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We compute the next-to-leading order QCD corrections to the production of Higgs bosons with large 
transverse momentum p⊥ � 2mt at the LHC. To accomplish this, we combine the two-loop amplitudes 
for processes gg → H g, qg → Hq and qq̄ → H g, recently computed in the approximation of nearly 
massless top quarks, with the numerical calculation of the squared one-loop amplitudes for gg → H gg, 
qg → Hqg and qq̄ → H gg processes. The latter computation is performed with OpenLoops. We find 
that the QCD corrections to the Higgs transverse momentum distribution at very high p⊥ are large but 
quite similar to the QCD corrections obtained for point-like H gg coupling. Our result removes one of 
the largest sources of theoretical uncertainty in the description of high-p⊥ Higgs boson production and 
opens a way to use the high-p⊥ region to search for physics beyond the Standard Model.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Detailed exploration of the Higgs boson is one of the central 
tasks of the particle physics program at the LHC. Since the major-
ity of the Higgs bosons is produced in the gluon fusion, it is only 
natural to study Higgs coupling to gluons as precisely as possible.

Incidentally, the Higgs–gluon coupling is very interesting phe-
nomenologically. Indeed, since the Higgs coupling to gluons is 
loop-induced, and since contributions of heavy particles whose 
masses are generated by the Higgs mechanism do not decouple, 
the gg H interaction vertex becomes an intriguing probe of the 
TeV-scale physics.

In the Standard Model, the gg H interaction vertex is almost en-
tirely generated by the top quark loops and, since the top Yukawa 
coupling in the Standard Model is fully determined by the top 
quark mass, it appears that the gg H coupling is fully predictable. 
However, since the top Yukawa coupling is known experimen-
tally to about 50 percent from tt H production process [1,2], it is 
still possible that there is additional, point-like component of the 
H gg coupling that appears thanks to physics beyond the Standard 
Model (BSM).

✩ Preprint number: IPPP/18/5, TTP18-03.
E-mail addresses: kirill .kudashkin @kit .edu (K. Kudashkin), 

jonas .m .lindert @durham .ac .uk (J.M. Lindert), kirill .melnikov @kit .edu (K. Melnikov), 
christopher.wever @kit .edu (C. Wever).
https://doi.org/10.1016/j.physletb.2018.05.009
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
To describe this possibility, we consider the following modifica-
tion of the top Yukawa part of the SM Lagrangian
mt

v
t̄t H → −κg

αs

12π v
Ga

μνGμν,a H + κt
mt

v
t̄t H . (1)

The first term on the r.h.s. in Eq. (1) is the point-like contribution 
to the Higgs–gluon coupling and the second is the modified top 
Yukawa coupling.

What are the constraints on the anomalous couplings κg and 
κt from the Higgs production in gluon fusion? Since the top quark 
contribution to Higgs boson production in gluon fusion is well-
described in the large-mt approximation, the production cross sec-
tion is proportional to the sum of the two couplings squared 
σgg→H ∼ α2

s /v2(κg +κt)
2. Clearly, even if the cross section σgg→H

is measured with absolute precision, we cannot constrain κg and 
κt separately but only their sum.

To disentangle κg and κt , one has to go beyond total cross sec-
tion measurements. A useful and simple observable [3] is the Higgs 
boson transverse momentum distribution. Indeed, if we assume 
that scale of New Physics1 that generates point-like gg H coupling 
proportional to κg , is much larger than twice the top quark mass, 
there exists a range of transverse momenta 2mt � p⊥ � �g such 
that the BSM contribution to the Higgs–gluon vertex can still be 
treated as point-like, whereas the top quark contribution starts 

1 We refer to such a scale as �g .
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being resolved. This feature can be illustrated by the following 
schematic formula

dσH

dp2⊥
∼ σ0

p2⊥

⎧⎨
⎩

(κg + κt)
2, p2⊥ < 4m2

t ,(
κg + κt

4m2
t

p2⊥

)2

, p2⊥ > 4m2
t .

(2)

This formula suggests that a measurement of the Higgs transverse 
momentum distribution in the two regions, p⊥ � 2mt and p⊥ �
2mt , allows for a separate determination of κg and κt .

There are quite a few obstacles to a practical realization of this 
program. First, assuming that κt ∼ 1, κg ∼ 0.1, the p⊥ distribution 
of the Higgs boson is dominated by the Standard Model contribu-
tion until rather high values of the Higgs transverse momentum. 
Unfortunately, since the cross section decreases quite fast with p⊥ , 
we expect a relatively small number of events in the interesting 
transverse momentum region. For example, the SM cross section 
for producing Higgs bosons with transverse momenta larger than 
450 GeV is close to O(10 fb); therefore, even allowing for small 
deviations from the Standard Model, we estimate that just a few 
hundred Higgs bosons have been produced in the high-p⊥ region 
at the LHC so far.

