxidation with formation of thin oxide film is detected on 21 % of surface
- Oxidation with formation of comparable thick Fe-Cr-Al-O spinel scale (~4-8 µm) is detected on 4 % of surface

ntensity (a.u.)

CHEMICAL COMPOSITION OF LIQUID METAL AFTER TESTS

- Cr-based oxides are forming on the surface of LBE when concentration of oxygen in Pb-Bi is ≤ than necessary for the stability of magnetite
- Fe-based oxides are formed on the surface of LBE when concentration of oxygen in Pb-Bi is
 > than necessary for the stability of magnetite

Composition of LBE after test 5						
	mass%					
AI	< 0.00001					
Cr	< 0.00001					
Fe	< 0.00001					
Ni	0.00432 (±0.00001)					
Saturation concentration At 550°C (mass%)						
	Al	-				
	Cr	0.0016				
	Fe	0.00048				
	Ni	3.2				
Composition of LBE after test 1						
	mass%					
AI	< 0.00005					
Cr	0.00019 (±0.00002)					
CI						
Fe	0.00	023 (±0.00007)				

10⁻¹¹-10⁻¹²

 Al_2O_3

GENERALIZATION OF THE EXPERIMENTAL RESULTS

- Dissolution attack occurs when concentration of oxygen in Pb-Bi is ≤10⁻⁸ mass%O
- Cr-Al-O oxide film is formed in-situ on the surface of Fe-18Ni-12Cr-AlNbC steel in Pb-Bi with 10⁻⁶ mass% dissolved oxygen while Fe-18Ni-12Cr-Al shows dissolution and oxidation simultaneously resulting in larger corrosion loss

QUANTIFICATION OF CORROSION LOSS

SUMMARY

- □ The effect of oxygen concentration in static Pb-Bi eutectic at 550 °C on the corrosion behavior of Fe-18Ni-12Cr-2.3AI and Fe-18Ni-12Cr-2.9AI-Nb-C austenitic steels is investigated for about 1000 h
- ❑ When oxygen concentration in the Pb-Bi is controlled at 10⁻¹²-5×10⁻¹¹, 10⁻¹⁰, 10⁻⁹ and 10⁻⁸ mass %, both steels underwent solution-based attack resulted in formation of spongy ferrite layer penetrated by Pb and Bi
- In Pb-Bi with 10^{-6} mass % O:
 - Fe-18Ni-12Cr-2.90Al-Nb-C steel shows general slight oxidation (~79%) with the formation of very thin Cr-Al-based oxide film and local enhanced oxidation (21%) resulted in the formation of Fe-Cr-O spinel or bi-layer scale corresponding to the material loss of about 10 µm
 - In contrast, the thicker Fe-Cr-AI-O spinel with ferrite zone beneath is observed on the Fe-18Ni-12Cr-2.30AI steel (~79%) resulting in average material loss of about 33 µm
 - The more complex alloying in Fe-18Ni-12Cr-2.9Al-Nb-C steel seems favors the formation of more protective oxide film
- The oxidation potential of the liquid metal, similar to the conventional austenitic steels not-alloyed by Al, should be higher than required for the thermodynamic stability of magnetite (Fe₃O₄) in order to promote oxidation
- Long-term tests under the flowing conditions are necessary to investigate the viability of thin Cr-Albased oxide film

Thank you for attention !!!

