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Windstorms associated with low-pressure systems from the North Atlantic are the

most important natural hazards for central Europe. Although their predictability has

generally improved over the last decades, forecasting wind gusts is still challenging,

due to the multiple scales involved. One of the first ensemble prediction systems at

convection-permitting resolution, COSMO-DE-EPS, offers a novel 2.8-km dataset

over Germany for the 2011–2016 period. The high resolution allows representa-

tion of mesoscale features that are barely captured by global models, while the

long period allows both investigation of rare storms and application of statisti-

cal post-processing. Ensemble model output statistics based on a truncated logistic

distribution substantially improve forecasts of wind gusts in the whole dataset. How-

ever, some winter storms exhibit uncharacteristic forecast errors that cannot be

reduced by post-processing. During the passage of the most severe storm, gusts

related to a cold jet are predicted relatively well at the time of maximum intensity,

whereas those related to a warm jet are poorly predicted at an early phase. Wind

gusts are overestimated during two cases of frontal convection, which suggests that

even higher resolution is needed to resolve fully the downward mixing of momen-

tum and the stabilization resulting from convective dynamics. In contrast, extreme

gusts are underestimated during a rare case involving a possible sting jet, but this

arises from the representation of the synoptic rather than the mesoscale. The synop-

tic scale also controls the ensemble spread, which is inherited mostly from the initial

and boundary conditions. This is unsurprising, but leads to high forecast uncertainty

in the case of a small, fast-moving cyclone crossing the model domain. These results

illustrate how statistical post-processing can help identify the limits of predictabil-

ity across scales in convection-permitting ensemble forecasts. They may guide the

development of regime-dependent statistical methods to improve forecasts of wind

gusts in winter storms further.
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1 INTRODUCTION

Extratropical cyclones are important components of the cli-

mate system (Catto, 2016). However, the most intense of

them—known as winter storms or cyclonic windstorms—are

a threat to populations in regions where they frequently occur:

for example, on the US West Coast (Mass and Dotson, 2010)

and East Coast (Layer and Colle, 2015). Winter storms are

even the most important natural hazard over central Europe,

where tens of fatalities and billions of euros in damages were
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caused by extreme storms such as Lothar in December 1999

(Wernli et al., 2002) or Kyrill in January 2007 (Fink et al.,
2009).

European winter storms typically form over the extratrop-

ical North Atlantic, although some originate in hurricanes

that underwent extratropical transition (Browning et al.,
1998). Their intensification is driven mostly by synoptic-scale

dynamics, but the strongest gusts recorded during the passage

of storms are often due to embedded mesoscale features.

Among them, sting jets (Browning, 2004) have received

growing interest internationally and in the British Isles in

particular, where they have been shown to be frequent fea-

tures of intense storms (Hart et al., 2017). Convective lines

embedded in cold fronts are equally responsible for extreme

gusts over the United Kingdom (Earl et al., 2017) and have

been exemplified over central Europe by storm Kyrill (Lud-

wig et al., 2015) and even qualified as derechoes (Gatzen

et al., 2011). Low-level jets associated with the warm and

cold conveyor belts of a cyclone—warm and cold jets,

respectively—are more common and can also produce strong,

albeit less extreme, gusts (Martínez-Alvarado et al., 2014;

Hewson and Neu, 2015), while dry intrusions behind the cold

front are responsible for gusts in some extratropical cyclones

(Raveh-Rubin and Wernli, 2016).

Representing all these highly dynamic mesoscale features

is a challenge for large-scale weather and climate models due

to their coarse resolution (Hewson and Neu, 2015). Mod-

elling sting jets requires a horizontal grid spacing of about

10 km and vertical levels separated by about 200 m in the

mid-troposphere (Coronel et al., 2016). Capturing convective

lines embedded in cold fronts requires even finer horizontal

grid spacings of no more than a few km to represent con-

vection explicitly (Ludwig et al., 2015). Climate models can

rely on dynamical downscaling to improve the representa-

tion of storms (Born et al., 2012), but numerical weather

predictions are constrained by errors at the synoptic scale,

which exhibit large case-to-case variability and limit use-

ful forecasts to 2–4 days ahead (Pantillon et al., 2017). The

representation of vertical stability in the warm and cold

sectors of storms is a further challenge and can lead to sys-

tematic errors in wind forecasts (Layer and Colle, 2015).

Finally, subgrid-scale parametrizations are required to mimic

the formation of gusts by the downward transport of high

momentum in the boundary layer (Panofsky et al., 1977;

Brasseur, 2001). Only large-eddy simulations are able to—at

least partly—resolve the formation of gusts (Heinze et al.,
2017), but they are not affordable for operational weather

forecasts yet.

The predictability of wind gusts during winter storms is

investigated here in an ensemble prediction system (EPS) run-

ning at convection-permitting resolution. Global EPSs have

long shown better performance than deterministic forecasts

for early warnings of extreme events such as winter storms

(Buizza and Hollingsworth, 2002). Convection-permitting

EPSs have a shorter history, as they have been developed in

recent years at national weather services, and their focus has

been mainly on summer convective precipitation (Schwartz

et al., 2015; Raynaud and Bouttier, 2017; Hagelin et al.,
2017). In cases of strong synoptic forcing, their uncertainty is

expected to be mostly inherited from the larger scale (Keil et
al., 2014), but their potential has also been shown for predict-

ing mesoscale features such as snowbands in winter storms

(Greybush et al., 2017). The convection-permitting EPS of the

Deutscher Wetterdienst (DWD) was one of the first of its kind

to become operational (Gebhardt et al., 2008; Peralta et al.,
2012). It offers a novel six-year dataset, which encompasses

several cases of intense winter storms involving the main

mesoscale features: warm jets, cold jets, convective lines, and

even a rare sting jet. The long time period further allows the

use of statistical post-processing methods to calibrate fore-

casts and identify systematic model errors. The combination

of detailed case studies and statistical analysis thus brings a

new perspective on predicting gusts in winter storms. It may

both aid understanding of issues related to the representa-

tion of specific mesoscale features in a convection-permitting

ensemble forecast and guide the development of physically

based ensemble post-processing methods that take these fea-

tures into account.

