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Zusammenfassung 

Die (6-4) Photolyasen der bakteriellen Cryptochrom/Photolyase (BCP) -Gruppe gehören 

zu einer Familie von Flavoproteinen, die als Reparaturenzyme für UV-B-induzierte 

DNA-Läsionen (Photolyasen) oder als Blaulicht-Photorezeptoren (Cryptochrome) 

fungieren. Die (6-4) BCP-Proteine kommen ausschließlich in Prokaryoten vor. 

 In dieser Arbeit wurden 3 Mitglieder der (6-4) BCP-Gruppe, PhrB von 

Agrobacterium fabrum, CryB von Rhodobacter sphaeroides und Proma-PL von 

Prochlorococcus marinus mit einer eukaryotischen (6-4) Photolyase von Ostreococcus 

tauri OtCPF1 und einem Mitglied der Klasse III CPD Photolyasen PhrA von 

Agrobacterium fabrum verglichen. Es zeigte sich, dass die DNA-Reparatur-Effizienz von 

(6-4) BCP-Proteinen durch Mg
2+

 oder andere zweiwertige Kationen stimuliert wird, 

während bei OtCPF1 und PhrA keine Wirkung von zweiwertigen Kationen beobachtet 

wurde. 

 Der Einfluss zweiwertiger Kationen auf die Photoreduktion bei verschiedenen 

Photolyasen wurde ebenfalls untersucht. Die Photoreduktion von PhrB wurde durch Mg
2+

 

negativ beeinflusst, während bei PhrA Mg
2+

 einen stimulierenden Effekt hatte. Es stellte 

sich klar heraus, dass die Abhängigkeit von Mg
2+

 bei der DNA-Reparatur der (6-4) BCP 

und nicht bei der Photoreduktion zu suchen ist. Die veranlasste uns zu der Annahme, dass 

Mg
2+

 die DNA-Bindung und -Reparatur in (6-4) BCP-Proteinen beeinflusst. Zusammen 

mit den Strukturdaten und der Sequenzanalyse fanden wir eine vorgeschlagene Mg
2+

 

Bindungsposition neben der DNA-Läsion und modifizierten die beiden betreffenden 

Aminosäuren durch ortsgerichtete Mutagenese. Der Effekt von Mg
2+

 ging für beide 

Mutanten verloren, während die Basisreparaturaktivität ohne Mg
2+

 von der Mutation 

nicht beeinflusst wurde. Vermutlich fördert Mg
2+

 die Bindung der (6-4) Läsion und 

erhöht die Elektronen-Affinität des Substrats. Außerdem wird die Barriere für 

Elektronentransfer verringert, wodurch und die Reaktion reibungsloser verläuft. Ich 

untersuchte auch die Reparatureffizienz für verschiedene Längen einzelsträngiger und 

doppelsträngiger DNA. Je länger die DNA war, desto schneller war die Reparatur. Bei 
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einer Länge der DNA von 12 nt oder mehr änderte sich allerdings mit Zunahme der 

Länge die Geschwindigkeit der Reparatur nicht mehr.   

In dieser Arbeit werden auch die Mutanten PhrB-Y424F und PhrB-I51W 

vorgestellt. Tyr424 von PhrB ist Teil der DNA-Bindungsstelle und könnte eine 

Elektronenverbindung zum Fe-S-Cluster bilden. Die PhrB-Y424F-Mutante zeigte eine 

starke Verringerung der Bindung von Läsions-DNA und DNA-Reparatur. Die Mutante 

PhrB-I51W ist durch den Verlust des DMRL-Chromophors, reduzierte Photoreduktion 

und reduzierte DNA-Reparaturkapazität gekennzeichnet. Die Kristallstrukturen zeigen 

eine hohe Übereinstimmung mit der Wildtyp-Struktur, somit beeinflussen Mutationen nur 

lokale Proteinumgebungen.   

Die Photoreduktion von PhrB sich unterscheidet von dem typischen Muster, da 

die dem FAD benachbarte Aminosäure der Elektronenkaskade ein Tyrosin (Tyr391) ist, 

während Photolyasen und Cryptochrome anderer Gruppen ein Tryptophan als direkten 

Elektronendonor von FAD besitzen. In einer Mutante, in der Tyr391 durch Tryptophan 

ersetzt wurde, ging der Cofaktor-FAD verloren und die PhrB-Struktur war instabil. 

Trp342 und Trp390 sind für den Ladungstransfer essentiell sind. Trp342 befindet sich an 

der Peripherie von PhrB. Die Rolle von Tyr391, die zwischen Trp390 und FAD liegt, war 

jedoch unklar, da der Ersatz durch Phenylalanin die Photoreduktion nicht blockierte. Bei 

der Substitution von Tyr391 durch Ala wurde die Photoreduktion blockiert, was darauf 

hindeutet, dass Tyr391 ein Teil der Elektronentransferkette ist und zeigt, dass der 

Ladungstransfer über die Triade 342-391-390 erfolgt. Diese Ergebnisse deuten auf ein 

tunneling (Elektronentransfer ohne Ladungsänderung) zwischen Trp390 und FAD hin.
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Summary 

The (6-4) photolyases of the bacterial cryptochrome/photolyase (BCP) group belong to a 

family of flavoproteins acting as repair enzymes for UV-B induced DNA lesions 

(photolyases) or as blue light photoreceptors (cryptochromes). The (6-4) BCP proteins 

are widely distributed in prokaryotes.  

In this work 3 members of the (6-4) BCP group, PhrB of Agrobacterium fabrum, 

CryB of Rhodobacter sphaeroides and Proma-PL from Prochlorococcus marinus, were 

compared with a eukaryotic (6-4) photolyase from Ostreococcus tauri OtCPF1, and a 

member of the class III CPD photolyases PhrA from Agrobacterium fabrum. We found 

that the DNA repair efficiency of (6-4) BCP proteins is largely stimulated by Mg
2+

 and 

other divalent cations, whereas no effect of divalent cations was observed in OtCPF1 and 

PhrA.  

The effect of divalent cations on photoreduction among those different types of 

photolyases was also studied. It was found that photoreduction is negatively affected by 

Mg
2+

 in PhrB, but stimulated by Mg
2+

 in PhrA. It turned out clearly that Mg
2+ 

affects 

DNA repair of (6-4) BCP proteins rather than photoreduction. So we speculated that the 

Mg
2+

 should effect DNA binding and - repair in (6-4) BCP proteins. Together with the 

structural data and sequence analysis, we found a proposed Mg
2+ 

binding position next to 

the DNA lesion and further modified the two related amino acids by site directed 

mutagenesis. The stimulated effect of Mg
2+

 was lost for both mutants, although the base 

repair activity without Mg
2+ 

remained unaffected by the mutation. During the repair 

process Mg
2+ 

seems to increase 6-4 lesion binding and the electron affinity of the 

substrate so decreasing the electron transfer barrier and make the reaction smoothly. I 

also investigated the repair efficiency for different lengths of single stranded and double 

stranded DNA and found that the longer the DNA is, the faster the repair will be, but 

when the length of DNA reach to 12 nt, the increase of length will not help the repaired 

speed anymore. 
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In this work the two PhrB mutants, PhrB-Y424F and PhrB-I51W, were also 

investigated. Tyr424 of PhrB is part of the DNA-binding site and could provide an 

electron link to the Fe-S cluster. The PhrB-Y424F mutant showed greatly reduced the 

binding of lesion DNA and DNA repair. The mutant PhrB-I51W is characterized by the 

loss of the DMRL chromophore, reduced photoreduction and reduced DNA repair 

capacity.  

We found that photoreduction of PhrB differs from the typical pattern because the 

amino acid of the electron cascade next to FAD is a tyrosine (Tyr391), whereas 

photolyases and cryptochromes of other groups have a tryptophan as direct electron 

donor of FAD. I found that replacing Tyr391 by tryptophan will cause losing of cofactor 

FAD and further make PhrB structure fold unstable. Besides, through mutagenesis 

studies we identified Trp342 and Trp390 essential for charge transfer. Trp342 is located 

at the periphery of PhrB. The role of Tyr391, which lies between Trp390 and FAD, is 

however unclear as its replacement by phenylalanine did not block photoreduction. When 

Tyr391 was replaced by Ala, the photoreduction was blocked, indicating Tyr391 is a part 

of the electron transfer chain and revealing that charge transfer occurs via the triad 342-

391-390. These results favor an electron-tunneling mechanism of electron transfer. 



Introduction 

5 

 

Introduction 

1 UV light damages DNA 

Sunlight contains three types of UV radiation: UV-A (315–400 nm), UV-B (280–315 

nm) and UV-C (100–280 nm). UV-C has germicidal properties, so it was used in 

germicidal lamps. Due to the absorption by the atmosphere very small part of UV-C can 

reach to the Earth‘s surface; UV-B is also greatly absorbed by the Earth's atmosphere, 

and along with UV-C causes the photochemical reaction leading to the production of the 

ozone layer. It directly damages DNA and causes sunburn, but is also required for 

vitamin D synthesis in the skin and fur of mammals (Wacker and Holick, 2013); UV-A 

was once believed to be less damaging to DNA, and hence is used in cosmetic artificial 

sun tanning (tanning booths and tanning beds) and psoralen and ultraviolet A therapy  for 

psoriasis. However, UV-A is later known to be able to cause significant damage to DNA 

via indirect routes (formation of free radicals and reactive oxygen species), and can cause 

cancer (Mouret et al., 2006; Brem et al., 2017). 

UV irradiation of DNA causes formation of three different types of DNA lesions 

between two adjacent pyrimidine in the DNA chain on the same strand, termed CPD, (6-

4), and Dewar lesions, described in Figure 1 (Kim et al., 1994). CPDs are formed by a 

[2π + 2π] cycloaddition reaction between the two C5=C6 bonds of the adjacent 

pyrimidines, which form from the excited triplet state of pyrimidines following singlet-

triplet intersystem crossing. So, using acetophenone as a triplet sensitizer, which 

populates the thymine π, π
* 

triplet exclusively, and makes it possible to form CPD in 

DNA to exclusion of the (6-4) PPs (Meistrich and Lamola, 1972). CPDs appear in vivo 

between all pyrimidine pairs, but not in equal ratios. The formation trends are 5‘-

T(CPD)T-3‘ > 5‘-T(CPD)C-3‘ > 5‘-C(CPD)T-3‘ > 5‘-C(CPD)C-3‘, where the yield of 

T(CPD)T is about three times higher than T(CPD)C (Mouret et al., 2006) (Cadet et al., 

2005). The (6–4) PPs are formed more efficiently at TC rather than TT sites (Heil et al., 

2011). 
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The (6-4) photoproduct is thought to form in DNA as follows (Figure 1): a [2 + 2] 

cycloaddition of the C4 carbonyl (or amino) of the 3‘ thymine (cytosine) across the 5-6 

double bond of the 5‘ thymine generates an oxetane (or azetidine) ring, which at 

temperatures above -80 °C undergoes ring opening by C4-0 bond cleavage accompanied 

by a proton shift from N5 to generate the ―open form‖ of the (6-4) photoproduct (O. and 

L., 1969). Irradiation of the (6-4) photoproduct by UV-A and UV-B converts the (6-4) 

photoproduct to the Dewar valence isomer, which can be reverted back to the open form 

by UV-C irradiation. (Sancar, 2003) 

 

 

Figure 1. Formation of (6-4) photoproducts (Taylor, 1994; Sancar, 2003). The (6-4) photoproduct 

forms by a Paternό–Büchi reaction between two adjacent pyrimidines, which generates an 

oxetane or azetidine four-membered ring intermediate. This intermediate is not stable above -80 

°C, and undergoes rearrangement to produce the open form of the photoproduct, the (6-4) 

photoproduct. Figure from (Taylor, 1994).  
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2 Repair of UV-damaged DNA 

UV-induced DNA lesions are responsible for much of the destructive effect of UV light 

since they can act as a physical blockage for replication and transcription, thereby 

drastically impeding metabolic processes in DNA. UV damage may subsequently lead to 

mutagenesis or cell death (Sancar, 2016). These DNA photoproducts triggered mutations 

are predominately found as C to T or CC to TT transitions. Mutations on proteins 

involved in cell cycle control, apoptosis, or DNA repair could result in carcinogenesis, 

for example, the p53 mutation that caused skin cancer (Batista et al., 2009) (Kanavy and 

Gerstenblith, 2011) (Pfeifer et al., 2005). 

Therefore, DNA repair mechanisms are essential for all organisms that are exposed to 

light. This UV light induced damage is repaired by photolyase in E. coli and by the 

nucleotide excision repair system in E. coli and in humans. The nucleotide excision repair, 

which is present in almost all organisms, is based on the coaction of multiple enzymes 

and requires an intact complementary DNA strand as template, i.e. cannot repair single 

stranded DNA. The so called photorepair is based on the action of a single protein, a 

photolyase. These enzymes can repair UV lesions in single and double stranded DNA. 

2.1 Indirect repair: nucleotide excision repair 

Nucleotide excision repair (NER) is an indirect method to repair DNA lesion, which is 

initiated by the DNA lesion recognition and binding (Figure 2). The DNA helix is 

subsequently unwound at the DNA lesion site, followed by the excision of a short 

oligonucleotides segment including the lesion site. The undamaged single-stranded DNA 

remains and DNA polymerase uses it as a template to synthesize a short complementary 

sequence. Final ligation to complete NER and form a double stranded DNA is carried out 

by DNA ligase (Fuss and Cooper, 2006). 

https://en.wikipedia.org/wiki/DNA_polymerase
https://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
https://en.wikipedia.org/wiki/Complementarity_(molecular_biology)
https://en.wikipedia.org/wiki/DNA_ligase
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Figure 2. Reaction mechanism of excision repair in E. coli. The damage is recognized by the 

(UvrA)2 homodimer which functions as a molecular matchmaker to recruit UvrB to the damage 

site. An ATP hydrolysis-dependent reaction then promotes the formation of a very stable UvrB–

DNA complex. This complex recruits UvrC, which incises 5‘ and 3‘ to the damage due to active 

site nucleases within the N-terminal and C-terminal halves of the protein. UvrC and the excised 

dodecamer (12-mer) are then displaced by the UvrD helicase, and UvrB is displaced by DNA 

Polymerase I as it fills in the gap. The nick is then sealed by ligase (Lin and Sancar, 1992). Figure 

from Lin et al., 1992. 

 

NER is a versatile and flexible DNA repair mechanism which is conserved in 

prokaryotes and eukaryotes (Hoeijmakers, 2001; Morita et al., 2010). This mechanism 

can repair a broad range of structurally unrelated DNA lesions. The most relevant lesions 

subject to NER are UV-induced CPDs and (6-4) PPs. In addition, numerous other helix-

disrupting (or "bulky") lesions are eliminated by this process such as benzo[a]pyrene-

guanine adducts caused by smoking and guanine-cisplatin adducts formed during cancer 

chemotherapy (Sancar, 1994). NER can be divided into two subpathways. The NER 

occurring in DNA that undergoes transcription is called transcription-coupled repair, 

while the NER in non-transcribed parts of the genome, including the non-transcribed 
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strand of transcribed genes, is called global genome repair. The two subpathways differ 

in how they recognize DNA damage but they share the same process for lesion incision, 

repair, and ligation. (Lehmann, 1995; Lindahl and Wood, 1999). Due to lacking of the 

photolyase-induced photoreactivation, NER plays a particular important role in the UV 

damaged DNA repair of placental mammals (Costa et al., 2003). 

The Nucleotide excision repair process in E. coli and human are quite similar, but 

still have some different. For example, a more complete list of proteins involved in NER 

of human and the enzyme number involved in the whole repair process of human is about 

4 times more than that in the E. coli. The DNA fragment that is excised is a oligomer of 

12 nucleotides in E. coli, while in human is 30 nucleotides (Figure 3) (Sancar, 1994). 

 

 

Figure 3. Excision repair in E. coli and humans. In both organisms, excision is by dual incisions. 

However, the proteins required for the dual incisions, the mechanisms for damage recognition, 

and the dual incision patterns are entirely different (Huang et al., 1992; Sancar, 2016). Adapted 

from (Sancar, 2016). 
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2.2 Direct repair: photolyase 

Photoreactivation (Dulbecco, 1949; Kelner, 1949) is the reversal of the harmful effects, 

such as growth delay, mutagenesis, and death of far UV (200-300 nm) on organisms by 

concurrent or subsequent exposure to blue light (350-450 nm).  

The photoreactivation was independently discovered in two American 

laboratories. In early studies cells survival was predominantly used as a biological 

characteristic. Later on an in vitro photoreactivation system, DNA transformation assay, 

was taken. With this methodology, Rupert found that photoreactivation is an enzymatic 

process, mediated by an enzyme named photoreactivating enzyme (Setlow and Carrier, 

1966), which was later called photolyase. Rupert continued to study the repair reaction in 

some details and finally demonstrated that the photoreactivation follows Michaelis–

Menten reaction kinetics with the notable exception that catalysis is absolutely dependent 

on light. Photolyase binds to UV-damaged DNA in the dark and is released from the 

repaired DNA upon illumination with visible light (Rupert, 1962; Sancar, 2000).  

Photolyases from E. coli and budding yeast that were studied by Rupert, Dulbecco 

and others could repair only CPDs (Dulbecco, 1949; Rupert, 1962; Sancar, 2000). Forty 

four years after the discovery of CPD photolyase, the photolyase that repairs (6-4) 

photoproducts was discovered from Drosophila melanogaster by Takeshi Todo (Todo et 

al., 1993). 

3 Photolyase/cryptochrome family 

So far a vast number of photolyase and photolyase-like genes in all three domains of life 

are known, their encoded proteins sharing a structurally highly conserved core domain 

and the active cofactor. These proteins form a huge flavoprotein family, termed 

cryptochrome/photolyase family (CPF). 

Phylogenetically, proteins of photolyase/cryptochrome family are sorted into 7 

different groups (Figure 4): class I CPD photolyases which comprised the founding 

member E. coli photolyase and mainly bacterial homologs, the class II CPD photolyases 
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with mainly eukaryotic members (Okafuji et al., 2010), the class III CPD photolyases 

(Todo, 1999), another group with mainly bacterial members, the Cry-DASH proteins, 

which are CPD photolyases that repair only single stranded DNA (Tagua et al., 2015), 

the eukaryotic (6-4) photolyases and animal cryptochromes, plant cryptochromes and a 

group of prokaryotic (6-4) photolyases that is termed (6-4) BCP proteins.  

 

 

Figure 4. Phylogenetic tree of photolyases and cryptochromes. The tree is a simplified version of 

trees shown in previous publications (Tilman Lamparter et al., 2014; Scheerer et al., 2015) in 

which only the groups of photolyase and cryptochromes are shown. Adapted from (Holub et al., 

2018). 

 

These members that are able to repair CPD and (6-4) PPs are called photolyases . 

There are also CPF members that are incapable of repairing UV-induced DNA damage, 

which are called cryptochromes. Cryptochromes regulate blue light responses in plants, 

the circadian rhythm in animals and possibly also function as magnetoreceptors in birds 
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and insects. The first cryptochrome was found in Arabidopsis thaliana (Ahmad and 

Cashmore, 1993) and later discovered in humans (Hsu et al., 1996). However, The 

discrimination between photolyases and cryptochromes became recently blurred as 

cryptochromes, such as the DASH-type or CryA from Aspergillus nidulans, exert dual 

functions by being competent in signaling and DNA repair (Bayram et al., 2008; Pokorny 

et al., 2008). The other example is CryB from Rhodobacter sphaeroides which acts as 

photoreceptor (Hendrischk et al., 2009; Geisselbrecht et al., 2012) and also has DNA 

repair  function (von Zadow et al., 2016). 

3.1 Photolyases 

Photolyases have been reported in all three domains of life, except in placental mammals 

including humans. DNA photolyases are monomeric repair enzymes with a molecular 

weight of 50 to 65 kDa and a length of 454 to 614 amino acids (Weber, 2005; Essen and 

Klar, 2006). They generally contain two noncovalently bound chromophoric cofactors. 

