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CHAPTER 1

Introduction

The normal or Gaussian distribution on the real line is undeniably one of the most basic and
essential distributions in probability theory. It was first mentioned in the works of the French
mathematician Abraham de Moivre (1667–1754) in the approximation of binomial probabilities,
cf. [14]. Its importance and widespread use throughout all applied sciences is a consequence
of the central limit theorem, which was regarded as the central, if not the only problem of
probability theory for a long time, cf. [40, Theorem 15.37] in a modern formulation. It states
that the standardisation of a sum of independent random variables with the same and existing
expectation and variance can be approximated by a normal distribution to arbitrary precision
with increasing length of the summation.

In applications, however, reality is sometimes more complex than just a single number or
vector and needs to be modelled by the versatility of a whole function. This requires the
generalization of the normal distribution from the Euclidean space to a “normal distribution”
in a suitable function space and was a subject in mathematical research in the first half of the
twentieth century. The question of existence of such an object was settled in the groundbreaking
work “Grundbegriffe der Wahrscheinlichkeitstheorie” by Andrej N. Kolmogorov (1903–1987),
cf. [41]. It turns out that the key to the generalisation of a normally distributed random
variable to a “normally distributed” random function are the finite-dimensional distributions,
i.e. the distributions of the vectors consisting of the function values of arbitrary points in
the domain. The normality is encoded into the random function by requiring that the finite-
dimensional distributions are given by “consistent” families of normal distributions. Because
of this property, random functions satisfying this condition are called Gaussian processes. For
a rigorous explanation of the latter, we refer the reader to Section 2.1.

The basic objects of randomness for this thesis are Gaussian random processes with domain
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Rd and codomain R, and to highlight the geometric viewpoint, these processes are then typically
called Gaussian (random) fields. Figure 1.1 shows a realisation of a specific Gaussian field
from R2 to R. Gaussian fields and their excursion sets, i.e. all points in the domain, where the
field exceeds a certain threshold, are widely used models in applied sciences, for instance for
data analysis in medicine, cf. [77], in machine learning, cf. [65], in chaotic quantum systems, cf.
[8, 9], in the modelling of sea waves, cf. [52], in cosmology, cf. [51], and in materials science,
cf. [55] and references therein. Moreover, in probability theory the excursion sets of Gaussian
fields are one of the basic models for random sets and are still an active area of research, cf. [1],
[4], [46], [11], [20] among others.

-4
10

-3

-2

-1

5 10

0

1

5

2

0

3

0

4

-5
-5

-10 -10 -10 -5 0  5  10 
-10

-5 

0  

5  

10 

Figure 1.1.: Left: Realisation of a centered stationary and isotropic Gaussian random field
with covariance given by [27, (21)]. Right: The excursion set of the realisation
from the left for the threshold 0.

This thesis is a contribution to the ongoing research with the aim to deepen the understanding
of the geometry of Gaussian excursion sets. For this purpose many geometric characteristics
can be used to retrieve information about the nature of these random sets and the ones we are
going to use in the first part of this work are the so-called Lipschitz–Killing curvatures Lm,
m = 0, . . . , d− 1, cf. Section 2.3 for a definition. The reason for the special interest in these
functionals lies in a generalisation of Hadwiger’s famous characterisation theorem (cf. [29], [68,
Theorem 6.4.14]) due to Zähle (cf. [82, Theorem 3]), which states that any motion invariant,
additive and continuous functional on the set of compact sets of positive reach is a linear
combination of the Lipschitz–Killing curvatures and the volume.
In an ideal world, we would now go on and proclaim that in this work we calculate the

distribution of the random variables given by

Lm(X−1((u,∞]) ∩A), A ⊂ Rd convex,m = 0, . . . , d− 1, (1.1)

where X : Ω× Rd → R denotes a Gaussian field and u ∈ R. Unfortunately, we do not live in
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an ideal world and a proof for such a result is out of reach with the methods developed up
to now. Instead, we pursue a very common strategy in mathematics and aim for asymptotic
results. We analyse the scenario of an ever-growing observation window—given by A in
the above formulation—and derive the asymptotic normality of the suitably standardised
Lipschitz–Killing curvatures given in (1.1). Predecessors of this result are the works [44] in the
case d = 2 and m = 1, and [22] for m = 0 and general d.
In the second part of this thesis, we use the developed approach to establish the normal

approximation of integrated level functionals of the type∫
R

∫
X−1({u})∩A

h(∇X(t), D2X(t), X(t))Hd−1(dt) du,

where X : Ω× Rd → R denotes a Gaussian field, see Section 4.1 for more nomenclature, as the
observation window A grows to the whole Euclidean space. The general case will be specialised
to integrated Minkowski surface tensors, which is a worthwhile undertaking because of the
geometric information contained in the tensors. At last, we specialise the general theorem to
some of Federer’s curvature measures and thereby learn about the limits of the applicability of
our method of proof, as not all curvature measures are tractable due to integrability issues.
As a basic tool in our approach, we use the so-called Wiener chaos expansion, which was

already an essential technique in the works [13], [72] and [44]. We combine this technique
with recent results in the normal approximation based on Malliavin calculus, cf. [59], which
is a popular method to derive central limit theorems, cf. [57], where the Euler integration of
random functions is analysed, cf. [66], which collects some of the recent results on the nodal
geometry of random eigenfunctions on Riemannian surfaces, cf. [58], where critical points of
random Fourier series on the m-dimensional torus are studied, or cf. [3], where the number of
real roots of Kostlan–Shub–Smale random polynomial systems is investigated.
Although less explicit, the results of the first part of this thesis might be compared with

recent progress in the second order analysis of the Boolean model, another fundamental model
of stochastic geometry, cf. [31], [30], [49]. In contrast to the present work, this progress is
largely based on the Malliavin calculus for general Poisson processes.
Future research continuing the work of this thesis could be manifold. One natural gener-

alisation of the established central limit theorems is to aim for versions including rates for
the speed of convergence. The underlying theory of Malliavin calculus is rich enough to allow
for results of this type, cf. [26]. Even more generality could be achieved by dropping the
isotropy assumption in (A1) in Chapter 3. First results, which indicate that the approximation
procedure in Section 3.2.1 is still valid, can be found in [21]. Generalizing the results of this
thesis to non-Gaussian random fields seems to be a challenging goal, cf. [47], [37] and references
therein for recent results in this direction. Another direction of further research could be the
investigation of limit theorems in the regime of long range dependence, in the spirit of [45], in
contrast to short range dependence analysed in this thesis, cf. (A3) in Chapter 3 and (AF3)
in Chapter 4. A further interesting direction could be to change the asymptotic scenario of
a growing observation window to an additionally increasing threshold parameter u (in (1.1))
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depending on the window size, cf. [33, Theorem 2.8.1], [15]. Applications in applied sciences
could profit from the development of a test on Gaussianity of the underlying field based on the
central limit theorems in this thesis, cf. [16] and [12] for results in this direction based on the
central limit theorem in Chapter 3.
This thesis is organised as follows: In Chapter 2 we provide the reader with the necessary

background of the relevant parts in probability theory and geometry to read and understand
the results and proofs contained in this thesis. The first section recalls basic facts and tools
from the theory of Gaussian random fields, which are the basic building blocks in this work.
The next sections provide a very brief introduction to the required geometric tools applied
in Chapter 3. In the last section, we provide background information about the theory of
isonormal Gaussian processes, including a central limit theorem, which lies at the heart of
every normal approximation in this work.
Chapter 3 contains the main result of this thesis, namely the central limit theorem for the

standardised Lipschitz–Killing curvatures of the intersection of the excursion set of a Gaussian
field with an observation window as the window grows to the whole Euclidean space. We also
derive a lower bound for the asymptotic variance, hence ensuring that the limit distribution is
nontrivial. At last, by using the already established results, we prove a central limit theorem
in the multivariate case, i.e. for the vector containing all Lipschitz–Killing curvatures.
We then proceed in Chapter 4 with the exploitation of the developed techniques and prove

a quite general central limit theorem for integrated level functionals. The general result will
be specialised to the case of integrated Minkowski surface tensors and integrated curvature
measures. In the first case a simulation study is conducted to illustrate the theoretical result.
At last, Appendix A contains results concerning Gaussian fields, which hold almost surely

and are indispensable for this thesis. In Appendix B, we give the tedious but important proof
of Lemma 3.2, which is the basis of the approximation procedure used in Chapter 3.



CHAPTER 2

Basics

In this chapter we recall basic results and fix the notation used in this thesis.
We denote by N, N0, Z, R and C the positive integers, the nonnegative integers, the integers,

the real numbers and the complex numbers, respectively. The d-dimensional Euclidean space
Rd, d ∈ N, is equipped with the standard inner product 〈· , ·〉, which induces the Euclidean
norm ‖ · ‖. For a set A ⊂ Rd, we denote the interior, closure and boundary of A by intA,
clA and bdA, respectively. The dimension dimA of A is defined by the dimension of the
affine hull aff(A) of A. The Minkowski sum A + B of two sets A,B ⊂ Rd is given by the
set {a + b | a ∈ A, b ∈ B} and we use the notation A + t for A + {t}, t ∈ Rd. By Id, we
denote the identity matrix in dimension d. For t1, . . . , tn ∈ Rd, we write (t1, . . . , tn) for the
(nd)-dimensional vector given by (t>1 , . . . , t>n )> in contrast to the (d× n)-matrix (ti1, . . . , tin)di=1,
for which we write (t1| · · · |tn).
For a topological space T , we denote the Borel σ-algebra by B(T ). We write Hs, s ≥ 0,

for the s-dimensional Hausdorff measure on B(Rd). By Bd
r ⊂ Rd we denote the open ball of

radius r ≥ 0 with center 0 and we write CdN ⊂ Rd for the centered cube of side length 2N ,
i.e. CdN := [−N,N ]d. The d-dimensional volume of Bd

1 is abbreviated by κd and the (d− 1)-
dimensional Hausdorff measure of its boundary Sd−1 by ωd. A function C : T × T → Cd×d is
called positive semidefinite, if

n∑
i,j=1

c>i C(ti, tj)cj ≥ 0, for all c1, . . . , cn ∈ Cd, t1, . . . , tn ∈ T, n ∈ N. (2.1)

If the function C is only defined on T , that is C : T → Cd×d, it is positive semidefinite if the
condition in (2.1) holds with C(ti, tj) replaced by C(ti − tj). We use the symbol π for various
kinds of projections, where the most frequent is the orthogonal projection. All other usages
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will be defined when the need arises. For a manifold M , the notation TtM denotes the tangent
space of M at the point t ∈M .
The symbol Ck denotes the set of all functions f : Rd → R which are k-times continuously

differentiable. In the following, let f : Rd → R be a mapping of class C2. For t ∈ Rd, we denote
by ∇f(t) the gradient and by D2f(t) the d × d-matrix ( ∂2

∂ti∂tj
f(t))1≤i,j≤d of second partial

derivatives of f . For v ∈ Sd−1, we write ∂
∂vf(t) for the directional derivative of f in direction v.

Let Adm, m = 0, . . . , d, denote the affine Grassmannian consisting of m-dimensional affine
subspaces of Rd and let Gdm, m = 0, . . . , d, denote the (linear) Grassmannian consisting of
m-dimensional linear subspaces of Rd. For F ∈ Adm, we write F ◦ for the directional space of
F , which is an element in Gdm. We endow the spaces Adm and Gdm with the trace topology of
the Fell topology for the space Cl(Rd) of closed subsets of Rd, cf. [69, Section 12.2]. A more
explicit and equivalent way to define the topology on these spaces is described in [69, Section
13.2]. The rotation invariant measure ν on Gdm, cf. [69, Theorem 13.2.11], is normalized such
that ν(Gdm) =

[ d
m

]
, where the flag coefficients are defined for m = 1, . . . , d− 1 by[

d

m

]
:=
(
d

m

)
ωd

ωmωd−m
and

[
d

d

]
:= 1.

By µ we denote the rigid motion invariant measure on the affine Grassmannian Adm, which
satisfies ∫

Adm

f dµ =
∫
Gdm

∫
L⊥

f(L+ y)Hd−m(dy) ν(dL) (2.2)

for every µ-integrable function f on Adm, cf. [69, Theorem 13.2.12] where ν, and therefore µ,
are normalized differently but the equality holds nevertheless. In order to avoid long terms
in the calculations to come, we do not indicate the dependence of µ and ν on d and m. Two
linear subspaces L,L′ are said to be in general position if

dim(L ∩ L′) = max{0,dimL+ dimL′ − d}.

Let F ∈ Adm and let W ⊂ Rd be an open convex subset of an affine subspace of Rd such that
dim aff W = l > d − m and moreover, F ◦ and (aff W )◦ are in general position. Then, we
denote by b(W,F ) := bWF := (v1, . . . , vm+l−d) an orthonormal basis of (aff(W )∩F )◦ and define
the gradient of f |W∩F as the vector field given by

∇(f |W∩F )(t) :=
m+l−d∑
i=1

∂

∂vi
f(t)vi,

for t ∈ W ∩ F , where ∂
∂vi

denotes the directional derivative in direction vi. The second
derivative of f |W∩F in t ∈W ∩ F is defined as the linear mapping on (aff(W ) ∩ F )◦ given by

D2(f |W∩F )(t)(v) :=
(
v1 · · · vm+l−d

)( ∂2

∂vi∂vj
f(t)

)m+l−d

i,j=1

(
v1 · · · vm+l−d

)>
v,
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for v ∈ aff(W ∩ F )◦. We note that these definitions coincide with the Riemannian ones
and therefore do not depend on the choice of bWF . Indeed, if we choose the coordinate map
ϕ : W ∩ F → Rm+l−d given by t 7→ (v1| · · · |vm+l−d)>t for the submanifold W ∩ F ⊂ Rd,
equipped with the induced inner product, the Riemannian definitions of the gradient and the
Hessian specialise to the ones already given. Moreover, we define for t ∈ cl(W ∩ F )

∇bWF f : Rd → Rm+l−d, t 7→
(
∂

∂vi
f(t)

)m+l−d

i=1
, (2.3)

whose components are the coefficients of ∇(f |W∩F )(t) in the basis bWF if t ∈W ∩F , as well as

D2
bWF
f : Rd → R(m+l−d)×(m+l−d), t 7→

(
∂2

∂vi∂vj
f(t)

)m+l−d

i,j=1
, (2.4)

which is the transformation matrix of the mapping D2(f |W∩F )(t) in the basis bWF if t ∈W ∩F .

The triple (Ω,F ,P) always denotes a probability space, where the probability measure P is
assumed to be a complete measure on the σ-algebra F . A real random variable N is said to
have a normal distribution with parameters µ ∈ R and σ2 ≥ 0 if its distribution admits the
Lebesgue density

φ(x) := (2πσ2)−
1
2 e−

(x−µ)2

2σ2 , x ∈ R,

for σ2 > 0, and in the case σ2 = 0 its distribution is given by the Dirac measure δµ. A random
variable N in Rd is said to have a d-dimensional normal distribution if for all c ∈ Rd the real
random variable 〈c,N〉 is normally distributed. Then its distribution is denoted by Nd(µ,Σ),
where µ := E [N ] and Σ := E

[
(N − µ)(N − µ)>

]
. Moreover, N is called nondegenerate if

det Σ > 0, and in this case Nd(µ,Σ) has the Lebesgue density

φd(x) := (2π)−
d
2 det Σ−

1
2 exp

(
−1

2(x− µ)>Σ−1(x− µ)
)
, x ∈ Rd.

Given a measure space (Ω′,A, µ), we write L2(Ω′,A, µ), or L2(µ) for short, if there is no risk of
ambiguity, for the set of all measurable functions f : Ω′ → R with

∫
Ω′ f

2 dµ <∞, and identify
functions that agree almost everywhere. Then the mapping 〈· , ·〉 : L2(Ω′,A, µ)×L2(Ω′,A, µ)→
R given by

(f, g) 7→
∫

Ω′
f · g dµ

defines an inner product on L2(Ω′,A, µ). Finally, given a measurable function f : Rd → R, we
define the measure fλd by[

fλd
]

(A) :=
∫
Rd
1A(x)f(x)λd(dx), A ∈ B(Rd),

where dx denotes integration with respect to the Lebesgue measure λd.
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2.1. Gaussian fields

In this section, we recall some basic definitions and results on random fields, especially Gaussian
random fields, which lie at the heart of this thesis.
Let T be an index set and (E, E) be a measurable space. Then EI , I ⊂ T , denotes the

space of all mappings f : I → E. We equip EI with the smallest σ-field ⊗i∈IE such that the
projections πt : EI → E given by πt(f) := f(t) are measurable, i.e.

⊗i∈IE := σ
({
π−1
t (B) | t ∈ I,B ∈ E

})
. (2.5)

Then (EI ,⊗i∈IE) is a measurable space.

Definition. A measurable mapping X : (Ω,F ,P)→ (ET ,⊗i∈TE) is called an E-valued random
field on T .

A random field X is called a version of the random field Y , if they satisfy the condition

P(X(t) = Y (t)) = 1, for any t ∈ T.

For fixed ω ∈ Ω, any realisation, which is given by the mapping X(ω) : T → E, is called
trajectory or path of X, and for (t1, . . . , tn) ∈ T , n ∈ N, the distribution of

(X(t1), . . . , X(tn))

is called a finite-dimensional distribution of X at the points t1, . . . , tn. In practice we are
often interested in random fields with specific finite-dimensional distributions. The question,
which has to be asked is, whether there is a probability space (Ω,F ,P) and a random field
X : (Ω,F ,P)→ (ET ,⊗i∈TE) such that X has the prescribed finite-dimensional distributions.
To give an answer, we introduce the following concepts.

A measurable space (E, E) is a called Borel space, if there is a bijective, Borel-measurable
mapping ϕ : E → D, D ⊂ [0, 1] and D ∈ B(Rd), with Borel-measurable inverse. We note here
that every Borel subspace of a Polish space (a separable topological space with a complete
metrization) is a Borel space, cf. [36, Theorem A1.2]. Furthermore, for J ⊂ I ⊂ T , the
restriction map

πIJ : EI → EJ , f 7→ f |J ,

is called the canonical projection from I to J . We abbreviate πTI by πI . A family of probability
measures (µI , finite I ⊂ T ) on the space (EI ,⊗i∈IE) is called consistent if

µI ◦
(
πIJ

)−1
= µJ , for any finite J ⊂ I ⊂ T.

Then the following existence theorem due to Kolmogorov, cf. [41], in the modern formulation
of [40, Theorem 14.36] gives an answer to the above posed question.
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Theorem 2.1. Let T be an arbitrary index set and let E be a Borel space. Let (µI , finite I ⊂ T )
be a consistent family of probability measures. Then there exists an unique probability measure
µ on (ET ,⊗i∈TE) with µI = µ ◦ π−1

I for every finite set I ⊂ T .

Thus, taking (Ω,F ,P) := (ET ,⊗i∈TE , µ) and choosing the random field X := idET , settles
the question of existence.
The general nature of the state space T can lead to problems concerning the measurability

of events, in which we are definitely interested. For example, the preimage of a supremum of a
real-valued random field X on Rd over the set I can be written in the following manner{

ω ∈ Ω | sup
t∈I

X(ω, t) ≤ u
}

=
⋂
t∈I
{ω ∈ Ω | X(ω, t) ≤ u}, u ∈ R,

which is measurable if I is countable but leads to problems if the set I is uncountable. To
ensure the measurability of events which depend on uncountably many points, we demand that
all random fields appearing in this work satisfy the property called separability, originating
from Doob [17, 2.§2].

Definition. Let d ∈ N. An Rd-valued random field X on a topological space T is called
separable if there exists a countable dense subset D ⊂ T and an event N ∈ F of probability 0,
such that for any closed B ⊂ Rd and open I ⊂ T

{ω ∈ Ω | X(ω, t) ∈ B ∀t ∈ I}∆{ω ∈ Ω | X(ω, t) ∈ B ∀t ∈ D ∩ I} ⊂ N,

where ∆ denotes the symmetric difference, i.e. A∆B = (A ∩Bc) ∪ (Ac ∩B).

The existence of a separable version of a real valued field X on a separable metric space T
is established e.g. in [62, Theorem 2.6].

We now define the central object of this thesis, namely the notion of a Gaussian random field.
Let T be an arbitrary topological space and let I = {t1, . . . , t|I|} ⊂ T be finite. With every
subset I we associate a vector aI = (aIi )

|I|
i=1 ∈ Rd|I|, aIi ∈ Rd, and a symmetric and positive

semidefinite matrix ΣI = (ΣI
ij)
|I|
i,j=1 ∈ Rd|I|×d|I|, ΣI

ij ∈ Rd×d. Then

µI := N|I|(aI ,ΣI), I ⊂ T finite,

defines a family of measures, where each measure µI is defined on Rd|I| ∼= (Rd)I . We note
that a bijection is given by the mapping (f : I → Rd) 7→ (f(t1), . . . , f(t|I|)). Now, let J =
{tj1 , . . . , tj|J|} ⊂ I such that j1 < . . . < j|J |. By properties of the normal distribution

µI ◦ (πIJ)−1 = N|I|(aI ,ΣI) ◦ (πIJ)−1 = N|J |(aI(J),ΣI(J)),

where aI(J) := (aIji)1≤i≤|J | and ΣI(J) := (ΣI
jrjs)1≤r,s≤|J |. Therefore, the family of probability

measures (µI , finite I ⊂ T ) is consistent, if

aI(J) = aJ and ΣI(J) = ΣJ ,



10 Chapter 2. Basics

for all finite J ⊂ I ⊂ T . This is the case if and only if there are functions

a : T → Rd (mean function)

C : T × T → Rd×d symmetric and positive semidefinite (covariance function)

such that aI = (a(t))t∈I and ΣI = (C(t1, t2))t1,t2∈I . Then by Kolmogorov’s existence theorem,
cf. Theorem 2.1, there exists a random field in RT , whose finite-dimensional distributions are
given by µI , I ⊂ T finite.

Definition. An Rd-valued Gaussian random field X on the topological space T with mean
function m : T → Rd and symmetric and positive semidefinite covariance function C : T × T →
Rd×d is a random field X : (Ω,F ,P) → ((Rd)T ,⊗t∈TB(Rd)) such that the finite-dimensional
distributions (X(t1), . . . , X(tn)) are given by Nn

(
(a(ti)ni=1), (C(ti, tj))ni,j=1

)
, t1, . . . , tn ∈ T ,

n ∈ N. A Gaussian field with everywhere vanishing mean function is called a centered Gaussian
field.

As an immediate consequence of the definition of a Gaussian field, we obtain the fact that
its finite dimensional distributions are uniquely determined once we specify its mean and
covariance function. We note that the mean and covariance functions satisfy the relations

m(t) = E [X(t)] , t ∈ T,

C(t1, t2) = E
[
(X(t1)− E [X(t1)])(X(t2)− E [X(t2)])>

]
, t1, t2 ∈ T,

and therefore can be defined for any random field. Since the two functions determine the
finite dimensional distributions of a Gaussian field, it is natural to ask, which properties of
these functions imply specific pathwise properties, such as differentiability of the paths. The
investigation of differentiability of a real-valued Gaussian field {Xt : Ω→ R | t ∈ Rd} requires
knowledge about the existence of limits given by

lim
h→0

X(t+ hu)−X(t)
h

, t ∈ Rd, u ∈ Sd−1, (2.6)

in the case of directional derivatives, or about the condition that there exists a random vector
∇X(t0) ∈ Rd, t0 ∈ Rd, such that

lim
t→t0

X(t)−X(t0)− 〈∇X(t0), t− t0〉
‖t− t0‖

= 0, (2.7)

in the case of (total) differentiability. But the above expressions in the limits are random
variables and therefore we can examine their existence in several ways. Two specific ones are
important for us. The Gaussian field X is said to possess mean square directional derivatives
at t0 ∈ Rd in direction u ∈ Sd−1 if the limit in (2.6) exists in the L2-sense. If the limit in (2.7)
exists in the L2-sense, then it is called mean square differentiable in t0 ∈ Rd. Analogously, we
define the two properties in the almost sure sense. The following criterion is known in the case
of almost sure differentiability, cf. [63, Corollary 4.4].
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Theorem 2.2. Let X be a real-valued, centered Gaussian field on Rd such that for all i, j ∈
{1, . . . , d} the partial derivative ∂2

∂si∂tj
C(s, t) exists for all s, t ∈ Rd and is continuous as a

function on Rd×Rd. If there exist K, ρ, γ > 0 such that for all i ∈ {1, . . . , d}, and all x, y ∈ Rd

with ‖x− y‖ < ρ,(
∂2

∂si∂ti
C(x, x)− 2 ∂2

∂si∂ti
C(x, y) + ∂2

∂si∂ti
C(y, y)

)2

≤ K‖x− y‖γ

holds, then there is a version of X, which is almost surely differentiable. Moreover ∇X is a
centered Gaussian field with covariance function

(
∂2

∂si∂tj
C
)d
i,j=1

.

For differentiability of higher order this theorem can be applied repeatedly. Results giving
less specific answers with accordingly less restrictive conditions, e.g. the existence of mean
square directional derivatives, can also be found in the article [63]. For the converse statement
of Theorem 2.2 it is enough to assume that the Gaussian field possesses mean square partial
derivatives and the partial derivatives are mean square continuous. That is, a centered
Gaussian field with mean square partial derivatives and mean square continuous mean square
partial derivatives has a covariance function with existing and continuous partial derivatives
∂2

∂si∂tj
C(s, t), i, j = 1, . . . , d. The existence of the derivatives can be seen directly, since

∞ > E
[
∂

∂ti
X(t) ∂

∂tj
X(s)

]
= lim

h,h′→0
E
[(
X(t+ hei)−X(t)

h

)(
X(s+ h′ej)−X(s)

h′

)]

= ∂2

∂sj∂ti
C(t, t′),

for t, s ∈ Rd, whereas the continuity of the derivatives ∂2

∂si∂tj
C(s, t), i, j = 1, . . . , d, is derived

in [67, Theorem 2.3.2].
Another basic assumption on the fields examined in this thesis is that of homogeneity.

Definition. A random field X on Rd is called stationary if for all h, t1, . . . , tn ∈ Rd and n ∈ N

(X(t1 + h), . . . , X(tn + h)) D= (X(t1), . . . , X(tn)).

Furthermore, X is said to be isotropic, if for all ρ ∈ SO(d), t1, . . . , tn ∈ Rd and n ∈ N

(X(ρ(t1)), . . . , X(ρ(tn))) D= (X(t1), . . . , X(tn)).

In the Gaussian case, a field is stationary if and only if the mean function is constant and
the covariance function C(s, t), s, t ∈ Rd, is only a function of the difference s− t. We note
that stationarity, defined as above, implies for any random field that its covariance function is
a function of s− t only, whereas the converse implication is not true for any field. Isotropy, in
the case of a stationary process, can be characterised by the fact that the mean function is
constant and the covariance function depends only on the norm of its argument.

If the field is stationary, Gaussian and centered the covariance function, i.e. C(s−t) := C(s, t),
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carries all relevant information to determine the distribution. Then Bochner’s theorem becomes
important, cf. [67, Theorem 1.7.4].

Theorem 2.3. A continuous complex-valued function f on Rd is positive semidefinite if and
only if it can be represented in the form

f(t) =
∫
Rd
ei〈t,x〉 µ(dx), t ∈ Rd,

with some nonnegative finite Borel measure µ on Rd. The measure µ is uniquely determined
by f .

Theorem 2.3 written in terms of random fields takes the following form, cf. [67, Theorem
2.9.3].

Theorem 2.4. A continuous real-valued function C on Rd is the covariance function of a
continuous, centered, stationary random field on Rd if and only if it allows the representation

C(t) =
∫
Rd
ei〈t,x〉 µ(dx), t ∈ Rd,

with some nonnegative finite Borel measure µ on Rd.

If the measure µ admits a Lebesgue density f , then f is called the spectral density of X. In
the setting of a stationary random field X, we have C(t) = C(−t), t ∈ Rd, and thus obtain
µ(A) = µ(−A), A ∈ B(Rd). This yields

∫
Rd
xi11 · · ·x

id
d µ(dx) = 0 if

d∑
j=1

ij is odd, (2.8)

and if we further assume that X is almost surely smooth, then equation (2.8) together with

E
[

∂α+β

∂αti∂βtj
X(t) ∂γ+δ

∂γtk∂δtl
X(t)

]
= (−1)α+βiα+β+γ+δ

∫
Rd
xαi x

β
j x

γ
kx

δ
l µ(dx), t ∈ Rd, (2.9)

cf. [1, (5.5.5.)], implies that X and its first derivatives as well as the first derivatives and
the second derivatives are uncorrelated at equal times. Moreover, if we additionally assume
isotropy, we obtain µ(A) = µ(ρ(A)), A ∈ B(Rd), ρ ∈ SO(d), and therefore

E
[
∂

∂ti
X(t) ∂

∂tj
X(t)

]
= 1{i = j}E

[(
∂

∂t1
X(0)

)2]
. (2.10)

We note that in the important case of a stationary Gaussian random field X the fields given
by the partial derivatives of X are again stationary and Gaussian yielding that the preceding
random variables, e.g. X(t), ∂

∂ti
X(t), ∂2

∂ti∂tj
X(t), are centered and normally distributed and

therefore, if they are uncorrelated they are independent.
As a basic tool, in the analysis of moments of random counting variables depending on

random fields, we will make use of the famous Rice formulas. In the following, we state them
as they appear in the book of Azaïs and Wschebor, cf. [4, Chapter 6].
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Theorem 2.5. Let X : U → Rd be a random field, U an open subset of Rd, and y ∈ Rd. We
assume that

(i) X is a centered Gaussian field,

(ii) almost surely the trajectories of X are of class C1,

(iii) for any t ∈ U , the matrix E
[
X(t)X(t)>

]
is positive definite,

(iv) P(∃t ∈ U : X(t) = y,detDX(t) = 0) = 0.

Then, for every Borel set B contained in U , we have

E [#{t ∈ B | X(t) = y}] =
∫
B
E [|detDX(t)| | X(t) = y] pX(t)(y) dt,

where pX(t)(x) := (2πC(t)2)−
1
2 exp(− x2

2C(t)2 ) denotes the density of X(t). Moreover, if B is
compact, then both sides are finite.

The next formula, also known under the name of Rice formula, gives an expression for higher
factorial moments. By using this version and the previous one, it is possible to analyse second
moments, which will play a crucial role in this thesis.

Theorem 2.6. Let k ≥ 2 be an integer and assume (i), (ii) and (iv) as in Theorem 2.5 together
with

(iii’) for pairwise different t1, . . . , tk ∈ U , the distribution of

(X(t1), . . . , X(tk))

is nondegenerate in (Rd)k.

Then, for every Borel set B contained in U , we have

E [#{t ∈ B | X(t) = y}(#{t ∈ B | X(t) = y} − 1) · · · (#{t ∈ B | X(t) = y} − k + 1)]

=
∫
Bk

E
[
k∏
i=1
|detDX(ti)| | X(t1) = . . . = X(tk) = y

]
pX(t1),...,X(tk)(y, . . . , y) d(t1, . . . , tk),

where pX(t1),...,X(tk) denotes the density of (X(t1), . . . , X(tk)). Both sides may be infinite.

For verification of assumption (iv) in Theorem 2.5 and 2.6 we state the following Lemma, cf.
[4, Proposition 6.5].

Lemma 2.7. Let y ∈ Rd, let U ⊂ Rd be compact and let X : Rd → Rd be a random field with
paths of class C2. We assume that pX(t)(x) ≤ c for a constant c > 0, for all t ∈ U and for x in
some neighborhood of y. Then assumption (iv) in Theorem 2.5 and Theorem 2.6 is satisfied.
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2.2. Morse theory

In this section, we summarize the critical point theory on stratified spaces introduced in
Chapters 8 and 9 by Adler and Taylor [1]. The aim of this theory is to describe global
characteristics of a given stratified space via the local behaviour of functions defined on it. We
start with the definition of stratified spaces.

Definition. Let k ∈ N. A Ck stratified space or stratified manifold M ⊂ Rd is a subset of Rd

together with a finite partition Z of M such that

(i) each stratum S ∈ Z is an embedded Ck submanifold of Rd,

(ii) if R,S ∈ Z where R ∩ clS 6= ∅, then R ⊂ clS.

We note that a generalisation of this concept to locally finite partitions is possible but not
needed in this work. By ∂lM , l = 0, . . . ,dimM , where dimM := maxS∈Z dimS, we denote
the collection of all l-dimensional strata in Z.
As a generic example, we stratify the cube CdN into its relatively open faces. In contrast to

the viewpoint of convex geometry, where faces are always closed, the strata here do not have a
boundary. Thus for JN ∈ ∂lCdN there exists a set σ(JN ) ⊂ {1, . . . , d} with |σ(JN )| = l and a
sequence (εj)j∈{0,...,d}\σ(JN ) in {1,−1}d−l so that

JN =
{
t ∈ CdN | −N < ti < N for i ∈ σ(JN ), ti = εiN for i /∈ σ(JN )

}
. (2.11)

Moreover, the strata of this stratification lie nicely with respect to each other in the ambient
space Rd (in the sense of the next definition), which is a property we would always like to have.
Therefore, we formulate the following conditions, which are known as Whitney’s conditions
(A) and (B).

Definition. Let M ⊂ Rd be a stratified space with stratification Z. Then M satisfies
Whitney’s condition (A) if for any strata R,S ∈ Z, where R ⊂ clS the following holds: For
any x ∈ R and any sequence (xn)n∈N in S such that xn → x and TxnS → T in GddimS , we have
TxR ⊂ T . Moreover, M is said to satisfy Whitney’s condition (B), if for any strata R,S ∈ Z,
with R ⊂ clS the following holds: For any sequence (xn)n∈N as above, which satisfies the
additional constraint that the line xxn converges in Gd1 to G, we have G ⊂ T . A stratified
space satisfying Whitney’s conditions (A) and (B) is called a Whitney stratified space.

We are now in the position to define a characteristic of stratified manifolds, which lies at the
heart of Chapter 3, namely the Euler characteristic.

Definition. A triangulation of a compact Whitney stratified space M is a covering of M by
diffeomorphic images of simplices of dimension smaller or equal to the dimension of M such
that if two images are not disjoint, then the preimages of the intersection must be faces of
the corresponding simplices. By identifying the faces of the simplices, whose images have
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nonempty intersection, we obtain a simplicial complex, cf. [54, Definition 2.3.5], induced by
the triangulation of M , say SM . Then the Euler characteristic χ is defined by

χ(M) :=
dimM∑
j=0

(−1)jαj(SM ),

where αj(SM ) is the number of j-dimensional faces in SM .

We note that per se it is not clear, whether a compact Whitney stratification admits a
triangulation corresponding to a finite simplicial complex. However, this is the main result in
[35, Theorem 2.1].

In the following, we reduce the set of possible stratified manifolds even further by requiring
the property of local convexity, which is defined as follows:

Definition. A Whitney stratified space M ⊂ Rd is called locally convex if the support cone
StM is convex for any t ∈M , where

StM := {x ∈ TtRd | ∃δ > 0, c : R→ Rd with c ∈ C1

such that c(0) = t, c′(t) = x, c(s) ∈M for all s ∈ [0, δ)}.

This definition excludes sets with concave cusps and therefore with no positive reach, cf.
Definition (2.16). If S denotes a stratum of the stratified space M ⊂ Rd, the support cone
in the point t ∈ S contains as a subset the tangent space of S in point t. We would end up
with the tangent space, if we changed the condition s ∈ [0, δ) in the preceding definition to
s ∈ (−δ, δ). We note that the support cone defined in this way coincides with the support cone
of convex geometry in the case, in which M is a convex subset of Rd, cf. [68, Section 2.2]. The
dual cone of the support cone is called the normal cone NtM , i.e.

NtM := {X ∈ TtRd | 〈X,Y 〉 ≤ 0 for all Y ∈ StM}, t ∈M,

which plays a crucial role in the formulation of the Morse lemma.
In this thesis the stratified manifold CdN ∩ F , for F ∈ Add−m, with the stratification given by

the strata JN ∩ F , JN ∈ ∂lCdN , m ≤ l ≤ d, will be of utmost importance. Therefore, we will
have a look at its normal cones and in a special case at the condition ∇X(t) ∈ Nt(CdN ∩ F ),
where X : Rd → R and t ∈ JN ∩ F , such that for F ∈ Add−m the linear spaces aff(JN )◦ and F ◦

are in general position. By [68, (2.5)], we obtain

Nt(CdN ∩ F ) = NF ◦((CdN ∩ F )− t, 0) + (F ◦)⊥ ⊂ (aff(JN )◦ ∩ F ◦)⊥,

where NL(K, t) denotes the normal cone of the convex subset K ⊂ L in the linear subspace L
at the point t ∈ K. The subset relation holds since aff(JN )◦ ∩ F ◦ ⊂ St(CdN ∩ F ) yields

Nt(CdN ∩ F ) = dual(St(CdN ∩ F )) ⊂ dual(aff(JN )◦ ∩ F ◦) = (aff(JN )◦ ∩ F ◦)⊥, (2.12)

where dual(K) denotes the dual convex cone of the convex set K, cf. [68, page 35]. Moreover
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by [68, (2.25)]

dim(Nt(CdN ∩ F )) = d− dim(JN ∩ F ) = d− (l −m)

= d− dim(aff(JN )◦ ∩ F ◦) = dim((aff(JN )◦ ∩ F ◦)⊥), (2.13)

thus Nt(CdN ∩F ) is full dimensional in (aff(JN )◦ ∩F ◦)⊥. The result [68, Theorem 2.4.9] allows
for the following more explicit representation

NF ◦((CdN ∩ F )− t, 0) = pos{nJNi (F ) | nJNi (F ) outer unit normal vector of facet Si of the set

CdN ∩ F in F with JN ∩ F ⊂ Si}, (2.14)

from which we deduce that the normal cone Nt(CdN ∩F ) is independent of the specific choice of
t ∈ JN . Using the decomposition ∇X(t) = ∇(X|JN∩F )(t) + π(aff(JN )◦∩F ◦)⊥(∇X(t)), we obtain
the equivalence

∇(X|JN∩F )(t) = 0 and ∇X(t) ∈ Nt(CdN ∩ F )

⇔ ∇(X|JN∩F )(t) = 0 and π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F ). (2.15)

The next topic introduced is known under the name of cone spaces, cf. [61, Section 3.10]
for further reference, and is required for Adler and Taylor’s proof of the Morse lemma for
excursion sets.

Definition. Let M ⊂ Rd be a C l, l ∈ N, stratified space with stratification Z. Then M is
said to be a cone space of class C l and depth 0 if it is the topological sum of countably many
connected C l manifolds, the strata S of which are the unions of connected components of
equal dimension. A stratified space M ⊂ Rd is said to be a cone space of class C l,m, m ≥ 0,
and depth d+ 1 (d ≥ 0), if every t ∈ S ∈ Z has a neighborhood U ⊂ Rd such that U ∩M is
Cm diffeomorphic to (U ∩ S)× Cone(LS), where LS is a compact C l cone space of depth d,
and Cone(LS) denotes the cone generated by LS . When m = 0, "Cm diffeomorphic" means
homeomorphic.

To get acquainted with this Definition, consider the example of a polytope P with a
stratification given by the open faces. Then P is a cone space of class C∞ and depth 0, since
the open faces are connected C∞ submanifolds of Rd. To see that P is also a C2,1 cone space
of depth 1, let U ⊂ Rd be a neighborhood of t ∈ F , where F is an arbitrary face of P . Then
U ∩ P is diffeomorphic to (U ∩ F ) × Cone(Sd−1 ∩ NtP ), where Sd−1 ∩ NtP is itself a cone
space of class C∞ and depth 0, since it is a spherically convex set.

Definition. A closed, locally convex Whitney stratified manifold M ⊂ Rd is said to be tame,
if for any stratum S, where dimS > 0, the set{

lim
tn→t

TtnS | (tn)n∈N in S such that tn → t ∈ bdS
}

has Hausdorff dimension < dimS in the affine Grassmannian AddimS .



2.2. Morse theory 17

Again, we examine the special case of a polytope P , which is stratified into its open faces.
Then for any open face F the linearity of F implies that the set {limtn→t TtnF | t ∈ bdF} is
exactly aff(F )◦, yielding that P is tame.
We summarize the introduced terminology in one notion.

Definition. Let M be a locally convex C2 Whitney stratified manifold. We assume further
that M is a C2,1 cone space of arbitrary depth and that M is tame. Then M is called a regular
stratified manifold.

The class of regular stratified manifolds is the class of spaces for which we formulate the
Morse theorem for excursion sets. For this thesis the most important example for such a set is
the intersection CdN ∩ F , for F ∈ Add−m, which fits into the theory described above, since it is
a polytope, cf. [1, Chapter 8.3].
However, we first need to define the concept of Morse functions and start with recalling

some basic definitions. Let M ⊂ Rd be a C2 stratified manifold, let S ⊂ M be a stratum
and let f : Rd → R of class C2 be given. Then a point t ∈ S is a critical point of f |S if
∇(f |S)(t) = πTtS(∇f(t)) = 0. Therefore, if dimS = 0 then every point t ∈ S is a critical point,
since in this case TtS = {0}. Moreover, a critical point t ∈ S of f |S is said to be nondegenerate,
if the Hessian D2f |TtS(t) is nondegenerate, considered as a bilinear mapping from TtS into
TtS. Furthermore, the function f is said to be nondegenerate on M , if all critical points of the
mappings f |S , S ∈ ∪dimM

i=0 ∂iM , are nondegenerate. A point u ∈ R is called a regular value of
f |S if for all t ∈ (f |S)−1({u}) the point t is not a critical point of f |S .

Definition. Let M be a compact, regular stratified manifold. A function f : Rd → R of class
C2 is called a Morse function on M , if it satisfies the following conditions:

(i) f is nondegenerate on M .