The article is structured as follows. Section 2 describes

the model forecasts, their evaluation, the post-processing

methods, and the selection of storms based on observa-

tions. Section 3 presents the results for the predictability

of gusts, first for the whole dataset and then for 10 severe

winter storms, before it details case studies of storms with

poor predictability. Section 4 concludes the article with a

discussion.

2 DATA AND METHODS

2.1 Model forecasts

This article makes extensive use of the operational EPS

at convection-permitting resolution of the DWD. The EPS

is based on the Consortium for Small Scale Modelling

operational forecast for Germany (COSMO-DE: Baldauf

et al., 2011), which runs on a rotated grid with 2.8 km

horizontal spacing and 50 vertical levels. The resulting

COSMO-DE-EPS system contains 20 members using initial

and boundary conditions downscaled from the global models

of four centers (European Centre for Medium-Range Weather

Forecasts, DWD, National Centers for Environmental Pre-

diction, and Japan Meteorological Agency) combined with

five sets of physical perturbations (Gebhardt et al., 2008;

Peralta et al., 2012). Forecasts up to 21 hr lead time have

been run every 3 hr in pre-operational mode since Decem-

ber 9, 2010 and they became operational on May 22, 2012.

As expected for an operational system, COSMO-DE-EPS

was frequently updated, including an upgrade from COSMO

version 4 to version 5 on December 11, 2013 and a switch
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in the driving DWD global forecast from the former GME

to the new ICON model on January 20, 2015. Neverthe-

less, available COSMO-DE-EPS forecasts for the 2011–2016

period maintained an overall consistent design. A more rad-

ical change occurred on March 21, 2017. Lateral boundaries

are now driven by the global ICON-EPS system, whereas ini-

tial conditions are given by a kilometer-scale ensemble data

assimilation system (KENDA: Schraff et al., 2016). This new

design is promising, but the available time period is still too

short for a statistical analysis and is thus not used here.

Model gusts are output hourly as maximum values over the

last hour and are issued from a subgrid-scale parametriza-

tion in COSMO, which estimates a turbulent component

added to the resolved 10 m wind speed (Schulz, 2008). Fol-

lowing Panofsky et al. (1977), the friction velocity u∗ is

scaled by empirical factors to depict the turbulent compo-

nent. This approach is comparable to using turbulent kinetic

energy and delivers similar results for extratropical storms

over Germany in COSMO (Born et al., 2012). In contrast to

coarser models, convective gusts are assumed to be explicitly

represented here and thus do not require a further compo-

nent in the gust parametrization. Model gusts were archived

for the 2011–2016 period with a limited number of surface

and atmospheric variables for the purpose of training sta-

tistical models. Corresponding observations of hourly wind

gusts were recorded hourly at 175 SYNOP stations of the

DWD surface network over Germany and are essential for the

verification of model forecasts.

2.2 Forecast evaluation

Several methods to evaluate COSMO-DE-EPS and

post-processed forecasts are introduced here in a general

form. Probabilistic forecasts should aim to maximize sharp-

ness subject to calibration (Gneiting et al., 2007). While

sharpness refers to the concentration of the predictive dis-

tribution, calibration refers to the statistical consistency

between the forecast distribution and corresponding obser-

vations. Specifically, consider probabilistic forecasts Fs,t at

station s and time t, and corresponding observations ys,t.

Calibration of ensemble forecasts can be assessed via verifi-

cation rank histograms summarizing the distribution of ranks

of the observation ys,t when it is pooled with the ensemble

forecast Fs,t = {xs,t
1
,… , xs,t

m } (Hamill, 2001; Gneiting et al.,
2007; Wilks, 2011). Calibrated forecasts result in uniform

histograms and deviations from uniformity indicate system-

atic errors such as biases or lack of spread. For continuous

forecast distributions with cumulative distribution function

(CDF) Fs,t and observation ys,t, histograms of the probability

integral transform (PIT) Fs,t(ys,t) provide continuous analogs

of verification rank histograms. Verification rank and PIT

histograms are usually shown for aggregates over stations s
and times t.

For comparative model assessment, proper scoring rules

allow simultaneous evaluation of calibration and sharpness

(Gneiting and Raftery, 2007). A scoring rule assigns a numer-

ical score to a pair of probabilistic forecast F and corre-

sponding realizing observation y, and is called proper if the

expected score is optimized if the true distribution of the

observation is issued as forecast (see Gneiting and Raftery,

2007, for details). Here, scoring rules are considered to be

negatively oriented, with smaller scores indicating better fore-

casts. A popular proper scoring rule is the continuous ranked

probability score (CRPS; Matheson and Winkler, 1976):

CRPS(F, y) = ∫
∞

−∞
(F(z) − 1(y ≤ z))2 dz, (1)

where F denotes the CDF of the forecast distribution with

finite first moment, y denotes the observation, and 1(y ≤ z)
is an indicator function that is 1 if y ≤ z and 0 otherwise.

The integral in Equation 1 can be computed analytically for

ensemble forecasts and a variety of continuous forecast dis-

tributions (for example, Jordan et al., 2017). The continuous

ranked probability skill score (CRPSS) is further defined as

CRPSS(F, y) = 1 −
CRPS(F, y)

CRPS(Fref, y)
,

where Fref denotes the CDF of a reference forecast. The

CRPSS is positively oriented and can be interpreted as rela-

tive improvement over the reference. The CRPSS is usually

computed as a skill score of CRPS averages.

Finally, in order to assess forecast quality for extreme

events, the Brier score (BS: Brier, 1950),

BSz(F, y) = (F(z) − 1(y ≤ z))2,

is computed for high thresholds z. The Brier score is a proper

scoring rule for probabilistic forecasts of binary events, and

the CRPS in Equation 1 corresponds to the integral over the

Brier score at all real-valued thresholds (Hersbach, 2000). As

before, the Brier skill score (BSS),

BSS(F, y) = 1 −
BS(F, y)

BS(Fref, y)
,

allows us to assess improvements relative to a reference

forecast Fref.