The first cofactor is a flavin adenine dinucleotide (FAD). Only the fully-reduced form of 

FAD (FADH-) is enzymatically active. FADH- functions as the catalytic cofactor and 

electron donor. The second cofactor is an antenna chromophore functioning in absorbing 

light and transferring the excitation energy to the catalytic cofactor, which varies 

depending on the protein (Sancar, 2003). Nowadays 10-methenyltetrahydrofolate 

(MTHF, λmax≈380 nm) (Johnson et al., 1988) and several nucleotide-like compounds 

such as 8-hydroxy-5-deazariboflavin (8-HDF, F0, λmax≈445 nm) (Eker et al., 1990), 

flavin mononucleotide (FMN, λmax≈446 nm) (Ueda et al., 2005) and FAD (Fujihashi et 

al., 2007) have been described as antenna chromophores in photolyases (Figure 5). In 

recent years, a new antenna chromophore DMRL in Rhodobacter CryB and 

Agrobacterium PhrB from (6-4) BCP has been found (Geisselbrecht et al., 2012; Zhang 

et al., 2013).  
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Figure 5. Antenna chromophores of photolyases. The left drawings show the chemical structures 

of the antenna chromophores, the panels in middle show the 3D structure and the right panel 

shows the UV-Vis spectra of the protein, usually with FAD in the reduced FADH- form. (A) E. 

coli photolyase (PDB code 1DNP) with 10-methenyltetrahydrofolate (MTHF) as antenna 

chromophore (Park et al., 1995; Sancar and Sancar, 2006). (B) A. nidulans photolyase with 8-

hydroxy-5-deazaflavin (8-HDF, F0) as antenna chromophore (PDB code: 1QNF) (Sancar and 

Sancar, 2006; Fujihashi et al., 2007). (C) T. thermophilus photolyase with flavin mononucleotide 

(FMN) as antenna chromophore. (PDB code: 2J09). The UV-Vis spectrum is taken after 

purification (FADH and FMN) (Klar et al., 2006). (D) S. tokodaii photolyase with FAD as 

antenna chromophore (PDB code: 2E0I). The UV-Vis spectrum is taken immediately after 

purification (Fujihashi et al., 2007). (E) Agrobacterium fabrum photolyase with 6,7-dimethyl-8-

ribityllumazine (DMRL) as antenna chromophore (PDB code: 4DJA) (Zhang et al., 2013).  

 

The presence of the antenna chromophore is not an absolute requirement for 

photolyases activity, since the photolyases lacking this chromophore are still biologically 

active (Zhang et al., 2017). However, the antenna chromophore absorbs blue light and 

transfers excitation energy to the catalytic cofactor, consequently improving the DNA 

repair efficiency (Sancar, 2003; Selby and Sancar, 2012; Zhang et al., 2017). 

3.2 Photoreduction 

Photoreduction exists in both cryptochromes and photolyases, it means under the trigger 

of blue light the cofactor FAD gradually change its redox state to fully reduced state. 

During this process, electrons flow from the surface via conserved amino acid residues to 

FAD (Figure 6). Typically, the electron transfer pathway consists of 3 conserved 

tryptophane and tyrosine residues (normally Trp-triad) in the protein moiety that is located 

within the C-terminal α-helical domain. The Trp-triad is conserved in most of the DNA 

photolyases subfamilies except class II photolyases, in which an alternative Trp-triad was 

identified at different position (Figure 6) (Kiontke et al., 2011; Maul et al., 2008; Park et al., 

1995). 
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Figure 6. The electron transfer chain that reduces photoexcited oxidized FAD via a conserved 

tryptophan triad (Trp-triad). The Trp-triads and FAD of E. coli CPD I photolyase (1DNP), 

Drosophila melanogaster (6-4) photolyase (3CVV), Arabidopsis thaliana Cry1 (1U3C) and 

Methanosarcina mazei CPD II photolyase (2XRY) are shown in sticks. Escherichia coli 

photolyase is illustrated in cartoon.  

 

Flavin bound to proteins may exist in any one of the three redox states in five 

different forms: oxidized (e.g. FAD), semireduced semiquinones (e.g. neutral radical 

FADH
•
, anion radicals FAD

•−
) or fully reduced hydroquinones (e.g. FADH

−
 or FADH2) 

(Figure 7) (Kao et al., 2008). Because of the different spectral properties, the flavin redox 

states of flavoproteins can be analyzed in vitro by monitoring protein absorption spectra. 

In photolyase, the catalytically active form of flavin is FADH
–
, which is the 

predominant form in vivo. During the purification of photolyases under aerobic 

conditions the flavin cofactor is usually oxidized to the semireduced and eventually to the 

fully oxidized form (Payne et al., 1987). Exposure of such inactive photolyases to light in 

the presence of a reducing agent, such as dithiothreitol (DTT), ethylenediaminetetraacetic 
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acid (EDTA) or β-mercaptoethanol, can convert the photoexcited flavin to the active 

FADH
– 

form (Heelis and Sancar, 1986; Sancar et al., 1987). Nicotinamide adenine 

dinucleotides can turn the photoexcited flavin to  the semiquinoid FAD (FADH˙) State 

(Ignatz et al., 2018). In addition, Based on our measurement, TCEP can also convert the 

oxidize FAD to FADH˙ State.  

 

 

Figure 7. Oxidoreduction of flavins. (A) Five possible redox forms of flavins are shown. R 

indicates different side groups in different flavins. The two different forms of semiquinone 

radicals: anion radical (e.g. FAD
•−

) and neutral radical (e.g. FADH
•
), and two forms of reduced 

flavins: protonated hydroquinone (e.g. FADH2) and anionic hydroquinone (e.g. FADH
−
) are 

shown. (B) Absorption spectra and extinction coefficients (ε) of different redox forms of the 
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following cryptochrome/photolyase (Kao et al., 2008). Mosquito AgCRY1 (Anopheles gambiae) 

containing oxidized FAD (black line) or anion radical semiquinone (FAD
•−

, blue line), and E. coli 

photolyase containing neutral radical semiquinone (FADH
•
, green line) or fully reduced flavin 

(FADH
−
, red line). Adapted from (Liu et al., 2010). 

 

3.3 Reaction mechanism of photolyases 

Based on previous studies, such as crystallography and ultrafast spectroscopy, the major 

part of the DNA photolyase repair mechanism has been resolved both structurally and 

dynamically (Mees et al., 2004; Maul et al., 2008; Glas et al., 2009b; Li et al., 2010; Liu 

et al., 2011). The light-harvesting chromophore of photolyases absorbs blue light to 

excite the fully-reduced FADH− and then FADH− transfers an electron to either the CPD 

or the (6-4) lesion which drives the dimer into the monomers. The electron finally returns 

back to restore the active state of FADH
-
 (Stuchebrukhov, 2011). 

For CPD lesions (Figure 8), the single electron reduced cyclobutane ring 

undergoes a thermally forbidden [2+2] cycloreversion reaction followed by back transfer 

of the ‗enabling electron‘ to the semireduced FADH
•
 (Muller and Carell, 2009). The 

initial electron transfer to the dimer takes 250 ps, the ring opening occurs in two steps, 

the first in less than a few picoseconds and the second with a time constant of 90 ps. 

After the dimer is split, the electron returns back to FADH with a time constant of about 

700 ps (Liu et al., 2011). 
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Figure 8. Sketch of the reaction cycle for photorepair of CPD lesion by CPD PL. The indicated 

ranges of time constant cover results obtained by different groups (Yamamoto et al., 2017). 

Inside the repair cycle, a structural overview is shown of CPD PL from Anacystis nidulans 

(surface representation in gray; the FAD cofactor is highlighted in sticks representation) bound to 

a double-stranded oligomer (in sticks representation on the left side) that initially contained a 

CPD lesion, which is flipped out of the double helix into the enzyme‘s binding pocket. In the X-

ray crystal structure (PDB code 1TEZ) (Mees et al., 2004), the two intradimer bonds are broken, 

presumably due to the synchrotron irradiation. Figure from (Yamamoto et al., 2017). 

 

In (6-4) photolyases (Figure 9), upon excitation the FADH- donates an electron to 

the (6-4) PPs to generate a charge-separated radical pair (FADH• + (6-4) PP•-), which 

subsequently induces proton transfer from an essential His residue of the photolyase to the 

(6-4) PPs. These successive steps naturally proceed to an intramolecular proton transfer from 

the –OH group on the C5 of the 5‘ base to the N3 at the 3‘ base to form a transient zwitterion. 

Then, the oxygen atom attacks the C4 position at the 3‘ base to form a transient oxetane-type 

structure. The transient oxetane formation facilitates the oxygen-atom transfer from the 5‘ to 

the 3‘ base followed by the splitting of the C6-C4 bond. After oxygen transfer and C-C bond 
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cleavage the proton returns to the His residue and the electron returns to FADH• to restore the 

active form of the enzyme and the two pyrimidine bases (Li et al., 2010). 

 

 

Figure 9. Reaction cycle for photorepair of a T(6-4)T lesion by the (6-4) photolyase of 

Arabidopsis thaliana (Li et al., 2010)，on the basis of an experimental study of the reaction by 

ultrafast fluorescence and transient absorption spectroscopy. Figure from (Li et al., 2010). 

 

4 PhrB from Agrobacterium fabrum 

In previous studies the crystal structure of PhrB has been solved in our group (Zhang et 

al., 2013). PhrB has been experimentally confirmed to be able repair (6-4) photoproduct 
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in vitro, so PhrB is a bacterial (6-4) photolyase. Before this finding, (6-4) photolyase was 

thought to be restricted to eukaryotes. Base on sequence analysis we propose that (6-4) 

photolyases are broadly distributed in prokaryotes which are sorted as (6-4) BCP proteins. 

The (6-4) BCP proteins are most distantly related to the other groups. (6-4) BCP 

photolyases (CryB and PhrB) share a common fold with primase, which is an ancient 

enzyme that synthesizes RNA oligonucleotides during replication. We therefore assume 

that the (6-4) BCP proteins represent the most ancient group of photolyases and 

cryptochromes.  About this new type of (6-4) photolyase, several topics are interesting:  

(1) The two (6-4) BCP proteins investigated so far, Rhodobacter CryB and 

Agrobacterium PhrB, have Fe-S cluster and DMRL antenna chromophore. Photolyases 

and cryptochromes of other groups have MTHF, 8-HDF or other antenna chromophores, 

but never DMRL. Proma-PL of Prochlorococcus marinus belongs to the subgroup of (6-

4) BCP which has no Fe-S cluster.  

 (2) According to crystal structure of the two (6-4) BCP members (PhrB and 

CryB), they have a C-terminal extension, a feature in common with cryptochromes and 

some photolyases, although the sequences reveal no homology between the different 

groups. The C-terminal extension of cryptochromes is relevant for signal transduction, 

and both CryB and PhrB could serve as photoreceptors for bacterial light responses. 

(3) A loop between helix 7 and 8 of PhrB interacts with the DNA. This DNA 

interaction is replaced by another loop in other photolyases. 

(4) Photoreduction of PhrB differs from the typical pattern because the amino acid 

of the electron cascade next to FAD is a tyrosine (Tyr391), whereas photolyases and 

cryptochromes of other groups usually have a tryptophan as direct electron donor of 

FAD. 
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5 Aim of this project 

In this work, we aimed at further investigate of PhrB to find out the role of the new 

cofactor DMRL, find out the electron transfer chain of PhrB photoreduction, check the 

impact of divalent metal ions on different photolyases, and reveal the role of magnesium 

in the mechanism of DNA repair. 
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Results 

1 Different (6-4) DNA lesions affect the repair efficiency of PhrB 

1.1 Different length of (6-4) single stranded DNA lesions  

In order to test the impacts of different DNA substrates on DNA repair and choose the 

suitable DNA substrate for further repair assay, I tested the impact of different length 

oligonucleotides and the difference between single and double stranded oligonucleotides 

in Mg
2+

 free conditions. In previous work (Zhang et al., 2013; Ma et al., 2017), the 

oligonucleotide "t_repair" with 8 nucleotides was always used, whereas for experiments 

with double stranded DNA, 15mer were used (the larger size was necessary because 

shorter DNA would not form stable double strands at the assay temperatures). Length 

variations of single stranded oligonucleotides have however not been performed before. I 

therefore compared the repair activities for single stranded oligonucleotides with 8, 10, 

12 and 15 bases (Figure 10 and Table 12). Under conditions of the present work, no 

repair of the 8mer "t_repair" was detectable by HPLC for irradiation times of up to 40 

min and a 60 min irradiation resulted in a repair of only (0.9 ± 0.1) % repair. For the 

ODN4 (6-4) photoproduct, which has 10 nucleotides, there was no detectable signal of 

repaired DNA for illumination times up to 20 min, and after 40 min irradiation (4.2 ± 

0.2) % were repaired. With ODN5 and ODN6, which have 12 and 15 oligonucleotides, 

respectively, about half of the lesion DNA was repaired after 20 min and the repair was 

complete after 40 min of irradiation. We concluded that the weak repair in our previous 

studies (Ma et al., 2017) was not only due to the lack of Mg
2+

 but also due to the short 

length of the oligonucleotide. The more efficient repair with longer oligomers is most 

likely due to an increased binding of the oligomers to PhrB. Because there was no 

increase between ODN5 and ODN6, we assume that there would be no further 

improvement for larger oligomers.  
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Figure 10. Repair of single stranded (6-4) photoproducts of different lengths. The repair assays 

were performed in the absence of divalent cations. Proportion of repaired DNA of (6-4) 

photoproducts of single stranded DNA oligonucleotides "t_repair" (8mer, black squares), ODN4 

(10mer, red circles), ODN5 (12mer, blue up-pointing triangles), ODN6 (15mer, down-pointing 

triangles) Irradiation times were 0, 3, 20, 40 and 60 min. Mean values ± SE from 3 independent 

experiments.  In those cases where SE error bars are invisible, the errors are smaller than the 

symbols.  

 

1.2 Single and double stranded (6-4) DNA lesions.  

The melting temperature of ds (6-4) ODN5 is about 10 °C higher than the reaction 

temperature of 22 °C such that the DNA would not melt into single strands. In the 

absence of Mg
2+

 in the reaction mixture, after 20 min irradiation (54 ± 6) % ss (6-4) 

ODN5 and (10 ± 0.5) % ds (6-4) OND5 were repaired, respectively, while in the presence 

of Mg
2+

 both ss (6-4) ODN5 and ds (6-4) OND5 were completely repaired within 20 min. 

Because this result did not allow us to make a quantitative comparison, I reduced the 

repair time for the assay with Mg
2+

. When the reaction mixture was irradiated for only 2 
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min in the presence of Mg
2+

 (81 ± 2) % of ss (6-4) ODN5 and (35 ± 0.5) % of ds (6-4) 

OND5 were repaired. When the experiments were repeated in the absence of Mg
2+

 there 

was no detectable repaired DNA in the HPLC profiles.  

When a repair assay was performed with double stranded (6-4) ODN5 for 20 min, 

the repair efficiency was lower than with single stranded (6-4) ODN5 (Figure 11 and 

Table 2). In a control experiment, ds (6-4) OND5 was heated to 95 °C and suddenly 

cooled on ice to let most of the DNA remain in the single strand state. With this substrate 

the DNA repaired percentage was ~32 % lower than with ss (6-4) ODN5, but still ~25 % 

higher than with ds (6-4) OND5. This result may be explained either by a part amount of 

DNA to still form ds DNA or by the complementary ss DNA interfering with repair of 

the ss (6-4) DNA, and it also confirms that PhrB repairs ss (6-4) ODN5 more efficiently 

than ss (6-4) ODN5.  

 

 

Figure 11. Repair of single stranded (6-4) photoproducts and ds (6-4) ODN5 by the PhrB 

photolyase. Reaction mixture irradiated for 20 min in the absence of Mg
2+

. Two examples of 

HPLC profiles of DNA repair by PhrB-WT: ds (6-4) ODN5 as substrate (upper red curve) and ss 

(6-4) ODN5 as substrate (lower, black curve). 
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2 Divalent cations stimulate DNA repair activities of bacterial (6-4) 

photolyases 

In the present study, I focus on the role of divalent cations in biochemical activities of 

five photolyases out of three different phylogenetic groups (Figure 12) and they are 3 

members of (6-4) BCP group, PhrB of Agrobacterium fabrum, CryB of Rhodobacter 

sphaeroides and Proma-PL from Prochlorococcus marinus, a eukaryotic (6-4) photolyase 

from Ostreococcus tauri OtCPF1, and a member of the class III CPD photolyases PhrA 

from Agrobacterium fabrum. Except PhrA is a CPD photolyase, all of the rest 4 proteins 

are (6-4) photolyases (Table 1). 

It is proposed that in the activated form of photolyase the FAD chromophore is in 

its fully reduced state FADH
-
 (Muller and Carell, 2009), as our proteins were purified 

under aerobic condition and FADH
- 
gradually turned into oxidized state which can be 

verified by spectra measurement. Anyway, it is necessary to check whether divalent 

metal cations have impacts on photoreduction and photorepair, separately. 

 

Table 1. Wild type proteins investigated in this project and their corresponding organisms. 

Proteins  characterization organisms 

PhrB with Fe-S cluster Agrobacterium fabrum 

CryB with Fe-S cluster Rhodobacter sphaeroides 

Proma-PL no  Fe-S cluster Prochlorococcus marinus 

OtCPF1 eukaryotic (6-4) photolyase Ostreococcus tauri 

PhrA CPD photolyase Agrobacterium fabrum 
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Figure 12. Phylogenetic tree of photolyases and cryptochromes. The tree is a simplified version 

(Scheerer et al., 2015) which the groups of photolyase and cryptochromes are shown in different 

color. Proteins used in the present study are indicated by abbreviated letters in their 

corresponding group. 

 

2.1 Photorepair and photoreduction of PhrB 

Photorepair assays with PhrB from Agrobacterium fabrum have been performed in the 

absence of divalent cations (Zhang et al., 2013), according to common practice in 

photolyase research (Maul et al., 2008; Hendrischk et al., 2009). In our previous assays 

we used a high protein: DNA ratio of 1:1 (Zhang et al., 2017). Single stranded (6-4) 

t_repair DNA was only incompletely repaired (ca. 27 %) after 2 h. In experiments of this 

subchapter I concentrated on the repair of single stranded (6-4) t_repair DNA, which 

allows higher throughput of measurements with varying biochemical parameters. After it 

turned out that divalent cations increase the repair efficiency, I changed the initial 

DNA/protein ratios and HPLC conditions, because in the presence of Mg
2+

 the original 



Results 

27 

 

high protein/DNA ratios resulted in the completion of DNA repair being too fast for any 

quantitative assessment. Examples for HPLC profiles obtained under new conditions are 

shown in (Figure 13A). From such measurements, the percentages of repaired DNA were 

calculated and used for comparisons between different reaction conditions and between 

different photolyases. The (6-4) DNA lesion repair activity of PhrB in the absence of 

divalent cations was quantified after illuminating the sample for 120 min with strong blue 

light (400 nm, 250 µmol m
-2 

s
-1

), and after 30 min irradiation, the yield of repaired DNA 

could not be detected. After 120 min illumination, we found that (3 ± 0.1) % of the (6-4) 

DNA lesions were repaired (Figure 13B). However, when Mg
2+

 or Mn
2+

 was added to the 

reaction solution, the (6-4) lesions were completely repaired within 10 min. I thus 

reduced the repair time further. After an illumination time of 3 min, (48 ± 3) % and (68 ± 

2) % of the (6-4) DNA lesions were repaired in the presence of 4 mM free Mg
2+

 and 4 

mM free Mn
2+

, respectively (Table 4). In the presence of Ca
2+

, DNA repair was also 

promoted: after 20 min illumination, (13 ± 0.8) % DNA was repaired. Based on these 

data and the given illumination conditions, we calculated the rate constants of DNA 

repair in the presence and absence of divalent cations, considering a simple exponential 

decay of the substrate concentration during the enzymatic reaction (Table 4). According 

to these calculations, Mg
2+

, Mn
2+

 and Ca
2+

 enhanced the DNA repair activity of wild type 

PhrB 879 ± 62, 1530 ± 16, and 28 ± 0.5 times, respectively.   
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Figure 13. (A) HPLC assay after (6-4) DNA repair by PhrB without (upper red curve) and with 

Mg
2+

 (lower, dashed curve). Irradiation times for the assays without and with Mg
2+

 were 120 min 

and 3 min, respectively. (B) DNA repair activity of PhrB with and without divalent metal ions. 