(ii) For any stratum S ⊂M , dimS > 0, and any point t ∈ bdS, we have πTlimS(∇f(t)) 6= 0,
where TlimS is any limit of sequences TtnS in GddimS with (tn)n∈N a sequence in S such
that tn → t.

Moreover, for a stratum S of M and t ∈ S, we denote by ιfS(t) the dimension of the largest
subspace L of TtS such that D2(f |L)(t) is negative definite.

Finally we are able to formulate the Morse lemma for excursion sets on regular stratified
spaces, cf. [1, Corollary 9.3.5]. We note that M ∩ f−1[u,∞) in the More lemma is Whitney
stratified since u ∈ R is a regular value of f |S , S ∈ ∪dimM

i=1 ∂iM , cf. [28, Definition 1.3.1].

Theorem 2.8. Let M ⊂ Rd be a compact, regular stratified manifold and let f : Rd → R be a
Morse function on M . Moreover, let u ∈ R be a regular value of f |S, S ∈ ∪dimM

i=1 ∂iM . Then

χ(M ∩ f−1[u,∞))

=
dimM∑
i=0

∑
S∈∂iM

#{t ∈ S | f(t) ≥ u,∇(f |S)(t) = 0, ι−fS (t) even, ∇f(t) ∈ Nt(M)}

−#{t ∈ S | f(t) ≥ u,∇(f |S)(t) = 0, ι−fS (t) odd, ∇f(t) ∈ Nt(M)}.
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2.3. Lipschitz–Killing curvatures

In this section, we introduce the geometric functionals known as Lipschitz–Killing curvatures,
which we will use to study the excursion sets of Gaussian fields.

Let A ⊂ Rd be given. Then by Unp(A), we denote the set of all points x ∈ Rd for which
there is a unique point πA(x) in A such that

inf{‖x− a‖ | a ∈ A} = ‖πA(x)− x‖.

We call πA : Unp(A)→ Rd the metric projection onto A. For any a ∈ A, we define

reach(A, a) := sup{r ≥ 0 | Bd
r + a ⊂ Unp(A)}

as the reach of the set A in the point a. The corresponding global notion, the reach of the set
A, is then defined by

reach(A) := inf{reach(A, a) | a ∈ A}.

The set A is said to have positive reach, if

reach(A) > 0. (2.16)

The most important example of a set of positive reach for this work is the set CdN ∩
X−1([u,∞)), which has almost surely positive reach if the Gaussian field X satisfies some
regularity conditions, specified in Lemma A.1.
We now define the Lipschitz–Killing curvatures of a set by means of the Steiner formula

in [24, 5.6 Theorem], where Federer proved the existence of curvature measures for sets of
positive reach.

Definition. Let A ⊂ Rd satisfy reach(A) > 0. Then the Lipschitz–Killing curvatures Li,
i = 0, . . . , d, of A are defined as the coefficients in the polynomial expansion

Hd(A+ ε clBd
1) =

d∑
i=0

αd−iLi(A)εd−i, (2.17)

where 0 ≤ ε < reach(A) and αk := Hk(Bk
1 ).

It was also Federer, who showed in the same paper that

L0(A) = χ(A) for compact sets A ⊂ Rd with reach(A) > 0, (2.18)

cf. [24, 5.19 Federer]. This allows us to use the Morse theory described in Section 2.2 to
determine L0

(
CdN ∩X−1([u,∞))

)
.

Moreover, Federer did not only prove the existence of these curvature notions, but also
established a principal kinematic formula, cf. [24, 6.11 Theorem]. A special case, namely the
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Crofton formula, will be a basic ingredient in the derivation of the central limit theorem in
Chapter 3. This Crofton formula can be stated as follows, cf. [24, 6.13 Theorem].

Theorem 2.9. Let A ⊂ Rd be compact and assume that reach(A) > 0. Then for i = 0, . . . , d
and m = 0, . . . , d− i

Lm+i(A) =
∫
Ad
d−m

Li(A ∩ F )µ(dF ).

In the setting of Theorem 2.9 the intersection A ∩ F is a set of positive reach for almost all
F ∈ Add−m, hence, implying that the integrand on the right side of the Crofton formula is well
defined for almost all F ∈ Add−m, cf. [24, 6.11 Theorem (i)].

Remark. We want to emphasize that although the definition of the Lipschitz–Killing curvatures
in the book of Adler and Taylor [1] differs from the one given here, both curvature notions
coincide if the set in question is regular enough, for instance if it is a set of positive reach.
This can be deduced from the fact that both curvatures are determined as coefficients in the
Steiner formula, where the one for the Lipschitz–Killing curvatures of Adler and Taylor can be
found in [1, Theorem 10.5.6].

2.4. Isonormal Gaussian processes

In this section, we provide background information about the theory of isonormal Gaussian pro-
cesses, including a central limit theorem, which lies at the heart of every normal approximation
in this work.

2.4.1. Hermite polynomials

In the following we introduce the Hermite polynomials, which form the backbone of the
L2-theory for Gaussian processes.

Definition. Let n ≥ 0 be an integer. Then the n-th Hermite polynomial is defined by

Hn : R→ R, x 7→ (−1)ne
x2
2
∂n

∂xn
e−

x2
2 .

For x ∈ R, the first three polynomials are explicitly given by the expressions H0(x) = 1,
H1(x) = x, H2(x) = x2 − 1. In the multivariate case, we define:

Definition. Let n ∈ Nd0 and moreover d ∈ N. We define the multivariate Hermite polynomial
H̃n : Rd → R by

H̃n(x) :=
d∏
i=1

Hni(xi), x ∈ Rd.

Moreover, we use the notation |n| :=
∑d
i=1 ni as well as n! :=

∏d
i=1 ni!.



20 Chapter 2. Basics

The Hermite polynomials satisfy the following properties. Proofs can be found for instance
in [75, Chapter 5.5], [78, Chapter 6], [59, Proposition 1.4.2] and [34, Example E.9].

Lemma 2.10. (i) For any n ≥ 0: Hn+1(x) = xHn(x)− nHn−1(x), x ∈ R.

(ii) For any n,m ≥ 0

∫
R
Hn(x)Hm(x)φ(x) dx =

n!, if n = m,

0, otherwise.

(iii) The family
{

1√
n!Hn | n ≥ 0

}
is an orthonormal basis of L2(R,N1(0, 1)).

(iv) For all c, x ∈ R, we have pointwise ecx−c2/2 =
∑∞
n=0

cn

n!Hn(x).

(v) For any n ≥ 0 and x ∈ R: Hn(−x) = (−1)nHn(x).

(vi) The family
{

1√
n!H̃n | n ∈ Nd0

}
is an orthonormal basis of L2(Rd,Nd(0, Id)).

2.4.2. Isonormal Gaussian processes

In this section, we summarize the notations and definitions of the relevant parts in stochastic
analysis used in this thesis and therefore retrace the steps in the monograph by Olav Kallenberg,
cf. [36, Chapter 13]. We start with the definition of isonormal Gaussian processes on Hilbert
spaces and close with the famous Wiener chaos expansion of integrable functionals.

Definition. Let H denote a real, separable Hilbert space with inner product 〈·, ·〉H. An
isonormal Gaussian process on H is a real valued, centered Gaussian field W on H such that

E [W (g)W (h)] = 〈g, h〉H.

For an explicit construction of such a process, we can proceed as follows. Let e1, e2, . . . ∈
H denote an orthonormal basis and let Z1, Z2, . . . denote independent standard normally
distributed random variables. Then for any element h =

∑
i〈h, ei〉Hei ∈ H, we set W (h) :=∑

i〈h, ei〉HZi, where the series converges in L2(P), since
∑
i〈h, ei〉2H = ‖h‖2H <∞. Moreover, by

Levy’s equivalence theorem, cf. [18, Theorem 9.7.1], the sum converges also in the almost sure
sense. Then W is centered Gaussian by definition, cf. [67, Theorem 1.10.7], and we obtain for
its covariance

E [W (g)W (h)] =
∑
i,j

〈g, ei〉H〈h, ej〉HE [ZiZj ] =
∑
i

〈g, ei〉H〈h, ei〉H = 〈g, h〉H,

for g, h ∈ H, establishing the desired result.
We also note that an isonormal process is unique in the sense that any other isonormal

process has the same law.
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Remark. An isonormal process W , as a mapping h 7→W (h) is linear, which can be seen by
the equation for a, b ∈ R and g, h ∈ H

E
[
(aW (h) + bW (g)−W (ah+ bg))2

]
= 0.

We proceed with the introduction of multiple Wiener–Itô integrals In, also known as
multiple stochastic integrals, with respect to an isonormal Gaussian process W on a real,
separable Hilbert space H. Following Kallenberg [36, Chapter 13], we repeat the basic notions
of tensor products of Hilbert spaces, without loss of generality, in the case H := L2(S, µ),
where (S, µ) is a measure space with µ an atom-free measure. Then H⊗n, n ∈ N, the n-fold
tensor product, can be identified with L2(Sn, µ⊗n), where µ⊗n denotes the n-fold product
measure of µ, and the tensor product h1 ⊗ · · · ⊗ hn is then identified with the mapping
(a1, . . . , an) 7→ h1(a1) · · ·hn(an) for (a1, . . . , an) ∈ Sn. Moreover, for an orthonormal basis (ei)
of H the tensor products ek1 ⊗ · · · ⊗ ekn , where k1, . . . , kn ∈ N, form an orthonormal basis
in H⊗n. Furthermore, for 0 ≤ r ≤ min{p, q}, p, q ∈ N, the r-th contraction of g ∈ H⊗q and
h ∈ H⊗p is defined by

g ⊗r h(a1, . . . , aq+p−2r) =
∫
Sr
g(x1, . . . , xr, a1, . . . , aq−r)

× h(x1, . . . , xr, aq−r+1, . . . , aq+p−2r)µr(dx1, . . . , dxr),

where a1, . . . , aq+p−2r ∈ S, thus yielding an element in H⊗(q+p−2r). To be consistent in the
formulations to come, we define H⊗0 := R. For more background information about tensor
products of Hilbert spaces with a focus on probability theory, we recommend appendix E in
the book [34] by Svante Janson.

The following existence and uniqueness result simultaneously defines the multiple stochastic
integrals, cf. [36, Theorem 13.21].

Theorem 2.11. Let W be an isonormal Gaussian process on a separable Hilbert space H.
Then, for n ∈ N there exists a unique continuous linear mapping In : H⊗n → L2(P) such that
for pairwise orthogonal h1, . . . , hn ∈ H

In(h1 ⊗ · · · ⊗ hn) =
n∏
i=1

W (hi) almost surely,

yielding the invariance of the mapping In with respect to permutations of the tensor products.

For consistency, we define I0 as the identity mapping on R. An important subspace of H⊗n

is given by the space H�n of symmetric tensor products, consisting of symmetric functions in
the case of an L2-space, i.e. of functions f ∈ L2(Sn, µ⊗n), such that f = f̃ , where

f̃(a1, . . . , an) := 1
n!

∑
σ∈Sn

f(aσ(1), . . . , aσ(n)), a1, . . . , an ∈ S.

It is this subspace of symmetric tensor products, for which the multiple stochastic integrals are
an isometry (up to a constant), as shown in the following Lemma, cf. [59, Proposition 2.7.5].
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We note that the stochastic integrals just defined are the same on H�n as the ones in the book
of Nourdin and Peccati [59] as is obvious by Section 2.7 of that monograph.

Lemma 2.12. Let H be a separable Hilbert space and let In, n ≥ 0, denote the stochastic
integrals introduced in Theorem 2.11. Then for g ∈ H�p and h ∈ H�q

E [Ip(g)Iq(h)] =

p!〈g, h〉H⊗p , if p = q,

0, otherwise.

The following connection to the Hermite polynomials, which is a generalisation of Theo-
rem 2.11, makes the multiple stochastic integrals so valuable for us.

Theorem 2.13. On a separable Hilbert space H, let W be an isonormal Gaussian process
with associated multiple Wiener-Itô integrals I1, I2, . . . Then for any orthonormal elements
e1, . . . , em ∈ H and integers n1, . . . , nm ≥ 1 with

∑m
i=1 ni = q, we have

Iq(e⊗n1
1 ⊗ · · · ⊗ e⊗nmm ) =

m∏
i=1

Hni(W (ei)).

Finally, we state the classical Wiener chaos expansion, which is a crucial ingredient in the
technique applied in this thesis to derive central limit theorems. For this purpose, we define
the n-th homogeneous chaos Hn as the closed subspace of L2(P) = L2(Ω, σ(W ),P) consisting
of all integrals In(h), h ∈ H⊗n.

Theorem 2.14. On a separable Hilbert space H, let W be an isonormal Gaussian process
with associated homogeneous chaos Hn. Then the subspaces Hn are orthogonal, closed, linear
subspaces of L2(P), satisfying

L2(P) =
∞⊕
n=0
Hn.

Furthermore, every F ∈ L2(P) has a unique almost sure representation

F =
∞∑
i=0

In(gn),

with symmetric kernels gn ∈ H�n, n ≥ 0.

2.4.3. A multivariate central limit theorem for isonormal Gaussian
processes

In this section, we provide a multivariate version of Theorem 6.3.1 in [59]. We note that in
the monograph [59] condition (iv) is stated slightly differently but the main ideas of the proof
given there remain the same.
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Theorem 2.15. Let (F 1
N )N∈N, . . . , (F kN )N∈N, k ∈ N, be sequences in L2(P) such that

E
[
F iN

]
= 0 and F iN =

∑
q≥1

Iq(giN,q)

for i = 1, . . . , k and giN,q ∈ H�q. For all i, j = 1, . . . , k we assume that

(i) for every q ≥ 1 there exists σijq ∈ R such that q!〈giN,q, g
j
N,q〉H⊗q

N→∞−→ σijq ,

(ii) the series
∑∞
q=1 σ

ij
q converges,

(iii) for every q ≥ 2 and every r = 1, . . . , q − 1 we have ‖giN,q ⊗r giN,q‖H⊗2q−2r
N→∞−→ 0,

(iv) limQ→∞ lim supN→∞
∑∞
q=Q+1 q!‖giN,q‖2H⊗q = 0.

Then (
F 1
N , . . . , F

k
N

) D−→ Nk(0,Σ) as N →∞,

where Σ := (σij)ki,j=1 and σij :=
∑∞
q=1 σ

ij
q .

Proof. We follow the proof of [59, Theorem 6.3.1]. For i = 1, . . . , k and N,Q ≥ 1 we set
F iN,Q :=

∑Q
q=1 Iq(giN,q), GQ ∼ Nk(0,ΣQ), where ΣQ := (

∑Q
q=1 σ

ij
q )ki,j=1, and G ∼ Nk(0,Σ). We

note that these distributions exist since ΣQ and Σ are symmetric and positive semidefinite.
Indeed, since (σijq )ki,j=1 is positive semidefinite for all q, the matrices ΣQ and, as their limit, Σ
is positive semidefinite. To obtain the former, we take c ∈ Rk and observe

c>(σijq )ki,j=1c =
k∑
i=1

ci

k∑
j=1

lim
N→∞

q!〈giN,q, g
j
N,q〉H⊗qcj = lim

N→∞
q!
∥∥∥∥∥
k∑
i=1

cig
i
N,q

∥∥∥∥∥
2

H⊗q

≥ 0.

For t ∈ Rk, we will show that∣∣∣E [exp(i〈t, (F 1
N , . . . , F

k
N )〉)

]
− E [exp(i〈t, G〉)]

∣∣∣
≤
∣∣∣E [ei〈t,(F iN )ki=1〉

]
− E

[
ei〈t,(F

i
N,Q)ki=1〉

]∣∣∣+ ∣∣∣E [ei〈t,(F iN,Q)ki=1〉
]
− E

[
ei〈t,GQ〉

]∣∣∣
+
∣∣∣E [ei〈t,GQ〉]− E

[
ei〈t,G〉

]∣∣∣ =: aN,Q + bN,Q + cQ

tends to zero as N →∞, which will prove the assertion by Lévy’s continuity theorem, cf. [36,
Theorem 5.3]. More precisely, we prove that

lim sup
N→∞

∣∣∣E [exp(i〈t, (F 1
N , . . . , F

k
N )〉)

]
− E [exp(i〈t, G〉)]

∣∣∣ = 0,

implying, with the non negativity of the sequence, the existence of the limit, which then has to
be zero.

We start with establishing limQ→∞ cQ = 0. By the mean value theorem applied to the map
x 7→ e−x, x ≥ 0, and the specific form of the characteristic function of normal distributions

cQ = | exp(−1/2t>ΣQt)− exp(−1/2t>Σt)| ≤ 1/2|t>(ΣQ − Σ)t|.
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By applying the submultiplicativity of the Frobenius norm twice, we obtain

|t>(ΣQ − Σ)t| ≤ ‖t‖2
 k∑
i,j=1

 ∞∑
q=Q+1

σijq

2


1
2

Q→∞−→ 0,

where condition (ii) yields the convergence.

We proceed with the analysis of the term aN,Q and show limQ→∞ lim supN→∞ aN,Q = 0.
The observation that in Euclidean space segments are the shortest connections implies the
inequality | exp(ix)− exp(iy)| ≤ |x− y|, for x, y ∈ R, which yields

lim sup
N→∞

aN,Q ≤ lim sup
N→∞

E
[
|〈t, (F iN − F iN,Q)ki=1〉|

]
.

The Cauchy–Schwarz inequality and Jensen’s inequality, cf. [36, Lemma 3.5], bound this by

‖t‖ lim sup
N→∞

E
[
‖(F iN − F iN,Q)ki=1‖

]
≤ ‖t‖ lim sup

N→∞
E
[
k∑
i=1

(
F iN − F iN,Q

)2
] 1

2

,

The fact lim supn→∞ f(xn) ≤ f(lim supn→∞ xn), for xn ≥ 0 and f : R → R continuous and
increasing, and the orthogonality of the stochastic integrals, yield the upper bound

‖t‖
(

lim sup
N→∞

k∑
i=1

E
[
(F iN − F iN,Q)2

]) 1
2

≤ ‖t‖

 k∑
i=1

lim sup
N→∞

∞∑
q=Q+1

q!‖giN,q‖2H⊗q

 1
2
Q→∞−→ 0,

where we used assumption (iv).

Finally, we deduce limN→∞ bN,Q = 0. Assumptions (i) and (iii) imply with [59, Theorem
5.2.7] (if limN→∞ E

[
Iq(giN,q)2

]
= 0 the assertion holds trivially) that

Iq(giN,q)
D−→ N (0, σiiq ) as N →∞ for every fixed i ∈ {1, . . . , k} and q ≥ 2.

Assumption (i) also implies I1(giN,1) D−→ N (0, σii1 ), since I1(giN,1) = W (giN,1), where W denotes
the underlying isonormal Gaussian process, and moreover

E
[
Iq(giN,q)Ip(g

j
N,p)

]
= 1{q = p}q!〈giN,q, g

j
N,q〉

N→∞−→ 1{q = p}σijq .

Hence, we conclude with [59, Theorem 6.2.3]

(I1(g1
N,1), . . . , IQ(g1

N,Q), . . . , I1(gkN,1), . . . , IQ(gkN,Q)) D−→ NkQ(0, CNQ ),

as N →∞, where

CNQ :=


B11 · · · B1k
... . . . ...

Bk1 · · · Bkk

 ∈ RkQ×kQ and Bij := diag(σij1 , . . . , σ
ij
Q),
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for i, j = 1, . . . , k, is positive semidefinite, due to the structure of σijk . Then the continuous
mapping theorem, cf. [36, Theorem 4.27], applied to the function h : RkQ → Rk defined as

x 7→ Ax, where A :=
(
v1 · · · vk

)>
and vi :=

(
01×(i−1)Q 11×Q 01×(k−i)Q

)
∈ RkQ

yields

(F 1
N,Q, . . . , F

k
N,Q) D−→ Nk

0,

 Q∑
q=1

σijq

k
i,j=1

 = GQ, as N →∞,

since c>h(N) =
(
A>c

)>
N , for N ∼ NkQ(0, CNQ ) and c ∈ Rk, and moreover ACNQA> =(∑Q

q=1 σ
ij
q

)k
i,j=1

. Thus we obtain limN→∞ bN,Q = 0 by [36, Theorem 5.3] and we finally
conclude

lim sup
N→∞

∣∣∣E [exp(i〈t, (F 1
N , . . . , F

k
N )〉)

]
− E [exp(i〈t, G〉)]

∣∣∣
≤ lim

Q→∞
lim sup
N→∞

aN,Q + lim
Q→∞

lim sup
N→∞

bN,Q + lim
Q→∞

cQ = 0,

which shows the assertion.





CHAPTER 3

A Central Limit Theorem for Lipschitz–Killing
Curvatures

In this chapter, we study the excursion set of a real stationary isotropic Gaussian random
field X above a fixed level u ∈ R. We present a proof for the asymptotic normality of the
standardised Lipschitz–Killing curvatures of the intersection of the excursion set with an
observation window as the window grows to the d-dimensional Euclidean space. Moreover a
lower bound for the asymptotic variance is derived.
The result generalizes the work of [22], where a central limit theorem is established for the

Euler characteristic. In the case d = 2, the surface is treated in [44]. For the volume of the
excursion set, the central limit theorem holds under weaker requirements than Gaussianity,
for instance, for quasi-associated random fields, PA- or NA-random fields, Max- or α-stable
fields, cf. the survey [73] and the references therein. For this reason we concentrate on the
Lipschitz–Killing curvatures of degree m = 0, . . . , d− 1 in this work. We note that Theorem 3.1
was independently derived by Marie Kratz and Sreekar Vadlamani in [43].

We pursue the following strategy of proof. We apply the Crofton formula (cf. Theorem 2.9)
from integral geometry to express them-th Lipschitz–Killing curvature Lm

(
CdN ∩X−1([u,∞))

)
as an integral average of the Euler characteristics of the intersections of X−1([u,∞)) with affine
(d−m)-flats, where the integration is with respect to the motion invariant measure µ over the
affine Grassmannian Add−m. By Morse Theory (cf. Theorem 2.8), this characteristic can be
expressed as a difference of counting variables. From these variables the ones depending on the
interior of the intersection of the affine flat and the cube CdN are asymptotically dominating
and the ones depending on the boundary of the intersection are asymptotically negligible,
where the last statement is shown in Section 3.2.5. We then use a refinement of the approach
in [22] to control the dependence of the dominating counting variables on the affine flat. That
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is, we use Rice’s formulas, cf. Section 2.1, in the affine flat to obtain a Hermite expansion of
the m-th Lipschitz–Killing curvature via an approximation argument, cf. Section 3.2.2. This
Hermite expansion leads to a representation of the relevant part of Lm

(
CdN ∩X−1([u,∞))

)
by stochastic integrals, cf. Section 3.2.3, to which we apply Theorem 2.15, which is a result
from the theory of normal approximation based on Stein’s method and Malliavin calculus,
in order to obtain a central limit theorem, cf. Section 3.2.4. In Section 3.2.5 we derive
Hermite expansions for the counting variables on the boundary and establish that they are
asymptotically negligible.

3.1. Main Theorem

We impose the following conditions on a given real random field X = {X(t) | t ∈ Rd}.

(A1) X is a centered, stationary, isotropic Gaussian field. The trajectories are almost surely of
class C3. The covariance function CX(t) = E [X(t)X(0)], t ∈ Rd, of X satisfies CX(0) = 1
and D2CX(0) = −Id.

(A2) For all 0 6= t ∈ Rd the covariance matrices of the vectorsX(0),
(

∂2

∂ti∂tj
X(0)

)
1≤i≤j≤d

 and
((

∂

∂ti
X(0)

)d
i=1

,

(
∂

∂ti
X(t)

)d
i=1

)

have full rank.

(A3) The mapping defined by

ψ(t) := max
{∣∣∣∣∣ ∂k

∂tj1 . . . ∂tjk
CX(t)

∣∣∣∣∣ : k ∈ {0, . . . , 4}, 1 ≤ j1, . . . , jk ≤ d
}

for t ∈ Rd, satisfies

ψ(t) ‖t‖→∞−→ 0 and ψ ∈ L1(Rd, λd).

We heavily rely on (A1) in several places, for instance in the proof of Lemma 3.5 and in
the calculations in the appendix for Lemma 3.2. If (A2) holds, then the conditions on the
covariance from (A1) are always satisfied after normalizing the Gaussian field. We believe that
it is enough to assume C2 regularity and an integrability condition on CX , cf. [21], but stick to
the C3 assumption to smoothen the computations in the appendix. Under the differentiability
assumptions of (A1) and stationarity, the condition (A2) ensures that the paths of X are almost
surely Morse functions and allows us to perform calculations involving Gaussian regressions.
Condition (A3) ensures that we are in the regime of short range dependence and moreover that
the decay of the covariances of the field and its derivatives up to degree four are fast enough
for a central limit theorem to hold. We note that from (A3) we obtain that ψ ∈ Lq(Rd), q ∈ N,
and moreover that X admits a continuous spectral density, cf. [70, Theorem 2.§12.3 (Inversion
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Formula)]. Furthermore the mapping defined by

ψ̃(t) := sup
{∣∣∣∣∣ ∂k

∂v1 . . . ∂vk
CX(t)

∣∣∣∣∣ : k ∈ {0, . . . , 4}, v1, . . . , vk ∈ Sd−1
}
, t ∈ Rd

satisfies ψ̃(t) ≤ d2ψ(t), for t ∈ Rd, and therefore is also in Lq(Rd), q ∈ N.
Let u ∈ R be the level of the considered excursion set and denote by CdN := [−N,N ]d ⊂ Rd

the cube of side length N > 0 centered at the origin. We prove the following central limit
theorem.

Theorem 3.1. Let X be a real Gaussian field on Rd, which satisfies the assumptions (A1)–
(A3), and let m ∈ {0, . . . , d−1}. Then the m-th Lipschitz–Killing curvature Lm of the excursion
set for the level u ∈ R satisfies

Lm
(
CdN ∩X−1([u,∞))

)
− E

[
Lm

(
CdN ∩X−1([u,∞))

)]
Hd(CdN )

1
2

D−→ N (0, σ2
m)

for N →∞ and some σ2
m ≥ 0.

A lower bound for the asymptotic variance σ2
m will be derived in Lemma 3.23. The fact that

Lm
(
CdN ∩X−1([u,∞))

)
is indeed a random variable is established in Lemma A.8.

3.2. Proof of the main theorem

In this section we explain the details of the proof for the central limit theorem stated in
Theorem 3.1.

3.2.1. Approximation of Lipschitz–Killing curvatures

We start the proof by the derivation of a more convenient representation of the m-th Lipschitz–
Killing curvature Lm of the excursion set in CdN . For this purpose, we apply the Crofton
formula, cf. Theorem 2.9, which is applicable for sets of positive reach. Hence, we recall that
almost surely reach(CdN ∩X−1([u,∞))) > 0 by Lemma A.1, and obtain

Lm
(
CdN ∩X−1([u,∞))

)
=
∫
Ad
d−m

L0
(
CdN ∩X−1([u,∞)) ∩ F

)
µ(dF ). (3.1)

By (2.18)

L0(CdN ∩X−1([u,∞)) ∩ F ) = χ(CdN ∩X−1([u,∞)) ∩ F ),

for almost all F . Moreover, by the assumptions made, we know that the trajectories of X are
almost surely and for µ almost all F Morse functions on CdN ∩ F , cf. [1, Definition 9.3.1] and
Lemma A.5. Therefore, restricting the integration to a suitable measurable subset A′ ⊂ Add−m,
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we can apply Theorem 2.8 to the above integrand and obtain

L0(CdN ∩ F ∩X−1([u,∞))) = #{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) even}

−#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) odd}

+
d−m−1∑
j=0

∑
JN∈∂j+mCdN

e(X,F, JN ), (3.2)

where e(X,F, JN ) is given by

#{t ∈ JN ∩ F : X(t) ≥ u,∇(X|JN∩F )(t) = 0, ι−XJN∩F (t) even,∇X(t) ∈ Nt(CdN ∩ F )}

−#{t ∈ JN ∩ F : X(t) ≥ u,∇(X|JN∩F )(t) = 0, ι−XJN∩F (t) odd,∇X(t) ∈ Nt(CdN ∩ F )}. (3.3)

We note that the counting variables in (3.3) are structurally the same as the ones in the first
two lines of equation (3.2). For t ∈ intCdN ∩ F , we have Nt(CdN ∩ F ) = (F ◦)⊥. Hence, the
condition ∇X(t) ∈ Nt(CdN ∩ F ) is true for every t ∈ intCdN ∩ F with ∇(X|F )(t) = 0 and is
therefore omitted. The measurability of these counting variables is established in Lemma A.11.

For further reference, we define the following variables. Let l ≥ m and JN ∈ ∂lCdN . If l = d

we have JN = intCdN and we define

ζmN :=
∫
Ad
d−m

#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) even}

−#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) odd}µ(dF ). (3.4)

In the cases l < d we define

εmJN

:=
∫
Ad
d−m

#{t ∈ JN ∩ F : X(t) ≥ u,∇(X|JN∩F )(t) = 0, ι−XJN∩F (t) even,∇X(t) ∈ Nt(CdN ∩ F )}

−#{t ∈ JN ∩ F : X(t) ≥ u,∇(X|JN∩F )(t) = 0, ι−XJN∩F (t) odd,∇X(t) ∈ Nt(CdN ∩ F )}µ(dF ),
(3.5)

where the definitions in (3.4) and (3.5) are tailored to satisfy

Lm
(
CdN ∩X−1([u,∞))

)
= ζmN +

d−m−1∑
j=0

∑
JN∈∂j+mCdN

εmJN .

In the following, we show a central limit theorem for the standardized random variable
ζmN , whereas the boundary terms are treated in Section 3.2.5. By the statement (3.41) and
Slutzky’s theorem, we deduce that after standardizing, the term

d−m−1∑
j=0

∑
JN∈∂j+mCdN

εmJN
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is asymptotically negligible and only the integrated counting variables in the (d−m)-dimensional
set intCdN ∩ F contribute to the central limit theorem.
For the approximations to come, we define for ε > 0 and l ∈ {1, . . . , d} the mapping

δlε : Rd → R, x 7→ 1
εl−mκl−m

1Bdε (x),

which is a Dirac sequence for ε → 0 on every (l −m)-dimensional linear subspace E of Rd,
that is, for each continuous mapping f : E → R, we have

lim
ε→0

∫
E
δlε(x)f(x)Hl−m(dx) = f(0).

We note that although the mapping δlε depends on m, we do not indicate this dependence in
favor of a shorter notation.
The following lemma lays the foundation of the approximation of the random variables in

(3.4) and (3.5). We postpone its proof to the Appendix B.

Lemma 3.2. Let G ⊂ Rd be compact and assume the conditions (A1) and (A2). Furthermore
let JN ∈ ∂lCdN and l > m. Then the following is true:

(i) There is a constant c = c(X, d,m, l,N,G) > 0 such that for almost all F ∈ Add−m and
all y ∈ G

E
[
#{t ∈ JN ∩ F : ∇(X|JN∩F )(t) = y}2

]
< c.

(ii) For almost all F ∈ Add−m the mapping

y 7→ E
[
#{t ∈ JN ∩ F : ∇(X|JN∩F )(t) = y}2

]
is continuous on (aff(JN ) ∩ F )◦ ∩G.

(iii) For almost all F ∈ Add−m

ξN (F , ε) L
2(P)−→ ξN (F ), as ε→ 0,

where

ξN (F, ε) := (−1)d−m
∫
CdN∩F

δdε (∇(X|F )(t))1{X(t) ≥ u} det(D2(X|F )(t))Hd−m(dt),

ξN (F ) := #{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) even}

−#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) odd}.

Motivated by the frequent use of a Dirac sequence to approximate the counting variables in
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(3.2), e.g. [1, Lemma 11.2.10], we introduce the approximations

ζmN,ε := (−1)d−m
∫
Ad
d−m

∫
CdN∩F

δdε (∇(X|F )(t))1{X(t) ≥ u} det(D2(X|F )(t))Hd−m(dt)µ(dF ).

(3.6)

Using the results of the Lemma 3.2, we show that ζmN,ε is indeed an approximation of the
variable ζmN in the sense of L2(P) convergence.

Lemma 3.3. Let (Xt)t∈Rd be a real-valued Gaussian field satisfying (A1) and (A2). Then

ζmN,ε
L2(P)−→ ζmN

as ε→ 0, where ζmN and ζmN,ε are defined by (3.4) and (3.6), respectively.

Proof. By Jensen’s inequality and Fubini’s theorem

E
[(
ζmN − ζmN,ε

)2
]
≤ cE

[∫
Ad
d−m

(ξN (F )− ξN (F, ε))2 µ(dF )
]

= c

∫
Ad
d−m

E
[
(ξN (F )− ξN (F, ε))2

]
µ(dF ),

where c = µ({F : F ∩ CdN 6= ∅}) ≤ ν(Gdd−m) diam(CdN )mκm. Thus, if we justify changing the
order of the limit limε→0 and the integral

∫
Ad
d−m

, we are done by Lemma 3.2 (iii). In order to
apply the dominated convergence theorem, we bound the integrand by an integrable function,
not depending on ε. Observe that

E
[
(ξN (F )− ξN (F, ε))2

]
≤ 2E

[
#{t ∈ intCdN ∩ F | ∇(X|F )(t) = 0}2

]
+ 2E

(∫
intCdN∩F

δdε (∇(X|F )(t))| det(D2(X|F )(t))|Hd−m(dt)
)2
 .

For the first term, Lemma 3.2 (i) yields

E
[
#{t ∈ intCdN ∩ F : ∇(X|F )(t) = 0}2

]
≤ c1{intCdN ∩ F 6= ∅},

where c > 0 is a constant depending on X,d, m and N . For the second term, we first apply
the coarea formula to ∇(X|F ), cf. [25, Theorem 3.2.12], which yields

E

(∫
intCdN∩F

δdε (∇(X|F )(t))|det(D2(X|F )(t))|Hd−m(dt)
)2


= E
[(∫

F ◦
#{t ∈ intCdN ∩ F | ∇(X|F )(t) = y}δdε (y)Hd−m(dy)

)2
]
.

Then by Jensen’s inequality applied to the measure 1{y ∈ F ◦}δdε (y)Hd−m(dy) followed by
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Fubini’s theorem, we bound this by∫
F ◦

E
[
#{t ∈ intCdN ∩ F | ∇(X|F )(t) = y}2

]
δdε (y)Hd−m(dy).

Again by Lemma 3.2 (i), we can bound this for all ε ≤ 1 by the expression

c1{intCdN ∩ F 6= ∅}
∫
F ◦
δdε (y)Hd−m(dy) = c1{intCdN ∩ F 6= ∅},

for a constant c > 0. Both bounds are independent of ε and integrable with respect to µ, which
shows the assertion.

Before we move on with the main proof, we show the following lemma to obtain a more
concrete representation of ζmN,ε. We introduce the following notation. For F ∈ Add−m, let
bF = (vi)d−mi=1 denote an orthonormal basis of F ◦. In the formulation of the following lemma,
the specific choice of this basis is irrelevant.

Lemma 3.4. Let ε > 0 and assume (A1). Then

ζmN,ε = (−1)d−m
∫
Gd
d−m

∫
CdN

δdε (∇bLX(t))1{X(t) ≥ u} det
(
D2
bL
X(t)

)
dt ν(dL),

where ∇bF and D2
bF

are defined in (2.3) and (2.4), respectively.

Proof. Recall that by definition ∇(f |F )(t) =
∑d−m
i=1

∂
∂vi
f(t)vi and therefore the rotation invari-

ance of δdε yields

δdε (∇(X|F )) = 1
εd−mκd−m

1Bdε (∇(X|F )) = δdε (∇bFX).

Also by definition D2(X|F )(t) =
(
v1 · · · vd−m

) (
∂2

∂vi∂vj
X(t)

)d−m
i,j=1

(
v1 · · · vd−m

)>
so that,

as a linear mapping from F ◦ into F ◦, it has the transformation matrix
(

∂2

∂vi∂vj
X(t)

)d−m
i,j=1

with
respect to the chosen basis, and therefore we have

det(D2(X|F )) = det
(
D2
bF
X
)
.

This yields with definition (3.6)

ζmN,ε = (−1)d−m
∫
Ad
d−m

∫
CdN∩F

δdε (∇bFX(t))1{X(t) ≥ u}det
(
D2
bF
X(t)

)
Hd−m(dt)µ(dF )

and we conclude by representation of the measure µ, cf. (2.2),

ζmN,ε = (−1)d−m
∫
Gd
d−m

∫
L⊥

∫
CdN∩(L+y)

δdε (∇bL+yX(t))1{X(t) ≥ u}

× det
(
D2
bL+yX(t)

)
Hd−m(dt)Hm(dy) ν(dL).
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Hence, by Fubini’s theorem

(−1)d−m
∫
Gd
d−m

∫
L⊥

∫
L
1{t+ y ∈ CdN}δdε (∇bLX(t+ y))1{X(t+ y) ≥ u}

× det
(
D2
bL
X(t+ y)

)
Hd−m(dt)Hm(dy) ν(dL)

= (−1)d−m
∫
Gd
d−m

∫
CdN

δdε (∇bLX(t))1{X(t) ≥ u}det
(
D2
bL
X(t)

)
Hd(dt) ν(dL),

which establishes the assertion.

3.2.2. Hermite type expansion

From now on, let the field X satisfy the assumptions (A1)–(A3). We start this subsection by
defining for D := d −m + (d −m)(d −m + 1)/2 + 1 the RD-valued Gaussian random field
{Z(L, t) : Ω→ RD | (L, t) ∈ Gdd−m × Rd} by

Z(L, t) :=

( ∂

∂vi
X(t)

)d−m
i=1

,

(
∂2

∂vi∂vj
X(t)

)
1≤i≤j≤d−m

, X(t)


and denote by Σ the covariance matrix of Z(L, t), (L, t) ∈ Gdd−m × Rd. We note that the
definition depends on the choice of bL, but considering Lemma 3.4, this does not matter. We
formulate the following lemma.

Lemma 3.5. The matrix Σ is independent of t ∈ Rd and L ∈ Gdd−m. Moreover, we have

Σ = ΛΛ>, where Λ ∈ RD×D is invertible and given by Λ =
(
Id−m 0

0 Λ2

)
, for some invertible,

lower triangular matrix Λ2 ∈ R(D−d+m)×(D−d+m).

Proof. By assumption (A1) on the random field X, we obtain from (2.8), (2.10) and isotropy

E
[
∂

∂vi
X(t) ∂

∂vj
X(t)

]
= E

[
∂

∂ti
X(0) ∂

∂tj
X(0)

]
= δij , (3.7)

E
[
∂

∂vi
X(t) ∂2

∂vk∂vl
X(t)

]
= E

[
∂

∂ti
X(0) ∂2

∂tk∂tl
X(0)

]
= 0,

E
[
∂

∂vi
X(t)X(t)

]
= E

[
∂

∂ti
X(0)X(0)

]
= 0,

as well as

E
[

∂2

∂vi∂vj
X(t) ∂2

∂vk∂vl
X(t)

]
= E

[
∂2

∂ti∂tj
X(0) ∂2

∂tk∂tl
X(0)

]
,

E
[

∂2

∂vi∂vj
X(t)X(t)

]
= E

[
∂2

∂ti∂tj
X(0)X(0)

]
,

E [X(t)X(t)] = E [X(0)X(0)] .
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Assumption (A2) and stationarity yield that Σ is positive definite. Hence, the well-known
Cholesky decomposition, cf. [7, Fact 8.9.37], yields the assertion.

Using Λ, we define the decorrelated process

Y (L, t) := Λ−1Z(L, t), t ∈ Rd, L ∈ Gdd−m. (3.8)

For fixed t ∈ Rd and L ∈ Gdd−m, the random vector Y (L, t) is standard normal, i.e. Y (L, t) ∼
ND(0, ID). However, note that for different t, s ∈ Rd the vectors Y (L, t) and Y (L, s) are in
general not independent. In what follows we will be using the stationarity

(
Y (L, t), Y (L′, t′)

) D= (
Y (L, t+ h), Y (L′, t′ + h)

)
,

where t, t′, h ∈ Rd and L,L′ ∈ Gdd−m. Indeed, by the stationarity of X and its derivatives, we
have for suitable mappings fL and fL′ that

(Y (L, t), Y (L′, t′))

= (fL(∇X(t), D2X(t), X(t)), fL′(∇X(t′), D2X(t′), X(t′)))
D= (fL(∇X(t+ h), D2X(t+ h), X(t+ h)), fL′(∇X(t′ + h), D2X(t′ + h), X(t′ + h)))

= (Y (L, t+ h), Y (L′, t′ + h)).

We will now use the approximation of Lemma 3.3 to obtain a Hermite decomposition of the
random variable of interest. We thus define the mapping Gε : Rd−m ×R(d−m)(d−m+1)/2+1 → R
by

Gε(x, y) := (−1)d−mδdε (x) det
((

Λ2y
)
1,...,(d−m)(d−m+1)/2

)
1{
(
Λ2y

)
D−(d−m) ≥ u},

where we use the shorthand notation (x)i1,...,ik := (xi1 , . . . , xik) for the projection onto the
specified coordinates. In this definition the vector

(
Λ2y

)
1,...,(d−m)(d−m+1)/2 is identified with

the symmetric (d−m)× (d−m)-matrix, whose diagonal and upper diagonal entries are given
by (Λ2y)1,...,(d−m)(d−m+1)/2, according to the way one identifies

(
∂2

∂vi∂vj
X(t)

)
1≤i≤j≤d−m

with a
vector.

Thus by Lemma 3.4 we obtain

ζmN,ε =
∫
Gd
d−m

∫
CdN

Gε(Y (L, t)) dt ν(dL),

where now the randomness enters the random variable ζmN,ε through the decorrelated process Y
instead of the process Z. We note now that the mapping Gε is an element of L2(RD,ND(0, ID)).
Therefore, Gε can be expanded in the orthonormal basis {n!−1/2H̃n : n ∈ ND0 }, cf. Section
2.4.1. Thus we obtain

Gε =
∞∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n, (3.9)
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in L2(RD,ND(0, ID)), where

c(Gε, n) :=n!−1
∫
RD

Gε(x)H̃n(x)φD(x) dx

=(−1)d−m∏D
i=1 ni!