2.3 Statistical post-processing

Ensemble forecasts typically show systematic biases and

lack calibration. Calibration here refers to the statistical

consistency between predictions and observations; a prob-

abilistic forecast is called calibrated if observations cannot

be distinguished from a random draw from the predictive

distribution. Ensemble forecasts thus require some form of

statistical post-processing. The non-homogeneous regres-

sion or ensemble model output statistics (EMOS) approach

proposed by Gneiting et al. (2005) is followed here. In

this approach, the forecast distribution is given by a single

parametric distribution with parameters depending on the

ensemble forecasts through suitably chosen link functions.

EMOS models have been developed for a variety of weather

variables, such as temperature, pressure, wind speed, and
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precipitation. However, work on wind gusts is sparse. Tho-

rarinsdottir and Johnson (2012) propose a truncated Gaussian

distribution EMOS model based on ensemble forecasts of

wind speed and gust factors. Outside the EMOS framework,

Oesting et al. (2017) develop a spatial post-processing model

for extreme wind gusts utilizing conditional simulation pro-

cedures from extreme value theory, an approach that was

also followed by Friederichs et al. (2018). Staid et al. (2015)

compare statistical models for wind gust prediction at off-

shore locations based on predictors from output of global

weather models. They only consider deterministic forecasts,

but the methodology might be extended towards ensem-

ble post-processing by including summary statistics from

ensemble predictions.

Here, an EMOS model for wind gusts is built on earlier

works for wind speed by Messner et al. (2014) and Scheuerer

and Möller (2015). The conditional distribution of wind gust

y given ensemble forecasts x1,… , xm is modeled as

y|x1,… , xm ∼ [0,∞)(y|𝜇, 𝜎),
where[0,∞) denotes a logistic distribution truncated at 0 with

location 𝜇 ∈ R, scale 𝜎 > 0, and probability density function

f (z) = 1 + e
𝜇

𝜎

e
𝜇

𝜎

⋅
e−

z−𝜇
𝜎

𝜎

(
1 + e−

z−𝜇
𝜎

)2
for z ≥ 0,

and f (z) = 0 otherwise. The location parameter is modeled as

a linear function of the ensemble mean x̄ = 1

m

∑m
i=1 xi,

𝜇 = a + b x̄,

and the squared scale parameter is modeled as a linear func-

tion of the ensemble variance s2 = 1

m−1

∑m
i=1(xi − x̄)2,

𝜎2 = c + d s2.

Alternative EMOS models for wind speed proposed by

Lerch and Thorarinsdottir (2013), Baran and Lerch (2015),

and Scheuerer and Möller (2015) have also been tested

here and indicate only minor differences in predictive

performance.

The EMOS model parameters a, b, c, d are estimated by

minimizing the mean CRPS over a rolling training period con-

sisting of forecasts and observations from the previous n days.

Two variants of the model with different spatial composition

of the training set are considered. The global model compos-

ites data from all stations to form a single training set, from

which a single set of coefficients a, b, c, d for all stations is

estimated. By contrast, the local model considers only fore-

cast cases from the single observation station of interest and

generates a different set of coefficients for each station. The

local model accounts for spatial variability of the forecast

errors, but requires longer training periods. In both variants,

only previous EPS model runs with the same initialization

time and forecast lead time are used for model estimation.

Following common practice from the post-processing litera-

ture, the training period lengths are chosen by testing different

values to minimize the CRPS. Here, this leads to setting the

training period length to n = 30 days for the global model and

n = 100 days for the local model, although the influence of

different training period lengths is generally small.

Note that the focus here is on devising a post-processing

model that is sufficiently simple to allow for straightfor-

ward interpretation of the model deficiencies and potential

improvements in predictability of wind gusts. Alternative,

more demanding modeling and estimation approaches (for

example, Junk et al., 2015; Dabernig et al., 2017; Lerch and

Baran, 2017) may result in improvements in predictive perfor-

mance but impede inference on some features of EPS model

error characteristics, such as station-specific biases.

2.4 Selection of storms

Gust observations from the DWD surface network over Ger-

many are available as daily maximum values since several

decades ago and as early as the 1950s for some stations. They

are used here to identify significant storms from a clima-

tological perspective. Strong gusts are responsible for most

damages within winter storms and their impact increases non-

linearly with strength but also depends on the vulnerability

of the infrastructure, which is usually adapted to local cli-

mate conditions. Following Klawa and Ulbrich (2003), these

factors are taken into account by defining the Storm Severity

Index (SSI) as

SSI =
∑

stations s

{(
vmax,s

v98,s
− 1

)3
}

vmax,s>v98,s

(2)

where vmax,s is the daily maximum wind gust and v98,s its

local 98th climatological percentile at station s. Values of v98,s
are extreme at some mountain stations and they are generally

higher in coastal regions than over the mainland, due to higher

exposure to wind gusts (see, for example, Figure S1 in File

S1). The SSI is computed as a sum over all stations where

vmax,s > v98,s and thus depends on the number of stations

reporting gusts. This number has remained stable in the past

years, but it has increased dramatically in previous decades

and must be corrected for in longer time series.

The most severe storms of the 2011–2016 period are

selected based on the SSI computed from all stations of the

DWD surface network reporting daily maximum gusts. Days

with SSI > 1 are listed in Table 1. The SSI is a rela-

tive rather than absolute value, as it depends on the number

of stations with available data (Equation 2). The thresh-

old SSI > 1 is thus arbitrary, but it appears a reasonable

value to select significant winter storms, as discussed in the

following. This results in 16 days, which span a broad spec-

trum of events and cover one order of magnitude in SSI

(Table 1). Somewhat unexpectedly, five events occurred in

summer and exhibit SSI comparable to weak winter storms.