Repair mixture contained 5 µM of the purified (6-4) photoproducts of t_repair, 850 nM wild type 

PhrB, 14 mM DTT and 4 mM free Mg
2+

, Mn
2+

 or Ca
2+

 in the corresponding reaction mixture. The 

percentages of repaired DNA after illuminating 120 min, 3 min, 3 min, 20 min for repair mixture 

without divalent metal ions (no M
2+

) and with Mg
2+

, Mn
2+

 and Ca
2+

 are shown, respectively. 

Mean values ± SE of 3 experiments. (C) Photoreduction of wild-type PhrB. UV-Vis spectra 

during irradiation with 470 nm LED light. The inset shows spectra > 550 nm in an enlarged y-

axis. (D) Photoreduction of wild-type PhrB with and without divalent metal ions. From series of 

spectra, the A450 values were extracted at each time point. These values were normalized to the 

value measured at t = 0 min. Mean values ± SE of 3 experiments. 
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I next estimated whether and how photoreduction of PhrB is affected by divalent 

cations. The transition from oxidized FAD to semi-reduced and fully reduced FADH
-
 

during irradiation with blue light was followed by UV-Vis spectrometry (Figure 13C) 

(see also (Graf et al., 2015)). Loss of oxidized FAD results in a continued absorbance 

decrease at 450 nm. The transient formation of the semiquinone is detected by the 

increase during the first 10 min of irradiation. The subsequent decrease in this 

wavelength range shows the formation of fully reduced FADH
-
. The decrease of the 

absorbance at 450 nm (A450) was taken to compare photoreduction under different 

conditions (Figure 13D). During the first 10 min, the decrease was approximately linear, 

and the slopes were used for comparisons of initial rates. Compared to the assay without 

divalent cations, Mg
2+

 decreased the initial rate by (39 ± 3) %, but Mn
2+ 

promoted the 

initial rate by (41 ± 0.3) % and Ca
2+ 

diminished the initial rate by (17 ± 1) %. However, 

after 40 min illumination, the reduction with Ca
2+ 

was faster than without divalent metal 

ions. Such a pattern in the presence of Ca
2+ 

could be due to a reduced rate of semiquinone 

formation and an accelerated conversion into the fully reduced form. However, we could 

not confirm this upon inspection of the spectra. For the whole illumination period Mg
2+ 

slowed down the photoreduction and Mn
2+ 

promoted photoreduction. 

2.2 Photorepair of CryB and Proma-PL 

CryB from Rhodobacter sphaeroides (Geisselbrecht et al., 2012) is another member 

of the (6-4) BCP proteins. PhrB and CryB have highly similar structures. In earlier 

studies no repair activity was found for CryB. In the present study the (6-4) DNA lesion 

repair efficiency of CryB was very low in the absence of divalent metal ions. After 

illuminating the reaction mixtures for 120 min, (3.3 ± 0.07) % of (6-4) DNA lesions were 

repaired. Upon addition of Mg
2+

 or Mn
2+ 

to the reaction mixture, (82 ± 4) % and (97 ± 3) % 

of the (6-4) DNA lesions were repaired during an illumination time of 3 min, respectively. 

The addition of Ca
2+ 

also improved the activity of CryB, (12 ± 1) % of DNA lesions were 

repaired upon 20 min illumination (Figure 14). According to the turnover rates as given 

in (Table 4), Mg
2+ 

and Mn
2+

 and Ca
2+

 improved the DNA repair activity 2060 ± 20, 3400 
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± 100 and 24 ± 2 times, respectively. This pattern of divalent metal ion effects 

corresponds well to the pattern observed for PhrB. 

 

 

Figure 14. DNA repair activity of CryB with and without divalent metal ion. Repair mixture 

contained 5 µM of the purified (6-4) photoproducts of t_repair, 850 nM CryB, 14 mM DTT and 4 

mM free Mg
2+

, Mn
2+

 or Ca
2+

 in corresponding reaction mixture. The percentages of repaired 

DNA after illuminating 120 min, 3 min, 3 min, 20 min, respectively for repair mixture without 

and with Mg
2+

, Mn
2+

 and Ca
2+

 are shown. Mean values ± SE from 3 independent experiments. 

 

Proma-PL from Prochlorococcus marinus is also a member of the (6-4) BCP 

proteins, PhrB has 4 conserved cysteines covalent binding to the Fe-S cluster whereas 

Proma-PL have no 4 cysteines and its 1000 homology also contains no 4 cysteines for Fe-

S cluster binding, which means that Proma-PL represents another subgroup of (6-4) BCP 

protein that has no Fe-S cluster. As the solubility of Proma-PL is very poor, after 

purification we only get very less Proma-PL in the supernatant, despite of several rounds 

of optimizations which were performed by Gero Kaeser. After affinity chromatography, 
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the highest purity of Proma-PL I got is about 30 %. Since E. coli expressed proteins do 

not have (6-4) DNA repair ability, the (6-4) DNA repair activity can be assigned to the 

Proma-PL fraction in the supernatant. The single stranded ODN5 was used for repair 

assays with and without Mg
2+

. In the presence of Mg
2+

, we observed a clear repair 

activity (Figure 15). Without Mg
2+

, no repair was detected. Thus, the Mg
2+

 effect is also 

present in prokaryotic (6-4) photolyases without Fe-S cluster.   

 

 

Figure 15. DNA repair HPLC profile of Proma-PL with and without Mg
2+

. 30 µl repair mixture 

contained 5 µM of the purified (6-4) photoproducts of ODN5, soluble Proma-PL about 10 % 

purity (A280 = 0.66, 27 µl), 14 mM DTT or 1.5 mM free Mg
2+

. 

 

2.3 Photorepair and photoreduction of PhrA 

The CPD DNA lesion repair ability of PhrA from Agrobacterium fabrum was very 

efficient. Under the given conditions, CPD DNA lesions were repaired within 3 min, 

although the enzyme concentration was significantly lower than in the above assays. 

There was only a minor effect of divalent metal ions on the repair. After an illumination 

time of 1 min, the percentages of repaired DNA in the assays without divalent metal, with 



Results 

32 

 

Mg
2+

, with Mn
2+

 and with Ca
2+

 were (38 ± 2) %, (44 ± 1) %, (38 ± 2) % and (42 ± 3) % 

respectively (Figure 16A). 

I also studied the effects of Mg
2+

, Mn
2+

 and Ca
2+

 on photoreduction of PhrA 

(Figure 16B). All three metal ions had a positive effect on photoreduction. In the 

presence of Mg
2+

 the initial rate of photoreduction was increased by (74 ± 2) %. Mn
2+

 

and Ca
2+ 

increased the initial rate by (39 ± 3) % and (25 ± 6) %, respectively.  

 

 

Figure 16. (A) DNA repair activity of PhrA with and without divalent metal ions. The repair 

mixture contained 5 µM of the purified CPD photoproducts of ―t_repair‖ oligonucleotides, 50 nM 
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PhrA, 14 mM DTT and 4 mM free Mg
2+

, Mn
2+

 or Ca
2+

; the illumination time was 1 min. (B) 

Photoreduction of PhrA with and without divalent metal ion. Spectra were recorded from 250 nm 

to 700 nm; A450 values were extracted at each time point and normalized to t 0 min. Mean values 

± SE from 3 independent experiments. 

 

2.4 Photorepair and photoreduction by OtCPF1 

The (6-4) photolyase of a green alga Ostreococcus tauri was chosen as representative of 

eukaryotic (6-4) photolyases. Although this group and (6-4) BCP proteins catalyze the 

same enzymatic reaction by possibly the same mechanism of electron transfer, their 

primary structures are only 17 % identical Without divalent metal ion, the (6-4) DNA 

repair activity of OtCPF1 was higher than that of PhrB, whereas an effect of divalent 

metal ions on DNA repair was not obvious. Illuminating for 60 min, (21 ± 2) % of the (6-

4) DNA lesions were repaired in the assay without divalent metal ion, and (22 ± 1) %, 

(18 ± 1) %, and (20 ± 2) % were repaired in the assays with Mg
2+

, Mn
2+

 and Ca
2+, 

respectively (Figure 17A). After correcting for the different protein concentrations used 

in our experiments, the repair rates of OtCPF1 were lower than those of both other (6-4) 

photolyases presented in this work in the presence of Mg
2+

 (Table 4). Considering the 

missing antenna chromophore in OtCPF1, the repair rates per absorbed photons are 

probably similar in OtCPF1 and (6-4) BCP proteins in the presence of Mg
2+

. We also 

investigated the divalent metal ion effect on the photoreduction of OtCPF1. The 

transition to the fully reduced form FADH
-
 was completed after 240 min illumination, as 

there was no further decrease of absorbance at 450 nm afterwards. As shown in Figure 

17B, there was no significant effect of Mg
2+

 on photoreduction, the curves with and 

without Mg
2+ 

are almost identical. 
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Figure 17. (A) DNA repair activity of OtCPF1 with and without divalent metal ion. The repair 

mixture contained 5 µM of the purified (6-4) photoproducts of t_repair, 50 nM OtCPF1, 14 mM 

DTT and 4 mM free Mg
2+

, Mn
2+

 or Ca
2+

 in the respective reaction mixture. The percentages of 

repaired DNA after illuminating 60 min for repair mixture with and without divalent metal ion 

were shown. Mean values ± SE of 3 experiments. (B) Photoreduction of OtCPF1 with and 

without magnesium. Spectra were recorded from 250 nm to 700 nm and A450 values were 

extracted at each time point and normalized to t = 0 min. 
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2.5 Summary of DNA repair 

I found that an improvement of DNA repair by divalent cations is restricted to members 

of the (6-4) BCP group, and the repair activities of photolyases belonging to other groups 

in our assay are not affected by divalent cations. Although minor positive and negative 

divalent cations effects on photoreduction were found in different groups, they are 

without clear correlations. 

 

Table 2. Summary of PhrB repair of single and double stranded oligonucleotides.  

Oligo 

DNA 

Length 

(nt) 

ss/ds 

substrate 

With Mg
2+

  Irradiation 

time 

 Repair 

(%) 

k (s
-1

) 

t_repair 8 ss no 2 hour 3 ± 0.1 (4..2 ± 0.2) x 10
-6

 

t_repair 8 ss yes 3 min 48 ± 3 (3.7 ± 0.4) x 10
-3

 

ODN5 12 ss no 20 min 54 ± 6 (6.6 ± 1) x 10
-4

 

ODN5 12 ss yes 2 min 81 ± 2  (1.4 ± 0.1) x 10
-2

 

ODN5 12 ds no 20 min 10 ± 0.5 (9.3 ± 0.4) x 10
-5

 

ODN5 12 ds yes 2 min 35 ± 0.5 (3.7 ± 0.1) x 10
-3

 

Notes: Based on example measurements at different time points, we assume that the repair 

reaction can be treated as first order reaction. Based on the formula for exponential decay, c(t) = 

c0 e
-kt

, where c0 and c(t) are substrate concentrations before illumination and after a given time (t) 

of illumination, we obtained the specific reaction rate k (s
-1

).  

 

Table 3. Comparison of Mg
2+

 increased times on the DNA repair of different (6-4) DNA lesions. 

 Increased times of repair activity by Mg
2+

 

single stranded 8mer 879 ± 62 

single stranded 12mer 21 ±  2 

double stranded 12mer 40 ±  1 
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Table 4. DNA repair activity of the four photolyases with and without divalent metal ion.  

  Lesion DNA 

conc. 

Protein 

conc. 

Divalent 

cation 

k (s
-1

) 

PhrB   5 µM 850 nM - (4.2 ± 0.2) x 10
-6

 

PhrB  5 µM 850 nM Mg
2+

 (3.7 ± 0.4) x 10
-3

 

PhrB   5 µM 850 nM Mn
2+

 (6.4 ± 0.3) x 10
-3

 

PhrB   5 µM 850 nM Ca
2+

 (1.2 ± 0.1) x 10
-4

 

CryB  5 µM 850 nM - (4.7 ± 1) x 10
-6

 

CryB   5 µM 850 nM Mg
2+

 (9.7 ± 1) x 10
-3

 

CryB   5 µM 850 nM Mn
2+

 (1.5 ± 0) x 10
-2

 

CryB   5 µM 850 nM Ca
2+

 (1.1 ± 0.1) x 10
-4

 

OtCPF1   5 µM 50 nM - (6.5 ± 0.7) x 10
-5

 

OtCPF1   5 µM 50 nM Mg
2+

 (7.1 ± 0.6) x 10
-5

 

OtCPF1   5 µM 50 nM Mn
2+

 (5.6 ± 0.6) x 10
-5

 

OtCPF1 5 µM 50 nM Ca
2+

 (6.3 ± 0.8) x 10
-5

 

PhrA   5 µM 50 nM - (8.0 ± 0.5) x 10
-3

 

PhrA   5 µM 50 nM Mg
2+

 (9.6 ± 0.4) x 10
-3

 

PhrA   5 µM 50 nM Mn
2+

 (7.9 ± 0.5) x 10
-3

 

PhrA   5 µM 50 nM Ca
2+

 (8.9 ± 0.8) x 10
-3

 

 

From these results we draw the following conclusions: (1) Mg
2+

 dramatically 

enhances the repair activity of PhrB with single stranded DNA and double stranded DNA 

(Table 3); (2) PhrB repairs single stranded DNA more efficiently than double stranded 

DNA, irrespective of the presence or absence of Mg
2+

. (3) Both Mg
2+

 and the longer 

DNA substrates can improve the binding (see 3.2.3) of (6-4) DNA to PhrB.  

 

 

 



Results 

37 

 

3 Key amino acids involved in DNA repair of PhrB  

3.1 Key amino acids involved in metal ion-stimulated effect. 

Based on former results we expected that the action of Mg
2+

 in PhrB is close to the DNA 

lesion.  Because the Mg
2+

 effect is only found in PhrB and CryB, but not in other groups 

of photolyases, the most probable site for Mg
2+

 action seemed to be at a specific 

interdomain loop which is only present in relatives of PhrB, and replaced by another loop 

in other photolyases. In PhrB, the loop contains 4 negatively charged amino acids, 

Asp179, Glu181, Asp189, and Asp201. Of these, only Agp179 is highly conserved in the 

(6-4) BCP proteins. Another Asp with its COOH side group ca. 7 Ǻ  distant from Asp179 

and is highly conserved in (6-4) BCP proteins is Asp254  (Ma et al., 2017). Both residues 

have been checked to be candidates for Mg
2+

 binding close to the DNA lesion. We 

therefore generated both relevant mutants, PhrB-D179N and PhrB-D254N in which the 

negative side chain of each Asp was replaced by a neutral side chain of Asn. These 

mutants were used for repair assays with and without Mg
2+

 (Figure 18). In these repair 

assays ss (6-4) t_repair was used as the substrate. Without Mg
2+

 and after 2 h irradiation, 

the repair efficiencies of the 3 proteins PhrB-WT, PhrB-D179N and PhrB-D254N were 

(3.5 ± 0.3) %, (4 ± 0.1) %, and (5 ± 2) %, respectively. When Mg
2+

 was added and the 

reaction mixture irradiated for 3 min, PhrB-WT repaired (80 ± 1) % of ss (6-4) t_repair, 

but for PhrB-D179N and PhrB-D254N no signal from repaired DNA was detectable. The 

irradiation time was therefore prolonged to 2 hours, and it turned out that the yields of 

repaired DNA were almost the same no matter if the repair assays were conducted with 

or without Mg
2+

. In the presence of Mg
2+

 PhrB-D179N and PhrB-D254N repaired (4 ± 

0.5) % and (5 ± 0.2) % of DNA, respectively, which were similar to the results obtained 

for PhrB-WT in the absence of Mg
2+

. Our results prove that both Asp179 and Asp254 are 

crucial for enhancement of the catalytic activity of PhrB by Mg
2+

, which is likely due to 

binding of the divalent cation to these residues during the reaction cycle of DNA repair.     
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Figure 18. DNA repair activity of PhrB-WT and its mutants PhrB-D254N and PhrB-D179N with 

and without Mg
2+

. 8 mer single stranded (6-4) DNA t_repair were used in the repair assays. The 

molar ratio between DNA and protein is ca. 10:1. Irradiation time for PhrB-WT without and with 

Mg
2+

 was 2 h and 3 min, respectively; for the two mutants PhrB-D179N and PhrB-D254N was 

always 2h. For all time points measurements were repeated 3 times and mean values ± SE are 

shown. 

 

3.2 Mutants with impaired repair activity 

3.2.1 PhrB-I51W without DMRL cofactor 

3.2.1.1 Generation of a mutant lacking DMRL  

PhrB-I51W is the second mutant of which a crystal structure was obtained. Based on the 

PhrB structure, we reasoned that a replacement of Ile51 by Trp could result in a 

displacement of the DMRL antenna chromophore. Spectral characterizations showed that 

the mutant does indeed not incorporate DMRL. 

The absorbance spectrum of PhrB-WT is characterized by a maximum at 415 nm 

and a shoulder at 450 nm. Free oxidized FAD has an absorbance maximum around 450 

nm and an extinction coefficient of 11000 M
-1

 cm
-1 

(Whitby, 1953). Free DMRL has a 
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maximum at 408 nm and an extinction coefficient of 12100 m
-1

 cm
-1

 (Fischer et al., 

2002). We assume that the 415 nm peak primarily arises from DMRL, red shifted by 

tuning of the protein environment, with small contributions from FAD and the Fe-S 

cluster (Green et al., 1996; Zhang et al., 2011).  

The UV-Vis spectrum of PhrB-I51W is characterized by weaker absorbance 

around 400 nm (Figure 19), indicating a reduced content or a complete loss of DMRL. 

For the calculation of the PhrB-WT –minus-PhrB-I51W difference, the spectra in Figure 

19 were normalized to the estimated 280 nm extinction coefficients (protein and FAD in 

both and DMRL in the wild type) as given below .The shape of the difference spectrum is 

comparable with that of free DMRL but has a maximum at 415 nm. The comparison 

between wild type and mutant shows that the DMRL content in the mutant is low or zero 

and that the incorporation of DMRL into the protein results in a ~5 nm bathochromic 

shift. 

For normalization of spectra we used the following extinction coefficients at 280 

nm: PhrB-WT and PhrB-I51W apoproteins, ε280 nm = 86300 M
-1

 cm
-1

 and ε280 nm = 91790 

M
-1

 cm
-1

, respectively; DMRL, ε280 nm = 10300 M
-1

 cm
-1

 based on (Fischer et al., 2002) 

and own spectral measurements; FAD, ε280 nm = 17600 M
-1

 cm
-1

 based on (Whitby, 1953) 

and own spectral measurements. PhrB-WT and PhrB-I51W holoproteins, ε280 nm = 10300 

M
-1

 cm
-1

 and ε280 nm = 10300 M
-1

 cm
-1

, respectively. The absorbance spectrum of PhrB 

samples are above zero in the entire visible range (Graf et al., 2015), which is no 

absorption in the other photoactive proteins. We attribute this overall absorbance to the 

Fe-S cluster. Because the values are very small as compared to absorbance of DMRL, 

FAD or Trp residues, quantifications are only affected in a little extent. 
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Figure 19. UV-Vis absorbance spectra of PhrB (black line) and PhrB-I51W (red line), 

normalized to the 280 nm value. Blue line: difference between both spectra. Based on the added 

extinction coefficients of protein and FAD at 280 nm, the extinction coefficient of DMRL at 415 

nm was estimated to be 12000 M
-1

 cm
-1

. 