∫
Rd−m

δdε (x)
d−m∏
i=1

Hni(x)φd−m(x) dx
∫
RD−(d−m)

1{(Λ2y)D−(d−m) ≥ u}

× det
(
(Λ2y)1,...,(d−m)(d−m+1)/2

) D∏
i=d−m+1

Hni(y)φD−(d−m)(y) dy. (3.10)

It is this Hermite expansion of the mapping Gε, which helps to establish an expansion of the
random variable ζmN,ε, as is shown in the next lemma. We already note here that the limit
ε → 0 of the coefficients exists, due to the continuity of the Hermite polynomials and the
density of the normal distribution.

Lemma 3.6. Let ε > 0 and let X satisfy (A1) - (A3). Then

ζmN,ε =
∑
q≥0

∑
n∈ND0 ,|n|=q

∫
Gd
d−m

c(Gε, n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL),

where the convergence is in L2(P).

Proof. The right side is an element in L2(P) since it is the limit of a Cauchy sequence, which
can be seen by Jensen’s inequality and (3.9). Indeed, let k1 < k2 be integers. Then

E


∫

Gd
d−m

∫
CdN

k2∑
q=k1+1

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(Y (L, t)) dt ν(dL)


2

≤ ν(Gdd−m)Hd(CdN )E

∫
Gd
d−m

∫
CdN

 k2∑
q=k1+1

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(Y (L, t))


2

dt ν(dL)

 ,
and by Fubini’s theorem the preceding term equals

ν(Gdd−m)Hd(CdN )
∫
Gd
d−m

∫
CdN

E


 k2∑
q=k1+1

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(Y (L, t))


2 dt ν(dL). (3.11)

Properties of the Hermite polynomials, cf. Lemma 2.10 (ii), yield E[H̃n(Y (L, t))H̃n′(Y (L, t))] =
1{n = n′}n!, since the process is standard normal for given L and t. Thus the term in (3.11)
equals

ν(Gdd−m)Hd(CdN )
∫
Gd
d−m

∫
CdN

k2∑
q=k1+1

∑
n∈ND0 ,|n|=q

c(Gε, n)2n! dt ν(dL)

= ν(Gdd−m)2Hd(CdN )2
k2∑

q=k1+1

∑
n∈ND0 ,|n|=q

c(Gε, n)2n!.
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By adding positive terms, we bound this by

ν(Gdd−m)2Hd(CdN )2
∞∑

q=k1+1

∑
n∈ND0 ,|n|=q

c(Gε, n)2n!. (3.12)

Parseval’s equality yields the bound ν(Gdd−m)2Hd(CdN )2‖Gε‖2L2(ND(0,ID)) <∞, and we deduce
that for k1 large enough the term in (3.12) tends to zero, showing the Cauchy property.
To establish the asserted equality, we recall that by Lemma 3.4

ζmN,ε =
∫
Gd
d−m

∫
CdN

Gε(Y (L, t)) dt ν(dL),

thus for k ∈ N, we have that

E
[(
ζεm,N −

∫
Gd
d−m

∫
CdN

k∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(Y (L, t)) dt ν(dL)
)2]

= E
[( ∫

Gd
d−m

∫
CdN

Gε(Y (L, t))−
k∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(Y (L, t)) dt ν(dL)
)2]

.

By two applications of Jensen’s inequality, this can be bounded by

cE
[ ∫

Gd
d−m

∫
CdN

(
Gε(Y (L, t))−

k∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(Y (L, t))
)2
dt ν(dL)

]
,

where c = ν(Gdd−m)Hd(CdN ). By Fubini’s theorem, we obtain equality to

c

∫
Gd
d−m

∫
CdN

E
[(
Gε(Y (L, t))−

k∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(Y (L, t))
)2]

dt ν(dL)

= c

∫
Gd
d−m

∫
CdN

∫
RD

(
Gε(x)−

k∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(x)
)2
φD(x) dx dt ν(dL)

= c2
∫
RD

(
Gε(x)−

k∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(x)
)2
φD(x) dx.

Hence, by (3.9), we conclude

c2
∫
RD

(
Gε(x)−

k∑
q=0

∑
n∈ND0 ,|n|=q

c(Gε, n)H̃n(x)
)2
φD(x) dx k→∞−→ 0,

which shows the assertion.

The following lemma is needed to deduce that the established Hermite expansion is orthogonal.
It is a special case of [76, Lemma 3.2] and we give a proof for completeness.
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Lemma 3.7. Let V,W be two D-dimensional random vectors where

(V,W ) ∼ N2D

(
0,
(

ID (E [ViWj ])1≤i,j≤D

(E [WiVj ])1≤i,j≤D ID

))

and let n, n′ ∈ ND0 . Then

E
[
H̃n(V )H̃n′(W )

]
= 1{|n| = |n′|}

∑
d∈ND×D0∑D

i=1 dij=nj ,
∑D

j=1 dij=n
′
i

n!n′!
∏

1≤i,j≤D

E [ViWj ]dij
dij !

.

Proof. Observe that via the moment generating function of a multivariate normal distribution,
we obtain for t ∈ R2D

E

 D∏
i=1

exp(tiVi −
1
2 t

2
i )

2D∏
i=D+1

exp(tiWi−D −
1
2 t

2
i )

 = exp

 D∑
i,j=1

titD+jE [ViWj ]

 . (3.13)

We use Lemma 2.10 (iv) to see the equality of the left side in (3.13) to

∞∑
n1,...,nD,n′1,...,n

′
D=0

tn1
1 · · · t

nD
D t

n′1
1 · · · t

n′D
D

n!n′! E
[
H̃n(V )H̃n′(W )

]
,

where we used [76, Lemma 3.1] to change the order of summation and expectation. The right
side in (3.13) equals

∞∑
r=0

1
r!

 D∑
i,j=1

titD+jE [ViWj ]

r

=
∞∑
r=0

∑
d∈ND×D0 ,

∑D

i,j=1 dij=r

∏
1≤i,j≤D

1
dij !

(titD+j)dijE [ViWj ]dij

=
∞∑
r=0

∑
d∈ND×D0 ,

∑D

i,j=1 dij=r

∏
1≤i,j≤D

(
E [ViWj ]dij

dij !

)
t

∑D

k=1 d1k
1 · · · t

∑D

k=1 dDk
D t

∑D

k=1 dk1
D+1 · · · t

∑D

k=1 dkD
2D ,

by the multinomial theorem in the first line. Note that the sum over the exponents of
the variables t1, . . . , tD equals the one over the exponents of variables tD+1, . . . , t2D, i.e.∑D
i=1

∑D
j=1 dji =

∑D
i=1

∑D
j=1 dij = r. Hence by comparing the coefficients of the resulting

equality between power series in t, we obtain for |n| 6= |n′| that

E[H̃n(V )H̃n′(W )] = 0.

Furthermore for |n| = |n′|, the monomial of degree (n, n′) corresponds to r = 1
2(|n|+ |n′|) and

can therefore be found in a unique term of the sum over r, which yields the assertion.

To apply this lemma in our situation, we recall that the process (Y (L, t))(L,t)∈G(d,d−m)×Rd is
Gaussian and the vector Y (L, t) is standard normal for fixed (L, t) ∈ G(d, d−m)× Rd.
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Using the preceding lemmas, we can now give a Hermite type expansion of the random
variable ζmN . We first define

c(n) := (2π)−(d−m)/2
d−m∏
i=1

Hni(0)(−1)d−m∏D
i=1 ni!

∫
RD−(d−m)

det
(
(Λ2y)1,...,(d−m)(d−m+1)/2

)
× 1{(Λ2y)D−(d−m) ≥ u}

D∏
i=d−m+1

Hni(y)φD−(d−m)(y) dy. (3.14)

The continuity of the Hermite polynomials and the Gaussian density yield

∫
Rd−m

δdε (x)
d−m∏
i=1

Hni(x)φd−m(x) dx→ (2π)−(d−m)/2
d−m∏
i=1

Hni(0), as ε→ 0,

and we obtain

c(n) = lim
ε→0

c(Gε, n).

These are the Hermite coefficients in the Hermite expansion of ζmN as we see in the next lemma.
We note that the following expansion is orthogonal due to Lemma 3.7.

Theorem 3.8. Let X satisfy (A1) – (A3). Then

ζmN
L2(P)=

∑
q≥0

∑
n∈ND0 ,|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL). (3.15)

Proof. We show that the right side of the asserted equality is the limit of a Cauchy sequence,
which implies that it is a well-defined element in L2(P). For integers k1 < k2 we have

E


 k2∑
q=k1+1

∑
|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

2


=
k2∑

q=k1+1
E


∑
|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

2


by the orthogonality established in Lemma 3.7. We note that in order to use the orthogonality,
we need Fubini’s theorem, which is applicable as a consequence of [76, Lemma 3.1]. An
application of Fatou’s lemma yields the upper bound

k2∑
q=k1+1

lim inf
ε→0

E


∑
|n|=q

∫
Gd
d−m

c(Gε, n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

2


≤
∞∑

q=k1+1
lim inf
ε→0

E


∑
|n|=q

∫
Gd
d−m

c(Gε, n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

2
 , (3.16)

where we added positive terms in the second line. By adding even more positive terms, another
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application of Fatou’s lemma and the orthogonality together with the continuity of the inner
product, the expression in (3.16) is bounded from above by

lim inf
ε→0

E[
( ∞∑
q=0

∑
|n|=q

∫
Gd
d−m

c(Gε, n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)
)2] = lim inf

ε→0
E[(ζmN,ε)2]

= E[(ζmN )2] <∞,

where we have used Lemma 3.6 and finally Lemma 3.3. Thus (3.16) is the tail of a convergent
series, which yields that the sequence is Cauchy.

To show the asserted equality, we define

Iq :=
∑
|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

and write πk : L2(P)→ L2(P) for the projection onto the homogeneous chaos of degree 0 up to
k, that is onto ∪ki=0Hi (cf. Theorem 2.14), and πk : L2(P)→ L2(P) for the projection onto the
homogeneous chaos greater than k, that is ∪i≥k+1Hi, k ∈ N0. We observe that

‖ζmN −
∞∑
q=0

Iq‖L2(P)

≤ ‖πk(ζmN )−
∞∑
q=k

Iq‖L2(P) + ‖πk(ζmN − ζmN,ε)‖L2(P) + ‖πk(ζmN,ε)−
k∑
q=0

Iq‖L2(P)

≤ ‖πk(ζmN )‖L2(P) + ‖
∞∑
q=k

Iq‖L2(P) + ‖ζmN − ζmN,ε‖L2(P) + ‖πk(ζmN,ε)−
k∑
q=0

Iq‖L2(P).

The first two terms tend to 0 for k →∞, since both functions belong to L2(P), as does the
third one for ε→ 0, due to Lemma 3.3. For the last one we have

‖πk(ζmN,ε)−
k∑
q=0

Iq‖L2(P) = E

 k∑
q=0

∑
|n|=q

∫
Gd
d−m

c(Gε, n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

−
k∑
q=0

∑
|n|=q

∫
Gd
d−m

lim
ε→0

c(Gε, n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

2
 ,

which equals

k∑
q,q′=0

∑
|n|=q

∑
|n′|=q′

(
c(Gε, n)− lim

ε→0
c(Gε, n)

)(
c(Gε, n′)− lim

ε→0
c(Gε, n′)

)

× E
[∫

Gd
d−m

∫
CdN

H̃n(Y (L, t)) dt ν(dL)
∫
Gd
d−m

∫
CdN

H̃n′(Y (L, t)) dt ν(dL)
]
.

Hence, the assertion follows by first taking the limit ε→ 0 and then k →∞.



3.2. Proof of the main theorem 41

3.2.3. Embedding into an isonormal Gaussian process

In this section, we derive a representation of the standardized random variable ζmN in terms of
multiple stochastic integrals with respect to a suitable isonormal process. The motivation comes
from the theory developed in [59], in which a powerful central limit theorem for isonormal
Gaussian processes on Hilbert spaces is established, cf. Theorem 2.15.

Lemma 3.9. Let X satisfy (A1) – (A3) and let N > 0. Then

ζmN − E[ζmN ]
Hd(CdN )1/2

D=
∞∑
q=1

Iq(gN,q),

with Iq denoting the q-th multiple Wiener-Itô integral with respect to the underlying isonormal
Gaussian process defined in (3.19) and

gN,q := 1
Hd(CdN )1/2

∑
k∈{1,...,D}q

∫
Gd
d−m

b(k)
∫
CdN

ϕLt,k1 ⊗ · · · ⊗ ϕ
L
t,kq dt ν(dL), (3.17)

where ϕLt,kj and b(·) are defined in (3.20) and (3.22), respectively.

Proof. We first embed the Gaussian field {Y (L, t) : Ω → RD | (L, t) ∈ Gdd−m × Rd} into an
isonormal process. By standard theory, cf. Theorem 2.4, we obtain for s, t ∈ Rd

E [X(t)X(s)] =
∫
Rd
ei〈t−s,x〉f(x) dx,

where f denotes the spectral density of X. Recall that the spectral density exists due to (A3).
Moreover, Theorem 2.2 combined with the latter equality and a subsequent change in order of
differentiation and integration, which is allowed by [67, Theorem 1.2.9], lead to

E
[

∂k

∂v1 . . . ∂vk
X(t) ∂l

∂v′1 . . . ∂v
′
l

X(s)
]

= (−1)l
∫
Rd
gx(t− s)f(x) dx, (3.18)

where gx := ∂(k+l)

∂v1...∂vk∂v
′
1...∂v

′
l
ei〈·,x〉, x ∈ Rd, and k, l ∈ {0, 1, 2}, v1, . . . , vk, v

′
1, . . . , v

′
l ∈ Sd−1.

Following [60, Section 9.1] adapted to our setting, we define the real Hilbert space of complex
valued functions

H :=
{
h : Rd → C | h(−x) = h(x),

∫
Rd
|h(x)|2f(x) dx <∞

}
equipped with the inner product

〈g, h〉L2(fλd) :=
∫
Rd
g(x)h(x)f(x) dx,

which is real since the functions are Hermitian and the measure fλd is symmetric. By [59,
Prop. 2.1.1], there exists an isonormal Gaussian process W on H, so that for g, h ∈ H

E [W (g)W (h)] = 〈g, h〉L2(fλd). (3.19)
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Moreover we define for L ∈ Gdd−m, t ∈ Rd and j = 1, . . . , D the mapping

ϕLt,j : Rd → C, x 7→
D∑
α=1

Λ−1
jα να(L, x)ei〈t,x〉 ∈ H, (3.20)

where

ν(L, ·) : Rd → CD, x 7→
(
(i〈vα, x〉)1≤α≤d−m, (−〈vα, x〉〈vβ, x〉)1≤α≤β≤d−m, 1

)
and v1, . . . , vd−m denotes the chosen orthonormal basis bF of L. We note that νk(L, x)ei〈·,x〉 is
the directional derivative of ei〈·,x〉 of the same order and in the same direction as the derivative
of X in the k-th component of Z(L, ·). Then we obtain

Y (L, t) D=
(
W (ϕLt,1), . . . ,W (ϕLt,D)

)
as processes on Gdd−m × Rd. To see this, it suffices to show that their covariance structures
coincide, since both processes are centered Gaussian processes. By the definition of Y , cf.
(3.8), and (3.18), we have for (L, t), (L′, t′) ∈ Gdd−m × Rd and i, j ∈ {1, . . . , D}

E[Yi(L, t)Yj(L′, t′)] =
D∑

r,s=1
Λ−1
ir Λ−1

js E[Zr(L, t)Zs(L′, t′)]

=
D∑

r,s=1
Λ−1
ir Λ−1

js

∫
Rd
νr(L, x)ei〈t,x〉νs(L′, x)ei〈t′,x〉f(x) dx

= 〈ϕLt,i, ϕL
′

t′,j〉L2(fλd). (3.21)

By (3.19) we obtain

〈ϕLt,i, ϕL
′

t′,j〉L2(fλd) = E[W (ϕLt,i)W (ϕL′t′,j)]

and therefore the assertion. Moreover, we observe that

〈ϕLt,i, ϕLt,j〉L2(fλd) = E[Yi(L, t)Yj(L, t)] = δij ,

for i, j = 1, . . . , D and (L, t) ∈ Gdd−m×Rd. Hence, Theorem 2.13 implies the second equality in

D∏
i=1

Hni(Yi(·, ·))
D=

D∏
i=1

Hni(W (ϕ··,i)) = Iq((ϕ··,1)⊗n1 ⊗ · · · ⊗ (ϕ··,D)⊗nD),

where q ∈ N and n = (n1, . . . , nD) ∈ ND0 such that |n| = q. The last equation and Theorem
3.8 yield

ζmN − E[ζmN ]
Hd(CdN )1/2

D=
∞∑
q=1

1
Hd(CdN )1/2

∑
n∈ND0
|n|=q

∫
Gd
d−m

c(n)
∫
CdN

Iq((ϕLt,1)⊗n1 ⊗ · · · ⊗ (ϕLt,D)⊗nD) dt ν(dL),
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where the right side converges in L2(P). We now symmetrise the arguments of the stochastic
integral. To this end define for q,D ∈ N and n ∈ ND0 with |n| = q the set

An := {k ∈ {1, . . . , D}q :
q∑
j=1

1{i}(kj) = ni,∀i = 1, . . . , D}

of multiindices, which contain the number i exactly ni times, i = 1, . . . , D. Note that for
k ∈ An all permutations of k are also in An, and moreover, these sets form a partition of the
set {1, . . . , D}q, i.e. {1, . . . , D}q = ∪̇n∈ND0 ,|n|=qAn. We further define for k ∈ {1, . . . , D}q

b(k) :=
∑

n∈ND0 ,|n|=q

1{k ∈ An}
c(n)
|An|

, (3.22)

which is symmetric in the components of k. Since the Wiener-Itô integrals are invariant with
respect to permutations, cf. Theorem 2.11, we obtain for n ∈ ND0 with |n| = q

Iq(ϕL⊗n1
t,1 ⊗ · · · ⊗ ϕL⊗nDt,D ) = 1

|An|
∑
k∈An

Iq(ϕLt,k1 ⊗ · · · ⊗ ϕ
L
t,kq)

and thus

∑
n∈ND0 ,|n|=q

c(n)Iq(ϕL⊗n1
t,1 ⊗ · · · ⊗ ϕL⊗nDt,D ) =

∑
n∈ND0 ,|n|=q

∑
k∈An

c(n)
|An|

Iq(ϕLt,k1 ⊗ · · · ⊗ ϕ
L
t,kq)

=
∑

k∈{1,...,D}q
b(k)Iq(ϕLt,k1 ⊗ · · · ⊗ ϕ

L
t,kq).

Hence by Fubini’s theorem for stochastic integrals (cf. [60, Theorem 5.13.1]) the assertion
follows. Finally, we note that the functions gN,q are symmetric, since the coefficients b(·) are
symmetric, and furthermore state the following equality

Iq(gN,q)
D=

∑
n∈ND0 ,|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL), (3.23)

which can be deduced by the preceding arguments, for later reference.

3.2.4. Application of a central limit theorem for isonormal processes

In this section, we verify the conditions of Theorem 2.15 in the univariate case, which yields
the central limit for the standardized random variable ζmN . Before we start, we need to prove
the following lemma, which will be needed for condition (ii) and (iv).

Lemma 3.10. There exists K = K(X, d,m) > 0 such that

∑
n∈ND0 ,|n|=q

c(n)2n! ≤ KqD, for q ≥ 1.

Proof. In the following the constant K may change from appearance to appearance. We start
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by recalling the definition (3.14)

c(n) = (2π)−(d−m)/2
d−m∏
i=1

Hni(0)
ni!

(−1)d−m∏D
i=d−m+1 ni!

z(n),

where

z(n) :=
∫
RD−d+m

det
(
(Λ2y)1,..., (d−m)(d−m+1)

2

)
1{(Λ2y)D−d+m ≥ u}

D∏
i=d−m+1

Hni(y)φD−d+m(y) dy.

Proposition 3 in [32] yields
∏d−m
i=1

|Hni (0)|√
ni!
≤ K, for a constant K > 0, and thus

(
(2π)−(d−m)/2

d−m∏
i=1

Hni(0)
ni!

)2

≤ K∏d−m
i=1 ni!

.

By Hölder’s inequality and Lemma 2.10 (iii), we obtain

z(n)2 ≤
∫
RD−d+m

det
(
(Λ2y)1,..., (d−m)(d−m+1)

2

)2
1{(Λ2y)D−d+m ≥ u}φD−d+m(y) dy

×
∫
RD−d+m

 D∏
i=d−m+1

Hni(y)

2

φD−d+m(y) dy

= K
D∏

i=d−m+1
ni!.

The previous inequalities yield for q ≥ 1

∑
n∈ND0 ,|n|=q

c(n)2n! ≤ K
∑

n∈ND0 ,|n|=q

1 ≤ K
∑

0≤n1,...,nD≤q
1 ≤ K(q + 1)D ≤ KqD,

which shows the assertion.

We verify the conditions of Theorem 2.15 and proceed in numerical order. For condition (i),
we calculate the norm of gN,q, cf. (3.17), by an application of Fubini’s theorem and obtain

q!‖gN,q‖2H⊗q

= q!
Hd(CdN )

∑
k,l∈{1,...,D}q

b(k)b(l)
∫
Rdq

∫
Gd
d−m

∫
Gd
d−m

∫
CdN

∫
CdN

ϕLt,k1 ⊗ · · · ⊗ ϕ
L
t,kq(x1, . . . , xq)

× ϕL′t′,l1 ⊗ · · · ⊗ ϕ
L′
t′,lq

(x1, . . . , xq) dt dt′ ν(dL) ν(dL′)
q∏
i=1

f(xi) d(x1, . . . , xq)

= q!
Hd(CdN )

∑
k,l∈{1,...,D}q

b(k)b(l)
∫
Gd
d−m

∫
Gd
d−m

∫
CdN

∫
CdN

q∏
i=1

∫
Rd
ϕLt,ki(x)ϕL′t′,li(x)

× f(x) dx dt dt′ ν(dL) ν(dL′)
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By (3.21) the above equals

q!
Hd(CdN )

∑
k,l∈{1,...,D}q

b(k)b(l)
∫
Gd
d−m

∫
Gd
d−m

∫
CdN

∫
CdN

q∏
i=1

E
[
Yki(L, t)Yli(L′, t′)

]
dt dt′ ν(dL) ν(dL′).

(3.24)

Stationarity and Fubini’s theorem imply the following equalities

∫
CdN

∫
CdN

q∏
i=1

E
[
Yki(L, t)Yli(L′, t′)

]
dt dt′ =

∫
CdN

∫
CdN−t′

q∏
i=1

E
[
Yki(L, t+ t′)Yli(L′, t′)

]
dt dt′

=
∫
Cd2N

q∏
i=1

E
[
Yki(L, t)Yli(L′, 0)

]
Hd(CdN ∩ (CdN − t)) dt.

Thus, by Fubini’s theorem, (3.24) equals

q!
∑

k,l∈{1,...,D}q
b(k)b(l)

∫
Gd
d−m

∫
Gd
d−m

∫
Cd2N

q∏
i=1

E
[
Yki(L, t)Yli(L′, 0)

]
× H

d(CdN ∩ (CdN − t))
Hd(CdN )

dt ν(dL) ν(dL′).

The definition of Y , cf. (3.8), yields Yi(L, t) =
∑D
k=1 Λ−1

ik Zk(L, t), for i = 1, . . . , D and t ∈ Rd.
Hence, by assumption (A3) there exists a constant c = c(X,D, q) ≥ 0 such that∣∣∣∣∣

q∏
i=1

E
[
Yi(L, t)Yj(L′, 0)

]∣∣∣∣∣ ≤ cψ(t),

which is an integrable upper bound on Rd. Therefore, the dominated convergence theorem
yields

q!‖gN,q‖2H⊗q
= q!

∑
k,l∈{1,...,D}q

b(k)b(l)

×
∫
Cd2N

∫
Gd
d−m

∫
Gd
d−m

Hd((CdN − t) ∩ CdN )
Hd(CdN )

q∏
i=1

E
[
Yki(L, t)Yli(L′, 0)

]
ν(dF ) ν(dF ′) dt

N→∞−→ q!
∑

k,l∈{1,...,D}q
b(k)b(l)

∫
Rd

∫
Gd
d−m

∫
Gd
d−m

q∏
i=1

E
[
Yki(L, t)Yli(L′, 0)

]
ν(dL) ν(dL′) dt,

(3.25)

where we define the limit as σ2
m,q. Note that we implicitly used Hd((CdN−t)∩CdN )/Hd(CdN )→ 1

for N →∞ and t ∈ Rd. To see this, consider the discussion following equation (3.22) in [31],
where the assertion is shown in a far more general case. This establishes the first condition.



46 Chapter 3. A Central Limit Theorem for Lipschitz–Killing Curvatures

We now verify condition (ii). We first observe that

∞∑
q=1

lim
N→∞

q!‖gN,q‖2H⊗q =
∞∑
q=1

lim
N→∞

E
[
Iq(gN,q)2

]

by Lemma 2.12. Reversing some of the earlier manipulations, cf. (3.23), this series equals

∞∑
q=1

lim
N→∞

1
Hd(CdN )

E


 ∑
n∈ND0 ,|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)


2 .

Fatou’s lemma and orthogonality together with the continuity of the inner product yield the
upper bound

lim inf
N→∞

1
Hd(CdN )

E


 ∞∑
q=1

∑
n∈ND0 ,|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)


2 . (3.26)

Partitioning the space Rd into translates of the unit cube [0, 1)d, expression (3.26) without the
limit inferior equals

1
Hd(CdN )

∑
z1,z2∈Zd

E

 ∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[0,1)d+z1
1{t ∈ CdN}H̃n(Y (L, t)) dt ν(dL)

×
∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[0,1)d+z2
1{t ∈ CdN}H̃n(Y (L, t)) dt ν(dL)

 . (3.27)

We define

τ(L,L′, t) := max{max
i

D∑
k=1
|E
[
Yi(L, 0)Yk(L′, t)

]
|,max

k

D∑
i=1
|E
[
Yi(L, 0)Yk(L′, t)

]
|}

for t ∈ Rd, L,L′ ∈ Gdd−m, and note that due to (A3) there is a constant c > 0, such that
τ(L,L′, t) ≤ cψ(t). Moreover (A3) implies that for ρ ∈ (0, 1) and ρ < 1/c there is a constant
s > 0 such that

ψ(t) ≤ ρ, for ‖t‖ ≥ s.

Using s, we split the above summation into one over I1 := {(z1, z2) ∈ (Zd)2 | ‖z1−z2‖∞ ≥ s+1}
and I2 := {(z1, z2) ∈ (Zd)2 | ‖z1 − z2‖∞ ≤ s}. By Fubini’s theorem and orthogonality the first
sum equals

1
Hd(CdN )

∑
(z1,z2)∈I1

∞∑
q=1

∫
Gd
d−m

∫
Gd
d−m

∫
[0,1)d+z2

∫
[0,1)d+z1

1{t ∈ CdN}1{t′ ∈ CdN}

× E

∑
|n|=q

c(n)H̃n(Y (L, t))
∑
|n|=q

c(n)H̃n(Y (L′, t′))

 dt dt′ ν(dL) ν(dL′).
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Then the translation invariance of the Lebesgue measure and stationarity imply equality of
the inner integrals to

∫
[0,1)d+z2

∫
[0,1)d+z1

1{t ∈ CdN}1{t′ ∈ CdN}E

∑
|n|=q

c(n)H̃n(Y (L, t))
∑
|n|=q

c(n)H̃n(Y (L′, t′))

 dt dt′
=
∫

[0,1)d

∫
[0,1)d−t′

1{t+ t′ + z1 ∈ CdN}1{t′ + z2 ∈ CdN}

× E

∑
|n|=q

c(n)H̃n(Y (L, t+ t′ + z1))
∑
|n|=q

c(n)H̃n(Y (L′, t′ + z2))

 dt dt′
=
∫

[0,1)d

∫
[−1,1)d

1{t ∈ [0, 1)d − t′}1{t+ t′ + z1 ∈ CdN}1{t′ + z2 ∈ CdN}

× E

∑
|n|=q

c(n)H̃n(Y (L, t+ z1))
∑
|n|=q

c(n)H̃n(Y (L′, z2))

 dt dt′,
which equals by Fubini’s theorem

∫
[−1,1)d

E

∑
|n|=q

c(n)H̃n(Y (L, t+ z1))
∑
|n|=q

c(n)H̃n(Y (L′, z2))


×Hd

(
([0, 1)d − t) ∩ (CdN − t− z1) ∩ (CdN − z2) ∩ [0, 1)d

)
dt.

Thus, the first summand of (3.27) equals

∑
(z1,z2)∈I1

∞∑
q=1

∫
Gd
d−m

∫
Gd
d−m

∫
[−1,1)d

E

∑
|n|=q

c(n)H̃n(Y (L, t+ z1))
∑
|n|=q

c(n)H̃n(Y (L′, z2))


× 1
Hd(CdN )

Hd
(
([0, 1)d − t) ∩ (CdN − t− z1) ∩ (CdN − z2) ∩ [0, 1)d

)
dt ν(dL) ν(dL′). (3.28)

Now, we use Lemma 1 in [2], which we state for completeness. Alternatively, an approach
using Lemma 3.18 and a variant of Lemma 3.19 could also be used. We stick to the one using
Arcones Lemma for diversity reasons.

Lemma 3.11 (Arcones 1994). Let V,W be centered d-dimensional Gaussian random vectors
such that E[ViVj ] = E[WiWj ] = δij and let h : Rd → R ∈ L2(Nd(0, Id)) have Hermite rank
r ∈ N (i.e. r = inf{k ∈ N : ∃lj such that

∑d
j=1 lj = k and E[(h(N) − E[h(N)])H̃l(N)] 6= 0}

where N ∼ Nd(0, Id×d)). Moreover, we define

τ := max{max
1≤j≤d

d∑
k=1
|E[VjWk]|, max

1≤k≤d

d∑
j=1
|E[VjWk]|},

which is assumed to be less than 1. Then we have

|E[(h(V )− E[h(V )])(h(W )− E[h(W )])]| ≤ τ rE[h(V )2].

To apply the Lemma, we choose V = Y (L′, z2), W = Y (L, t+ z1) and hq : RD → R given by
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hq(x) :=
∑
n∈ND0 ,|n|=q

c(n)H̃n(x). Then, we have r = q by Lemma 2.10 (ii) and since hq can be
assumed to be nonzero. Furthermore τ(L,L′, t+ z1 − z2) ≤ cψ(t+ z1 − z2) < 1 for t ∈ [−1, 1)d

and z1, z2 ∈ I1. Moreover we have

E
[
hq(Y (L′, z2))2

]
=

∑
n,n′∈ND0 ,|n|=|n′|=q

c(n′)c(n)E[H̃n(Y (L′, 0))H̃n′(Y (L′, 0))]

=
∑

n,n′∈ND0 ,|n|=|n′|=q

c(n′)c(n)
D∏
i=1

E[Hni(Yi(L′, 0))Hn′i
(Yi(L′, 0))]

=
∑

n∈ND0 ,|n|=q

c(n)2n!

and for q ≥ 1 we obtain E [hq(Y (L′, z2))] = E [hq(Y (L, t+ z1))] = 0. Hence we bound (3.28) by

ν(Gdd−m)2Hd(CdN )−1 ∑
(z1,z2)∈I1

(z2+[0,1)d)∩CdN 6=∅

∞∑
q=1

∫
[−1,1)d

cqψ(t+ z1 − z2)q dt
∑

n∈ND0 ,|n|=q

c(n)2n!.

Lemma 3.10 and ψ(t+ z1 − z2)q ≤ ρq−1ψ(t+ z1 − z2) yield

Kν(Gdd−m)2(ρHd(CdN ))−1 ∑
(z1,z2)∈I1

1{(z2 + [0, 1)d) ∩ CdN 6= ∅}

×
∫

[−1,1)d
ψ(t+ z1 − z2) dt

∞∑
q=1

qD(cρ)q, (3.29)

as an upper bound, where K is the constant coming from Lemma 3.10. By the estimate

∑
z1∈Zd

∫
(−1,1)d+z1−z2

ψ(t) dt ≤ 2d
∫
Rd
ψ(t) dt,

for fixed z2 ∈ Zd, we obtain

∑
(z1,z2)∈I1

z2+[0,1)d∩CdN 6=∅

∫
[−1,1)d

ψ(t+ z1 − z2) dt ≤
∑
z2∈Zd

z2+[0,1)d∩CdN 6=∅

∑
z1∈Zd

∫
[−1,1)d+z1−z2

ψ(t) dt

≤ (2N + 1)d2d
∫
Rd
ψ(t) dt.

Hence, we get for the term (3.29) the upper bound

2dKν(Gdd−m)2

ρ

(2N + 1)d

Hd(CdN )

∫
Rd
ψ(t) dt

∞∑
q=1

qD(cρ)q.

This expression is finite in the limit inferior since

lim
N→∞

(2N + 1)d

Hd(CdN )
= 1
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and since the series converges by the ratio test.

We now analyse the sum over I2 and start by using the inequality ab ≤ a2 + b2, a, b ∈ R, to
obtain the upper bound

1
Hd(CdN )

∑
z1∈Zd

∑
z2∈Zd

‖z2−z1‖∞≤s

E


 ∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[0,1)d+z1
1{t ∈ CdN}H̃n(Y (L, t)) dt ν(dL)

2


+ 1
Hd(CdN )

∑
z2∈Zd

∑
z1∈Zd

‖z2−z1‖∞≤s

E


 ∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[0,1)d+z2
1{t ∈ CdN}H̃n(Y (L, t)) dt ν(dL)

2
 ,

wich equals

2(2s+ 1)d

Hd(CdN )
∑
z∈Zd

E


 ∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[0,1)d+z
1{t ∈ CdN}H̃n(Y (L, t)) dt ν(dL)

2
 . (3.30)

We define the vector x := (1
2 , . . . ,

1
2) ∈ Rd such that [0, 1)d − x =

[
−1

2 ,
1
2

)d
. Then, by the

translation invariance of the Lebesgue measure the expectation in expression (3.30) is given by
expectation

E


 ∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[0,1)d−x
1{t+ x+ z ∈ CdN}H̃n(Y (L, t+ z + x)) dt ν(dL)

2


= E


 ∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[− 1
2 ,

1
2 )d

1{t+ x+ z ∈ CdN}H̃n(Y (L, t)) dt ν(dL)

2
 ,

where we used Fubini’s theorem and the stationarity of the process Y (L, ·) in the equality. Since
1{t+x+z ∈ CdN} = 1 for all t ∈ [−1

2 ,
1
2)d and z ∈ [−N,N)d∩Zd as well as 1{t+x+z ∈ CdN} = 0

for almost all t ∈ [−1
2 ,

1
2)d and z ∈ ([−N,N)d)c ∩ Zd, we obtain that the expectation is

independent of the sum over z ∈ Zd if it is nonzero. Hence, the term in expression (3.30) is
given by

2(2s+ 1)d (2N)d

Hd(CdN )
E


 ∞∑
q=1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[− 1
2 ,

1
2 )d

H̃n(Y (L, t)) dt ν(dL)

2


which is independent of N , since (2N)d/Hd(CdN ) = 1 by definition of CdN as the hypercube of
side length 2N , and moreover finite by Theorem 3.8.

We start the verification of condition (iii) with the calculation of the r-th contraction of
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gN,q, cf. (3.17), with itself. This is given by

gN,q ⊗r gN,q(a1, . . . , a2q−2r)

=
∫
Rdr

1
Hd(CdN )

∑
k∈{1,...,D}q

b(k)
∫
Gd
d−m

∫
CdN

ϕLt,k1(x1) · · ·ϕLt,kr(xr)

× ϕLt,kr+1(a1) · · ·ϕLt,kq(aq−r) dt ν(dL)
∑

l∈{1,...,D}q
b(l)

∫
Gd
d−m

∫
CdN

ϕL
′

t′,l1
(x1) · · ·ϕL′t′,lr(xr)

× ϕL′t′,lr+1(aq−r+1) · · ·ϕL′t′,lq(a2q−2r) dt′ ν(dL′)
r∏
i=1

f(xi) d(x1, . . . , xr),

for a1, . . . , a2q−2r ∈ Rd. By Fubini’s theorem and (3.21) the above equals

1
Hd(CdN )

∑
k,l∈{1,...,D}q

b(k)b(l)
∫
Gd
d−m

∫
Gd
d−m

∫
CdN

∫
CdN

r∏
i=1

∫
Rd
ϕLt,ki(x)ϕL′t′,li(x)f(x) dx

×
q∏

i=r+1
ϕLt,ki(ai−r)ϕ

L′
t′,li(aq−2r+i) dt dt′ ν(dL) ν(dL′)

= 1
Hd(CdN )

∑
k,l∈{1,...,D}q

b(k)b(l)
∫
Gd
d−m

∫
Gd
d−m

∫
CdN

∫
CdN

r∏
i=1

E[Yki(L, t)Yli(L′, t′)]

×
q∏

i=r+1
ϕLt,ki(ai−r)ϕ

L′
t′,li(aq−2r+i) dt dt′ ν(dL) ν(dL′).

Thus we obtain for the norm

‖gN,q ⊗r gN,q‖2H⊗(2q−2r)

=
∫
Rd(2q−2r)

1
Hd(CdN )

∑
k,l∈{1,...,D}q

b(k)b(l)
∫
Gd
d−m

∫
Gd
d−m

∫
CdN

∫
CdN

r∏
i=1

E[Yki(L, t)Yli(L′, t′)]

×
q∏

i=r+1
ϕLt,ki(ai−r)ϕ

L′
t′,li(aq−2r+i) dt dt′ ν(dL) ν(dL′)

× 1
Hd(CdN )

∑
k,l∈{1,...,D}q

b(k)b(l)
∫
Gd
d−m

∫
Gd
d−m

∫
CdN

∫
CdN

r∏
i=1

E[Yki(L, t)Yli(L′, t′)]

×
q∏

i=r+1
ϕLt,ki(ai−r)ϕ

L′
t′,li

(aq−2r+i) dt dt′ ν(dL) ν(dL′)
2q−2r∏
i=1

f(ai) d(a1, . . . , a2q−2r).

And again Fubini’s theorem yields equality to

1
Hd(CdN )2

∑
k,l,k′,l′∈{1,...,D}q

b(k)b(l)b(k′)b(l′)
∫

(Gd
d−m)4

∫
(CdN )4

×
q∏

i=r+1

∫
Rd
ϕL1
t1,ki

(x)ϕL3
t3,k′i

(x)f(x) dx
∫
Rd
ϕL2
t2,li

(x)ϕL4
t4,l′i

(x)f(x) dx

×
r∏
i=1

E[Yki(L1, t1)Yli(L2, t2)]E[Yk′i(L3, t3)Yl′i(L4, t4)] d(t1, . . . , t4) ν4(d(L1, . . . , L4),



3.2. Proof of the main theorem 51

which by (3.21) equals

1
Hd(CdN )2

∑
k,l,k′,l′∈{1,...,D}q

b(k)b(l)b(k′)b(l′)

×
∫

(Gd
d−m)4

∫
(CdN )4

r∏
i=1

E[Yki(L1, t1)Yli(L2, t2)]E[Yk′i(L3, t3)Yl′i(L4, t4)]

×
q∏

i=r+1
E[Yki(L1, t1)Yk′i(L3, t3)]E[Yli(L2, t2)Yl′i(L4, t4)] d(t1, . . . , t4) ν4(d(L1, . . . , L4).

By (A3) and stationarity there exists a constant c > 0 such that for all t ∈ Rd and L,L′ ∈ Gdd−m

max
1≤i,j≤D

∣∣E [Yi(L, t)Yj(L′, s)]∣∣ ≤ cψ(t− s)

and hence

‖gN,q ⊗r gN,q‖2H⊗(2q−2r)

≤ c2q

Hd(CdN )2

∑
k,l,k′,l′∈{1,...,D}q

b(k)b(l)b(k′)b(l′)
∫

(Gd
d−m)4

∫
(CdN )4

ψ(t1 − t2)r

× ψ(t3 − t4)rψ(t1 − t3)q−rψ(t2 − t4)q−r d(t1, . . . , t4) ν4(d(L1, . . . , dL4))

= c2qν(Gdd−m)4 ∑
k,l,k′,l′∈{1,...,D}q

b(k)b(l)b(k′)b(l′)z(N),

where

z(N) := 1
Hd(CdN )2

∫
(CdN )4

ψ(t1 − t2)rψ(t3 − t4)rψ(t1 − t3)q−rψ(t2 − t4)q−r d(t1, . . . , t4).

Now, the inequality 1 ≤ (a/b)q−r + (b/a)r, for a, b > 0, implies arbq−r ≤ aq + bq for a, b ≥ 0,
since for a = 0 or b = 0 the second inequality holds trivially. An application of the second
inequality for a = ψ(t3 − t4) and b = ψ(t1 − t3) yields

z(N) ≤ 1
Hd(CdN )2

∫
(CdN )4

ψ(t1 − t2)rψ(t3 − t4)qψ(t2 − t4)q−r d(t1, . . . , t4)

+ 1
Hd(CdN )2

∫
(CdN )4

ψ(t1 − t2)rψ(t1 − t3)qψ(t2 − t4)q−r d(t1, . . . , t4). (3.31)

Assumption (A3) implies that

∞ > cn :=
∫
Rd
ψ(x)n dx ≥

∫
CdN

ψ(x)n dx,

for n ∈ N, and by Fubini’s theorem the first summand in (3.31) equals

1
Hd(CdN )2

∫
(CdN )3

ψ(t1 − t2)rψ(t2 − t4)q−r
∫
Rd
ψ(t3 − t4)q dt3 d(t1, t2, t4).
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This is then bounded from above by

cq

Hd(CdN )2

∫
CdN

∫
CdN

ψ(t1 − t2)r
∫
Rd
ψ(t2 − t4)q−r dt4 dt1 dt2.