They involve convection in the first place but within differ-

ent processes, ranging from a bow echo with extreme local

gusts on June 9, 2014 (Pentecost storm; Barthlott et al., 2017;
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TABLE 1 Storms with SSI > 1 of the 2011–2016 period and earlier storms
with SSI > 10 of the 1997–2010 period for comparison. Winter storms are
named according to the Free University of Berlin “Adopt a Vortex” program,
except for Gonzalo, which was a former tropical cyclone and thus named by
the National Hurricane Center. Insured losses are taken from Gesamtverband
der Deutschen Versicherungswirtschaft (2017)

Date Name SSI Insured losses (M euro)

June 22, 2011 summer storm 1.0 <100

December 16, 2011 Joachim 1.7 <100

January 5, 2012 Andrea 2.1 180 (with 3 January)

June 30, 2012 summer storm 1.2 120

August 6, 2013 summer storm 1.8 220

October 28, 2013 Christian 5.1 400

December 5, 2013 Xaver 2.9 150 (with 6 December)

December 6, 2013 Xaver 1.1 see above

June 9, 2014 summer storm 1.0 450

October 21, 2014 Gonzalo 2.5 <100

January 9, 2015 Elon 1.9 150 (with 10 January)

January 10, 2015 Felix 2.6 see above

March 31, 2015 Niklas 12.0 590

July 7, 2015 summer storm 1.6 120

February 8, 2016 Ruzica 1.0 <100

February 9, 2016 Susanna 1.3 <100

December 26, 1999 Lothar 17.1 800

October 28, 2002 Jeanett 14.3 760

January 18, 2007 Kyrill 29.0 2060

March 1, 2008 Emma 13.2 390

Mathias et al., 2017) to a cold front covering a broader area on

June 22, 2011 (Weijenborg et al., 2015). Although they differ

from winter events and their detailed investigation is beyond

the scope of the article, these summer events reveal the con-

tinuum between purely convective and large-scale dynamics

(see also the footprints of all 16 days in Figure S2 in File S1).

The range of processes among winter storms will be discussed

further in Section 3.3.

According to the SSI, the most severe storm of the

2011–2016 period by far is Niklas on March 31, 2015

(Table 1), which caused widespread loss of forest cover in

southern Germany (Einzmann et al., 2017). Niklas is one of

the most severe storms over Germany in records from the

DWD surface network and reaches rank 14 since the 1970s

in SSI corrected for the number of stations (see Figure S3

in File S1). Strong gusts were recorded during storms in the

1950s and 1960s, but available observations are sparse and

mostly limited to former West Germany. Compared with the

most severe storms of the past two decades (Table 1), Niklas
approaches Lothar (1999), Jeanett (2002) and Emma (2008)

but remains far behind the extreme storm Kyrill (2007).

Among the 16 selected storms of the 2011–2016 period,

Niklas is followed in severity by Christian on October 28,

2013 (Table 1). These two storms were indeed responsible

for the highest insurance losses over Germany, as expected

from the rationale behind the definition of SSI (Klawa and

Ulbrich, 2003). For weaker storms, insured losses scale less

well with SSI and a precise estimate of damages would

require a more sophisticated wind-loss relationship (Prahl et
al., 2015). Insured losses further depend on the population

density and insured portfolio, but also on joined hazards such

as snow in winter storms and hail in summer storms, as well

as indirect impacts of wind, such as the storm surge caused

by Xaver on December 5–6, 2013 (Dangendorf et al., 2016).

Finally, the impact of storms depends on the time of year

they occur—for example, trees are more affected before they

lose their leaves—but also on the coincidence with festivi-

ties such as Ruzica and Susanna during Carnival on February

8–9, 2016. Despite these limitations, the selection based on

SSI > 1 captures all significant winter storms with insured

losses above 100 million euros during the 2011–2016 period.1

Excluding summer cases results in 10 winter storms, which

are selected for investigation of the predictability of gusts.

3 PREDICTABILITY OF WIND GUSTS

The predictability of wind gusts in COSMO-DE-EPS is first

characterized using the whole dataset to assess the quality

of the raw forecast and quantify the added value brought

by global and local post-processing models in a statistical

sense. The forecast quality becomes crucial in storm situ-

ations to issue precise warnings, thus the predictability of

wind gusts is further investigated in raw and post-processed

forecasts during 10 selected cases of winter storms. Outliers

with uncharacteristic forecast error are identified and their

dynamics are explored in detailed case studies.

3.1 Whole dataset

In the following, the predictability of wind gusts is assessed

in forecasts between June 2011 and December 2016, earlier

months being used as training period. No visible effect of the

initialization time was found, thus only model runs initialized

at 0000 UTC are considered here.

Figure 1 shows verification rank and PIT histograms of

raw and post-processed forecasts. The U-shaped verification

rank histogram of the ensemble forecasts indicates a system-

atic lack of spread, as observations frequently fall outside

the range of ensemble forecasts. The lack of spread is also

reflected in the lack of reliability of raw forecasts for thresh-

old exceedances, at high values in particular (see Figure S4

in File S1). The shape of the verification rank histogram fur-

ther indicates that members tend to cluster into four groups

driven by initial and boundary conditions from the four global

models (Figure 1a). By contrast, the PIT histograms of the

post-processed forecasts show much smaller deviations from

the desired uniformity and thus are much better calibrated,

1Storms tend to cluster in series due to favorable large-scale conditions (Pinto

et al., 2014), which prevents unambiguously attributing both SSI and insured

losses to single storms in some cases (for example, Elon and Felix; Ruzica
and Susanna).
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mean CRPS of 12 hr forecasts averaged by month, (c) daily averages of spread and RMSE for 12 hr forecasts, shown as averages over a 50 day rolling window,

and (d) mean Brier skill score of 12 hr forecasts for the exceedance of different thresholds. The vertical gray lines in (d) indicate the 98th, 99th and 99.9th

percentiles of all gust observations during the June 2011–December 2016 period [Colour figure can be viewed at wileyonlinelibrary.com]

particularly the local model (Figure 1b,c). The PIT histogram

of the global model indicates slight underprediction of high

values and overprediction of low values.