Second, even if Higgs bosons with high transverse momenta are 
produced, identifying them through standard clean decay channels 
H → γ γ and H → 4 leptons decreases the number of events be-
cause of the tiny branching fractions of these decay modes. In fact, 
the number of events is reduced to such an extent that, given cur-
rent integrated luminosity, it becomes impossible to observe them.

The third point concerns the quality of the theoretical descrip-
tion of the Higgs p⊥ spectrum at high transverse momentum. As 
follows from Eq. (2), we require the description of the spectrum 
in two regimes: a) p⊥ < 2mt , where the gg H interaction is, ef-
fectively, point-like and b) p⊥ > 2mt where, in addition to the 
point-like interaction, there is a “resolved”, p⊥-dependent compo-
nent due to the top quark loop. Theoretical description of Higgs 
boson production in gluon fusion, for a point-like gluon–Higgs ver-
tex, is extremely advanced. Indeed, the inclusive rate for gluon 
fusion Higgs production in this approximation is known to the as-
tounding N3LO QCD accuracy [4], and the Higgs p⊥-distribution 
has been computed to NNLO QCD [5–7].

In comparison, very little is known about gluon fusion beyond
the point-like approximation for the gg H interaction vertex which 
becomes of particular relevance at high p⊥ . The corresponding 
cross section was computed at leading order in perturbative QCD 
[8] thirty years ago and only recently this result was extended to 
next-to-leading order in a situation when the mass of the quark 
that facilitates the Higgs–gluon interaction is much smaller than 
the Higgs boson mass and all other kinematic invariants in the 
problem [9,10].

We emphasize that even if the first and second points that we 
mentioned earlier can be overcome, imprecise knowledge of the 
Standard Model contribution at high p⊥ may be an obstacle for 
the determination of κg . Indeed, since the two contributions to 
dσ/dp2⊥ at high p⊥ may receive different radiative corrections, 
lack of their knowledge may affect the interpretation of the result 
especially if relatively small values of κg are to be probed. Since for 
processes with gluons in the initial state large QCD corrections are 
typical, one can expect large radiative corrections also for the re-
solved top-quark loop at high p⊥ . Although the fact that radiative 
corrections are large is almost guaranteed, the important question 
is by how much they differ if the high-p⊥ tail of the Higgs trans-
verse momentum distribution is computed with the point-like or 
“resolved” Higgs–gluon vertex. This is the question that we attempt 
to answer in this paper.

It is clear that the low statistics issue, that was mentioned in 
the first and second points above, can only be overcome by col-
lecting higher integrated luminosity; luckily, the LHC will continue 
doing that. However, it should be possible, already now, to per-
form relevant measurements in the high-p⊥ region if one does 
not lose so much statistics by insisting that the produced Higgs 
bosons should decay into clean final states. Interestingly, it ap-
pears to be possible to do that. Indeed, in contrast to low-p⊥
Higgs production, at high-p⊥ one can identify the Higgs boson 
through its decays to H → bb̄ using the boosted techniques [11]
and to distinguish hadronically-decaying Higgs bosons from large 
QCD backgrounds. In fact, the CMS collaboration has recently pre-
sented results of the very first analysis [12] performed along these 
lines, where Higgs boson production with p⊥ > 450 GeV, was ob-
served. Although the result for the Higgs production cross section 
with p⊥ > 450 GeV obtained in [12] is rather imprecise, forth-
coming improvements with higher luminosity and better analysis 
technique are to be expected.

The third point mentioned above is an important issue. Indeed, 
since the Standard Model production of a Higgs boson at high p⊥
involves “resolved” top quark loops, computing next-to-leading or-
der QCD corrections to this process requires dealing with two-loop 
four-point functions with internal (top quark) and external (Higgs 
boson) massive particles. The relevant two-loop Feynman integrals 
with the full dependence on mt and mH are still not available,2

so that the NLO QCD computation can not be performed. Thus, in 
the literature various approximations have been performed both 
for inclusive Higgs production [13] and also for finite Higgs p⊥
[14,15]. However, recently, the two-loop amplitudes for the pro-
duction of the Higgs boson at high-p⊥ were computed [16]. This 
result enables calculation of the Higgs boson transverse momen-
tum distribution for p⊥ > 2mt at NLO QCD, that we report in this 
Letter.