Repeating this argument yields the upper bound

cqcq−r

Hd(CdN )2

∫
CdN

∫
Rd
ψ(t1 − t2)r dt1 dt2 = cqcq−rcr

Hd(CdN )2H
d(CdN ) N→∞−→ 0.

Proceeding analogously for the second summand yields

‖gN,q ⊗r gN,q‖2H⊗(2q−2r) ≤ c2q ∑
k,l,k′,l′∈{1,...,D}q

b(k)b(l)b(k′)b(l′)z(N) N→∞−→ 0

and we established the validity of condition (iii).
To verify condition (iv), we start analogously as in the verification of condition (ii), by

applying [59, Prop 2.7.5] to see the identity

∞∑
q=Q+1

q!‖gN,q‖2H⊗q =
∞∑

q=Q+1
E
[
Iq(gN,q)2

]
.

Now, in order to work with the original structure of the random variable, we reverse some of
the earlier manipulations leading to the definition of the function gN,q and obtain the equality
of the series to

Hd(CdN )−1E


 ∞∑
q=Q+1

∑
|n|=q

∫
Gd
d−m

c(n)
∫
CdN

H̃n(Y (L, t)) dt ν(dL)

2
 .

A repetition of the arguments in the verification of condition (ii) yields the upper bound

2dKν(Gdd−m)2

ρ

(2N + 1)d

Hd(CdN )

∫
Rd
ψ(t) dt

∞∑
q=Q+1

qD(cρ)q

+ 2(2s+ 1)dE


 ∞∑
q=Q+1

∑
|n|=q

∫
Gd
d−m

c(n)
∫

[− 1
2 ,

1
2 )d

H̃n(Y (L, t)) dt ν(dL)

2
 .

The first term vanishes in the limit N →∞ and then Q→∞, since (2N+1)d
Hd(CdN ) → 1 as N →∞

and the series is the tail of a convergent series. The second term is independent of N and
vanishes for Q→∞ by Theorem 3.8. This establishes condition (iv).

3.2.5. The Boundary terms

In this section, we exploit the scaling behaviour of the centered integrated counting variables
on the boundary of the window defined in (3.3) to show that they are asymptotically negligible
if suitably normalised, cf. equation (3.41) for the formal statement.
The strategy of proving the latter is to establish a Hermite type expansion for εmJN , closely
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resembling the approach in Section 3.2.2. Although the following proof of the Hermite type
expansion is similar to the previous one, the more complex structure of the involved counting
variables leads to more complicated details, which is why we are going to spell out these details.
Once we have obtained the Hermite type expansion, we use calculations, similar to the ones
performed in the verification of the conditions of Theorem 2.15 in Section 3.2.4, to show the
asserted asymptotic behaviour. Due to the different structure of the set JN ∩ F in the cases
dim JN = m = d− dimF and dim JN > m = d− dimF , we will distinguish these and derive
the Hermite expansion only in the second case.
We start with introducing the approximation

εmJN ,ε := (−1)l−m
∫
Ad
d−m

∫
JN∩F

δlε(∇(X|JN∩F )(t)) det(D2(X|JN∩F )(t))

× 1{X(t) ≥ u, π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F )}Hl−m(dt)µ(dF ) (3.32)

for m ≤ l < d and JN ∈ ∂lCdN and proceed with proving the counterpart to Lemma 3.2 (iii).

Lemma 3.12. Let JN ∈ ∂lCdN and m < l < d. Then for almost all F ∈ Add−m

ξJN (F, ε) L
2(P)−→ ξJN (F ), as ε→ 0,

where

ξJN (F, ε) := (−1)l−m
∫
JN∩F

δlε(∇(X|JN∩F )(t)) det(D2(X|JN∩F )(t))

× 1{X(t) ≥ u, π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F )}Hl−m(dt),

and

ξJN (F ) := #{t ∈ JN ∩ F | X(t) ≥ u,∇(X|JN∩F )(t) = 0,

ι−XJN∩F (t) even, π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F )}

−#{t ∈ JN ∩ F | X(t) ≥ u,∇(X|JN∩F )(t) = 0,

ι−XJN∩F (t) odd, π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F )}.

Proof. The assertion can be deduced analogously to Lemma 3.2 (iii), except that we use Lemma
A.4 instead of Lemma A.3, whose conditions are true by [1, Lemma 11.2.10 - 11.2.12].

With the preceding lemma, we are able to show that the claimed approximation of the error
terms coming from the boundary of the observation window is a proper approximation in
L2(P).

Lemma 3.13. Let JN ∈ ∂lCdN and m < l < d. Then

εmJN ,ε
L2(P)−→ εmJN , as ε→ 0,

where εmJN ,ε is defined in (3.32) and εmJN in (3.5).
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Proof. First, we note that by definitions (3.5) and (3.32) as well as (2.15)

E
[
(εmJN − ε

m
JN ,ε

)2
]

= E

(∫
Ad
d−m

ξJN (F )− ξJN (F, ε)µ(dF )
)2
 .

Then, after realising that

E
[
ξJN (F )2

]
≤ E

[
#{t ∈ JN ∩ F | ∇(X|JN∩F )(t) = 0}2

]
and

E
[
ξJN (F, ε)2

]
≤ E

[(∫
JN∩F

δlε(∇(X|JN∩F )(t))|detD2(X|JN∩F )(t)|Hl−m(dt)
)2
]
,

we can prove the assertion analogously to the proof of Lemma 3.3.

We fix for every JN ∈ ∂lCdN , m < l < d, and every F ∈ Add−m such that JN ∩ F 6= ∅ and
aff(JN )◦ and F ◦ are in general position, an orthonormal basis b(JN , F ) := bFJN := (vi(F ))di=1
of Rd such that

c(JN , F ) := cFJN := (v1(F ), . . . , vl−m(F ))

is a basis of the vector space (aff(JN ) ∩ F )◦ = aff(JN )◦ ∩ F ◦ and that

d(JN , F ) := dFJN := (vl−m+1(F ), . . . , vd(F ))

is a basis of (aff(JN )◦ ∩ F ◦)⊥. We note that the basis only depends on the directional space
of F and furthermore does not depend on N . Using this basis we show the following more
explicit representation of the random variable εmJN ,ε.

Lemma 3.14. Let JN ∈ ∂lCdN and m < l < d. Then

εmJN ,ε = (−1)l−m
∫
Ad
d−m

∫
JN∩F

δlε(∇cFJN
X(t)) det(D2

cFJN
X(t))

× 1
{
X(t) ≥ u,

d+m−l∑
j=1

(∇dFJN
X(t))jdFJN ,j ∈ Nt(CdN ∩ F )

}
Hl−m(dt)µ(dF ).

Proof. The fact that π(aff(JN )◦∩F ◦)⊥(∇X(t)) =
∑d+m−l
j=1 (∇dFJN

X(t))jdFJN ,j and δ
l
ε is rotational

invariant, and the fact that D2
cFJN

X(t) is the transformation matrix of D2(X|JN∩F ), imply the
result (cf. Lemma 3.4).

In the following, we use a Hermite expansion of the integrand of the latter representation to
obtain a Hermite expansion of the random variable εmJN ,ε, which carries over to one for the
random variable εmJN . We therefore define the D := d+ (l −m)(l −m+ 1)/2 + 1-dimensional
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Gaussian random field Zb(L, t) for (L, t) ∈ Gdd−m × Rd by

Zb(L, t) :=

∇cLJNX(t),∇dLJN
X(t),

(
∂2

∂vi(L)∂vj(L)X(t)
)

1≤i≤j≤l−m
, X(t)


and denote its covariance matrix at the point (L, t) by Σ. Analogously to Lemma 3.5, we show
that the covariance matrix is indeed independent of the chosen basis, that is:

Lemma 3.15. The matrix Σ is independent of t ∈ Rd and L ∈ Gdd−m. Moreover, we have

Σ = ΛΛ>, where Λ ∈ RD×D is invertible and given by Λ =
(
Id 0
0 Λ2

)
, for some invertible,

lower triangular matrix Λ2 ∈ R(D−d)×(D−d).

Using Λ, we define the decorrelated process

Y b(L, t) := Λ−1Zb(L, t), t ∈ Rd, L ∈ Gdd−m. (3.33)

For fixed t ∈ Rd and L ∈ Gdd−m, the random vector Y b(L, t) is standard normal, i.e. Y b(L, t) ∼
ND(0, ID×D). However, note that for different t, s ∈ Rd the vectors Y b(L, t) and Y b(L, s) are
in general not independent. In the same manner as before, we will be using the stationarity(

Y b(L, t), Y b(L′, t′)
) D= (

Y b(L, t+ h), Y b(L′, t′ + h)
)
,

where t, t′, h ∈ Rd and L,L′ ∈ Gdd−m, in the arguments to come.
We now define the mapping Gbε : Add−m × Rl−m × Rd+m−l × RD−d → R by

Gbε(F, a, b, c) := (−1)l−mδlε(a) det(Λ2c)1,...,D−d−1

× 1
{

(Λ2c)D−d ≥ u,
d+m−l∑
j=1

bjd
F
JN ,j
∈ Nt(CdN ∩ F )

}
,

where the notation does not reflect a dependence in t, which is correct since Nt(CdN ∩ F )
depends on JN , which is fixed, and not on t ∈ JN , cf. (2.14). Hence, we obtain by Lemma 3.14

εmJN ,ε =
∫
Ad
d−m

∫
JN∩F

Gbε(F, Y b(F ◦, t))Hl−m(dt)µ(dF ). (3.34)

We note that the mapping Gbε is only defined for almost all F ∈ Add−m, but since Gbε is only
needed when it is integrated over F , this is not a problem. However, the mere fact that this
mapping depends on F is the main difference to the arguments in the full dimensional case
and forces us to refine the approach used there.
For F ∈ Add−m, we note that Gbε(F, ·) ∈ L2(RD,ND(0, ID)) and therefore

Gbε(F, x) =
∞∑
q=0

∑
n∈ND0 ,|n|=q

cb(F, ε, n)H̃n(x)
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in L2(RD,ND(0, ID)), where

cb(F, ε, n) := n!−1
∫
RD

Gbε(F, x)H̃n(x)φD(x) dx.

We note that due to Fubini’s theorem and the definition of Gbε this coefficient factors into

cb(F, ε, n) = cb1(ε, n)cb2(F, n), (3.35)

where

cb1(ε, n) := 1∏l−m
i=1 ni!

∫
Rl−m

(−1)l−mδlε(a)H̃(n1,...,nl−m)(a)φl−m(a) da

and

cb2(F, n) := 1∏D
i=l−m+1 ni!

∫
Rd+m−l×RD−d

1
{

(Λ2c)D−d ≥ u,
d+m−l∑
j=1

bjd
F
JN ,j
∈ Nt(CdN ∩ F )

}
× det(Λ2c)1,...,D−d−1H̃(nl−m+1,...,nD)(b, c)φD−(l−m)(b, c) d(b, c).

Using this expansion we are able to show a Hermite expansion of the random variable εmJN ,ε,
which in turn will lead to an expansion of εmJN .

Lemma 3.16. Let JN ∈ ∂lCdN and m < l < d. Then

εmJN ,ε
L2(P)=

∑
q≥0

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, ε, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF ). (3.36)

Proof. We start by showing that the right side is well defined, meaning that it is an element in
L2(P). Using the completeness of this space, it is enough to show that it is a Cauchy sequence.
Thus, let k1, k2 ∈ N and k1 < k2. Then by two applications of Jensen’s inequality

E


 k2∑
q=k1+1

∑
|n|=q

∫
Ad
d−m

cb(F, ε, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

2


≤ E

∫
Ad
d−m

Hl−m(JN ∩ F )
∫
JN∩F

 k2∑
q=k1+1

∑
|n|=q

cb(F, ε, n)H̃n(Y b(F ◦, t))

2

Hl−m(dt)µ(dF )


× µ({F ∈ Add−m | F ∩ JN 6= 0}).

It is [76, Lemma 3.1] that allows us to apply Fubini’s theorem, yielding equality of the
expectation to

∫
Ad
d−m

Hl−m(F ∩ JN )
∫
JN∩F

k2∑
q,q′=k1+1

∑
|n|=q

∑
|n′|=q′

cb(F, ε, n)cb(F, ε, n′)

× E
[
H̃n(Y b(F ◦, t))H̃n′(Y b(F ◦, t))

]
Hl−m(dt)µ(dF ).
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Properties of the Hermite polynomials yield (cf. Lemma 2.10 (ii))

E[H̃n(Y b(F ◦, t))H̃n′(Y b(F ◦, t))] = 1{n = n′}n!,

so that the L2(P) norm equals

µ({F | F ∩ JN 6= 0})
k2∑

q=k1+1

∫
Ad
d−m

Hl−m(F ∩ JN )2 ∑
|n|=q

cb(F, ε, n)2n!µ(dF )

≤ µ({F | F ∩ JN 6= 0})
∞∑

q=k1+1

∫
Ad
d−m

Hl−m(F ∩ JN )2 ∑
|n|=q

cb(F, ε, n)2n!µ(dF ).

It is now enough to show the convergence of this series to obtain that the right side of the
asserted equality is a Cauchy sequence. The monotone convergence theorem implies that the
series is bounded from above by∫

Ad
d−m

Hl−m(F ∩ JN )2
∞∑
q=0

∑
|n|=q

cb(F, ε, n)2n!µ(dF ),

where we added some terms to start the summation by 0. By Parseval’s identity

∞∑
q=0

∑
|n|=q

cb(F, ε, n)2n! = ‖Gbε(F, ·)‖2L2(ND(0,ID) =
∫
Rd
Gbε(F, x)2φD(x) dx

and this can be bounded by∫
RD

(
δlε(x) det(Λ2z)1,...,D−d−1

)2
φD(x, y, z) d(x, y, z), (3.37)

which is independent of F and finite, since we are integrating polynomials of a bounded degree
and φD. We conclude that the right-hand side of (3.36) is an element in L2(P).
We now show the equality of the assertion and start by observing with the aid of equation

(3.34)

E


εmJN ,ε − k∑

q=0

∑
|n|=q

∫
Ad
d−m

cb(F, ε, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

2


= E


∫

Ad
d−m

∫
JN∩F

Gbε(F, Y b(F ◦, t))−
k∑
q=0

∑
|n|=q

cb(F, ε, n)H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

2
 ,

which we bound from above by Jensen’s inequality by

µ({F ∈ Add−m | F ∩ JN 6= 0})E
[∫

Ad
d−m

Hl−m(JN ∩ F )

×
∫
JN∩F

Gbε(F, Y b(F ◦, t))−
k∑
q=0

∑
|n|=q

cb(F, ε, n)H̃n(Y b(F ◦, t))

2

Hl−m(dt)µ(dF )

 .
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By Fubini’s theorem, the expectation equals∫
Ad
d−m

Hl−m(JN ∩ F )

×
∫
JN∩F

E
[(
Gbε(F, Y b(F ◦, t))−

k∑
q=0

∑
|n|=q

cb(F, ε, n)H̃n(Y b(F ◦, t))
)2]
Hl−m(dt)µ(dF )

=
∫
Ad
d−m

Hl−m(JN ∩ F )2
∫
RD

(
Gbε(F, x)−

k∑
q=0

∑
|n|=q

cb(F, ε, n)H̃n(x)
)2
φD(x) dxµ(dF ).

Hence, if the dominated convergence theorem is applicable to interchange the limit k →∞ and
the integral with respect to µ, the assertion follows. In order to find an integrable dominating
function, it is enough to bound the term

∫
RD

Gbε(F, x)−
k∑
q=0

∑
|n|=q

cb(F, ε, n)H̃n(x)

2

φD(x) dx (3.38)

by a constant independent of F , since the factor Hl−m(JN ∩ F ) is only nonzero for a set of
finite measure and moreover independent of k. For this purpose, we apply the inequality
(a− b)2 ≤ 2(a2 + b2), a, b ∈ R, to bound the expression in (3.38) by twice the term

∫
RD

GJNε (F, x)2φD(x) dx+
∫
RD

 k∑
q=0

∑
|n|=q

cb(F, ε, n)H̃n(x)

2

φD(x) dx.

The first term can again be bounded by (3.37) and using properties of the Hermite polynomials
the second equals

k∑
q=0

∑
|n|=q

cb(F, ε, n)2n!,

which can be bounded by (3.37). The assertion follows.

In the next lemma we establish the desired Hermite expansion of the random variable εmJN by
using the previous lemma and the L2(P) convergence of εmJN ,ε to ε

m
JN

, as ε→ 0. We first define

cb(F, n) := cb1(n)cb2(F, n), where cb1(n) := (−1)l−m(2π)−(l−m)/2∏l−m
i=1 ni!

l−m∏
i=1

Hni(0), (3.39)

which satisfies

cb(F, n) = lim
ε→0

cb(F, ε, n) = lim
ε→0

cb1(ε, n)cb2(F, n),

by the continuity of the Hermite polynomials and the Gaussian density. The terms cb(F, n)
are the coefficients in the Hermite expansion of εmJN as we will see in the next lemma.
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Lemma 3.17. Let JN ∈ ∂lCdN and m < l < d. Then

εmJN
L2(P)=

∑
q≥0

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF ).

Proof. We first show that the right side is in L2(P). Let k2 > k1 ∈ N be integers. Then by
Fubini’s theorem, which is applicable by [76, Lemma 3.1], we use the orthogonality established
in Lemma 3.7 to obtain

E


 k2∑
q=k1+1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )


2

=
k2∑

q=k1+1
E


 ∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )


2

≤
k2∑

q=k1+1
lim inf
ε→∞

E


 ∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, ε, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )


2 ,

where we used Fatou’s lemma in the last line. We note that we do not have to worry about
interchanging the integral over the affine Grassmannian and the limit ε→ 0. This is the case,
since by (3.35) the dependence of cb(F, ε, n) on F and ε factors in two terms, one depending
solely on F and the other depending solely on ε. Now, by adding positive terms, we bound the
previous term by

∞∑
q=k1+1

lim inf
ε→0

E


 ∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, ε, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )


2 .

Showing that this series converges will also establish that the series on the right-hand side of
the assertion is a Cauchy sequence and therefore is an element in L2(P). Again Fatou’s lemma
and the orthogonality combined with the continuity of the inner product bound the preceding
term by

lim inf
ε→0

E


 ∞∑
q=k1+1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, ε, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )


2

= lim inf
ε→0

E
[
(εmJN ,ε)

2
]

= E
[
(εmJN )2

]
<∞,

where we used Lemma 3.16 and Lemma 3.13. Thus the right side of the assertion is a
well-defined element in L2(P).
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We define the abbreviation

Iq :=
∑
|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

and denote by πk : L2(P)→ L2(P) the projection onto the homogeneous chaos of degree 0 up
to k, that is ∪ki=0Hi (cf. Theorem 2.14), and by πk : L2(P)→ L2(P) the projection onto the
homogeneous chaos greater than k, that is ∪i≥k+1Hi, k ∈ N0. Then∥∥∥∥∥∥εmJN −

∑
q≥0

Iq

∥∥∥∥∥∥
L2(P)

=

∥∥∥∥∥∥πk(εmJN ) + πk(εmJN )−
k∑
q=0

Iq −
∞∑

q=k+1
Iq + πk(εmJN ,ε)− π

k(εmJN ,ε)

∥∥∥∥∥∥
L2(P)

,

which can be bounded by

∥∥∥πk(εmJN )
∥∥∥
L2(P)

+

∥∥∥∥∥∥
∞∑

q=k+1
Iq

∥∥∥∥∥∥
L2(P)

+

∥∥∥∥∥∥πk(εmJN ,ε)−
k∑
q=0

Iq

∥∥∥∥∥∥
L2(P)

+
∥∥∥πk (εmJN − εmJN ,ε)∥∥∥L2(P)

.

The first two terms vanish for k →∞, since both arguments are elements in L2(P). The last
one can be bounded by ∥∥∥εmJN − εmJN ,ε∥∥∥L2(P)

which vanishes in the limit ε→ 0, due to Lemma 3.13. By Lemma 3.16, the third term equals

E


 k∑
q=0

∑
|n|=q

∫
Ad
d−m

(cb(F, n)− cb(F, ε, n))
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

2


and Fubini’s theorem allows us to rewrite this term as

k∑
q,q′=0

∑
|n|=q

∑
|n|=q′

∫
Ad
d−m

∫
Ad
d−m

(cb(F, n)− cb(F, ε, n))(cb(F ′, n′)− cb(F ′, ε, n′))

× E
[∫
JN∩F

Hn(Y b(F ◦, t))Hl−m(dt)
∫
JN∩F

Hn′(Y b(F ′◦, t))Hl−m(dt)
]
µ(dF )µ(dF ′).

By (3.35) and (3.39) this equals

k∑
q,q′=0

∑
|n|=q

∑
|n|=q′

(cb1(n)− cb1(ε, n))(cb1(n′)− cb1(ε, n′))
∫
Ad
d−m

∫
Ad
d−m

cb2(F, n)cb2(F ′, n′)

× E
[∫
JN∩F

Hn(Y b(F ◦, t))Hl−m(dt)
∫
JN∩F

Hn′(Y b(F ′◦, t))Hl−m(dt)
]
µ(dF )µ(dF ′),

which vanishes for ε→ 0. The assertion follows by taking the limit ε→∞ and then k →∞.
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Before we can give a proof of the scaling property of the boundary terms, we need to establish
the following auxiliary lemmas.

Lemma 3.18. Let N and N ′ be centered and jointly Gaussian random variables in RD with

Cov(N,N ′) =
(

ID Cov(N,N ′)
Cov(N ′, N) ID

)

and n, n′ ∈ ND0 such that |n| = |n′| = q ∈ N. Then

E
[
H̃n(N)H̃n′(N ′)

]
≤ (n!n′!)

1
2Dq max

i,j=1,...,D

∣∣∣E [NiN
′
j

]∣∣∣q .
Proof. By Lemma 3.7

E
[
H̃n(N)H̃n′(N ′)

]
= n!n′!

∑
d∈ND×D0∑D

i=1 dij=nj ,
∑D

j=1 dij=n
′
i

∏
1≤i,j≤D

E
[
NiN

′
j

]dij
dij !

≤ max
i,j=1,...,D

∣∣∣E [NiN
′
j

]∣∣∣q n!n′!
∑

d∈ND×D0∑D

i=1 dij=nj ,
∑D

j=1 dij=n
′
i

∏
1≤i,j≤D

1
dij !

Now, let v := (1, . . . , 1) ∈ RD and let W,W ′ be centered and jointly Gaussian in RD, such that

Cov(W,W ′) =
(

ID
1
Dvv

>

1
Dvv

> ID

)
.

We note that (W,W ′) exists, since the covariance matrix is positive semidefinite. To see this,
we use [7, Fact 8.11.13], which states that for this special choice of the covariance matrix being
positive semidefinite is equivalent to ID − ( 1

Dvv
>)2 having nonnegative eigenvalues. This is

the case since for x ∈ Rd(
ID −

( 1
D
vv>

)2
)
x = x−

( 1
D
vv>

)2
x =

(
1− λ2

1
D
vv>

)
x,

where λ 1
D
vv> denotes an eigenvalue of 1

Dvv
>, and λ 1

D
vv> ∈ {0, 1}. Thus

n!n′!
∑

d∈ND×D0∑D

i=1 dij=nj ,
∑D

j=1 dij=n
′
i

∏
1≤i,j≤D

1
dij !
≤ Dqn!n′!

∑
d∈ND×D0∑D

i=1 dij=nj ,
∑D

j=1 dij=n
′
i

∏
1≤i,j≤D

D−dij

dij !

= Dqn!n′!
∑

d∈ND×D0∑D

i=1 dij=nj ,
∑D

j=1 dij=n
′
i

∏
1≤i,j≤D

E
[
WiW

′
j

]dij
dij !

,

which by Lemma 3.7 equals DqE
[
H̃n(W )H̃n′(W ′)

]
. Finally, the Cauchy–Schwarz inequality
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yields

E
[
H̃n(W )H̃n′(W ′)

]
≤
(
E
[
H̃n(W )2

]
E
[
H̃n′(W ′)2

]) 1
2 = (n!n′!)

1
2 ,

which proves the assertion.

Lemma 3.19. Let q ∈ N and F ∈ Add−m. Then there exists a constant c = c(X, d,m, l) ≥ 0
such that

∑
n∈ND0 ,|n|=q

n!
1
2 cb(F, n) ≤ cqD.

Proof. In the following the constant c may change from appearance to appearance. We recall
the definition

cb(F, n) = (2π)−(l−m)/2
l−m∏
i=1

Hni(0)
ni!

(−1)l−m∏D
i=l−m+1 ni!

zb(F, n),

where

zb(F, n) :=
∫
RD−(l−m)

det(Λ2z)1,...,D−d−11{(Λ2z)D−d ≥ u}

× 1


d+m−l∑
j=1

yjd
F
JN ,j
∈ Nt(CdN ∩ F )


 D∏
i=l−m+1

Hni

 (y, z)φD−(l−m)(y, z) d(y, z).

Proposition 3 in [32] yields
∏l−m
i=1

|Hni (0)|√
ni!
≤ c, and thus

(2π)−(l−m)/2
l−m∏
i=1

Hni(0)
ni!

≤ c
(
l−m∏
i=1

ni!
)− 1

2

.

By the Cauchy–Schwarz inequality and bounding the indicator functions by 1, we get

zb(F, n) ≤
(∫

RD−(l−m)
det(Λ2z)2

1,...,D−d−1φD−(l−m)(y, z) d(y, z)

×
∫
RD−(l−m)

 D∏
i=l−m+1

Hni

 (y, z)2φD−(l−m)(y, z) d(y, z)

 1
2

= c

 D∏
i=l−m+1

ni!

 1
2

.

Thus we obtain cb(F, n) ≤ cn!−
1
2 and therefore

∑
|n|=q

n!
1
2 cb(F, n) ≤ c

∑
|n|=q

1 ≤ c
∑
|n|≤q

1 ≤ cqD.
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Lemma 3.20. Let JN = {t ∈ Rd | −N ≤ ti ≤ n, i ∈ σ(JN ), ti = εiN, i /∈ σ(JN )} ∈ ∂lCdN ,
where m < l < d, and F ∈ Add−m such that F ∩ JN 6= 0. Furthermore, let x ∈ Rd be such that
(F + x) ∩ J1/2 6= 0, where J1/2 := {t ∈ Rd | −1

2 ≤ ti ≤
1
2 , i ∈ σ(JN ), ti = εi

1
2 , i /∈ σ(JN )}. Then

c
bFJN (F, n) = c

bFJ1/2 (F + x, n).

Proof. The dependence on JN and F enters the definition of cb
F
JN (F, n), cf. (3.39), in the choice

of the basis dFJN and the normal cone Nt(CdN ∩F ), which is determined by the vectors nJNi (F ),
cf. (2.14). We recall that dFJN denotes a basis of the space (aff(JN )◦ ∩ F ◦)⊥ and therefore only
depends on the directional space of F and the directional space of the chosen stratum of the
cube. Therefore it is invariant under translation of F and changes in N , yielding dFJN = dF+x

J1/2
.

The normal cone Nt(CdN ∩ F ) is determined by the outer unit normal vectors nJNi (F ) of
the facets of CdN ∩ F in F ◦ containing JN ∩ F . Note that these facets are given by Jd−1

N ∩ F ,
where Jd−1

N ∈ ∂d−1C
d
N such that JN ⊂ Jd−1

N . Thus the outer unit normal vectors are given as
the vectors with norm one and pointing outwards in the spaces

F ◦ ∩
((

aff(Jd−1
N ) ∩ F

)◦)⊥
= F ◦ ∩

(
aff(Jd−1

N )◦ ∩ F ◦
)⊥

, Jd−1
N ∈ ∂d−1C

d
N s.t. JN ⊂ Jd−1

N .

The same definition applied for c
bFJ1/2 (F + x, n), yields that nF+x

i are the outer unit normal
vectors of the facets of Cd1/2 ∩ (F + x) in (F + x)◦ containing the set J1/2 ∩ (F + x). Again,
these facets are given by Jd−1

1/2 ∩ (F + x), where Jd−1
1/2 ∈ ∂d−1C

d
N such that J1/2 ⊂ Jd−1

1/2 . Thus,
in this case, the outer unit normal vectors are given as the unit vectors pointing outwards in
the spaces

(F + x)◦ ∩
((

aff(Jd−1
1/2 ) ∩ (F + x)

)◦)⊥
= (F + x)◦ ∩

(
aff(Jd−1

1/2 )◦ ∩ (F + x)◦
)⊥

= F ◦ ∩
(
aff(Jd−1

N )◦ ∩ F ◦
)⊥

.

Since outward has the same meaning for CdN ∩ F and Cd1/2 ∩ (F + x) and moreover their facets

are one-to-one, we obtain that {nJN1 (F ), . . . , nJNd−l(F )} = {nJ1/2
1 (F +x), . . . , nJ1/2

d−l (F +x)}. This
shows the assertion.

The last auxiliary lemma concerns the integrability of the maximum of derivatives of the
covariance function, namely ψ, on linear subspaces of Rd. By Sd we denote the symmetric
group on d elements.

Lemma 3.21. Let ψ be defined as in (A3) and satisfy the assumptions made there. If
k ∈ {1, . . . , d− 1} and σ ∈ Sd, then ∫

Lσ
k

ψ(t)Hk(dt) <∞,

where Lσk := {t ∈ Rd | tσ(i) = 0, i = k + 1, . . . , d}.
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Proof. We first observe that by the integrability assumptions on ψ made in (A3)

∞ >

∫
Rd
ψ(t) dt =

∫ ∞
0

∫
Sd−1

ψ(ru)rd−1 du dr

and thus by Fubini’s theorem
∫∞
0 ψ(ru)rd−1 dr < ∞ for almost all u ∈ Sd−1. Therefore, we

may choose v ∈ {u ∈ Sd−1 |
∫∞
0 ψ(ru)rd−1 dr <∞}.

We note that ∂
∂ti
CX(t) = ∂

∂ρ(ei)C
X(ρ(t)) for i = 1, . . . , d, t ∈ Rd and ρ ∈ SO(d). Indeed, by

definition of the partial derivative

∂

∂ti
CX(t) = lim

h→0

CX(t+ hei)− CX(t)
h

= lim
h→0

CX(ρ(t) + hρ(ei))− CX(ρ(t))
h

= ∂

∂ρ(ei)
CX(ρ(t)),

where we used the isotropy of the field X. This implies

∣∣∣∣ ∂∂tiCX(t)
∣∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

ρ(ei)j
∂

∂tj
CX(ρ(t))

∣∣∣∣∣∣ ≤
d∑
j=1

∣∣∣∣∣ ∂∂tjCX(ρ(t))
∣∣∣∣∣ .

Analogous reasoning for m ∈ {0, . . . , 4} and i1, . . . , im ∈ {1, . . . , d} yields

∣∣∣∣ ∂m

∂ti1 . . . ∂tim
CX(t)

∣∣∣∣ ≤ d∑
j1,...,jm=1

∣∣∣∣∣ ∂m

∂tj1 . . . ∂tjm
(CX)(ρ(t))

∣∣∣∣∣ .
Thus, if we choose for fixed but arbitrary t ∈ Rd the rotation ρtv ∈ SO(d) such that ρtv(t) =
‖t‖v, we obtain

ψ(t) = max
r=0,...,4

i1,...,ir={1,...,d}

∣∣∣∣ ∂r

∂ti1 . . . ∂tir
CX(t)

∣∣∣∣ ≤ max
r=0,...,4

d∑
j1,...,jr=1

∣∣∣∣∣ ∂r

∂tj1 . . . ∂tjr
CX(‖t‖v)

∣∣∣∣∣
≤ 4dψ(‖t‖v). (3.40)

Then by spherical coordinates and the estimate (3.40)∫
Lσ
k

ψ(t) dt =
∫ ∞

0

∫
Sk−1
σ

ψ(ru)rk−1 du dr ≤ 4dωk
∫ ∞

0
ψ(rv)rk−1 dr,

where Sk−1
σ denotes the sphere in the linear subspace Lσk . This can be bounded by

4dωk
∫ 1

0
ψ(rv)rk−1 dr + 4dωk

∫ ∞
1

ψ(rv)rd−1 dr,

which is finite by the continuity of ψ and the choice of v. This shows the assertion.

Using the Chaos expansion and the auxiliary lemmas, we can finally show the following
scaling behaviour of the boundary terms εmJN .
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Lemma 3.22. Let JN ∈ ∂lCdN and m ≤ l < d. Then

E
[
(εmJN − E

[
εmJN

]
)2
]

= o(N l+1),

where εmJN is defined in (3.5).

We conclude from Lemma 3.22 that

lim
N→∞

N−d/2E
[(
εmJN − E

[
εmJN

])2
]

= 0,

and since convergence in the quadratic mean implies convergence in probability, cf. [70, II.4
Theorem 2], we conclude the desired result

εmJN − E
[
εmJN

]
Nd/2

P−→ 0, as N →∞, for m ≤ l < d. (3.41)

Proof. We distinguish the case in which JN ∩ F is countable (l = m) and the case in which it
is a continuum (m < l ≤ d).
Case: l = m. If l = m, then #(JN ∩ F ) ∈ {0, 1} for almost all F ∈ Add−m. This implies

dimTt(JN ∩ F ) = 0, t ∈ JN ∩ F , and therefore

∇(X|JN∩F )(t) = πTt(JN∩F )(∇X(t)) = 0

as well as ι−XJN∩F (t) = 0. Thus, we obtain

εmJN =
∫
Ad
d−m

#{t ∈ JN ∩ F | X(t) ≥ u,∇X(t) ∈ Nt(CdN ∩ F )}µ(dF ).

The integrand equals
∫
JN∩F 1{X(t) ≥ u,∇X(t) ∈ Nt(CdN ∩F )}H0(dt), and, in contrast to the

cases m < l, the measure H0 is σ-finite on JN ∩ F . This allows us to apply Fubini’s theorem
to deduce

E
[(
εmJN − E

[
εmJN

])2
]

= E
[(∫

Ad
d−m

∫
JN∩F

1{X(t) ≥ u,∇X(t) ∈ Nt(CdN ∩ F )}H0(dt)µ(dF )

−
∫
Ad
d−m

∫
JN∩F

E
[
1{X(t) ≥ u,∇X(t) ∈ Nt(CdN ∩ F )}

]
H0(dt)µ(dF )

)2
 ,

which equals by another application of Fubini’s theorem∫
Ad
d−m

∫
JN∩F2

∫
Ad
d−m

∫
JN∩F1

E [(I(F1, t1)− E [I(F1, t1)])

× (I(F2, t2)− E [I(F2, t2)])] H0(dt1)µ(dF1)H0(dt2)µ(dF2), (3.42)

where I(F, t) := 1{X(t) ≥ u,∇X(t) ∈ Nt(CdN ∩ F )}. By Assumption (A3) there exists s > 0
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such that

ψ(t1 − t2) < 1
d+ 1 for ‖t1 − t2‖ ≥ s.

We use this number s to split the integration in (3.42) into one integration over the domain
‖t1 − t2‖ ≥ s and one over the domain ‖t1 − t2‖ < s. In the first case, we use Lemma 3.11
with the choices V := (X(t1),∇X(t1)), W := (X(t2),∇X(t2)) and h : Rd+1 → R given by
(x, y) 7→ 1{x ≥ u, y ∈ NJN (CdN ∩ F )}. We note that writing NJN (CdN ∩ F ) for Nt(CdN ∩ F )
emphasizes the fact that this normal cone does not depend on the location of t in JN ∩ F .
Then, since X(t) and ∇X(t) are independent due to the stationarity and moreover l = m and
(2.13)

E [(h(V )− E [h(V )])H1(V1)] = E [1{X(0) ≥ u}X(0)]P
(
∇X(0) ∈ NJN (CdN ∩ F )

)
6= 0,

yielding r = 1. Moreover, by definition of ψ, we get τ ≤ (d+ 1)ψ(t1− t2) < 1, for ‖t1− t2‖ ≥ s,
and therefore obtain by Lemma 3.11

|E [(I(F1, t1)− E [I(F1, t1)]) (I(F2, t2)− E [I(F2, t2)])]| ≤ (d+ 1)ψ(t1 − t2),

for ‖t1− t2‖ ≥ s. Hence, we split the integration in (3.42) in the one over ‖t1− t2‖ ≥ s and its
complement, and bound the first one by∫
Ad
d−m

∫
JN∩F2

∫
Ad
d−m

∫
JN∩F1

1{‖t1 − t2‖ ≥ s}(d+ 1)ψ(t1 − t2)H0(dt1)µ(dF1)H0(dt2)µ(dF2).

With the aid of [69, Theorem 5.4.3] and Fubini’s theorem the latter equals∫
JN

∫
JN

1{‖t1 − t2‖ ≥ s}(d+ 1)ψ(t1 − t2)Hm(dt1)Hm(dt2)

=
∫
JN

∫
JN−JN

1{‖t1‖ ≥ s, t1 ∈ JN − t2}(d+ 1)ψ(t1)Hm(dt1)Hm(dt2),

where we used the translation invariance of the Hausdorff measure. We bound the indicator
with the condition t1 ∈ Jn − t2 by 1 and thus obtain the upper bound∫

JN−JN
1{‖t1‖ ≥ s}(d+ 1)ψ(t1)Hm(dt1)Hm(JN ) ≤

∫
{t∈Rd|ti=0,i/∈σ(JN )}

ψ(t) dtNmHm(J1).

Lemma 3.21 implies the finiteness of the integral and we conclude the assertion in the first
case. In the second case, we consider∫

Ad
d−m

∫
JN∩F2

∫
Ad
d−m

∫
JN∩F1

1{‖t1 − t2‖ < s}E [(I(F1, t1)− E [I(F1, t1)])

× (I(F2, t2)− E [I(F2, t2)])] H0(dt1)µ(dF1)H0(dt2)µ(dF2),
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and again bound some the indicator functions by 1. This yields the upper bound

4
∫
Ad
d−m

∫
JN∩F2

∫
Ad
d−m

∫
JN∩F1

1{‖t1 − t2‖ < s}H0(dt1)µ(dF1)H0(dt2)µ(dF2)

= 4
∫
JN

∫
JN

1{‖t1 − t2‖ < s}Hm(dt1)Hm(dt2),

where we applied Fubini’s theorem and [69, Theorem 5.4.3] twice. Again the translation
invariance allows us to write the integrals as∫

JN

∫
JN−JN

1{‖t1‖ < s, t1 ∈ JN − t2}Hm(dt1)Hm(dt2)

≤
∫
{t∈Rd|ti=0,i/∈σ(JN )}

1{‖t‖ < s}Hm(dt)Hm(JN )

= Hm({t ∈ Rm | ‖t‖ < s})NmHm(J1),

which shows the assertion in the case l = m.

Case: l ∈ {m + 1, . . . , d − 1}. This case is more involved, due to the fact that Fubini’s
theorem is not applicable in the argument leading to (3.42). Instead, we use the already
established Hermite type expansion of εmJN . By this expansion, cf. Lemma 3.17, we obtain

E
[(
εmJN − E

[
εmJN

])2
]

= E
[(∑

q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )
)2]

. (3.43)

Partitioning the l-dimensional, affine subspace {t ∈ Rd | ti = εiN, i /∈ σ(JN )}, where σ is
defined in (2.11), into translates of the l-dimensional unit cube

[0, 1)l := {t ∈ Rd | 0 ≤ ti ≤ 1, i ∈ σ(JN ) and ti = 0, i /∈ σ(JN )}

yields equality of the term (3.43) to

E
[(∑

q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)

×
∑
z∈Zd

∫
JN∩F

1{t ∈ [0, 1)l + z}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )
)2]

,

which equals

∑
z1,z2∈Zd

E
[∑
q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

1{t ∈ [0, 1)l + z1}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

×
∑
q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

1{t ∈ [0, 1)l + z2}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )
]
.
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We note that due to the definition of ψ, cf. (A3), there is a constant c = c(X, d,m, l) > 0 so
that

Dmax
i,j
|E
[
Y b(F ◦1 , t1)iY b(F ◦2 , t2)j

]
| ≤ cψ(t1 − t2) (3.44)

for F1, F2 ∈ Add−m and t1, t2 ∈ Rd. Moreover (A3) implies that for ρ ∈ (0, 1) and ρ < 1/c there
is a constant s > 0 such that

ψ(t) ≤ ρ, for ‖t‖ ≥ s. (3.45)

Using s, we split the above summation into one over I1 := {(z1, z2) ∈ (Zd)2 | ‖z1−z2‖∞ ≥ s+1}
and I2 := {(z1, z2) ∈ (Zd)2 | ‖z1 − z2‖∞ ≤ s}. By orthogonality the first sum equals

∑
(z1,z2)∈I1

∑
q≥1

∑
|n1|=q=|n2|

∫
Ad
d−m

∫
Ad
d−m

cb(F1, n1)cb(F2, n2) (3.46)

×
∫
JN∩F2

∫
JN∩F1

1{t2 ∈ [0, 1)l + z2}1{t1 ∈ [0, 1)l + z1}

× E
[
H̃n1(Y b(F ◦1 , t1))H̃n2(Y b(F ◦2 , t2))

]
Hl−m(dt1)Hl−m(dt2)µ(dF1)µ(dF2).