The predictive performance of the ensemble forecasts

increases with lead time up to around 10 hr, as shown

by the decrease in CRPS in Figure 2a. This is due to a

severe lack of spread in the ensemble forecast for short lead

times (see Figure S5 in File S1). In contrast, the predictive

performance after post-processing is substantially better and

remains almost constant during this time window (Figure 2a).

The forecast quality of both the raw ensemble and the

post-processed forecasts decreases at longer lead times, as

indicated by the increase in CRPS after 10 hr. However,

post-processing substantially improves the ensemble predic-

tions over the entire forecast period. In the following, only

12 hr forecasts are used to illustrate the forecast quality, but

the results are also valid for other lead times.

Figure 2b shows monthly mean CRPS values of the raw and

post-processed COSMO-DE-EPS forecasts. Post-processing

consistently improves the ensemble predictions, the

corresponding skill scores ranging between 13 and 23% for

the global model, and between 18 and 27% for the local

model (not shown). The raw ensemble shows higher CRPS

values in winter and spring (Figure 2b), when wind gusts
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are stronger on average. The relative improvement through

global post-processing shows a stronger seasonal cycle and

is generally higher in spring. The local model shows further

improvement compared with the global model, particularly

in winter. This might indicate that errors of the ensemble

forecasts are more systematic over the whole domain in

spring and more station-specific in winter. For comparison,

a simple climatology computed locally over the previous 100

days shows a strong seasonal cycle in CRPS, but remains

substantially worse than the raw ensemble during the whole

year and at all lead times (Figure 2a,b).

The local improvement via post-processing can partially

be explained by the local variability of the bias of the raw

forecast. The mean bias of the ensemble mean is positive for

120 of the 175 stations, and depends strongly on the obser-

vation station location (see Figure S6 in File S1). Due to

the single set of model coefficients for all stations, global

post-processing is unable to account for the station-specific

variability. While it decreases the overall mean bias, leading

to improvements at stations with positive bias, it worsens

mean forecasts at stations with negative bias. By contrast,

local post-processing is able to remove the station-specific

biases on average. The bias depends further on the magni-

tude of the ensemble mean, which underestimates weak gusts

below 7 m/s but overestimates moderate to strong gusts above

10 m/s by around 1 m/s (see Figure S7 in File S1). Note that

the mean bias is not a proper measure of forecast accuracy and

seasonal effects may average out over the entire period. To

assess the accuracy of mean forecasts, the root-mean-square

error (RMSE) provides a suitable alternative.

Apart from the bias, a main reason for the higher CRPS

values of the raw ensemble is the lack of spread. Figure 2c

shows that the spread is about twice too small compared with

the RMSE in the raw ensemble, whereas after post-processing

the spread is increased and matches the slightly reduced

RMSE much better. While both spread and RMSE of raw and

post-processed ensemble show a seasonal cycle similar to the

CRPS (Figure 2b), the spread of the raw ensemble increases

further slowly over time (Figure 2c). This likely results

from the frequent updates of COSMO-DE-EPS discussed in

Section 2.1, although none of the described upgrades cor-

responds to a clearly identifiable change in forecast perfor-

mance during the time period under consideration.

To ensure that the post-processing models improve the

forecast of damaging gusts, mean Brier skill scores rela-

tive to the raw ensemble forecasts are computed for the

exceedance of high thresholds between 15 and 35 m/s

(Figure 2d). All BSS values are positive, which clearly

indicates that post-processing actually improves forecasts of

strong gusts compared with the raw ensemble. However, the

improvement obtained by global post-processing decreases

towards BSS values of only around 5% for higher thresh-

olds. By contrast, local post-processing yields consistently

high relative improvements between 25 and 40% for all

threshold values considered.2 Accounting for station-specific

error characteristics thus appears to be of importance for

skilful probabilistic forecasts of damaging gusts.

In summary, post-processing improves various aspects of

forecast quality and predictability of wind gusts consistently

and substantially compared with the raw ensemble. The larger

relative improvements obtained through local post-processing

indicate strongly station-specific error characteristics, partic-

ularly in winter. The predictability assessment for the selected

storms and case studies presented in the following thus

focuses on comparisons with the local post-processing model

only.

3.2 Ten selected storms

The predictability of wind gusts is investigated in raw and

post-processed ensemble forecasts for the 10 most severe

winter storms of the dataset based on the SSI (Table 1).

Niklas—the most severe storm in terms of SSI—is also the

most intense storm in terms of observed wind gusts aver-

aged over all stations, while other storms with high SSI, such

as Christian and Gonzalo, show comparatively weaker gusts

(Figure 3a). For each storm, the initialization time is chosen

such that the maximum intensity is reached after 12–15 hr

lead time. This allows storms to develop in the forecasts and

also appears as a relevant range for issuing warning in an

operational framework. Quantitatively comparing forecasts

of storms with different dynamics—fast or slow-moving,

tracking across or at the edge of the model domain, and

with widespread or concentrated wind fields—is challenging

based on hourly wind gusts only. However, the results suc-

ceed in highlighting outliers and are generally consistent with

earlier or later initialization times.

The predictability is first measured with the CRPS of the

raw ensemble. Surprisingly, while it exhibits high CRPS in

an early phase, Niklas shows relatively low CRPS during its

period of maximum intensity (Figure 3b). In contrast, higher

CRPS is reached by Andrea and Christian at 14–17 hr lead

time, that is, shortly after and during the maximum inten-

sity, respectively. Beyond these intense storms, weaker storms

Gonzalo and Susanna also exhibit peaks of relatively high

CRPS. This emphasizes that the predictability is not related to

the intensity of wind gusts only. For both Andrea and Chris-
tian, the ensemble mean is strongly biased compared with

observations, indicating systematic over- and underestimation

of gusts, respectively (Figure 3c). Following Andrea, Gonzalo
also stands out with positive bias during its period of maxi-

mum intensity, while other storms generally exhibit negative

2Note that the BSS values show a discontinuity between 17 and 18 m/s.