The rest of the paper is organized as follows. In the next Sec-
tion, we provide a short summary of theoretical methods used for 
the calculation of two-loop virtual and real emission corrections. 
Phenomenological results are reported in Section 3. We conclude 
in Section 4.

2. Computational setup

We begin with the discussion of the computation of the two-
loop QCD amplitudes for producing the Higgs boson with large 
transverse momentum in proton collisions [16]. There are four 
partonic processes that contribute; they are gg → H g , gq̄ → Hq̄, 
gq → Hq and qq̄ → H g . We systematically neglect the Higgs boson 
coupling to light quarks; therefore, all contributions to scattering 
amplitudes are mediated by the top quark loops and are propor-
tional to the top quark Yukawa coupling.

In principle, scattering amplitudes for Higgs boson production 
with non-vanishing transverse momentum depend on the Higgs 
boson mass, the top quark mass and two Mandelstam invariants 
s and t . Computation of two-loop Feynman integrals that depend 
on such a large number of parameters and, moreover, contain in-
ternal massive lines, is, currently not feasible. However, since we 
are interested in describing production of the Higgs boson with 
high transverse momentum, we can construct an expansion of the 
scattering amplitude in m2

i /s and m2
i /p2⊥ , where m2

i ∈ {m2
H , m2

t }. 
Additionally, as m2

H /(2mt)
2 ∼ 0.1, it is motivated to neglect the 

Higgs boson mass compared to the top quark mass in the com-
putation.

It is however non-trivial to construct such an expansion in the 
Higgs and top quark masses. Indeed, in contrast to an opposite 

2 We note that planar two-loop integrals for this process were computed in 
Ref. [17].
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Fig. 1. Ratio of approximate to exact leading order cross sections. By retaining 
O(m2

t /p2⊥) corrections in scattering amplitudes (red line), we obtain an excellent 
approximation to the exact LO result. The notation m0

t and m2
t in the legend of the 

plot refers to the leading and next-to-leading power expansion of the amplitude in 
m2

t , not including the overall m2
t that arises from the Yukawa coupling and the he-

licity flip. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

kinematic limit, p⊥ � mt , where expansion of scattering ampli-
tudes can be performed at the level of Feynman integrals in mo-
mentum space using the large-mass expansion algorithms [18], no 
momentum-space algorithms exist for an expansion in the small 
quark mass. For this reason, we have opted for a different method 
[19,9]. The idea is to first derive differential equations for mas-
ter integrals3 that are exact in all kinematic parameters and then 
develop a systematic expansion of these differential equations in 
the mass of the top quark and the Higgs boson. Since the dif-
ferential equations contain all the information about the possible 
singularities of the solutions, we can construct the expansion of 
the solutions in the limit of small Higgs and top masses.

We have applied this method to compute all the master inte-
grals relevant for the Higgs+jet production amplitudes [16]. When 
computing these amplitudes, we have retained first sub-leading 
terms in the m2

t /p2
t -expansion but we have set the mass of the 

Higgs boson to zero.4 It turned out that by keeping sub-leading 
terms in the m2

t /p2⊥-expansion in the amplitude we can signif-
icantly extend the applicability range of the computation. To il-
lustrate this, in Fig. 1, we compare the exact leading order p⊥
distribution of the Higgs boson with three expansions. We see that 
the result for amplitude expanded to O(m0

H , m2
t ) terms tracks the 

leading order amplitude at the level of few percent all the way 
down to the top quark threshold; on the contrary, if the sub-
leading top quark mass terms are not retained, the expanded and 
exact cross sections have O(20%) difference at p⊥ ∼ 800 GeV. Even 
higher terms in the m2

t /p2⊥-expansion do not further improve the 
agreement at the scale of Fig. 1. Yet, keeping also subleading terms 
in the m2

H expansion can further improve the agreement with 
the exact result. For illustration, in Fig. 1 we show the result for 
the amplitude expanded up to O(m2

H , m2
t ), which above thresh-

old agrees at the permil level with the exact result. Including even 

3 The required algebraic reduction to master integrals is highly non-trivial; for 
this, we have used results obtained in an earlier collaboration with L. Tancredi in 
Ref. [9].

4 Setting mH to zero is possible since the dependence of all amplitudes on the 
Higgs boson mass is analytic.
higher expansions does not yield further improvement visible at 
the scale of Fig. 1.