 

 

3.2.1.2 Biochemical properties of PhrB-I51W 

To find out whether PhrB-I51W contains residual DMRL, I performed an HPLC-based 

assay. For PhrB-WT, both FAD and DMRL were clearly recognized as separate peaks 

based on their absorbance spectra, which were measured continuously in this setup. 

When the PhrB-I51W mutant extract was applied to HPLC under the same conditions, 

the FAD peak was present, and there was no DMRL peak (Figure 20), indicating that 

PhrB-I51W is indeed free of DMRL. 
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Figure 20. HPLC analysis of cofactors released from PhrB-WT and PhrB-I51W. (A) HPLC 

profiles of pure DMRL (blue line) and factors released from PhrB-WT (red line) and PhrB-I51W 

(black line); detection wavelength 380 nm. (B) Spectra of peaks 1 and 2, DMRL. (C) Spectra of 

peaks 3 and 4, FAD. 

 

Energy transfer between spectrally different chromophores can be estimated by 

steady state fluorescence. When fluorescence emission of PhrB-WT was measured at 520 

nm, the approximate emission maximum of FAD (Huang, 2003), the maximum of the 

excitation spectrum was at 411 nm, which coincides with the absorbance maximum of 

DMRL (Figure 21). The corresponding excitation spectrum of PhrB-I51W was 

completely different: there was no maximum at 411 nm but two maxima at 368 and 444 

nm. These peaks relate to oxidized FAD. In PhrB-WT, theoretically light energy 

absorbed by DMRL is transferred to FAD, but actually the emission spectrum of PhrB-

WT has a maximum at 488 nm and a shoulder at 540 nm and the emission spectrum of 

PhrB-I51W has the shape of a typical FAD emission with a maximum at 540 nm This 
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result shows that some energy absorbed by DMRL is emitted as fluorescence and 

therefore not efficiently transferred to FAD. Since the fluorescence quantum yields of 

DMRL and FAD embedded in the protein are unknown, the transfer efficiency cannot be 

quantified presently.  

 

 

Figure 21. Fluorescence spectra of PhrB-WT and PhrB-I51W. Excitation spectra are measured 

with an emission wavelength of 520 nm and emission spectra with an excitation wavelength of 

420 nm. 

 

I also investigated how the two light triggered reactions of PhrB, photoreduction 

and photorepair, are affected by the loss of DMRL. In comparative photoreduction 

assays, two phenomena were observed. First, the irradiation with 470 nm led to a slower 

absorbance loss at 450 nm, the absorbance maximum of FAD, in the PhrB-I51W mutant. 

Second, the semiquinone intermediate as identified by its absorbance around 600 nm was 

present after 90 min in PhrB-I51W but not in PhrB-WT (Figure 22). A comparison 

between the difference spectra of PhrB-WT and PhrB-I51W suggests that only FAD but 

not DMRL undergoes light induced spectral changes. The lower photoreduction 

efficiency of PhrB-I51W indicates that the DMRL-FAD energy transfer in PhrB-WT 
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results in the excitation and subsequent reduction of FAD, although the absorbance of 

DMRL in this spectral range is very low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Photoreduction of PhrB-WT and PhrB-I51W. Dark-adapted protein samples of A450 

nm = 0.1 were irradiated with 470 nm light of 100 µmol m
-2

 s
-1

. (A) Time course of 

photoreduction as measured by absorbance at 450 nm, normalized to t = 0. (B) and (C) Light–

dark difference spectra of PhrB-WT and PhrB-I51W, respectively. The absorption spectra of 

dark-adapted protein samples were subtracted from the spectra measured at 1, 20 or 90 min after 

illumination. 
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To test the repair of DNA lesions, I used a single stranded oligonucleotide 

―t_repair‖ with a central (6-4) T-T lesion. PhrB-WT repaired 21 % after 1 h and 27 % 

after 2 h of irradiation, whereas the repair rates for PhrB-I51W were reduced to only 3 % 

and 7 %, respectively (Figure 23 and Table 5). PhrB-I51W can still repair (6-4) lesions 

but less efficient than the PhrB-WT. This indicates that in the wild type, DMRL is 

required for efficient excitation of FADH
-
. An indirect DMRL effect via photoreduction 

also has slightly possibility (based on the reason indicated in the Methods part with DNA 

repair assay). A five-fold difference in repair activity between protein with and protein 

without antenna chromophore has been described for the Drosophila melanogaster (6-4) 

photolyase (Glas et al., 2009a). 

 

Figure 23. HPLC profiles for DNA repair assay of PhrB-WT (dashed line) and PhrB-I51W (solid 

line). The DNA t_repair with (6-4) lesion was incubated with the protein under the ratio of DNA: 

protein ca. 1:1 and irradiated with blue LEDs (λmax = 400 nm, 250 µmol m
-2

 s
-1

) for 2 h. After 

separating DNA from protein, the DNA was subjected to HPLC. The position of damaged and 

repaired DNA is indicated above the relevant peaks. Detection wavelength was 264 nm. 
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Table 5. DNA repair by PhrB-WT and PhrB-I51W. 

 
Irradiation time 

 Protein  
0h 1 h  2 h 

Repair (%) 

PhrB-WT  0 ± 0  21 ± 0.9  27 ± 2  

PhrB-I51W  0 ± 0  3.1 ± 0.2  6.7 ± 0.3  

 

3.2.2 DNA repair of PhrB-Y430F 

As Fe-S cluster in photolyase is a recently founded cofactor in photolyase (Zhang et al., 

2013) and its function in photolyase is still unclear. As Fe-S cluster acts a role in electron 

transfer of respiratory chain, so we speculate Fe-S might involve in the electron transfer 

in DNA repair and then we mutated the Tyr 430 and Tyr424 which those amino acids 

most likely involved the electron transfer in PhrB (Figure 24). Tyr424 and Tyr430 of 

PhrB are highly conserved in (6-4) BCP proteins. According to previous work (Graf et al., 

2015), the DNA repair activity of the Y430F mutant of PhrB is impaired under no Mg
2+

 

condition.  

In the present study, only (1.1 ± 0.09) % of (6-4) DNA was repaired by the 

mutant protein when illuminating for 120 min in the absence of Mg
2+

, whereas (3 ± 0.1) % 

of (6-4) DNA was repaired by the wild-type protein under the same condition (Figure 25). 

After adding Mg
2+

 to the repair assay of Y430F, about (12 ± 1.2) % of the (6-4) DNA 

lesions were repaired in 3 min; Mg
2+ 

promoted the repair activity of Y430F 440 ± 20 

times.  
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Figure 24. Position of tyrosines between the DNA lesion and the Fe-S cluster of PhrB (4DJA). 

The DNA is from the Drosophila melanogaster (6–4) photolyase co-crystal structure (3CVU). 

Modified from (Graf et al., 2015). 

 

 

Figure 25. DNA repair activity of PhrB wild type and the mutant PhrB-Y430F with and without 

Mg
2+

. Repair mixtures contained 5 µM of the purified (6-4) photoproducts of t_repair, 850 nM 

wild-type PhrB or its Y430F mutant, 14 mM DTT and 4 mM free Mg
2+

 in the respective reaction 
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mixture. The percentages of repaired DNA after illuminating 120 min and 3 min, respectively, for 

repair mixture with and without Mg
2+

 are shown. Mean values ± SE of 3 experiments. 

 

3.2.3 DNA repair of PhrB-Y424F involved in DNA binding 

The Y424F mutant was previously generated to test for possible electron transfer between 

the iron sulfur cluster of PhrB and the DNA lesion. According to DNA binding model 

Tyr424 interacts with the DNA. This binding of lesion DNA to this mutant was found to 

be very weak, and no repair activity was found. The crystal structure of PhrB-Y424F 

showed that the folding of the protein is unaffected by the mutation and effects can be 

directly assessed to this amino acid. In order to test for Mg
2+

 effect in this mutant, I 

performed repair assays with increased protein concentrations.   

In order to compare the DNA repair activities of wild-type PhrB and the Y424F 

mutant, the repair assay was carried out using a protein concentration that was 5 µM, i.e. 

about 10 times higher than in the remaining experiments presented in this work. 

The PhrB-Y424F mutation is characterized by a great loss of binding affinity for 

damaged DNA (Table 6) and DNA repair as compared to PhrB-WT (Graf et al., 2015). In 

this work, ss (6-4) ODN5 was chosen as the substrate as PhrB can repair it with rather 

high efficiency. It was found that PhrB-Y424F does not completely lose its ability to 

repair damaged DNA, but its repair efficiency is very low (Figure 26), since after 60 min 

irradiation when repair of damaged DNA with PhrB-WT was complete (even with 10 

times less protein, Figure 10) PhrB-Y424F repaired only (3.2 ± 0.06) % DNA. As 

observed for PhrB-WT addition of Mg
2+

 markedly increased the DNA repair efficiency 

of PhrB-Y424F. In the presence of Mg
2+

 and after 2 min irradiation (45 ± 1) % DNA 

were repaired, which is still low compared to the 100 % repair efficiency of PhrB-WT 

under the same conditions. In Table 3 with Mg
2+

 enhanced PhrB wild type DNA repair 

activity about 21 times , but for PhrB-Y424F enhanced by Mg
2+ 

about 545 times (Table 

7). We conclude that in PhrB-Y424F the lower binding affinity for (6-4) DNA (Graf et 
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al., 2015) (Zhang et al., 2017) greatly impairs repair efficiency and the lower binding and 

repair ability can be improved by Mg
2+

.  

 

 

Figure 26. DNA repair activity of PhrB wild-type and the mutant PhrB-Y424F with and 

without Mg
2+

. (A) One example of HPLC profile was shown for each type of experiment: DNA 

repair (top blue line) by PhrB-Y424F without Mg
2+

 irradiated for 60 mn, (middle red line) by 

PhrB-Y424F with Mg
2+

 irradiated for 2 min, (bottom black line) by PhrB-WT with Mg
2+

 

irradiated for 2 min. (B) 12 mer single stranded DNA ss (6-4) ODN5 was used in the repair 

assays. The molar ratio between DNA and protein was ca. 1:1. The repair mixtures contained 5 

µM (6-4) ODN5, 5 µM protein, 14 mM DTT and 4mM free Mg
2+ 

if with Mg
2+

. Irradiation time 

with and without Mg
2+

 were 2 min and 60 min, respectively. For every time point the 
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measurements were repeated 3 times and the yields of repaired DNA are shown as percentages of 

total DNA (mean values ± SE).  

 

Table 6. DNA binding of PhrB and Y424F (Graf et al., 2015). 

 ss EMSA_1, KD (6-4) ss EMSA_1, KD 

PhrB (25 ± 3) x 10
-6

 M (13 ± 2) x 10
-9

 M 

Y424F (28 ± 3) x 10
-6

 M (18 ± 2) x 10
-6

 M 

 

 

Table 7. ss (6-4) ODN5 DNA repair specific reaction rate of PhrB-Y424F with and without Mg
2+

. 

no Mg
2+

 

k (s
-1

)                                 

with Mg
2+

 

k (s
-1

)                                 

Increased times of repair 

activity by Mg
2+

 

 (9±0.03) x 10
-6

  (5 ± 0.1) x 10
-3

 545 ± 14 
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4 Electron transfer pathway in photoreduction of PhrB 

Photoreduction of PhrB differs from the typical pattern because the amino acid of the 

electron cascade next to FAD is a tyrosine (Tyr391), whereas photolyases and 

cryptochromes of other groups have a tryptophan as direct electron donor of FAD. For 

PhrB the distance between the isoalloxazine ring and Trp390 is roughly 8 Å (Figure 27). 

Trp390 is quite far from FAD and there is no other Trp in the structure that can complete 

the triad, which implies the role of the closest residue of FAD involved in charge transfer.  

Mutagenesis studies have identified Trp342 and Trp390 as essential for charge 

transfer (Graf et al., 2015). Trp342 is located at the periphery of PhrB while Trp390 

connects Trp342 and Tyr391. The role of Tyr391, which lies between Trp390 and FAD 

(Figure 27), is however unclear as its replacement by phenylalanine did not block 

photoreduction (Figure 29). Experiments reported here, which replace Tyr391 by Ala, 

show that photoreduction is blocked, underlining the relevance of Tyr/Phe at position 391 

and indicating that charge transfer occurs via the triad 342-390-391 (Holub et al., 2018). 
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Figure 27. Orientation of FAD and amino acids that might be relevant for photoreduction in the 

structure of PhrB (PDB entry 4DJA). Protein structure is illustrated in cartoon. The cartoon FAD 

chromophore (yellow), DMRL cofactor (pink) and relevant amino acids are shown as stick 

models. Trp342 is located close to the surface. Distances are given in Å. Adapted from (Graf et 

al., 2015).  

 

For photoreduction studies, I generated the Y391F, Y391W and Y391A mutants 

of PhrB. All mutants and PhrB-WT were expressed in E. coli and purified by Ni
2+

 

chromatography and size exclusion chromatography. Whereas protein yields of Y391F 

and Y391A are comparable to those of WT, the yield of Y391W is ca. 10 times lower. 

Absorbance spectra of Y391A and Y391F in the oxidized FAD state are comparable with 

WT (Figure 28), although detailed analyses reveal different chromophore to protein ratios 

and/or different fractions of reduced FAD at starting time. The absorbance of the Y391W 

in the blue spectral range is very weak (Figure 28). Chromophore analyses show that this 

mutant contains only (1.3 ± 0.1) % FAD and (1.8 ± 0.2) % DMRL as compared to WT. 

These values are (94 ± 1) % and (87 ± 3) % for FAD and DMRL of Y391F, respectively, 

and (53 ± 2) % and (53 ± 2) % for FAD and DMRL of Y391A, respectively. We propose 

that the replacement of Tyr 391, which is located close to FAD, by bulky Trp in Y391W 

results in opening of the FAD pocket and loss of FAD binding capacity. The DMRL 

pocket is formed by amino acids of the N-terminus and more distant from the mutation. 

The loss of DMRL results therefore probably from FAD depletion. The partial loss of 

both chromophores to equal percentages in the Y391A mutant supports this idea. The 410 

nm peak in the spectrum of the Y391W mutant is assigned to the iron sulfur cluster. 

During blue light irradiation, the spectra of WT PhrB and the Y391F mutant 

change in a characteristic manner. The transient increase at 580 nm, the maximum of the 

protonated FAD semiquinone, and the loss of absorbance at 450 nm, characteristic for the 

loss of oxidized FAD (Figure 29), are comparable to data published earlier(Graf et al., 

2015). Here, the relative A450 nm decrease at t = 90 min in the Y391F mutant appears 

smaller than in WT. This can be due to slower photoreduction or smaller fraction of 

oxidized vs. total FAD in the mutant. Both decay curves can be treated with 
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monoexponential decay functions which yielded time constants of 36 ± 1 min and 32 ± 1 

min for WT and Y391F, respectively. Thus, the rate of overall photoreduction is not 

affected by the Tyr to Phe replacement, but the oxidation state of Y391F was incomplete 

at the start of the photoreduction experiments. Formation and decay of the semiquinone 

intermediate absorbing at 580 nm is slower in Y391F. This result show that the role of 

Tyr or Phe differs in the first and second electron transfer. In summary, the present show 

clearly that the replacement of Tyr by Phe into the proposed electron path does not block 

photoreduction. We do not observe any light induced absorbance changes in the Y391A 

mutant (Figure 28). This result suggests that position 391 is critical for photoreduction, as 

proposed above.  

 

 

Figure 28. UV-Vis spectra of PhrB WT and mutated proteins Y391A, Y391F and Y391W. Black 

line: without illumination; red line: illuminated by 470 nm blue light for 90 min. 
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DNA repair in the presence of Mn
2+

 is completely repaired in 5 min for WT PhrB 

and Y391F mutant, whereas no repair activity was observed for Y391A and Y391W 

mutants under these conditions. When the repair time was prolonged to 120 min, Y391W 

repaired about (8.7 ± 0.7) % of damaged t_repair DNA, whereas with Y391A still no 

repair was observed. 
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Figure 29. Photoreduction of PhrB and its mutants. Absorption values at 450 nm (upper picture) 

were taken from UV-Vis spectra measured at indicated time points upon onset of blue-light 

illumination. For each protein, these values were normalized against the value measured at t = 0 

min. Absorption values at 580 nm (lower picture) after subtraction of the t = 0 value and 

normalization to the absorbance at 280 nm. 
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5 Crystal Structures of PhrB  

5.1 Crystal structure of PhrB mutants with impaired DNA repair activity 

In the present subchapter I describe crystal structures of two point mutants of PhrB: 

PhrB-Y424F and PhrB-I51W. Both mutants have a reduced DNA repair capacity, related 

to different sub-functions of PhrB. Tyr424 and Tyr430 are part of a Tyr bridge between 

the DNA lesion and the Fe-S cluster; both Tyr residues are highly conserved among Fe-

S-BCP proteins. At first, the mutants PhrB-Y424F and PhrB-Y430F are characterized by 

loss of DNA repair and reduced DNA repair (30 % of wild type), respectively (Graf et al., 

2015). According to a superposition with the Drosophila (6-4) photolyase/lesion DNA 

cocrystal structure, Tyr424 but not Tyr430 is also part of the proposed lesion binding site. 

The binding affinity of PhrB-Y424F for lesion DNA was significantly lower than that of 

PhrB-WT, whereas the affinity of PhrB-Y430F for lesion DNA was as high as that of 

PhrB-WT (Graf et al., 2015). Although both PhrB-Y424F and PhrB-Y430F mutants have 

clear phenotypes, the functions of these highly conserved Tyr residues are yet unclear. 

We obtained the crystal structure of PhrB-Y424F to find out the loss of Tyr424 have 

either direct or indirect effects on the lesion-DNA binding capacity. 

5.1.1 Crystal structure of PhrB-Y424F 

The structure of PhrB-Y424F could be solved at resolution 2.5 Å (PDB entry 5LFA). 

The cubane Fe-S cluster, FAD and DMRL ligands were clearly visible in the electron 

density after initial rounds of refinement. The finally refined model of PhrB-Y424F 

(Figure 30A) superposes with a very low RMSD of 0.343 Å to the crystal structure of the 

PhrB-WT as determined with the program PROSMART (Nicholls et al., 2014). Initial 

electron density after molecular replacement confirmed the Tyr to Phe substitution 

(Figure 30B). Similar to PhrB-WT, the loop region connecting α7 und α8 is highly 

flexible which is reflected by missing electron density for the residues Asp179 to Arg192.  
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Figure 30. (A) Structure of PhrB-Y424F. Cofactors and the mutated amino acid residue are 

highlighted by sticks presentation. (B) Electron densities around Tyr424 of PhrB-WT (left) and 

Phe424 of PhrB-Y424F (right) confirm that the mutation resulted in a Tyr-Phe transition. Figure 

from (Zhang et al., 2017). 

 

The structural comparison of PhrB-WT and PhrB-Y424F indicates several 

remarkable differences in the close proximity of Tyr424. In PhrB-WT, Tyr424 is engaged 

in an extended water molecule and hydrogen bonding network primarily to the two 

highly conserved amino acids His366 and Arg476 (Figure 31A, B). Obviously, in PhrB-

Y424F this water/hydrogen bonding chain is abolished. The water molecule that connects 

Tyr424 and Arg476 in PhrB-WT is not visible in PhrB-Y424F (Figure 31B). The reduced 

number of water molecules in PhrB-Y424F compared to PhrB-WT might also a result 

from the different resolution of both crystal structures (1.45 Å in PhrB-WT vs. 2.48 Å in 

PhrB-Y424F), but in this position the missing electron density for water is most likely 

due to the missing OH residue of the Phe side chain. Furthermore, the electron density of 

Arg476 is not visible in the PhrB-Y424F structure. The loss of the Tyr424 hydroxyl 

group and of the water/hydrogen bonding chain probably results in a flexible rotamer 
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conformation for Arg476, which is not resolved in the PhrB-Y424F structure (Figure 

31A, B). In order to see in which way the observed alterations could affect the interaction 

with DNA lesion, we superimposed the PhrB-WT and PhrB-Y424F crystal structures 

with that of the Drosophila (6-4) photolyase in complex with photo-damaged DNA (PDB 

entry 3CVU) (Maul et al., 2008). According to these models, the DNA/protein interaction 

in the mutant is affected twofold. Tyr424 forms a contact with the lesion, and its loss can 

directly explain why the affinity to lesion DNA is lowered. In the wild type a short 

distance of Arg476 to the DNA backbone is observed. This contact point is probably also 

lost in the mutant (Figure 31C, D). The model indicates also a potential involvement of 

the extended hydrogen network involving Tyr424, in binding and adjustment of the DNA 

lesion (Figure 31C).  

