
Aspects of Code Generation and
Data Transfer Techniques for
Modern Parallel Architectures

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Manuel Mohr

aus Heilbronn

Tag der mündlichen Prüfung: 4. Juli 2018

Erster Gutachter: Prof. Dr.-Ing. Gregor Snelting

Zweiter Gutachter: Prof. Dr.-Ing. Jürgen Teich

Dritter Gutachter: Prof. Dr. rer. nat. Sebastian Hack



This document is licensed under a Creative Commons  
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0): 
https://creativecommons.org/licenses/by-sa/4.0/deed.en



Contents

Contents iii

1. Introduction 1

1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3. Notation and Conventions . . . . . . . . . . . . . . . . . . . 10

1.4. List of Publications . . . . . . . . . . . . . . . . . . . . . . . 10

2. Non-Cache-Coherent Architectures 13

2.1. A Taxonomy of Parallel Architectures . . . . . . . . . . . . 13

2.1.1. Memory Organization . . . . . . . . . . . . . . . . . 14

2.1.2. Communication Model . . . . . . . . . . . . . . . . 14

2.1.3. Typical Combinations . . . . . . . . . . . . . . . . . 16



iv Contents

2.2. Cache Coherence . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Separating Coherence from Consistency . . . . . . . 19

2.2.2. Implementation . . . . . . . . . . . . . . . . . . . . . 21

2.3. Hardware Architecture . . . . . . . . . . . . . . . . . . . . . 30

2.3.1. Examples of Non-Cache-Coherent Architectures . . 33

2.4. Programming Model . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1. Parallel Programming Models . . . . . . . . . . . . 41

2.4.2. Shared-Memory Programming Model . . . . . . . . 43

2.4.3. Message Passing . . . . . . . . . . . . . . . . . . . . 49

2.4.4. The PGAS Model . . . . . . . . . . . . . . . . . . . . 53

3. Invasive Computing 57

3.1. The Invasive Paradigm . . . . . . . . . . . . . . . . . . . . . 58

3.2. Hardware Architecture . . . . . . . . . . . . . . . . . . . . . 60

3.2.1. Related Work . . . . . . . . . . . . . . . . . . . . . . 62

3.3. Operating System . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1. Related Work . . . . . . . . . . . . . . . . . . . . . . 66

3.4. Programming Language . . . . . . . . . . . . . . . . . . . . 68

3.4.1. Shared-Memory Parallelism . . . . . . . . . . . . . . 70

3.4.2. Distributed-Memory Parallelism . . . . . . . . . . . 72

3.4.3. Related Work . . . . . . . . . . . . . . . . . . . . . . 74

3.5. Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1. Compilation of Generic Classes and Methods . . . . 76

3.5.2. Handling of Native Methods . . . . . . . . . . . . . 78

3.6. Hardware Prototype . . . . . . . . . . . . . . . . . . . . . . 80



Contents v

4. Compiling X10 to Invasive Architectures 83

4.1. Intra-Tile Parallelism . . . . . . . . . . . . . . . . . . . . . . 86

4.2. Inter-Tile Parallelism . . . . . . . . . . . . . . . . . . . . . . 89

4.3. Block-Based Data Transfers . . . . . . . . . . . . . . . . . . 91

4.3.1. Using TLM . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2. Using Off-Chip Memory . . . . . . . . . . . . . . . . 97

4.3.3. Related Work . . . . . . . . . . . . . . . . . . . . . . 99

4.3.4. Implementation on the Hardware Prototype . . . . 101

4.4. Transferring Pointered Data Structures . . . . . . . . . . . . 108

4.4.1. Serialization-Based Approaches . . . . . . . . . . . 114

4.4.2. Cloning-Based Approaches . . . . . . . . . . . . . . 117

4.4.3. Related Work . . . . . . . . . . . . . . . . . . . . . . 122

4.4.4. Implementation on the Hardware Prototype . . . . 125

4.5. Hardware Support . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.1. Design Space . . . . . . . . . . . . . . . . . . . . . . 129

4.5.2. Concept and Implementation . . . . . . . . . . . . . 131

4.5.3. Related Work . . . . . . . . . . . . . . . . . . . . . . 134

4.6. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.6.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.6.2. Establishing an Evaluation Environment . . . . . . 137

4.6.3. Block-Based Data Transfers . . . . . . . . . . . . . . 140

4.6.4. Transfers of Pointered Data Structures . . . . . . . . 142

4.6.5. Hardware Overhead . . . . . . . . . . . . . . . . . . 159

4.6.6. Threats to Validity . . . . . . . . . . . . . . . . . . . 162

4.7. Relation to Invasive X10 . . . . . . . . . . . . . . . . . . . . 164



vi Contents

5. Code Generation with Permutation Instructions 171

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.1.1. Parallel Copies and Register Transfer Graphs . . . . 176

5.1.2. Permutation Instructions . . . . . . . . . . . . . . . 182

5.2. Hardware Implementation . . . . . . . . . . . . . . . . . . . 187

5.2.1. Fundamental Pipeline Modifications . . . . . . . . . 187

5.2.2. Exception Handling . . . . . . . . . . . . . . . . . . 191

5.3. Code Generation . . . . . . . . . . . . . . . . . . . . . . . . 194

5.3.1. Implementing RTGs on Regular Machines . . . . . 195

5.3.2. Reformulation as a Graph Problem . . . . . . . . . . 198

5.3.3. Optimal Shuffle Code for Outdegree-1 RTGs . . . . 204

5.3.4. A Heuristic for Finding Copy Sets . . . . . . . . . . 214

5.3.5. Finding Optimal Copy Sets . . . . . . . . . . . . . . 218

5.3.6. Related Work . . . . . . . . . . . . . . . . . . . . . . 232

5.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.4.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.4.2. Register-Transfer-Graph Properties . . . . . . . . . . 237

5.4.3. Heuristic and Optimal Code Generation . . . . . . . 238

5.4.4. Compilation Time . . . . . . . . . . . . . . . . . . . 240

5.4.5. Code Quality . . . . . . . . . . . . . . . . . . . . . . 242

5.4.6. Hardware Overhead . . . . . . . . . . . . . . . . . . 250

5.4.7. Threats to Validity . . . . . . . . . . . . . . . . . . . 252

5.5. Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.5.1. Out-of-Order Execution . . . . . . . . . . . . . . . . 255

5.5.2. Implementing Permutation Instructions . . . . . . . 258



Contents vii

6. Conclusion and Future Work 263

A. Appendix 269

A.1. Recommendations for Invasive Architectures . . . . . . . . 269

A.2. The Intermediate Representation Firm . . . . . . . . . . . . 271

A.3. k-Shuffle Code Generation is NP-complete . . . . . . . . . . 274

A.3.1. Complexity . . . . . . . . . . . . . . . . . . . . . . . 274

A.3.2. Approximation Algorithm . . . . . . . . . . . . . . . 275

B. Software Artifacts 277

List of Figures 279

List of Tables 285

Index 317





Prose is architecture and the Baroque age is over.

Ernest Hemingway

Abstract

The focus of hardware architecture development has shifted from striving
for ever higher clock frequencies towards incorporating an ever increasing
number of cores on a single chip. A high number of cores makes it
possible to offer a mixture of weak and strong cores, and even specialized
cores with completely different instruction sets. This makes development
for such a heterogeneous platform challenging and requires adequate
support by tools, such as compilers. Besides their core structure, there
is a second dimension to these architectures: memory. A major obstacle
to scalability regarding the memory hierarchy of many-core platforms
is maintaining global cache coherence. Hardware coherence protocols
either scale poorly, or are complex and often suffer from performance and
power overheads. Abandoning global cache coherence is a radical solution
to this problem. However, efficiently mapping programming models to
hardware with relaxed guarantees is challenging. In this dissertation, we
make contributions to compilation techniques targeting both dimensions
of modern parallel architectures: memory and core structure.

The first part of this dissertation concerns data transfer techniques for non-
cache-coherent architectures. Such non-cache-coherent shared-memory

ix



x Contents

architectures provide a shared physical address space, but do not im-
plement hardware-based coherence between all caches of the system.
Logically partitioning the shared memory offers a safe way of program-
ming such a platform. In general, this creates the need to copy data
between memory partitions.

We study the compilation to invasive architectures, a family of non-cache-
coherent many-core architectures. We investigate the efficient implementa-
tion of data transfers for both simple and complex data structures on these
architectures. Specifically, we propose a novel approach to copy complex
pointered data structures without the need for serialization. To this end,
we generalize object cloning to work in the presence of non-coherent
caches by extending object cloning with compiler-directed automatic
software-managed coherence. We present implementations of multiple
data transfer techniques in an existing compiler and runtime system. We
extensively evaluate these implementations on an FPGA-based prototype
of an invasive architecture. Finally, we propose adding hardware support
for range-based cache operations, and describe and evaluate possible
implementations and overheads.

The second part of this dissertation concerns code generation techniques
to accelerate shuffle code by using permutation instructions. Shuffle
code arises during register allocation, where the compiler maps program
variables to machine registers. The compiler may introduce shuffle code,
consisting of copy and swap operations, to transfer data between registers.
Depending on the quality of register allocation and the number of available
registers, a large amount of shuffle code may be generated.

We propose to speed up the execution of shuffle code by using permutation
instructions that arbitrarily permute the contents of small sets of registers
in one clock cycle. To show the feasibility of this idea we first present an
extension of an existing RISC instruction set with permutation instructions.
We then describe how to implement the proposed permutation instructions
in an existing RISC architecture. Subsequently, we develop two code
generation schemes that exploit permutation instructions to implement
shuffle code: a fast heuristic and a dynamic-programming-based approach.
We formally prove quality and correctness properties of both approaches
and show the latter approach to be optimal. In the following, we implement
both code generation algorithms in a compiler and extensively evaluate



Contents xi

and compare their code quality using a standardized benchmark suite. We
first measure precise dynamic instruction counts, which we then validate
by measuring running times on an FPGA-based prototype implementation
of the proposed RISC architecture with permutation instructions. Finally,
we argue that permutation instructions are cheap to implement on modern
out-of-order architectures that already support register renaming.





Optimierung ist, wenn es

manchmal nicht schlechter wird.

Lehrstuhlweisheit, nach Rubino Geiß

Zusammenfassung

Im Bereich der Prozessorarchitekturen hat sich der Fokus neuer Entwick-
lungen von immer höheren Taktfrequenzen hin zu immer mehr Kernen
auf einem Chip verschoben. Eine hohe Kernanzahl ermöglicht es unter-
schiedlich leistungsfähige Kerne anzubieten, und sogar dedizierte Kerne
mit speziellen Befehlssätzen. Die Entwicklung für solch heterogene Platt-
formen ist herausfordernd und benötigt entsprechende Unterstützung von
Entwicklungswerkzeugen, wie beispielsweise Übersetzern. Neben ihrer
heterogenen Kernstruktur gibt es eine zweite Dimension, die die Entwick-
lung für solche Architekturen anspruchsvoll macht: ihre Speicherstruktur.
Die Aufrechterhaltung von globaler Cache-Kohärenz erschwert das Errei-
chen hoher Kernzahlen. Hardwarebasierte Cache-Kohärenz-Protokolle
skalieren entweder schlecht, oder sind kompliziert und führen zu Pro-
blemen bei Ausführungszeit und Energieeffizienz. Eine radikale Lösung
dieses Problems stellt die Abschaffung der globalen Cache-Kohärenz dar.
Jedoch ist es schwierig, bestehende Programmiermodelle effizient auf
solch eine Hardware-Architektur mit schwachen Garantien abzubilden.

Der erste Teil dieser Dissertation beschäftigt sich Datentransfertechni-
ken für nicht-cache-kohärente Architekturen mit gemeinsamem Speicher.

xiii



xiv Contents

Diese Architekturen bieten einen gemeinsamen physikalischen Adress-
raum, implementieren aber keine hardwarebasierte Kohärenz zwischen
allen Caches des Systems. Die logische Partitionierung des gemeinsamen
Speichers ermöglicht die sichere Programmierung einer solchen Platt-
form. Im Allgemeinen erzeugt dies die Notwendigkeit Daten zwischen
Speicherpartitionen zu kopieren.

Wir untersuchen die Übersetzung für invasive Architekturen, einer Familie
von nicht-cache-kohärenten Vielkernarchitekturen. Wir betrachten die
effiziente Implementierung von Datentransfers sowohl einfacher als auch
komplexer Datenstrukturen auf invasiven Architekturen. Insbesondere
schlagen wir eine neuartige Technik zum Kopieren komplexer verzei-
gerter Datenstrukturen vor, die ohne Serialisierung auskommt. Hierzu
verallgemeinern wir den Objekt-Klon-Ansatz mit übersetzergesteuerter
automatischer software-basierter Kohärenz, sodass er auch im Kontext
nicht-kohärenter Caches funktioniert. Wir präsentieren Implementierun-
gen mehrerer Datentransfertechniken im Rahmen eines existierenden
Übersetzers und seines Laufzeitsystems. Wir führen eine ausführliche
Auswertung dieser Implementierungen auf einem FPGA-basierten Pro-
totypen einer invasiven Architektur durch. Schließlich schlagen wir vor,
Hardwareunterstützung für bereichsbasierte Cache-Operationen hinzu-
zufügen und beschreiben und bewerten mögliche Implementierungen
und deren Kosten.

Der zweite Teil dieser Dissertation befasst sich mit der Beschleunigung von
Shuffle-Code, der bei der Registerzuteilung auftritt, durch die Verwendung
von Permutationsbefehlen. Die Aufgabe der Registerzuteilung während
der Programmübersetzung ist die Abbildung von Programmvariablen auf
Maschinenregister. Während der Registerzuteilung erzeugt der Übersetzer
Shuffle-Code, der aus Kopier- und Tauschbefehlen besteht, um Werte
zwischen Registern zu transferieren. Abhängig von der Qualität der
Registerzuteilung und der Zahl der verfügbaren Register kann eine große
Menge an Shuffle-Code erzeugt werden.

Wir schlagen vor, die Ausführung von Shuffle-Code mit Hilfe von neuarti-
gen Permutationsbefehlen zu beschleunigen, die die Inhalte von einigen
Registern in einem Taktzyklus beliebig permutieren. Um die Machbarkeit
dieser Idee zu demonstrieren, erweitern wir zunächst ein bestehendes
RISC-Befehlsformat um Permutationsbefehle. Anschließend beschreiben



Contents xv

wir, wie die vorgeschlagenen Permutationsbefehle in einer bestehenden
RISC-Architektur implementiert werden können. Dann entwickeln wir
zwei Verfahren zur Codeerzeugung, die die Permutationsbefehle aus-
nutzen, um Shuffle-Code zu beschleunigen: eine schnelle Heuristik und
einen auf dynamischer Programmierung basierenden optimalen Ansatz.
Wir beweisen Qualitäts- und Korrektheitseingeschaften beider Ansätze
und zeigen die Optimalität des zweiten Ansatzes. Im Folgenden imple-
mentieren wir beide Codeerzeugungsverfahren in einem Übersetzer und
untersuchen sowie vergleichen deren Codequalität ausführlich mit Hilfe
standardisierter Benchmarks. Zunächst messen wir die genaue Zahl der
dynamisch ausgeführten Befehle, welche wir folgend validieren, indem
wir Programmlaufzeiten auf einer FPGA-basierten Prototypimplementie-
rung der um Permutationsbefehle erweiterten RISC-Architektur messen.
Schließlich argumentieren wir, dass Permutationsbefehle auf modernen
Out-Of-Order-Prozessorarchitekturen, die bereits Registerumbenennung
unterstützen, mit wenig Aufwand implementierbar sind.





Hofstadter’s Law: It always takes longer than you expect,

even when you take into account Hofstadter’s Law.

Douglas Hofstadter

Acknowledgments

First, I wish to thank my advisor Prof. Gregor Snelting for his support
and the opportunity to pursue my own interests without pressure. I
also thank him for shielding me and his whole group from the many
adversities of academic life, such as the need to secure a steady stream of
money. He provided an environment where it was possible to concentrate
on research, on building efficient and robust software, as well as on
excellence in teaching, which is a luxury one becomes accustomed to far
too easily. Next, I would like to thank Prof. Jürgen Teich for reviewing this
dissertation. I also thank him for founding the research project Invasive
Computing, which taught me a great deal about hardware, software,
the many things that can go wrong between them—and how great it is
when they finally work together. The first part of this dissertation would
not have been possible without this research project. Moreover, I want
to thank Prof. Sebastian Hack for serving as the third reviewer of this
dissertation. I also thank him for leaving an inconspicuous footnote in his
dissertation, which ultimately gave rise to the second part of this work.

Next, I have to thank the (former and current) machine code connoisseurs
from the compiler group in Karlsruhe, namely Matthias Braun, Sebastian

xvii



xviii Contents

Buchwald, Andreas Fried, and Andreas Zwinkau. I especially thank my
former office inmate Matthias Braun for being a walking encyclopedia
of Firm and x86 peculiarities and for sharing his knowledge with me.
Furthermore, I thank Sebastian Buchwald for his tireless commitment to
correctness and clarity of expression in both code and written text. And
also for removing all trailing whitespace1. I thank Andreas Zwinkau for
joining me in the quest to bring the invasive prototype system to life while
at the same time keeping me up to date on every development in the
world of programming languages. Lastly, I thank Andreas Fried for being
a very knowledgable office mate, and for creating the nerdiest and most
difficult crossword puzzle I ever failed to solve. All compiler constructors
were always available for help and technical discussions. Without them,
countless hours of staring at Firm graphs and assembly dumps would
have been much more boring.

However, our group consisted of more than the pointer arithmeticians in
the compiler group. Thus, I also thank all my context-sensitive colleagues
from the JOANA group, namely Simon Bischof, Jürgen Graf, Martin
Hecker, and Martin Mohr. In particular, I thank Simon Bischof for finding
an embarrassing number of bugs in our compiler lab reference compiler. I
thank Jürgen Graf for annual barbecues on his panorama terrace and being
a close (pun intended) friend. I thank Martin Hecker for his dedication to
improving the quality of our teaching material and for regularly destroying
half-baked or unfair exam question proposals. And I thank Martin Mohr
for his quirky humorous remarks and his love for everything at the bottom
of the movie barrel. May all your wishes happen in parallel.

Moreover, I thank all side-effect-free purists from our automated theorem
proving group, namely Joachim Breitner, Andreas Lochbihler, Denis
Lohner, Sebastian Ullrich, and Maximilian Wagner. I thank Joachim
Breitner for producing new ideas faster than I could follow the previous
ones, and for proving that days do have more than 24 hours for some
people. I thank “Altgesell” Andreas Lochbihler for taking me under his
wing back when I started as a doctoral researcher, and also for letting all
our dissertations seem short in comparison. I thank Denis Lohner for his
outstanding organizational skills and for his arcane knowledge of AFS and
other technological oddities in our infrastructure. Lastly, I thank Sebastian

1I broke one ligature in this section on purpose, did you spot it?



Contents xix

Ullrich and Maximilian Wagner for humiliating us and our compiler lab
reference compiler in front of everyone, and for convincing me that it is
possible to write beautiful Scala code.

Technically, I ought to mention everyone I met via the Invasive Computing
project, but this list would be too long. Hence, I have to pick some subset
and apologize in advance to everyone I do not mention. Thanks to the
operating systems group in Erlangen, namely Gabor Drescher, Christoph
Erhardt, Sebastian Maier, Benjamin Oechslein, Jens Schedel, and Florian
Schmaus for joining us in valiantly defending the system-software layer
against evil feature-request deniers from the hardware down below and
against blissfully ignorant application developers from above. Project
C1 set the bar high for system software quality, just like it should be. I
also thank Lars Bauer and Artjom Grudnitsky for realizing the slightly
crazy register permutation idea and answering all my stupid questions
about hardware. And I thank Stephanie Friederich, Jan Heißwolf, Sven
Rheindt, and Aurang Zaib for bringing our hardware platform to life.
Special thanks go to Sven Rheindt, who exhumed an ancient hardware
design from its grave in a decommissioned Subversion repository and
added some new functionality to it, just so I could improve my evaluation.
Without people like the ones I just mentioned, who went the extra mile
and sometimes traded fewer publications for more fixed bugs, the Invasive
Computing project would not have come as far as it did. They all made
the countless hours of fighting Scheinzwerge and Heisenbugs much more
worthwhile.

Furthermore, I thank Carsten Tradowsky for throwing student after
student at our project of extending hardware with range-based cache
operations. He mastered the art of delegating tasks.

I thank Ignaz Rutter for his tremendous help with formalizing and
investigating the theoretical aspects of shuffle-code generation. Back in
May 2012, I innocently walked into his office with my little problem of
generating shuffle code, expecting him to point me to some existing paper
or book chapter. Somehow, a few months later, I had pages and pages of
lemmas and proofs, and also quite some trouble still recognizing my own
problem. It was a pleasure witnessing him working his magic while being
able to contribute a bit of my own. I also thank him for initiating weekly
Ricochet Robots rounds years ago.



xx Contents

Of course, I must mention all students who contributed to software or
hardware projects that I used. One of the luxuries of working at a university
is the large pool of talented and highly motivated students I could draw
from. Hence, I thank Eduard Frank, Jonas Haag, Christoph Jost, Tobias
Kahlert, Tobias Modschiedler, Julian Oppermann, Tobias Rapp, Bernhard
Scheirle, Martin Seidel, and Philipp Serrer for their contributions.