In order to produce physical results for Higgs boson production 
with non-vanishing transverse momentum, we need to combine 
the above discussed virtual corrections with the corresponding real 
corrections, e.g. gg → H + gg , qg → Hq + g etc, that describe in-
elastic processes. Computation of one-loop scattering amplitudes 
for these inelastic processes is non-trivial; it requires evaluation 
of five-point Feynman integrals with massive internal particles. 
Nevertheless, these amplitudes are known analytically since quite 
some time [20].5

In this Letter we follow an approach, based on the auto-
mated numerical computation of one-loop scattering amplitudes 
developed in recent years. One such approach, known as Open-
Loops [21], employs a hybrid tree-loop recursion. Its implemen-
tation in the OpenLoops program is publicly available [22,23]. 
This program has been applied to compute one-loop QCD and 
electroweak corrections to a multitude of complicated multi-leg 
scattering processes (see e.g. Refs. [24,25]) and for the real-virtual 
contributions in NNLO computations (see e.g. Ref. [26]).

For these applications in NNLO calculations and for computing 
NLO corrections to loop-induced processes, such as the one dis-
cussed here, the corresponding one-loop real contributions need 
to be computed in kinematic regions where one of the external 
partons becomes soft or collinear to other partons. A reliable eval-
uation of the one-loop scattering amplitudes in such kinematic 
regions is non-trivial, but OpenLoops appears to be perfectly 
capable of dealing with this challenge thanks to the numerical sta-
bility of the employed algorithms. A major element of this stabil-
ity originates from the employed tensor integral reduction library
COLLIER [27].

All virtual and real amplitudes have been implemented in the
POWHEG-BOX [28], where infra-red singularities are regularized 
using FKS subtraction [29]. All OpenLoops amplitudes are acces-
sible via a process-independent interface developed in Ref. [25]. 
The implementation within the POWHEG-BOX will allow for an 
easy matching of the fixed-order results presented here with par-
ton showers at NLO.

3. Results

In this Section, we present the results of our computation of 
the NLO QCD corrections to Higgs boson production at high p⊥ . 
We consider proton–proton collisions at the LHC with the center 
of mass energy 13 TeV. The Higgs boson mass6 and the top quark 
mass7 are taken to be mH = 125 GeV and mt = 173.2 GeV, respec-
tively. We employ the five-flavor scheme and consider the bottom 
quark as massless parton in the proton. We use the NNPDF3.0 set 
of parton distribution functions [30] at the respective perturbative 
order and employ the strong coupling constant αs that is provided 
with these PDF sets. We choose renormalization and factorization 
scales to be equal and take as the central value

μ0 = HT

2
, HT =

√
m2

H + p2⊥ +
∑

j

p⊥, j , (3)

where the sum runs over all partons in the final state. We note 
that at large Higgs boson transverse momentum, the scale simpli-
fies to μ0 = HT /2 ≈ p⊥ . Theoretical uncertainties are estimated by 

5 These amplitudes were recently re-evaluated in Ref. [15].
6 Although the Higgs boson mass is ignored in the two-loop virtual amplitude, it 

is retained in the computation of the real emission contribution to the transverse 
momentum distribution.

7 We renormalize the top quark mass in the pole scheme.
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Table 1
Inclusive cross sections and K -factors for pp → H + jet at 

√
S = 13 TeV in the SM and in the infinite top mass 

approximation with different lower cuts on the Higgs boson transverse momentum p⊥ . We estimate the theo-
retical uncertainty in the predicted cross section by changing renormalization and factorization scales by a factor 
of two around the central value in Eq. (3). We define the K -factors as σNLO/σLO. The results for K -factors in the 
Table are computed for the central value of the renormalization scale. See text for details.

LOHEFT [fb] NLOHEFT [fb] K LO [fb] NLO [fb] K

p⊥ > 400 GeV 33.8+44%
−29% 61.4+20%

−19% 1.82 12.4+44%
−29% 23.6+24%

−21% 1.90

p⊥ > 450 GeV 22.0+45%
−29% 39.9+20%

−19% 1.81 6.75+45%
−29% 12.9+24%

−21% 1.91

p⊥ > 500 GeV 14.7+44%
−28% 26.7+20%

−19% 1.81 3.80+45%
−29% 7.28+24%

−21% 1.91

p⊥ > 1000 GeV 0.628+46%
−30% 1.14+21%

−19% 1.81 0.0417+47%
−30% 0.0797+24%

−21% 1.91
varying the renormalization and factorization scales μ by a factor 
of two around the central value. Finally, we note that we use both 
the leading order and the real-emission amplitudes for Higgs bo-
son production with non-vanishing transverse momentum keeping 
full dependence on the top quark and Higgs boson masses and we 
only use the expansion in the top quark mass and the Higgs boson 
mass in the finite remainder of the two-loop amplitude.