By first applying Lemma 3.18 and then equation (3.44), we bound this expression by

∑
(z1,z2)∈I1

∑
q≥1

∑
|n1|=q=|n2|

∫
Ad
d−m

∫
Ad
d−m

cb(F1, n1)cb(F2, n2)
∫
JN∩F2

∫
JN∩F1

1{t2 ∈ [0, 1)l + z2}

× 1{t1 ∈ [0, 1)l + z1}(n1!n2!)
1
2 cqψ(t1 − t2)q Hl−m(dt1)Hl−m(dt2)µ(dF1)µ(dF2),

which, by rearranging the terms, equals

∑
(z1,z2)∈I1

∑
q≥1

∫
Ad
d−m

∫
Ad
d−m

∫
JN∩F2

∫
JN∩F1

∑
|n1|=q

n1!
1
2 cb(F1, n1)

∑
|n2|=q

n2!
1
2 cb(F2, n2)

× 1{t2 ∈ [0, 1)l + z2}1{t1 ∈ [0, 1)l + z1}cqψ(t1 − t2)q Hl−m(dt1)Hl−m(dt2)µ(dF1)µ(dF2).

Lemma 3.19 bounds this by

c2 ∑
(z1,z2)∈I1

∑
q≥1

cqq2D
∫
Ad
d−m

∫
JN∩F2

1{t2 ∈ [0, 1)l + z2}

×
∫
Ad
d−m

∫
JN∩F1

1{t1 ∈ [0, 1)l + z1}ψ(t1 − t2)q Hl−m(dt1)Hl−m(dt2)µ(dF1)µ(dF2).

Applying [69, Theorem 5.4.3] twice, we see that this term equals

c2
1

∑
(z1,z2)∈I1

∑
q≥1

cqq2D
∫
JN

1{t2 ∈ [0, 1)l + z2}
∫
JN

1{t1 ∈ [0, 1)l + z1}ψ(t1 − t2)qHl(dt1)Hl(dt2),

for a constant c1 > 0. Now, the choice of the constant s implies ψ(t1−t2) ≤ ρ, for t1 ∈ [0, 1)l+z1,
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t2 ∈ [0, 1)l + z2 and (z1, z2) ∈ I1, and hence the upper bound

c2
1ρ
−1 ∑

(z1,z2)∈I1

∫
JN

1{t2 ∈ [0, 1)l + z2}

×
∫
JN

1{t1 ∈ [0, 1)l + z1}ψ(t1 − t2)Hl(dt1)Hl(dt2)
∑
q≥1

(ρc)qq2D.

For the sum over the integrals, we observe

∑
(z1,z2)∈I1

∫
JN

1{t2 ∈ [0, 1)l + z2}
∫
JN

1{t1 ∈ [0, 1)l + z1}ψ(t1 − t2)Hl(dt1)Hl(dt2)

=
∑
z2∈Zd

∫
JN

1{t2 ∈ [0, 1)l + z2}
∑
z1∈Zd

‖z1−z2‖∞≥s+1

∫
JN

1{t1 ∈ [0, 1)l + z1}ψ(t1 − t2)Hl(dt1)Hl(dt2)

≤
∑
z2∈Zd

∫
JN

1{t2 ∈ [0, 1)l + z2}
∫
JN

ψ(t1 − t2)Hl(dt1)Hl(dt2),

which equals by Fubini’s theorem

∑
z2∈Zd

∫
JN

1{t2 ∈ [0, 1)l + z2}
∫
JN−JN

1{t1 ∈ JN − t2}ψ(t1)Hl(dt1)Hl(dt2)

=
∫
JN−JN

ψ(t1)
∑
z2∈Zd

∫
JN

1{t2 ∈ [0, 1)l + z2, t2 ∈ JN − t1}Hl(dt2)Hl(dt1)

≤ Hl(JN )
∫
{t∈Rd|ti=0,i∈σ(JN )}

ψ(t)Hl(dt).

To summarize, we obtain the following upper bound for the first summand

c2
1ρ
−1Hl(JN )

∫
{t∈Rd|ti=0,i∈σ(JN )}

ψ(t)Hl(dt)
∑
q≥1

(ρc)qq2D,

where the series converges by the ratio test, since cρ < 1, and the integral is finite by Lemma
3.21. Finally, the equality Hl(JN ) = N lHl(J1) establishes the assertion for the first summand.

We now analyse the second sum and start by applying the inequality ab ≤ a2 + b2, a, b ∈ R,
to obtain for the expression

∑
(z1,z2)∈I2

E

∑
q≥1

∑
|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

1{t ∈ [0, 1)l + z1}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

×
∑
q≥1

∑
|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

1{t ∈ [0, 1)l + z2}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )
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the upper bound

∑
(z1,z2)∈I2

E


∑
q≥1

∑
|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

1{t ∈ [0, 1)l + z1}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

2


+E


∑
q≥1

∑
|n|=q

∫
Ad
d−m

cb(F, n)
∫
JN∩F

1{t ∈ [0, 1)l + z1}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

2

 ,

which equals

2
∑

(z1,z2)∈I2

E

∑
q≥1

∑
|n|=q

∫
Ad
d−m

cb(F, n)

×
∫
JN∩F

1{t ∈ [0, 1)l + z1}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )
)2
]
.

Since the summand does not depend on z2 and we sum over all z1, z2 ∈ Zd where ‖z1−z2‖∞ ≤ s
the latter equals 2(2s+ 1)d-times the term

∑
z∈Zd

E


∑
q≥1

∑
|n|=q

∫
Ad
d−m

c
bFJN (F, n)

∫
JN∩F

1{t ∈ [0, 1)l + z}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )

2
 .

(3.47)

We now exploit the stationarity to see that the expectation is actually independent of N and
we only need to count how often this expectation is nonzero. This happens to be the case
(2N + 1)l times, since otherwise the intersection JN ∩ ([0, 1)l + z) is empty.

We first define x ∈ Rd by xi = −1
2 for i ∈ σ(JN ) and xi = εi

1
2 for i /∈ σ(JN ) such that

[0, 1]l + x = J1/2. Then for F ∈ Add−m and z ∈ Zd the condition F ∩ JN ∩ ([0, 1)l + z) 6= ∅
implies (F − z + x) ∩ J1/2 6= ∅. Thus by Lemma 3.20 the expectation in (3.47) equals

E

∑
q≥1

∑
|n|=q

∫
Ad
d−m

c
bFJ1/2 (F + x− z, n)

×
∫
JN∩F

1{t ∈ [0, 1)l + z}H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )
)2
]
.

Now, by orthogonality and Fubini’s theorem, we obtain equality to

∑
q≥1

∑
|n1|=q=|n2|

c
bFJ 1

2 (F1 + x− z, n1)c
bFJ 1

2 (F2 + x− z, n2)

×
∫
Ad
d−m

∫
Ad
d−m

∫
JN∩F2

1{t2 ∈ [0, 1)l + z}
∫
JN∩F1

1{t1 ∈ [0, 1)l + z}

× E
[
Hn1(Y b(F ◦1 , t1))Hn2(Y b(F ◦2 , t2))

]
Hl−m(dt1)Hl−m(dt2)µ(dF1)µ(dF2). (3.48)
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Stationarity implies for z ∈ Zd

E
[
Hn1(Y b(F ◦1 , t1))Hn2(Y b(F ◦2 , t2))

]
= E

[
Hn1(Y b(F ◦1 , t1 + x− z))Hn2(Y b(F ◦2 , t2 + x− z))

]
and therefore (3.48) equals

E

∑
q≥1

∑
|n|=q

∫
Ad
d−m

c
bFJ1/2 (F + x− z, n)

×
∫
JN∩F

1{t ∈ [0, 1)l + z}H̃n(Y b(F ◦, t+ x− z))Hl−m(dt)µ(dF )

2
 .

The translation invariance of the Hausdorff measure implies for z ∈ Zd∫
JN∩F

1{t ∈ [0, 1)l + z}Hn(Y b(F ◦, t+ x− z))Hl−m(dt)

=
∫

(JN∩F )−z+x
1{t+ z − x ∈ [0, 1)l + z}Hn(Y b(F ◦, t))Hl−m(dt)

=
∫

(JN∩F )−z+x
1{t ∈ [0, 1)l + x}Hn(Y b(F ◦, t))Hl−m(dt),

and taking into account that (JN − z + x) ∩ ([0, 1]l + x) = J1/2, in the cases in which the

intersection is nonempty, as well as Y bFJN (F ◦, t) = Y
bFJ1/2 (F ◦, t), we obtain∫

(JN∩F )−z+x
1{t ∈ [0, 1)l + x}Hn(Y bFJN (F ◦, t))Hl−m(dt)

=
∫
J1/2∩(F−z+x)

H̃n(Y
bFJ1/2 (F ◦, t))Hl−m(dt).

To summarize the last steps, we established

E


∑
q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

c
bFJN (F, n)

∫
JN∩F

1{t ∈ [0, 1)l + z}H̃n(Y bFJN (F ◦, t))Hl−m(dt)µ(dF )


2

= E


∑
q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

c
bFJ1/2 (F + x− z, n)

×
∫
J1/2∩(F+x−z)

H̃n(Y
bFJ1/2 (F ◦, t))Hl−m(dt)µ(dF )

)2
 .

By the translation invariance of the measure µ this equals

E


∑
q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)
∫
J1/2∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )


2 ,
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which is independent of N . Hence, we deduce for the second summand the upper bound

2(2s+ 1)d(2N + 1)lE


∑
q≥1

∑
n∈ND0 ,|n|=q

∫
Ad
d−m

cb(F, n)

×
∫
J1/2∩F

H̃n(Y b(F ◦, t))Hl−m(dt)µ(dF )
)2
 ,

which establishes the assertion.

3.3. A lower bound for the asymptotic variance

We outline in this section where the arguments of [22, Lemma 2.2] have to be altered to
establish a lower bound for the asymptotic variance.

Lemma 3.23. Let X be a real Gaussian field on Rd, which satisfies the assumptions (A1)–(A3).
Then for σ2

m and u given as in Theorem 3.1, and m = 0, . . . , d− 1

σ2
m ≥

[
d

d−m

]2

(2π)mf(0)Hd−m(u)2φ(u)2.

Proof. Recall that according to Theorem 2.15 the asymptotic variance is given by
∑
q≥1 σ

2
m,q,

where σ2
m,q is defined as the limit in condition (i) of that theorem. Hence, we obtain a lower

bound for the asymptotic variance by computing σ2
m,1. By (3.25)

σ2
m,1 =

∑
k,l∈{1,...,D}

b(k)b(l)
∫
Rd

∫
Gd
d−m

∫
Gd
d−m

E
[
Yk(L, t)Yl(L′, 0)

]
ν(dL) ν(dL′) dt,

where the coefficients b(·) are given by

b(k) =
∑

n∈ND0 ,|n|=1

1{k ∈ An}
c(n)
|An|

.

The sets An consist of only one element, namely the number of the component of n, which
contains the 1. Thus if we write ei ∈ RD for the vector, whose components are 0 except for
the i-th component, which is 1, we obtain

b(k) = c(ek).

By the definition of the coefficients c(·), cf. (3.14), we see that c(ek) = 0 for k = 1, . . . , d−m
and therefore obtain

σ2
m,1 =

D∑
k,l=d−m+1

c(ek)c(el)
∫
Rd

∫
Gd
d−m

∫
Gd
d−m

E
[
Yk(L, t)Yl(L′, 0)

]
ν(dL) ν(dL′) dt.
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We now show that∫
Rd

E
[
Zk(L, t)Zl(L′, 0)

]
dt = (2π)df(0)1{(k, l) = (D,D)},

for L,L′ ∈ Gdd−m and k, l = 1, . . . , D. We first consider the case (k, l) = (D,D). Then the
equality E [ZD(L, t)ZD(L′, 0)] = E [X(t)X(0)] = (2π)d/2L(f)(t) holds, where F denotes the
Fourier transformation. By (A3) the spectral density f is continuous and E [X(t)X(0)] is
integrable, which yields that

∫
Rd E [X(t)X(0)] dt = (2π)df(0), via the Fourier cotransformation.

In the cases where (k, l) 6= (D,D), at least one of the factors ZD(L, ·) or ZD(L′, ·) is a directional
derivative of the field X of order greater or equal than 1, say in direction u ∈ Sd−1. This yields
that E [Zk(L, t)Zl(L′, 0)] equals, up to a power of −1, the function ∂

∂ug, where g is either the
covariance function or a derivative of it. Thus by Fubini’s theorem, we conclude that∫

Rd
E
[
Zk(L, t)Zl(L′, 0)

]
dt =

∫
R
. . .

∫
R

∂

∂u
g(t1, . . . , td) dt1 . . . dtd.

By writing the directional derivative as the inner product of the direction and the gradient,
this equals

d∑
i=1
u(i)

∫
R
. . .

∫
R

∂

∂ti
g(t1, . . . , td) dti dt1 . . . dti . . . dtd

=
d∑
i=1

u(i)
∫
R
. . .

∫
R
g(t1, . . . , td)|∞ti=−∞ dt1 . . . dti . . . dtd = 0,

where we used assumption (A3) in the last line.

The definition of Y , cf. (3.8), implies

E
[
Yk(L, t)Yl(L′, 0)

]
=

D∑
r=1

D∑
s=1

Λ−1
l,r Λ−1

k,sE
[
Zr(L, t)Zs(L′, 0)

]
,

which yields ∫
Rd

E
[
Yk(L, t)Yl(L′, 0)

]
dt = Λ−1

l,DΛ−1
k,D(2π)df(0)

and we conclude with Fubini’s theorem that

σ2
m,1 =

[
d

d−m

]2 D∑
k,l=d−m+1

c(ek)c(el)Λ−1
l,DΛ−1

k,D(2π)df(0) =
[

d

d−m

]2

c(eD)2(Λ−1
D,D)2(2π)df(0),

where the last equality holds since Λ is lower triangular. In order to calculate the coefficients
c(eD), we have to analyse the covariance matrix of Z(L, 0). We first write the K + 1 :=
(d−m)(d−m+ 1)/2 + 1 last coordinates of Z(L, 0) in the order( ∂2

∂vi∂vj
X(0)

)
1≤i<j≤d−m

,

(
∂2

∂vi∂vi
X(0)

)d−m
i=1

, X(0)

 .
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Thus, using stationarity, isotropy and CX(0) = 1, the covariance matrix of this vector at 0 is
given by the matrix

Cov
((

∂2

∂ti∂tj
X(0)

)
i<j

)
Cov

((
∂2

∂ti∂tj
X(0)

)
i<j

,
(

∂2

∂ti∂ti
X(0)

)d−m
i=1

)
0

Cov
((

∂2

∂ti∂ti
X(0)

)d−m
i=1

,
(

∂2

∂ti∂tj
X(0)

)
i<j

)
Cov

((
∂2

∂ti∂ti
X(0)

)d−m
i=1

)
−1

0 −1 1


which equals the product Λ2Λ>2 , where Λ2 ∈ RK+1 is the lower triangular matrix, given in
Lemma 3.5. We choose the matrix L ∈ RK×K , the vector l ∈ RK and α > 0 such that

Λ2 =
(
L 0
l> α

)
.

Then the relation ‖l‖2 + α2 = 1 holds as well as Ll = (01×K ,−11×d−m). With this specific
representation of Λ2 we have

c(eD) = (2π)−(d−m)/2(−1)d−m
∫
RK×R

det(Ly)1{〈l, y〉+ αz ≥ u}zφK(y)φ(z) d(y, z)

= −(2π)−(d−m)/2(−1)d−m
∫
RK×R

det(Ly)1{〈l, y〉+ αz ≥ u}φK(y)φ′(z) d(y, z)

= (2π)−(d−m)/2(−1)d−m
∫
RK

det(Ly)φK(y)φ
(
α−1(u− 〈l, y〉)

)
dy,

where we used that zφ(z) = −φ′(z) in the second line and Fubini’s theorem in the second. We
note that theK-dimensional vector Ly is identified with the symmetric (d−m)×(d−m)-matrix,
whose nondiagonal entries are given by the first (d−m)(d−m− 1)/2 entries of Ly and whose
diagonal is given by the d−m last entries of Ly. Using the Hermite expansion of y 7→ det(Ly)
given in [22, Lemma A.2], we obtain

c(eD) = (2π)−(d−m)/2(−1)d−m
∑

m∈NK0 ,|m|=d−m

βm

∫
RK

H̃m(y)φK(y)φ
(
α−1(u− 〈l, y〉)

)
dy

= (2π)−(d−m)/2 ∑
m∈NK0 ,|m|=d−m

βm

∫
RK

DmφK(y)φ
(
α−1(u− 〈l, y〉)

)
dy,

where Dmφ denotes ∂|m|

∂tm1 ...∂tmK
φ and βm are real coefficients. Following the argument in [22],

we define h : RK → R, x 7→ φ(α−1〈l, y〉) and choose l′ such that 〈l, l′〉 = 1. We then obtain∫
RK

DmφK(y)φ
(
α−1(u− 〈l, y〉)

)
dy = (h ∗DmφK)(ul′) = Dm(h ∗ φK)(ul′)

by properties of the convolution operation ∗. Using [22, Remark A.4], which reads (h∗φK)(y) =
αφ(〈l, y〉) for y ∈ RK , we obtain

Dm(h ∗ φK)(y) = αl(m)φ(d−m)(〈l, y〉) = (−1)d−mαl(m)Hd−m(〈l, y〉)φ(〈l, y〉).

Thus by [22, Lemma A.2], which establishes the Hermite expansion of y 7→ det(Ly), in the
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second equality

c(eD) = (2π)−(d−m)/2 ∑
m∈NK0
|m|=d−m

βml
(m)(−1)d−mαHd−m(u)φ(u)

= (2π)−(d−m)/2 det(Ll)(−1)d−mαHd−m(u)φ(u).

We recall that the K-dimensional vector Ll corresponds to the symmetric (d − m) × (d −
m)-matrix, whose nondiagonal entries are given by the first (d−m)(d−m− 1)/2 entries of Ll
and whose diagonal is given by the d −m last entries of Ll, thus det(Ll) = (−1)d−m, since
Ll = (01×K ,−11×d−m). Hence, we obtain

c(eD) = (2π)−(d−m)/2αHd−m(u)φ(u)

and therefore conclude as asserted

σ2
m,1 =

[
d

d−m

]2

(2π)mf(0)Hd−m(u)2φ(u)2.

3.4. The multivariate case

In this section, we establish a multivariate central limit theorem for all Lipschitz–Killing
curvatures of an excursion set of a Gaussian field in the asymptotic scenario of an ever-growing
observation window. Furthermore, different choices for the thresholds of the excursion sets are
possible. We define for N ∈ N, u ∈ R and m ∈ {0, . . . , d− 1}

Ψu,m
N :=

Lm
(
CdN ∩X−1([u,∞))

)
− E

[
Lm

(
CdN ∩X−1([u,∞))

)]
Hd(CdN )

1
2

and show the following theorem.

Theorem 3.24. Let X be a real Gaussian field on Rd, which satisfies the assumptions (A1)–
(A3) and let u0, . . . , ud−1 ∈ R. Then

(Ψu0,0
N , . . . ,Ψud−1,d−1

N ) D−→ Nd(0,Σu)

as N →∞ and Σu ∈ Rd×d is positive semidefinite.

Proof. We first note that, as in the univariate case, there are terms which dominate the
asymptotic behaviour of the vector (Ψu0,0

N , . . . ,Ψud−1,d−1
N ). Indeed, by using the definitions of

Section 3.2.1, we have for c ∈ Rd

c>(Ψu0,0
N , . . . ,Ψud−1,d−1

N )

=
d−1∑
m=0

cm+1
ζum,mN − E [ζum,mN ]
Hd(CdN )

1
2

+
d−1∑
m=0

cm+1

d−m−1∑
j=0

∑
JN∈∂j+mCdN

εum,mJN
− E

[
εum,mJN

]
Hd(CdN )

1
2

,
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where the second sum converges to 0 in probability, by (3.41), and the fact that convergence
in probability is additive. We note that we changed the notation to reflect the dependence on
um and m. Now, suppose for a moment that the random vector given byζu0,0

N − E
[
ζu0,0
N

]
Hd(CdN )

1
2

, . . . ,
ζ
ud−1,d−1
N − E

[
ζ
ud−1,d−1
N

]
Hd(CdN )

1
2


satisfies a multivariate central limit theorem as N →∞, then the theorem of Cramér-Wold, cf.
[36, Corollary 5.5], applied twice, and Slutzky’s lemma yield the asserted central limit theorem.
Hence, all that is left to show is a multivariate central limit theorem for the above random
vector. We would like to apply Theorem 2.15, which forces us to develop a representation
of the random vector in terms of multiple stochastic integrals with respect to an isonormal
Gaussian process on a suitable Hilbert space. For this purpose, we recall Theorem 3.8

ζum,mN

L2(P)=
∑
q≥0

∑
n∈NDm0 ,|n|=q

∫
Gd
d−m

c(n, um,m)
∫
CdN

H̃n(Y m(L, t)) dt ν(dL). (3.49)

The Gaussian field Y m(L, t) was defined by

Y m(L, t) = Λ−1Gm(L,∇X(t), D2X(t), X(t)),

where Λ ∈ RDm×Dm is defined as in Lemma 3.5 and Gm : Gdd−m × Rd × Rd×d × R→ RDm is
explicitly given by

Gm(L, x,A, y) :=
(

(〈vi, x〉)d−mi=1 ,

((
(v1| · · · |vd−m)>A(v1| · · · |vd−m)

)
i,j

)
1≤i≤j≤d−m

, y

)

with (vi)d−mi=1 denoting an orthonormal basis of L. The only way in which randomness enters
the right side of equation (3.49), is through the field (∇X,D2X,X). Thus, it is this field we
need to embed into an isonormal Gaussian process. The real Hilbert space H, which suits our
needs, is again given by

H :=
{
h : Rd → C | h(−x) = h(x),

∫
Rd
|h(x)|2f(x) dx <∞

}
equipped with the inner product

〈g, h〉L2(fλd) :=
∫
Rd
g(x)h(x)f(x) dx

and accompanied by the isonormal Gaussian process W . We recall that f denotes the spectral
density of f . Then, with ϕt,j ∈ H, t ∈ Rd, j = 1, . . . , d+ d2 + 1, given by ϕt,j(x) := νj(x)ei〈t,x〉,
ν(x) := ((ixj)dj=1, (−xrxs)dr,s=1, 1), we obtain

(∇X(·), D2X(·), X(·)) D= (W (ϕ·,1), . . . ,W (ϕ·,d+d2+1))

as processes on Rd. Indeed, the equality of the covariance functions of both processes yields
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the equality in distribution, since both processes are centered Gaussian fields. Then(
Hd(CdN )−

1
2 (ζum,mN − E [ζum,mN ])

)d−1

m=0

D= Hd(CdN )−
1
2

∑
q≥1

∑
n∈NDm0 ,|n|=q

∫
Gd
d−m

c(n, um,m)

×
∫
CdN

H̃n(Λ−1Gm(L, (W (ϕt,j))d+d2+1
j=1 )) dt ν(dL)

)d−1

m=0
.

We note now that Λ−1Gm(L, ·) is a linear mapping. Hence, by the linearity of the isonormal
process

Λ−1Gm(L, (W (ϕt,j))d+d2+1
j=1 ) = (W (ϕLt,1), . . . ,W (ϕLt,Dm)),

where ϕLt,i is defined in (3.20). Then by Theorem 2.13

(
Hd(CdN )−

1
2 (ζum,mN − E [ζum,mN ])

)d−1

m=0

D= Hd(CdN )−
1
2

∑
q≥1

∑
n∈NDm0 ,|n|=q

∫
Gd
d−m

c(n, um,m)

×
∫
CdN

Iq((ϕLt,1)⊗n1 ⊗ · · · ⊗ (ϕLt,Dm)⊗nDm ) dt ν(dL)
)d−1

m=0
.

Fubini’s theorem for Wiener-Itô integrals and the same combinatorial manipulations as in the
proof of Lemma 3.9 yield

(
Hd(CdN )−

1
2 (ζum,mN − E [ζum,mN ])

)d−1

m=0
D=

∑
q≥1

Iq(gum,mN,q )

d−1

m=0

,

where

gum,mN,q := 1
Hd(CdN )1/2

∑
k∈{1,...,Dm}q

∫
Gd
d−m

b(k, um,m)
∫
CdN

ϕLt,k1 ⊗ · · · ⊗ ϕ
L
t,kq dt ν(dL).

We note that gum,mN,q equals gN,q in Lemma 3.9, we merely changed the notation to reflect the
dependence on um and m.

The last step in the proof of the asserted central limit theorem is to check the conditions
of Theorem 2.15. Condition (iii) and condition (iv) do not use the interplay of the different
coordinates and therefore the same approaches as in the univariate case hold, cf. Section 3.2.4.
The verification of condition (ii) also strongly relies on the univariate case after realising that
for m,n = 0, . . . , d− 1

∑
q≥1

∣∣∣σmnq ∣∣∣ =
∑
q≥1

lim
N→∞

q!〈gum,mN,q , gun,nN,q 〉H⊗q ≤
∑
q≥1

lim
N→∞

‖gum,mN,q ‖H⊗q‖g
un,n
N,q ‖H⊗q ,
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which can be bounded from above by

∑
q≥1

lim
N→∞

‖gum,mN,q ‖
2
H⊗q +

∑
q≥1

lim
N→∞

‖gun,nN,q ‖
2
H⊗q =

∑
q≥1

σmmq +
∑
q≥1

σnnq <∞,

where the finiteness is derived in Section 3.2.4 while verifying condition (ii). Since absolute
convergence implies convergence of a series, we obtain condition (ii). For condition (i), the
same reasoning as in the one-dimensional case yields

q!〈gum,mN,q , gun,nN,q 〉H⊗q
N→∞−→ q!

∑
k∈{1,...,Dm}q

∑
l∈{1,...,Dn}q

b(k, um,m)b(l, un, n)

×
∫
Rd

∫
Gd
d−m

∫
Gd
d−n

q∏
s=1

E
[
Y m
ks (L, t)Y n

ls (L′, 0)
]
ν(dL) ν(dL′) dt,

and therefore the assertion.

Remark. Theorem 2.15 does not only provide sufficient conditions for a multivariate central
limit theorem, but also contains a, to some extent, explicit representation of the asymptotic
covariance matrix Σ. In the specific case of Theorem 3.24, we obtain

Σm,n =
∑
q≥1

q!
∑

k∈{1,...,Dm}q

∑
l∈{1,...,Dn}q

b(k, um,m)b(l, un, n)

×
∫
Rd

∫
Gd
d−m

∫
Gd
d−n

q∏
s=1

E
[
Y m
ks (L, t)Y n

ls (L′, 0)
]
ν(dL) ν(dL′) dt.

This representation could be the starting point for the investigation of criteria for the positive
definiteness of the asymptotic covariance matrix.



CHAPTER 4

A Central Limit Theorem for Integrated
Functionals

In this chapter, we provide a general multivariate central limit theorem for integrated level
functionals, defined in (4.1), of a Gaussian excursion set. The asymptotic scenario is again
that of an ever-growing observation window. Furthermore, we specialise the general case to
integrated Minkowski surface tensors and integrated curvature measures.

4.1. The general case

In the following, we state and prove the normal approximation of integrated level functionals
of a Gaussian excursion set. The proof relies on the same stochastic methods as the proof in
Section 3.2, that is on the central limit theorem originating from Stein’s method and Malliavin
calculus, cf. Theorem 2.15.
Let X = {Xt : Ω → R | t ∈ Rd} be a real Gaussian field defined on a probability space

(Ω,F ,P). Moreover let k ∈ N and the mapping h : Rd × Rd×d × R→ Rk be given. We impose
the following conditions on X and h.

(AF1) X is a centered, stationary Gaussian field. The trajectories are almost surely of class C2.
The covariance function CX(t) = E [X(t)X(0)], t ∈ Rd, of X satisfies CX(0) = 1.

(AF2) The covariance matrices of the vectorsX(0),
(

∂2

∂ti∂tj
X(0)

)
1≤i≤j≤d

 and
(
∂

∂ti
X(0)

)d
i=1
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have full rank.

(AF3) The mapping defined by

ψ(t) := max
{∣∣∣∣∣ ∂k

∂tj1 . . . ∂tjk
CX(t)

∣∣∣∣∣ : k ∈ {0, . . . , 4}, 1 ≤ j1, . . . , jk ≤ d
}

for t ∈ Rd, satisfies

ψ(t) ‖t‖→∞−→ 0 and ψ ∈ L1(Rd, λd).

(AF4) For all invertible linear mappings A : Rd → Rd and B : Rd(d+1)/2+1 → Rd(d+1)/2+1 the
mapping h satisfies∫

Rd×Rd(d+1)/2+1
h(Ax,m((By)1,...,d(d+1)/2), (By)d(d+1)/2+1)2

× ‖x‖2φd+d(d+1)/2+1(x, y) d(x, y) <∞

coordinatewise, where (x)k1,...,kj abbreviates the projection onto the coordinates k1, . . . , kj

of x ∈ Rl and m: Rd(d+1)/2 → Rd×d maps the upper half of a symmetric matrix to the
matrix itself.

We note that under (AF1) the set X−1({u}) carries the structure of a (d− 1)-dimensional,
C2 submanifold of Rd. In assumption (AF3) sufficient properties for a central limit theorem
are formulated. Assumption (AF2) and assumption (AF4) are needed for calculations in
our method of proof. In contrast to the assumption (A2) of Theorem 3.1 the complexity of
assumption (AF2) is reduced, which is a result of the specific definition of the investigated
functional Ψh(X, ·). The integration over the threshold parameter u makes the approximation
with a Dirac sequence (cf. Section 3.2.1) and the accompanying calculations involving the Rice
formulas obsolete.
We define for A ∈ B(Rd) the integrated level functional Ψh of X by

Ψh(X,A) :=
∫
R

∫
X−1({u})∩A

h(∇X(t), D2X(t), X(t))Hd−1(dt) du, (4.1)

where the integration is defined coordinatewise, and establish a central limit theorem for the
standardized functional Ψh(X, ·) in the asymptotic scenario of an ever-growing observation
window. The notation AN ↗ Rd used below is a shorthand notation for the assumption that
the inradius of the Hd-measurable set AN and the inradius of the set AN −AN tend to ∞ and
moreover Hd((AN − t) ∩AN )/Hd(AN )→ 1 as N →∞ for fixed t ∈ Rd .

Theorem 4.1. Let X be a real Gaussian field on Rd which satisfies the assumptions (AF1)–
(AF3), and let h : Rd × Rd×d × R→ Rk satisfy assumption (AF4). Then

Ψh(X,AN )− E
[
Ψh(X,AN )

]
Hd(AN )1/2

D−→ Nk(0,Σh), as AN ↗ Rd,
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where Σh ∈ Rk×k is positive semidefinite.

Remark. (i) The presented setting is general enough to allow for weighted integrals in the
threshold u, since X(t) is exactly u for t ∈ X−1({u}). Thus, if we were interested in
the level functional for a specific level u, we could pursue an approach as in Chapter 3
and approximate the level functional with the integrated level functionals by choosing
a Dirac sequence for the dependence in u. However, such an endeavour makes lengthy
calculations, as in the proof of Lemma 3.2, necessary and will not be pursued in this
thesis. In a less general setting than the one presented here, this procedure is carried out
in [10].

(ii) If the functional h does not depend on the second derivatives of the field X, then there
is no need to assume that the field is twice continuously differentiable. The assumptions
(AF1)–(AF4) change accordingly.

(iii) In [37] a multivariate central limit theorem for the standardisation of a functional of the
type ∫

AN

h(X(t)) dt, as AN ↗ Rd,

where the Rs-valued random field X is BL(θ)-dependent and h : Rs → Rk is Lipschitz
continuous, is derived. By Lemma 4.2 the functional Ψh also admits a representation of
this type. The differences however are that in the setting presented in this work, the field
X has to be a Gaussian field, which is more restrictive, and the function h has to satisfy
the integrability condition (AF4). Because of the different condition on the function h,
one result can not be derived from the other.

(iv) At first sight, Condition (AF4) seems to be very difficult to verify. A second more
detailed inspection reveals that although (AF4) is restricting generality, it allows quite
general functions h, for example polynomials of bounded degree. Special choices of h are
treated in Section 4.2 and Section 4.3.

4.1.1. Hermite type expansion

We begin the proof of Theorem 4.1 with the following Lemma.

Lemma 4.2. Let A ∈ B(Rd) be compact. Then

Ψh(X,A) =
∫
A
h(∇X(t), D2X(t), X(t))‖∇X(t)‖ dt.

Proof. We note that since A is compact and the field X is pathwise continuously differentiable,
X is also Lipschitz on A. Then Federer’s coarea formula, cf. [25, Theorem 3.2.12], yields the
assertion.
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Lemma 4.2 explains why in this chapter an approximation involving Dirac sequences (cf.
Section 3.2.1) is unnecessary. The basic application of the coarea formula yields a simpler
representation of the integrated level functional, which leads to a Hermite expansion without
the necessity of approximating the functional.
In the following, we describe the Hermite expansion and define for D := d+ d(d+ 1)/2 + 1

the RD-valued Gaussian field Z = {Z(t) | t ∈ Rd} by

Z(t) :=

( ∂

∂ti
X(t)

)d
i=1

,

(
∂2

∂ti∂tj
X(t)

)
1≤i≤j≤d

, X(t)

 , t ∈ Rd,

and denote its covariance matrix by Σ. Note that due to stationarity, Σ is independent of t.
Assumption (AF2) and the well-known Cholesky decomposition, cf. [7, Fact 8.9.37], imply the
decomposition Σ = ΛΛ>. Furthermore, stationarity implies that at a given point in space the
first partial derivatives of X are independent of the second partial derivatives of X and the

field X itself, cf. Section 2.1. Therefore Λ =
(

Λ1 0
0 Λ2

)
. With the aid of Λ, we define the

decorrelated Gaussian field Y = {Y (t) | t ∈ Rd} by

Y (t) := Λ−1Z(t), t ∈ Rd.

For fixed t ∈ Rd, the random vector Y (t) is standard normal, i.e. Y (t) ∼ ND(0, ID). However,
we note that for different t, s ∈ Rd the vectors Y (t) and Y (s) are in general not independent.

With the definition of the function Gh : Rd × Rd(d+1)/2+1 → Rk by

(x1, x2) 7→ h(Λ1x1,m((Λ2x2)1,...,d(d+1)/2), (Λ2x2)d(d+1)/2+1)‖Λ1x1‖,

we obtain by Lemma 4.2

Ψh(X,A) =
∫
A
Gh(Y (t)) dt. (4.2)

Now, by (AF4), we observe that Ghi ∈ L2(ND(0, ID)), i = 1, . . . , k, which yields the represen-
tation

Ghi =
∑
q≥0

∑
n∈ND0 ,|n|=q

c(n, h, i)H̃n, (4.3)

in L2(ND(0, ID)), where H̃n denotes the n-th multivariate Hermite polynomial and c(n, h, i) is
given by

c(n, h, i) := 1/n!
∫
RD

Ghi (x)H̃n(x)φD(x) dx.

This expansion leads to the Hermite type expansion of the random variable Ψh described in
the next lemma.

Lemma 4.3. Let X satisfy assumptions (AF1) and (AF2), and let h satisfy (AF4). Then for
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A ∈ B(Rd) compact and i = 1, . . . , k

Ψh(X,A)i =
∑
q≥0

∑
n∈ND0 ,|n|=q

c(n, h, i)
∫
A
H̃n(Y (t)) dt,

where the convergence is in L2(P).

Proof. We first show that both sides are elements in L2(P). By (4.2) and Jensen’s inequality

E
[
(Ψh(X,A)i)2

]
≤ Hd(A)E

[∫
A
Ghi (Y (t))2 dt

]
= Hd(A)2

∫
RD

Ghi (x)2φD(x) dx,

where we used Fubini’s theorem as well as the stationarity. Assumption (AF4) yields that this
expression is finite.

The series on the right side of the asserted equality belongs to L2(P) if it is a Cauchy sequence.
In order to show this, let k1, k2 ∈ N be such that k1 < k2. Then by Jensen’s inequality

E


 k2∑
q=k1+1

∑
n∈ND0 ,|n|=q

c(n, h, i)
∫
A
H̃n(Y (t)) dt


2 (4.4)

≤ Hd(A)E

∫
A

 k2∑
q=k1+1

∑
n∈ND0 ,|n|=q

c(n, h, i)H̃n(Y (t))


2

dt

 .
Fubini’s theorem and stationarity yield equality to

Hd(A)2
k2∑

q1,q2=k1+1

∑
|n1|=q1,|n2|=q2

c(n1, s, i)c(n2, s, i)E
[
H̃n1(Y (0))H̃n2(Y (0))

]
.

Since Y (0) is standard normally distributed, by Lemma 2.10 (ii), this expression equals

Hd(A)2
k2∑

q=k1+1

∑
n∈ND0 ,|n|=q

c(n, h, i)2n! ≤ Hd(A)2
∞∑

q=k1+1

∑
n∈ND0 ,|n|=q

c(n, h, i)2n!. (4.5)

By Bessel’s inequality we obtain the finite upper bound

Hd(A)2‖Ghi ‖2L2(ND(0,ID)). (4.6)

Hence, the series in (4.5) converges and we conclude that for k1 large enough (4.4) will become
arbitrarily small, which shows the assertion.

Finally observe that by (4.2), Jensen’s inequality and Fubini’s theorem the term

E


Ψh(X,A)i −

k∑
q=0

∑
n∈ND0 ,|n|=q

c(n, h, i)
∫
A
H̃n(Y (t)) dt


2
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can be bounded by the expression

Hd(A)
∫
A
E


Ghi (Y (t))−

k∑
q=0

∑
n∈ND0 ,|n|=q

c(n, h, i)H̃n(Y (t))


2 dt.

By stationarity and since the one dimensional distributions of Y are standard normal, we
obtain equality to

Hd(A)2

∥∥∥∥∥∥∥Ghi −
k∑
q=0

∑
n∈ND0 ,|n|=q

c(n, h, i)H̃n

∥∥∥∥∥∥∥
2

L2(ND(0,ID))

,

which tends to zero for k →∞ by (4.3).

4.1.2. Embedding into an isonormal Gaussian process

We, again, define the real Hilbert space of complex valued functions

H :=
{
h : Rd → C | h(−x) = h(x),

∫
Rd
|h(x)|2f(x) dx <∞

}
,

where f denotes the spectral density of the field X, equipped with the inner product

〈g, h〉L2(fλd) :=
∫
Rd
g(x)h(x)f(x) dx,

which is real since the functions are Hermitian and the measure fλd is symmetric. By [59,
Prop. 2.1.1], we know that there exists an isonormal Gaussian process W on H, such that for
g, h ∈ H

E [W (g)W (h)] = 〈g, h〉L2(fλd).

This time, we define for j = 1, . . . , D the mappings

ϕt,j : Rd → C, x 7→
D∑
k=1

Λ−1
jk νk(x)ei〈t,x〉 ∈ H,

where

ν : Rd → CD, x 7→
(
(ixl)1≤l≤d, (−xlxs)1≤l≤s≤d, 1

)
.

We note that νk(x)ei〈·,x〉 is the derivative of ei〈·,x〉 of the same order and in the same direction
as the derivative of X in the k-th component of Z. Then we obtain for k, l ∈ {1, . . . , D} and
t, s ∈ Rd

E [Yk(t)Yl(s)] =
D∑

n,m=1
Λ−1
kmΛ−1

ln E [Zm(t)Zn(s)] ,
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which by (3.18) equals

D∑
n,m=1

Λ−1
kmΛ−1

ln

∫
Rd
νm(x)ei〈t,x〉νn(x)ei〈s,x〉f(x) dx

= 〈ϕt,k, ϕs,l〉L2(fλd) = E [W (ϕt,k)W (ϕs,l)] , (4.7)

yielding the equality in distribution of the process Y (·) and (W (ϕ·,i))Di=1, since both are
centered Gaussian fields. Hence, the Hermite type expansion in Lemma 4.3 and the same
combinatorial arguments as in Section 3.2.3 yield

(
Ψh(X,A)i − E[Ψh(X,A)i]

Hd(A)1/2

)k
i=1

D=

 ∞∑
q=1

Iq(gh,iA,q)

k
i=1

, (4.8)

where

gh,iA,q := 1
Hd(A)1/2

∑
k∈{1,...,D}q

b(k, h, i)
∫
A
ϕt,k1 ⊗ · · · ⊗ ϕt,kq dt (4.9)

is symmetric, since the coefficients b(·, h, i) =
∑
n∈ND0 ,|n|=q

1{· ∈ An} c(n,h,i)|An| are symmetric.

4.1.3. Applying a central limit theorem for isonormal processes

To prove the central limit theorem for the standardised Ψh(X,A) as A↗ Rd, we show that
the conditions of Theorem 2.15 are satisfied for the representation in (4.8).
We start with the verification of condition (i). By the definition of the inner product

q!〈gh,iAN ,q, g
h,j
AN ,q
〉H⊗q = q!

Hd(AN )

∫
Rdq

∑
k∈{1,...,D}q

b(k, h, i)
∫
AN

ϕt,k1 ⊗ · · · ⊗ ϕt,kq(x1, . . . , xq) dt

×
∑

l∈{1,...,D}q
b(l, h, j)

∫
AN

ϕt,l1 ⊗ · · · ⊗ ϕt,lq(x1, . . . , xq) dt
q∏
i=1

f(xi) d(x1, . . . , xq).

By Fubini’ theorem this expression equals

q!
Hd(AN )

∑
k,l∈{1,...,D}q

b(k, h, i)b(l, h, j)
∫
AN

∫
AN

q∏
m=1

∫
Rd
ϕt,km(x)ϕs,lm(x)f(x) dx dt ds.

An application of (4.7) yields the equality to

q!
Hd(AN )

∑
k,l∈{1,...,D}q

b(k, h, i)b(l, h, j)
∫
AN

∫
AN

q∏
m=1

E [Ykm(t)Ylm(s)] dt ds.

By Fubini’s theorem and stationarity, the integrals can be written as

∫
AN−AN

q∏
m=1

E [Ykm(t)Ylm(0)]Hd((AN − t) ∩AN ) dt.
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Then assumption (AF3) yields that

Hd(AN )−1
∣∣∣∣∣
q∏

m=1
E [Ykm(t)Ylm(0)]

∣∣∣∣∣Hd((AN − t) ∩AN ) ≤ cψ(t)q,

where c = c(X, d, q) ≥ 0, so that the dominated convergence theorem is applicable. Hence

q!〈gh,iAN ,q, g
h,j
AN ,q
〉 N→∞−→ q!