I also thank all hard-working proof readers, who ploughed through
hundreds of pages and found issues both small and large. Namely
my helpers were Sebastian Buchwald, Christoph Erhardt, Andreas Fried,
Marina Mohr, Martin Mohr, Maximilian Wagner, and Andreas Zwinkau.

Moreover, I thank my parents as well as my sister Marina for their
unconditional support of whatever decision I made and whatever task I
set my mind on. They always encouraged me to pursue my interests and
not to be afraid of taking on challenges. I especially thank my father for
denying me my wish for a VTech learning computer and instead putting a
real PC into my room; something I assume very few nine year olds had at
that time. This sparked my interest in computers and programming and I
benefit from this decision to this day.

Finally, I thank Eva for supporting and enduring me during the past years.
In her, I have always found both an attentive listener as well as a keen
observer. I highly value her advice, as she is right more often than I
like to admit. While working on this pamphlet, I have read my share of
dissertations in search of inspiration and almost everyone acknowledges
the many ups and downs that working in solitude on a document of such
size entails. Little did I know how high the ups can be—and how deep
the downs. However, I could always count on her support, for which I
was and am extremely grateful.



After such an introduction, I can hardly

wait to hear what I’m going to say.

Evelyn Anderson

1
Introduction

During the last decade, the computer architecture landscape has changed
dramatically. Up until circa 2005, processor designers focused on im-
proving single-thread performance. Moore’s Law [Mac11] provided an
ongoing miniaturization of transistors, enabling more logic per chip area,
while at the same time Dennard scaling [Den+74] allowed to operate these
transistors at decreasing voltages and currents.

These advances in chip manufacturing enabled the three main drivers
behind faster execution of sequential code: (i) higher clock speeds, i.e.,
finishing more clock cycles in the same amount of time, (ii) larger caches,
i.e., the ability to keep more data close to the core for fast access, and
(iii) architectural improvements, i.e., doing more work per clock cycle.
The architectural improvements mainly aimed at exploiting instruction-
level parallelism (ILP) [HP11, chapter 2]. This included techniques
such as prediction of branches in the control flow; dynamic scheduling of
instruction streams (also known as out-of-order execution); and speculative
execution. Overall, this led to increasingly complex processors.

Then, around 2005, Dennard scaling started to break down. Now it was
no longer possible to lower transistor voltages and currents to compensate
for increased power usage due to higher frequencies. Hence, clock
frequencies started to stagnate while Moore’s Law still continued to

1



2 1. Introduction

supply processor designers with higher transistor densities and therefore
chip area for additional logic. As instruction-level parallelism was already
well exploited, computer architects started putting multiple cores onto a
single chip.

The resulting homogeneous multicore architectures included multiple
copies of the same complex core that had before powered a single-core
processor. However, programs could not exploit the added computational
resources of such multicore processors as easily as before. It now became
necessary to write parallel programs that distribute their workload across
multiple cores.

Once an application splits its work into separate tasks, it quickly becomes
clear that not every task requires the same hardware capabilities. For
example, for some tasks, the speedup obtained by exploiting instruction-
level parallelism on the hardware level is not worth the added hardware
complexity. Here, it can be more beneficial to spend the chip area to
provide multiple simple cores instead of a single complex core. These
simpler cores are still able to run the same code (i.e., they support the
same instruction set), but trade sequential execution speed for a smaller
area footprint, enabling more parallelism. Hence, such heterogeneous
architectures offer different types of cores suitable for different types of
tasks.

There can be different degrees of heterogeneity in an architecture. Offering
cores with the same instruction set able to execute the same programs
is the lowest degree of heterogeneity. Taking this idea further, some
architectures provide completely different and specialized cores. These
specialized cores may use different instruction sets and may not even
be able to run general-purpose programs. However, they can provide
superior throughput or energy efficiency for certain parallel tasks.

Hence, one dimension to modern parallel architectures is their core diver-
sification: they not only incorporate many cores, but may also provide
cores with different performance characteristics or even instruction sets.
Some cores are small and highly specialized, but excel at energy efficiency
or throughput for parallel workloads. Other cores are big and complex,
but execute sequential program parts with high speed. The resulting het-
erogeneous multicore architectures provide vast computational resources
in principle.



3

At the same time, there is a second dimension to the developments in
the context of modern hardware architectures: the memory hierarchy.
Single-core processors had a simple memory structure, where a single
memory supplied data to the single core. To hide memory access latency
and exploit spatial as well as temporal locality of memory accesses, these
architectures included one or multiple levels of caches between core and
memory.

Early multicore systems continued to use a single memory. Here, the
hardware provides a shared physical address space. All cores can load
and store values to that address space, which is backed by the single
memory. To reduce access frequency to the main memory, architectures
often also include per-core private caches. However, giving each of the
cores in such a multicore system its own cache created a new problem:
the possibility of accessing stale data due to outdated data copies in
caches. If core c1 has a copy of some data item in its cache and another
core c2 changes that data item in the main memory, core c1 now has a
stale copy of that item in its cache. If c1 is not notified in some way, it
will operate on an out-of-date copy; we say that the situation has become
incoherent. In order to prevent such incoherent situations, multicore
designs settled on implementing hardware-based protocols to keep caches
coherent. These protocols thus make caches as functionally invisible as
caches in a single-core system [SHW11].

In multicore systems with a single memory, memory access is uniform
because distance, and therefore latency, to the memory is the same for
every core in the system. As the number of cores further increased, soon
a single memory was not able to satisfy the bandwidth requirements by
the higher number of cores any more. Therefore, computer architects
introduced physically distributed memory, i.e., multiple memories, while
still providing a shared address space. This added a notion of locality:
from the view of a particular core, there was now a notion of “local” and
“remote” memory, with local memory being physically closer and offering,
in general, lower access latency and higher bandwidth. Therefore, these
systems are also known as non-uniform memory architectures. Their
non-uniformity created new challenges. Suddenly, it mattered where data
is placed in the memory and it can even be beneficial to copy data to more
local memory to avoid frequent more expensive remote accesses.



4 1. Introduction

However, the increasing number of cores and the existence of distributed
memory made it more difficult to keep caches coherent. Distributed
memory is often used in conjunction with more complicated interconnects
between cores, making the implementation of hardware-based coherence
protocols considerably more complex. Additionally, overhead related to
coherence often grows superlinearly with the number of cores [Kum+11].
This “coherence wall” [Kum+11] has led to the design of non-cache-
coherent shared-memory architectures. These architectures still provide
a shared address space for all cores in the system; however, they do not
guarantee coherent caches on a hardware level. Thus, they remove a major
factor that may limit scalability to higher core counts. Yet, caches are now
not functionally invisible any more. Therefore, the software, on some
level, needs to be aware of the caches and may have to manage coherence
itself.

Alternatively, instead of offering a shared physical address space without
hardware-based cache coherence, it is also possible to give up the shared
address space altogether. Such architectures offer separate physical
address spaces, i.e., there are memory locations that are only accessible
by a subset of all cores in the system. Hence, such architectures require
copying data between memories in order to make it accessible to cores
associated with distinct address spaces.

In summary, we have identified two important dimensions of heteroge-
neous parallel architectures: cores and memory. Figure 1.1 shows the
design space spanned by these two dimensions with the characteristics
we identified for each. We see a variety of cores, ranging from complex
cores, well suited to execute sequential parts of a program by exploiting
instruction-level parallelism, to simpler and highly specialized cores that
provide higher integration density. Regarding the memory dimension,
as we move to the right, we see that the hardware gradually relaxes
guarantees to improve scalability. In general, moving up and right in this
design space offers higher energy efficiency and more parallelism.

For both dimensions, the compiler plays a key role in the efficient usage
of such heterogeneous multicore platforms. Regarding the core diversity,
the compiler needs to generate code tailored to the respective core’s
capabilities. While complex cores extract some parallelism automatically
on the hardware level, code generation is still challenging. Due to their



5

Memory

Uniform
Non-uniform

Incoherent
Disjoint

Fewer guarantees
Higher scalability

C
or

es

Complex

Simple

Specialized

Le
ss

IL
P

H
ig

he
ri

nt
eg

ra
tio

n
de

ns
ity

Higher energ
y effi

cien
cy

More para
llel

ism

Figure 1.1: A possible design space of modern parallel hardware architec-
tures. Depiction based on Sutter [Sut12].

complicated microarchitecture and execution behavior, deriving cost
models to guide compiler code generation is difficult. Furthermore, large
instruction sets significantly increase the number of possible encodings
for constructs in the source program. In contrast, simpler cores have
more predictable performance characteristics. However, they are more
dependent on the compiler generating good code in the first place.

Regarding the memory architecture, the compiler must efficiently map the
parallel programming model used by an application to the hardware. Due
to relaxed hardware guarantees, the compiler may need to do additional
work to bridge the gap between guarantees expected by the programmer
and those actually provided by the hardware. Moreover, a more compli-
cated memory structure may lead to the usage of different programming
models, creating new optimization challenges.



6 1. Introduction

Memory

Uniform
Non-uniform

Incoherent
Disjoint

C
or

es

Complex

Simple

Specialized

This dissertation

Contribution 2

Contribution 1

Figure 1.2: The point in the design space of modern parallel architectures
targeted by compilation techniques presented in this dissertation. We
make contributions in both dimensions.

1.1. Contributions

This dissertation investigates compilation and code-generation techniques
for modern parallel architectures. Figure 1.2 shows the point targeted by
this dissertation in the architecture design space that we identified in the
previous section. This dissertation makes contributions along both axes.
More specifically, we investigate

1. compilation to invasive architectures, a familiy of non-cache-coherent
shared-memory architectures; and

2. code generation in the context of out-of-order processors.

We give a brief introduction to each topic, before we state our technical
contributions.



1.1. Contributions 7

Non-cache-coherent shared memory. Shared-memory architectures of-
fer a single shared address space. Here, cores communicate by reading
from and writing to a shared address space. These systems usually add
caches to hide memory latencies and reduce memory traffic by exploiting
temporal and spatial locality of data. However, caches create the potential
for incoherent situations, i.e., the possibility of accessing stale data.

The standard solution to prevent incoherence is to implement a hardware
cache coherence protocol to keep caches coherent. Simple coherence
protocols do not scale well with increasing core count. While more complex
protocols scale better, they may cause complexity and power issues. This
scalability problem is known as the “coherence wall” [Kum+11].

Non-cache-coherent architectures represent a radical solution to circum-
vent the coherence wall. These architectures do not provide hardware-
based cache coherence between all caches of the system. This raises the
question of how to program such machines.

One possibility is to logically partition the address space. Thus, every co-
herence domain only accesses (and caches) addresses in its own partition,
which sidesteps the issues caused by missing hardware-based coherence.
However, this requires different programming models, such as the Parti-
tioned Global Address Space (PGAS) model or the message-passing model.
In both models, efficient data transfers between coherence domains are
essential for program performance.
In this dissertation, we make the following technical contributions:

• We study the compilation of X10, a PGAS language, to invasive
architectures, a family of non-cache-coherent architectures.

• We describe how we map X10’s language features to invasive soft-
ware and hardware.

• We study in detail data transfers on invasive architectures.
• We present a novel data-transfer technique that avoids serialization

of pointered data structures.
• We propose hardware support for range-based cache operations and

consider possible implementations.
• We extensively evaluate our data-transfer techniques on an FPGA

prototype of an invasive architecture using an existing testsuite.
• We evaluate the hardware overhead of our range operations with an

FPGA-based prototype implementation.



8 1. Introduction

Code generation with permutation instructions. Modern parallel archi-
tectures exploit parallelism also on the instruction level. Such out-of-order
processors dynamically rearrange instruction streams to the extent permit-
ted by the data dependencies between instructions. Hence, instructions
are not necessarily executed in the order specified in the program.

In order to implement this technique, such processors employ register
renaming. Here, the processor has more physical registers than logical
registers exposed in its instruction set. This enables the processor to elimi-
nate certain dependencies between instructions, which would otherwise
prevent their independent execution.

In a common implementation of register renaming, the processor contains
a so-called register alias table. This table maps logical to physical registers.
The table is purely controlled by hardware and inaccessible to software.
We can express some value transfers between registers solely by modifying
this indirection table, without touching any register contents.

There are many occasions during code generation where it would be
beneficial for the compiler to have access to this mapping. However,
current instruction sets only offer indirect access in the form of copy and
swap instructions on registers.

In this dissertation, we make the following technical contributions:

• We propose the concept of permutation instructions that allow
permuting the contents of a small set of registers. This can be viewed
as allowing software to more directly manipulate an indirection
table similar to a register alias table.

• We extend an existing instruction set with permutation instructions
to arbitrarily permute up to five registers in one clock cycle.

• We describe an FPGA-based prototype implementation of this ex-
tended architecture with permutation instructions.

• We develop two code-generation schemes that allow compilers to
exploit permutation instructions: a fast heuristic and an optimal
dynamic programming-based approach.

• We formally prove the latter to be optimal.
• We implement both code-generation schemes in an existing compiler

and conduct an extensive evaluation using an adapted processor
emulator as well as our hardware prototype.



1.2. Structure 9

Chapter 2: Non-cache-coherent architectures

Chapter 3: Invasive Computing

Chapter 4,
Contribution 1:
Compilation of
X10 to invasive

architectures

Chapter 5,
Contribution 2:

Code generation
with permuta-

tion instructions

Chapter 6: Conclusion

M
em

or
y

C
or

es

Figure 1.3: The structure of this dissertation.

1.2. Structure

In Chapter 2, we first give an overview of non-cache-coherent architectures
and discuss their impact on programming models and compilers. This
allows us to proceed to Chapter 3, which introduces the research project
Invasive Computing, as part of which we carried out the work described
in this dissertation. In particular, we present the hardware platform
developed in the context of this project as an instance of a heterogeneous
non-cache-coherent shared-memory architecture using our groundwork
from Chapter 2. This hardware platform serves as the basis for both our
contributions.

Then, in Chapter 4, we discuss compilation of X10 to invasive architectures.
This includes our contribution regarding the efficient copying of pointered
data structures.

Subsequently, we turn towards code generation aspects in Chapter 5. Here,
we present our contribution concerning the use of permutation instructions
to speed up program execution. To increase locality, we introduce the
necessary hardware basics at the beginning of this chapter.

Chapter 6 summarizes our results and presents ideas for future research.



10 1. Introduction

1.3. Notation and Conventions
As the results presented in this dissertation are intimately connected with
several research projects that have many contributors, this dissertation
uses “we” everywhere (except for the acknowledgment section). For the
sake of completeness, we include some material that is not the contribution
of the author. We explicitly state this fact at the beginning of such sections
and switch to “Contributor et al.” and “they” if necessary.

We finish our definitions and theorems with a non-filled square � and
our proofs with a black square �. We typeset code like this, with
keywords such as if and else highlighted bold. We add hyphens to
compound words if it avoids ambiguities. We use a comma after both
“e.g.” and “i.e.”, as proposed by the majority of style guides we consulted.
We differentiate between running time (the wall clock time of benchmark
runs), run-time (the point in time when a program runs, in contrast to,
e.g., compilation time), and runtime (as a shorthand for runtime library).
We use the units and prefixes defined by the standard IEEE 1541-2002.

In printed versions of this dissertation, we provide a DVD with all software
artifacts produced as part of this dissertation. We also make all artifacts
available for download. See Appendix B for an overview. All specific
software revisions we mention are relative to the projects listed there.

1.4. List of Publications
In this section, we give an overview of the author’s publications. We
differentiate between publications that contribute to the dissertation at
hand and those which do not.

The following publications contribute to material presented in this disser-
tation. All mentioned talks were given by the author.
Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler, Lars Bauer,
Sebastian Hack, and Jörg Henkel. “Hardware Acceleration for Programs
in SSA Form”. In: International Conference on Compilers, Architecture and

Synthesis for Embedded Systems. CASES’13. Piscataway, NJ, USA: IEEE
Press, 2013, 14:1–14:10. doi: 10.1109/CASES.2013.6662518

Presented on October 1, 2013 in Montréal, Canada.

https://doi.org/10.1109/CASES.2013.6662518


1.4. List of Publications 11

Matthias Braun, Sebastian Buchwald, Manuel Mohr, and Andreas
Zwinkau. Dynamic X10: Resource-Aware Programming for Higher Effi-

ciency. Tech. rep. 8. X10 ’14. Karlsruhe Institute of Technology, 2014. url:
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000041061

Presented on June 12, 2014 in Edinburgh, Scotland.

Manuel Mohr, Sebastian Buchwald, Andreas Zwinkau, Christoph Erhardt,
Benjamin Oechslein, Jens Schedel, and Daniel Lohmann. “Cutting out the
Middleman: OS-Level Support for X10 Activities”. In: Proceedings of the

ACM SIGPLAN Workshop on X10. X10’15. Portland, OR, USA: ACM, 2015,
pp. 13–18. isbn: 978-1-4503-3586-7. doi: 10.1145/2771774.2771775

Presented on June 14, 2015 in Portland, USA.

Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter. “Optimal Shuffle
Code with Permutation Instructions”. In: Algorithms and Data Structures.
Ed. by Frank Dehne, Jörg-Rüdiger Sack, and Ulrike Stege. Vol. 9214.
WADS’15. Lecture Notes in Computer Science. Springer International
Publishing, 2015, pp. 528–541. doi: 10.1007/978-3-319-21840-3_44
Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter. “Optimal Shuffle
Code with Permutation Instructions”. In: CoRR abs/1504.07073 (2015).
url: http://arxiv.org/abs/1504.07073

Presented on August 5, 2015 in Victoria, Canada.

Manuel Mohr and Carsten Tradowsky. “Pegasus: Efficient Data Transfers
for PGAS Languages on Non-Cache-Coherent Many-Cores”. In: Proceed-

ings of Design, Automation and Test in Europe Conference Exhibition. DATE’17.
IEEE, Mar. 2017, pp. 1781–1786. doi: 10.23919/DATE.2017.7927281

Presented on March 30, 2017 in Lausanne, Switzerland.

Matthias Braun, Sebastian Buchwald, Manuel Mohr, and Andreas Zwinkau.
An X10 Compiler for Invasive Architectures. Tech. rep. 9. Karlsruhe Institute
of Technology, 2012. url: http://digbib.ubka.uni-karlsruhe.de/
volltexte/1000028112

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000041061
https://doi.org/10.1145/2771774.2771775
https://doi.org/10.1007/978-3-319-21840-3_44
http://arxiv.org/abs/1504.07073
https://doi.org/10.23919/DATE.2017.7927281
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112


12 1. Introduction

The following publications do not contribute to material presented in this
dissertation.

Jonathan Aldrich, Ronald Garcia, Mark Hahnenberg, Manuel Mohr,
Karl Naden, Darpan Saini, Sven Stork, Joshua Sunshine, Éric Tanter,
and Roger Wolff. “Permission-Based Programming Languages (NIER
track)”. In: Proceedings of the 33rd International Conference on Software

Engineering. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 828–831. doi:
10.1145/1985793.1985915

Sven Stork, Karl Naden, Joshua Sunshine, Manuel Mohr, Alcides Fonseca,
Paulo Marques, and Jonathan Aldrich. “AEminium: A Permission Based
Concurrent-by-Default Programming Language Approach”. In: ACM

Transactions on Programming Languages and Systems. TOPLAS 36.1 (Mar.
2014), 2:1–2:42. doi: 10.1145/2543920

Sebastian Buchwald, Manuel Mohr, and Andreas Zwinkau. “Malleable
Invasive Applications”. In: Proceedings of the 8th Working Conference on

Programming Languages. ATPS’15. Springer Berlin Heidelberg, 2015,
pp. 123–126

Alexander Pöppl, Marvin Damschen, Florian Schmaus, Andreas Fried,
Manuel Mohr, Matthias Blankertz, Lars Bauer, Jörg Henkel, Wolfgang
Schröder-Preikschat, and Michael Bader. “Shallow Water Waves on a
Deep Technology Stack: Accelerating a Finite Volume Tsunami Model
using Reconfigurable Hardware in Invasive Computing”. In: Euro-Par

2017: Parallel Processing Workshops. Lecture Notes in Computer Science.
Heidelberg, Berlin: Springer-Verlag, Aug. 2017

https://doi.org/10.1145/1985793.1985915
https://doi.org/10.1145/2543920


There are only two hard things in Computer Science:

naming things, cache invalidation, and off-by-1 errors.

Leon Bambrick, based on quote by Phil Karlton 2
Non-Cache-Coherent Architectures

In this chapter, we give an overview of non-cache-coherent shared-memory
architectures. First, we cover fundamentals about parallel hardware archi-
tectures. Then, we give a more precise definition of cache coherence and
present hardware-based and software-based implementation techniques.
Subsequently, we discuss reasons for abandoning hardware-based coher-
ence and give examples of resulting architectures. Lastly, we investigate
the impact of missing hardware-based coherence on programming models
and compilers.