The wild type and mutant crystal structures show that Tyr424 is not only involved 

in the interaction with the lesion but also with other amino acids such as the highly 

conserved His366 that interacts with lesion DNA and the DNA interacting Arg476, 

through hydrogen bonding and water stabilizing.  
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Figure 31. Structure details of PhrB-WT (A and C) and PhrB-Y424F (B and D). The water 

molecules of the hydrogen-bonding network from His366 via Tyr424 to Arg476 in PhrB-WT (A) 

are not detected in PhrB-Y424F; the Arg476 side chain is also not resolved (B). In the simple 

DNA–protein model, Tyr424 forms a contact to the DNA lesion via a water molecule. Arg476 

interacts directly with the DNA backbone (C). In the DNA–protein model of PhrB-Y424F, the 

water-bridged contact is abolished (D), while the Arg476 side chain of PhrB-WT is not detected 

in PhrB-Y424F. Figure from (Zhang et al., 2017). 

 

5.1.2 Crystal structure of PhrB-I51W 

This crystal structure was analyzed by the cooperation group mentioned in the published 

paper (Zhang et al., 2017). The crystals of the PhrB-I51W mutant were obtained under 

similar conditions to those of PhrB-WT. The crystal structure was determined at 
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resolution 2.15 Å (PDB entry 5KCM). There are two nearly identical molecules in the 

asymmetric unit with a RMSD value of ~0.21 Å. The overall crystal packing and 

structure of the PhrB-I51W mutant are closely similar to those of PhrB-WT (Zhang et al., 

2013) that contains only one molecule per asymmetric unit. PhrB-I51W and PhrB-WT 

exhibit similar molecular packing in the crystal lattice, although they differ in space 

group and the cell dimension, which are resulted from breakdown of a crystallographic 

symmetry in the PhrB-I51W crystals. 

 

 

Figure 32. Structural differences between PhrB-WT and PhrB-I51W. (A) Ribbon diagram of the 

PhrB-WT (light orange) structure. Also shown are segments of the PhrB-I51W structure (blue) 

that deviate from the PhrB-WT structure by an RMSD > 0.5 Ǻ. All cofactors shown in space-

filling representation are from the PhrB-WT structure. A close-up view inside the rectangular box 

(outlined in red dashed line) is shown in B. (B) Substitution of Ile51 with Trp51(blue spheres) in 

PhrB-I51W leads to a direct steric clash with DMRL (yellow spheres) in the PhrB-WT structure. 

The resulting loss of DMRL is accompanied by extensive structural rearrangements near the 

binding pocket with significant displacements in the segment between Glu33 and His44. The 

PhrB-WT structure is highlighted in yellow and gray, PhrB-I51W in blue. 
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There is no visible electron density for DMRL in the PhrB-I51W crystal structure, 

which confirms our above interpretations of the UV-Vis spectra and HPLC profiles. 

Superposition of the PhrB-WT and PhrB-I51W structures shows no significant 

differences in the overall structure except in the region near the DMRL binding pocket 

(Figure 32) The Trp51 side chain of PhrB-I51W overlaps with a methyl side chain of the 

DMRL aromatic ring system (Figure 32B). Such a steric clash is most likely the cause for 

displacement of DMRL in PhrB-I51W. Significant structural rearrangements have been 

observed in the protein segment between Glu33 and His44 in PhrB-I51W near the DMRL 

binding pocket of the PhrB-WT structure (Figure 32), likely via two mechanisms. The 

first mechanism is reorganization of hydrogen bonding networks. Some residues involved 

in hydrogen bonding interactions with DMRL reorient in the PhrB-I51W structure and 

form new hydrogen bonds or salt bridges with other residues and/or to become exposed 

to the solvent (Figure 33). For example, Glu37, a residue in hydrogen bonding contact 

with DMRL in the PhrB-WT structure, is displaced by approximately 6 Å from its 

bridge interaction with Arg389 at the surface of the protein (Figure 33). This new 

interaction between Glu37 and Arg389 in PhrB-I51W also helps stabilizing the side chain 

conformation of Arg389, which was modeled in two alternate conformations in the PhrB-

WT structure (Zhang et al., 2013). The second mechanism is the movement of structural 

segments due to steric repulsion caused by the mutation. Specifically, the side chain of 

His43, which is in van der Waals contact with DMRL in the PhrB-WT structure, is 

pushed ~3 Å away from its original position by the bulky side chain of Trp51 in PhrB-

I51W (Figure 33). All these structural rearrangements are achieved not only by amino 

acid side chains assuming different rotameric conformations, but also by the polypeptide 

backbone adopting a different conformation (Figure 32 and Figure 33). In the absence of 

DMRL, the segment ranging from Val34 to His43 that shields the DMRL chromophore 

from the solvent exhibits a significantly different fold in PhrB-I51W (Figure 32B). In 

particular, a short helix (residues 35-39) refolds to become part of a well-ordered 

extended loop conformation in PhrB-I51W (Figure 32B). And the phenolic side chain of 

Tyr40 that forms a hydrogen bond with the ribityl side chain of DMRL in the PhrB-WT 
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in the PhrB-I51W mutant and exposes its side chain hydroxyl group to the solvent 

(Figure 32B). The refolding of the Val34-to-His43 segment also leads to formation of a 

channel connecting the DMRL binding pocket to the solvent. As a result, DMRL is 

released, and the vacated cavity is largely occupied by potential water molecules in the 

crystal structure of PhrB-I51W. The structural changes induced by binding of the antenna 

chromophore are comparable with those in Drosophila 6-4 photolyase upon binding of its 

antenna chromophore, deazaflavin, where the chromophore insertion induces rotations of 

side chains and displacement of water (Glas et al., 2009a).  

 

 

Figure 33. Structural reorganization and interactions of the Glu33-His44 region in the PhrB-WT 

(right) and PhrB-I51W (left) structures near the DMRL pocket. Three residues Glu37, Tyr40 and 
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His43 that are close to DMRL in the PhrB-WT structure are highlighted in red, orange and 

magenta circles, respectively. For clarity, hydrogen bonds involving water molecules are not 

shown. Adapted from (Zhang et al., 2017) 

 

Beyond the DMRL pocket, the PhrB-I51W and PhrB-WT structures match very 

well with an overall RMSD value of 0.49 Å. An amino acid region (residue 174-190) 

within the extended loop near the putative DNA binding site of PhrB becomes more 

ordered with well-defined electron density in the PhrB-I51W structure (Zhang et al., 

2017). Ala180, Glu181 and Asn182 are disordered in the PhrB-WT structure, indicating 

flexibility in this region (Zhang et al., 2013). Superpositions show that the loop segment 

ranging from Arg183 to Leu190 assumes different positions in PhrB-WT and PhrB-I51W 

crystals (RMSD between the corresponding Cα atoms  1.0 Å). Such structural 

variations in the long inter-domain linker (Zhang et al., 2013) arise probably from subtle 

differences in crystal packing due to crystallization and/or cryo-cooling conditions, which 

are almost similar in both crystal forms but never exactly identical.  

5.2 Crystallization of PhrB under blue light 

Oxidized PhrB crystals which grow under dark condition have been well researched by 

the former member in our group, but its reduced state crystal has never been gained. 

PhrB‘s homology CryB has been confirmed that it has dual function photorepair and 

photoreceptor. Normally as photoreceptor, under its photoreduction process it will 

undergo conformational change. As this conformational change might be able to track 

and observe from the crystal structure, I conducted the crystallization experiment under 

blue light try to gain the crystals in reduced state. After primary crystallization screening 

of 96 different conditions, I got four positive conditions (Figure 34). The buffer condition 

in (Figure 34A) and (Figure 34D) can successfully gain crystal of PhrB under both dark, 

oxidized stated and blue light, reduced state, and for the buffer condition in (Figure 34B) 

and (Figure 34C) only successfully gain crystal of PhrB under blue light, and reduced 

state, which means the crystal structure under these two condition might different from 

the dark conditions. The buffer condition in (Figure 34C) contains 10 mM magnesium 
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chloride which means the PhrB crystal growing under this solution probably also contains 

magnesium in their binding site, which may give us a direct evidence of magnesium 

action site in PhrB then help reveal the mechanism of divalent cations stimulated effect in 

(6-4) bacterial photolyases. 

 

 

Figure 34. Positive crystal results from the primary screen under blue light. The protein 

concentration was 6 mg/mL and the temperature was 298 K. Drops were made by mixing of 2 μl 

protein solution (protein solution contained 4mM TCEP with 2 μl reservoir solution. The blue 
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light is 20 µmol m
-2

 s
-1

 and the buffer conditions of the positive wells were: (A) 15 % PEG 400, 

pH 6.5, 100 mM MES sodium chloride, (B) 20 % PEG 3000, pH 7.5, 100 mM HEPES sodium 

salt, 200 mM sodium acetate, (C) 15 % PEG 6000, 50mM potassium chloride, 10 mM 

magnesium chloride, (D) 8 % PEG 4000.  
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Discussion  

1 Divalent metal ion effects on bacterial (6-4) photolyases 

Many DNA processing enzymes like nucleases, polymerases and phosphonatases (Zhang 

et al., 2004) require Mg
2+ 

or Mn
2+

 for catalytic function. Mg
2+

 is also required for 

interactions between proteins, for ribosome subunit association, ATP-dependent reactions 

and many other functions. The impact of divalent cations on photolyase DNA repair has 

not been reported by other group. In my project, I found that DNA repair by a bacterial 

CPD photolyase and a eukaryotic (6-4) photolyase is indeed not dependent on Mg
2+

, 

whereas the repair activities of three (6-4) BCP photolyases were stimulated by Mg
2+

 or 

to a similar extent by Mn
2+

. This stimulated effect that could partially be imitated by Ca
2+

. 

This finding explains why the repair activities of PhrB in initial assays were found to be 

very poor and required protein concentrations exceeding those of the DNA. At first, DNA 

repair experiments with CryB hence erroneously suggested that this protein does not act 

as photolyase because no repair activity was found (Geisselbrecht et al., 2012). However, 

further studies showed that CryB strongly affects the UV-survival rate of R. sphaeroides 

and also been checked out some degree of (6-4) photolyase activity in vitro (von Zadow 

et al., 2016). If consider the amount of protein, in the presence of Mg
2+

 or Mn
2+

 the 

activities of both PhrB and CryB were promoted to the range of the eukaryotic (6-4) 

photolyase OtCPF1 from Ostreococcus tauri, however still about 10 times lower than 

CPD photolyase from Agrobacterium fabrum (Table 4).  

Based on the CPF proteins I studied in this project, the Mg
2+

 stimulation effect is 

only restricted to (6-4) BCP proteins. Based on my experiment results that a eukaryotic 

(6-4) photolyase and a class III CPD photolyase have no Mg
2+

 stimulation effect, so this 

effect could commonly exist in other groups of photolyases, because Mg
2+

 is absent in all 

the other standard assays, where DNA repair activities have been determined. In 

evolutionary terms, the loss of Mg
2+

 stimulation should correlates with the loss of the Fe-

S cluster or the other properties described in (Table 8).  

 



Discussion 

66 

 

Table 8. Comparison between (6-4) BCP proteins and other groups of photolyases 

 DNA 

Repair 

effect of 

Mg
2+

 

Fe-S 

cluster 

Antenna 

chromophore 

C-terminal extension DNA 

stabilization 

loop 

(6-4)BCP 

proteins 

Increased Yes/No DMRL Long, 2 helices between helix 

7 and 8 

Other 

photolyases  

No effect No MTHF, 8-HDF 

or other but not 

DMRL 

Either no, short 

(Arath (6-4) PL) or 

long (e.g. plant 

cryptochromes) but 

in this case no 

homology with (6-4) 

BCP proteins 

Between 

helix 17 and 

18 

 

Photoreduction assays that were also performed with all 3 types of photolyases i.e. 

a (6-4) BCP protein, a eukaryotic (6-4) photolyase and a CPD photolyase. The 

photoreduction results showed that divalent cations can exert a positive or negative effect 

on the rate of photoreduction, but that there is no correlation with the effect on 

photorepair and in PhrB, Mg
2+

 slows down photoreduction but highly improving the 

DNA repair. So we could exclude that the reason of stimulation on DNA repair is 

because of divalent cations promoting the photoreduction . 

The fact that Mn
2+

 enhances the repair activity of PhrB and CryB to a similar 

extent as Mg
2+

, whereas the effect of Ca
2+

 on the catalytic activity of these enzymes is 

less pronounced correlates well with the six-coordinate geometry of Mn
2+

 displaying a 

similar effective ionic radius (0.83 Å in its high spin state) as Mg
2+

 (0.72 Å) whereas 

Ca
2+

 ions are significantly larger ( 1 Å), irrespective of their coordination number 

(Shannon, 1976). These observations suggest that PhrB and CryB in complex with (6-4) 

photoproducts or intermediates of the catalytic repair cycle share homologous binding 

sites for the metals responsible for enhancement of repair activity that are selective for 

divalent cations abundantly found in the cytosol. 
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We could then imagine the Mg
2+

 effect that is due to provide a bridge between the 

protein and DNA lesions and form a stable reaction complex during the catalytic process 

by binding of the metal ion at the protein DNA interface or close to it (Zhang et al., 2004). 

A most obvious structural difference between (6-4) BCP proteins and other photolyases 

or cryptochromes is the long linker region between helices 7 and 8, which according to 

(Zhang et al., 2013) is likely to interact with the DNA lesion. This loop, also named 

interdomain linker because it connects the antenna binding domain and the catalytic 

domain, is much longer than in other photolyases or cryptochromes and structurally 

unique to (6-4) BCP proteins as shown by a multiple structural alignment of 

representatives of the different classes of CPF proteins (Figure 38). It appears to 

functionally replace a loop between helices 17 and 18 of Drosophila (6-4) photolyase 

(PDB entry 3CVU).  

Interestingly, this loop harbors one negatively charged residue, an aspartate (CryB: 

Asp175; PhrB: Asp179; Proma-PL: Asp177) that is absolutely conserved among the (6-4) 

BCP subfamily of photolyases (Figure 38, Figure 36, Figure 39). Another highly 

conserved aspartate (CryB: Asp250; PhrB: Asp254; Proma-PL: Asp252) is found in the 

neighboring C-terminal helix. The closest distances between oxygen atoms of both amino 

acids are 7.1 Å in PhrB and 5.2 Å in CryB. Although both distances are slightly too large 

to fit in a Mg
2+

 ion, Mg
2+

-O distances are in the range of 2.0 – 2.1 Å, a Mg
2+

 has been 

here tentatively modeled into the CryB structure (PDB code 3ZXS). The proposed Mg
2+

-

O distances to Asp175 and Asp250 range from 2.9 to 3.0 Å and from 3.2 to 3.3 Å, 

respectively, for the three copies of the molecule in the asymmetric unit. However, a 

significant degree of disorder for this site cannot be excluded, as CryB crystals were 

cultured in the presence of 0.3 M MgCl2 and soaked with GdOAC3 then the crystals were 

cryo-protected with buffer containing 0.3M MgCl2 prior to structure determination. In 

any case, this loop region could also slightly move upon DNA binding so that both amino 

acids form a defined binding site for Mg
2+

 or Mn
2+

. Flexibility of the loop has been 

proposed before based on missing electron densities of three amino acids in PhrB (Zhang 

et al., 2013). In case that the (6-4) lesion binds analogously like in conventional (6-4) 

photolyases this Mg
2+

 would neighbor the pyrimidine-pyrimidine (6-4) DNA lesion and 
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hence being capable to stabilize its radical state after light-driven electron transfer from 

the catalytic FADH
-
 (Ma et al., 2017).  In addition, I also tested the different magnesium 

concentration also had impact on DNA repair (Table 9), which indicated probably not 

only one magnesium molecule involved in DNA repair. 

 

 

Figure 35. Pairs of highly conserved residues Asp175-Asp250 in CryB (PDB code 3ZXS, 

polypeptide chain A, blue) and Asp179-Asp254 in PhrB (PDB code 4DJA, green) at the putative 

DNA binding site. Asp175/179 in CryB/PhrB, respectively, is located in the long loop that is part 

of the interdomain linker. Asp179 of PhrB is modeled in two conformations ((Ma et al., 2017)) in 

order to make the figure clear, Asp179 was not shown in stick , and the segment from Ala180 to 

Asn182 in PhrB is not visible in the crystal structure due to disorder. The view shown in this 

figure was obtained by superposition of the respective polypeptide chains of CryB and PhrB with 

the structure of (6-4) photolyase from Drosophila melanogaster in complex with photo damaged 

DNA (PDB code 3CVU). Of the latter structure, only the damaged DNA site of the (6-4) DNA is 

shown as stick. 
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Table 9. DNA repair comparison of different Mg
2+ 

concentration. 

 Repair (%) 

 0.06 mM Mg
2+ 

4 mM Mg
2+ 

PhrB-Y424F for ss (6-4) ODN5 (2min repair) 18.7 ± 1 45 ± 1 

PhrB-WT for t_repair (3min repair) 20 ± 3 48 ± 3 

 

 Based on sequence analysis of PhrB and Proma-PL (Figure 36), PhrB contains the 

two conserved aspartates (Asp 179 and Asp 254) and Fe-S cluster (4 cysteines which act 

as covalently bonding the Fe-S cluster). The alignment results of more than 4000 PhrB 

homology protein show that not only the two conserved aspartates but also the 4 

cysteines  existed in all of the 4000 homology proteins, so PhrB could be treated as a 

representative protein in the subgroup of (6-4) BCP proteins which contains Fe-S cluster, 

whereas Proma-PL only has two conserved aspartates (Asp 177 and Asp 252) (Figure 39) 

and without the 4 cysteine which act as bonding the Fe-S cluster and the alignment of 

more than 900 Proma-PL homology proteins show that the two conserved aspartates 

conserved in all of these 900 homolog proteins and the 4 cysteines were not there, hence 

Proma-PL could be treated as a representative protein in the other subgroup of (6-4) BCP 

proteins which are without Fe-S cluster. 
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Figure 36. Weblogo (Crooks et al., 2004) presentation of conserved amino acids near the DNA 

binding site in the (6-4) BCP members. Arrows pointed out the most conserved aspartates 

which may involve in binding with divalent cations. (A) Amino acid conservation based on an 

alignment of >4000 (6-4) BCP homologs with Fe-S cluster. The sequences blast (NCBI) with 

PhrB amino acids as template and then aligned with MEGA4 (Tamura et al., 2007). (B) Amino 

acid conservation based on an alignment of >900 (6-4) BCP homologs without Fe-S cluster. The 

sequences blast (NCBI) with Proma-PL amino acids as template and then aligned with MEGA4 

(Tamura et al., 2007). 