∑
k,l∈{1,...,D}q

b(k, h, i)b(l, h, j)
∫
Rd

q∏
m=1

E [Ykm(t)Ylm(0)] dt.

Note that we implicitly used Hd((AN − t) ∩AN )/Hd(AN )→ 1 for N →∞ and t ∈ Rd as well
as the fact that AN −AN eventually contains every point in Rd.

We continue with condition (ii). First, we observe that by Fatou’s Lemma and Lemma 2.12

∞∑
q=1

lim
N→∞

q!‖gh,iAN ,q‖
2
H⊗q ≤ lim inf

N→∞

∞∑
q=1

q!‖gh,iAN ,q‖
2
H⊗q = lim inf

N→∞

∞∑
q=1

E
[
Iq(gh,iAN ,q)

2
]
.

Recall that by definition (4.9) and Fubini’s theorem for stochastic integrals (cf. [60, Theorem
5.13.1])

Iq(gh,iAN ,q) = Hd(AN )−1/2 ∑
k∈{1,...,D}q

b(k, h, i)
∫
AN

Iq(ϕt,k1 ⊗ · · · ⊗ ϕt,kq) dt

and therefore, after reversing earlier manipulations leading to 4.8, we obtain

Iq(gh,iAN ,q) = Hd(AN )−1/2 ∑
n∈ND0 ,|n|=q

c(n, h, i)
∫
AN

H̃n(Y (t)) dt.

Then Fubini’s theorem and stationarity imply

∞∑
q=1

E
[
Iq(gh,iAN ,q)

2
]

=
∞∑
q=1

∫
AN−AN

E

∑
|n|=q

c(n, h, i)H̃n(Y (t))
∑
|n|=q

c(n, h, i)H̃n(Y (0))


× H

d((AN − t) ∩AN )
Hd(AN ) dt. (4.10)

Now, we apply Lemma 3.11 and choose V := Y (0), W := Y (t) and giq : Rd → R by x 7→∑
|n|=q c(n, h, i)H̃n(x). Then we have r = q by Lemma 2.10 (ii) and since giq can be assumed

to be nonzero. By (AF3) there exists a constant c > 0, such that τ(t) ≤ cψ(t) for t ∈ Rd. Let
ρ ∈ (0, 1) be such that ρ < 1/c. Then by assumption (AF3) there exists s > 0 such that

ψ(t) ≤ ρ, for ‖t‖ ≥ s. (4.11)

Furthermore, we have

E
[
giq(Y (0))2

]
=
∑
|n|=q

∑
|n′|=q

c(n, h, i)c(n′, h, i)E
[
H̃n(Y (0))H̃n′(Y (0))

]
,
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wich by properties of the Hermite polynomials equals

∑
|n|=q

∑
|n′|=q

c(n, h, i)c(n′, h, i)1{n = n′}n! =
∑
|n|=q

c(n, h, i)2n!.

Thus splitting the integration in (4.10) into

∞∑
q=1

∫
(AN−AN )\Bds

E

∑
|n|=q

c(n, h, i)H̃n(Y (t))
∑
|n|=q

c(n, h, i)H̃n(Y (0))

 Hd((AN − t) ∩AN )
Hd(AN ) dt

+
∞∑
q=1

∫
Bds

E

∑
|n|=q

c(n, h, i)H̃n(Y (t))
∑
|n|=q

c(n, h, i)H̃n(Y (0))

 Hd((AN − t) ∩AN )
Hd(AN ) dt

allows us to use Lemma 3.11 for the first series and we obtain for this term the upper bound

∞∑
q=1

∫
(AN−AN )\Bds

cqψ(t)q
∑
|n|=q

c(n, h, i)2n!H
d((AN − t) ∩AN )
Hd(AN ) dt. (4.12)

By Bessel’s inequality, cf. (4.6), and (4.11), we bound the expression (4.12) by

1/ρ
∫
Rd
ψ(t) dt‖Ghi ‖2L2

∞∑
q=1

(cρ)q,

which is a convergent series and moreover independent of N .

An application of the inequality ab ≤ a2 + b2, a, b ∈ R, bounds the second summand by

∞∑
q=1

∫
Bds

E


∑
|n|=q

c(n, h, i)H̃n(Y (t))

2

+

∑
|n|=q

c(n, h, i)H̃n(Y (0))

2
 Hd((AN − t) ∩AN )

Hd(AN ) dt

≤ 2
∞∑
q=1

E


∑
|n|=q

c(n, h, i)H̃n(Y (0))

2
Hd(Bd

s )

= 2Hd(Bd
s )
∞∑
q=1

∑
|n|=q

c(n, h, i)2n!, (4.13)

which is again a convergent series, cf. (4.6), and independent of N . This shows the assertion.

In order to verify condition (iii), we first calculate the r-th contraction

gh,iAN ,q ⊗r g
h,i
AN ,q

(a1, . . . , a2q−2r)

= Hd(AN )−1
∫
Rdr

∑
k∈{1,...,D}q

b(k, h, i)
∫
AN

ϕt,k1(x1) · · ·ϕt,kr(xr)

× ϕt,kr+1(a1) · · ·ϕt,kq(aq−r) dt
∑

k∈{1,...,D}q
b(k, h, i)

∫
AN

ϕt,k1(x1) · · ·ϕt,kr(xr)

× ϕt,kr+1(aq−r+1) · · ·ϕt,kq(a2q−2r) dt
r∏
i=1

f(xi) d(x1, . . . , xr)
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for (a1, . . . , a2q−2r) ∈ Rd. Fubini’s theorem and (4.7) yield the equality to

Hd(AN )−1 ∑
k,l∈{1,...,D}q

b(k, h, i)b(l, h, i)
∫
AN

∫
AN

r∏
m=1

E [Ykm(t)Ylm(s)]

× ϕt,kr+1(a1) · · ·ϕt,kq(aq−r)ϕs,lr+1(aq−r+1) · · ·ϕs,lq(a2q−2r) dt ds.

Then we obtain for the norm

‖gh,iAN ,q ⊗r g
h,i
AN ,q
‖2H⊗(2q−2r)

= Hd(AN )−2
∫
Rd(2q−2r)

∑
k,l∈{1,...,D}q

b(k, h, i)b(l, h, i)
∫
AN

∫
AN

r∏
m=1

E [Ykm(t)Ylm(s)]

× ϕt,kr+1(x1) · · ·ϕt,kq(xq−r)ϕs,lr+1(xq−r+1) · · ·ϕs,lq(x2q−2r) dt ds

×
∑

k,l∈{1,...,D}q
b(k, h, i)b(l, h, i)

∫
AN

∫
AN

r∏
m=1

E [Ykm(t)Ylm(s)]ϕt,kr+1(x1) · · ·ϕt,kq(xq−r)

× ϕs,lr+1(xq−r+1) · · ·ϕs,lq(x2q−2r) dt ds
2q−2r∏
i=1

f(xi) d(x1, . . . , x2q−2r).

By Fubini’s theorem and (4.7) the above equals

Hd(AN )−2 ∑
k,l,k′,l′∈{1,...,D}q

b(k, h, i)b(k′, h, i)b(l, h, i)b(l′, h, i)
∫

(AN )4

r∏
m=1

E [Ykm(t)Ylm(s)]

× E
[
Yk′m(t′)Yl′m(s′)

] q∏
m=r+1

E
[
Ykm(t)Yk′m(t′)

]
E
[
Ylm(s)Yl′m(s′)

]
d(t, t′, s, s′).

From assumption (AF3) and stationarity we deduce

max
i,j=1,...,D

|E [Yi(t)Yj(s)] | ≤ cψ(t− s),

for s, t ∈ Rd and c = c(X, d) > 0. Hence

‖gh,iAN ,q ⊗r g
h,i
AN ,q
‖2H⊗(2q−2r) ≤ c2q ∑

k,l,k′,l′∈{1,...,D}q
b(k, h, i)b(k′, h, i)b(l, h, i)b(l′, h, i)z(N),

where

z(N) := Hd(AN )−2
∫

(AN )4
ψ(t− s)rψ(t′ − s′)rψ(t− t′)q−rψ(s− s′)q−r d(t, t′, s, s′).

Using arbq−r ≤ aq + bq for a = ψ(t′ − s′) and b = ψ(t− t′), we obtain

z(N) ≤ Hd(AN )−2
∫

(AN )4
ψ(t− s)rψ(t′ − s′)qψ(s− s′)q−r d(t, t′, s, s′)

+Hd(AN )−2
∫

(AN )4
ψ(t− s)rψ(t− t′)qψ(s− s′)q−r d(t, t′, s, s′)
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and abbreviate the first summand by z1(N) and the second by z2(N). Assumption (AF3)
yields cn =:

∫
Rd ψ(t)ndt <∞ for n ∈ N and therefore

z1(N) ≤ Hd(AN )−2
∫

(AN )3
ψ(t− s)r

∫
Rd
ψ(t′ − s′)q dt′ d(t, s, s′).

Iterating this argument yields the upper bound

cq
Hd(AN )2

∫
AN

∫
AN

ψ(s− s′)q−r
∫
Rd
ψ(t− s)r dt ds ds′ ≤ cqcr

Hd(AN )2

∫
AN

∫
AN

ψ(s− s′)q−r ds ds′

≤ cqcrcq−rHd(AN )−1,

which tends to 0 as N →∞. Analogously, z2(N)→ 0 as N →∞, from which we conclude the
desired condition.
To obtain condition (iv), we observe that the same calculations as in condition (ii), cf.

(4.12) and (4.13), lead to the estimate

∞∑
q=Q+1

q!〈gh,iAN ,q, g
h,i
AN ,q
〉 ≤ 1/ρ

∫
Rd
ψ(t) dt‖Ghi ‖2L2

∞∑
q=Q+1

(cρ)q + 2Hd(Bd
s )

∞∑
q=Q+1

∑
|n|=q

c(n, h, i)2n!.

Both series are the tail of a convergent series and moreover both expressions are independent
of N . Hence in the limit superior N → ∞ and the limit Q → ∞, in that order, the terms
vanish. This shows the assertion.

4.2. The special case of integrated surface tensors

In the first subsection of this section, we specialise the general result of the previous part to a
central limit theorem for integrated Minkowski surface tensors. In the second part, we present
a simulation study to illustrate the derived limit theorem.

4.2.1. The central limit theorem

Motivated by the use as a shape measure in physics, cf. [38, Chapter 2], [39] and the references
therein, we define the integrated Minkowski surface tensor of rank s ∈ N by

Φs(X,A) := 2π
s!ωs+1

∫
R
h(u)

∫
X−1({u})∩A

‖∇X(t)‖−s∇X(t)⊗sHd−1(dt) du,

for A ∈ B(Rd), X : Rd → R at least of class C1 with Lipschitz gradient and the weight function
h : R→ R in L2(N1(0, c)), for all c > 0.

Our aim is to establish a central limit theorem for the standardised version of this functional.
In order to speak about normal approximation in the space of tensors, we need to have a
definition of a normally distributed element in this space. The following definition meets our
needs.
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Definition. Let s ∈ N. The s-tensor-valued random variable N : Ω → (Rd)⊗s is said to
have a normal distribution with expectation tensor m : (Rd)s → R and covariance tensor
C : (Rd)s × (Rd)s → R if for all n ∈ N and all v1,1, . . . , v1,s, . . . , vn,1, . . . , vn,s ∈ Rd

(N(v1,1, . . . , v1,s), . . . , N(vn,1, . . . , vn,s))

∼ Nn
(
(m(vi,1, . . . , vi,s))ni=1, (C(vi,1, . . . , vi,s, vj,1, . . . , vj,s))ni,j=1

)
.

The above definition is inspired by identifying tensors with multilinear mappings and thinking
of random elements in the space of tensors as random fields in the space of multilinear mappings.
We note that due to the multilinear nature of tensors, it is sufficient to require that

(Ni1,...,is)di1,...,is=1 ∼ Nds
(
(m(ei1 , . . . , eis))di1,...,is=1, (C(ei1 , . . . , eis , ej1 , . . . , ejs))di1,j1...,is,js=1

)
,

where ai1,...,is for a ∈ (Rd)⊗s denotes the (i1, . . . , is)-th coordinate of a, i.e. a(ei1 , . . . , eis)
where e1, . . . , ed denotes the standard basis in Rd.

Then, an application of Theorem 4.1 implies the following central limit theorem for integrated
surface tensors.

Corollary 4.4. Let X be a real Gaussian field on Rd, which satisfies the assumptions (AF1)–
(AF3). Then

(Φs(X,AN )i1,...,is − E [Φs(X,AN )i1,...,is ]
Hd(AN )1/2

)d
i1,...,is=1

D−→ Nds(0, Cs), as AN ↗ Rd,

where Cs ∈ Rds×ds is positive semidefinite.

Proof. We note that

Φs(X,A) = 2π
s!ωs+1

∫
R

∫
X−1({u})∩A

h(X(t))‖∇X(t)‖−s∇X(t)⊗sHd−1(dt) du.

Therefore an application of Theorem 4.1 with the choice

h : Rd × Rd×d × R→ Rd
s
, (x, y, z) 7→

( 2π
s!ωs+1

h(z)‖x‖−s(x⊗s)i1,...,is
)d
i1,...,is=1

,

yields the assertion once we verified condition (AF4) for this specific mapping. For this
purpose, we observe that for i1, . . . , is ∈ {1, . . . , d} and regular linear mappings A : Rd → Rd

and B : Rd(d+1)/2+1 → Rd(d+1)/2+1 by Fubini’s theorem∫
Rd×Rd(d+1)/2+1

h((By)d(d+1)/2+1)2‖Ax‖−2s+2
s∏
j=1

(Ax)2
ijφd+d(d+1)/2+1(x, y) d(x, y)

=
∫
Rd
‖Ax‖−2s+2

s∏
j=1

(Ax)2
ijφd(x) dx

∫
Rd(d+1)/2+1

h((By)d(d+1)/2+1)2φd(d+1)/2+1(y) dy. (4.14)

We choose b ∈ Rd(d+1)/2+1 such that (By)d(d+1)/2+1 = 〈b, y〉. We note that b 6= 0, since B is
regular. An application of Fubini’s theorem in the orthonormal basis (b/‖b‖, u1, . . . , ud(d+1)/2)
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yields ∫
Rd(d+1)/2+1

h((By)d(d+1)/2+1)2φd(d+1)/2+1(y) dy

=
∫
Rd(d+1)/2

∫
R
h(‖b‖x1)2φ(x1) dx1φd(d+1)/2(z) dz

= 1
‖b‖

∫
R
h(x1)2φ

(
x1
‖b‖

)
dx1 <∞, (4.15)

where the finiteness is an assumption on h. We now show that the first factor in the term
(4.14) is finite. By the inequalities

‖Ax‖−s
s∏
j=1

(Ax)ij ≤ ‖Ax‖−s
s∏
j=1
‖Ax‖ ≤ 1,

we obtain ∫
Rd
‖Ax‖2(−s+1)

s∏
j=1

(Ax)2
ijφd(x) dx ≤

∫
Rd
‖Ax‖2φd(x) dx.

Let ‖ · ‖ denote any with the Euclidean norm compatible matrix norm. Then ‖Ax‖ ≤ ‖A‖‖x‖
and this yields the upper bound

‖A‖2
∫
Rd
‖x‖2φd(x) dx <∞,

which proves the assertion.

4.2.2. A simulation study

In the following we present a simulation study in the setting of the previous section with the
choice h ≡ 1. We simulate realisations of a specific Gaussian random field and calculate the
integrated Minkowski surface tensor of rank 2. For the sake of nice pictures, we specialise to
the parameter space dimension 2 and consider a stationary, isotropic and centered Gaussian
field {Xt : Ω→ R | t ∈ R2}, where the covariance function is chosen from the Matérn class, cf.
[71]. This class is given by functions of the form

CX(t) := σ221−ν

Γ(ν)

(√
2ν‖t‖
l

)
Kν

(√
2ν‖t‖
l

)
, t ∈ R2, ν, l > 0,

where Kν is the modified Bessel function of the second kind of order ν. The parameter σ2

is the variance of X(0) and will be chosen as 1. The constant l can be interpreted as the
characteristic length-scale and ν determines the smoothness of the field X. That is, X is
m times mean square differentiable if and only if ν > m, cf. [74]. This class of covariance
functions is widely used in applications, for instance in meteorology, cf. [27], and machine
learning, cf. [65].
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Figure 4.1.: Realisation of a centered isotropic Gaussian random field with covariance given
by (4.16) simulated on a square grid of 200×200 points. Different level sets are
plotted in the plane.

In the following we choose ν = 5/2 and l = 1, such that

CX(t) =
(

1 +
√

5‖t‖+ 5
3‖t‖

2
)

exp
(
−
√

5‖t‖
)
, t ∈ R2, (4.16)

where we exploited the fact that in the cases ν = n+ 1
2 , n ∈ N, the modified Bessel function

can be written in terms of elementary functions. Let {ti ∈ R2 | i ∈ I} denote the points in
which we would like to simulate the field X. We choose the points as an equidistant grid but
note that in general this is not necessary for the simulation of the field X. However, since we
are also interested in the partial derivatives of the field X, simulating the field in grid points
allows for a numerical approximation of the gradient. The property of X to be a centered
Gaussian field implies that the vector (X(ti))i∈I is normally distributed with expectation 0
and covariance matrix (CX(ti − tj))|I|i,j=1. The positive definiteness of the covariance matrix
allows for a Cholesky decomposition (CX(ti − tj))|I|i,j=1 = LLT , where L is a regular, lower
triangular matrix and we obtain

(X(ti))i∈I
D= Lε, where ε ∼ N|I|(0, I|I|).

Hence, a realisation of (X(ti))i∈I can be obtained by simulating ε and multiplying this
realisation with the matrix L. The result of this procedure is illustrated in Figure 4.1. Once
we simulated (X(ti))i∈I , we can calculate numerically the partial derivatives

(
∂
∂tk
X(ti)

)
i∈I

,
for instance by use of the function “gradient” of the software package MATLAB. With all
the data generated so far, we determine the integrated Minkowski surface tensor of rank 2 by
approximating the integral by Riemann sums. The results of repeating this procedure 10000
times can be seen in Figure 4.2, which shows the histogram of the values of the coordinates
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Figure 4.2.: Histogram of the values of the coordinates of the tensor with 10000 replications.
Density of a fitted normal distribution (dashed). Kernel smoothing function
estimate (solid).

of the tensor, the density of a normal distribution fitted to the data (based on maximum
likelihood estimation) and a kernel smoothing function estimate (where Gaussian kernels are
used, cf. the function “ksdensity” of the software package MATLAB) for the collected data.

The good agreement, considering that we approximate the integral and the partial derivatives,
of the estimated probability density (Figure 4.2, solid line) and the density of a fitted normal
distribution (Figure 4.2, dashed line), provides a numerical illustration of the theoretical central
limit theorem of the previous section.

At last, we simulate an example in the anisotropic case. In order to obtain a stationary but
anisotropic field, we modify the Matérn covariance function of equation (4.16) in the following
way

CX(t) :=
(

1 +
√

5
(
t21 + ct22

)
+ 5

3
(
t21 + ct22

))
exp

(
−
√

5
(
t21 + ct22

))
, t ∈ R2, (4.17)
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where c > 0 quantifies the anisotropy. Figure 4.3 illustrates the structurally different excursion
sets of the isotropic and the anisotropic case. While it is challenging to identify the anisotropy
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Figure 4.3.: Left: Excursion set for threshold 0 of a centered Gaussian field with covariance
given by (4.16). Right: Excursion set for threshold 0 of a centered Gaussian field
with covariance given by (4.17) with c = 7.

with the Lipschitz–Killing curvatures of Chapter 3, the integrated surface tensors of this section
are perfectly suited to detect these structural differences, cf. [39]. One way to observe the
anisotropy is illustrated in Figure 4.4, where the different expectations of the asymptotic
normal distributions indicate the anisotropy in the case c = 7.

4.3. The special case of integrated curvature measures

In this section, we specialise the general central limit theorem in Theorem 4.1 to the case of
integrated curvature measures. We first clarify rigorously what we mean by the latter term
and derive a representation of this functional in terms of the first and second derivatives of
the involved Gaussian field, so that the investigated scenario fits into the general setting of
Section 4.1.
We start with noting that under assumptions (AF1) and (AF2) the set X−1({u}) carries

almost surely the structure of a (d− 1)-dimensional C2 submanifold of Rd, since X is assumed
to be almost surely of class C2 and u ∈ R is a regular value of X, cf. [4, Proposition 6.12]. By
Hj(x1, . . . , xk), we denote the j-th elementary symmetric function, which is given by

Hj(x1, . . . , xk) :=
∑

1≤i1<...<ij≤k
xi1 · · ·xij ,

for x1, . . . , xk ∈ R, j = 1, . . . , k. We define the k-th curvature measure of X−1([u,∞)) for
A ∈ B(Rd) by

Cuk (X,A) := 1
ωd−k

∫
X−1({u})

1A(t)Hd−1−k(κ1(t), . . . , κd−1(t))Hd−1(dt),



4.3. The special case of integrated curvature measures 95

( 2(X,[-20,20]2))
11

44 45 46 47 48 49 50 51 52
0

0.1

0.2

0.3

0.4

0.5

0.6

histogram
pdf estimate
fitted normal density

( 2(X,[-20,20]2))
22

136 138 140 142 144 146 148 150 152 154 156
0

0.05

0.1

0.15

0.2

histogram
pdf estimate
fitted normal density

Figure 4.4.: Histogramm of the values of the coordinates of the tensor with 10000 replications.
Density of a fitted normal distribution (dashed). Kernel smoothing function
estimate (solid). The anisotropy causes different expectations of the asymptotic
distributions.

where k ∈ {0, . . . , d− 1} and κ1(t), . . . , κd−1(t) denote the principal curvatures of X−1({u}) at
the point t. We note that Federer’s curvature measures specialise to the given definition in the
setting of this section, cf. [81, Equation (13)]. We then define the k-th integrated curvature
measure of X

Φh
k(X,A) := 1

ωd−k

∫
R
h(u)

∫
X−1({u})

1A(t)Hd−1−k(κ1(t), . . . , κd−1(t))Hd−1(dt) du

for A ∈ B(Rd) and a weight function h : R→ R in L4(N1(0, c)), for all c > 0.
In the following we rewrite the elementary symmetric function of the principal curvatures

as a function of the gradient ∇X and the second derivative D2X. We first note that by
definition the principal curvatures κ1(t), . . . , κd−1(t) are the eigenvalues of the shape operator
s ∈ T 1

1 (X−1({u})), where T 1
1 (X−1({u})) denotes the space of 1-covariant, 1-contravariant
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tensor fields on X−1({u}). The shape operator can be thought of as a field of endomorphisms of
TX−1({u}), the tangent bundle of X−1({u}), and is characterised by the Weingarten equation
for Euclidean hypersurfaces, cf. [50, Equation (8.3)],

−sY = ∇YN

for Y ∈ T (X−1({u})), the space of vector fields, where ∇ denotes the Levi-Civita connection of
Rd with the standard metric, thus the directional derivative, and N denotes the outer normal
vector field of X−1({u}). However, since X−1({u}) is a level set, the outer normal in the point
t is given by −‖∇X(t)‖−1∇X(t). Hence, for Y =

∑
i Y

i ∂
∂xi
∈ T (X−1({u})), where

(
∂
∂xi

∣∣∣
t

)
denotes the standard basis of TtRd, i.e. the one induced by the coordinate projections, and
t ∈ X−1({u})

s(t)Y = ‖∇X(t)‖−1∑
k

Y |t
(
∂

∂xk
X

)
∂

∂xk

∣∣∣∣
t
+ Y |t(‖∇X‖−1)

∑
l

∂

∂xl
X(t) ∂

∂xl

∣∣∣∣
t

by the Leibniz rule and the flatness of Rd. Calculating the derivatives yields

s(t)Y =‖∇X(t)‖−1∑
k

∑
i

Y i(t) ∂2

∂xi∂xk
X(t) ∂

∂xk

∣∣∣∣
t

− ‖∇X(t)‖−3∑
i

Y i(t)
∑
k

∂

∂xk
X(t) ∂2

∂xi∂xk
X(t)

∑
l

∂

∂xl
X(t) ∂

∂xl

∣∣∣∣
t
,

since we calculated

Y |t(‖∇X‖−1) =
∑
i

Y i(t) ∂

∂xi

∣∣∣∣
t

(
‖∇X‖−1

)
=
∑
i

Y i(t)
∑
k

−‖∇X(t)‖−3 ∂

∂xk
X(t) ∂2

∂xk∂xi
X(t).

Identifying the basis
(

∂
∂xi

∣∣∣
t

)
of TtRd with the standard basis (ei) of Rd, we obtain for s(t)Y

‖∇X(t)‖−1
(∑

i

Y i(t) ∂2

∂xi∂xk
X(t)

)d
k=1

− ‖∇X(t)‖−3
(∑

i

Y i(t)
∑
k

∂

∂xk
X(t) ∂2

∂xi∂xk
X(t) ∂

∂xl
X(t)

)d
l=1

= ‖∇X(t)‖−1D2X(t)Y (t)− ‖∇X(t)‖−3
(∑

k

∂

∂xl
X(t) ∂

∂xk
X(t) ∂2

∂xk∂xi
X(t)

)d
l,i=1

Y (t)

= ‖∇X(t)‖−1(Id − ‖∇X(t)‖−2∇X(t)∇X(t)>)D2X(t)Y (t).

By concatenating the projection πTtX−1({u}) : TtRd → TtX
−1({u}), with the matrix representa-

tion

Mπ(∇X(t)) := I − ‖∇X(t)‖−2∇X(t)∇X(t)>,

and the mapping s(t), we obtain the linear mapping s̃(t) := s(t) ◦ πTtX−1({u}) : TtRd → TtRd
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given by

v 7→ ‖∇X(t)‖−1Mπ(∇X(t))D2X(t)Mπ(∇X(t))v.

Then, for v ∈ TtX
−1({u}), we obtain s̃(t)v = s(t)v and for v ∈ (TtX−1({u}))⊥ we have

s̃(t)v = 0. Therefore the eigenvalues of s̃(t) are given by

κ1(t), . . . , κd−1(t), 0.

Hence, the definition of the elementary symmetric functions and [7, Proposition 4.4.6] yield

Hd−1−k(κ1(t), . . . , κd−1(t)) = Hd−1−k(κ1(t), . . . , κd−1(t), 0) = detrd−1−k(s̃(t)),

where detri(A) denotes the sum over all i× i principal subdeterminants of A ∈ Rd×d, cf. [7,
(4.4.15)]. We finally conclude

Φh
k(X,A) = 1

ωd−k

∫
R
h(u)

∫
X−1({u})

1A(t)‖∇X(t)‖−(d−1−k)

× detrd−1−k(Mπ(∇X(t))D2X(t)Mπ(∇X(t)))Hd−1(dt) du,

and formulate the following central limit theorem.

Corollary 4.5. Let X be a real Gaussian field on Rd, which satisfies the assumptions (AF1)–
(AF3) and let k > d/2− 2. Then

Φh
k(X,AN )− E

[
Φh
k(X,AN )

]
Hd(AN )1/2

D−→ N (0, σ2) as AN ↗ Rd

where σ2 ≥ 0.

Proof. An application of Theorem 4.1 with the choice

h : Rd × Rd×d × R→ R, (x, y, z) 7→ 1
ωd−k

h(z)‖x‖−(d−1−k) detrd−1−k(Mπ(x) m(y)Mπ(x))

yields the assertion once we checked condition (AF4) for this specific mapping. To this end, let
A : Rd → Rd and B : Rd(d+1)/2+1 → Rd(d+1)/2+1 be regular linear mappings and we abbreviate
nd := d(d+ 1)/2 + 1. Then∫

Rd×Rnd
h((By)nd)

2‖Ax‖−2(d−2−k) detrd−1−k(Mπ(Ax) m((By)1,...,nd−1)Mπ(Ax))2

× φd+nd(x, y) d(x, y)

≤
∫
Rd
‖Ax‖−2(d−2−k)

(∫
Rnd

detrd−1−k(Mπ(Ax) m((By)1,...,nd−1)Mπ(Ax))4φnd(y) dy
) 1

2

×
(∫

Rnd
h((By)nd)

4φnd(y) dy
) 1

2
φd(x) dx, (4.18)

where we used Fubini’s theorem and the Cauchy–Schwarz inequality. The integrability as-
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sumption on h and Fubini’s theorem yield the finiteness of the third integral, cf. (4.15), in
(4.18). We denote its value by ch. Then, by use of spherical coordinates, the expression in
(4.18) equals

cc
1
2
h

∫ ∞
0

∫
Sd−1
‖rAu‖−2(d−2−k)

(∫ ∞
0

∫
Snd−1

detrd−1−k
(
Mπ(Au)m((Br′u′)1,...,nd−1)Mπ(Au)

)4
×(r′)nd−1e−

(r′)2
2 Hnd−1(du′) dr′

) 1
2
rd−1e−

r2
2 Hd−1(du) dr

rearranging the integrals and using the homogeneity of detr leads to

cch

∫ ∞
0

r2k+3−de−
r2
2 dr

(∫ ∞
0

r′4(d−1−k)+d(d+1)/2e−
r′2
2 dr′

) 1
2
∫
Sd−1
‖Au‖−2(d−2−k)

×
(∫

Snd−1
detrd−1−k(Mπ(Au)m((Bu′)1,...,nd−1)Mπ(Au))4Hnd−1(du′)

) 1
2
Hd−1(du). (4.19)

We note that the first two integrals are finite for k > d/2− 2 and moreover, since the integrand
of the inner integral of the last factor is continuous in u and u′, we can bound the integrand
on Sd−1 × Snd−1, which yields the finiteness of the expression in (4.19).

Remark. For the dimensions d = 2 and d = 3, the condition k > d/2− 2 in the statement of
Corollary 4.5 is satisfied. However, in general this condition is somewhat annoying, since we
believe that the central limit theorem does also hold in the other cases. So where does this
condition come from? By examining the proof, especially equation (4.19), we see that from
both integrals, which may not exist, it is the first one which is more restrictive. Retracing the
steps, which lead to the fateful equation (4.19), leads to the insight that it is the required square
integrability of the functional, cf. (AF4), which results in the restriction on k. Hence, the
condition on k is not a consequence of the calculations in this chapter but rather a fundamental
issue of the technique used to prove the central limit theorems in this thesis.



APPENDIX A

Measurability and statements holding almost
surely

In this chapter, we collect and prove various statements concerning properties of Gaussian
fields holding almost surely. Moreover measurability results are shown, which ensure that
several mappings we are investigating are indeed well-defined random variables.
We start with the derivation of the fact that the set CdN ∩ X−1([u,∞)) is of sufficient

regularity such that the Lipschitz–Killing curvatures, cf. Section 2.3, are well-defined.

Lemma A.1. Let X : Ω× Rd → R be a stationary Gaussian field, which is almost surely of
class C2. Then the set CdN ∩X−1([u,∞)) is almost surely a set of positive reach.

Proof. We apply [24, Theorem 4.12] and repeat its relevant part here for the sake of complete-
ness.

Lemma A.2. Let f1, . . . , fm : Rd → R be continuously differentiable and let ∇fi be Lipschitz,
i = 1, . . . ,m. Moreover let 0 ≤ k ≤ m,

A :=
k⋂
i=1
{x ∈ Rd | fi(x) = 0} ∩

m⋂
i=k+1

{x ∈ Rd | fi(x) ≤ 0}

and Ja := {i ∈ {1, . . . ,m} | fi(a) = 0} for a ∈ A. Assume that there are no real numbers ci,
i ∈ Ja, such that ci 6= 0 for some i ∈ Ja, ci ≥ 0 whenever i > k, and

∑
i∈Ja

ci∇fi(a) = 0.

Then reach(A, a) > 0.



100 Appendix A. Measurability and statements holding almost surely

With the choices

fi : Rd → R, t 7→ ti −N, for i = 1, . . . , d,

fi : Rd → R, t 7→ −ti−d −N, for i = d+ 1, . . . , 2d

and

f2d+1 : Rd → R, t 7→ −X(t) + u,

we obtain A = CdN ∩X−1([u,∞)) and k = 0. Hence, we obtain reach(CdN ∩X−1([u,∞)), a) > 0
for a ∈ CdN ∩X−1([u,∞)), if we show that there are no numbers cj ≥ 0, j ∈ Ja, such that
cj > 0 for some j and

∑
j∈Ja

cj∇fj(a) = 0.

We first analyse the case a ∈ int(CdN ) ∩X−1([u,∞)). Then Ja = {2d+ 1}, since in the case of
the empty index set, there is nothing to show. This implies X(a) = u. By [1, Lemma 11.2.10]

P(∃t ∈ CdN : X(t) = u,∇X(t) = 0) = 0

and therefore c2d+1∇X(a) 6= 0 for all c2d+1 > 0. We note that the event of measure zero is
independent of the point a, implying that almost surely

reach(CdN ∩X−1([u,∞)), a) > 0 for all a ∈ int(CdN ) ∩X−1([u,∞)).

Now, we assume a ∈ bd(CdN )∩X−1([u,∞)), say a ∈ JN ∩X−1([u,∞)), where JN ∈ ∂lCdN and

JN = {t ∈ Rd | −N < ti < N, i ∈ σ(JN ), ti = εiN, i /∈ σ(JN )}.

We assume first that X(a) 6= u, that is 2d+ 1 /∈ Ja. But then∑
j∈Ja

cj∇fj(a) 6= 0

for cj ≥ 0 and at least one cj nonzero, since the definition of the mappings yields that fi(a) = 0
implies fi+d(a) 6= 0 and vice versa fi+d(a) = 0 implies fi(a) 6= 0, i = 1, . . . , d. Thus, suppose
X(a) = u and therefore 2d+ 1 ∈ Ja. Then a ∈ JN yields Ja = {2d+ 1} ∪ {j + d1{εj = −1} |
j ∈ {1, . . . , d} \ σ(JN )} and we need to check that

∑
j∈Ja

cj∇fj(a) =
∑

j∈Ja∩{1,...,d}
cjej −

∑
j+d∈Ja∩{d+1,...,2d}

cjej − c2d+1∇X(a) = 0 (A.1)

has no solutions for cj ≥ 0 and some cj nonzero. We note that since Ja∩ (Ja−d) = ∅ a solution
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will always need c2d+1 nonzero. Then the crucial observation is that equation (A.1) implies

∂

∂ti
X(a) = 0 for i ∈ σ(JN ).

But [1, Lemma 11.2.10] yields

P
(
∃t ∈ JN : X(t) = u,

∂

∂ti
X(t) = 0, i ∈ σ(JN )

)
= 0,

and we deduce that equation (A.1) has no solution for cj ≥ 0 and some cj nonzero. Hence,
almost surely reach(CdN ∩X−1([u,∞)), a) > 0 for a ∈ JN ∩X−1([u,∞)).
The union of the events of measure zero in the first case, and in the second case over all

j-faces of the cube CdN , j = 0, . . . , d− 1, yields that almost surely

reach(CdN ∩X−1([u,∞)), a) > 0 for all a ∈ CdN ∩X−1([u,∞)).

Since reach(A, ·) is a continuous mapping for fixed A ⊂ Rd, cf. [24, 4.2 Remark], and the set
CdN ∩X−1([u,∞)) is compact, we conclude that almost surely

reach(CdN ∩X−1([u,∞))) = inf
(
reach(CdN ∩X−1([u,∞)), a) | a ∈ CdN ∩X−1([u,∞))

)
> 0,

which shows the assertion.

The following lemma is needed in the approximation of the counting variables appearing in
the representation of the Euler characteristic via the Morse lemma, cf. (3.2).

Lemma A.3. Let F ∈ Add−m and let X : Ω × Rd → R be a Gaussian field satisfying the
assumptions:

(i) X has almost surely C2 paths.

(ii) There are almost surely no points t ∈ CdN ∩ F

(a) such that ∇(X|F )(t) = 0 and X(t) = u.

(b) such that ∇(X|F )(t) = 0 and det(D2(X|F )(t)) = 0.

(iii) There are almost surely no points t ∈ bd(intCdN ∩ F ) with ∇(X|F )(t) = 0.

Then almost surely

#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) even}

−#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) odd}

= (−1)d−m lim
ε→0

∫
intCdN∩F

δdε (∇(X|F )(t))1{X(t) ≥ u} det(D2(X|F )(t))Hd−m(dt).

Proof. We follow the proof of [1, Theorem 11.2.3].
We consider the points t1, . . . , tn ∈ CdN ∩ F where ∇(X|F )(ti) = 0 and ι−XF (ti) even, for

i = 1, . . . , n and note that there are only finitely many because of (ii)(b), the fact that
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cl(intCdN ∩ F ) is compact and the inverse function theorem. Moreover, condition (iii) implies
the existence of relatively open sets Ui in F such that Ui ⊂ intCdN ∩F and ti ∈ Ui, i = 1, . . . , n.
Shrinking the sets guarantees that U1, . . . , Un are also pairwise disjoint. Furthermore, by
condition (ii)(a), we may choose the open sets Ui, i = 1, . . . , n, small enough such that either
for all t ∈ Ui we have X(t) ∈ (u,∞) or for all t ∈ Ui we have X(t) ∈ (−∞, u).

The same line of reasoning yields relatively open sets U ′1, . . . , U ′n′ ⊂ intCdN ∩ F containing
the points t′1, . . . , t′n′ with ∇(X|F )(t′i) = 0 and ι−XF (t′i) odd, for i = 1, . . . , n′, and satisfying
the same properties as U1, . . . , Un.

The continuity of the determinant and condition (ii)(b) imply that we can choose the sets
U1, . . . , Un and U ′1, . . . , U ′n′ small enough such that the sign of det(D2(X|F )) stays constant
on those sets. Moreover, by contradiction, we deduce the existence of a number ε > 0 small
enough such that

∇(X|F )−1(Bd
ε ) ∩ intCdN ∩ F ⊂

n⋃
i=1

Ui ∪
n′⋃
i=1

U ′i . (A.2)

Indeed, suppose this is not the case. Then we find a sequence (xn)n∈N with

xn ∈
(
(∇(X|F ))−1(Bd

1/n) ∩ intCdN ∩ F
)
\ (

n⋃
i=1

Ui ∪
n′⋃
i=1

U ′i)

and which has a convergent subsequence (xnj )j∈N with limit x0 satisfying

x0 ∈ cl
(
intCdN ∩ F

)
\ (

n⋃
i=1

Ui ∪
n′⋃
i=1

U ′i).

Then, continuity implies ∇(X|F )(x0) = 0, which leads to x0 ∈ intCdN ∩ F by condition
(iii). This is the contradiction we seek, since then there must be an index i such that
x0 = ti ∈

⋃n
i=1 Ui ∪

⋃n′
i=1 U

′
i but by the last display x0 /∈

⋃n
i=1 Ui ∪

⋃n′
i=1 U

′
i .

Now, by assumption (ii)(b) and the inverse function theorem, we can choose the sets
U1, . . . , Un, U

′
1, . . . , U

′
n′ and the number ε small enough to obtain ∇(X|F ) bijective on the set

Ui respectively U ′j and onto Bd−m
ε ⊂ F ◦. We note the abuse of notation in writing ∇(X|F )−1

for every inverse. Hence we have

#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) even}

−#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) odd}

=
n∑
i=1

∫
∇(X|F )(Ui)

δdε (y)1{X(∇(X|F )−1(y)) ≥ u}Hd−m(dy)

−
n′∑
i=1

∫
∇(X|F )(U ′i)

δdε (y)1{X(∇(X|F )−1(y)) ≥ u}Hd−m(dy).
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We obtain with the substitution rule the equality to

n∑
i=1

∫
Ui

δdε (∇(X|F )(t))1{X(t) ≥ u}|det(D2(X|F )(t))|Hd−m(dt)

−
n′∑
i=1

∫
U ′i

δdε (∇(X|F )(t))1{X(t) ≥ u}|det(D2(X|F )(t))|Hd−m(dt). (A.3)

Since the sign of det(D2(X|F )) is constant on the sets U1, . . . , Un, U
′
1, . . . , U

′
n′ and furthermore,

by the definition of ι, the equality sign(det(D2(X|F (ti)))) = (−1)d−m−ι
−X
F (ti) holds as well as

the same relation for the points t′i, we have

sign(det(D2(X|F (t)))) = (−1)d−m, for all t ∈ Ui, i ∈ {1, . . . , n}

sign(det(D2(X|F (t)))) = −(−1)d−m, for all t ∈ U ′j , j ∈ {1, . . . , n′}.

Therefore (A.3) equals

(−1)d−m
( n∑
i=1

∫
Ui

δdε (∇(X|F )(t))1{X(t) ≥ u}det(D2(X|F )(t))Hd−m(dt)

+
n′∑
i=1

∫
U ′i

δdε (∇(X|F )(t))1{X(t) ≥ u} det(D2(X|F )(t))Hd−m(dt)
)
,

which yields together with (A.2) the assertion.

The preceding lemma phrased for the lower dimensional boundary terms takes the following
form.

Lemma A.4. Let JN ∈ ∂lC
d
N , m < l < d, and let F ∈ Add−m be such that aff(JN )◦ and

F ◦ are in general position. Moreover let X : Ω × Rd → R be a Gaussian field satisfying the
assumptions:

(i) X has almost surely C2 paths.

(ii) There are almost surely no points t ∈ cl(JN ) ∩ F such that

(a) ∇(X|JN∩F )(t) = 0 and X(t) = u.

(b) ∇(X|JN∩F )(t) = 0 and π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ bd(Nt(CdN ∩ F ))

(c) ∇(X|JN∩F )(t) = 0 and det(D2(X|JN∩F )(t)) = 0.