2.1. A Taxonomy of Parallel Architectures

In this section, we give an overview of different types of parallel hardware
architectures. We base our presentation on [HP11], but deviate in some
details. We look at two orthogonal aspects:

1. How is memory organized?

2. How do cores communicate?

13



14 2. Non-Cache-Coherent Architectures

2.1.1. Memory Organization

We differentiate between architectures with centralized and distributed
memory.

Centralized memory. Figure 2.1a shows the basic structure of machines
with a centralized memory. Following this model, one or more cores
share a single memory. Typically, the cores are connected to the memory
via a bus. When adding more and more cores to such an architecture,
the memory becomes a bottleneck as it cannot satisfy the bandwidth
requirements of a large number of cores. While larger caches can mitigate
this effect, past a certain core count it becomes necessary to have multiple
memories.

Distributed memory. Figure 2.1b shows the basic structure of such sys-
tems with a physically distributed memory, i.e., multiple memories. Each
core or group of cores has a local memory and all cores are connected
by a scalable global interconnection network. The main advantage of
distributed-memory machines is that multiple memories also multiply
the possible memory bandwidth, i.e., it is easier to supply enough data to
all cores than with a single memory. Distributed memory has the main
disadvantage of higher implementation complexity, especially for the
global interconnection network, which must be able to support the higher
available memory bandwidth.

2.1.2. Communication Model

We differentiate between communication via shared memory and via
message passing.

Shared memory. In a shared-memory system, the hardware offers a
single shared address space. Each core may read from and write to this
address space. Hence, cores can communicate via loads and stores to the
shared address space.



2.1. A Taxonomy of Parallel Architectures 15

Core
L1/L2 Cache

Core
L1/L2 Cache

Core
L1/L2 Cache

Core
L1/L2 Cache

Memory

(a) A centralized memory architecture. In this case, four cores are connected to a
single main memory by a bus.

Core
L1/L2 Cache

Memory

Core
L1/L2 Cache

Memory

Core
L1/L2 Cache

Memory

Core
L1/L2 Cache

Memory

Core
L1/L2 Cache

Memory

Core
L1/L2 Cache

Memory

Core
L1/L2 Cache

Memory

Core
L1/L2 Cache

Memory

Global interconnection network

(b) A distributed-memory architecture. Eight cores, each connected to a local
memory, are connected via a global interconnect.

Figure 2.1: A comparison of memory architectures.



16 2. Non-Cache-Coherent Architectures

Message passing. In a pure message-passing system, the hardware does
not offer a shared address space. Hence, it is not assumed that every
core can access all available memory. Thus, in general, cores cannot share
data and therefore communicate by sending explicit messages. Passing a
message is inherently linked to copying the necessary data to the receiver’s
address space as otherwise the receiver is unable to access the data.

2.1.3. Typical Combinations
In theory, memory organization and communication model are com-
pletely independent. In practice, the following three combinations are
important.

Shared memory with centralized memory. Machines that provide shared
memory with a single centralized memory are often called symmetric mul-

tiprocessing (SMP) systems. As all cores have the same distance from the
single main memory, they also have the same access latency. Therefore,
these machines are also called uniform memory access (UMA) architectures.
This is the most popular type of memory organization for single-core and
multi-core machines.

Shared memory with distributed memory. Machines that provide shared
memory with distributed memory are usually referred to as distributed

shared-memory (DSM) architectures. Here, the hardware still provides a
single address space, hence every core can still access the complete memory.
However, there is now a notion of locality as accessing a local memory
is faster than accessing a remote memory. Therefore, these machines are
also called non-uniform memory access (NUMA) architectures. The NUMA
model is the standard for today’s server machines. Typically, this is due
to the memory controller being integrated into the processor. Hence, as
soon as a machine possesses multiple physical processors, i.e., CPUs in
multiple sockets, it automatically becomes a NUMA architecture.

Message passing with distributed memory. Such machines typically
provide multiple private address spaces. Each core or group of cores has
its own private address space, which is not addressable by remote cores.



2.2. Cache Coherence 17

Hence, the same physical address can refer to different memory locations
for different cores. A typical representative of this class of machines is a
cluster computer. Often, clusters are not pure message-passing systems.
For efficiency reasons, shared memory is offered and used for small groups
of cores, e.g., one node of a cluster, and message passing is used between
core groups.

2.2. Cache Coherence

Usually, systems introduce caches to exploit spatial and temporal locality
of data accesses. Typically, every memory address accessed by a core is
first looked up in the core’s cache. For example, when a core loads from
memory address A, it is first checked if there is a valid copy of the data
from A in the cache. This is called a cache hit, where the cache returns the
value from the local data copy without consulting the memory. Only in
case of a cache miss is the memory actually accessed.

In a shared-memory system with multiple cores, the caching of data can
lead to incoherent situations unless special measures are taken. In general,
incoherence refers to a situation where stale, i.e., outdated, data is accessed.
As an example, suppose that we have two cores c1 and c2, each with a
private cache. Further, suppose that the shared memory holds the value
100 at address A. First, both cores read from A and therefore have copies
of that datum (100) in their local caches. Now, c1 writes the value 200 to A.
After the write by c1, c2 reads from A. If we do not take any precautions,
the situation has now become incoherent, as c2 would still read the old
value 100 from its cache.

In practice, this incoherent situation is prevented by using a coherence
protocol. In our example, this protocol must prevent c2 from observing
the old value while c1 observes the new value. There exist numerous
possible protocol variants and even more implementation possibilities,
but all protocols have in common that they maintain coherence invariants.
To understand what a coherence protocol must accomplish, first we have
to define coherence in a precise manner.



18 2. Non-Cache-Coherent Architectures

We follow the definition by Sorin et al. [SHW11, section 2.3]. Sorin et al.
use the single-writer-multiple-reader (SWMR) invariant as the foundation
for their definition of coherence. The SWMR invariant states that, for any
given memory location M at any given moment in time, there is

(i) either a single core that may read and write M, or
(ii) any number of cores that may only read M.

Especially, there must not exist a point in time, so that some memory
location M may be written by a core and at the same time read or written
by another core.

Sorin et al. propose another way of viewing this definition. They divide
the lifetime of each memory location into epochs. Viewed this way, during
each epoch there must be either a single core with read-write access or
any number of cores with read-only access.

However, the SWMR invariant alone is not enough to capture our intuitive
understanding of coherence. For example, in an epoch where two cores
have read access to a memory location, the SWMR invariant does not state
anything about the values that the cores read. Hence, it would be allowed
that they read different values. Clearly, this is an incoherent situation like
the one from our first example and therefore we must complement the
SWMR invariant.

Sorin et al. add the data-value invariant. This invariant regulates the
propagation of values from one epoch to the next. More precisely, it states
that the value of a memory location M at the start of an epoch is the same
as the value of M at the end of M’s last read-write epoch.

Definition 1 We call a system coherent if the following two invariants
hold [SHW11, p. 13]:

1. Single-Writer, Multiple-Reader (SWMR) Invariant: For any memory
location M, at any given (logical) time, there is only a single core
that may write to M (and can also read it), or any number of cores
(possibly zero) that may only read M.

2. Data-Value Invariant: The value of a memory location M at the start
of an epoch is the same as the value of M at the end of M’s last
read-write epoch. 2



2.2. Cache Coherence 19

Core c1:

S1 : x ← 1
L1 : r1 ← y

Core c2:

S2 : y ← 1
L2 : r2 ← x

Figure 2.2: Program running on two cores. Initially, memory locations x
and y hold the value 0.

2.2.1. Separating Coherence from Consistency

Following Sorin et al. [SHW11], we separate the issue of coherence from the
issue of memory consistency. A memory-consistency model, or memory
model for short, specifies the allowed behavior of a system where multiple
cores execute loads and stores on a shared memory. For a given program,
program input, and initial memory state, the memory model specifies
what values the load operations executed by a core may return, and the
memory model defines a final memory state.

Viewed another way, if we look at the set E of all possible executions
for a given program, a memory model partitions E into a set of allowed
executions (that adhere to the rules of the model) and a set of disallowed
executions (that do not adhere to the model’s rules). In contrast to
execution on a single core, with multiple participating cores a memory
model usually allows multiple correct program executions and disallows
many incorrect executions.

Figure 2.2 shows an example program inspired by Dekker’s algorithm [Dĳ02]
for mutual exclusion. We use x and y to denote memory locations, use
ri for machine registers, and use L j and Sk for load and store operations,
respectively. Initially, memory locations x and y hold the value 0. In the
program, core c1 writes 1 to x and then reads from y into a local register.
Similarly, core c2 writes 1 to y and then reads from x into a local register.

Now, which outcomes of this program are allowed? Intuitively, (r1 , r2) �
(1, 1), (r1 , r2) � (0, 1), and (r1 , r2) � (1, 0) are possible due to different
interleavings of the instructions. These outcomes are sequentially consistent

as the interleavings respect the partial orders defined by the program
order of instructions in each sequential program part.



20 2. Non-Cache-Coherent Architectures

c1 c2 coherence state of x coherence state of y
L1 read-only for noone read-only for c1

L2 read-only for c2 read-only for c1
S1 read-write for c1 read-only for c1

S2 read-write for c1 read-write for c2

Table 2.1: Coherence states for the execution L1, L2, S1, S2 of the program
from Figure 2.2.

But what about an outcome where both cores load the value 0, i.e., r1 � 0
and r2 � 0 after execution of the program? A first intuition could be that
this can only happen due to some coherence-related problem, where the
system is incoherent and the cores read stale, i.e., not updated yet, values
of x and y.

Indeed, a faulty coherence mechanism could lead to this situation. Suppose
the writes from both cores are cached in the core’s respective caches. Now,
assuming a faulty coherence implementation, the following reads by both
cores could load 0, i.e., stale values. This would violate the data-value
invariant of Definition 1.

However, as we see in the following, there is an execution order that
conforms to our definition of coherence and at the same time leads to
the observed program behavior. Table 2.1 shows the coherence states of
memory locations x and y during the execution L1, L2, S1, S2. We see
that neither of our invariants from Definition 1 is violated, hence, this
execution is coherent.

It may seem strange that load and store operations are executed in an order
different from the program order. Perhaps suprisingly, even common
memory models, including the Java memory model and the x86 memory
model, allow this execution order2. The reason for this is that allowing
such executions enables a multitude of performance optimizations, both
on the software level, i.e., in the compiler or virtual machine, and on the
hardware level.

2Modern memory models guarantee sequential consistency for data-race-free programs
(the so-called DRF guarantee). However, our example program contains a data race.



2.2. Cache Coherence 21

For example, if a compiler can prove that x and y from Figure 2.2 do
not alias, i.e., always refer to distinct memory locations, the compiler
is allowed to generate code that first loads a value and then stores the
other, even if in the program the write precedes the read3. Similarly, the
CPU cache may include write buffers to hold data that must be written to
memory. The buffer enables the cache to service following load operations
without waiting for the memory to actually finish writing back the value
of the store operation, effectively allowing a load to overtake a preceding
store.

Hence, it is useful to separate the concepts of cache coherence and
memory consistency. Sorin et al. give two more reasons why these are
two separate issues. First, an important difference between coherence and
consistency is that coherence is only concerned with a single memory
location, while memory-consistency models consider accesses to multiple
memory locations. This is also apparent in Definition 1, which only deals
with accesses by multiple cores to a single memory location. And second,
the question of whether the discussed execution of the program from
Figure 2.2 is allowed also arises in a system without any caches. In such a
system, there is clearly no need for cache coherence; however, it still needs
a memory model. In practice, most implementations of memory models
assume and exploit cache coherence.

2.2.2. Implementation

Definition 1 tells us what a coherence protocol must achieve but not
how it can maintain these invariants. Again, we have orthogonal design
decisions: we can choose between different coherence policies; we can
choose a granularity; and we can put the responsibility for implementing
coherence onto hardware or software.

The implementation of a coherence protocol often depends on the cache
configuration. We can configure caches in write-through or write-back

mode. Write-through caches update the main memory on every write.
Hence, the main memory always contains an up-to-date value for a certain

3All modern programming languages that define a memory model offer means to restrict
such reorderings, e.g., by using the keyword volatile [Gos+14, section 17.4] in Java.



22 2. Non-Cache-Coherent Architectures

address. Write-back caches do not update the main memory on every
write. Therefore, with multiple write-back caches, it is more difficult to
find the most up-to-date value of a data item, as it can be solely located in
one of the caches. In such a case, cache terminology usually refers to this
copy as dirty. In general, write-through caches are simpler to implement
but have higher main-memory-bandwidth requirements.

2.2.2.1. Coherence Policy

In general, we can classify a coherence policy as either write-invalidate

or write-update [Ste90; PP84]. Both types of policies must maintain the
invariants from Definition 1.

Write-invalidate policies maintain coherence as follows. When a core
c updates its local data copy of memory location L, write-invalidate
policies enforce the invalidation of all other copies of L. Hence, the SWMR
invariant is maintained by forcing the coherence state of L to “read-write
for c”. The next time another core c′ reads L, either c provides the new
value directly to c′, or c first writes back its local value to memory location
L, where c′ then fetches it from.

With a write-update policy, when a core updates its local data copy of
memory location L, at the same time, it updates all other copies of L.
Hence, the SWMR invariant is maintained by forcing the coherence state
of L directly to “read-only for all cores that had a copy of L”. The policy
implementation decides whether the copy in memory is updated as well.

Write-invalidate policies distribute updated data items lazily, while write-
update policies do so eagerly. In general, write-invalidate policies are far
more common than write-update policies.

2.2.2.2. Granularity

Common processors can perform loads and stores at various granularities,
usually ranging at least from 1 to 8 bytes, and sometimes including wide
memory operations, e.g., 64 bytes for vector instructions. In theory, it
would be possible to manage coherence at the finest granularity, i.e., 1 byte.



2.2. Cache Coherence 23

However, this would considerably increase overhead for implementation
and coherence traffic.

Therefore, in practice, implementations manage coherence at a coarser
granularity, most commonly cache lines. Enforcing the coherence invari-
ants per cache line is, in general, more efficient, as they comprise multiple
bytes (16–64 bytes are common). However, managing coherence at a
coarse granularity can also cause other performance problems, such as
false sharing [BS93].

False sharing occurs when multiple cores access and modify different,
non-overlapping data objects within the same cache line. For example,
suppose that core c1 repeatedly modifies memory location L1, core c2
repeatedly modifies memory location L2 (different from L1), and L1 and
L2 happen to be part of the same cache line. Here, the coherence protocol
still maintains the SWMR invariant for the whole cache line. Hence,
every time c1 modifies L1, a coherence action is triggered. For example,
assuming a write-invalidate protocol, c2’s cache line containing L2 is
invalidated, although L2 did not change at all. The same happens for
c1’s cache line containing a copy of L1 on the next update to L2 by c2.
Thus, an unfortunate combination of memory layout, access behavior, and
coherence granularity can lower performance significantly.

2.2.2.3. Responsibility

We can implement the system that maintains the coherence invariants
either in hardware or in software [Adv+91; TM97].

Hardware-based coherence. If we implement coherence in hardware, it
is functionally invisible to software. Hence, for a shared-memory system
with hardware-based cache coherence, the caches behave like in a single-
core system. Correctly implemented, hardware-based cache coherence
makes it impossible for the programmer to determine whether a system
has caches by inspecting the results of load and store operations [SHW11].
However, it may be possible to deduce the presence of caches using timing
information.



24 2. Non-Cache-Coherent Architectures

In the following, we give a brief overview of the two most important im-
plementation techniques for hardware-based cache coherence: snooping
protocols and directory schemes. Snooping protocols rely on a medium
that is able to broadcast information, e.g., a bus, and distribute the infor-
mation about the sharing status of each memory block. On the other hand,
directory schemes centralize the information about the sharing status of
memory blocks in one location, called the directory. As a consequence,
they do not require the ability to broadcast information. In general,
snooping protocols are easy and cheap to implement, while directory
schemes are more complex, but scale to higher core counts. We base our
presentation on Hennessy et al.’s [HP11] and also refer to the same source
for details.

The idea behind snooping protocols is that addresses are broadcast on the
shared medium (e.g., a bus) and all participants observe, or “snoop”, these
addresses to potentially trigger actions in their respective local caches
to maintain coherence [HP11, section 4.2]. To illustrate this idea, we
discuss the implementation of a snooping coherence protocol for a simple
memory architecture using a bus as shown in Figure 2.1a. We assume a
write-invalidate policy, as it is the most commonly used strategy.

As an example, suppose we have two cores c1 and c2 in such a system,
each with a private cache configured in write-back mode. If c1 reads
from address L, it puts a copy of the data at address L in its local cache.
Suppose c2 now wants to write a new value to L, which proceeds as
follows. After c2 has successfully acquired bus access4, it broadcasts an
invalidate operation on the bus. Core c1 reacts by invalidating its local
copy of L, i.e., the next access to L by c1 will cause a cache miss. Then, c2
performs the actual write operation. With write-back caches, now only
c2’s cache holds the new value of L; the copy of L in c1’s cache is marked
invalid and the copy in memory is outdated.

If c1 now reads from L again, we must (i) somehow notice that reading
from main memory is incorrect (as the new value is in c2’s cache), and
(ii) transport the new value to c1’s cache. Fortunately, we can implement
the notification mechanism exactly as with the original write described
before. Thus, we require caches to also observe read operations on the

4If multiple cores want to write to the same address L concurrently, the bus-acquisition
process serializes their write operations.



2.2. Cache Coherence 25

bus and to check if they have a modified copy of the data at the requested
address. If this is the case, they abort the other core’s memory access and
then provide the new value. In our example, c2 would see c1’s read to L
on the bus and then abort it.

How exactly then c2 makes the new value available to c1 is another
design decision. One option is that c2 writes back the new value to
main memory and then sends a retry signal to c1, which restarts the
read operation. The alternative is that c2 sends the new value directly
to c1, without a detour via main memory. The first option is easier to
implement but potentially slower as updated values are distributed via
main memory. The second option requires additional bookkeeping and
increases implementation complexity, but distributes updated values
over a potentially faster interconnect between cores, without involving
main memory. This design decision differentiates the two well-known
coherence protocols MESI [PP84] and MOESI [Adv10, section 7.3].

As we have seen, bus snooping protocols need to broadcast, i.e., commu-
nicate with all other caches, on every cache miss. On a read miss, we
have to inform all other caches of our intent to read the address and they
might respond by aborting our read request, followed by providing the
updated data item. On a write miss, we also have to inform all other
caches as they might need to invalidate their copy. In total, the amount of
coherence-related traffic can soon overwhelm the capabilities of the bus
as we increase the number of cores (and caches).

An alternative offering better scalability are directory protocols [HP11,
section 4.4]. They build upon the idea of the directory, which is a data
structure that holds the sharing status of each cacheable memory block.
The most important improvement compared to snooping-based protocols
is that we save the sharing status of a block in a single, well-defined
location (the directory) instead of replicating information in multiple
locations. This avoids the need to broadcast information to synchronize
multiple copies of the sharing status.

However, we can still distribute the directory itself. Directory schemes
are often used for distributed shared-memory machines as depicted in
Figure 2.1b. In such a setting, each core with its local cache and local
memory is extended with a directory responsible for the memory blocks
in the respective local memory. Hence, while the sharing information is



26 2. Non-Cache-Coherent Architectures

distributed, it is not replicated, as we save the current sharing status of
each memory block in exactly one location.

In their simplest form, directory schemes maintain one directory entry
per memory block. Each entry holds the block’s current sharing status. A
basic protocol differentiates between the following sharing states (with
more fine-grained states allowing potentially higher performance at the
cost of increased complexity):

Uncached: No core has a copy of the memory block.

Shared: The block is cached by at least one core, and the values of this
block in memory and in all caches match. This means no core has
modified the block. Additionally, we have to save information about
which cores have copies of the block in their caches (the sharer set).

Modified: Exactly one core (the owner) has a copy of the block, and the
block is modified. Hence, the copy in memory is outdated. We also
save which core is the owner.

In a directory scheme, up to three types of cores may be involved in a
memory access:

• the local requesting core that reads or writes the cache block;
• the home core whose memory holds the requested cache block; and
• the remote core whose cache holds a copy of the requested cache

block.

As an example, suppose we have three cores c1, c2, and c3 in a DSM system
as shown in Figure 2.1b, each with private write-back caches. We assume
that initially, all caches are empty, i.e., all entries in all directories are set
to Uncached. Furthermore, we assume memory location L is physically
located in c1’s memory.

Now, suppose that in our example c1 reads from L. Here, c1 is both the
local and the home core; no remote core is involved as all caches are empty.
Hence, c1 puts L in its local cache and updates in its local directory the
state of L to Shared as well as the respective sharer set to {c1}.

Now, assume that c2 reads L next. The local core c2 then sends a read
request to home core c1, which adds core 2 to the set of sharers registered
for L in c1’s directory, and then returns the data at L to c2.