 

Alternatively, another pair of strictly conserved acidic residues (PhrB: 

Glu152/Glu301, CryB: Glu148/Glu297), which may serve as magnesium ligands near the 

active site can be delineated. However both structures of PhrB and CryB show that this 

pair forms already polar interactions with a conserved arginine (PhrB: Arg309; CryB: 

Arg305). Overall, the precise mechanism of (6-4) lesion repair and binding by members 

of the (6-4) BCP subfamily may differ in this regard substantially from other members of 

CPF proteins. 
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2. Model predicted for Mg
2+

 effect on DNA repair 

2.1 Crystal structure analysis of CPF proteins 

Based on my experiment results of magnesium stimulated effect in DNA repair, we can 

conclude that this stimulated results only existed in (6-4) bacterial photolyases. In order 

to find out the differences between the (6-4) BCP group and the other CPF proteins, I 

selected one representative protein which crystal structures have been reported from 

every other group to compare with the two (6-4) BCP proteins. The following sequence 

alignment is based on crystal structure. Positively charged site 1 and 2 are labeled by 

orange arrow (Figure 37, Figure 38). Based on structure alignment, I found that except 

the two (6-4) BCP proteins CryB and PhrB, all the other representative proteins have 

positively charged site 1 and 2 which means there are two positive charged amino acids 

at site 1 and site 2 separately, however both CryB and PhrB have two aspartates which 

are absent in all the rest selected proteins near the DNA binding site (Figure 35). 

 

 

Figure 37. Drosophila melanogaster photolyase (3CVU) (Maul et al., 2008) active site 

containing the (6-4) photoproduct, and positively charged site 1: Lys 246, positively charged site 
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2: Arg 421. The possible electrostatic interactions is those positively charged sites near the DNA 

lesion binding site can interact with the phosphate group of DNA chain. 
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Figure 38. Multiple structure alignment of representatives of the photolyase cryptochrome family 

proteins, generated by using the SALIGN server (http://salilab.org/salign) (Braberg et al., 2012). 

The PDB codes used for the aligned structures are: 4DJA, (6-4) photolyase PhrB from 

Agrobacterium fabrum; 3ZXS, CryB from Rhodobacter sphaeroides; 4u63, class III CPD 

photolyase PhrA from Agrobacterium fabrum; 3CVU, (6-4) photolyase from Drosophila 

melanogaster; 1u3c, cryptochrome 1 from Arabidopsis thaliana; 1np7, cryptochrome from 

Synechocystis sp. PCC 6803; 1dnp, class I CPD photolyase from Eschericia coli; 3umv, class II 

CPD photolyase from Oryza sativa japonica. These PDB codes are followed by a capital letter 

and the letter identifying the polypeptide chain used in the alignment. For those structures of the 

selected proteins, which contain more than one copy of the polypeptide chain per asymmetric unit, 

only the first chain (A) was used. The interdomain linker in PhrB and CryB is indicated by the 

red bar above the sequences. The blue bar indicates the flexible region. The two conserved Asp 

residues (175/179 and 250/254 in CryB/PhrB, respectively) are labeled by purple arrow. 

http://salilab.org/salign
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Positively charged site 1 and 2 are labeled by orange arrow (The original crystal structure of PhrB 

has three missed amino acids, and I added them into the above figure). 

 

2.2 Homology modeling and simulation prediction 

For Proma-PL from Prochlorococcus marinus, its structure was predicted by software 

Swiss Model (https://swissmodel.expasy.org/) (Nicolas et al., 2009; Benkert et al., 2011; 

Bertoni et al., 2017; Bienert et al., 2017; Waterhouse et al., 2018) and the results of 

Proma-PL superimposed with CryB was shown blow (Figure 39). 

 

 

Figure 39. Predicted Proma-PL structure superimposed with CryB (PDB code 3ZXS, chain A). 
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The enlarged window part clearly indicated that in Proma-PL there are also two aspartates at the 

DNA binding area and they may involve in the coordinating of magnesium. 

 

In order to analyze the connection between Mg
2+ 

effect and the conserved amino 

acids, we cooperate with other laboratory (Institute for Physical Chemistry from, 

Karlsruhe Institute for Technology), performed simulations on possible location of Mg
2+

 

in PhrB with bound lesion DNA. The stimulation we got is as following: Mg
2+

 cations 

reach the neighborhood of the (6-4) photoproduct in the active site pocket in the first 

nanoseconds of the simulations. However, the obtained Mg
2+

 complexes differ depending 

on the charge state of His366 and the presence of Asp179 and Asp254 residues.  

In simulations where His366 was attributed a positive charge (His366
+
), we 

observe two stable positions of Mg
2+

 close to the (6-4) photoproduct (see Figure 40 and 

Figure 41). One position, called Mga
2+

, is close to the phosphate group of the 3‘ thymine 

and can interact with Asp179 and Glu181. The second one, called Mgb
2+

, is deeper buried 

in the active site and interacts with the phosphate of 3‘ thymine, the oxygen atom of the 

3‘ thymine and the aspartic acid Asp254 (Table 10).  

A structural comparison with eukaryotic (6-4) photolyase from Drosophila 

melanogaster showed that these two Asp positions are closely related to Arg421 and 

Lys246, respectively (Figure 40). These amino acids have a key role in binding of lesion 

DNA (Maul et al., 2008; Korol and Solov‘yov, 2017). To determine the degree of 

conservation of these two residues in eukaryotic (6-4) photolyases, we performed an 

alignment with 1000 nearest BLAST (Uniprot Dec 2017) homologs of Drosophila (6-4) 

photolyase. At the position of Lys246 (of Drome (6-4) PL) there was a Lys in 42 % and 

an Arg in 53 % of all sequences. The positive charge at this spatial position is thus highly 

conserved in eukaryotic (6-4) photolyases. The remaining 5 % sequences were annotated 

as animal cryptochromes or proteins with unknown functions. At the position of Arg421, 

35 % of the sequences also had an Arg residue, 57 % had a His and 1 % a Lys residue. 

Although on the sequence level there is no clear criterion for distinguishing between 

photolyase and animal cryptochromes (which do not repair DNA), this survey suggests 
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that the positive side chain at position 421 of Drosophila (6-4) photolyase is not required 

for DNA repair.  

According to our PhrB simulations, Mga
2+

 interacts with phosphate groups of the 

DNA at the periphery of the active site and should help to maintain the lesion in an 

optimized conformation to facilitate its flipped-out conformation. A presence of a 

positive charge in direct interaction with the damage as Mgb
2+

 or Lys246 in Drosophila 

(6-4) photolyase increases the electron affinity of (6-4) lesion. In the crystal structure, the 

Lys246 side chain is orientated to form hydrogen bonds with 5‘ cycle whereas Mgb
2+

 

interacts with 3‘ cycle. Nevertheless, recent molecular dynamics simulations of 

Drosophila melanogaster photolyase have shown a motion of the lysine toward the 3‘ 

phosphate group and thus closer to the 3‘ thymine cycle which is in better agreement with 

our Mg
2+

 binding conformation.   

 

 

Figure 40. comparison between PhrB (cyan, MD snapshot) and Drosophila melanogaster 

photolyase (orange PDB 3CVU) (Maul et al., 2008) active site containing (6-4) photoproduct 

(stick, phosphor atoms are represented by balls), FAD (smaller stick), and positively charge 

group: R421 (from Drosophila melanogaster photolyase) and equivalent Mga
2+

 (from PhrB) in 

green; K246 (from Drosophila melanogaster photolyase) and equivalent Mgb
2+

 (from PhrB) in 

violet. The possible electrostatic or hydrogen interactions are represented with dashed red line. It 
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has been previously shown in MD simulation that K246 can interact with 3‘ P atom (Korol and 

Solov‘yov, 2017). Image courtesy of Natacha Gillet. 

 

 

Figure 41. Positions occupied each nanosecond by magnesium cations along the 1 μs simulations 

in PhrB with positively charged or neutral H366, D179N or D254N mutants. The cations in 

position Mga
2+

 and Mgb
2+ 

are represented in green and purple spheres respectively. Image 

courtesy of  Natacha Gillet. 
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Table 10. Electrostatic interactions in kcal/mol between Mg
2+

 cations and (6-4) photoproducts or 

acid residues during molecular dynamic simulations. Averaged electrostatic interactions between 

the Mg
2+

 cations and the (6-4) photoproduct or D179, E181, D254 or the corresponding 

asparagine after mutation. Negative sign means attractive electrostatic interactions while positive 

sign refers to electrostatic repulsion. The error values correspond to the standard deviation of the 

interactions during the 1 microsecond molecular dynamic simulations. 

 (6-4) PPs D/N179 E181 D/N254 

WT neutral H366 -18.7 ± 6.1 -0.1 ± 0.2 -12.3 ± 7.4 -2.8 ± 5.3 

H366
+
 -27.9 ± 5.2 -4.0 ± 4.7 -3.3 ± 5.5 - 10.0 ± 5.3 

D179N -21.3 ± 6.6 1.8 ± 2.5 -7.4 ± 7.5 -5.0 ± 5.7 

D254N -13.3 ± 5.1 -9.6 ± 7.9 -9.8 ± 7.4 -1.0 ± 2.2 

 

If we consider a neutral His366 in PhrB, the situation is different. We observe 

Mg
2+ 

only in the deeper position, close to the thymine (Figure 41). No positive charge 

interacts with the phosphate as observed in the H366
+
 simulations or in the Drosophila 

melanogaster (6-4) photolyase. Moreover, the cations mainly interact with E181 (Table 

10). The electrostatic interactions with D179 or D254 are very small and underline the 

absence of strong ionic interaction between Mg
2+

 and these two aspartates. Actually, 

D254 interacts with R187 during the first 750 ns of the simulation while D179 presents 

strong hydrogen bonds with R183. This is in contradiction with the impact of mutation 

described experimentally. The hypothesis of a neutral His366 has been consequently 

rejected. 

 Consequently, the simulations of D179N and D254N mutants have been 

performed including His366
+
. In both mutants, the stability of the Mg

2+
 cation around (6-

4) photoproduct is affected by the lack of the aspartate negative charge, particularly in the 

D254N mutant (Table 10). One could expect that only the cation interacting with the 

mutated aspartate is no longer bound in the active site. Effectively, in D254N mutant, the 

Mgb
2+

 position is no longer occupied while the Mga
2+

 is present, interacting even stronger 

with D179 or E181 than in WT (Figure 41 and Table 10). However, the D179N mutant 
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presents an unexpected behavior: the Mga
2+

 position is occupied all along the 1 μs MD 

simulation, partially stabilized by an interaction with E181, while Mgb
2+

, present at the 

beginning, is released in the second half of the simulation (Figure 41 and Table 10). 

Thus, in both mutants, the cation insuring the (6-4) lesion binding still remains whereas 

the cation increasing the electron affinity of the substrate so decreasing the electron 

transfer barrier is not stable. Our computational results are in agreement with 

experimental data as both mutants affect the rate constant of DNA repair. 

2.3 Conclusion 

Based on the structural differences the major evolutionary transition between (6-4) BCP 

proteins and other photolyases/cryptochromes should be associated with a loss of the Fe-

S cluster, replacement of the DMRL chromophore by other antenna chromophores and 

switch from the long interdomain linker between the antenna binding and catalytic 

domains to a region in the catalytic domain as DNA interacting loop (Zhang et al., 2013). 

The present study shows that this kind of transition is also characterized by the loss of 

divalent cations dependency of the DNA repair function which only exists in bacterial (6-

4) photolyase. 

Bacterial (6-4) photolyase has 2 subgroups: one with Fe-S cluster, one without 

Fe-S cluster, and all the other CPF group memembers without Fe-S cluster, so they are 

more closed to Proma-PL the cyanobacteria photolyase (Figure 42). As Fe-S cluster is 

very ancient cofactor, and the (6-4) BCP proteins with Fe-S cluster can be treated as the 

original photolyase, the (6-4) photolyases which are widely spread in cyanobacteria did 

not contains Fe-S cluster, could be treated as a loss of Fe-S cluster during the evolution.  

Here is the interesting hypothesis, during the evolution of bacteria, at first the 

environment can provide enough metal ions for them, as the environment change some 

bacteria suffer from a lack of metal ions living environment. They gradually evolved into 

a new type of CPF proteins that do not require metal ions. The Proma-PL can be treated 

as the middle of this evolution, as they contain no Fe-S cluster in their structures, but in 

DNA repair they still need metal ion to improve repair activity. Except the (6-4) BCP 
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proteins, all the other CPF members do not need Fe-S cluster in their structure fold and 

also do not need metal ions in their DNA repair process as they already have two 

positively charged amino acids near the DNA lesion binding site which replace the role 

of divalent cations as bridge between DNA and the proteins in (6-4) BCP proteins, and 

these two positively charged amino do not exist in the (6-4) BCP proteins which have 

divalent cations involved in their DNA repair process.     

 

 

Figure 42. Phyologenetical tree of CPF proteins and typical characterizations of different group 

concluded from my work. 

 

3 Structure analysis of PhrB-I51W and PhrB-Y424F 

The crystal structures of two PhrB mutants, I51W and Y424F, give detailed insight into 

loss of DNA repair capacity. The PhrB-I51W mutation results in a loss of the DMRL 

chromophore, which can now be regarded as antenna chromophore for energy transfer to 

FAD. A comparable mutant has been described for E. coli photolyase in which the 

MTHF antenna was lost (Schleicher et al., 2005; Kao et al., 2008), whereas Anacystis 
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nidulans photolyase expressed in E.coli is lacking its 8-HDF antenna chromophore which 

is not synthesized in this host (Kort et al., 2004). Both light dependent processes of 

photolyases, photoreduction and photorepair, are less efficient in the PhrB-I51W mutant 

and can be explained on the basis of energy transfer in the PhrB-WT. The HPLC assays 

and crystal structure show that PhrB-I51W is indeed completely free of DMRL. The 

mutant structure shows that the amino acid replacement and loss of chromophore results 

in a slightly different fold in the region of the DMRL pocket whereas other parts of the 

protein are not affected. Therefore the mutant effects are clearly due to loss of energy 

transfer and not the result of indirect structural changes. PhrB represents an ancient group 

of photolyases and the DMRL chromophore is probably the ancient type of antenna 

chromophore. As outlined before (Zhang et al., 2013), the binding site of antenna 

chromophores is identical in PhrB and the related CryB from Rhodobacter sphaeroides 

(DMRL), Anacystis nidulans CPD photolyase (8-HDF), Thermus thermophilus CPD 

photolyase (8-HDF) and Drosophila (6-4) photolyase (8-HDF), whereas the MTHF 

chromophore in E.coli CPD photolyase or Arabidopsis Cry DASH it bound to another 

site. The MTHF binding site of the class III CPD photolyase PhrA from Agrobacterium 

fabrum is again different from the others (Scheerer et al., 2015). The 8-HDF extinction 

coefficient is more than three times higher than that of DMRL or FAD (Eker et al., 

1990). This explains the replacement of DMRL by 8-HDF. Because some organisms do 

not produce 8-HDF, MTHF with intermediate extinction coefficient of 25000 M
-1

 cm
-1 

(Eker et al., 1990) might have been selected as antenna chromophore; the establishment 

of new binding sites could have occurred in the presence of DMRL. We assume that our 

understanding of photolyase evolution could be advanced by investigating antenna 

chromophore exchange and binding sites in a comparative manner. We show that the 

energy transfer function marks already the early forms of photolyases.  

The PhrB-Y424F mutation is characterized by a loss of DNA lesion binding and 

DNA repair (Graf et al., 2015). The crystal structure of PhrB-Y424F gives new insight 

into a possible structural explanation for the loss of the DNA binding and repair function. 

It seems that Tyr424 is engaged in an extended hydrogen bonding network which could 

stabilize DNA lesion binding and allows DNA repair function (Figure 31A,C). The 
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mutation clearly abolishes part of the hydrogen bonding network, especially the 

interaction with the highly conserved Arg476 and His366 (Figure 31B,D). The 

impairment of DNA repair can be explained not only by the loss of lesion binding Tyr424 

and the displacement of DNA backbone binding Arg476, but also by the loss of 

water/hydrogen bonding water chain around the lesion. The structures are in line with an 

electron transfer from the Fe-S cluster to the lesion via Tyr424 and Tyr430. The 

structural water around Tyr424 that was highlighted by the mutant could be important for 

this electron transfer. In addition in previous measurements, the photorepair rate of 

Y430F was only 30 % of the wild type. Tyr430 is located between the lesion binding 

Tyr424 and the Fe-S cluster. We hypothesized that Tyr430 and Tyr424 could provide an 

electron chain between the Fe-S cluster and the lesion which could be required for 

efficient repair (Graf et al., 2015). However, the Mg
2+

 stimulation of DNA repair of the 

two mutants was comparable with that of the wild type; hence Mg
2+

 and Tyr430 act 

independently on DNA repair.  

4 Electron transfer chain of PhrB 

In most members of the cryptochrome-photolyase family, the electron transfer pathway 

contains a triad of Trp residues, from the surface of the protein to the FAD chromophore. 

The electron transfer in (6-4) BCP proteins differs from all other cryptochrome and 

photolyase groups. The presence of Tyr391 is interesting, as it is situated between FAD 

and Trp390 in a suitable place to take part in the electron transfer, but mutation of Tyr391 

to a redox inert Phe residue reduces but does not block FAD photoreduction or DNA 

repair; the other phenomenon is in the > 400 PhrB homologs, this residue is either Tyr or 

Phe (Figure 43). However, experimental mutation of Tyr391 to Ala blocks FAD 

photoreduction (Figure 29) and DNA repair, underlining its relevance in the electron 

transfer process.  

In the two members of (6-4) BCP proteins, PhrB from Agrobacterium fabrum 

(PDB 4DJA) and CryB from Rhodobacter sphaeroides (PDB code 3ZXS) photoreduction 

proceeds via Trp390 and Trp342 (PhrB numbering), was shown by site directed 

mutagenesis. These residues are highly conserved in (6-4) BCP members (Figure 43). In 
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both proteins, the Tyr391 side chain is directly located between Trp390 and FAD (Figure 

27) suggesting that this Tyr must be part of the electron transfer chain. However, when 

the Tyr was replaced by Phe, the photoreduction rate of PhrB and CryB (Geisselbrecht et 

al., 2012) only slightly affected, and in about 30 % of (6-4) BCP proteins, a Phe is placed 

at this position (Figure 43). These results favor an electron-tunneling mechanism of 

electron transfer (Sancar, 2003) and we also cooperated with others (Holub et al., 2018) 

performed the theoretical computation and also support that the aromatic rings of Tyr or 

Phe in PhrB are included as bridges in electron tunnelling. 

 

 

Figure 43. Sequence alignment of >450 PhrB homologs using WebLogo (Crooks et al., 2004) 

web based application. The amino acids numbering is based on PhrB sequence. 

 

 Mutation of Tyr or Trp to Phe is often used in order to impede the charge transfer 

and identify redox active residues. Both our experimental and theoretical results (Holub 

et al., 2018) show that tunnelling can also be involved in charge transfer through 

aromatic rings in residues such as Phe. Consequently, mutation of a member of the triad 
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to Phe does not necessarily prevent charge transfer even if it impacts the charge transfer 

rate and modifies the charge transfer mechanism. 

  Absorbance spectra of the Y391A mutant are comparable in terms of the 

wavelength of maximum absorption to the WT protein, but the relative heights of the 

absorbance maxima suggest a partial depletion of FAD in this mutant. Absence of FAD 

photoreduction in Y391A mutant supports the essential role played by the aromatic side 

chain in electron tunnelling in the Y391F mutant. Absorbance spectra of the Y391W 

mutant indicate almost complete deletion of FAD and DMRL, in case of FAD probably 

due to the presence of a Trp, larger than Tyr, in the FAD pocket. Although the small 

percentage of DNA repair in presence of Y391W mutant suggests that the few protein 

molecules that have bound the chromophore keep their DNA repair functions. This FAD 

loss and then the DMRL loss phenomenon, also observed in CryB (von Zadow et al., 

2016), therefore we concluded that the replace of Trp by Tyr is because of the need by 

the protein structure stability, as I also observed the PhrB-Y391W mutant was also very 

easy to be unfolded. Taken together, our experimental results shows the presence of a Tyr 

residue instead of a Trp at this site preserves the structure and therefore the function. 
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Materials and methods 

1 Protein preparation 

1.1 Site-directed mutagenesis  

A PhrB expression vector based on the pET21b (Novagen) with a C-terminal poly-

histidine-tag was used as DNA template (Oberpichler et al., 2011). Site-directed 

mutagenesis was performed according to the Quik Change site-directed mutagenesis 

protocol (Agilent) using Q5 polymerase and two complimentary primers as shown in 

Table 11 for PCR amplifying and then digest the template DNA with DpnI and 

transformed into E. coli  ER2566 by heat shock. 