The results of the computation are presented in Table 1 where 
we show the inclusive cross sections at LO and NLO together with 
the corresponding NLO/LO correction factors for different values of 
the lower cut on the Higgs transverse momentum. The inclusive 
cross sections are computed for both the point-like Higgs–gluon 
coupling, obtained by integrating out the top quark, and for the 
physical Higgs–gluon coupling with a proper dependence on mt . 
We will refer to the two cases as HEFT and SM, respectively. Al-
though the differences between HEFT and SM production cross 
sections grow dramatically with the increase of the p⊥-cut, the ra-
diative corrections change both cross sections by a similar amount. 
Indeed, the ratio of K -factors8 for the p⊥ = 400 GeV cut and the 
central scale μ0 is KSM/KHEFT = 1.04 and the ratio of K -factors 
for the p⊥ = 1000 GeV cut is KSM/KHEFT = 1.06. Note that the 
K -factor themselves are close to 1.9, almost independent of the 
p⊥-cut. Uncertainties due to scale variations are reduced from 
about 40% at LO to the level of 20% at NLO, both for a point-like 
Higgs–gluon coupling and in the full SM. These uncertainties are 
insensitive to the p⊥-cut.

Finally, the Higgs boson transverse momentum distribution for 
p⊥ > 300 GeV is shown in Fig. 2. The results shown there con-
firm what is already seen in Table 1 – both the SM and the HEFT 
K -factors are flat over the entire range of p⊥ . For the central scale 
μ = μ0 Eq. (3) the differences between the two K -factors is about 
five percent. The scale dependence of HEFT and SM results are also 
similar. The residual theoretical uncertainty related to perturbative 
QCD computations remains at the level of twenty percent, as esti-
mated from the scale variation. Such an uncertainty is typical for 
NLO QCD theoretical description of many observables related to 
Higgs boson production in gluon fusion.

Another source of uncertainties is related to the choice of the 
renormalization-scheme of the top mass. Since the amplitude is 
proportional to the squared top mass, the differential cross sec-
tion scales as the fourth power dσ ∼ m4

t , if we neglect suppressed 
terms in m2

t /p2⊥ and the logarithms of m2
t /p2⊥ . At LO in perturba-

tion theory, a different choice of the top-mass scheme corresponds 
to changing numerically the input value of the top mass. If we 
choose instead the MS top mass value9 of mMS

t (p⊥ ≈ 400 GeV) ≈
157 GeV, we would find a decrease of the LO cross section by 
about dσ MS

LO /dσ
pole
LO ∼ (157/173)4 ∼ 0.68. At NLO one needs to ad-

8 The K -factors are defined as dσNLO/dσLO.
9 We calculated this value using the program RunDec [31] with the input value 

mMS
t (mMS

t ) = 166 GeV.
Fig. 2. Transverse momentum distribution of the Higgs boson at the LHC with √
s = 13 TeV. The upper panel shows absolute predictions at LO and NLO in the 

full SM and in the infinite top-mass approximation (HEFT). The lower panel shows 
respective NLO/LO correction factors. The bands indicate theoretical errors of the 
full SM result due to scale variation.

ditionally take into account the αs corrections that relate the on-
shell and MS top mass values. These corrections will compensate 
the numerical change caused by changing mt = mMS

t to mt = mpole
t

in the NLO amplitudes and as a result the scheme dependence at 
NLO is reduced. Thus, we expect the scheme dependence at NLO 
to be subleading with respect to the scale uncertainties.

Further improvements in theory predictions are only possible 
if the proximity of the HEFT and SM K -factors is taken seriously 
and postulated to occur even at higher orders. In this case, one 
will have to re-weight the existing HEFT H + j computations [5–7]
with the exact leading order cross section for producing the Higgs 
boson with high p⊥ . In fact, such a reweighting can now be also 
performed at the NLO level.

4. Conclusions

We presented the NLO QCD corrections to the Higgs boson 
transverse momentum distribution at very large p⊥ values. To 
compute them, we employed the recent calculation of the two-
loop scattering amplitudes for all relevant partonic channels [16]
where an expansion in mt/p⊥ was performed. The real emission 
corrections were computed with the Openloops [21] program. 
We have found that the QCD corrections to the Higgs boson trans-
verse momentum distribution increase the leading order result by 
almost a factor of two. However, their magnitude appears to be 
quite similar to the QCD corrections computed in the approxi-
mation of a point-like Higgs–gluon vertex; the difference of the 
two result is close to five percent. Our computation removes the 
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major theoretical uncertainty in the description of the Higgs bo-
son transverse momentum distribution at high p⊥ and opens a 
way to a refined analysis of the sensitivity of this observable to 
BSM contributions using existing [12] and forthcoming experimen-
tal measurements.
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