2.2. Cache Coherence 27

Now, suppose that the next action is a write to L by c3. Hence, the
local core c3 sends a write request to home core c1. Core c1 responds by
(i) sending the requested block back to c3, (ii) reading the set {c1 , c2} of
sharers and sending them invalidation requests, and (iii) setting the state
of L to Modified in c1’s directory while registering c3 as the owner. Cores
c1 and c2 then invalidate their local copies of L.

In summary, directory schemes scale better than snooping-based protocols
as they do not depend on broadcasts. However, they are also difficult
to scale to large numbers of cores. For example, the sharer set is often
implemented as a bit set with one bit per core, where a 1 at position i
means that core ci currently has a copy of the respective memory location
in its cache. For 1024 cores, storing the bit set requires 128 bytes, which
may be more than the size of the memory block whose sharing state the bit
set is supposed to track. Another issue is the significantly increased power
usage due to the high number of messages for coherence traffic [KK10].

Software-based coherence. Alternatively, coherence can be implemented
in software. This means that the software must trigger necessary cache
operations, such as invalidations and write-backs. To be able to do that,
the hardware must provide appropriate support. In the context of the
following discussion, we assume the existence of an invalidation instruction
and a writeback instruction with the following semantics:

• The invalidation instruction invalidate L takes a memory location
L as an operand and invalidates the copy of L in the executing core’s
cache (if a copy is present). This enforces that L is fetched from
main memory on the next access. Note that invalidating a locally
modified copy discards these local changes.

• The writeback instruction writeback L takes a memory location L
as an operand and writes the copy of L in the executing core’s cache
back to memory (if a copy exists and it has been modified locally).

We can implement these instructions as part of the cache logic. For
example, the invalidation instruction looks up L in the cache and in case
of a cache hit, marks the respective cache line as invalid, e.g., by clearing
the cache line’s valid bit. We can implement the writeback instruction
similarly.



28 2. Non-Cache-Coherent Architectures

To demonstrate the usage of these instructions, suppose that we have
two cores c1 and c2, each with private caches, and a shared variable x in
memory. Suppose further that the cores execute the following program:

Core c1:

x ← 1

Core c2:

A: r ← x
if (r == 0) goto A;

On a system without hardware-based cache coherence, this program
potentially runs forever, as there is no guarantee that c2 will ever see the
updated value of x. Only when the cache line containing the updated
value of x is evicted from c1’s cache, the memory is updated and the
updated value therefore becomes visible to c2. If the cache line is never
evicted from c1’s cache, the loop on c2 does not terminate.

In this example, a possible software-based solution to maintain coherence
looks as follows:

Core c1:

x ← 1
writeback x

Core c2:

A: invalidate x
r ← x
if (r == 0) goto A;

Here, we placed a writeback instruction after the write to x and an
invalidation instruction before the read from x. The writeback instruction
placed after the write operation by c1 ensures the propagation of x’s
new value to memory. Hence, the updated value becomes visible to c2.
Moreover, in the loop, c2 first invalidates its local copy of x, which forces
a cache miss for the following read operation and thus forces a retrieval of
the updated value from memory.

While this example demonstrates that managing coherence in software is
possible in principle, it is unclear which component triggers the coherence
actions. Manual coherence management is unrealistic, as the process is
too error-prone. Hence, some part of the system software should trigger



2.2. Cache Coherence 29

the cache operations, e.g., the operating system, a library, or the compiler
as in our example.

In general, we can classify software-based coherence schemes as either
static or dynamic [TM97]. Static schemes are compiler-based and rely on
program analysis at compile time. Dynamic schemes are implemented in
operating systems or libraries and monitor memory-access behavior at
run-time. We discuss this topic in more detail in Section 2.4.2, but give an
intuition of the trade-offs here.

For static schemes, the compiler must identify potentially conflicting
accesses to shared data and extend the program to trigger cache operations
at appropriate program points, e.g., by generating additional instructions
as seen in our example. To guarantee correctness, compilers must be
conservative and assume the worst case when adding coherence-related
actions to the program. Clearly, the compiler can insert cache operations
before and after each memory-access operation. However, this effectively
disables the system’s caches.

Hence, to make static schemes viable performance-wise, the compiler
has to reduce the number of inserted cache operations. The fundamental
problem is that compile-time information must be used to predict run-time
access behavior. This works well for programs with a regular predictable
access behavior. However, for programs with an irregular memory-access
behavior, many unnecessary coherence actions may be performed at
run-time, lowering performance significantly.

For dynamic schemes, a library or the operating system maintains cache
coherence at run-time. Operating systems usually exploit virtual memory
to manage coherence at page granularity (a typical page size is 4 KiB).
They enforce the SWMR invariant for pages: if a core writes to a shared
page, this page must be invalidated on all other cores. The next time
another core accesses the shared page, the page-fault handler manages
coherence in software, e.g., by writing back the changed page contents
on the core that previously wrote to it. Similarly, libraries can manage
coherence in software at the granularity of objects or memory regions.

Dynamic schemes detect problematic accesses at run-time, so they may re-
duce unnecessary coherence actions. However, in order to limit coherence-
related overhead, they have to work on a coarser granularity, such as



30 2. Non-Cache-Coherent Architectures

whole pages. Depending on the memory layout and access behavior of
the program, false sharing (cf. Section 2.2.2.2) can decrease performance
significantly.

Overall, software-managed coherence was a field of active research in
the 1980s and 1990s. Tartalja et al. [TM97] and Stenström [Ste90] pro-
vide overviews and classifications of early software-based coherence
schemes. Ultimately, however, hardware-based cache coherence became
the standard for shared-memory multi-core architectures. Snooping-
based protocols were reasonably simple to implement and offered good
performance. Most importantly, hardware-based cache coherence enables
all parallel software and their respective tools, such as compilers, to be
oblivious to the existence of caches.

However, more recently, software-based coherence has regained interest
in the context of non-cache-coherent many-core architectures. Such archi-
tectures do not implement hardware-based coherence; their properties
and the implications are the topic of the next sections.

2.3. Hardware Architecture

Shared-memory multi-core architectures as described in Section 2.1 with
hardware-based cache coherence as described in Sections 2.2 and 2.2.2.3
are by far the most common type of machine currently in use. Recently,
however, non-cache-coherent shared-memory architectures have become
attractive for two reasons: power and scalability.

Power. In power-constrained contexts, such as mobile computing, (par-
tially) giving up cache coherence can enable more aggressive power
savings. As an example, many multi-core systems in modern mobile
phones consist of a group of “strong” cores and a group of “weak”
cores [Tex14; LWZ14]. The idea is to use the weak cores when the system
is not actively used and to switch to the strong cores for more demanding
tasks.

However, hardware-based coherence between weak and strong cores
restricts the architectural asymmetry, i.e., it prevents the weak cores from



2.3. Hardware Architecture 31

being much weaker (and thus from consuming much less power) than
the strong cores. Additionally, the coherence mechanism itself consumes
significant power [LWZ14; Cho+11; KK10]. Thus, some multi-core systems
for mobile computing do not keep caches of weak and strong cores coherent
in hardware while still allowing access to shared memory.

Hence, this constitutes a non-cache-coherent shared-memory architecture
with two coherence islands or coherence domains, where all caches inside a
coherence domain are kept coherent by a hardware-based mechanism,
but the hardware provides no coherence between different domains.

Scalability. The other drivers toward non-cache-coherent architectures
are scalability and performance. Following the trend of putting more
cores on a chip, scaling chip designs with hardware-based cache coher-
ence to high core counts has proved to be challenging. A centralized
memory quickly becomes a bottleneck as more and more cores compete
for bandwidth. Additionally, simple bus snooping coherence protocols
do not scale well as the number of cores is increased due to the need for
broadcasts (see Section 2.2.2.3).

Switching to a distributed shared memory mitigates memory-bandwidth
issues by distributing the bandwidth demand to multiple memory mod-
ules. However, the lack of a common bus now requires more complex
directory-based coherence protocols. While these directory schemes scale
better, it is unclear whether they can be used at the core counts envi-
sioned for future chips. We refer to [FNW15] for a recent overview of the
challenges with scaling directory schemes.

This scalability problem has been called the “coherence wall” [Kum+11].
Whether or not this wall actually exists, and if it does, what the correct
answer to this challenge is, is the subject of an ongoing debate.

In a widely cited work, Martin et al. [MHS12] argue that by combining
known techniques to improve existing coherence protocols, on-chip cache
coherence scales better than commonly anticipated by the community.
They predict that future multicore architectures will keep full hardware-
based coherence as the scalability benefits of giving up hardware coherence
do not justify sacrificing backwards compatibility with existing operating
systems, compilers, or software. However, they also point out that their



32 2. Non-Cache-Coherent Architectures

prediction is based on a model and not on an actual implementation or
simulation with realistic benchmarks.

Lotfi-Kamran et al. [Lot+12] propose that, in order to scale performance of
a chip, architectures should focus on putting many independent servers,
called “pods”, onto a single chip. Each pod is a complete server, consisting
of cores, caches, and interconnect, that runs its own copy of the operating
system. As there is no interdependence between pods, there is no need
for inter-pod communication or coherence support, which improves
scalability.

Komuravelli et al. [KAC14] observe that often, scalability improvements
are made through an even more complex coherence protocol, making
implementation and verification significantly more difficult. Improving
scalability of cache coherence is a field of active research, e.g., by hybrid
software/hardware-based coherence [Kel+10]; by requiring a disciplined
parallel programming model [Cho+11]; or by restricting coherence to
smaller domains, such as applications [FNW15]. A radical answer to the
scalability challenge is (at least partially) disposing of hardware-based
cache coherence, resulting in a non-cache-coherent architecture.

Hence, we have seen that there are two reasons for abandoning global
cache coherence: power and scalability. The main difference between
these two classes is the number of coherence domains. In power-motivated
systems, we see relatively few, i.e., two or three, coherence domains; for
example, the mentioned weak and strong core groups. In scalability-
motivated systems, there may be significantly more coherence domains,
i.e., in the order of tens or hundreds.

The other interesting parameter is the size of coherence domains. In the
extreme case, each core is in its own coherence domain, i.e., there are
as many coherence domains as there are cores. Alternatively, domains
include multiple cores each. We follow Fatourou et al. [Fat+16] and
refer to the former class of architectures as fully and to the latter class as
partially non-cache-coherent (or, equivalently, partially cache-coherent)
architectures. When we refer to non-cache-coherent machines without
further qualification, we mean both classes.

In the context of this dissertation, we investigate a scalability-motivated
non-cache-coherent architecture with many coherence domains. We focus



2.3. Hardware Architecture 33

on partially non-cache-coherent systems. In the following section, we
describe examples of non-cache-coherent architectures and then look at
possible programming models in Section 2.4.

2.3.1. Examples of Non-Cache-Coherent Architectures

A radical solution to the challenge posed by the coherence wall are non-
cache-coherent shared-memory hardware architectures. Various such
architectures have been proposed recently, some partially and other fully
non-cache-coherent.

The IBM Cell processor [Che+07; Hof05; Pha+05; Kah+05] is a heteroge-
neous non-cache-coherent multicore architecture with a focus on multi-
media processing known for powering the Sony PlayStation 3 gaming
console. Figure 2.3 shows its architecture.

The Cell processor consists of a conventional PowerPC-based core (PPE)
and eight Synergistic Processing Engine (SPE) cores with a custom in-
struction set. All cores share access to an off-chip DRAM memory. While
the PowerPC core has a conventional two-level cache hierarchy, each SPE
only has a private local memory (called “LS” for “local store memory”
in Figure 2.3). SPEs have to transfer data from main memory to their
local SPE memories before they can access it. Dedicated DMA units
accelerate these transfers. The Cell architecture provides no hardware
cache coherence between local SPE memories. Hence, for multithreaded
applications, coherence must be handled completely in software [MS10].

Intel’s Single Chip Cloud Computer (SCC) [How+10; Mat+10] is a homo-
geneous non-cache-coherent architecture with 48 cores. The SCC does
not provide any hardware cache coherence, not even for groups of cores.
Figure 2.4 shows an overview of the SCC’s hardware architecture.

The basic building block of the Intel SCC is a tile (cf. right half of Figure 2.4).
Each tile consists of two x86 cores, each with private L1 and L2 caches.
Caches are not kept coherent, neither inside a tile nor across tile boundaries.
Additionally, each tile contains a message-passing buffer, which is a
dedicated on-chip memory (16 KiB) for message passing between cores.
To connect the tile to the rest of the system, each tile contains a mesh
interface unit. All tiles are arranged in a 4 × 6 mesh and connected by



34 2. Non-Cache-Coherent Architectures

Figure 2.3: Overview of the hardware architecture of the IBM Cell pro-
cessor. Image taken from [Kah+05] and slightly adapted. The bottom
left shows the PowerPC-based core with caches (PPE). The upper half
shows the eight SPEs, each consisting of the execution unit (SXU), local
store memory (LS), and a DMA engine. SPE-local memories are not kept
coherent in hardware.

a network-on-chip (cf. left half of Figure 2.4). A network-on-chip [BM02;
Hei+14] (NoC) applies principles from networking, e.g., the concept
of routers, to on-chip communication to improve scability and power
efficiency. Four memory controllers (MC) at the edges of the chip provide
access to off-chip memory.

The Intel SCC offers a shared physical address space that includes all
message-passing buffers and the shared DRAM. Cores can then com-
municate by two means: (i) either by using dedicated message-passing
hardware, or (ii) by using the off-chip memory. To use direct messag-
ing, cores write to the destination tile’s message-passing buffer (or read
from the sender’s memory). As coherence must be provided in soft-



2.3. Hardware Architecture 35

Figure 2.4: Overview of the hardware architecture of the Intel SCC [Int12].
On the left, R denotes NoC routers and MC are memory controllers. On
the right, MIU stands for “mesh interface unit”, which connects the tile
to the NoC. We see that the caches (denoted by “L2”) inside a tile are
not connected to the same bus, as cache coherence does not need to be
guaranteed.

ware, the SCC offers dedicated invalidation instructions for use with
message-passing buffers (we give more details in Section 4.5).

Alternatively, cores can communicate via the shared DRAM. Usually, each
core of the SCC is assigned a private partition of the off-chip memory,
i.e., the hardware enforces that only the owner accesses this partition.
However, it is also possible to create memory regions that are shared
between cores. By default, these shared regions are marked non-cacheable,
thereby avoiding possible coherence-related problems. Consequently,
accessing these regions is slow as accesses do not happen at cache-line
granularity but at the granularity of individual loads and stores. However,
shared regions can also be marked as cacheable. In this case, the software
has to manage coherence. While the SCC does not provide specialized
hardware support for this use case, it is still possible to force invalidations
and writebacks [Rot+12].

Intel’s Runnemede [Car+13] is a proposed design of a heterogeneous
non-cache-coherent many-core architecture. Its basic module is the block

(shown in Figure 2.5).



36 2. Non-Cache-Coherent Architectures

Figure 2.5: The contents of a block in the Runnemede architecture [Car+13].
The control engine (CE) executes the operating system and distributes tasks
to the specialized execution engines (XEs). There is no hardware-based
coherence provided between caches of CE and XEs.

Each block contains one general-purpose core, called the “control en-
gine” (CE). The CE executes the operating system. Additionally, a block
contains multiple execution engines (XEs), which are typically custom
architectures. Both CEs and XEs have caches but there is no hardware-
based coherence. Thus, the number of XEs per block is not limited by the
scalability of a coherence protocol. Instead, there are as many XEs as the
CE can supply with work without becoming the bottleneck.

Figure 2.6 shows that Runnemede combines multiple blocks to form a
unit and multiple units to build a complete chip. Each level (block, unit,
and chip) has its own network to transfer data, making Runnemede a
hierarchical design. Across the whole chip, Runnemede provides a single
64-bit physical address space. To enable software-managed coherence
between memories, Runnemede provides dedicated cache management
instructions to invalidate and write back cache lines.



2.3. Hardware Architecture 37

Figure 2.6: The overall chip architecture of the Intel Runnemede [Car+13].
Blocks are combined to form units; multiple units form a chip; and an
off-chip network can connect multiple chips to form even larger systems.

The EUROSERVER project [Dur+14] is a homogeneous non-cache-coherent
architecture aimed at servers in data centers. Figure 2.7 shows an overview
of the architecture. EUROSERVER proposes chiplets composed of 8 ARM
cores. Inside a chiplet, a classical hardware protocol provides full cache
coherence. Each chiplet has a local DRAM connected to its internal bus.

The hardware offers a global physical address space. Chiplets are con-
nected via a global interconnect and can access remote memory that
resides on a different chiplet. There is no hardware-based coherence
between chiplets. Instead of providing dedicated means for software-
managed coherence, the EUROSERVER project proposes restrictive cache
and access policies.

Suppose a core from chiplet A accesses a remote memory area M from
chiplet B’s DRAM, then one of the following policies shall be used:

1. Only A accesses M and caches it locally. If B was allowed to access M
as well, incoherent situations could arise. For example, if A accesses
and caches a part of M locally and then B modifies M, A is not
notified and would operate on stale data. Using this policy means



38 2. Non-Cache-Coherent Architectures

Figure 2.7: The EUROSERVER hardware architecture [Dur+14]. Eight
ARM cores form a coherence domain, called chiplet. All chiplets share
a physical address space and can access remote DRAM via the global
interconnect (depicted by red arrow).

that A can “borrow” memory from B for exclusive use. Hence, it
does not enable communication. Access to this memory happens
on cache-line granularity; the performance depends on the global
interconnect.

2. Both A and B access M, but only B caches it. As A does not cache M,
every load and store request is sent to B via the global interconnect.
The component that receives the requests on B’s side is connected to
B’s local bus and is therefore covered by the hardware coherence
protocol. From B’s point of view, remote load or store requests are
handled just as local loads or stores. While this policy allows sharing
memory regions, its downside is that accesses from A are not cached
locally, i.e., exploitation of temporal or spatial locality is impossible.
Moreover, individual load and store requests are sent via the global
interconnect, causing high protocol overhead.

Hence, EUROSERVER does not employ software-managed coherence.
Instead, they propose using more restrictive caching policies to avoid
incoherent situations at the cost of decreased performance when multiple
chiplets access the same memory area.



2.3. Hardware Architecture 39

The Formic Cube [Lyb+12a; Lyb+16] is a non-cache-coherent many-core
architecture with 520 cores in total. The system has 8 fast ARM-based
cores and 512 slower Xilinx MicroBlaze cores. The 512 slower cores are
arranged in a 3D mesh. Each CPU has a full private cache hierarchy (L1
and L2 cache) but the caches are not kept fully coherent. Specifically,
there is no hardware-based coherence between the L2 caches of the slower
MicroBlaze cores. The application itself runs on the MicroBlaze cores,
while the ARM cores execute a runtime system. The runtime system
manages coherence between caches in software.

The OpenPiton project [Bal+16] presents an open-source many-core pro-
cessor that allows building architectures with up to 500 million cores. To
scale to such core counts, Fu et al. [FNW15] advocate the use of coherence
domain restriction (CDR). CDR is based on the observation that the ma-
jority of cache lines are only shared by a small subset of cores, e.g., those
belonging to a particular application. Hence, CDR restricts coherence to
the level of applications or pages. While this requires additional hardware
support, existing directory coherence protocols can be adapted to work
with CDR and Fu et al. demonstrate good scalability.

Current graphics processor unit (GPU) architectures can also be considered
non-cache-coherent architectures. They allow accessing shared memory
but require disabling core-private caches if memory operations should
be visible across more than one core [Sin+13]. Disabling caches avoids
incoherent situations but lowers performance significantly. Moreover,
there are heterogeneous systems composed of a combination of CPUs and
GPUs that provide shared memory between CPU and GPU. By default,
these systems do not implement hardware-based coherence between the
caches of CPU and GPU.

For both pure GPU and mixed CPU-GPU systems, there has been work on
providing hardware-based cache coherence [Sin+13; Pow+13]. However,
existing coherence protocols do not scale to the core count and memory
bandwidth of GPUs. Therefore, Power et al. [Pow+13] employ region
coherence to manage coherence at a coarser granularity than individual
cache lines. Basu et al. [Bas+16] argue that these proposed changes are
hard to adopt due to their complexity. Instead, they suggest a hybrid
software-hardware mechanism that exploits the semantic knowledge by



40 2. Non-Cache-Coherent Architectures

system software (operating system or runtime system) to use hardware
coherence only when needed.

The Intel Xeon Phi processor [Chr14] is a fully cache-coherent many-core
architecture providing up to 72 cores. Christgau et al. [CS16] point out that
the second-generation Xeon Phi processor (codename “Knight’s Landing”)
may not be used in a multi-socket system that combines multiple Xeon
Phi processors. They report that Intel restricted this use case as the
coherence traffic between the processors would exceed the capabilities
of the interconnect. The Xeon Phi can also be used as a coprocessor, e.g.,
in the form factor as a PCIe extension card. In such a configuration, the
Xeon Phi runs alongside the regular system processor. Each processor
can remotely access the other processor’s main memory, but there is no
hardware-based coherence [Bar+15]. Thus, the overall system has two
coherence domains and coherence must be managed in software.

Hence, we have seen that a wide range of diverse many-core architectures
reach the scalability limits of hardware-based cache coherence.