This is likely due to the conversion of recorded wind gust observations from

kt to m/s, leading to only one possible wind gust value between 17 and

18 m/s, but two possible values between all other pairs of adjacent thresh-

olds under consideration, causing a discontinuity in the climatological event

frequencies.
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FIGURE 3 Wind gusts during the 10 selected winter storms (see Table 1): (a) observations averaged over all available stations and evaluation of raw

forecasts with (b) CRPS, (c) mean bias, and (d) ensemble spread. The initialization time is chosen for each storm such that the maximum occurs after

12–15 hr lead time in (a) [Colour figure can be viewed at wileyonlinelibrary.com]

biases at this stage. Biases remain small compared with the

average wind gusts—below 10% in most cases and about

20% for outliers—but can reach large values for some storms

locally, as will be discussed in Section 3.3.

As a measure of forecast uncertainty, the ensemble spread

is an additional, important property of the EPS. For all storms,

it quickly increases with lead time and peaks during the

period of maximum intensity (Figure 3d). The weak storm

Susanna exhibits high spread and thus appears as an outlier

with large forecast uncertainty. By contrast, the spread barely

reaches half of the RMSE for all other storms (not shown)

and thus indicates the underdispersiveness of the ensemble.

In the case of Susanna, the high ensemble spread is due

to the perturbation of lateral boundary conditions. This is

illustrated by grouping all members according to correspond-

ing global models, which reveals four diverging scenarios,

ranging from a clear peak to a decrease in wind gust intensity

(Figure 4a). The four scenarios are in turn related to four dif-

ferent tracks and depth of the associated low-pressure system,

which crossed the model domain within one day (Figure 4b,c).

This emphasizes that high synoptic-scale uncertainty can be

found in global forecasts, even at short range. For the other

storms, the ensemble spread is lower but it is also mostly

inherited from the four global models (not shown). Only one

member of each group—corresponding to a specific pertur-

bation of the boundary-layer parametrization—systematically
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FIGURE 4 Time series of average gusts in observations (black curves) and ensemble members (curves coloured by group of same forcing global model)

initialized (a) at 0900 UTC on February 9, 2016 for storm Susanna and (d) at 0600 UTC on October 21, 2014 for storm Gonzalo. Also shown are time series

of (b) mean sea-level pressure and (c) track of the center of storm Susanna as in (a) but with black curves denoting the COSMO-DE analysis. Dots in (c)

indicate the position at 1200 UTC (t + 3) and 0000 UTC (t + 15) [Colour figure can be viewed at wileyonlinelibrary.com]

stands out by stronger wind gusts, as illustrated by the case

of Susanna (Figure 4a). In the case of Gonzalo, physi-

cal perturbations are more efficient to increase the ensem-

ble spread and their contribution is similar to that of the

four global models (Figure 4d). However, the ensemble

clearly remains underdispersive in this case, as none of

the ensemble members captures the observed peak in wind

gusts.

Applying statistical post-processing improves the raw fore-

cast during the first 12 hr, as measured by the CRPSS, but

large variability is found between storms at longer lead times

(Figure 5a). In particular, storms Andrea and Christian are

again extreme cases, with the strongest improvement and

worsening, respectively, compared with the raw forecast.

This dramatically increases the CRPS for Christian, which

becomes by far the case with the poorest predictability

of the sample, while the other storms stay close together

(Figure 5b). The increase in CRPS can be explained through

the impact of post-processing on the mean bias, which sys-

tematically decreases from positive to negative values on

average (Figure 5c). This partially compensates the positive

bias in the case of Andrea but adds to the negative bias in the

case of Christian and thus strengthens the absolute forecast

error. Post-processing also strongly increases spread, at short
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FIGURE 5 Evaluation of post-processed forecasts using the local model for wind gusts during the 10 selected storms: (a) CRPSS compared with the raw

ensemble and (b) CRPS, (c) mean bias, and (d) ensemble spread, as in Figure 3b–d [Colour figure can be viewed at wileyonlinelibrary.com]

lead times in particular (Figure 5d). The forecasts become

better calibrated, but Susanna remains an outlier with high

spread.

These results show that applying statistical post-processing

generally improves the predictability of storms, although out-

liers with high CRPS, bias and spread in the raw forecast still

stand out after calibration. Furthermore, the characteristics of

hourly wind gusts for these few cases are also found in the

hourly average wind speed and in maximum wind gusts over

the whole forecast time range, which shows that they are not

due to approximations in the gust parametrization or to timing

errors only (see Figures S8 and S9 in File S1). Altogether, this

suggests that the predictability of outliers is related to specific

physical processes that cannot be completely corrected with

a statistical approach and thus motivates detailed case studies

in the following.

3.3 Case studies

Based on the results above, the dynamics of storms showing

uncharacteristic forecast errors are investigated here in detail.

The strong negative bias during storm Christian is mainly due

to a few stations located in northern Germany over or near the

North and Baltic Seas. These stations recorded extreme gusts

at that time (Figure 6a), which were strongly underestimated

in the ensemble forecast (Figure 6b). The COSMO-DE anal-

ysis shows that they are located directly south of the cyclone

centre and correspond to the region of strongest winds above

the boundary layer (Figure 6c). The intensity of wind gusts
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Station observations
(a) (b)

(c) (d)

Forecast bias

Analysis
Satellite observation

FIGURE 6 Storm Christian at 1400 UTC on October 28, 2013 (t + 14): wind gusts in (a) station observations and (b) the mean bias of the raw forecast;

850 hPa wind speed (shading, in m/s), geopotential (black contours every 20 gpdam), and equivalent potential temperature (labeled contours every 4 K) in (c)

the COSMO-DE analysis and (d) AVHRR channel 9 satellite observation at 1300:3900 UTC over the North Sea [Colour figure can be viewed at

wileyonlinelibrary.com]

and their location suggests that they may originate from a

sting jet (Browning, 2004), which is supported by the pres-

ence of mesoscale bands in the cloud head (Figure 6d).

Indeed, Browning et al. (2015) identified a sting jet during

the earlier passage of Christian over southern England using

observations from a high-resolution Doppler radar and a net-

work of high-frequency surface stations. Such observations

are not available for northern Germany and extreme gusts

may alternatively be due to a cold jet, which was also identi-

fied during the passage of Christian (Browning et al., 2015).