(iii) There are almost surely no points t ∈ bd(JN ∩ F ) with ∇(X|JN∩F )(t) = 0.
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Then almost surely

#{t ∈ JN ∩ F : X(t) ≥ u,∇(X|JN∩F )(t) = 0,

ι−XJN∩F (t) even, π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F )}

−#{t ∈ JN ∩ F : X(t) ≥ u,∇(X|JN∩F )(t) = 0,

ι−XJN∩F (t) odd, π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F )}

= (−1)l−m lim
ε→0

∫
JN∩F

δlε(∇(X|JN∩F )(t)) det(D2(X|JN∩F )(t))

× 1{X(t) ≥ u, π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F )}Hl−m(dt).

Proof. In oder to guarantee that π(aff(JN )◦∩F ◦)⊥(∇X(t)) ∈ Nt(CdN ∩ F ) is true on a whole
neighborhood of the zeros of ∇(X|JN∩F ), we need assumption (ii) (b) and the fact that the
normal cone Nt(CdN ∩ F ) is full dimensional in the space (aff(JN )◦ ∩ F ◦)⊥. This is established
in the equations (2.12) and (2.13). Apart from that, the proof of Lemma A.4 is so similar to
the one of Lemma A.3 that it can and will be omitted.

The following lemma establishes the almost sure applicability of the Morse lemma by showing
that all restrictions of nice enough Gaussian fields onto the intersection of affine subspaces
with the observation window, are almost surely Morse functions.

Lemma A.5. Let X : Ω × Rd → R be an almost surely of class C2, stationary Gaussian
field satisfying (A2) and let JN ∈ ∂lCdN , m ≤ l ≤ d. Then for almost all ω ∈ Ω there is a
µ-measurable set A′(ω) ⊂ Add−m, where µ(A′(ω)c) = 0, such that

P
(
∃F ∈ A′∃t ∈ JN ∩ F : ∇(X|JN∩F )(t) = 0, X(t) = u

)
= 0

and if m < l ≤ d

P
(
∃F ∈ A′∃t ∈ bd(JN ∩ F ) : πaff(JN∩F )◦(∇X(t)) = 0

)
= 0,

P
(
∃F ∈ A′∃t ∈ JN ∩ F : ∇(X|JN∩F )(t) = 0,det(D2(X|JN∩F )(t)) = 0

)
= 0.

Proof. We show the details for the third equality. First, since

{ω ∈ Ω | ∃F ∈ A′(ω)∃t ∈ JN ∩ F : ∇(X(ω)|JN∩F )(t) = 0, det(D2(X(ω)|JN∩F )(t)) = 0}

⊂ {ω ∈ Ω | ∃F ∈ A′(ω)∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(ω, t)) = 0, det(D2
b
JN
F

X(ω, t)) = 0},

where bJNF denotes an orthonormal basis of aff(JN )◦ ∩ F ◦, the completeness of the probability
measure implies that it is enough to show

P
(
∃F ∈ A′∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(t)) = 0, det(D2

b
JN
F

X(t)) = 0
)

= 0,

where the closure is needed in the proof of Lemma A.6. We start with an application of [1,
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Lemma 11.2.11] yielding

P
(
∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(t)) = 0, det(D2

b
JN
F

X(t)) = 0
)

= 0

for a fixed F ∈ Ad,∗d−m, where A
d,∗
d−m is the set of all F ∈ Add−m such that F ◦ and aff(IN )◦, for

all IN ∈ ∂iCdN , i = 1, . . . , d, are in general position, which is a measurable subset of Add−m with
full measure, cf. [69, Lemma 13.2.1]. This implies together with Fubini’s theorem

E
[∫

Ad,∗
d−m

1{∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(t)) = 0, det(D2
b
JN
F

X(t)) = 0}µ(dF )
]

=
∫
Ad,∗
d−m

P
(
∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(t)) = 0, det(D2

b
JN
F

X(t)) = 0
)
µ(dF ) = 0,

where the above integrand is P⊗ µ-measurable by Lemma A.6. Hence, we obtain the existence
of a measurable set B3 ⊂ Ω×Ad,∗d−m, such that P⊗ µ(Bc

3) = 0 and for all (ω, F ) ∈ B3, we have
that

1{∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(ω, t)) = 0, det(D2
b
JN
F

X(ω, t)) = 0} = 0

⇔ ∀t ∈ cl(JN ∩ F ) : ¬(πaff(JN )◦∩F ◦(∇X(ω, t)) = 0, det(D2
b
JN
F

X(ω, t)) = 0).

We now define for ω ∈ Ω the ω-cross section of B3 as B3,ω := {F ∈ Ad,∗d−m | (ω, F ) ∈ B3} and
observe, cf. [23, Theorem 1.22], that for P-almost all ω ∈ Ω the set B3,ω is µ-measurable and

µ(Bc
3,ω) = 0.

Similar reasoning, except that we use [1, Lemma 11.2.12] and [1, Lemma 11.2.10], yields sets
B1, B2 ∈ F ⊗B(Ad,∗d−m) and cross sections B1,ω, B2,ω, whose complements have µ measure zero
for P-almost all ω ∈ Ω. Thus for P-almost all ω the complement of A′(ω) := ∩3

i=1Bi,ω has µ
measure zero, and we conclude

P(∃F ∈ A′∃t ∈ JN ∩ F : ∇(X(ω)|JN∩F )(t) = 0, det(D2(X(ω)|JN∩F )(t)) = 0)

= P(ω ∈ Ω | ∃F ∈ Add−m : (ω, F ) ∈ ∩3
i=1Bi and

∃t ∈ JN ∩ F : ∇(X(ω)|JN∩F )(t) = 0,det(D2(X(ω)|JN∩F )(t)) = 0)

= P(∅) = 0.

And analogously

P(∃F ∈ A′∃t ∈ JN ∩ F : ∇(X|JN∩F )(t) = 0, X(t) = u) = 0,

P(∃F ∈ A′∃t ∈ bd(JN ∩ F ) : πaff(JN∩F )◦(∇X(t)) = 0) = 0.

In the following, we present a proof for the measurability of the indicator mapping used in
the derivation of the preceding lemma.
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Lemma A.6. Let X : Ω× Rd → R be an almost surely of class C2, stationary Gaussian field
and let JN ∈ ∂lCdN , m < l ≤ d. Then the mapping · : Ω×Ad,∗d−m → R given by

(ω, F ) 7→ 1{∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(ω, t)) = 0,det(D2
b
JN
F

X(ω, t)) = 0}

is P⊗ µ-measurable.

Proof. The given mapping is an indicator function and as such it is measurable if the set

{(ω, F ) ∈ Ω×Ad,∗d−m | ∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(ω, t)) = 0, det(D2
b
JN
F

X(ω, t)) = 0}

is measurable in the product σ-algebra. The continuity in t of the mappings

t 7→ f1(t, ω, F ) := πaff(JN )◦∩F ◦(∇X(ω, t)) and t 7→ f2(t, ω, F ) := det(D2
b
JN
F

X(ω, t))

together with the compactness of the set cl JN yield

{(ω, F ) ∈ Ω×Ad,∗d−m | ∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(ω, t)) = 0,det(D2
b
JN
F

X(ω, t)) = 0}

=
⋂
n∈N

⋃
t∈I

({
(ω, F ) ∈ Ω×Ad,∗d−m | πaff(JN )◦∩F ◦(∇X(ω, t)) ∈ Bd

1/n

}
∩
{

(ω, F ) ∈ Ω×Ad,∗d−m | |det(v1| · · · |vl−m)>D2X(ω, t)(v1| · · · |vl−m)| < 1
n

}
∩
{

(ω, F ) ∈ Ω×Ad,∗d−m | F ∩B
d
1/n(t) 6= ∅

})
, (A.4)

where I denotes a dense subset of cl JN and bJNF = (vi)l−mi=1 an orthonormal basis of aff(JN )◦∩F ◦.
Equation A.4 can be deduced by showing that

{(ω, F ) ∈ Ω×Ad,∗d−m | ∃t ∈ cl(JN ∩ F ) : πaff(JN )◦∩F ◦(∇X(ω, t)) = 0, det(D2
b
JN
F

X(ω, t)) = 0}

=
⋂
n∈N

{
(ω, F ) ∈ Ω×Ad,∗d−m | ∃t ∈ cl JN : F ∩Bd

1/n(t) 6= ∅,

f1(t, ω, F ) ∈ Bd
1/n, |f2(t, ω, F )| < 1

n

}
,

where the set on left side is trivially a subset of the intersection on the right side. To show
the converse, let (ω, F ) be an element in the intersection on the right side. Then there exists
a sequence (tn)n∈N in cl JN such that F ∩ Bd

1/n(tn) 6= ∅ and f1(tn, ω, F ) ∈ Bd
1/n as well as

|f2(tn, ω, F )| < 1
n . The compactness of cl JN implies that there is a convergent subsequence

(tni)i∈N such that tni
i→∞−→ t0 ∈ cl JN . Then

d(F, t0) ≤ d(F, tni) + d(tni , t0) ≤ 1
ni

+ ‖tni − t0‖
i→∞−→ 0,

implying t0 ∈ F . Moreover by continuity

‖f1(t0, ω, F )‖ = lim
i→∞
‖f1(tni , ω, F )‖ ≤ lim

i→∞

1
ni

= 0
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and analogously f2(t0, ω, F ) = 0, which yields that (ω, F ) is in the left set. In the second step
we establish{

(ω, F ) ∈ Ω×Ad,∗d−m | ∃t ∈ cl JN : F ∩Bd
1/n(t) 6= ∅, f1(t, ω, F ) ∈ Bd

1/n, |f2(t, ω, F )| < 1
n

}
=
⋃
t∈I

{
(ω, F ) ∈ Ω×Ad,∗d−m | F ∩B

d
1/n(t) 6= ∅, f1(t, ω, F ) ∈ Bd

1/n, |f2(t, ω, F )| < 1
n

}
,

where the union on the right side is trivially a subset of the set on the left. To show the
converse, let (ω, F ) be an element in the set on the left side. Then there exists a point t ∈ cl JN
with the specified properties. Since I is dense in cl JN , there exists a sequence (tk)k∈N in I
such that tk

k→∞−→ t. If k is sufficiently large, we obtain F ∩Bd
1/n(tk) 6= ∅, since tk

k→∞−→ t and
d(F, t) < 1

n . Moreover, continuity implies that f1(tk, ω, F ) < 1
n as well as |f2(tk, ω, F )| < 1

n , if
k is large enough, which yields (ω, F ) is an element in the set on the right side.

We note that the last set in the inner intersections in display (A.4) is measurable since it is
by definition an open set in the Fell topology. For the measurability of the other two, we need
to take a closer look. We start with the first one and define the mappings

f1 : (Ω, Ad,∗d−m)→ (Rd, Ad,∗d−m), (ω, F ) 7→ (∇X(ω, t), F ),

f2 : (Rd, Ad,∗d−m)→ (Rd, Gdl−m), (x, F ) 7→ (x, aff(JN )◦ ∩ F ◦),

f3 : (Rd, Gdl−m)→ Rd, (x,E) 7→ πE(x),

for t ∈ Rd, such that{
(ω, F ) ∈ Ω×Ad,∗d−m | πaff(JN )◦∩F ◦(∇X(ω, t)) ∈ Bd

1/n

}
= (f3 ◦ f2 ◦ f1)−1(Bd

1/n).

Then, f−1
1 (A×B) = {ω ∈ Ω | ∇X(ω, t) ∈ A} ×B, for t ∈ Rd, A ∈ B(Rd) and B ∈ B(Ad,∗d−m),

which is measurable in the product σ-algebra by definition of random fields. Similarly, the
measurability of f2 follows by observing that the map Ad,∗d−m → Ad,∗d−m, F 7→ F ◦ is continuous
and moreover the map Gd,∗d−m → Gdl−m defined by E 7→ aff(JN )◦∩E is the restriction of a upper
semicontinuous and thus measurable map, cf. [69, Thm 12.2.6 (a)]. At last, the measurability
of the map f3 follows with [6, Lemma 6.5.11] from the fact that f3 is continuous in x for
fixed E ∈ Gdl−m, and continuous in E for fixed x ∈ Rd, cf. [5, Theorem 3.1] since upper
semicontinuity for multifunctions implies continuity in the single value case.

To establish the measurability of the remaining set of the above inner intersection, we define
the mappings

f1 : Ω×Ad,∗d−m → Rd×(l−m) × Rd×d, (ω, F ) 7→ (v1, . . . , vl−m, D
2X(ω, t))

f2 : Rd×(l−m) × Rd×d → R, (A,B) 7→ |detA>BA|,

for t ∈ Rd, such that{
(ω, F ) ∈ Ω×Ad,∗d−m | |det(v1| · · · |vl−m)>D2X(ω, t)(v1| · · · |vl−m)| < 1

n

}
= (f2 ◦ f1)−1(B1

1/n).
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Then, in order to obtain the measurability, we show that f2 and f1 are measurable mappings.
For f2 this is true since all involved manipulations are continuous and thus measurable. To
establish the measurability of f1, let A ∈ B(Rd×(l−m)) and B ∈ B(Rd×d). Then

f−1
1 (A×B) = {ω ∈ Ω | D2X(ω, t) ∈ B} × {F ∈ Ad,∗d−m | (v1, . . . , vl−m) ∈ A},

where the first set of the product is measurable by the properties of a random field and the
second set is measurable if the choice of the orthonormal basis v1, . . . , vl−m is measurable. To
show that a measurable choice indeed exists, we invoke the measurable selection theorem 6.6.7
in [6], which we state for completeness.

Theorem A.7. Let (X,A) be a measurable space, Y be a Polish space and T : X ⇒ Y be a
measurable multifunction with nonempty closed values. Then T admits a measurable selection
f : X → Y , i.e. for all x ∈ X we have f(x) ∈ T (x) and f is measurable.

We choose X := Ad,∗d−m, Y := Rd and for F ∈ Ad,∗d−m

Ti(F ) := aff(JN )◦ ∩ (lin(f1(F ), . . . , fi−1(F )))⊥ ∩ Sd−1 ∩ F ◦, i = 1, . . . , l −m.

The multifunction Ti defined in this way has nonempty closed values by definition. The
measurability of Ti as a multifunction can be obtained by showing that it is a measurable
mapping when it is considered as a single valued mapping into the space (Cl(Rd), τFell), the
space of closed subset of Rd equipped with the Fell topology, cf. [6, Theorem 6.5.14], [6,
Theorem 5.1.10]. After obtaining the measurability of the map

{(vi)ni=1 ∈ Rd×n | v1, . . . , vn pairwise orthogonal} → Gdn, (v1, . . . , vn) 7→ (lin(v1, . . . , vn))⊥

with the aid of [69, Theorem 12.2.2] and [69, Theorem 12.2.5], we obtain the measurability of
the multifunction by [69, Theorem 12.2.6 (a)], where the measurability of the intersection is
established. Hence, the mapping

· : Ad,∗d−m → Rd×(l−m), F 7→ (f1(F ), . . . , fl−m(F ))

yields the desired measurable choice of an orthonormal basis of aff(JN )◦ ∩F ◦, and we conclude
the assertion.

In the following lemma we establish the fact that the curvature notions of an excursion set
in the cube of side length N investigated in Chapter 3 is a measurable mapping from the
probability space into the extended reals. That is, it is a well defined random variable.

Lemma A.8. Let X : Ω× Rd → R be a stationary Gaussian field, which is almost surely of
class C2 and let m ∈ {0, . . . , d− 1}. Then the mapping

Ω→ (R ∪ {∞}), ω 7→ Lm
(
CdN ∩X(ω)−1([u,∞))

)
is F-σ(B(R) ∪ {∞})-measurable, i.e. a random variable.
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Proof. By Lemma A.1, we may assume that CdN ∩X(ω)−1([u,∞)) is a set of positive reach for
all ω ∈ Ω. Writing down the Steiner formula, cf. (2.17), d times with ε given by

ε1 :=
reach

(
CdN ∩X(ω)−1([u,∞))

)
d

, . . . , εd :=
reach

(
CdN ∩X(ω)−1([u,∞))

)
1 ,

if reach
(
CdN ∩X(ω)−1([u,∞))

)
< ∞ and ε1 := 1, . . . , εd := d otherwise, yields a solvable

system of linear equations, since its determinant is given by a Vandermonde determinant
different from zero. We obtain a representation of Lm in terms of Hd, i.e.

Lm
(
CdN ∩X(ω)−1([u,∞))

)
=

d∑
n=1

cεnmnHd
((
CdN ∩X(ω)−1([u,∞))

)
+ εn clBd

1

)
,

where the coefficients cε1
m1, . . . , c

εd
md ∈ R depend in a measurable way on the expression

reach
(
CdN ∩X(ω)−1([u,∞))

)
. By [56, Proposition 1.1.16] the reach of a random closed

set is a random variable, where the fact that CdN ∩X(ω)−1([u,∞)) is indeed a random closed
set is shown later in this proof. We recall [79, Theorem 2.1.3], where the Fell topology on
the space Cl(Rd) of closed subsets of Rd is introduced for instance in [69, Section 12.2] or [6,
Section 5.1].

Theorem A.9. Let s ≥ 0 and let B ⊂ Rn be closed. Then the mapping

(CL(Rd), σ(τFell))→ (R ∪ {∞}, σ(B(R) ∪ {∞})), F 7→ Hs(F ∩B)

is measurable.

Therefore, by taking s = d and B = Rd, it suffices to show the measurability of the mapping

Ω→ Cl(Rd), ω 7→
(
CdN ∩X(ω)−1([u,∞))

)
+ εn clBd

1 .

The intersection and the closure of Minkowski addition are measurable by [68, Theorem
12.2.6] and [68, Theorem 12.3.1], respectively. Thus, all that is left is to show the F-σ(τFell)-
measurability of ω 7→ X(ω)−1([u,∞)). To see that, it is enough to show that the sets

{ω ∈ Ω | X(ω)−1([u,∞)) ∩ C = ∅}, C ⊂ Rd compact,

{ω ∈ Ω | X(ω)−1([u,∞)) ∩G 6= ∅}, G ⊂ Rd open

are measurable, by the existence of the countable base of the Fell topology, cf. [69, Chapter
12.2]. The sets in the first line are measurable since the compactness of C and the continuity
of X allow the decomposition

{ω ∈ Ω | X(ω)−1([u,∞)) ∩ C = ∅}c = {ω ∈ Ω | ∃t ∈ C : X(ω, t) ≥ u}

=
⋂
n∈N

⋃
t∈I

{
ω ∈ Ω | X(ω, t) > u− 1

n

}
,
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where this is measurable since X is a random field, cf. (2.5). The sets involving a open set G
are measurable since

{ω ∈ Ω | X(ω)−1([u,∞)) ∩G 6= ∅} = {ω ∈ Ω | ∃t ∈ G : X(ω, t) ≥ u}

=
⋃
B

{ω ∈ Ω | ∃t ∈ B : X(ω, t) ≥ u},

where the union is taken over all closed balls with rational radius and rational center contained
in G. Then the measurability follows analogously to the preceding one and the assertion
follows.

The preceding lemma was proven by [79, Theorem 2.1.3] and basic principles. The arguments
could be shortened by the following more advanced result from the literature, cf. [80, Theorem
2.1.2]. We denote by P the set of closed sets with positive reach, which is measurable in τFell,
cf. [80, Proposition 1.1.1], and equip it with the trace topology of the Fell topology τFell.

Theorem A.10. Let m = 0, . . . , d. Then the mapping

(P, σ(τFell ∩ P))→ (R,B(R)), A 7→ Lm(A)

is measurable.

We proceed with the derivation of the fact that the counting variables defined in (3.2) are
measurable mappings in ω and F .

Lemma A.11. Let X : Ω×Rd → R be an almost surely of class C2, stationary Gaussian field
and let JN ∈ ∂lCdN , m ≤ l ≤ d. Then the mapping · : Ω×Add−m → R given by

(ω, F ) 7→ #
{
t ∈ JN ∩ F | X(t) ≥ u,∇(X|JN∩F )(t) = 0, ι−XJN∩F (t) even,∇X(t) ∈ Nt(CdN ∩ F )

}
is F ⊗ B(Add−m)-σ(B(R) ∪ {∞})-measurable.

Proof. The measure H0 is given by the counting measure and therefore

#
{
JN ∩ F | X(t) ≥ u,∇(X|JN∩F )(t) = 0, ι−XJN∩F (t) even,∇X(t) ∈ Nt(CdN ∩ F )

}
= H0

(
JN ∩

{
t ∈ F | X(t) ≥ u,∇(X|JN∩F )(t) = 0, ι−XJN∩F (t) even,∇X(t) ∈ Nt(CdN ∩ F )

})
.

By continuity from below of the measure H0 and Theorem A.9, the assertion of the lemma
follows, if we show the measurability of the map · : Ω×Ad,∗d−m → Cl(Rd), where Ad,∗d−m denotes
the set of all F ∈ Add−m with F ∩JN 6= ∅ and aff(JN )◦ and F ◦ are in general position, given by

(ω, F )→ {t ∈ F |X(ω, t) ≥ u, πaff(JN )◦∩F ◦(∇X(ω, t)) = 0,detD2
bFJN

X(ω, t) ≥ 0,

∇X(ω, t) ∈ NJN (CdN ∩ F )}.

We note that writing NJN (CdN ∩ F ) for Nt(CdN ∩ F ) emphasizes the fact that this normal cone
does not depend on the location of t in JN ∩ F , cf. (2.14). To show this measurability, it is
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enough to establish that the following set for an arbitrary compact set C ⊂ Rd is measurable,
cf. [53, Section 1.2],{

(ω, F ) ∈ Ω×Ad,∗d−m | ∃t ∈ F ∩ C : X(ω, t) ≥ u, πaff(JN )◦∩F ◦(∇X(ω, t)) = 0,

detD2
bFJN

X(ω, t) ≥ 0,∇X(ω, t) ∈ NJN (CdN ∩ F )
}

=
⋂
n∈N

{
(ω, F ) ∈ Ω×Ad,∗d−m | ∃t ∈ C : X(ω, t) > u− 1

n
,detD2

bFJN
X(ω, t) > − 1

n
,

F ∩Bd
1
n

(t) 6= ∅, πaff(JN )◦∩F ◦(∇X(ω, t)) ∈ Bd
1
n
,∇X(ω, t) ∈ (NJN (CdN ∩ F ) +Bd

1
n

)
}
,

(A.5)

where the continuity of the involved functions and the compactness of C yields the equality, cf.
the proof of Lemma A.6. Denoting by I a dense subset of the set C yields the equality of the
set in (A.5) to

⋂
n∈N

⋃
t∈I

({
(ω, F ) ∈ Ω×Ad,∗d−m | X(ω, t) > u− 1

n

}

∩
{

(ω, F ) ∈ Ω×Ad,∗d−m | F ∩B
d
1
n

(t) 6= ∅, πaff(JN )◦∩F ◦(∇X(ω, t)) ∈ Bd
1
n
,

detD2
bFJN

X(ω, t) > − 1
n

}
∩
{

(ω, F ) ∈ Ω×Ad,∗d−m | ∇X(ω, t) ∈ (NJN (CdN ∩ F ) +Bd
1
n

)
})

.

The measurability of the inner set of the first line of the display is measurable by definition of
a random field. The measurability of the set in the second and third line can be deduced as in
the proof of Lemma A.6. To deduce the measurability of the set in the third line, we first note
that {

(ω, F ) ∈ Ω×Ad,∗d−m | ∇X(ω, t) ∈ (NJN (CdN ∩ F ) +Bd
1
n

)
}

=
⋃
m∈N

{
(ω, F ) ∈ Ω×Ad,∗d−m | ∇X(ω, t) ∈ (NJN (CdN ∩ F ) + clBd

1
n
− 1
m

)
}
. (A.6)

By defining

f1 : Ω→ R, ω 7→ ∇X(ω, t), f2 : Ad,∗d−m → Cl(Rd), F 7→ NJN (CdN ∩ F ) + clBd
1
n
− 1
m
,

f3 : Ω×Ad,∗d−m → Cl(Rd)×R, (ω, F ) 7→ (f2(F ), f1(ω)),

f4 : Cl(Rd)×Rd → R, (A, x) 7→ 1{x ∈ A}

the set in (A.6) equals (f4 ◦ f3)−1(1). Thus, this is a measurable set if f1, f2 and f4 are
measurable. By [69, Theorem 12.2.7] the map f4 is measurable and f1 has this property since
X is a random field. Since the closure of Minkowski addition is measurable, cf. [69, Theorem
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12.3.1], it suffices to show the measurability of

Ad,∗d−m → CL(Rd), F 7→ NJN (CdN ∩ F ) (A.7)

in order to show that f2 is measurable. This is the case, since (A.7) is an upper semicontinuous
mapping on Ad,∗d−m, which can be seen with the aid of [69, Theorem 12.2.5], [5, Theorem3.1] and
[69, Theorem 12.2.2], and the fact thatNJN (CdN∩F ) = (πCdN∩F )−1(t)−t, for any t ∈ JN∩F .



APPENDIX B

Proof of Lemma 3.2

In the remaining part of the appendix we give a proof of Lemma 3.2. We state the lemma
again for the convenience of the reader. The auxiliary Lemmas B.1 – B.6 are necessary for the
proof of Lemma 3.2 (i) and (ii).
In order to prove part (i), we apply the Rice formulas, cf. Section 2.1, and find suitable

bounds for the terms appearing in these formulas. To do so we define a mapping, which maps
the set JN ∩ F from the ambient space Rd into the ambient space Rl−m in which we can apply
the Rice formulas. Then we exploit the differentiability of the covariance function to obtain
the desired upper bounds in the Lemmas B.2– B.6. For part (ii) a Gaussian regression is used
as well as the Lemmas B.2 and B.3. Part (iii) is established with the aid of Lemma A.3 and
part (ii).

Lemma 3.2. Let G ⊂ Rd be compact and assume the conditions (A1) and (A2). Furthermore
let JN ∈ ∂lCdN and l > m. Then the following is true:

(i) There is a constant c = c(X, d,m, l,N,G) > 0 such that for almost all F ∈ Add−m and
all y ∈ G

E
[
#{t ∈ JN ∩ F : ∇(X|JN∩F )(t) = y}2

]
< c.

(ii) For almost all F ∈ Add−m the mapping

y 7→ E
[
#{t ∈ JN ∩ F : ∇(X|JN∩F )(t) = y}2

]
is continuous on (aff(JN ) ∩ F )◦ ∩G.
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(iii) For almost all F ∈ Add−m

ξN (F , ε) L
2(P)−→ ξN (F ), as ε→ 0,

where

ξN (F, ε) := (−1)d−m
∫
CdN∩F

δdε (∇(X|F )(t))1{X(t) ≥ u} det(D2(X|F )(t))Hd−m(dt),

ξN (F ) := #{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) even}

−#{t ∈ intCdN ∩ F : X(t) ≥ u,∇(X|F )(t) = 0, ι−XF (t) odd}.

Proof. To prove (i), we refine the methods used to prove [22, Proposition 1.1 (1)]. First, we
note that if JN ∩ F 6= 0, the assertion is trivially true. Moreover, let F ∈ Add−m be such that
the linear subspaces F ◦ and aff(JN )◦ are in general position, which is true for µ-almost all
F ∈ Add−m, cf. [69, Lemma 13.2.1]. Furthermore, let b(JN , F ) := bFJN := (v1, . . . , vl−m) be an
orthonormal basis of (aff(JN ) ∩ F )◦. We define yb

F
JN := (〈y, v1〉, . . . , 〈y, vl−m〉) as well as the

affine linear mapping

ρ
bFJN : Rl−m → Rd, s 7→ σ

bFJN (x) + πaff(JN )∩F (0),

where σb
F
JN : Rl−m → Rd is given by s 7→ (v1| · · · |vl−m)s and πaff(JN )∩F (0) is the metric

projection of 0 onto aff(JN ) ∩ F . Using this mapping, we define the Gaussian field

X
bFJN : Rl−m → Rd, s 7→ X(ρb

F
JN (s)),

which yields ∇XbFJN (s) = ∇bFJN
X(ρb

F
JN (s)) as well as D2X

bFJN (s) = D2
bFJN

X(ρb
F
JN (s)), for

s ∈ Rl−m. Thus we obtain

#{t ∈ JN ∩ F | ∇(X|JN∩F )(t) = y} ≤ #
{
t ∈ JN ∩ F |

∂

∂vi
X(t) = (yb

F
JN )i, i = 1, . . . , l −m

}
,

(B.1)

which equals

#
{
s ∈ J

bFJN
N | ∂

∂vi
X(ρb

F
JN (s)) = y

bFJN
i , i = 1, . . . , l −m

}
= #

{
s ∈ J

bFJN
N | ∇XbFJN (s) = y

bFJN

}
,

where J
bFJN
N := (ρb

F
JN )−1(JN ∩ F ). We note that diam J

bFJN
N ≤ d1/2N .

In order to apply the Rice formula, cf. 2.5, we check its conditions first:

(i) ∇XbFJN (·) =
(

∂
∂vi
X(ρb

F
JN (·))

)l−m
i=1

is a centered Gaussian field, since X satisfies this
property.

(ii) Since X is almost surely of class C3 by assumption (A1), we obtain ∇XbFJN is almost
surely of class C2.
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(iii) Assumption (A1) implies Cov(∇XbFJN ) = Il−m, which is positive definite.

(iv) This condition is satisfied by Lemma 2.7.

Then

E
[
#
{
s ∈ J

bFJN
N | ∇XbFJN (s) = y

bFJN

}]
=
∫
J
bF
JN
N

E
[
|detD2X

bFJN (s)| | ∇XbFJN (s) = y
bFJN

]
p
∇X

bF
JN (s)

(yb
F
JN ) ds,

where p
∇X

bF
JN (s)

(yb
F
JN ) denotes the probability density of ∇XbFJN (s) at yb

F
JN . Stationarity and

isotropy imply that
(
∂
∂vi
X(t)

)l−m
i=1

D=
(
∂
∂ti
X(0)

)l−m
i=1

, t ∈ Rd, and that the first and second
derivatives are independent at equal times. Thus the above equals∫

J
bF
JN
N

E
[
|detD2

bFJN
(X)(ρb

F
JN (s))| | ∇bFJN

(X)(ρb
F
JN (s)) = y

bFJN

]
p
∇
bF
JN

(X)(ρ
bF
JN (t))

(yb
F
JN ) ds

=
∫
J
bF
JN
N

E
[
| detD2

bFJN
X(0)|

]
p∇

bF
JN

X(0)(y
bFJN ) ds

= E
[
| detD2

bFJN
X(0)|

]
p ∂
∂t1

X(0)... ∂
∂tl−m

X(0)(y
bFJN )Hl−m(JN ∩ F ), (B.2)

which can be bounded by

E
[
|detD2

bFJN
X(0)|

]
p ∂
∂t1

X(0)... ∂
∂tl−m

X(0)(0)Hl−m(JN ∩ F ),

since the density of a centered Gaussian random variable attains its maximum at 0. The
density at 0 is explicitly known and the expectation of the determinant can be bounded by
an application of Wick’s formula independently of F , which yields the assertion for the first
moment. Indeed, we observe that

E
[
| detD2

bFJN
X(0)|

]
≤ E

[
1 + det(D2

bFJN
X(0))2

]
and that by Hadamard’s inequality, cf. [7, Fact 8.17.11],

det(D2
bFJN

X(0))2 ≤
l−m∏
i=1

l−m∑
k=1

(
∂2

∂vi∂vk
X(0)

)2

=
l−m∑
k1=1

. . .
l−m∑

kl−m=1

l−m∏
i=1

(
∂2

∂vi∂vki
X(0)

)2

.

Hence, we obtain with the definition Y k
j := ∂2

∂vb(j+1)/2c∂vkb(j+1)/2c
X(0) for j = 1, . . . , 2(l −m)

E
[
det(D2

bFJN
X(0))2

]
≤

l−m∑
k1=1

. . .
l−m∑

kl−m=1
E

2(l−m)∏
j=1

Y k
j
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By Wick’s formula, cf. [1, Lemma 11.6.1], this equals

l−m∑
k1=1

. . .
l−m∑

kl−m=1

∑
E
[
Y k
j1Y

k
j2

]
. . .E

[
Y k
j2(l−m)−1

Y k
j2(l−m)

]
,

where the inner sum is taken over the (2(l−m))!/(2l−m(l−m)!) possibilities of choosing l−m
pairs of Y k

1 , . . . , Y
k

2(l−m), where the order of the pairs does not matter. We conclude from
E
[
Y k
j Y

k
j′

]
≤ ψ̃(0) ≤ d2ψ(0), cf. (A3), that

E
[
det(D2

bFJN
X(0))2

]
≤ cψl−m(0),

where c = c(X, d,m, l) > 0, and therefore the expectation is finite independently of F .

However, we are interested in the second moment and therefore still need to apply the Rice
formula for the second factorial of the counting variable, since E

[
X2] = E [X] + E [X(X − 1)],

for any random variable X. We therefore check the conditions of Theorem 2.6, which differ
from the previous ones only in condition (iii):

(iii) We note that
(
∇XbFJN (s1),∇XbFJN (s2)

)
D=
((

∂
∂vi
X(0)

)l−m
i=1

,
(
∂
∂vi
X(t)

)l−m
i=1

)
, where t :=

σ
bFJN (s2− s1), and assume that this vector is degenerate, which will yield a contradiction.

Then there exists a vector c ∈ R2(l−m) nonzero and γ ∈ R such that

P
(〈

c,

((
∂

∂vi
X(0)

)l−m
i=1

,

(
∂

∂vi
X(t)

)l−m
i=1

)〉
= γ

)
= 1.

Moreover
(
∂
∂vi
X(0)

)l−m
i=1

= (v1| · · · |vl−m)>∇X(0) implies

〈
c,

((
∂

∂vi
X(0)

)l−m
i=1

,

(
∂

∂vi
X(t)

)l−m
i=1

)〉
=
〈
c,

(
A 0
0 A

)
(∇X(0),∇X(t))

〉
,

where A := (v1| · · · |vl−m)>. Therefore, c>(v1| · · · |vl−m)> = ((v1| · · · |vl−m)c)> 6= 0,
since v1, . . . , vl−m is a basis, which implies that there exists c1 ∈ R2d nonzero such
that P(〈c1, (∇X(0),∇X(t))〉 = γ) = 1, a contradiction to assumption (A2). Thus
(∇XbFJN (s1),∇XbFJN (s2)) is nondegenerate for s1 6= s2 ∈ Rl−m.

We therefore obtain

E
[
#{s ∈ J

bFJN
N | ∇XbFJN (s) = y

bFJN }
(

#{s ∈ J
bFJN
N | ∇XbFJN (s) = y

bFJN } − 1
)]

=
∫
J
bF
JN
N

∫
J
bF
JN
N

E
[
| detD2X

bFJN (s1) detD2X
bFJN (s2)| | ∇XbFJN (s1) = ∇XbFJN (s2) = y

bFJN

]
× p
∇X

bF
JN (s1),∇X

bF
JN (s2)

(yb
F
JN , y

bFJN ) ds1 ds2,
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which equals∫
J
bF
JN
N

∫
J
bF
JN
N

p
∇
bF
JN

(X)(ρ
bF
JN (s1)),∇

bF
JN

(X)(ρ
bF
JN (s2))

(yb
F
JN , y

bFJN )

× E
[
|detD2

bFJN
(X)(ρb

F
JN (s1)) detD2

bFJN
(X)(ρb

F
JN (s2))| | E(F, JN , s1, s2, y)

]
ds1 ds2,

where p
∇X

bF
JN (s1),∇X

bF
JN (s2)

(yb
F
JN , y

bFJN ) denotes the density of the 2(l−m)-dimensional Gaussian

vector (∇XbFJN (s1),∇XbFJN (s2)) evaluated at the point (yb
F
JN , y

bFJN ) and where

E(F, JN , s, t, y) := {∇bFJN
(X)(ρb

F
JN (s)) = ∇bFJN

(X)(ρb
F
JN (t)) = y

bFJN }.

By stationarity and Fubini’s theorem the above equals∫
J
bF
JN
N −J

bF
JN
N

p
∇
bF
JN

X(ρ
bF
JN (s)),∇

bF
JN

X(ρ
bF
JN (0))

(yb
F
JN , y

bFJN )Hl−m(J
bFJN
N ∩ (J

bFJN
N − s))

× E
[
| detD2

bFJN
X(ρb

F
JN (s)) detD2

bFJN
X(ρb

F
JN (0))| | E(F, JN , s, 0, y)

]
ds. (B.3)

We note that we can close the domain of integration, which leads to a compact set contained in
Bl−m

2d1/2N
. This helps to exploit continuity arguments, when seeking bounds for the integrands.

This and more is done in Lemmas B.2 and B.3, which provide an integrable upper bound for
the integrand. The constants, appearing in these lemmata, are independent of F ∈ Add−m and
we therefore obtain the assertion.

We now prove part (ii) of the assertion and start by mentioning that for y ∈ (aff(JN )∩F )◦∩G
the inequality (B.1) is an actual equality and we deduce by equation (B.2) that the first
moment E [#{t ∈ JN ∩ F : ∇(X|JN∩F )(t) = y}] is continuous in y, since the density of a normal
distribution is continuous. Thus it remains to establish the continuity of the second factorial
moment, which by an application of the Rice formula equals, cf. (B.3),

ϕ(F, y) :=
∫
J
bF
JN
N −J

bF
JN
N

G(F, s, y)Hl−m
(
J
bFJN
N ∩ (J

bFJN
N − s)

)
ds,

where

G(F, s, y) :=E
[
|detD2

bFJN
X(ρb

F
JN (s)) detD2

bFJN
X(ρb

F
JN (0))| | E(F, JN , s, 0, y)

]
× p
∇
bF
JN

X(ρ
bF
JN (s)),∇

bF
JN

X(ρ
bF
JN (0))

(yb
F
JN , y

bFJN ).

By Lemma B.2 and Lemma B.3, we obtain for y, y′ ∈ (aff(JN ) ∩ F )◦ ∩ G by the triangle
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inequality

|G(F, s, y)−G(F, s, y′)|

≤ 2c
(
1{s ∈ U}‖s‖−(l−m) + 1{s ∈ Bl−m

2d1/2N
\ U}

)
‖s‖2 sup

y∈G

(
1 + ‖y‖4(l−m−1)

) 1
2
(
1 + ‖y‖4

) 1
2 ,

which is an integrable upper bound in s independent of y′ and y. Thus by dominated
convergence

lim
y→y′
|ϕ(F, y)− ϕ(F, y′)|

=
∫
J
bF
JN
N −J

bF
JN
N

lim
y→y′

|G(F, s, y)−G(F, s, y′)|Hl−m(J
bFJN
N ∩ (J

bFJN
N − s)) ds.

Therefore it remains to show the continuity of G(F, s, ·) for all y ∈ (aff(JN ) ∩ F )◦ ∩ G. We
note that the second factor in the definition of G(F, s, ·) is continuous in y, since y enters this
term as the argument of a Gaussian density, which is continuous. Hence all that is left, is to
establish the continuity in y of the conditional expectation in the definition of G(F, s, ·). We
abbreviate

Ns :=
(

∂2

∂vi∂vj
X(ρb

JN
N (s))

)
1≤i≤j≤l−m

∈ R(l−m)(l−m+1)/2

and

Ms :=
(
∇
b
JN
N

X(ρb
JN
N (s)),∇

b
JN
N

X(ρb
JN
N (0))

)
∈ R2(l−m).

Then by Gaussian regression, cf. [4, Proposition 1.2],

E [| detm(Ns) detm(N0)| |Ms = (y, y)]

= E
[∣∣∣detm

(
Ns − Cov(Ns,Ms) Cov(Ms)−1(Ms − (y, y))

)
×detm

(
N0 − Cov(N0,Ms) Cov(Ms)−1(Ms − (y, y))

)∣∣∣] ,
where m: R(l−m)(l−m+1)/2 → R(l−m)×(l−m) is the mapping that maps the upper half of a
matrix, given in form of a vector, to the matrix itself. Then, with the abbreviations defined by
A(s1, s2) := Ns1−Cov(Ns1 ,Ms2) Cov(Ms2)−1Ms2 and B(s1, s2) := Cov(Ns1 ,Ms2) Cov(Ms2)−1,
this expectation equals

E

∣∣∣∣∣∣detm

(A(s, s)α −
l−m∑
i=1

(B(s, s)α,i +B(s, s)α+l−m,i)yi

)(l−m)(l−m+1)/2

α=1


×detm

(A(0, s)α −
l−m∑
i=1

(B(0, s)α,i +B(0, s)α+l−m,i)yi

)(l−m)(l−m+1)/2

α=1

∣∣∣∣∣∣
 .

By the Leibniz formula for determinants, that is detA =
∑
σ∈Sd sgn(σ)

∏
i=1d aσ(i),i for A ∈
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Rd×d, we deduce that the argument of this expectation is given by the absolute value of
a multivariate polynomial in the components of y with random coefficients and as such it
is continuous in y. Indeed, for a polynomial with random coefficients P (y1, . . . , yl−m) =∑2(l−m)
i1,...,il−m=1 Zi1,...,il−my

i1
1 · · · y

il−m
l−m , we obtain

∣∣E [|P (y)|]− E
[
|P (y′)|

]∣∣ ≤ E
[∣∣|P (y)| − |P (y′)|

∣∣] ≤ E
[
|P (y)− P (y′)|

]
≤

2(l−m)∑
i1,...,il−m=1

E
[
|Zi1,...,il−m |

]
|
∣∣∣yi11 · · · yil−ml−m − (y′)i11 · · · (y′)

il−m
l−m

∣∣∣ ,
which vanishes in the limit y′ → y if E

[
|Zi1,...,il−m |

]
<∞, which is the case since the underlying

random variables are Gaussian. Thus, we conclude assertion (ii).