2.4. Programming Model

We now have a detailed understanding of the hardware structure of non-
cache-coherent architectures: they still offer a shared physical address
space; however, not all caches in the system are kept coherent by the
hardware. Instead, the systems aim to improve scalability by only offering
coherence islands of varying size, ranging from just one core to a few,
e.g., four or eight. This raises the question of how to program these
machines.

In the following, we will look at different programming models and
investigate the work required by compiler and runtime system to bridge
the gap between the guarantees expected by the programmer using a
particular programming model and the guarantees provided by non-
cache-coherent shared-memory machines.

First, we will briefly discuss what a programming model is and how
it relates to the underlying hardware. Then, we will discuss the use



2.4. Programming Model 41

of the following programming models on non-cache-coherent shared-
memory architectures: (i) the shared-memory programming model, (ii) the
message-passing programming model, and (iii) the partitioned global
address space (PGAS) programming model.

2.4.1. Parallel Programming Models

A parallel programming model is an abstraction of a parallel computer
system architecture [MSM04; Bar16]. This model governs which tools
programmers can use to express their algorithms. The two most important
parallel programming models are the shared-memory model and the
message-passing model.

In the shared-memory model, processes or threads share a common
address space, which they read from and write to. Threads communicate
by exchanging data via this common address space. Access to shared data
is controlled using synchronization mechanisms, such as locks.

In the message-passing model, processes do not share a common address
space. Instead, they communicate by sending and receiving messages.
Usually, transferring data requires cooperation between sender and re-
ceiver, i.e., a send operation must have a matching receive operation.

Figure 2.8 shows an abstract view of the shared-memory programming
model (Figure 2.8a) and the message-passing model (Figure 2.8b). Circles
denote execution contexts (threads or processes), rectangles denote ad-
dress spaces, dashed arrows denote memory accesses or communication
operations, and solid arrows represent pointers. We see that in the shared-
memory model, multiple threads operate on a shared uniform address
space. In the message-passing model, we have completely separated
address spaces and processes communicate via messages.

This looks very similar to the types of hardware architectures presented
in Section 2.1. However, as programming models are an abstraction above
hardware architecture, they are not tied to particular hardware capabilities.
Theoretically, every programming model can be implemented on any
underlying hardware. As examples, we sketch how we can implement
the shared-memory model and the message-passing model on hardware
architectures that suggest a different model.



42 2. Non-Cache-Coherent Architectures

(a) Shared memory.

(b) Message passing.

(c) Partitioned Global Address Space (PGAS).

Figure 2.8: Schematic comparison of the shared-memory, the message-
passing, and the PGAS programming models. Circles denote execution
contexts (threads or processes); rectangles denote address spaces; dashed
arrows denote memory accesses or communication operations; and solid
arrows represent pointers. Depiction based on [Sar+10].



2.4. Programming Model 43

We can easily realize a message-passing programming model on top of
a shared-memory system. We can implement the primitives send() and
receive() using write and read operations to the shared address space
combined with appropriate synchronization. In fact, this is what many
MPI implementations do internally when they are used on a shared-
memory machine, such as a regular desktop computer.

Vice versa, we can also realize a shared-memory programming model on
top of message-passing-based hardware. This technique is also known
as software distributed shared memory (software DSM) [NL91]. The
fundamental idea is to provide the illusion of a shared address space by
hiding the required message passing. When accessing a piece of data
that is physically located in a remote memory, some layer beneath the
programming model triggers the required message(s) to fetch the data
item and mediates access to it. This management can, for example, be
performed by libraries or by the compiler. In both cases, references to data
items actually consist of two parts: a description of the location of the data
item (i.e., the number of the owning core) and the actual address that is
only valid at the remote site.

In practice, not every programming model is a good fit for a particular
hardware architecture and the overhead of choosing an unsuitable model
may be high. Therefore, it is important to determine the cost of using a
particular programming model on non-cache-coherent architectures as
described in Section 2.3.

2.4.2. Shared-Memory Programming Model

As non-cache-coherent architectures provide a shared physical address
space, it seems intuitive to continue using a shared-memory programming
model. However, using this programming model is not directly possible.
As described in Section 2.2, most memory model implementations exploit
cache coherence by assuming a coherent memory system. This means
that when mapping the memory model of the programming language
to the memory model provided by the hardware, compilers assume a
coherent memory system. Hence, if we run code generated assuming
these guarantees on a hardware platform that does not implement cache
coherence itself, the program will most likely not work as expected.



44 2. Non-Cache-Coherent Architectures

Thus, if we want to keep the familiar shared-memory programming model
for the programmer, we must compensate for the missing hardware-based
cache coherence on a level above the hardware, but below the programming
language. Hence, either (i) the compiler, (ii) a runtime system or library,
or (iii) the operating system must provide coherence.

In the following, we will give an overview of recent work in these areas. As
mentioned in Section 2.2.2.3, software-managed coherence in general and
compiler-managed coherence in particular was a field of active research in
the 1980s and 1990s. We refer to [Ste90] and [TM97] for an overview of this
early work. As hardware-based coherence became the standard, interest
in software-based alternatives declined. In the context of this dissertation,
we focus on the more recent work conducted due to the architectural
trends described in Section 2.3.

Compiler-based approaches. McIlroy et al. [MS10] and Zakkak et al. [ZP16b;
ZP16a] present Java virtual machines (JVMs) that can execute standard
parallel Java programs on architectures without hardware-based cache
coherence. McIlroy et al. describe Hera-JVM, which targets the Cell ar-
chitecture; Zakkak et al.’s implementation, DiSquawk, targets the Formic
Cube (both architectures are described in Section 2.3.1). In both cases,
the Java virtual machine ensures coherence by explicitly triggering cache
actions when necessary.

As mentioned in Section 2.2.2.3, triggering cache actions, i.e., invalidations
and writebacks, too conservatively decreases performance considerably.
The extreme case of writing back dirty data after every write and invali-
dating cached data before every read is correct but effectively disables the
system’s caches. Therefore, both JVMs mentioned above exploit the guar-
antees provided by the Java memory model [Gos+14, §17] [MPA05; Loc12]
to reduce the number of required cache invalidations and writebacks. In
the following, we use these JVMs as case studies for compiler-based (or
VM-based) coherence based on a well-studied memory model.

The Java memory model (JMM) is built upon the notion of the happens-

before relationship. The happens-before relation is a partial order. Certain
actions, such as synchronization operations like acquiring and releasing
a lock or accessing a volatile field, impose a happens-before order on



2.4. Programming Model 45

program execution. More formally, following Gosling et al. [Gos+14,
§17.4.5], we define the relation on actions that are part of an execution
trace (see also Section 2.2.1). We say that a read action r of a variable v is
allowed to observe a write action w to v if, in the happens-before partial
order of the execution trace, (i) r does not happen before w, and (ii) there
is no intervening write action w′ to v, i.e., no w′ so that w happens-before
w′.

Practically speaking, this definition means that updates to heap objects
can stay local to a thread, i.e., with values not visible to other threads,
until the next synchronization point. Only then must changes become
visible to other threads. For example, suppose a thread acquires a lock
and changes some non-volatile fields, then these updates do not need to
become immediately visible to other threads.

In terms of the formal definition, the write by the modifying thread and the
reads by other threads are not ordered with respect to the happens-before
relation. Only before releasing the lock must the thread make sure that
all updates it has made are visible to any other thread that later acquires
the same lock. The synchronization operations (acquiring and releasing),
together with the order of the operations in the program, enforce a
happens-before relationship. Hence, reads following an acquisition of the
lock must be able to observe the changes made by other threads preceding
their release of the lock (assuming no intervening writes).

On regular platforms, JVM implementations usually exploit these guar-
antees by holding updated values of heap objects in machine registers.
They only perform potentially costly write operations to memory when
required by the JMM, e.g., when releasing a lock. From the compiler’s
or virtual machine’s perspective, synchronization operations restrict the
mobility of certain memory-related actions. For example, the JMM forbids
reordering a write followed by a release operation in the program, i.e., it
is illegal to move the write after the release operation. Depending on the
hardware memory model, JVMs may also need to issue memory-barrier
instructions (also called memory fences) to prevent the hardware from
performing illegal reorderings. See [How+16] and [BA08] for details on
memory barriers.

On a non-cache-coherent architecture, synchronization operations must
additionally trigger explicit cache operations. As described above, a



46 2. Non-Cache-Coherent Architectures

thread acquiring a lock must be able to observe updates to the shared
heap performed by another thread that held and released the same lock
before. Thus, the JVM implementation of McIlroy et al. writes back and
then invalidates the complete data cache whenever the current thread
acquires a lock or reads a volatile field [MS10, section 5.3]. Before releasing
a lock or writing to a volatile field, the implementation issues a writeback
of the complete cache to make the changes visible to other threads. The
Hera-JVM also performs explicit cache actions in other situations, such as
context switches. Similarly, the DiSquawk JVM writes back and invalidates,
i.e., flushes, any cached data before volatile accesses, and writes back
dirty cached data directly after writes to volatile variables [ZP16b, section
3.3].

This raises the question of precisely characterizing the locations that
require such cache actions. To this end, Zakkak et al. [ZP14] present the
JDMM, the Java Distributed Memory Model, a formalization of the JMM
for non-cache-coherent architectures. The JDMM extends the JMM with
additional cache-related actions, in particular writeback and invalidation.
Zakkak et al. then show that the JDMM adheres to the JMM. However, their
formalization is not machine-checked. See [Loc12] for a machine-checked
formalization of the JMM.

Tavarageri et al. [Tav+16] present a compiler-assisted approach for in-
serting necessary cache-coherence instructions into parallel programs.
Their modified compiler inserts writeback and invalidation instructions
as presented in Section 2.2.2.3. To avoid false-sharing problems, their
approach requires per-word dirty bits for each cache line, which increases
hardware overhead.

Tavarageri et al. differentiate between regular code, where control flow
and data flow are known at compile time (mostly well-formed loops), and
irregular code. For regular code, they use the polyhedral model [Bas04] to
precisely identify locations for cache actions. For irregular code, they fall
back to more conservative approximations, with invalidation or writeback
of the complete cache as a last resort. Hence, their baseline approach is
similar to the previously presented JVM-based approaches, however, they
can exploit a more regular program structure to improve the precision of
coherence actions.



2.4. Programming Model 47

Library-based approaches. Library-based approaches implement a soft-
ware DSM system (see Section 2.4.1) on top of non-coherent shared
memory. We refer to [Nür+14] for an overview of software DSM systems
in the context of many-core architectures.

Prescher et al. [PRN11; Rot+12] implement library-based DSM for the
Intel SCC. Their C++ library offers smart pointers that, in addition to the
actual object address, save information required for cache management.
Specifically, these smart pointers refer to consistency controller objects that
manage the necessary invalidations and writebacks.

To avoid too frequent coherence actions, the smart pointers do not actually
allow accessing the underlying shared object. Instead, the user has to
create access-proxy objects that grant either read-only or exclusive write
access. The actual cache operations are triggered on object construction
and destruction of the access proxies.

Their library offers multiple strategies for coherence management. The
simplest one uses one needs-invalidate flag on each core for each shared
object. This flag signifies if another core has changed the shared object,
which must therefore be fetched from main memory.

For example, when acquiring write access to a shared object by creating
the matching access-proxy object, the consistency controller checks the
local needs-invalidate flag. If it is set, the controller invalidates the shared
object’s memory range in the local cache. All subsequent accesses then
cause cache misses and thus the up-to-date version of the shared object
is fetched from main memory. After the core is done working with the
object, it destroys the access proxy. The destruction triggers a writeback of
the dirty data in the cache and at the same time sets the needs-invalidate
flag on all other cores.

In comparison to the previously presented compiler-based approaches,
this enables shared-memory programming on a much lower level. The
programmer must be actively aware of the non-cache-coherent memory
and must manage shared objects with the provided smart pointers and
access proxies. If the programmer accesses a shared object using raw
pointers, no coherence actions are triggered, potentially leading to subtle
bugs. In summary, the proposed library-based software-DSM system is



48 2. Non-Cache-Coherent Architectures

more flexible and potentially more efficient with the downside that it
requires changes to the source program and is unsafe.

Operating-system-based approaches. Multiple projects modify Linux
to run on non-cache-coherent architectures, while differing in their im-
plementation details. For example, K2 [LWZ14] targets mobile systems-
on-chip that consist of multiple but few, i.e., two or three, heterogeneous
coherence domains. Popcorn [Bar+15] modifies Linux to run on platforms
consisting of multiple OS-capable multi-core processors with different
ISAs, such as a regular x86 multi-core extended with a PCIe-based Intel
Xeon Phi processor.

Both operating systems provide transparent coherence via distributed
shared memory implemented by managing coherence in software at page
granularity. The key idea is to maintain the invariant that there is only
one writer per memory page (typically of size 4 KiB). For example, K2
maintains a simple state flag, valid or invalid, per page and core. A simple
protocol then ensures that at each point in time, each page is only valid on
at most one core.

This protocol works as follows. A core can read or write a locally valid
page. However, accessing a locally invalid page triggers a page fault.
The page-fault handler notifies the current owner of the respective page
to flush the page from the owner’s cache to memory and then give up
ownership by setting the local state of the page to invalid. Then, the core
that caused the page fault becomes the new owner of the page, i.e., the
page is now locally in the valid state and can be accessed by the core.

These approaches manage coherence in software on a level below the code
generated by compilers. Hence, it is possible to reuse existing compilers
and generated binaries that expect coherent shared memory. However,
the granularity of coherence is coarse (whole pages), which can lower
performance significantly depending on the access behavior.

Overall, we see that using the shared-memory programming model on
non-cache-coherent many-core architectures is feasible. The necessary
cache actions can be managed by a library or runtime system, by the
compiler, or by the operating system. For the latter two, we do not need to
adapt the code of existing parallel applications; for the last, even compilers
can stay unchanged.



2.4. Programming Model 49

2.4.3. Message Passing

In the previous section we have seen how we can program a non-cache-
coherent shared-memory machine using the shared-memory program-
ming model. However, different programming models can be used as well.
In the following, we look at the message-passing programming model in
more detail.

As explained in Section 2.1, message passing is commonly used on
machines that do not provide a shared physical address space, i.e., provide
fewer capabilities than shared-memory machines. Therefore, it is not
surprising that we can easily use message passing also on non-cache-
coherent shared-memory machines.

The fundamental idea, shown in Figure 2.9, is to partition the shared
address space and assign each partition to one coherence domain. This
coherence domain is the sole owner of this part of the address space.
Hence, only cores from the owning coherence domain access the respective
address-space partition.

The cores may also have caches that cache memory contents from this
partition. As the caches inside a coherence domain are coherent by
definition, accesses to the same address by multiple cores from the same
domain (if domains contain more than one core) do not cause problems.
On the other hand, due to the partitioning of the address space, cores
from separate domains never access a common address. Hence, we do not
need global cache coherence. The address space partitioning happens on
a logical level, for example in the programming model, i.e., by preventing
the creation of pointers to foreign memory partitions in the programming
language, or in the operating system, i.e., by not mapping foreign memory
partitions into a domain’s virtual address space.

Fundamentally, we hide the fact that the hardware actually provides
a shared physical address space from the programmer. We disallow
problematic memory accesses, i.e., to the same address from different
coherence domains, on a logical level. By doing this, we shield the
programmer from coherence-related problems.

This raises the question of how communication between coherence do-
mains actually happens, i.e., how we implement the primitive operations



50 2. Non-Cache-Coherent Architectures

Domain 0 Domain 1 Domain 2

Memory
0x000

0x100

0x200

0x300

Figure 2.9: A non-cache-coherent shared-memory architecture with a
partitioned address space. Each coherence domain, encompassing one or
more cores with coherent caches, is assigned a partition of the address
space.

send() and receive(). In the following, we will see that we can do this by
exploiting the shared physical address space, potentially using specialized
message-passing hardware if available. While our address-space parti-
tioning prevents the programmer from using shared memory to transfer
data between coherence domains, it does not prevent the compiler or
runtime system from exploiting shared memory for implementing the
needed message-passing primitives. We will see that we can apply the
ideas from Section 2.2.2.3 to guarantee coherence.

For the sake of simplicity, we look at a two-sided synchronous commu-
nication operation, i.e., the sending domain S calls send(), the receiving
domain R calls receive(), and both calls block until the transmission has
been completed. Figure 2.10 shows our scenario. We assume that both
send() and receive() take the message, i.e., a buffer of known length,
as a parameter. We further assume that the message of length L bytes is
located at address M in S’s memory partition and should be copied to
address M′ in R’s memory partition.



2.4. Programming Model 51

M

L

M′

S’s partition R’s partition

Figure 2.10: Transferring a message from sender S to receiver R. The
message M shall be copied from S’s address space partition to M′ in R’s
partition.

As we have a shared physical address space, the address M′ is also valid
in S. Hence, we can use a core from S to load L bytes from M and store
them to M′. However, because of the missing cache coherence, cores in R
would not necessarily observe the correct values at M′, as (parts of) the
message could still be in local caches in S.

Thus, following Section 2.2.2.3, we need to write back all cache lines
spanned by the message, i.e., all lines caching data from the address
interval [M′,M′ + L). Similarly, cores in R need to invalidate this address
range in their local caches before reading the message to guarantee that
they observe up-to-date values. This extends the ideas from Section 2.2.2.3
to address ranges in a straightforward manner.

The IBM Cell architecture (see Section 2.3.1) uses this model. On this
architecture, each SPE has its own private local memory. To access data in
main memory, the data must first be copied to the local memory. However,
the local copy and the copy in main memory are not kept coherent
automatically. Hence, after processing, the data must be copied back to
main memory, which corresponds to a manual writeback operation. To
speed up the copying, the hardware provides DMA units to copy data
asynchronously. Multiple SPEs can communicate by copying data back
and forth via the main memory.

In general, the problem with this approach is that the main memory
may become a bottleneck as the number of cores increases. Additionally,
communicating via off-chip memory has a comparatively high latency. As
message passing is often regarded as the preferred programming model
for non-cache-coherent shared-memory architectures [Kum+11], many



52 2. Non-Cache-Coherent Architectures

of them provide additional memories dedicated to message passing that
enable a more decentralized form of communication with significantly
lower latency.

The idea is that each coherence domain has a small but fast on-chip
memory that is visible in the global physical address space. Hence,
we can implement send() by having the sender execute regular stores
to the on-chip memory of the receiving domain; or, alternatively, by
having the receiver execute regular loads from the on-chip memory of the
sending domain. Thus, we omit using the off-chip main memory for every
communication operation. For performance reasons, writes to remote
on-chip memories are often cached as well. In this case, we have to manage
coherence in software just as described above. We extensively discuss data
transfers and their performance characteristics on non-cache-coherent
architectures in Section 4.3.

As a concrete example, the Intel SCC provides message-passing buffers
(MPBs, see Figure 2.4) [Mat+10, section III]. These MPBs are small (16 KiB)
fast on-chip memories dedicated to direct communication between cores.
Cores can load from and store to local and remote MPBs. Data from MPBs
is cached in the L1 cache and the SCC provides a dedicated instruction
for software-managed coherence of MPBs. We refer to Mattson et al.’s
description [Mat+10, section V] for details. We also discuss this topic in
Section 4.5.

Similarly, the Runnemede platform provides on-chip scratchpads that are
part of the global address space. Additionally, it provides DMA units to
accelerate data transfers. The hardware provides dedicated invalidation
and writeback instructions. The Formic Cube uses the same approach.
Additionally, it offers a faster message operation for very small transfers
(a single 32-bit word).

We see that while the message-passing model does not expose shared
memory to the programmer, the actual implementation of message-passing
primitives exploits the physical address space of non-cache-coherent
architectures and manages coherence in software.



2.4. Programming Model 53

2.4.4. The PGAS Model

The Partitioned Global Address Space (PGAS) model [Alm11; Sar+10; De
+15] extends the shared-memory programming model to better handle
the presence of distributed memory.

The fundamental observation is that shared-memory programming works
worse as the cost of accessing remote data items increases. The different
costs of local and remote memory accesses are often summarized by the
“NUMA factor” in the literature (cf. NUMA architectures introduced in
Section 2.1). The NUMA factor is the ratio of the cost of a remote memory
access and the local memory access cost. Hence, a NUMA factor of 2
means a 2× slowdown when accessing remote data items.

Shared-memory programming works well if the NUMA factor is relatively
low. However, as the NUMA factor grows, the illusion of a uniform
address space becomes increasingly unrealistic as some data items are
much more costly to access. At the same time, all data items and references
look the same to the programmer, whether local or remote. This inability
to reflect the properties of the underlying hardware can lower performance
significantly, e.g., when accidentally accessing remote memory.

To counter this problem, the PGAS model adds a notion of data locality to
the shared-memory programming model. Here, the programmer can and
must explicitly manage the location of each piece of data. Additionally,
references to local data items are explicitly distinguishable from references
to remote data items, e.g., by having a different type.

However, unlike the message-passing model, the PGAS model still offers
a global address space. This means that every process can point to every
memory location, even if it is physically located in a remote memory. Yet,
in contrast to the pure shared-memory model, now the notion of near and
far memory is explicit, i.e., the address space is partitioned.