Distinguishing the two low-level jets is challenging and often

requires trajectory calculations within the air streams (Coro-

nel et al., 2016). This is beyond the scope of the study, but it

is likely that both sting and cold jet contributed to the extreme

gusts recorded at the North and Baltic Seas.

In addition to surface wind gusts, the wind speed above the

boundary layer is also underestimated in the ensemble mean

compared with the COSMO analysis close to the center of

Christian (not shown). This suggests that the negative bias

is related to the representation of synoptic- and mesoscale

features of the storm and not of wind gusts only. One represen-

tative ensemble member issued from each of the four global

models is further displayed at the time of landfall on the North

Sea coast, which occurs between 1100 and 1500 UTC in fore-

casts (Figure 7). Other members are either almost identical

or show differences in intensity but not in pattern. All four

representative members predict the strongest winds to affect
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Member 1 at 1300 UTC

(a) (b)

(c) (d)

Member 6 at 1500 UTC

Member 11 at 1100 UTC Member 16 at 1200 UTC

FIGURE 7 Predicted 850 hPa wind speed (shading, in m/s) and geopotential (black contours every 20 gpdam) of storm Christian on October 28, 2013 in the

ensemble: (a) member 1 at 1300 UTC, (b) member 6 at 1500 UTC, (c) member 11 at 1100 UTC, and (d) member 16 at 1200 UTC. The thick contour shows

the 850 hPa wind speed exceeding 50 m/s in the COSMO-DE analysis at 1400 UTC (see Figure 6c) [Colour figure can be viewed at wileyonlinelibrary.com]

Denmark, while they occur over Germany in the analysis

(thick contour in Figure 7). The northward shift appears as

the main cause of underestimation of wind gusts at DWD

stations. However, the wind speed is generally high south of

the cyclone center and exceeds (c) 40 m/s, (a, d) 45 m/s, and

(b) even 50 m/s, depending on the ensemble member. Some

model forecasts may thus actually be able to develop a sting

jet, but they do not predict the synoptic scale correctly. This

deficiency in turn appears inherited from the driving global

models, although the spin-up of forecasts may also contribute,

due to the track of the storm at the edge of the domain. The

performance of the gust parametrization in this case is still

unclear and may be a further limitation that cannot be inves-

tigated here. Finally, statistical post-processing amplifies the

error by correcting for the systematic overestimation of gusts

in the region. All these factors restrain the predictability of

Christian.

The positive bias in wind gusts during storm Andrea, in

contrast, is related to continuous strengthening predicted by

all ensemble members, while observed gusts reach a peak

and start weakening (Figure 3a). The positive bias occurs in a

region of relatively weak gusts in observations (Figure 8a,b).

This region is located behind a zonally oriented convective

line embedded in the cold front of the cyclone and cross-

ing central Germany southward (Figure 8c,d). Strong gusts

are widespread in the warm sector and do not appear to be

enhanced by the convective line, which denotes a classical

warm jet situation. This means that the overestimation of gusts

in the ensemble members is due to their lack of ability to cap-

ture the drop of intensity after the passage of the cold front.

As in the case of Christian, the bias is already present in

the wind speed above the boundary layer compared with the

COSMO analysis and thus cannot be attributed to the gust

parametrization only (not shown). Furthermore, the intensity

of convective precipitation is systematically underestimated

in all COSMO-DE-EPS members (see Figure S10 in File

S1). This suggests that the convective dynamics of the cold

front and the resulting stabilization of lower levels are not

correctly represented in the model forecasts, despite the

convection-permitting resolution allowed by the 2.8 km grid

spacing. A lack of convective organization was found during

summer cases over Germany using COSMO ensemble sim-

ulations with the same grid spacing, which points to issues

related to the boundary-layer parametrization (Rasp et al.,

http://wileyonlinelibrary.com


1876 PANTILLON ET AL.

Station observations Forecast bias

Analysis
Radar observation

(a) (b)

(c) (d)

FIGURE 8 As Figure 6 but for storm Andrea at 0900 UTC on January 5, 2012 (t + 15) and with hourly precipitation derived from the DWD radar network

(in mm; d) [Colour figure can be viewed at wileyonlinelibrary.com]

2018). In the case of Andrea, the total bias is reduced by sta-

tistical post-processing but the positive bias related to convec-

tive dynamics persists after calibration and Andrea remains

an outlier (Figure 5c).

Convective dynamics are also involved during the passage

of storm Gonzalo and again result in positive bias, albeit

smaller (Figure 3c). Intense convection is embedded in the

active cold front of the cyclone over southeastern Germany,

which involves large gradients of equivalent potential temper-

ature 𝜃E (Figure 9c,d). In this case, strong gusts are recorded

locally along the convective line and are thus mainly pro-

duced by the downward transport of momentum from higher

levels (Figure 9a). The small spatial extent of strong gusts

contrasts with Andrea, where they are widespread and thus the

contribution of the convective line is not clearly discernible

(Figure 8). This results in a more scattered bias for Gonzalo,

with both over- and underestimation locally in the ensemble

mean compared with observations (Figure 9b). No homoge-

neous bias is visible in the wind speed above the boundary

layer either (not shown), and ensemble members exhibit some

variability related to stochastic physics within each group

issued from the same global model (Figure 4d). The error

and uncertainty in this case highlight the challenging pre-

diction of the precise location and intensity of gusts driven

by convection. The subgrid-scale parametrization may con-

tribute further to the overestimation by adding a turbulent

contribution to gusts that are already explicitly represented by

model dynamics.