In order to prove the remaining assertion, namely point (iii), we first prove∫
intCdN∩F

δdε (∇(X|F )(t))|detD2(X|F )(t)|Hd−m(dt) L
2(P)−→ #{t ∈ intCdN ∩ F | ∇(X|F )(t) = 0},

as ε→ 0. The first step is to note that the same proof as the one of Lemma A.3 yields the
convergence in the almost sure sense. For fixed F ∈ Add−m the conditions of Lemma A.3 are
verified in [1, Lemma 11.2.10 - 11.2.12]. Thus by Fatou’s lemma

E
[
#{t ∈ intCdN ∩ F | ∇(X|F )(t) = 0}2

]
≤ lim inf

ε→0
E

(∫
intCdN∩F

δdε (∇(X|F )(t))| det(D2(X|F )(t))|Hd−m(dt)
)2


≤ lim sup
ε→0

E

(∫
intCdN∩F

δdε (∇(X|F )(t))|det(D2(X|F )(t))|Hd−m(dt)
)2
 . (B.4)

An application of the coarea formula, cf. [25, Theorem 3.2.12], yields∫
intCdN∩F

δdε (∇(X|F )(t))|det(D2(X|F )(t))|Hd−m(dt)

=
∫
F ◦

#{t ∈ intCdN ∩ F | ∇(X|F )(t) = y}δdε (y)Hd−m(dy),

which leads to the upper bound for the term in (B.4)

lim sup
ε→0

E
[(∫

F ◦
#{t ∈ intCdN ∩ F | ∇(X|F )(t) = y}δdε (y)Hd−m(dy)

)2
]

≤ lim sup
ε→0

E
[∫
F ◦

#{t ∈ intCdN ∩ F | ∇(X|F )(t) = y}2δdε (y)Hd−m(dt)
]

where we used Jensen’s inequality for the measure δdε (y)dy. Then the already proven assertion
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(ii) yields

lim sup
ε→0

∫
F ◦

E
[
#{t ∈ intCdN ∩ F | ∇(X|F )(t) = y}2

]
δdε (y)Hd−m(dy)

= E
[
#{t ∈ intCdN ∩ F | ∇(X|F )(t) = 0}2

]
,

This establishes the L2(P) convergence of the simplified counting variable and its approximation.
Together with the fact that

|ξN (F, ε)| ≤
∫

intCdN∩F
δdε (∇(X|F )(t))| det(D2(X|F )(t))|Hd−m(dt)

and Lemma A.3, whose assumptions are again checked in [1, Section 11.2], we conclude the
Lemma by [19, VI.§5 5.3 Satz].

In the following lemma we calculate a basic determinate, which is frequently used in the
remaining part of the appendix.

Lemma B.1. For c1, c2 ∈ R and v ∈ Rd define the matrix A := c1Id + c2vv
>. Then

detA = cd1 + cd−1
1 c2‖v‖2.

Proof. Note that for c ∈ R and u ∈ v⊥, we obtain

(Id + cvv>)v = (1 + c‖v‖2)v and (Id + cvv>)u = u.

Thus the linear mapping associated with Id + cvv> has the eigenvalues 1 + c‖v‖2, 1, . . . , 1,
yielding

det(Id + cvv>) = 1 + c‖v‖2.

Hence by choosing c := c2/c1 — for c1 = 0 the lemma holds trivially — we obtain

det(A) = cd1 det(Id + cvv>) = cd1 + cd−1
1 c2‖v‖2.

The next lemma establishes upper bounds for the density of a normal distribution.

Lemma B.2. Let JN ∈ ∂lCdN and l > m. Then there exist an open neighborhood U ⊂ Rl−m

of 0 and constants c1 = c1(X, d,m, l,N) ≥ 0, c2 = c2(X, d,m, l,N) ≥ 0, such that for almost
all F ∈ Add−m, y ∈ Rd and s ∈ U \ {0}

p
∇
bF
JN

(X)(ρ
bF
JN (s))∇

bF
JN

(X)(ρ
bF
JN (0))

(yb
F
JN , y

bFJN ) ≤ c1‖s‖−(l−m)

and moreover for s ∈ Bl−m
2d1/2N

\ U

p
∇
bF
JN

(X)(ρ
bF
JN (s))∇

bF
JN

(X)(ρ
bF
JN (0))

(yb
F
JN , y

bFJN ) ≤ c2.
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Proof. We first note that for s ∈ Rl−m nonzero

p
∇
bF
JN

(X)(ρ
bF
JN (s))∇

bF
JN

(X)(ρ
bF
JN (0))

(yb
F
JN , y

bFJN ) ≤ p
∇
bF
JN

(X)(ρ
bF
JN (s))∇

bF
JN

(X)(ρ
bF
JN (0))

(0, 0),

since the random vector (∇bFJN
(X)(ρb

F
JN (s)),∇bFJN

(X)(ρb
F
JN (0))) follows a centered normal

distribution, whose density attains the global maximum at 0. The right side is explicitly given
by

(2π)−(l−m) det Cov(∇bFJN
(X)(ρb

F
JN (s)),∇bFJN

(X)(ρb
F
JN (0)))−

1
2 .

Therefore a detailed analysis of the covariance matrix is necessary. It is given by the matrix
Il−m

(
− ∂2

∂vi∂vj
CX(σb

F
JN (s))

)l−m
i,j(

− ∂2

∂vi∂vj
CX(σb

F
JN (s))

)l−m
i,j

Il−m

 ,

due to the imposed conditions in (A1) and the fact E
[
∂
∂uX(t) ∂

∂u′X(t′)
]

= − ∂2

∂u∂u′C
X(t− t′),

for u, u′ ∈ Sd−1 and t, t′ ∈ Rd. Using [7, 2.8.4], the determinant of this matrix equals

det

Il−m −
(

∂2

∂vi∂vj
(CX)(σb

F
JN (s))

)2

i,j=1,...,l−m

 . (B.5)

Furthermore, the stationarity and isotropy, assumed in (A1), imply that all information of
the covariance of X can be captured by the mapping R : [0,∞)→ R given by r 7→ CX(re1) of
class C6, i.e. we have the equality CX(t) = R(‖t‖), t ∈ Rd. Differentiating this identity yields
for t ∈ Rd \ {0}

D2CX(t) = R′(‖t‖)‖t‖−1Id + (R′′(‖t‖)‖t‖−2 −R′(‖t‖)‖t‖−3)(titj)di,j=1

and we obtain

D2
bFJN

CX(t) =
(
v1| · · · |vl−m

)>
D2CX(t)

(
v1| · · · |vl−m

)
= R′(‖t‖)‖t‖−1Il−m + (R′′(‖t‖)‖t‖−2 −R′(‖t‖)‖t‖−3)(〈vi, t〉〈vj , t〉)l−mi,j=1.

Thus for s ∈ Rl−m \ {0} this implies

D2
b
JN
F

(CX)(σb
JN
F (s)) = R′(‖s‖)‖s‖−1Il−m + (R′′(‖s‖)‖s‖−2 −R′(‖s‖)‖s‖−3)(sisj)l−mi,j=1. (B.6)

Note that the right side is independent of the specific choice of affine space aff(JN ) ∩ F as a
result of the translation invariance and rotational invariance of CX . Moreover, we note that



122 Appendix B. Proof of Lemma 3.2

(ss>)2 = ‖s‖2ss>, and therefore(
D2
b
JN
F

(CX)(σb
JN
F (s))

)2

= (R′(‖s‖)‖s‖−1)2Il−m + (R′′(‖s‖)‖s‖−2 −R′(‖s‖)‖s‖−3)

× (2R′(‖s‖)‖s‖−1 + ‖s‖2(R′′(‖s‖)‖s‖−2 −R′(‖s‖)‖s‖−3))(sisj)l−mi,j=1

= (R′(‖s‖)‖s‖−1)2Il−m + ‖s‖−2(R′′(‖s‖)2 − (R′(‖s‖)‖s‖−1)2)(sisj)l−mi,j=1. (B.7)

Hence the determinant in (B.5) is independent of F ∈ Add−m and continuous in s ∈ Rl−m \ {0}
and can therefore be bounded independently of F and y for s ∈ Bl−m

2d
1
2N
\ U , where U ⊂ Rl−m

is an open set containing the origin. We continue with the proof of the asserted estimate in a
neighborhood of 0. First, by Taylor’s theorem, we obtain the following expansions up to the
fifth derivative

R′(r) =
4∑

k=0

R(k+1)(0)
k! rk + o(r4) and R′′(r) =

3∑
k=0

R(k+2)(0)
k! rk + o(r3),

for r → 0. Note that due to assumption (A1), namely stationarity and the normalisation of
the second derivatives of CX , we obtain R′′(0) = −1 and odd derivatives of R vanish at 0 due
to the stationarity of X, cf. the discussion following (2.8). We therefore obtain

R′(‖s‖) = −‖s‖+ µ

3!‖s‖
3 + o(‖s‖4) and R′′(‖s‖) = −1 + µ

2 ‖s‖
2 + o(‖s‖3) (B.8)

for ‖s‖ → 0, where µ := E
[

∂2

∂t1∂t1
X(0)2

]
> 0 by (A2). We calculate for s 6= 0 and ‖s‖ → 0

(
R′(‖s‖)‖s‖−1

)2
= 1− µ

3 ‖s‖
2 + o(‖s‖3)

and

‖s‖−2
(
R′′(‖s‖)2 −

(
R′(‖s‖)‖s‖−1

)2
)
sisj = −2µ

3 sisj + o(‖s‖3)

where i, j = 1, . . . , l −m, which yields with (B.7)

Il−m −
(
D2
bFJN

(CX)(σb
F
JN (s))

)2
= µ

3 ‖s‖
2Il−m + 2

3µ(sisj)l−mi,j=1 + o(‖s‖3). (B.9)

Then the multilinearity of the determinant implies

det
(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)

= ‖s‖2(l−m)
(

det
(
µ

3 Il−m + 2µ
3‖s‖2 (sisj)l−mi,j=1

)
+ o(‖s‖)

)
.



123

Hence we conclude with Lemma B.1

det
(
Il−m −

(
D2
b
JN
F

(CX)(σb
JN
F (s))

)2
)

= 3
(
µ

3

)l−m
‖s‖2(l−m) + o(‖s‖2(l−m)+1), (B.10)

for ‖s‖ → 0 and uniformly in F . If we choose a constant c > 0 such that 3
c

(µ
3
)l−m

> 1, then
equation B.10 implies

det
(
Il−m −

(
D2
b
JN
F

(CX)(σb
JN
F (s))

)2
)

c‖s‖2(l−m) = 3
c

(
µ

3

)l−m
+ ‖s‖

c

o(‖s‖2(l−m)+1)
‖s‖2(l−m)+1

‖s‖→0−→ 3
c

(
µ

3

)l−m
> 1.

Therefore, by continuity we find a neighborhood U ⊂ Rl−m of 0 such that for s ∈ U

det
(
Il−m −

(
D2
b
JN
F

(CX)(σb
JN
F (s))

)2
)
≥ c‖s‖2(l−m).

From this estimate, the asserted bound

p∇
b
JN
F

(X)(ρF
b
JN
F

(s))∇
b
JN
F

(X)(ρF
b
JN
F

(0))(0, 0) = (2π)−(l−m) det
(
Il−m −

(
D2
b
JN
F

(CX)(σb
JN
F (s))

)2
)− 1

2

≤ c1‖s‖−(l−m), (B.11)

where c1 > 0, follows.

Lemma B.3. Let JN ∈ ∂lCdN and l > m. Then there is a constant c = c(X, d,m, l,N) > 0
such that for s ∈ Bl−m

2d1/2N
, almost all F ∈ Add−m, where F ∩ JN 6= ∅, and y ∈ Rd

E
[
|detD2

bFJN
(X)(ρb

F
JN (s)) detD2

bFJN
(X)(ρb

F
JN (0))| | E(F, JN , s, y)

]
≤ c‖s‖2(1 + ‖y‖4(l−m−1))

1
2 (1 + ‖y‖4)

1
2 ,

where E(F, JN , s, y) := {∇bFJN
(X)(ρb

F
JN (s)) = ∇bFJN

(X)(ρb
F
JN (0)) = y

bFJN }.

Proof. We start with an application of the Cauchy–Schwarz inequality for conditional expecta-
tions, cf. [64, Theorem 2.2.4], to obtain for s ∈ Rl−m

E
[
|detD2

b
JN
F

(X)(ρb
F
JN (s)) detD2

b
JN
F

(X)(ρb
F
JN (0))| | E(F, JN , s, y)

]

≤ E
[
det

(
D2
b
JN
F

(X)(ρb
F
JN (s))

)2
| E(F, JN , s, y)

] 1
2

× E
[
det

(
D2
b
JN
F

(X)(ρb
F
JN (0))

)2
| E(F, JN , s, y)

] 1
2
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which equals by stationarity

E
[
det

(
D2
b
JN
F

(X)(ρb
F
JN (0))

)2
| E(F, JN ,−s, y)

] 1
2

× E
[
det

(
D2
b
JN
F

(X)(ρb
F
JN (0))

)2
| E(F, JN , s, y)

] 1
2

.

In the following we bound the right factor by a bound solely depending on the norm of s,
hence giving a bound for the left one as well.

We first use Hadamard’s inequality, cf. [7, Fact 8.17.11], which reads: For a symmetric
and positive semidefinite matrix A ∈ R(l−m)×(l−m) and an orthonormal basis (u1, . . . , ul−m) of
Rl−m, we have that

det(A) ≤
l−m∏
i=1
〈Aui, ui〉.

Note that the square of a symmetric matrix is symmetric and positive semidefinite and we
therefore obtain for s ∈ Rl−m \ {0} and a suitable choice of (u2, . . . , ul−m)

det
(
D2
bFJN

(X)(ρb
F
JN (0)

)2

≤
〈(

D2
bFJN

(X)(ρb
F
JN (0))

)2 s

‖s‖
,
s

‖s‖

〉
l−m∏
i=2

〈(
D2
bFJN

(X)(ρb
F
JN (0))

)2
ui, ui

〉

≤ ‖s‖−2‖D2
bFJN

(X)(ρb
F
JN (0))s‖2‖D2

bFJN
(X)(ρb

F
JN (0))‖2(l−m−1), (B.12)

where we used the symmetry of D2
bFJN

(X)(ρbFJN
(0)), the Cauchy–Schwarz inequality and a

matrix norm that is compatible with the Euclidean norm and submultiplicative, e.g. the
induced Euclidean norm. We now define the family of mappings

Ys : [0, 1]→ Rl−m, z 7→ ∇
b
JN
F

(X)(ρb
JN
F (zs)), for s ∈ Rl−m,

to obtain Ys(0) = ∇
b
JN
F

(X)(ρb
JN
F (0)), Ys(1) = ∇

b
JN
F

X(ρb
JN
F (s)) and

∂

∂z
Ys(z) = D2

b
JN
F

(X)(ρb
JN
F (zs))s,

thus ∂
∂zYs(0) = D2

b
JN
F

(X)(ρb
JN
F (0))s. Calculating the second derivative of Ys yields for the j-th

component of ∂2

∂z∂zYs, j = 1, . . . , l −m,

∂2

∂z∂z
Ys,j(z) =

d∑
i=1

∂

∂z

∂2

∂vj∂vi
(X)(ρb

JN
F (zs))si =

〈
∂

∂vj
D2
b
JN
F

(X)(ρb
JN
F (zs))s, s

〉
,

where ∂
∂vj
D2
b
JN
F

X :=
(

∂
∂vj

∂2

∂vα∂vβ
X
)l−m
α,β=1

. Using Taylor’s theorem for the mapping Y at 0 and
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evaluating the expansion at 1, yields

Ys(1) = Ys(0) + ∂

∂z
Ys(0) + 1

2

(
∂2

∂z∂z
Ys,1(ξ1), . . . , ∂2

∂z∂z
Ys,l−m(ξl−m)

)
,

for suitable points ξ1, . . . , ξl−m ∈ [0, 1]. Conditioning of this equation on the event

E(F, JN , s, y) =
{
∇bFJN

(X)(ρb
F
JN (s)) = ∇bFJN

(X)(ρb
F
JN (0)) = y

bFJN

}
leads to

D2
bFJN

(X)(ρb
F
JN (0))s = −1

2

(〈
∂

∂vi
D2
bFJN

(X)(ρb
F
JN (ξis))s, s

〉)l−m
i=1

.

By taking norms, an application of the Cauchy–Schwarz inequality in every component and
the compatibility of the matrix norm, we obtain conditioned on E(F, JN , s, y)

∥∥∥∥D2
bFJN

(X)(ρb
F
JN (0))s

∥∥∥∥2
≤ 1

4‖s‖
4
l−m∑
i=1

∥∥∥∥ ∂

∂vi
D2
bFJN

(X)(ρb
F
JN (ξis))

∥∥∥∥2

≤ 1
4‖s‖

4
l−m∑
i=1

sup
z∈[0,1]

∥∥∥∥ ∂

∂vi
D2
bFJN

(X)(ρb
F
JN (zs))

∥∥∥∥2
.

We note that the last term, conditioned on E(F, JN , s, y), is almost surely finite by Lemma
B.4. Hence, we conclude with (B.12)

E
[
det

(
D2
bFJN

(X)(ρb
F
JN (0))

)2
| E(F, JN , s, y)

]

≤ c‖s‖−2E
[∥∥∥∥D2

bFJN
X(ρb

F
JN (0))s

∥∥∥∥2 ∥∥∥∥D2
bFJN

(X)(ρb
F
JN (0))

∥∥∥∥2(l−m−1)
| E(F, JN , s, y)

]

≤ c‖s‖2
l−m∑
i=1

E
[

sup
z∈[0,1]

∥∥∥∥ ∂

∂vi
D2
bFJN

(X)(ρb
F
JN (zs))

∥∥∥∥2 ∥∥∥∥D2
bFJN

(X)(ρb
F
JN (0))

∥∥∥∥2(l−m−1)
| E(F, JN , s, y)

]

and bound this term with the aid of the Cauchy–Schwarz inequality by

c‖s‖2E
[∥∥∥∥D2

bFJN
(X)(ρb

F
JN (0))

∥∥∥∥4(l−m−1)
| E(F, JN , s, y)

] 1
2

×
l−m∑
i=1

E
[

sup
z∈[0,1]

∥∥∥∥ ∂

∂vi
D2
bFJN

(X)(ρb
F
JN (zs))

∥∥∥∥4
| E(F, JN , s, y)

] 1
2

. (B.13)

Invoking the Lemmata B.5 and B.4 concludes the proof.

In the subsequent lemma we use the technique called Gaussian regression to derive an upper
bound for the second factor in the expression in (B.13).

Lemma B.4. Let JN ∈ ∂lCdN and l > m. Then there is a constant c = c(X, d,m, l,N) > 0,
such that for s ∈ Bl−m

2d1/2N
nonzero, i ∈ {1, . . . , l−m}, almost all F ∈ Add−m, where F ∩JN 6= ∅,
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and y ∈ Rd

E
[

sup
z∈[0,1]

∥∥∥∥ ∂

∂vi
D2
bFJN

(X)(ρb
F
JN (zs))

∥∥∥∥4
| E(F, JN , s, y)

]
≤ c(1 + ‖y‖4),

where E(F, JN , t, y) := {∇bFJN
(X)(ρb

F
JN (s)) = ∇bFJN

(X)(ρb
F
JN (0)) = y

bFJN }.

Proof. We use for the matrix norm the Frobenius norm, that is

sup
z∈[0,1]

∥∥∥∥ ∂

∂vi
D2
bFJN

(X)(ρb
F
JN (zs))

∥∥∥∥4
= sup

z∈[0,1]

 l−m∑
α,β=1

(
∂3

∂vi∂vα∂vβ
(X)(ρb

F
JN (zs))

)2
2

and bound this by Jensen’s inequality by

(l −m) sup
z∈[0,1]

l−m∑
α,β=1

(
∂3

∂vi∂vα∂vβ
(X)(ρb

F
JN (zs))

)4

.

The fact that bFJN is an orthonormal basis and Jensen’s inequality imply the upper bound

(l −m)3d9
d∑

α,β,γ=1
sup
z∈[0,1]

(
∂3

∂tα∂tβ∂tγ
(X)(ρb

F
JN (zs))

)4

.

Gaussian regression, cf. [4, Proposition 1.2], allows us to express the conditional expectation

E

 sup
z∈[0,1]

∣∣∣∣∣ ∂3

∂tα∂tβ∂tγ
(X)(ρb

F
JN (zs))

∣∣∣∣∣
4

| E(F,L, s, y)


through the unconditional expectation

E

 sup
z∈[0,1]

∣∣∣∣∣ ∂3

∂tα∂tβ∂tγ
(X)(ρb

F
JN (zs))

+Cα,β,γ12 (bFJN , z, s)C2(bFJN , s)
−1
((

y
bFJN , y

bFJN

)
−X2(bFJN , s)

)∣∣∣∣4
]
, (B.14)

for s ∈ Rl−m, where

X2(bFJN , s) :=
(
∇bFJN

(X)(ρb
F
JN (0)),∇bFJN

(X)(ρb
F
JN (s))

)
∈ R2(l−m),

Cα,β,γ12 (bFJN , z, s) := Cov
(

∂3

∂tα∂tβ∂tγ
(X)(ρb

F
JN (zs)), X2(bFJN , s)

)

=
(
Kα,β,γ(bFJN , σ

bFJN (zs)),Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))

)
∈ R1×2(l−m)

with Kα,β,γ(bFJN , t) :=
(
− ∂4

∂tα∂tβ∂tγ∂vi
CX(t)

)l−m
i=1

, for t ∈ Rd, by stationarity and interchanging
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the differentiation and expectation, cf. (2.9). Moreover

C2(bFJN , s) := Cov
(
X2(bFJN , s)

)
∈ R2(l−m)×2(l−m).

Note that C−1
2 (bFJN , s), 0 6= s ∈ Rl−m, exists due to (A2) and that by [7, Proposition 2.8.7]

C2(bFJN , s)
−1 =

(
A(bFJN , s) B(bFJN , s)
B(bFJN , s) A(bFJN , s)

)
,

where

A(bFJN , s) :=
(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)−1

,

B(bFJN , s) := −
(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))2

)−1
D2
bFJN

(CX)(σb
F
JN (s)). (B.15)

By the triangle inequality and Jensen’s inequality

sup
z∈[0,1]

∣∣∣∣∣ ∂3

∂tα∂tβ∂tγ
(X)(ρb

F
JN (zs)) + Cα,β,γ12 (bFJN , z, s)C

−1
2 (bFJN , s)

((
y
bFJN , y

bFJN

)
−X2(bFJN , s)

)∣∣∣∣∣
4

≤ 33 sup
z∈[0,1]

∂3

∂tα∂tβ∂tγ
(X)(ρb

F
JN (zt))4 + 33 sup

z∈[0,1]
|Cα,β,γ12 (bFJN , z, s)C

−1
2 (bFJN , s)X2(bFJN , s)|

4

+ 33 sup
z∈[0,1]

∣∣∣∣Cα,β,γ12 (bFJN , z, s)C
−1
2 (bFJN , s)

(
y
bFJN , y

bFJN

)∣∣∣∣4 .
Again the submultiplicativity of the norm and Jensen’s inequality yield

sup
z∈[0,1]

∣∣∣Cα,β,γ12 (bFJN , z, s)C
−1
2 (bFJN , s)X2(bFJN , s)

∣∣∣4
≤ sup

z∈[0,1]

∥∥∥Cα,β,γ12 (bFJN , z, s)C
−1
2 (bFJN , s)

∥∥∥4
2(l −m)2d3

×
d∑
j=1

(
sup

‖t‖≤d1/2N

∂

∂tj
X(t)4 + sup

‖t‖≤3d1/2N

∂

∂tj
X(t)4

)
,

where we used in the last line that F ∩ JN 6= ∅ implies for s ∈ Bl−m
2d

1
2N

that ‖ρb
F
JN (s)‖ ≤ 3d

1
2N

as well as ‖ρb
F
JN (0)‖ ≤ d

1
2N . Using these facts again, and summarizing the estimates, we

obtain for the term in (B.14) the upper bound

33E

 sup
‖t‖≤3d

1
2N

∂3

∂tα∂tβ∂tγ
X(t)4

+ 33 sup
z∈[0,1]

∥∥∥Cα,β,γ12 (bFJN , z, s)C2(bFJN , s)
−1
∥∥∥4

2(l −m)2d3

×
d∑
j=1

2E

 sup
‖t‖≤3d

1
2N

∂

∂tj
X(t)4

+ 33 sup
z∈[0,1]

∣∣∣∣Cα,β,γ12 (bFJN , z, s)C
−1
2 (bFJN , s)

(
y
bFJN , y

bFJN

)∣∣∣∣4 .
Note that the arguments of the expectations neither depend on F nor on s and moreover,
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the involved Gaussian fields are all continuous. The continuity implies that it is sufficient to
bound the expectation of the supremum of a dense index set and moreover that the necessary
conditions in [48, Theorem 5] are satisfied, which guarantees the finiteness of these expectations.

To prove the lemma, it remains to bound supz∈[0,1] ‖C
α,β,γ
12 (bFJN , z, s)C2(bFJN , s)

−1‖4 for s ∈
Bl−m

2d1/2N
, independently of F . Observe that∥∥∥Cα,β,γ12 (bFJN , z, s)C

−1
2 (bFJN , s)

∥∥∥
≤
∥∥∥∥Kα,β,γ(bFJN , σ

bFJN (zs))A(bFJN , s) +Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))B(bFJN , s)

∥∥∥∥
+
∥∥∥∥Kα,β,γ(bFJN , σ

bFJN (zs))B(bFJN , s) +Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))A(bFJN , s)

∥∥∥∥
and moreover

Kα,β,γ(bFJN , σ
bFJN (zs))A(bFJN , s) +Kα,β,γ(bFJN , σ

bFJN ((z − 1)s))B(bFJN , s)

= Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))(A(bFJN , s) +B(bFJN , s))

+ (Kα,β,γ(bFJN , σ
bFJN (zs))−Kα,β,γ(bFJN , σ

bFJN ((z − 1)s)))A(bFJN , s).

Since A(bFJN , s) +B(bFJN , s) =
(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))

)−1
, this equals

Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))

(
Il−m −D2

bFJN
(CX)(σb

F
JN (t))

)−1

+
(
Kα,β,γ(bFJN , σ

bFJN (zs))−Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))

)
×
(
Il−m +D2

bFJN
(CX)(σb

F
JN (t))

)−1 (
Il−m −D2

bFJN
(CX)(σb

F
JN (s))

)−1
.

By algebraic manipulations the above equals(
Kα,β,γ(bFJN , σ

bFJN ((z − 1)s)) +
(
Kα,β,γ(bFJN , σ

bFJN (zs))−Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))

)

×
(
Il−m +D2

bFJN
(CX)(σb

F
JN (s))

)−1
)
×
(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))

)−1
.

Similarly, we obtain

Kα,β,γ(F, σb
F
JN (zs))B(bFJN , s) +Kα,β,γ(bFJN , σ

bFJN ((z − 1)s))A(bFJN , s)

=
(
Kα,β,γ(bFJN , σ

bFJN (zs))−
(
Kα,β,γ(bFJN , σ

bFJN (zs))−Kα,β,γ(bFJN , σ
bFJN ((z − 1)s))

)

×
(
Il−m +D2

bFJN
(CX)(σb

F
JN (s))

)−1
)
×
(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))

)−1
.
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We now use Lemma B.6 to bound ‖(Il−m −D2
bFJN

CX(σb
F
JN (s)))−1‖ and

sup
z∈[0,1]

∥∥∥∥(Kα,β,γ(bFJN , σ
bFJN (zs))−Kα,β,γ(bFJN , σ

bFJN ((z − 1)s))
)

(
Il−m +D2

bFJN
CX(σb

F
JN (s))

)−1
∥∥∥∥∥

for s ∈ Bl−m
2d1/2N

, independently of F . For the term ‖Kα,β,γ(bFJN , σ
bFJN (zs))‖ and the term

‖Kα,β,γ(bFJN , σ
bFJN ((z− 1)s))‖, we bound the directional derivatives by the partial ones and use

the continuity of CX with the estimates ‖σb
F
JN ((z− 1)s)‖ ≤ 2d1/2N and ‖σb

F
JN (zs)‖ ≤ 2d1/2N ,

to bound their norms for z ∈ [0, 1] and s ∈ Bl−m
2d1/2N

, independently of F , as is shown exemplarily
in the following:

∥∥∥∥Kα,β,γ(bFJN , σ
bFJN (zs))

∥∥∥∥2
=

l−m∑
i=1

(
∂4

∂tα∂tβ∂tγ∂vi
CX(σb

F
JN (zs))

)2

=
l−m∑
i=1

(
d∑
δ=1

v
(δ)
i

∂4

∂tα∂tβ∂tγ∂tδ
CX(σb

F
JN (zs))

)2

,

which can be bounded by

(l −m)

 d∑
δ=1

sup
t∈Bd

2d1/2N

∣∣∣∣∣ ∂4

∂tα∂tβ∂tγ∂tδ
CX(t)

∣∣∣∣∣
2

<∞

independently of F and s.

Lemma B.5. Let JN ∈ ∂lCdN and l > m. Then there is a constant c = c(X, d,m, l,N) > 0
such that for s ∈ Bl−m

2d1/2N
, almost all F ∈ Add−m, where F ∩ JN 6= ∅, and y ∈ Rd

E
[
‖D2

bFJN
(X)(ρb

F
JN (0))‖4(l−m−1) | E(F, JN , s, y)

]
≤ c(1 + ‖y‖4(l−m−1)),

where E(F, JN , t, y) := {∇bFJN
(X)(ρb

F
JN (s)) = ∇bFJN

(X)(ρb
F
JN (0)) = y

bFJN }.

Since the proofs of Lemma B.5 and Lemma B.4 use the same ideas, the one of Lemma B.4
can be omitted. At last, we show a technical lemma, which is used in the proof of Lemmata
B.5 and B.4.

Lemma B.6. Let JN ∈ ∂lCdN and l > m. Then there exists a constant c = c(X, d,m, l,N) > 0
such that for s ∈ Bl−m

2d1/2N
nonzero, almost all F ∈ Add−m, where F ∩ JN 6= ∅, and α, β, γ =

1, . . . , d ∥∥∥∥∥
(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))

)−1
∥∥∥∥∥ ≤ c,
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and ∥∥∥∥∥∥
(

∂3

∂tα∂tβ∂vi
(CX)(σb

F
JN (s))

)l−m
i=1

∥∥∥∥∥∥
2 ∥∥∥∥∥∥
(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)−1

∥∥∥∥∥∥ ≤ c,
sup
z∈[0,1]

∥∥∥∥∥∥
(
− ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (zs))

)l−m
i=1

+
(

∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)s))

)l−m
i=1

∥∥∥∥∥∥
∥∥∥∥∥
(
Il−m +D2

bFJN
(CX)(σb

F
JN (s))

)−1
∥∥∥∥∥ ≤ c.

Proof. We distinguish the case s ∈ Bl−m
2d1/2N

\U , where U is a neighborhood of 0, and s ∈ U , in
order to use continuity arguments in the first case. We note that for the different equalities the
set U may be chosen differently and we think of the matrix norms as the norm, which suits us
most, knowing that we can bound one by a multiple of the other.

Let s ∈ Bl−m
2d1/2N

\ U and think of the matrix norm as the spectral norm. We observe that in
this case

‖A−1‖ = |λmin(A)|−1,

where A is an invertible, symmetric matrix and λmin(A) denotes the eigenvalue of A with
smallest absolute value. Furthermore, we see by Lemma B.1 and equation (B.6), resp. equation
(B.7), that the coefficients of the polynomials in λ

det
(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))− λIl−m

)
,

det
(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
− λIl−m

)
,

det
(
Il−m +D2

bFJN
(CX)(σb

F
JN (s))− λIl−m

)
,

are independent of F but continuous in s ∈ Bl−m
2d1/2N

\U . Due to (B.5) and (A2), we know that

0 6= det Cov
(
∇bFJN

X(0),∇bFJN
X(σb

F
JN (s))

)
= det

(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)

= det
(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))

)
det

(
Il−m +D2

bFJN
(CX)(σb

F
JN (s))

)
,

for s 6= 0 and therefore none of the involved matrices has eigenvalue 0. And since the zeros of
a polynomial are continuous in the coefficients, we conclude that the norms∥∥∥∥∥

(
Il−m −D2

bFJN
(CX)(σb

F
JN (s))

)−1
∥∥∥∥∥ ,∥∥∥∥∥∥

(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)−1

∥∥∥∥∥∥
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as well as ∥∥∥∥∥
(
Il−m +D2

bFJN
(CX)(σb

F
JN (s))

)−1
∥∥∥∥∥

are bounded for s ∈ Bl−m
2d1/2N

\ U , independently of F . In order to bound the supremum of the
norm∥∥∥∥∥∥

(
− ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (zs))

)l−m
i=1

+
(

∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)s))

)l−m
i=1

∥∥∥∥∥∥
for z ∈ [0, 1], as well as the norm

∥∥∥∥∥
(

∂3

∂tα∂tβ∂vi
(CX)(σb

F
JN (s))

)l−m
i=1

∥∥∥∥∥, we bound the directional

derivatives by the partial ones and use the continuity of the covariance function, as shown
exemplarily in the following:∥∥∥∥∥∥

(
∂3

∂tα∂tβ∂vi
(CX)(σb

F
JN (s))

)l−m
i=1

∥∥∥∥∥∥
2

=
l−m∑
i=1

(
∂3

∂tα∂tβ∂vi
(CX)(σb

F
JN (s))

)2

=
l−m∑
i=1

 d∑
γ=1

v
(γ)
i

∂3

∂tα∂tβ∂tγ
(CX)(σb

F
JN (s))

2

,

which can be bounded by

(l −m)

 d∑
γ=1

sup
t∈Bd

2d1/2N

∣∣∣∣∣ ∂3

∂tα∂tβ∂tγ
CX(t)

∣∣∣∣∣
2

<∞,

independently of F and s.

To analyse the behaviour for s near 0, observe that Il−m−D2
bFJN

CX(s) ‖s‖→0−→ 2Il−m and thus

∥∥∥∥∥
(
Il−m −D2

bFJN
CX(s)

)−1
∥∥∥∥∥→ 1

2 , as ‖s‖ → 0.

Hence, there is no singularity at s = 0 and the norm can easily be bounded using continuity
arguments as above. Since Il−m +D2

bFJN
CX(s) ‖s‖→0−→ 0, this is different in the other cases. We

proceed with the second inequality of the assertion. The identity (B.9) yields for 0 6= s ∈ Rl−m

and ‖s‖ → 0

Il−m −
(
D2
bFJN

(CX)(σb
F
JN (s))

)2
= Θ(s) + o(‖s‖3),

uniformly in F , where

Θ(s) := µ

3 ‖s‖
2Il−m + 2

3µ(sisj)l−mi,j=1. (B.16)
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Since, cf. Lemma B.1,

det Θ(s) =
(
µ/3‖s‖2

)l−m
+
(
µ/3‖s‖2

)l−m−1
2/3µ‖s‖2 6= 0

for s 6= 0, we conclude that Θ(s) is invertible and we denote its inverse by ∆(s), for s 6= 0.
Observe that for α ≥ 0 the identity Θ(αs) = α2Θ(s) holds and therefore ∆(αs) = α−2∆(s).
Thus we obtain(

Il−m −
(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)−1

= ∆(s)
(
Il−m − o(‖s‖3)∆(s)

)−1
.

Now, we can conclude from [7, Proposition 9.4.13] that for a given matrix A with ‖A(s)‖ → 0
for ‖s‖ → 0, we have ‖(I − A(s))−1‖ ≤ 1 + ‖A(s)‖ + o(‖A(s)‖), since

∑∞
k=0 ‖A(s)‖k is a

geometric series for s small enough. Before we apply this result, observe that

sup
u∈Sl−m−1

‖∆(u)‖

is actually a maximum and moreover independent of F . To see this, we think of the norm
again as the spectral norm and observe by Lemma B.1 that the zeros of the polynomial in λ

det(Θ(u)− λIl−m)

are independent of F but continuous in u ∈ Sl−m−1, from which we conclude the assertion.
Thus we obtain∥∥∥∥((Il−m − o(‖s‖3)∆(s)

)−1
∥∥∥∥ ≤ 1 +

∥∥∥o(‖s‖3)∆(s)
∥∥∥+ o

(∥∥∥o(‖s‖3)∆(s)
∥∥∥)

= 1 + o(‖s‖1) + o(‖s‖1)

= 1 + o(‖s‖1),

for ‖s‖ → 0, where we used that
∥∥o(‖s‖3)∆(s)

∥∥ = ‖o(‖s‖3)‖s‖−2∆(s/‖s‖))‖ = o(‖s‖1) and
g ∈ o(o(f)) yields g ∈ o(f). Hence, we conclude∥∥∥∥∥∥

(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)−1

∥∥∥∥∥∥ ≤ ‖s‖−2
∥∥∥∥∆(

s

‖s‖

)∥∥∥∥ (1 + o(‖s‖1)
)

= O(‖s‖−2)

for ‖s‖ → 0 and uniformly in F . Taylor’s theorem applied to ∂3

∂tα∂tβ∂vi
(CX)(σb

F
JN (·)) yields for

i = 1, . . . , l −m, 0 6= s ∈ Rl−m and a suitable ξ ∈ [0, 1]

∂3

∂tα∂tβ∂vi
(CX)(σb

F
JN (s)) = ∂3

∂tα∂tβ∂vi
CX(0) +

l−m∑
j=1

∂

∂tj

(
∂3

∂tα∂tβ∂vi
CX ◦ σb

F
JN

)
(ξs)sj

= O(‖s‖),

since ∂3

∂tα∂tβ∂vi
CX(0) = 0 by stationarity, cf. [1, Equation (5.5.3)]. Note this equality holds
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uniformly in F , since ∂
∂tj

( ∂3

∂tα∂tβ∂vi
CX ◦ σb

F
JN )(s) can be bounded independently of F for

s ∈ Bl−m
2d1/2N

. Therefore, we conclude

∥∥∥∥∥∥
(

∂3

∂tα∂tβ∂vi
(CX)(σb

F
JN (s))

)l−m
i=1

∥∥∥∥∥∥
2 ∥∥∥∥∥∥
(
Il−m −

(
D2
bFJN

(CX)(σb
F
JN (s))

)2
)−1

∥∥∥∥∥∥ = O(1),

for ‖s‖ → 0 and uniformly in F . Hence, there is a neighborhood of 0 on which the left-hand
side is bounded by a constant c > 0 not depending on F .

To show the last inequality of the assertion, we proceed similarly. First, we use identity
(B.6) to obtain

Il−m +D2
bFJN

(CX)(σb
F
JN (s))

= (1 +R′(‖s‖)‖s‖−1)Il−m + ‖s‖−2(R′′(‖s‖)−R′(‖s‖)‖s‖−1)(sisj)l−mi,j=1.

Then, the Taylor expansion in (B.8) yields for 0 6= s ∈ Rl−m and ‖s‖ → 0

Il−m +D2
bFJN

(CX)(σb
F
JN (s)) = 1

2Θ(s) + o(‖s‖3),

where Θ is defined in (B.16). The same approach as before, yields∥∥∥∥∥
(
Il−m +D2

bFJN
(CX)(σb

F
JN (s))

)−1
∥∥∥∥∥ = O(‖s‖−2), as ‖s‖ → 0,

uniformly in F . Taylor’s theorem, cf. [42, Section 2.4], applied to − ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (z·)),

yields for s ∈ Bl−m
2d1/2N

, i = 1, . . . , l −m and z ∈ [0, 1]

− ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (zs))

= − ∂4

∂tα∂tβ∂tγ∂vi
CX(0)−

l−m∑
i1,i2=1

∂2

∂si1∂si2

(
∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (z·))

)
(ξ)si1si2 ,

where ξ ∈ [0, s], since ∂5

∂tj∂tα∂tβ∂tγ∂vi
CX(0) = 0, j = 1, . . . , d, as X is stationary, cf. [1, Equation

(5.5.3)]. Analogously, we obtain

∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)s))

= ∂4

∂tα∂tβ∂tγ∂vi
CX(0) +

l−m∑
i1,i2=1

∂2

∂si1∂si2

(
∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)·))

)
(ξ′)si1si2 ,

where ξ′ ∈ [0, s]. Thus the term∣∣∣∣∣ ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)s))− ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (zs))

∣∣∣∣∣
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is given by∣∣∣∣∣∣
l−m∑
i1,i2=1

(
∂2

∂si1∂si2

(
∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)·))

)
(ξ′)

− ∂2

∂si1∂si2

(
∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (z·))

)
(ξ)
)
si1si2

∣∣∣∣∣ .
This expression can be bounded by

2 sup
t∈Bd

2d1/2N

d∑
i1,i2,i3=1

∣∣∣∣∣ ∂6

∂tα∂tβ∂tγ∂ti1∂ti2∂ti3
CX(t)

∣∣∣∣∣ ‖s‖2
for z ∈ [0, 1], ξ, ξ′ ∈ [0, s] and s ∈ Bd

2d1/2N
. Thus we obtain

sup
z∈[0,1]

∥∥∥∥∥∥
(
− ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (zs))

)l−m
i=1
−
(

∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)s))

)l−m
i=1

∥∥∥∥∥∥
≤ (l −m)

1
2 2 sup

t∈Bd
2d1/2N

d∑
i1,i2,i3=1

∣∣∣∣∣ ∂6

∂tα∂tβ∂tγ∂ti1∂ti2∂ti3
CX(t)

∣∣∣∣∣ ‖s‖2
and therefore

∥∥∥∥(Il−m +D2
bFJN

(CX)(σb
F
JN (s)))−1

∥∥∥∥ sup
z∈[0,1]

∥∥∥∥∥∥
(
− ∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN (zs))

)l−m
i=1

+
(

∂4

∂tα∂tβ∂tγ∂vi
(CX)(σb

F
JN ((z − 1)s))

)l−m
i=1

∥∥∥∥∥∥ = O(1)

uniformly in F and z, which shows the assertion.
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