Figure 2.8 shows a schematic comparison of the shared-memory, the
message-passing, and the PGAS programming models. We see that in a
shared-memory model, as explained in Section 2.4.1, multiple threads run
inside the same uniform address space. Every thread can have references
to data items created by other threads. In a message-passing model, we
express a computation using multiple processes with private address



54 2. Non-Cache-Coherent Architectures

spaces that exchange data via messages. It is impossible for one process
to reference data from another process; the address spaces are strictly
separated. In the PGAS model, the address space of multiple processes is
unified, as with the shared-memory model. However, the address space
is not uniform; instead, it is partitioned to reflect the location of data items.
Figure 2.8c uses different arrow types for references to local and remote
data items, respectively.

Additionally, the PGAS model makes communication partially implicit.
Accessing remote data items usually happens via simple assignment or
dereference operations. Hence, the programmer does not have to explicitly
insert communication operations, such as send() and receive() with
message passing, into their program. Instead, it is the task of compiler
and runtime system to perform the necessary communication to access
a remote data item, e.g., exchanging messages on a hardware platform
without a shared physical address space.

These properties make the PGAS model attractive to use on non-cache-
coherent shared-memory machines. As such hardware offers a shared
physical address space, shared-memory programming seems like a good
fit in principle. However, the cost of accessing data from other coherence
domains may be high due to the required communication, e.g., due
to software-managed coherence. This makes the illusion of a uniform
address space hard to maintain, which is exactly the problem tackled by
the PGAS model.

Hence, the PGAS model maps naturally to non-cache-coherent architec-
tures: we interpret locality not in terms of physical memory location but
regarding coherence domains5. Thus, we first partition the address space
as shown in Figure 2.9. Then, from the view of a coherence domain, local
data items reside in the domain’s own memory partition while remote
data items reside in foreign memory partitions associated with other
coherence domains.

The programmer still has most of the benefits of shared-memory program-
ming, e.g., a global address space. However, at the same time, they are

5The physical memory location may (and for performance reasons should) coincide with
coherence boundaries. Imagine a system like Figure 2.1b with a shared physical address
space but no hardware-based coherence. Then, a coherence domain consists of a core
with its (physically) local memory.



2.4. Programming Model 55

aware of potentially costly accesses to remote data from other coherence
domains as locality is exposed in the programming model.

The PGAS programming model does not specify a particular implemen-
tation of remote data access. On message-passing hardware without a
shared physical address space, accessing a remote data item triggers the
sending of one or more messages. On non-cache-coherent architectures,
we can therefore reuse the techniques from Section 2.4.3 to implement the
required communication.

However, PGAS runtime systems usually prefer so-called one-sided com-
munication [Mes15, chapter 11]. Here, one party specifies all necessary
communication parameters, both for the sending side and the receiving
side. Hence, on a non-cache-coherent architecture, a PGAS runtime
system can be implemented using a message-passing mechanism. Its
preferred mode of operation is, however, one-sided, which we can imple-
ment using explicit writebacks and invalidations on non-cache-coherent
systems [CS16; CS17]. We discuss this in detail in Section 4.3.

We see that the PGAS programming model is a good candidate for use on
non-cache-coherent architectures. By making the address space unified, it
maintains many of the programmability advantages of the shared-memory
model. By making the address space non-uniform, it exposes more of
the hardware, in particular the existence of multiple coherence domains,
which may improve performance. Moreover, implicit communication
operations instead of explicit messaging operations reduce programmer
burden.



56 2. Non-Cache-Coherent Architectures

Summary

• Coherence is a property of a system guaranteeing that the
presence of caches never enables new or different functional
behavior.

• Coherence can be maintained by hardware or software.

• A non-cache-coherent shared-memory system offers a shared
physical address space but no hardware-based coherence.

• Multiple non-cache-coherent systems have been built or pro-
posed for power and scalability reasons. They differ in the
number and size of their coherence domains.

• Efficient implementation of the shared-memory programming
model requires hardware support for fine-grained cache control
to enable software-based coherence.

• Libraries, operating systems, or compilers can manage coherence
in software.

• Efficient implementation of message passing benefits from fast
on-chip memories.

• Both the message-passing and the PGAS programming model
benefit from hardware support for coarse-grained software-
managed coherence.



What is usually meant by the term craftsmanship is

the production of things of high quality; Ruskin makes

the crucial point that a thing may also be judged

according to the conditions under which it was built.

Tracy Kidder, The Soul of a New Machine, p. 272

3
Invasive Computing

While the work presented in this dissertation is generally applicable to
modern parallel architectures, the prototype implementations presented
in Chapters 4 and 5 make heavy use of infrastructure developed in the
context of the research project Invasive Computing [Tei+11; Tei+16]. This
project investigates ways to improve the efficiency and predictability of
resource usage on future many-core systems using a holistic approach that
takes into account every system component, i.e., ranging from low-level
hardware to high-level software.

In the following sections, we start by introducing the reader to the overall
idea of Invasive Computing in an abstract way. Then, we provide a
bottom-up view of the project starting from the hardware and then
covering components such as system software, programming language,
and compiler. We relate each component to the recent developments in
the context of many-core architectures presented in Chapter 2. While we
cover most parts of the invasive ecosystem, we describe in detail only the
aspects relevant in the context of this dissertation. For details on other
aspects, we refer the interested reader to the referenced material.

57



58 3. Invasive Computing

start invade infect retreat exit

Figure 3.1: State chart of an invasive program, adapted from [Han+11].

3.1. The Invasive Paradigm

The two fundamental ideas of Invasive Computing [Tei+11] are (i) re-
source-aware programming, and (ii) exclusive resource allocation. Resource-
aware programming means that programs can (and shall) examine the
system state, relate this information to their computation needs, and then
request a matching set of computing resources (such as cores, memory,
or communication links) from the operating system, which distributes
resources using its global system view. Exclusive resource allocation
means that when resources are granted to a certain application, only this
application is allowed to use them6.

Hence, Teich et al. [Tei+11] define invasive programming as follows:

Invasive Programming denotes the capability of a program
running on a parallel computer to request and temporarily
claim processor, communication, and memory resources in
the neighborhood of its actual computing environment, to
then execute in parallel the given program using these claimed
resources, and to be capable of subsequently freeing these
resources again.

The goal of invasive programming is to optimize the overall efficiency of
resource usage in a parallel system. Exclusive resource allocation avoids
paying the overheads for resource virtualization, while resource-aware
programming enables exploiting application-specific knowledge to guide
resource distribution among multiple running applications.

Figure 3.1 shows the life cycle of a program that follows the invasive
paradigm. Initially, the program inspects the current system state, de-

6At least as the default behavior.



3.1. The Invasive Paradigm 59

termines a sensible set of initial resources, and then issues a resource
request, called invade, to the system. If the request is granted, the system
responds with a claim that contains resources exclusively allocated to the
application. The program then uses these newly claimed resources in a
phase called infect.

Every time the program reaches a point where it is possible and sensible
to adapt its set of resources, the program should inform the system. The
program may do that using retreat, which releases the claim’s resources,
or using (re-)invade, which potentially changes the claim and enables the
system to redistribute resources. Following the resource-aware paradigm,
each time a program wants to change its claim it should first analyze
the system state, figure out a sensible resource change, and then send a
request to the system via (re-)invade. Once a program retreats from all its
claims, it terminates execution and exits.

Programs formulate resource requests in a sophisticated constraint lan-
guage [ZBS13]. The language allows expressing multiple alternative
resource requests (using a logical-or construct) and ranges (e.g., request-
ing 1 to 10 cores). Hence, granting a resource request is not necessarily
a binary decision. Additionally, constraints allow passing application-
specific knowledge (e.g., about scaling behavior) to the system. Thus, the
system ideally has many degrees of freedom when distributing resources
among multiple running applications. Furthermore, it has the necessary
information about applications to make a globally sensible decision. The
actual resource distribution is performed in a decentralized way to ensure
scalability [Kob+11].

We can also exploit exclusive resource allocation to optimize for goals
other than efficiency. For example, exclusive allocation enables precise
control over interference with other applications. Hence, it can also
significantly simplify reasoning about non-functional properties, such as
timing predictability [Wil+16].



60 3. Invasive Computing

CPU CPU

CPU CPU

Memory

CPU

i-Core CPU

Memory

CPU

CPU CPU

CPU CPU

Memory

MemoryI/O

CPU

i-Core CPU

Memory

CPU

Memory TCPA

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

NoC

Router

NoC

Router
NoC

Router

NoC

Router

NoC

Router

NoC

Router

NoC

Router
NoC

Router

NoC

Router

Memory

Figure 3.2: A 3× 3 design consisting of six compute tiles, one memory tile,
one I/O tile, and a specialized accelerator tile.

3.2. Hardware Architecture

Invasive hardware architectures [Hen+12] are a family of heterogeneous
many-core architectures. Fundamentally, they are partially non-cache-
coherent shared-memory architectures with distributed memory. To
ensure scalability to high core counts, they provide cache coherence only
for small groups of cores, but not between core groups. Figure 3.2 shows
an example of such an architecture.

The architecture’s basic building block is a tile: a standard compute tile
consists of relatively few general-purpose cores (four in the example) that
share some resources, such as an L2 cache or a small on-chip memory
(tile-local memory (TLM)). Most importantly, cache coherence is guaranteed
between the cores of a tile. In general, the number of cores inside a tile
must be low enough so that classical hardware coherence protocols, such
as bus snooping, are still applicable. Thus, a single tile behaves exactly like



3.2. Hardware Architecture 61

a common cache-coherent multicore processor and can be programmed
using the traditional shared-memory programming model.

Multiple tiles can be combined to create a larger system. Each tile contains
a network adapter [Zai+15] (“NA” in Figure 3.2), which connects the tile to
a scalable network-on-chip [Hei+14] (NoC) that transfers data between tiles.
However, the hardware provides no cache coherence between different
tiles.

While this improves scalabilty, it raises the question of how to best com-
municate between tiles. The designated communication means is message
passing. To this end, the architecture provides a shared physical address
space across all tiles. In particular, all tile-local memories are visible.
Thus, to send a message, a core stores the data into the receiving tile’s
TLM. In this case, coherence must be managed in software (as explained
in Section 2.4.3). Additionally, the NoC and network adapter provide
hardware-accelerated DMA transfers. DMA transfers asynchronously
copy a block of data from the sending tile’s TLM to the receiving tile’s
TLM (we present more details on DMA transfers in Sections 3.3 and 4.3).

Invasive architectures provide hardware support for important higher-
level operations. Inside a tile, a special hardware unit, the Core i-let
Controller (CiC), accelerates scheduling tasks to a tile’s cores [Rav15].
Besides improving scheduling and dispatching throughput, the CiC’s
latency is low enough to be able to consider various sensor values, such
as power or temperature readings. For example, it can schedule a task
to the coolest core. To simplify and accelerate communication between
tiles, the network adapter provides hardware support for starting tasks on
remote tiles [Zai+15]. Network adapter and CiC cooperate closely; they
can schedule and dispatch a newly started task on a remote tile without
operating system assistance.

Not all tiles are (pure) compute tiles. Invasive architectures may also
include memory tiles and I/O tiles. Memory tiles are connected to off-chip
DRAM, which, in general, holds most of a program’s data. This memory
usually makes up the bulk of the shared physical address space. I/O tiles
provide access to peripheral devices, such as networking. Cores from
other tiles use these resources by accessing them over the NoC.



62 3. Invasive Computing

Furthermore, not all compute resources are homogeneous. Invasive
architectures may include specialized hardware, both in the form of
individual specialized cores or whole specialized tiles. An example of the
former is the i-Core [Bau09]. The i-Core consists of a regular core extended
with an FPGA-based fabric. It allows loading accelerator modules onto the
FPGA, which can be used by the core via special instructions exposed as
an instruction set extension. The i-Core behaves like a regular core as long
as the regular instruction set is used. Applications aware of its capabilities
can use the special instructions to benefit from hardware acceleration.

Alternatively, complete tiles can be dedicated to accelerators. For ex-
ample, such accelerator tiles may contain tightly-coupled processor ar-
rays [Han+14] (TCPAs). TCPAs consist of processor elements with a
domain-specific instruction set that are arranged in a 2D grid and con-
nected by a low-latency network. They are particularly well-suited for
computationally intensive applications from domains such as image or
signal processing. Accelerator tiles are connected to the rest of the system
via a regular control processor that is part of the tile (not shown in Fig-
ure 3.2). The control processor receives input data, initiates computations,
and sends back the results once the computation on the accelerator has
completed.

3.2.1. Related Work

Invasive architectures are non-cache-coherent shared-memory architec-
tures and thus closely related to the architectures described in Sec-
tion 2.3.1.

When comparing invasive architectures to the Intel SCC, both share many
properties: they are tile-based, with multiple cores on each tile sharing
some resources; they employ a network-on-chip as their scalable inter-
connect; and they encourage message passing by providing fast tile-local
memory. However, there are also important differences. Unlike invasive
architectures, the Intel SCC does not guarantee cache coherence inside a
tile, i.e., it is a fully non-cache-coherent architecture. In contrast, invasive
architectures are partially cache-coherent. Thus, invasive architectures
suggest a hybrid programming model using shared memory inside a tile
and message passing between tiles, while the Intel SCC was designed as



3.3. Operating System 63

a pure message-passing platform. Moreover, the SCC is homogeneous,
whereas invasive architectures may contain specialized cores or tiles, using
a different (or extended) instruction set.

When looking at the Intel Runnemede, we find similar commonalities
and differences. The Runnemede also has a tile-based structure; scalable
interconnects; and fast tile-local memories. In contrast to invasive archi-
tectures and the Intel SCC, Runnemede is strongly heterogeneous and
asymmetric inside a tile. Here, only one core per tile is capable of running
an operating system and all other cores are specialized accelerators that
possibly use a different instruction set.

The EUROSERVER architecture is another partially non-cache-coherent
architecture. In contrast to invasive architectures, EUROSERVER is
homogeneous and has a more uniform memory hierarchy, with one
DRAM module per tile and no on-chip memories. Most importantly,
it proposes the use of restrictive caching policies to avoid incoherent
situations. Thus, it does not require software-managed coherence.

3.3. Operating System

As the programming paradigm and the architecture proposed by Invasive
Computing place new demands on the operating system, a novel operating
system has been developed in the scope of the research project. OctoPOS
[Oec+11; Moh+15] is an operating system designed specifically for non-
cache-coherent shared-memory architectures, including the family of
invasive architectures as described in Section 3.2. The primary design
goal of OctoPOS is to exploit fine-grained parallelism in applications
directly on the operating-system level. Additionally, it integrates resource-
distribution functionalities needed for resource-aware programming.

OctoPOS offers an execution model that is more lightweight than the
traditional UNIX model of processes and threads. The principal idea
is that the operating system represents parallelizable control flows not
as coarse-grained, long-running threads with preemption, but as short



64 3. Invasive Computing

snippets of code called i-lets7. An i-let consists of (i) a pointer to a function
to be executed, and (ii) a piece of data passed as an argument.

A typical parallel application running on top of OctoPOS splits its work
into many packages, creates an i-let for each work package, and hands these
i-lets to the operating system for execution. The OS scheduler distributes
the i-lets to the available CPU cores, where they are processed sequentially.
Like user-level threads, i-lets use cooperative scheduling. For i-lets that
run to completion, creation and dispatching are very efficient because
the respective execution contexts (i.e., stacks) can simply be reused. The
OS performs a costlier context switch only if an i-let performs a blocking
operation.

Using cooperative scheduling becomes possible by exploiting the exclusive
resource-allocation scheme of Invasive Computing. Following Section 3.1,
all resources of an application, including CPUs, belong to its claim.
Claims are a central data structure in OctoPOS. The scheduler distributes
an application’s i-lets only to CPUs in its claim. Thereby, it enforces spatial
separation of concurrently running applications. Hence, no preemption is
necessary, as applications have full control over their core set anyway.

OctoPOS follows a multikernel design [Bau+09]. On an invasive architec-
ture, each tile runs a separate instance of the operating system. Internal
state is replicated on each tile. The instances communicate via message
passing, e.g., to synchronize the initial system boot process.

Following the hardware/software codesign approach of Invasive Com-
puting, the hardware provides dedicated support for i-lets. To this end,
the i-let format has been fixed to include a function pointer and two 32-bit
data words. The data words can hold by-value arguments, or pointers in
case of larger input data, which is then transmitted separately.

Applications spanning more than one tile, i.e., more than a single coherence
domain, can communicate using the following two OS-level primitives.

Remote i-let spawning. Code execution on a remote tile is triggered
by sending a fixed-size packet containing an i-let over the NoC. On the

7
i-let is short for “invasive-let”, inspired by the term “servlet” [Tei+11].



3.3. Operating System 65

receiving side, the i-let is inserted into the regular scheduling queue and
executed asynchronously to the sender’s control flow.

As this is a frequent operation, OctoPOS can exploit special hardware
provided by an invasive architecture to accelerate it. In fact, the cooperation
between NoC and CiC as described in Section 3.2 is based on i-lets. Thus,
when the NoC has transmitted an i-let to a remote tile, the network adapter
directly hands the i-let to the CiC for scheduling and dispatching on the
tile’s cores. Following the invasive paradigm from Section 3.1, spawning
a remote i-let corresponds to infecting the respective claim.

Push-DMA transfer. To allow transferring larger chunks of data between
tiles, OctoPOS offers a push mechanism that allows copying an arbitrarily
large contiguous memory region to a buffer in another tile’s local memory.
The receiving tile is guaranteed to have a coherent view of the destination
buffer after the transfer has completed. The operation is performed
asynchronously as a DMA transfer, allowing the sending process to
continue work without blocking. The caller of a push-DMA operation can
optionally pass a pair of i-lets along with the data:

1. The first i-let will be executed on the sending tile once the operation
has completed, and can be used for releasing the source buffer or
for implementing custom blocking if desired.

2. The second i-let will be spawned on the receiving tile, where it can
begin processing the transferred data.

Again, as this is an important and frequent operation, invasive archi-
tectures provide special hardware support. After triggering the DMA
operation, the hardware completely handles the data transfer as well as
the dispatching of local and remote i-lets. This is achieved by cooperation
of NoC, network adapter, and CiC.

Synchronization. For the synchronization of i-lets, OctoPOS offers a
lightweight barrier-like concept called signal, which is optimized for
a fork-join scenario. The standard pattern in this scenario is one i-let
that spawns multiple other i-lets for parallel work, and then waits for
their termination. An OctoPOS signal is initialized with a counter value



66 3. Invasive Computing

equal to the number of jobs. After creating the jobs, the spawning i-let
invokes the wait() primitive, which blocks until the counter reaches zero.
Each job does its work and afterwards calls signal(), which decrements
the counter by one. If the number of jobs is not known in advance,
add_signalers() can be called for new i-lets created dynamically to
increment the counter.

OctoPOS signals are similar to blocking semaphores, but more lightweight:
Only a single i-let per signal is allowed to wait, so there is no need for a
waiting queue. Activities that were spawned on another tile can signal
back to their original tile by sending an i-let that performs the signaling.

In summary, OctoPOS is an operating system for non-cache-coherent
architectures that implements a lightweight i-let-based execution model
and offers asynchronous operations for cross-tile data transfers and task
spawning. On invasive architectures, the most important operations are
accelerated by dedicated hardware units.

Resource management. As we allocate resources exclusively, we need
a way to adapt the resources of an application to its needs. Otherwise,
resources sit idle or applications cannot fully exploit their inherent paral-
lelism. Therefore, in Invasive Computing, applications are expected to
inform the system of changed resource requirements. To avoid a single
bottleneck, resource management proceeds in a distributed fashion.

Each application is represented by an agent. Every resource request of
an application goes via its agent. Agents communicate in a distributed
manner and bargain for resources [Kob+11]. After the bargaining has
finished, the agent then notifies the application of the result. The agent
system is part of the operating system. Together, OctoPOS and the agent
system form the invasive runtime support system (iRTSS).

3.3.1. Related Work

The Barrelfish operating system [Bau+09] aims into a similar direction
as OctoPOS as it pioneered the idea of using multikernels on shared-
memory many-core architectures. Hence, as with OctoPOS, multiple OS



3.3. Operating System 67

instances communicate via message passing. The use of Barrelfish on
non-cache-coherent architectures has been investigated using the Intel
SCC as a platform [Pet+11b]. Unlike OctoPOS, however, the Barrelfish
kernel implements a traditional, heavyweight threading model.

Multiple projects modify Linux to run on non-cache-coherent architectures,
while differing in their implementation details. For example, K2 [LWZ14]
targets mobile systems-on-chip that consist of multiple but few, i.e., two
or three, heterogeneous coherence domains. K2 also runs one kernel per
coherence domain. However, K2 uses a “shared-most” approach that
replicates most OS services in all coherence domains but maintains state
coherence. K2 provides transparent coherence via distributed shared
memory (see Section 2.4.1) implemented by managing coherence in
software at page granularity.