 

Table 11. Primers for site-directed mutagenesis of PhrB. The triplet of the mutation site is printed 

in bold. 

 Sequence (5‘—>3‘) 

Y391W fw CGGTGCATCGGTGGTGGCTCGAGGTCTATGCG 

Y391W rev CGCATAGACCTCGAGCCACCACCGATGCACCG 

Y391A fw CGGTGCATCGGTGGGCGCTCGAGGTCTATGCG 

Y391A rev CGCATAGACCTCGAGCGCCCACCGATGCACCG 

Y391F fw GCGGTGCATCGGTGGTTTCTCGAGGTCTATGCG 

Y391F rev CGCATAGACCTCGAGAAACCACCGATGCACCGC 

D179N fw GGCGGGCGCTGGAATTTTAATGCGGAGAACCGCCAACCC 

D179N rev GGGTTGGCGGTTCTCCGCATTAAAATTCCAGCGCCCGCC 

D254N fw GGCGCCACGCAGAATGCCATGCTGCAGGATGAC 

D254N rev GTCATCCTGCAGCATGGCATTCTGCGTGGCGCC 

I51W fw GATCGCCTTCTGGTTTTCCGCCATGCG 

I51W rev CGCATGGCGGAAAACCAGAAGGCGATC 
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1.2 Protein expression and purification 

Photolyase OtCPF1 was expressed with a GST tag. Photolyase CryB, Proma-PL, PhrA 

and PhrB were expressed with a 6 x His Tag. The expression strains and the recombinant 

plasmids were described in the paper (Geisselbrecht et al., 2012) for CryB and 

(Oberpichler et al., 2011) for PhrA and PhrB. 

The chemicals used for preparing buffers and medium in this part were purchased 

from the company Roth (Karlsruhe), Roche (Mannheim), Sigma Aldrich (Seelze), Sigma 

(Taufkirchen)，Invitrogen (Karlsruhe),  Applichem (Darmstadt). 

1.2.1 GST-tag protein OtCPF1 purification 

The (6-4) photolyase gene of Ostreococcus tauri, cloned into the expression vector 

pGEX-6P1, was a kind gift from Thomas Carell (Glas et al., 2009a). This vector was 

transferred into E. coli strain Rosetta-gami™. Cells were grown in 1 L of TB-medium at 

37 °C, 180 rpm, until OD600 nm = 1, protein overproduction was induced with 1 mM IPTG 

and further incubated for 22 h at 19 °C, 180 rpm. Cells were harvested by centrifugation 

(10000 g, 10 min, 4 °C), resuspended in 30 ml PBS buffer (pH 7.4, 140 mM NaCl, 2.7 

mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) with 1 mM Phenylmethanesulfonyl 

fluoride (PMSF). Cells were broken with a French Press (America Instrument Company) 

at 1000 bar. Cell debris was removed by centrifugation (3000 g, 30 min at 4 °C). The 

supernatant was incubated with Glutathione Sepharose 4B by shaking over-night (150 

rpm, 4 °C). Further purification was done as described previously (Usman et al., 2009) 

with a modified elution buffer (100 mM Tris-HCl, 100 mM NaCl, 20 mM reduced L-

glutathione, pH 8.0). The eluted fractions were pooled and concentrated by ultrafiltration 

using Amicon Ultra-15 (30 kDa cutoff). Finally, OtCPF1 was transferred in buffer A (50 

mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 5 % glycerol, pH 7.5). The buffer transfer 

was performed using NAP-10 columns (GE Healthcare) according to manufacturer`s 

instructions.  
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1.2.2 His-tag protein purification 

Expression and purification followed the procedure described in (Oberpichler et al., 

2011) for PhrA, PhrB WT and mutants. In brief, E. coli cells from agar plates were used 

for the inoculation of 6 liters LB containing ampicillin. Following specific induction of 

recombinant expression with IPTG (isopropyl- β-D-1-thiogalaktopyranosid) 0.1 mM and 

continue shaken over night at 28°C (PhrB and its mutants), or 14°C till OD600 nm = 2 

(PhrA). Cells were harvested by centrifugation, suspended in 50 ml extraction buffer (50 

mM Tris-HCl, 5 mM EDTA, 300 mM NaCl, 10 % glycerol, pH 7.8) and extracted after 

disruption of the plasma membranes of the cells with a French Press (America Instrument 

Company) at 1000 bar. Following centrifugation and precipitation of soluble protein by 

93 % saturated ammonium sulfate, the protein pellet was suspended in EDTA-free buffer. 

Soluble protein was purified by Ni-affinity chromatography followed by size exclusion 

chromatography (Sephacryl S-300 HR from GE healthcare). CryB was purified by Lars 

Oliver Essen group which was performed as described before (Hendrischk et al., 2009; 

Geisselbrecht et al., 2012). 

 We selected a sequence from Prochlorococcus marinus ssp CCMP1986 (Uniprot 

identifier or the protein: Q7V2P7) (Rocap et al., 2003) and synthesized a codon 

optimized gene (Genscript, see Appendix) for expression in the pET28a vector between 

the NdeI and XhoI enzyme cutting sites. The expressed gene has an N-terminal His tag. 

Protein was expressed in E.coli ER2566 in autoinduction medium (Studier, 2005) with 

100 µM IPTG. The culture was cultivated for 3-4 d at 14 °C under 180 rpm shaking. Cell 

density reached OD600 nm = 17-18. The extraction buffer was 40 mM Tris-HCl, 240 mM 

NaCl, 20 % glycerol, 1 % Nonidet P-40, pH 7.4. Extraction and purification followed the 

PhrB protocol, but ammonium sulfate precipitation was omitted and for the binding to the 

nickel column the Ni-NTA resin (Qiagen) was shaken for 1 hour in the protein solution. 

The imidazol concentration of the washing and elution buffer was 40 mM and 250 mM, 

respectively.  
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2 DNA repair assay 

2.1 Preparation of CPD and (6-4) photoproducts 

Oligonucleotides (Sigma-Aldrich) used in the present study are given in Table 12 (Glas et 

al., 2009b). To obtain the (6-4) photoproduct, the oligonucleotide das dissolved in 

Millipore water at a concentration of 12.5 µM and degassed with argon. The solution was 

poured into a Petri dish, and the thickness of the solution was 2 to 3 mm. The Petri dish 

was placed on a 4 °C cooling pack in an irradiation box under argon atmosphere and 

irradiated with UV-C (GE Healthcare, G15T87B, 15 W) for 6 h at a distance of 12 cm. 

The irradiated DNA was concentrated by vacuum centrifugation and purified by HPLC 

on a ―series 1200 Agilent Technologies system‖ using a Gemini C18 column (50 x 4.60 

mm, 110 Ǻ, Phenomenex). Mobile phases were solution A (0.1 M TEAA in H2O) and 

solution B (0.1 M TEAA in H2O/ACN 20/80), the gradient was 4-18 % B in 45 min, and 

the flow rate was set to 5 ml/min.  The elution was monitored by recording UV-Vis 

spectra every second. The (6-4) photoproduct is identified by its 325 nm absorption 

maximum (Blais et al., 1994). Relevant fractions of (6-4) photoproducts were collected 

and stored at -20 °C. The purity of (6-4) photoproducts was checked by subsequent 

analytic HPLC assay as described below for the repair assay. If the (6-4) photoproduct 

was not pure, a second HPLC purification followed under the conditions as described for 

the repair assay. 

Table 12. Oligo DNA for producing (6-4) photoproducts. The TT pairs that yield the (6–4) photo 

lesions are printed in bold. ODN5 annealed with ODN5 Compl to form ds DNA with (6-4) lesion. 

Name Sequence (5‘—>3‘) Length (nt) 

t_repair AGGTTGGC 8 

ODN4 CAGGTTGGCA 10 

ODN5 ACAGGTTGGCAG 12 

ODN5 Compl CTGCCAACCTGT 12 

ODN6 ACAGCGGTTGCAGGT 15 
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In order to obtain double stranded ODN5 oligonucleotides, (6-4) ODN5 and its 

complementary oligonucleotide (ODN5-Compl) were mixed at equimolar concentrations, 

heated to 95 °C for 3 min, and cooled to 25 °C over a period of ca. 90 min. The samples 

were stored on ice or at 4 °C until they were ready to use. 

2.2 Repair assay 

The photorepair reaction mixture contained 5 µM of the purified (6-4) photoproducts and 

0.5 µM protein (unless stated otherwise) in repair buffer (50 mM Tris-HCl, pH 7.0, 1 mM 

EDTA, 100 mM NaCl, 5 % (w/v) glycerol, 14 mM DTT).  

As the preillumination effect of photolyases (Harm and Rupert, 1976). We find that 

photoreduced PhrB can slightly improve the repair efficiency which equals to about 0.5 

min extra irradiation. Based on experiments, I found that this difference of pre- induced 

and without pre-induced protein is within reasonable error range, so we conduct the 

repair assay with the non-pre induced proteins and the non-pre induced proteins were also 

used in this paper (Li et al., 2010) . 

After 20 min pre-incubation in darkness at 20 °C, aliquots were irradiated with 400 

nm light emitting diodes (250 µmol m
-2

 s
-1

) for the given time. Thereafter, the reactions 

were stopped by heating to 95 °C for 10 min. Samples were centrifuged at 15,000 × g for 

10 min and the supernatants analyzed by HPLC. To this end, the Agilent system with a 

Gemini C18 column (50 x 4.60 mm, 110 Å, Phenomenex) was used. The buffer 

conditions were: 7 % acetonitrile in 0.1 M TEAA (pH 7.0) for 0–5 min; 7–10 % 

acetonitrile in 0.1 M TEAA (pH 7.0) for 5–35 min. The flow rate was set to 0.75 ml/min 

and the column temperature to 25 °C. Elution was monitored at 260 nm and 325 nm. The 

repair efficiency was estimated from the peak areas corresponding to photoproduct DNA 

and repaired DNA. 
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3 Photoreduction  

In all photoreduction studies, UV-Vis spectra were measured with a Jasco V550 

photometer. Each protein was dissolved in basic buffer (50 mM Tris-HCl, 300 mM NaCl, 

5 mM EDTA, 10 % glycerol, pH 7.8) to a final concentration of ca. 10 µM. The samples 

were incubated overnight at 4 °C in darkness in saturated oxygen solution. During this 

treatment, reduced FADH
-
 is converted to oxidized FAD. Before the first spectroscopic 

measurement was performed, 10 mM DTT was added to the protein solution. In the 

reaction mixtures with divalent metal cations, MgCl2, MnCl2 or CaCl2 was added to a 

final concentration of 9 mM. Since the buffers contained 5 mM EDTA, the concentration 

of free divalent cations was approximately 4 mM. Photoreduction was performed by 

illumination with blue light emitting diodes (λmax = 470 nm). The light intensities for the 

PhrA and OtCPF1 proteins were 20 µmol m
-2

 s
-1

, and 100 µmol m
-2

 s
-1

 for PhrB (unless 

stated otherwise). Spectra were recorded at a series of time points as given in the results 

section.  

4 Fluorimetry 

Fluorescence was measured in a Jasco FO 8300 fluorimeter, bandwidth of excitation and 

emission were set to 3 nm, and scan speed was 200 nm min
-1

. In control measurements 

we always checked whether the shape of an excitation spectrum is different if the 

wavelength of the emission maximum is set to 10 or 20 nm higher or lower wavelengths. 

This was not the case, indicating that the signals are due to fluorescence and not to 

Raman scattering or other possible artifacts. 

5 Cofactor analysis 

For detection of FAD and DMRL, 85 µM protein was denatured by incubation at 95 °C 

for 5 min. The insoluble protein and the soluble chromophores were separated by 10 min 

centrifugation at 15,000 × g, and 10 µL supernatant were analyzed by HPLC (Agilent 

system with a Gemini C18 column (50 x 4.60 mm, 110 Å, Phenomenex)). The HPLC 

buffer conditions were: 5 % acetonitrile in 0.1 % formic acid for 0–5 min; 5–75 % 
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acetonitrile in 0.1 % formic acid for 5–25 min. The flow rate was set to 0.75 ml/min and 

the column temperature to 25 °C. Elution was monitored at 260 nm and 400 nm. FAD 

cofactor can also be check under the same HPLC condition as DNA repair assay. 

6. Crystallization 

6.1 Crystallization assays 

In my crystallization experiments of PhrB and its mutants, the purified proteins obtained 

by affinity chromatography described above should be further centrifuged at 40,000 rpm, 

4 °C for 30 min, otherwise no protein crystal could grow. 

 For the crystallization of PhrB under blue light, the 6 mg/ml protein solution was 

mixed with reduced agent tris(2-carboxyethyl) phosphine (pH adjusted to 7.5 by NaOH) 

to a final concentration of 4 mM and then irradiated by blue light emitting diodes (λmax = 

470 nm), and the light intensity was 100 µmol m
-2

 s
-1

. As the time of PhrB to be fully 

reduced is 100 min indicated in the results parts, we measured the spectrum at 100 min 

and found that there was still the semi-reduced spectrum, and then I further irradiated for 

another 60 min, and semi-reduced spectrum did not change. So I took this semi-reduced 

PhrB for crystallization assay. The primary screen plate is from Greiner (CrystalQuick™ 

3 square wells, flat bottom), and the crystallization buffer kit is JBScreen Classic (Jena 

Bioscience). 

 PhrB-I51W mutant crystals were obtained using the hanging drop vapor diffusion 

method at 289 K in darkness with the crystallization condition consisting of a 1:1 mixture 

of protein (5 mg/ml in 12.5 mM Tris-HCl, 1.25 mM EDTA, 2.5 % (w/v) glycerol, 75 mM 

sodium chloride, pH 7.8) and the reservoir solution of 5 % polyethylene glycol 400 and 

100 mM 2-(N-morpholino) ethanesulfonic acid, pH 6.5. The crystals of the typical size of 

(50 x 50 x 100) µm
3
 were harvested and cryo-protected in the mother liquor containing 

20 % glycerol or 100 % trimethylamine N-oxide (Mueller-Dieckmann et al., 2011). 

 The PhrB-Y424F mutant was crystallized under the similar condition as PhrB-WT, 

i.e. 4 µl of protein (4-6 mg/ml in 12.5 mM Tris-HCl, 1.25 mM EDTA, 2.5 % (w/v) 
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glycerol, 75 mM sodium chloride, pH 7.8) mixed with an equal volume of reservoir 

solution (5 % (w/v) polyethylene glycol 400, 100 mM 2-(N-morpholino) ethanesulfonic 

acid, pH 6.0) and equilibrated against 1 ml of reservoir solution by the sitting drop vapor 

diffusion method at 289 K in darkness. Yellow tabular crystals appeared within 3 days 

and grew to ∼ (20 × 20 × 70) µm
3
 at 7 days. The crystals were flash frozen in liquid 

nitrogen after a stepwise soaking in 15 %, 20 % and 30 % of glycerol for around 1 min or 

directly with 100 % trimethylamine N-oxide. 

6.2 Crystal structure determination 

The crystal structure analysis was solved by cooperation with other laboratory mentioned 

in our published paper (Zhang et al., 2017). The main processes are described as 

following. X-ray diffraction data of PhrB-I51W was collected at the LS-CAT 21-IDG 

beam station, Advanced Photon Source of Argonne National Laboratory. The diffraction 

images were indexed, integrated and scaled using HKL2000. The crystal structure was 

determined by molecular replacement (PHASER) (McCoy et al., 2007) using the wild-

type PhrB-WT structure (PDB entry 4DJA as the initial search model. The crystal 

structure was refined at resolution 2.15 Å (Adams et al., 2010).  

PhrB-Y424F diffraction data collection and protein structure analytic method are 

described in the paper (Zhang et al., 2017).  

 



References 

93 

 

References 

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., 

Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, 

R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C., and Zwart, P.H. 
(2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. 

Acta Crystallogr D Biol Crystallogr 66, 213-221. 

Ahmad, M., and Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with 

characteristics of a blue-light photoreceptor. Nature 366, 162-166. 

Batista, L.F., Kaina, B., Meneghini, R., and Menck, C.F. (2009). How DNA lesions are turned 

into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 681, 197-208. 

Bayram, Ö., Biesemann, C., Krappmann, S., Galland, P., and Braus, G.H. (2008). More 

Than a Repair Enzyme: Aspergillus nidulans Photolyase-like CryA Is a Regulator of Sexual 

Development. Mol Biol Cell 19, 3254-3262. 

Benkert, P., Biasini, M., and Schwede, T. (2011). Toward the estimation of the absolute quality 

of individual protein structure models. Bioinformatics 27, 343-350. 

Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., and Schwede, T. (2017). Modeling protein 

quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci 

Rep 7, 10480. 

Bienert, S., Waterhouse, A., de Beer, Tjaart A.P., Tauriello, G., Studer, G., Bordoli, L., and 

Schwede, T. (2017). The SWISS-MODEL Repository—new features and functionality. Nucleic 

Acids Res 45, D313-D319. 

Blais, J., Douki, T., Vigny, P., and Cadet, J. (1994). Fluorescence quantum yield determination 

of pyrimidine (6-4) pyrimidone photoadducts. Photochem Photobiol 59, 402-404. 

Braberg, H., Webb, B.M., Tjioe, E., Pieper, U., Sali, A., and Madhusudhan, M.S. (2012). 

SALIGN: a web server for alignment of multiple protein sequences and structures. Bioinformatics 

28, 2072-2073. 

Brem, R., Guven, M., and Karran, P. (2017). Oxidatively-generated damage to DNA and 

proteins mediated by photosensitized UVA. Free Radic Biol Med 107, 101-109. 

Cadet, J., Sage, E., and Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular 

DNA. Mutat Res 571, 3-17. 

Costa, R.M., Chigancas, V., Galhardo Rda, S., Carvalho, H., and Menck, C.F. (2003). The 

eukaryotic nucleotide excision repair pathway. Biochimie 85, 1083-1099. 

Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence 

logo generator. Genome Res 14, 1188-1190. 

Dulbecco, R. (1949). Reactivation of ultra-violet-inactivated bacteriophage by visible light. 

Nature 163, 949. 

Eker, A.P., Kooiman, P., Hessels, J.K., and Yasui, A. (1990). DNA photoreactivating enzyme 

from the cyanobacterium Anacystis nidulans. J Biol Chem 265, 8009-8015. 



References 

94 

 

Essen, L.O., and Klar, T. (2006). Light-driven DNA repair by photolyases. Cell Mol Life Sci 63, 

1266-1277. 

Fischer, M., Haase, I., Feicht, R., Richter, G., Gerhardt, S., Changeux, J.P., Huber, R., and 

Bacher, A. (2002). Biosynthesis of riboflavin: 6,7-dimethyl-8-ribityllumazine synthase of 

Schizosaccharomyces pombe. Eur J Biochem 269, 519-526. 

Fujihashi, M., Numoto, N., Kobayashi, Y., Mizushima, A., Tsujimura, M., Nakamura, A., 

Kawarabayasi, Y., and Miki, K. (2007). Crystal structure of archaeal photolyase from 

Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. J 

Mol Biol 365, 903-910. 

Fuss, J.O., and Cooper, P.K. (2006). DNA repair: dynamic defenders against cancer and aging. 

PLoS Biol 4, e203. 

Geisselbrecht, Y., Fruhwirth, S., Schroeder, C., Pierik, A.J., Klug, G., and Essen, L.O. 
(2012). CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new 

cofactors. EMBO Rep 13, 223-229. 

Glas, A.F., Maul, M.J., Cryle, M., Barends, T.R., Schneider, S., Kaya, E., Schlichting, I., 

and Carell, T. (2009a). The archaeal cofactor F0 is a light-harvesting antenna chromophore in 

eukaryotes. Proc Natl Acad Sci U S A 106, 11540-11545. 