Finally, large errors during the early phase of storm Niklas
occurred in the morning, at a time when strong gusts were
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FIGURE 9 As Figure 8 but for storm Gonzalo at 2100 UTC on October 21, 2014 (t + 15) [Colour figure can be viewed at wileyonlinelibrary.com]

confined to the warm sector of the cyclone over western

Germany (Figure 10a,c). As in the case of Andrea, the loca-

tion matches the concept of warm jet. Convection was also

present in the cold front, but did not impact the gusts clearly

(Figure 10d). The ensemble mean mainly exhibits negative

bias in the warm sector at that time, that is, it underestimates

strong gusts related to the warm jet (Figure 10b). However,

the overestimation of gusts in other regions—in general and

at a few specific stations located behind the cold front and

over southeastern Germany in particular—results in positive

bias overall. Large positive and negative bias is further found

at mountain and coastal stations. Statistical post-processing

succeeds in reducing such local biases, which are systematic

in the dataset, and decreases the CRPS overall (Figure 5b).

The maximum intensity of storm Niklas occurred later in the

afternoon and strong gusts were widespread, related to the

warm jet that was still present over southern Germany, a cold

jet that was arriving over northern Germany, and, in between,

convective showers behind the cold front (see Figure S11

in File S1). In contrast to the previous situation, the bias of

the ensemble mean does not exhibit a clear pattern and the

CRPS remains relatively low at that time. However, statisti-

cal post-processing does not improve the forecast (Figure 5a).

This illustrates that, on one hand, strong gusts are not neces-

sarily affected by systematic biases, but, on the other hand,

a certain level of random errors remains inherent to strong

gusts.

Beyond the four cases detailed here, all other six selected

storms involve a warm jet and most of them involve a cold

jet in the formation of wind gusts. Most also show frontal

or post-frontal convection and storm Felix further includes a

convection line embedded in the cold front but without clear

impact on predictability. These features thus appear typical

of severe storms over Germany. In contrast, none of them

exhibits signs of a possible sting jet and Christian remains

an exception. Furthermore, among the other six storms, only
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FIGURE 10 As Figure 8 but for storm Niklas at 0600 UTC on March 31, 2015 (t + 6) [Colour figure can be viewed at wileyonlinelibrary.com]

Joachim tracks across Germany, which makes Susanna an

unusual case. This suggests that the storms detailed above are

rather rare and that their uncharacteristic forecast errors are

due to specific dynamics.

4 CONCLUSIONS AND PERSPECTIVES

A novel six-year dataset of convection-permitting ensemble

forecasts is exploited to investigate the predictability of wind

gusts in winter storms over Germany. The dataset presents

multiple advantages: the high resolution captures mesoscale

features that are not resolved by global ensemble forecasts,

while the long period both contains several cases of intense

storms and sufficient data for robust statistics.

Statistical post-processing substantially improves ensem-

ble forecasts of wind gusts in the whole dataset for all years,

all seasons, and all lead times. While the raw ensemble

is clearly underdispersive, especially at short lead times, it

becomes much better calibrated after post-processing and

the ensemble spread matches the magnitude of the RMSE.

Compared with a global post-processing model encompass-

ing all stations, a local model trained at each station indi-

vidually improves the forecasts further by reducing system-

atic local errors, in winter in particular. However, improve-

ments relative to the raw ensemble are generally smaller

during 10 selected winter storms. For instance, wind gusts

are relatively well predicted during the time of maximum

intensity of the most severe storm of the dataset—Niklas, on

March 31, 2015—but are not improved by post-processing.
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Case studies reveal that, for a few storms with unchar-

acteristic forecast errors, post-processing can even worsen

the ensemble forecasts. The results presented indicate that

the ensemble forecast errors—and thereby the appropriate-

ness of specific post-processing models—depend strongly on

mesoscale structures and corresponding wind-gust genera-

tion mechanisms. The results thus call for the development

of physically based post-processing approaches that account

for the dependence of misrepresentations of wind gusts on

weather regimes. Analog- and similarity-based model esti-

mation approaches proposed by Junk et al. (2015) and

Lerch and Baran (2017) provide natural first steps in this

direction.

In particular, two storms involving frontal convection

exhibit systematic overestimation of gusts. In the case of

storm Andrea on January 5, 2012, the observed drop in gust

intensity behind the cold front is missed by forecasts, which

suggests deficiencies in the representation of vertical sta-

bilization due to the passage of convection. In the case of

storm Gonzalo on October 21, 2014, strong gusts formed by

the downward mixing of momentum from higher levels are

not well captured, which points to the difficult representa-

tion of convective gusts that are represented partly by explicit

dynamics and partly by the gust parametrization. Although

the 2.8 km grid spacing of COSMO-DE-EPS allows repre-

sentation of convection lines that would not be captured by

coarser model forecasts (Ludwig et al., 2015), finer reso-

lution still may be required to resolve convective dynamics

fully. This argues for extending pioneering large-eddy sim-

ulations over large domains (such as Heinze et al., 2017)

to case studies of winter storms in order to understand bet-

ter the contributions of turbulence and convection to the

formation of wind gusts. Model studies can be assessed fur-

ther and complemented by high-resolution, high-frequency

wind observations from Doppler lidars, which have become

available in the past years (Pantillon et al., 2018).

However, the ability of a model to predict turbulent and

mesoscale dynamics is controlled in the first place by the rep-

resentation of the synoptic scale. In COSMO-DE-EPS, the

ensemble spread is largely inherited from the four driving

global models and leads to high forecast uncertainty in the

case of the small, fast-moving cyclone Susanna on February

9, 2016. This may appear surprising at short lead times of less

than one day, but it emphasizes the difficult forecast of the

track and intensity of certain storms (Pantillon et al., 2017).

Similarly, the representation of the synoptic scale appears

responsible for the underestimation of extreme gusts during

the passage of the rare storm Christian on October 28, 2013

involving a possible sting jet, although the northward shift in

the location of strong winds may be due to the problematic

track of the storm at the edge of the model domain. These

issues may be solved in the current operational version of

COSMO-DE-EPS, which is now downscaled from the global

ICON-EPS only and the domain size of which has just been

increased. However, careful investigation of case studies will

be necessary to investigate whether this accounts correctly for

the synoptic-scale uncertainty. The multimodel approach has

been proved useful in regions where convection-permitting

EPSs overlap (Beck et al., 2016) and, with the ongoing

increase in domain size of operational models run by national

weather services, it may present increased potential for fore-

casts of extreme events such as winter storms in the future.
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