Popcorn [Bar+15] modifies Linux to run on platforms consisting of multiple
OS-capable multi-core processors with different ISAs, such as a regular
x86 multi-core extended with a PCIe-based Intel Xeon Phi processor. In
this scenario, the fundamental idea of Popcorn is not to view the Xeon Phi
as a coprocessor used by offloading but to view both processors as a unit.
Popcorn does not assume cache coherence and thus uses replicated OS
kernels per coherence domain. In case of missing hardware-based cache
coherence, Popcorn provides software DSM. Other than K2, Popcorn
follows the shared-nothing principle.

Unlike OctoPOS, both K2 and Popcorn are designed to execute regular
programs written in a shared-memory style and thus provide software
DSM. Instead, OctoPOS exposes the structure of the underlying hardware
platform to applications. Thus, they must be able to cope with non-cache-
coherent shared memory.

Gruenwald et al. [Gru+15] present Hare, a file system for non-cache-
coherent many-core architectures. They manage coherence in software
by using a protocol based on invalidations and writebacks. Hare can be
integrated into an operating system to provide a shared file system even
on architectures without hardware-based cache coherence.

Related to OctoPOS’s execution model, project Runnemede [Car+13;
Zuc+11; SZG13] introduces codelets, which are similar to i-lets and are
supported directly by the operating system [KCT12]. Codelets are small



68 3. Invasive Computing

self-contained units of computation with run-to-completion semantics
assumed by default. Similar to i-lets, codelets can still be blocked if need
be. In contrast to i-lets, codelets are expected (but not required) to work
functionally, i.e., to only work locally without leaving state behind and
with their output only depending on the input values.

Additionally, the communication patterns between codelets are restricted.
Codelets are arranged in a codelet graph according to their data depen-
dencies, and act as producers and/or consumers, making them similar
to dataflow actors in a dataflow graph. Hence, Runnemede makes paral-
lelism more explicit and gives the runtime system additional optimization
opportunities. However, programs must either be written in a codelet style
in the first place, or a sophisticated compiler is required that decomposes
programs written in traditional programming languages into codelets.

3.4. Programming Language

We investigated possible programming models for non-cache-coherent
architectures in Section 2.4. In Section 3.3, we saw that OctoPOS exposes
the underlying hardware’s properties to the application, i.e., it does not
implement a software DSM system as described in Section 2.4.2. Therefore,
the preferred programming model in the scope of Invasive Computing is
the PGAS model. The programming language X10 [Sar+16] developed by
IBM was chosen as a modern representative of this class of programming
languages.

Since the reader may not be familiar with X10, we give a short overview of
the language. We discuss relevant language features in more detail in Sec-
tion 4.2 (and following) and refer to the X10 language specification [Sar+16]
for in-depth information.

At its sequential core, X10 is a statically-typed object-oriented imperative
programming language with garbage collection. It supports a functional
programming style with first-class functions and closures. X10 borrows
its syntax from Scala [Ode14]. Restricted to its sequential core, X10
offers very similar features to Java [Gos+14]. However, there are a few
notable differences that we show in Figure 3.3 and briefly explain in the
following.



3.4. Programming Language 69

• X10 offers constrained types [Nys+08], a form of dependent types.
Constrained types allow to statically express additional information
about values. For example, the constrained typeString{self!=null}
is the type of non-null references to String objects. Constrained
types integrate with subtyping in the natural way, i.e.,
String{self!=null} is a subtype of String, but not vice versa.

• X10 has local type inference for method return types, and for variable
declarations using the keyword val. For example, val x = 42; is a
valid statement where x has type Long8.

• X10 permits operator overloading and, as of version 2.6, also the
overloading of control structures [MMT16]. For example, the type
Complex for complex numbers overloads all common arithmetic
operators.

• X10 offers user-defined value types, using the struct keyword.
Hence, variables of this type are not implicit references to a value
of the type but directly contain the value. As a concrete example,
the type Array[Complex], where Complex is a value type, can be
represented in memory as a sequence of Complex objects in contrast
to a sequence of references to Complex objects as would be the case
for non-value types.

More importantly, however, X10 is a parallel programming language: it
directly supports programming both shared-memory and distributed-
memory systems. It employs a language-based approach to concurrency
and distribution, so the programmer writes parallel applications using
first-class language constructs rather than using libraries or compiler
directives.

As a side note, technically, the term “distributed-memory parallelism”
is a misnomer. As we have seen in Section 2.4, using message passing,
which is what distributed-memory parallelism usually refers to, does not
require the existence of distributed memory in the sense of Section 2.1.
However, these terms are ubiquitous in the literature, so we use them in
the following as well.

8More precisely, x has the constrained type Long{self==42}.



70 3. Invasive Computing

struct T {
val x: Int;
def this(x: Int) { this.x = x; }
operator this + (t: T) { return T(this.x + t.x); }
}

class Seq {
def foo() { return 21; }
public static def main(args: Rail[String]) {
val s: Seq{self!=null} = new Seq();
val t = T(s.foo());
val r = (t + t).x;
Console.OUT.println(r);
}
}

Figure 3.3: Sequential X10 program highlighting key differences to Java.
The program’s output is 42.

3.4.1. Shared-Memory Parallelism

For shared-memory parallelism, X10 provides activities [Sar+16, §14].
An activity is a lightweight thread. Hence, in general, the programmer
should not be worried about creating too many activities. Again, the
reader may look at Figure 3.4 to get an intuition of parallel shared-
memory programming in X10 and we explain the constructs it uses in the
following.

Initially, every X10 program runs inside a single root activity. The
programmer can create additional activities using the async keyword.
For any statement S, async S is a statement and spawns a new activity
that executes S asynchronously while execution of the original activity
continues. If an activity a1 spawns activity a2, we say that a1 is the parent
of a2 and a2 is a1’s child. The set of all running activities created by a given
X10 program together with the is-parent-of relationship forms a tree.



3.4. Programming Language 71

class SharedMem {
public static def foo() {
async Console.OUT.println("foo");
}

public static def main(args: Rail[String]) {
finish for (i in 1..10) {
async Console.OUT.println(i);
foo();
}
}
}

Figure 3.4: X10 program exploiting shared-memory parallelism. The
program outputs the numbers 1 to 10 and ten copies of the string foo in a
non-deterministic ordering.

X10 distinguishes between local and global termination of a statement [Sar+16,
§14]. The execution of a statement by an activity terminates locally when
the activity has finished all computation related to the statement. For ex-
ample, the statement async S terminates locally as soon as the new activity
has been created. The execution of a statement by an activity terminates
globally when the statement has terminated locally and all activities, which
the statement may have spawned, have terminated globally. For example,
assume the statement async S creates an activity a. Then, a terminates
globally only when all its (transitive) children have terminated globally.

The statement finish [Sar+16, §14.3] converts global to local termination.
Hence, finish S terminates locally when S has terminated globally. This
means that an activity executing finish S waits for all its (transitive)
children to terminate globally, before it terminates locally. There is an
implicit finish statement surrounding the body of an X10 application’s
main method.

Applied to the example from Figure 3.4, we see that starting an activity
to print i terminates locally as soon as the activity has been created. The
same applies to the activity containing the print statement in method foo.



72 3. Invasive Computing

Hence, the loop statement terminates locally as soon as all activities have
been created. The enclosing finish then waits until these activities have
all terminated globally, i.e., the finish block is only left after the complete
output has been printed. In summary, finish allows synchronization at
an arbitrary level in the tree of activities created by a program.

X10 provides additional support for synchronization between activities in
the form of unconditional and conditional atomic blocks [Sar+16, §14.7],
as well as barriers called clocks [Sar+16, §15]. We refer to the language
specification for more information on these constructs.

3.4.2. Distributed-Memory Parallelism

For distributed-memory parallelism, X10 provides the concept of places [Sar+16,
§14]. A place is a set of computing resources, i.e., data and activities that
operate on the data, that behave like a shared-memory system. Places
introduce a notion of locality: accessing a piece of data local to a place has
the same cost for all activities running on that particular place. Accessing
remote data on other places may take significantly (orders of magnitude)
longer. See Figure 3.5 to get a feeling of distributed-memory parallelism
in X10; we explain the constructs it uses in the following.

class DistMem {
public static def main(args: Rail[String]) {
finish for (p in Place.places()) at (p) async
Console.OUT.println("Place " + here.id);

}
}

Figure 3.5: X10 program exploiting distributed-memory and shared-
memory parallelism. The program outputs the string(s) Place i, where i
depends on the number of places, in a non-deterministic ordering.

X10 exposes this locality to the programmer, so they must explicitly
manage the place where they store each piece of data. The user cannot
create places themselves; there either exist a fixed number of places



3.4. Programming Language 73

throughout the execution of a program, or the runtime environment
changes the number of places [Bra+14; IBM14]. The programmer sees
places as instances of type x10.lang.Place. Each place has a unique id;
execution starts on the designated place Place.FIRST_PLACE. The special
variable here always refers to the place that executes the current activity
(similar to this).

X10 provides the place shifting operation at [Sar+16, §13.3] to perform
computations on other places. The at operation is a synchronous operation
and does not spawn a new activity. Instead, the current activity changes
its place of execution to the target place, continues executing there and,
after it has terminated locally, control flow changes back to the original
place.

The at operations exists in both statement and expression form. Hence,
in addition to usage as in Figure 3.5, X10 also allows

val res = at (p) compute();

to call the method compute() on place p and receive the result in the
local variable res. If evaluating an at statement or expression requires
additional values (e.g., if compute required arguments), necessary values
are copied to the respective place before the statement or expression is
evaluated. We will discuss this in more detail in Section 4.4.

Synchronization using finish works across place boundaries. In the
example from Figure 3.5, the finish waits until the print operation on all
places has finished.

To directly support the PGAS model, X10 provides the generic type
GlobalRef[T] as part of its standard library. GlobalRef[T] allows to
refer to values of type T that are (potentially) located on other places. The
application operation (implemented as an overloaded operator()) allows
accessing the value referenced by a GlobalRef.

public static def foo(g: GlobalRef[String]) {
val s = at (g.home) g();
// ... use string ...
}



74 3. Invasive Computing

In this example, we see the definition of a method that takes as a parameter
a global reference g to a string object. We then retrieve the referenced
string value by using g(). Before we can access the value referenced
by g, we must use at to shift to the place where the value lives. Each
GlobalRef provides this place via the property home. The X10 type system
enforces that we only access values of GlobalRefs on their respective
home places.

3.4.3. Related Work

In general, X10 is related to all programming languages following the
PGAS model. We refer to [Alm11; De +15] for a comprehensive overview
and restrict our brief discussion to a few selected languages. We base our
presentation on [Cha+05] and [De +15].

X10’s features for shared-memory parallelism are similar to Cilk [Blu+95].
Where X10 has async and finish, Cilk has spawn and sync. However,
X10’s constructs are more general due to the distinction between local and
global termination described in Section 3.4.1. This distinction allows the
parent activity to terminate while its children are still running.

Concerning distributed-memory parallelism, X10 falls in the group of
languages designed as part of the High-Productivity Computing Systems
project initiated by DARPA. Other languages developed as part of this
project are Chapel [CCZ07] and Fortress [All+05]. All these languages
integrate the PGAS model in the language itself instead of merely providing
it via a library. Additionally, in contrast to earlier PGAS languages or
libraries, they use the so-called asynchronous PGAS model. They abandon
the traditional SPMD model, used, e.g., in MPI, in favor of a model where
programs can spawn new threads dynamically and each thread can execute
different code.

X10 shares some characteristics with Chapel. The concept of a place is
similar to locales in Chapel. However, in Chapel, objects can migrate
between locales, whereas in X10, an object is bound to a particular place
throughout its lifetime.



3.5. Compiler 75

Frontend AST Managed Java code

Native C++ code

Firm Machine code

Figure 3.6: Structure of the modified X10 compiler. Adapted components
are highlighted gray.

3.5. Compiler

The X10 programming language originally aimed at clusters [Cha+05],
which combine a large number of multi-core machines via an interconnect
network. Partially non-cache-coherent architectures exhibit a similar
structure, although situated on a single chip. Thus, while X10 is a
good match for partially non-cache-coherent architectures in principle, its
compiler and runtime system were adapted in the scope of the Invasive
Computing project to the non-standard hardware platform and operating
system interfaces.

The existing X10 compiler developed by IBM is a source-to-source compiler.
Figure 3.6 shows that it provides two code-generation backends: Managed
X10 [Tak+11] translates X10 to Java, and Native X10 [Gro+11] translates
X10 to C++. A post-compiler then generates bytecode or an executable,
respectively. In the scope of the Invasive Computing project, a third
backend was added that does not take a detour via another high-level
language.

The new backend [Bra+12] targets the intermediate representation Firm [Fir17;
BBZ11]. Firm is a graph-based intermediate representation (IR) designed
for use in optimizing compilers. Its abstraction level and goals are sim-
ilar to those of LLVM [LA04]. We provide more details on Firm in
Appendix A.2.



76 3. Invasive Computing

The existing compiler pipeline could be reused up to and including the
semantic-analysis phase. Using the new backend, the compiler then
translates the resulting attributed abstract syntax tree (AST) into a Firm
representation.

While the translation is straightforward for most AST structures, some
constructs caused issues. The main cause of these issues was that both
existing backends compile X10 to another high-level language of a similar
level of abstraction. However, common compiler intermediate languages
model programs on a significantly lower level than C++ or Java. Hence,
the existing compiler made some assumptions about the target language
that did not hold for Firm.

In the following, we briefly discuss two required major modifications to
the X10 compiler concerning (i) the compilation of generic classes and
methods, and (ii) the handling of native methods. The modifications are
not specific to Firm but required for every target language of a similar
abstraction level. We refer to [Bra+12] for details.

3.5.1. Compilation of Generic Classes and Methods

One important feature of modern programming languages is support for
generic programming. For this purpose, Java and C++ offer generics and
templates, respectively. Therefore, the existing X10 compiler backends
can map X10 generics to Java’s and C++’s available language mechanisms.
The Java or C++ post-compiler then takes care of compiling the generic
code.

However, on the abstraction level of intermediate representations like
Firm, no support for genericity exists. Hence, in contrast to the existing
backends, for our new backend, we have to handle generic classes and
methods within the X10 compiler itself instead of leaving the handling to
the post-compiler. In the following, we will briefly explain our strategy
for handling generic methods and classes (referred to as “generic entities”
in the following).



3.5. Compiler 77

public class C {
public static def id[T](x: T): T = x;
public static def foo() {
id(42);
id("Hello");
}
}

In this example, id is a generic method that implements the identity
function. It is called twice in the program, once with T = Int and once
with T = String. The fundamental question when generating code for
generic entities is whether

(i) to differentiate at compile time and generate multiple specialized
monomorphic versions that each work for a single argument type,
in our example two versions of id for T = Int and T = String; or

(ii) to generate one polymorphic version that works for all argument
types and distinguishes between different argument types at run-
time.

Option (i) is called expansion in the literature [AP03]. In general, expansion
offers the best performance, but can lead to significantly increased code
size due to many specialized monomorphic versions. On the other hand,
option (ii) trades decreased code size for increased run-time cost. There
are multiple implementation techniques for option (ii), see [AP03, section
16.3] and [App97, chapter 16] for details.

We chose to expand generic entities, which has substantial performance
advantages in the context of X10. For example, arrays are not built into X10,
but exist as the generic class x10.array.Array[T] (or x10.lang.Rail[T]
as of version 2.4) as part of the standard library. Arrays are fundamental
in many applications and must therefore be as efficient as possible. Gener-
ating specialized code versions allows the compiler to generate maximally
efficient code for ubiquitous types, such as Array[Int]. Additionally, it
allows efficient arrays of value types defined via struct.

Expansion of generic entities in the X10 compiler itself (instead of using a
post-compiler) required significant changes to the compilation process.
We follow an implicit instantiation approach and expand generic entities as



78 3. Invasive Computing

needed. Hence, the compiler does not generate any code when encounter-
ing the definition of a generic entity. Only when the compiler encounters
an instantiation of a generic entity with a previously unseen combination
of type arguments is a new specialized code version generated. In our
example from above, the compiler would create code versions for id[Int]
and id[String] when encountering the respective uses in method foo.

For code generation, we keep a single AST of each generic entity, which
refers to uninstantiated type variables, such as T in our examples. For
each specialized code version, we then set up a new context that maps T to
the requested concrete type. This way, the same AST is traversed multiple
times in different contexts, each time generating a different monomorphic
code version.

3.5.2. Handling of Native Methods

Languages often declare some methods in their standard library as
native [Lia99]. Usually, this applies to methods that need to access
system or hardware resources, such as dealing with file I/O or access-
ing network devices, and the required system interfaces are not directly
accessible in the language itself. In these cases, the compiler (or virtual
machine) provides an implementation of the needed functionality in
another language (typically C) and then takes care of rerouting calls to
the native method to the actual implementation.

@NativeRep("c++", "int")
public struct Int {
@Native("c++", "((#0) + (#1))")
public native operator this + (x:Int): Int;
}

Listing 3.1: Excerpt from the definition of x10.lang.Int. The annotation
syntax has been slightly simplified for presentation reasons.

Listing 3.1 shows that X10 uses this approach extensively in its standard
library. We see that X10 defines even basic types, such as Int, in its
standard library and defines all operations on them, such as integer



3.5. Compiler 79

addition, as native methods. In this case, X10 overloads the operator + to
provide the familiar addition syntax.

This strategy has the advantage that there are fewer special cases in
the compiler itself, e.g., all operations on data types are represented as
method calls in the AST. However, even if we represent basic arithmetic
operations, such as addition, as methods, we do not want to actually call a
method to add two integers. The existing backends use annotations as
shown in Listing 3.1 to directly map fundamental types and their methods
to existing primitive types and operations in the target language. The
annotation syntax has been slightly simplified for presentation reasons.

We could have applied the same strategy to our new backend by adding
Firm-specific annotations. However, as Firm operates on a significantly
lower level than C++ and Java, some operations would be very cumbersome
to express and the resulting annotations difficult to maintain.

Instead, we implemented a form of link-time optimization, enabling
cross-language optimization. As shown in Figure 3.7, we implement
all native parts of X10’s standard library as C functions, translate these
implementations to Firm using the existing C frontend, and then combine
the resulting Firm IR with the Firm representation of the X10 program.
We create the Firm representation of the standard library only once during
build time of the compiler and then load it when compiling an X10
program.

To briefly illustrate how this process works, take the type Int from
Listing 3.1 as an example. We provide a C implementation of a function
returning the sum of its two integer arguments. After combining the Firm
IR of this function with the Firm representation of the X10 program, we
have both the uses and the definition of the addition function available in
the same format (i.e., Firm graphs). Hence, regular function inlining can
inline the body of the addition function (originating from C code) at the call
sites (originating from X10 code) leading to efficient code, in this case the
desired single machine instruction for an integer addition. This approach
offers the high flexibility and compactness of providing implementations
in a high-level language like C while making it unnecessary to introduce
special cases or annotations.



80 3. Invasive Computing

X10 program

x10firm

Firm IR

Machine code

constructoptimize

generate

Standard library in C

cparser

Firm IR

construct

combine

Figure 3.7: Structure of the modified X10 compiler.

3.6. Hardware Prototype

Section 3.2 presents invasive hardware architectures as a family of hetero-
geneous many-core architectures. In the scope of the Invasive Computing
project, multiple instances of this architecture family have been built
as FPGA prototypes [Bec+; Fri16]. As we use one of these prototypes
for our evaluation in Chapter 4 and a derived prototype platform for
our evaluation in Chapter 5, we give a brief overview of the platform’s
characteristics.

Figure 3.8 shows the structure of the prototype platform. The architecture
consists of 3 homogeneous compute tiles with 4 cores each and one
memory tile. Each tile forms a coherence domain and guarantees cache
coherence via a classical bus snooping protocol. However, there is no
cache coherence between tiles.

Inside a compute tile, all cores are Gaisler LEON 3 [Cob17b] processors.
The LEON 3 is a 32-bit RISC processor that implements the SPARC V8
instruction set [SPA92]. On the FPGA prototype, each core runs at 25 MHz.



3.6. Hardware Prototype 81

CPU

L1$

CPU

L1$

CPU

L1$

CPU

L1$

L2$

CPU

L1$

CPU

L1$

CPU

L1$

CPU

L1$

DRAM

CPU

L1$

CPU

L1$

CPU

L1$

CPU

L1$

NoC

Router

NoC

Router

NoC
Router

NoC

Router

TLM

L2$ TLM L2$ TLM

Tile 0

Tile 1

Tile 2

Tile 3

Figure 3.8: The 2 × 2 design consisting of three compute tiles and one
memory tile. Depiction based on internal Invasive Computing material.

Each core has a private 16 KiB 2-way instruction cache and a private 8 KiB
2-way write-through L1 data cache. Additionally, the 4 cores of each
tile share a 64 KiB 4-way write-back L2 cache. Each tile has 8 MiB of
SRAM-based on-chip memory (tile-local memory, TLM). The TLM of each
tile is part of the system’s global physical address space. The memory tile
has 256 MiB of DDR3 memory attached to its internal bus.