Glas, A.F., Schneider, S., Maul, M.J., Hennecke, U., and Carell, T. (2009b). Crystal structure 

of the T(6-4)C lesion in complex with a (6-4) DNA photolyase and repair of UV-induced (6-4) 

and Dewar photolesions. Chemistry (Easton) 15, 10387-10396. 

Graf, D., Wesslowski, J., Ma, H., Scheerer, P., Krauss, N., Oberpichler, I., Zhang, F., and 

Lamparter, T. (2015). Key amino acids in the bacterial (6-4) photolyase PhrB from 

Agrobacterium fabrum. PLoS One 10, e0140955. 

Green, J., Bennett, B., Jordan, P., Ralph, E.T., Thomson, A.J., and Guest, J.R. (1996). 

Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic 

transcription switch in vitro. Biochem J 316 ( Pt 3), 887-892. 

Harm, H., and Rupert, C.S. (1976). Analysis of photoernzymatic repair of UV lesions in DNA 

by single light flashes. XI. Light-induced activation of the yeast photoreactivating enzyme. 

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 34, 75-92. 

Heelis, P.F., and Sancar, A. (1986). Photochemical properties of Escherichia coli DNA 

photolyase: a flash photolysis study. Biochemistry 25, 8163-8166. 

Heil, K., Pearson, D., and Carell, T. (2011). Chemical investigation of light induced DNA 

bipyrimidine damage and repair. Chem Soc Rev 40, 4271-4278. 

Hendrischk, A.K., Fruhwirth, S.W., Moldt, J., Pokorny, R., Metz, S., Kaiser, G., Jager, A., 

Batschauer, A., and Klug, G. (2009). A cryptochrome-like protein is involved in the regulation 

of photosynthesis genes in Rhodobacter sphaeroides. Mol Microbiol 74, 990-1003. 

Hoeijmakers, J.H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 

366-374. 

Holub, D., Ma, H., Krau, Lamparter, T., Elstner, M., and Gillet, N. (2018). Functional role of 

an unusual tyrosine residue in the electron transfer chain of a prokaryotic (6-4) photolyase. 

Chemical Science 9, 1259-1272. 



References 

95 

 

Hsu, D.S., Zhao, X., Zhao, S., Kazantsev, A., Wang, R.P., Todo, T., Wei, Y.F., and Sancar, 

A. (1996). Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. 

Biochemistry 35, 13871-13877. 

Huang, F. (2003). Efficient incorporation of CoA, NAD and FAD into RNA by in vitro 

transcription. Nucleic Acids Res 31, e8. 

Huang, J.C., Svoboda, D.L., Reardon, J.T., and Sancar, A. (1992). Human nucleotide excision 

nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 

6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A 89, 3664-3668. 

Ignatz, E., Geisselbrecht, Y., Kiontke, S., and Essen, L.O. (2018). Nicotinamide adenine 

dinucleotides arrest photoreduction of class II DNA photolyases in FADH˙ State. Photochem 

Photobiol 94, 81-87. 

Johnson, J.L., Hamm-Alvarez, S., Payne, G., Sancar, G.B., Rajagopalan, K.V., and Sancar, 

A. (1988). Identification of the second chromophore of Escherichia coli and yeast DNA 

photolyases as 5,10-methenyltetrahydrofolate. Proc Natl Acad Sci U S A 85, 2046-2050. 

Kanavy, H.E., and Gerstenblith, M.R. (2011). Ultraviolet radiation and melanoma. Semin 

Cutan Med Surg 30, 222-228. 

Kao, Y.T., Saxena, C., He, T.F., Guo, L., Wang, L., Sancar, A., and Zhong, D. (2008). 

Ultrafast dynamics of flavins in five redox states. J Am Chem Soc 130, 13132-13139. 

Kelner, A. (1949). Effect of visible light on the recovery of Streptomyces Griseus conidia from 

ultra-violet irradiation injury. Proc Natl Acad Sci U S A 35, 73-79. 

Kim, S.T., Malhotra, K., Smith, C.A., Taylor, J.S., and Sancar, A. (1994). Characterization of 

(6-4) photoproduct DNA photolyase. J Biol Chem 269, 8535-8540. 

Klar, T., Kaiser, G., Hennecke, U., Carell, T., Batschauer, A., and Essen, L.O. (2006). 

Natural and non-natural antenna chromophores in the DNA photolyase from Thermus 

thermophilus. Chembiochem 7, 1798-1806. 

Korol, A.V., and Solov’yov, A.V. (2017). Dynamics of systems on the nanoscale. The European 

Physical Journal D 71, 339. 

Kort, R., Komori, H., Adachi, S., Miki, K., and Eker, A. (2004). DNA apophotolyase from 

Anacystis nidulans: 1.8 A structure, 8-HDF reconstitution and X-ray-induced FAD reduction. 

Acta Crystallogr D Biol Crystallogr 60, 1205-1213. 

Lehmann, A.R. (1995). Nucleotide excision repair and the link with transcription. Trends 

Biochem Sci 20, 402-405. 

Li, J., Liu, Z., Tan, C., Guo, X., Wang, L., Sancar, A., and Zhong, D. (2010). Dynamics and 

mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. Nature 466, 887-

890. 

Lin, J.J., and Sancar, A. (1992). (A)BC excinuclease: the Escherichia coli nucleotide excision 

repair enzyme. Mol Microbiol 6, 2219-2224. 

Lindahl, T., and Wood, R.D. (1999). Quality control by DNA repair. Science 286, 1897-1905. 

Liu, H., Zhong, D., and Lin, C. (2010). Searching for a photocycle of the cryptochrome 

photoreceptors. Curr Opin Plant Biol 13, 578-586. 



References 

96 

 

Liu, Z., Tan, C., Guo, X., Kao, Y.T., Li, J., Wang, L., Sancar, A., and Zhong, D. (2011). 

Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc Natl 

Acad Sci U S A 108, 14831-14836. 

Ma, H., Zhang, F., Ignatz, E., Suehnel, M., Xue, P., Scheerer, P., Essen, L.O., Krauß, N., 

and Lamparter, T. (2017). Divalent cations increase DNA repair activities of bacterial (6-4) 

photolyases. Photochem Photobiol 93, 323-330. 

Maul, M.J., Barends, T.R., Glas, A.F., Cryle, M.J., Domratcheva, T., Schneider, S., 

Schlichting, I., and Carell, T. (2008). Crystal structure and mechanism of a DNA (6-4) 

photolyase. Angew Chem Int Ed Engl 47, 10076-10080. 

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, 

R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674. 

Mees, A., Klar, T., Gnau, P., Hennecke, U., Eker, A.P., Carell, T., and Essen, L.O. (2004). 

Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 

306, 1789-1793. 

Meistrich, M.L., and Lamola, A.A. (1972). Triplet-state sensitization of thymine 

photodimerization in bacteriophage T4. J Mol Biol 66, 83-95. 

Morita, R., Nakane, S., Shimada, A., Inoue, M., Iino, H., Wakamatsu, T., Fukui, K., 

Nakagawa, N., Masui, R., and Kuramitsu, S. (2010). Molecular mechanisms of the whole 

DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010, 

179594. 

Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., and Douki, T. (2006). 

Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to 

UVA radiation. Proc Natl Acad Sci U S A 103, 13765-13770. 

Mueller-Dieckmann, C., Kauffmann, B., and Weiss, M.S. (2011). Trimethylamine N-oxide as 

a versatile cryoprotective agent in macromolecular crystallography. Journal of Applied 

Crystallography 44, 433-436. 

Muller, M., and Carell, T. (2009). Structural biology of DNA photolyases and cryptochromes. 

Curr Opin Struct Biol 19, 277-285. 

Nicholls, R.A., Fischer, M., McNicholas, S., and Murshudov, G.N. (2014). Conformation-

independent structural comparison of macromolecules with ProSMART. Acta Crystallographica 

Section D-Biological Crystallography 70, 2487-2499. 

Nicolas, G., C., P.M., and Torsten, S. (2009). Automated comparative protein structure 

modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective. 

ELECTROPHORESIS 30, S162-S173. 

O., R.R., and L., H.J. (1969). Photochemical studies of thymine in ice. Photochem Photobiol 10, 

131-137. 

Oberpichler, I., Pierik, A.J., Wesslowski, J., Pokorny, R., Rosen, R., Vugman, M., Zhang, 

F., Neubauer, O., Ron, E.Z., Batschauer, A., and Lamparter, T. (2011). A photolyase-like 

protein from Agrobacterium tumefaciens with an iron-sulfur cluster. PLoS One 6, e26775. 

Okafuji, A., Biskup, T., Hitomi, K., Getzoff, E.D., Kaiser, G., Batschauer, A., Bacher, A., 

Hidema, J., Teranishi, M., Yamamoto, K., Schleicher, E., and Weber, S. (2010). Light-



References 

97 

 

induced activation of class II cyclobutane pyrimidine dimer photolyases. DNA Repair (Amst) 9, 

495-505. 

Park, H.W., Kim, S.T., Sancar, A., and Deisenhofer, J. (1995). Crystal structure of DNA 

photolyase from Escherichia coli. Science 268, 1866-1872. 

Payne, G., Heelis, P.F., Rohrs, B.R., and Sancar, A. (1987). The active form of Escherichia 

coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in 

vitro. Biochemistry 26, 7121-7127. 

Pfeifer, G.P., You, Y.H., and Besaratinia, A. (2005). Mutations induced by ultraviolet light. 

Mutat Res 571, 19-31. 

Pokorny, R., Klar, T., Hennecke, U., Carell, T., Batschauer, A., and Essen, L.O. (2008). 

Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type 

cryptochrome. Proc Natl Acad Sci U S A 105, 21023-21027. 

Rocap, G., Larimer, F.W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N.A., Arellano, A., 

Coleman, M., Hauser, L., Hess, W.R., Johnson, Z.I., Land, M., Lindell, D., Post, A.F., 

Regala, W., Shah, M., Shaw, S.L., Steglich, C., Sullivan, M.B., Ting, C.S., Tolonen, A., 

Webb, E.A., Zinser, E.R., and Chisholm, S.W. (2003). Genome divergence in two 

Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042. 

Rupert, C.S. (1962). Photoenzymatic repair of ultraviolet damage in DNA. II. Formation of an 

enzyme-substrate complex. J Gen Physiol 45, 725-741. 

Sancar, A. (1994). Mechanisms of DNA excision repair. Science 266, 1954-1956. 

Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue-light 

photoreceptors. Chem Rev 103, 2203-2237. 

Sancar, A. (2016). Mechanisms of DNA repair by photolyase and excision nuclease (nobel 

lecture). Angew Chem Int Ed Engl 55, 8502-8527. 

Sancar, G.B. (2000). Enzymatic photoreactivation: 50 years and counting. Mutat Res 451, 25-37. 

Sancar, G.B., and Sancar, A. (2006). Purification and characterization of DNA photolyases. 

Methods Enzymol 408, 121-156. 

Sancar, G.B., Smith, F.W., Reid, R., Payne, G., Levy, M., and Sancar, A. (1987). Action 

mechanism of Escherichia coli DNA photolyase. I. Formation of the enzyme-substrate complex. 

J Biol Chem 262, 478-485. 

Scheerer, P., Zhang, F., Kalms, J., von Stetten, D., Krauss, N., Oberpichler, I., and 

Lamparter, T. (2015). The class III cyclobutane pyrimidine dimer photolyase structure reveals a 

new antenna chromophore binding site and alternative photoreduction pathways. J Biol Chem 

290, 11504-11514. 

Schleicher, E., Hessling, B., Illarionova, V., Bacher, A., Weber, S., Richter, G., and 

Gerwert, K. (2005). Light-induced reactions of Escherichia coli DNA photolyase monitored by 

Fourier transform infrared spectroscopy. FEBS J 272, 1855-1866. 

Selby, C.P., and Sancar, A. (2012). The second chromophore in Drosophila 

photolyase/cryptochrome family photoreceptors. Biochemistry 51, 167-171. 

Setlow, R.B., and Carrier, W.L. (1966). Pyrimidine dimers in ultraviolet-irradiated DNA's. J 

Mol Biol 17, 237-254. 



References 

98 

 

Shannon, R.t. (1976). Revised effective ionic radii and systematic studies of interatomic 

distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, 

Diffraction, Theoretical and General Crystallography 32, 751-767. 

Stuchebrukhov, A. (2011). Watching DNA repair in real time. Proc Natl Acad Sci U S A 108, 

19445-19446. 

Studier, F.W. (2005). Protein production by auto-induction in high density shaking cultures. 

Protein Expr Purif 41, 207-234. 

Tagua, V.G., Pausch, M., Eckel, M., Gutierrez, G., Miralles-Duran, A., Sanz, C., Eslava, 

A.P., Pokorny, R., Corrochano, L.M., and Batschauer, A. (2015). Fungal cryptochrome with 

DNA repair activity reveals an early stage in cryptochrome evolution. Proc Natl Acad Sci U S A. 

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary 

Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599. 

Taylor, J.S. (1994). Unraveling the Molecular Pathway from Sunlight to Skin Cancer. Acc Chem 

Res 27, 76-82. 

Tilman Lamparter, Fan Zhang, Dominik Graf, Janine Wesslowski, Inga Oberpichler, 

Volker Schünemann, Norbert Krauß, and Scheerer， , P. (2014). A Prokaryotic (6-4) 

Photolyase with a DMRL Chromophore and an Iron-Sulfur Cluster. Encyclopedia of Inorganic 

and Bioinorganic Chemistry. 

Todo, T. (1999). Functional diversity of the DNA photolyase/blue light receptor family. Mutat 

Res 434, 89-97. 

Todo, T., Takemori, H., Ryo, H., Ihara, M., Matsunaga, T., Nikaido, O., Sato, K., and 

Nomura, T. (1993). A new photoreactivating enzyme that specifically repairs ultraviolet light-

induced (6-4)photoproducts. Nature 361, 371-374. 

Ueda, T., Kato, A., Kuramitsu, S., Terasawa, H., and Shimada, I. (2005). Identification and 

characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27. 

J Biol Chem 280, 36237-36243. 

Usman, A., Brazard, J., Martin, M.M., Plaza, P., Heijde, M., Zabulon, G., and Bowler, C. 
(2009). Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus 

tauri. Journal of photochemistry and photobiology B, Biology 96, 38-48. 

von Zadow, A., Ignatz, E., Pokorny, R., Essen, L.O., and Klug, G. (2016). Rhodobacter 

sphaeroides CryB is a bacterial cryptochrome with (6-4) photolyase activity. FEBS J 283, 4291-

4309. 

Wacker, M., and Holick, M.F. (2013). Sunlight and Vitamin D: A global perspective for health. 

Dermatoendocrinol 5, 51-108. 

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, 

F.T., de Beer, T.A P., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T. (2018). SWISS-

MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, gky427-

gky427. 

Weber, S. (2005). Light-driven enzymatic catalysis of DNA repair: a review of recent 

biophysical studies on photolyase. Biochim Biophys Acta 1707, 1-23. 

Whitby, L.G. (1953). A new method for preparing flavin-adenine dinucleotide. Biochem J 54, 

437-442. 



References 

99 

 

Yamamoto, J., Plaza, P., and Brettel, K. (2017). Repair of (6-4) lesions in DNA by (6-4) 

photolyase: 20 years of quest for the photoreaction mechanism. Photochem Photobiol 93, 51-66. 

Zhang, F., Ma, H., Bowatte, K., Kwiatkowski, D., Mittmann, E., Qasem, H., Krauss, N., 

Zeng, X., Ren, Z., Scheerer, P., Yang, X., and Lamparter, T. (2017). Crystal structures of 

bacterial (6-4) photolyase mutants with impaired DNA repair activity. Photochem Photobiol 93, 

304-314. 

Zhang, F., Scheerer, P., Oberpichler, I., Lamparter, T., and Krauss, N. (2013). Crystal 

structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-

ribityllumazine antenna chromophore. Proc Natl Acad Sci U S A 110, 7217-7222. 

Zhang, G., Morais, M.C., Dai, J., Zhang, W., Dunaway-Mariano, D., and Allen, K.N. (2004). 

Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence 

markers for metal-activated enzymes of the HAD enzyme superfamily. Biochemistry 43, 4990-

4997. 

Zhang, Q., Chen, D., Lin, J., Liao, R., Tong, W., Xu, Z., and Liu, W. (2011). Characterization 

of NocL involved in thiopeptide nocathiacin I biosynthesis: a [4Fe-4S] cluster and the catalysis of 

a radical S-adenosylmethionine enzyme. J Biol Chem 286, 21287-21294. 



Appendix 

100 

 

Appendix 

Codon optimized gene sequence of Proma-PL 

ATGAACCAAATTAGCATTATCTTCCCGAACCAACTGTTCCGTGAGAGCAGCCTGCTG

AAACTGAGCTGCGAAATCCTGATTATTGAGGACAGCCTGTTCTTTGGTAACGATAAG

TTCCAGAAAAGCATCAACCACAAGAACAAACTGATTTTTCACAAGGCGAGCATGTTG

GCGTACAAGAAATATCTGCAAAACAGCGGTTTCAAGGTGATCTACATTGAGAACAA

AAACAACCTGAGCACCGTTGAATACCTGAGCAAATATCTGCAGGGCAAGTATCAAA

AAGTGAACATCATTAACCCGCACGACTTCCTGATCATGAAGCGTATTAACCGTTTTGT

TGAGGCGAACAACCTGAAACTGCAGGTGTTCCAAAGCCCGATGTTTGTTACCAACGA

AGATCTGCGTAAGAGCTTCAAAAGCAACAGCAAGAAACCGCTGATGGGTCGTTTTTA

CGAGAACCAGCGTCGTAGCCAAAACATTCTGCTGAACCCGGATGGCAGCCCGCAGG

GTGGCAAGTGGAGCTTCGATGAACTGAACCGTAAGAAACTGCCGAAAAACATCAAC

ATTCCGGAGATCCCGAAGTTCCAGAAAAACCAATTTGTGATTCACGCGGAAAAGATC

ATTAGCAACCTGCAAATCGAGTTTATTGGTGAAAGCAACTACTTCATCTATCCGACC

ACCTTTGAGGAAGCGGACAGCTGGCTGCACGACTTCTTTGAAGATCGTTTCAGCCTG

TTTGGCGACTACGAGGATGCGATCAGCAAGGAAAAAGTTTTCCTGTGGCACAGCCTG

CTGAGCCCGCTGCTGAACAGCGGTCTGCTGACCGCGAAAGAGGTGATCGATAAAGC

GCTGACCTATGGCGAAAAGAACAAAGTTCCGATTAACAGCCTGGAGGGTTTCATCCG

TCAGATTGTGGGCTGGCGTGAGTTTATCTGCCTGGTTTACGAAAAATATGGTACCCA

AATGCGTACCACCAACTTCTGGAACTTTGACAACAAGCCGATGCCGGAGTGCTTCTA

CAAAGGTAGCACCGGCATCGACCCGGTGGATATCGTTATCAACAACATCATCAAGTA

CGGTTACTGCCACCACATTGAGCGTCTGATGATCATTGGCAACTTTATGCTGCTGTGC

CGTATCCACCCGGATCACGTGTACAAGTGGTTCATGGAAATGTTCATCGACAGCTAC

GATTGGGTGATGGTTCCGAACGTTTATGGCATGAGCCAGTTCAGCGACGGTGGCATC

TTTAGCACCAAGCCGTACATCAGCAGCAGCAACTATGTGAAGAAAATGAGCGATTAC

AAAAGCGGTCCGTGGTGCAGCATCTGGGATGGCCTGTTCTGGAAGTTCATCAAGGAT

AACGAAACCTACTTCCGTAAGCAGTATCGTCTGGCGATGCTGACCCGTAACCTGGAC

AAAATGAGCGACGAAAAACTGAACGGTCATCTGCGTATCGCGGAAGAATTTATTAG

CAACCTGTATTAA 
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