Each tile contains a network adapter that connects the tile to the network-
on-chip (see Section 3.2). Every access to remote memory (either remote
TLM or shared DRAM) is turned into a data transfer on the NoC. In this
prototype, every compute tile except for tile 0 has the same distance from
the memory tile (1 hop); tile 0 has a distance of 2 hops.

The hardware design was synthesized [Bec+] to a CHIPit Platinum sys-
tem [Syn15] shown in Figure 3.9. The system consists of six Xilinx Virtex 5
LX 330 FPGAs. Each FPGA is connected to 8 MiB of SSRAM, which backs
the TLM. Additionally, the system has a DDR extension board for the
DRAM.



82 3. Invasive Computing

Figure 3.9: The Synopsys CHIPit Platinum prototyping system. Picture
taken from internal project material.

Summary

• Invasive Computing aims to increase resource usage efficiency
and predictability through a hardware/software codesign ap-
proach.

• Its two fundamental ideas are resource-aware programming and
exclusive resource allocation.

• Invasive architectures are tiled partially non-cache-coherent
shared-memory architectures with distributed memory.

• The operating system exposes these hardware properties to the
programmer.

• The PGAS programming language X10 offers means to safely
program invasive architectures.

• A working FPGA-based prototype of an invasive architecture
combining all novel hardware and software components exists.



Hello Woddd

Output of the first distributed X10 program
running on an early hardware prototype 4

Compiling X10 to Invasive Architectures

In this chapter, we investigate the compilation of X10 (cf. Section 3.4)
to invasive hardware architectures (cf. Section 3.2). First, we focus on
intra-tile parallelism and describe the mapping of X10’s shared-memory
parallelism features to hardware inside a tile. Then, we turn towards
inter-tile parallelism. Here, we focus on data transfers between tiles. More
specifically, we exhaustively study techniques for efficiently transferring
flat as well as pointered data structures. We implement and thoroughly
evaluate these techniques on a prototype of an invasive architecture. Parts
of this chapter have been published in [MT17], [Moh+15], and [Bra+14].

Motivation. We saw in Section 2.4 that different programming models
have been proposed for and used on non-cache-coherent architectures.
The shared-memory programming model is the most familiar model to
programmers, but requires either fine-grained software-based coherence
management by the compiler or coarse-grained coherence management
by the operating system.

Alternatively, we can partition the address space on a logical level and
make each coherence domain the owner of one partition. This prevents
accesses to the same memory location from different coherence domains,

83



84 4. Compiling X10 to Invasive Architectures

as each coherence domain only reads and writes addresses from its own
memory partition, thereby sidestepping the issues caused by missing
hardware-based cache coherence. To communicate between domains we
then use explicit messages, which may make programming the system
more difficult.

The PGAS model offers a compromise between both models where the
programmer keeps some of the flexibility of the shared-memory program-
ming model, namely the ability to point to arbitrary objects, while still
having the obligation to explicitly handle data placement.

However, just like the message-passing model, this model requires fre-
quent data transfers between memory partitions. If one coherence domain
R requires access to data located in the partition of another domain
S, we must, in general, copy this data to R’s memory partition. As
these operations can occur frequently, it is important to implement them
efficiently.

We presented the general idea of how to implement data transfers on non-
cache-coherent architectures in Section 2.4.3. However, general-purpose
programs, especially if written in modern object-oriented languages, pose
additional challenges. Here, programs often use pointered data structures,
e.g., linked lists or trees. The standard approach to copy such a data
structure is to serialize it to a byte stream. We can then easily transfer
this representation to another memory partition to deserialize a copy of
the original data structure. However, this serialization can cause a large
overhead, especially concerning memory usage.

Contribution. In this chapter, we investigate the compilation of the
PGAS language X10 to invasive hardware architectures. Concerning
intra-tile parallelism, we show how we efficiently handle the creation
of a large number of activities without needing a user-level scheduler.
Concerning inter-tile parallelism, we elaborately discuss possibilities to
implement data transfers between off-chip memory partitions. First,
we focus on simple flat data structures and exhaustively discuss the
state of the art in the context of invasive architectures. Then, we turn
towards complex pointered data structures. Here, our main contribution
is a novel data-transfer technique to accelerate the transfer of pointered



85

data structures. Our technique is based on object cloning, which we
extend with automatic compiler-controlled software-based coherence
management to make it usable on non-cache-coherent architectures, such
as invasive architectures. We implement a selection of the discussed
data-transfer techniques in the X10 compiler and extensively evaluate
the techniques on an FPGA-based prototype of an invasive architecture.
Moreover, we identify opportunities for hardware support of coarse-
grained software-based coherence management. We propose a matching
hardware extension and evaluate the area overhead of an FPGA-based
prototype implementation.

Structure. The structure of the following chapter is as follows:

• In Section 4.1, we explain how we efficiently implement X10’s features
related to intra-tile parallelism on invasive architectures.

• In Section 4.2, we discuss inter-tile parallelism and identify data
transfers between off-chip memory partitions as an important build-
ing block.

• In Section 4.3, we first describe the state of the art for transfers
of simple contiguous data structures and then provide a detailed
overview of implementations on invasive hardware architectures.

• In Section 4.4, we then turn towards more complex pointered data
structures, where we also present our novel technique based on
object cloning.

• In Section 4.5, we show that cache operations on address ranges
complement the previously proposed data-transfer techniques. We
present an instruction-set extension and hardware implementation
of non-blocking range-based cache operations.

• In Section 4.6, we evaluate the performance of data-transfer tech-
niques for both flat and pointered data structures on an FPGA-based
prototype of an invasive architecture using both synthetic bench-
marks as well as an existing testsuite of X10 programs. We also
evaluate the overhead of our hardware extension.



86 4. Compiling X10 to Invasive Architectures

Acknowledgments. This chapter is based on publications that are joint
work with Matthias Braun, Sebastian Buchwald, Christoph Erhardt, Daniel
Lohmann, Benjamin Oechslein, Jens Schedel, Carsten Tradowsky, and
Andreas Zwinkau [Bra+14; Moh+15; MT17]. We include a description of
how we map X10’s shared-memory features to hardware inside a tile in
Section 4.1. This is not a central contribution of this dissertation and joint
work with Matthias Braun, Sebastian Buchwald, and Andreas Zwinkau.
We still include this material for the sake of completeness.

The complete implementation of the range-based cache operations we
describe in Section 4.5 was done by Michael Mechler and Carsten Trad-
owsky [Mec16; MT17]. Additionally, the FPGA-based platform we use in
Section 4.6 is the result of many contributions in the scope of the Invasive
Computing project. In particular, we use the following components:

• the X10 compiler (cf. Section 3.5), developed by Matthias Braun,
Sebastian Buchwald, Eduard Frank, Andreas Fried, Tobias Kahlert,
Tobias Rapp, Martin Seidel, Andreas Zwinkau, and the author;

• the operating system OctoPOS [Oec+11] (cf. Section 3.3), developed
by Gabor Drescher, Christoph Erhardt, Daniel Lohmann, Sebastian
Maier, Benjamin Oechslein, Jens Schedel, and Florian Schmaus;

• the network-on-chip [Hei+14] including the network adapter [Zai+15],
developed by Stephanie Friederich, Jan Heißwolf, Sven Rheindt, and
Aurang Zaib;

• the CiC [Rav15], developed by Ravi Kumar Pujari; and

• the FPGA-based prototype implementation [FHB14], developed by
Srinivas Boppu, Stephanie Friederich, and David May, and Sven
Rheindt.

4.1. Intra-Tile Parallelism

X10 maps naturally to non-cache-coherent architectures, particularly to
partially non-cache-coherent ones like invasive hardware architectures (cf.
Section 3.2). The fundamental idea is as follows. We follow Section 2.4.4
and partition the physical address space. Each coherence domain, i.e.,



4.1. Intra-Tile Parallelism 87

CPU

L1$

CPU

L1$

CPU

L1$

CPU

L1$

L2$

CPU

L1$

CPU

L1$

CPU

L1$

CPU

L1$

DRAM

CPU

L1$

CPU

L1$

CPU

L1$

CPU

L1$

NoC

Router

NoC

Router

NoC
Router

NoC

Router

TLM

L2$ TLM L2$ TLM

Place 0

Place 1

Place 2

Figure 4.1: The 2 × 2 design as viewed by the X10 runtime system. By
default, the tile that contains the memory controller and DRAM is not
visible to the programmer. Depiction based on internal project material.

each tile on an invasive architecture, then corresponds to one place. As
each tile behaves like a shared-memory system, this matches the semantics
of a place. Thus, we can employ X10’s shared-memory features (mainly
finish and async) to exploit parallelism inside the coherence domain,
i.e., tile. Figure 4.1 shows that we view each compute tile as one place.
By default, we exclude the memory tile from being available as a place.
Hence, every access to off-chip memory proceeds via the NoC.

In its standard runtime system, X10 employs user-level scheduling for
activities. Hence, executing an async statement creates an activity object
(represented as an actual X10 object) and hands it to the runtime system
for execution. The runtime system maintains a pool of so-called worker
threads, which are kernel-level threads. It then schedules activities, i.e.,
user-level threads, to these worker threads in a many-to-one fashion. It
employs work stealing [TWL12] to balance load between worker threads.

This approach is common, but has the well-known downside that a
blocking call into the operating system (e.g., for I/O) blocks the worker



88 4. Compiling X10 to Invasive Architectures

thread with all activities it manages. The default X10 runtime system
works around this problem by starting additional worker threads before
potentially blocking operations. This implicates some overhead for the
creation and termination of worker threads before and after potentially
blocking operations to keep the number of non-blocked worker threads
close to the available hardware parallelism. Additionally, if this parallelism
adaption is forgotten for a potentially blocking call, a core might idle
although runnable activities exist.

On invasive architectures, we can implement asyncmore efficiently. As
invasive architectures offer special hardware and operating system support
for fine-grained parallelism in the form of i-lets, we can map each activity
directly to an i-let. Hence, no representation of an X10 activity exists on
the level of the runtime system; each activity is an i-let.

This greatly simplifies the runtime system, as we do not need a user-
level scheduler at all. As i-lets are lightweight, have run-to-completion
semantics, and use cooperative scheduling, OctoPOS can efficiently create
and dispatch large numbers of i-lets. Hence, it is no problem to create
one kernel-level thread per activity. Kernel-level threads of traditional
operating systems are too heavyweight for this. Viewed another way,
OctoPOS puts a user-level-like scheduler (and its properties) into its
kernel.

We implement finish using one signal primitive (cf. Section 3.3) per
finish block. Each i-let remembers its corresponding finish as i-let-local
data, which resides at a designated location in the i-let’s context.

Concerning memory management, X10 requires a garbage collector.
Hence, we ported a conservative garbage collector [BW88] to OctoPOS.
We run a separate instance of the garbage collector per tile (i.e., one per
place, which is the default in X10). The garbage collector follows the
stop-the-world approach and uses a mark-and-sweep strategy. As it is
conservative, the garbage collector does not require much functionality
from the operating system or assistance by the compiler. Its two main
requirements are (i) an interface to stop all running i-lets (except the
current one) on all cores of the tile, and (ii) an interface to query the stack
bounds of all existing (blocked and unblocked) i-lets on the tile.



4.2. Inter-Tile Parallelism 89

By default, we configure the garbage collector to place the heap in the
tile’s partition of the DRAM. Hence, we allocate all X10 objects in the tile’s
DRAM partition. The TLM is reserved for use by the runtime system9.
During its mark phase, the garbage collector scans the registers of the
active core, all stacks, the TLM, and the used part of the heap for potential
root pointers.

As mentioned in Section 3.4, X10 provides GlobalRef to enable one place
to point to an object residing on a different place. We have to ensure
that these objects are not deleted on their home place, even if the only
references to them exist on other places. As we do not use a distributed
garbage collector, we employ the same workaround as the original X10
runtime: we save the addresses of objects referenced by a GlobalRef in a
special data structure on their home place. These objects thus never get
deallocated automatically by the garbage collector.

4.2. Inter-Tile Parallelism

As explained in Section 3.4.2, X10 exposes data locality in the form of
places. Initially, all data resides on place Place.FIRST_PLACE and must be
distributed to other places in the course of a program run. Additionally, a
distributed computation usually requires frequent data exchange between
places.

Hence, on an invasive architecture, efficient data transfers between tiles
are important for the performance of X10 programs. More specifically,
we usually want to transfer data in the off-chip memory partition of one
tile to the off-chip memory partition of another tile. In the following, we
discuss possible implementation techniques for such data transfers. We
first focus on simple bytewise copying of data, as it can serve as a building
block for all other transfer types. Then, we investigate transferring more
complex structured data, such as linked lists or trees.

As we have seen in Section 3.2, the family of invasive hardware architectures
is diverse. To simplify our following discussion, we restrict ourselves

9We provide the annotation @TLMAllocate to enable user-controlled allocations in the TLM.
However, these objects are not garbage-collected and have to be deleted manually.



90 4. Compiling X10 to Invasive Architectures

to one (simplified) instance of an invasive architecture that captures all
properties relevant to data transfers. We base our further discussions on
this instance. Subsequently, we discuss concrete implementations of the
presented data transfer approaches for the prototype hardware described
in Section 3.6.

We make the following observations about invasive architectures, which
lead to the model shown in Figure 4.2. Note that the upper box in Figure 4.2
depicts the actual off-chip memory and not a logical address space as in
Figure 2.9. Off-chip memory and all TLMs are part of the global physical
address space.

The whole system consists of the chip itself and off-chip main memory.
A memory controller connects the chip to the off-chip memory. There
may be multiple off-chip memories attached to multiple controllers, e.g.,
one controller at each border of the chip with separate memory modules.
Off-chip memory is DRAM-based and large (in the order of gigabytes). We
only model one off-chip memory, as the existence of multiple memories
or controllers is irrelevant in our context.

The cores are grouped into tiles. Cores have private caches and all
caches inside a tile are kept coherent by the hardware. A tile usually
contains more than one core, constituting a partially non-cache-coherent
architecture. In this case, multiple cores may share additional cache levels.
The cores of a tile can also be heterogeneous. We restrict ourselves to one
core with one private cache in write-back configuration per tile. This is
the simplest setting that is at the same time complex enough to require
software-managed coherence due to lack of hardware-based coherence
across tile boundaries. However, the presented techniques also work with
more complex cache hierarchies.

Additionally, there is on-chip memory available to each tile in the form of
tile-local memory (TLM). TLM is SRAM-based and small (in the order of
kilobytes to a few megabytes). In general, TLM offers higher bandwidth
and lower latency compared to off-chip memory.

There is a global physical address space that includes off-chip memory
as well as all TLMs. Hence, we can use TLMs for direct tile-to-tile
communication. We assume that caches cache the complete address space,
i.e., accesses to both off-chip memory and all TLMs. Hence, in general, we



4.3. Block-Based Data Transfers 91

need to manage coherence in software for parts of the address space that
we access from multiple tiles.

Tiles are connected to each other and to the memory controllers by a
scalable network-on-chip. Accesses to off-chip memory and to remote
TLMs use this interconnect. We restrict ourselves to two tiles and thus
study data transfers from one sending tile to one receiving tile, i.e., no
broadcasts or gather-like operations. Point-to-point communication is
a fundamental operation on top of which we can implement all other
communication patterns. We further assume that the off-chip memory
has two logical partitions, one for each tile.

Throughout the following discussion, we assume a cache that offers two
operations: invalidate and writeback (cf. Section 2.2.2.3). Furthermore, we
assume that all operations can be executed on the respective cache line for
a given address. Invalidate marks a cache line as invalid, meaning that the
next time an address from the cached range is accessed, it will be fetched
from memory. Writeback writes a dirty cache line back to memory. The
cache line stays valid after this operation. We use flush as a shorthand for
a write-back followed by an invalidation.

4.3. Block-Based Data Transfers

In this section, we study the bytewise copying of contiguous memory
blocks between shared-memory partitions on invasive architectures. This
operation is available to the X10 programmer in the form of the methods
Array.asyncCopy() and Rail.asyncCopy()10, which perform bytewise
copying of (parts of) an array between places11. In the following, we refer
to this operation as a shallow copy.

Hence, we want to copy a contiguous memory block B from the off-chip
memory partition of the sending tile S to a copy B′ of that memory block
in the off-chip memory partition of the receiving tile R; see Figure 4.3 for
10In X10 terminology, a Rail is a one-dimensional zero-indexed dense array.
11Hence, these methods should only be used on arrays of value types, not on arrays of

references. Unfortunately, the X10 type system is not powerful enough to express this
restriction, so the programmer must be careful.



92 4. Compiling X10 to Invasive Architectures

S’s partition R’s partition

Sending tile S

Core $
TS

Receiving tile R

Core$
TR

O
ff-

ch
ip

M
em

or
y

Coherence domain
of sending tile S

Coherence domain
of receiving tile R

Figure 4.2: Model of an invasive architecture. The system consists of
off-chip memory (upper half) and chip (lower half). We have two tiles:
sender S and receiver R. Each tile owns a logical partition of the off-chip
memory address space. On the chip, we model one core with a private
cache (abbreviated as $) and a TLM T per tile.

TS TR

Sender S’s partition Receiver R’s partition

S R

B B′

Figure 4.3: Transferring a memory block B to a copy B′ from sending tile S
to receiving tile R.



4.3. Block-Based Data Transfers 93

an illustration. In the following, if we speak of data being located “in
off-chip memory” we mean that it is located in a part of the address space
that is backed by the off-chip memory. As our architecture has caches, the
actual data might not be completely located in off-chip memory physically,
but can also be (partly) held in a cache.

We assume that our X10 programs hold their data in off-chip memory
by default. Due to the characteristics of on-chip and off-chip memory,
especially the TLM’s severely limited size, it is unrealistic to assume that
programs hold a significant amount of data in TLM. Thus, as explained
before, the X10 runtime system places the heap into off-chip memory and
therefore allocates all X10 objects there.

On invasive architectures, we have two different types of memory at
our disposal: fast but small TLMs, as well as slower but larger off-chip
memory. It is interesting to investigate the design space of data-transfer
implementations regarding the characteristics of these memory types. As
shallow copies form the core of message-passing libraries, such as MPI,
for non-cache-coherent architectures, there is a lot of prior work on this
topic. In the following, we give an overview of the state of the art. We
discuss using both types of memory separately: first TLMs in Section 4.3.1,
then off-chip memory in Section 4.3.2.

4.3.1. Using TLM

We can use TLMs for copying B to B′. The main reason for using TLMs is
that, ideally, they enable fast on-chip communication without potentially
slower accesses to off-chip DRAM. In the best case, the sending tile holds
the relevant data in a local cache. From there, it is transferred via the
on-chip network to the TLM of the receiving tile. The receiving tile can
then read the data. This avoids (blocking) accesses to off-chip memory
completely.

The design space of using on-chip memories, such as TLMs, for message
passing is large [Rot11]. To simplify discussion, we start out with the
description of a simple approach first and then give a brief overview of
the design space.



94 4. Compiling X10 to Invasive Architectures

TS TR

Sender S’s partition Receiver R’s partition

S R

B B′

Figure 4.4: Transferring a memory block B to a copy B′ via TLM from
sending tile S to receiving tile R using a push-style approach.

One possibility to copy B to B′ using TLMs TS and TR of sender S and
receiver R, respectively, proceeds as follows (cf. Figure 4.4):

1. The sender S copies from B to TR. As writes to remote TLMs are
cached in S’s private cache, we must then force a writeback of the
relevant cache lines after writing. It is trivial to determine the
relevant cache lines, as B is contiguous in memory and we know its
starting address and size. S waits until all relevant cache lines have
been written back to TR.

2. S notifies R that TR now contains a copy of B.

3. R copies from TR to B′. As read operations are cached in R’s local
cache, we must invalidate the relevant address range of TR before
reading. Then, the receiver R has a coherent view of the data written
to TR.

This initial description anticipates a number of design decisions that we
now investigate in a structured manner. More specifically, we explore the
following five aspects:

(i) the placement of data and the responsibility of transferring data;
(ii) the actual implementation of data transfers;

(iii) the allocation strategy;



4.3. Block-Based Data Transfers 95

(iv) the synchronization mechanism to wait until write-back operations
have finished; and

(v) the notification mechanism to inform a remote tile of incoming data.

In the following, we briefly discuss each of these aspects. We partially base
our presentation on [Rot11, section IV] and refer to the same source for a
detailed discussion of the message-passing design space in the context of
the Intel SCC.

Placement and responsibility. Does the sender push messages to the
receiver’s TLM or does the receiver pull the message from the sender’s
TLM? In our initial description we assumed the former, however, we could
also copy from B to TS and then let R copy from TS to B′. While the
situations seem symmetric, architectural peculiarities or communication
patterns other than point-to-point communication can make one approach
superior. For example, to broadcast information it may be more efficient
to place the message in the sender’s TLM and let all receivers pull from
it.

Transfers. How do we copy contiguous memory blocks? In the simplest
case, we use a core of either the sending or the receiving tile and execute
regular load/store instructions in a loop. As our invasive hardware
provides DMA units, we can also implement the transfer operation
without CPU interaction. Both approaches may involve software-managed
coherence.

Allocation. How do we allocate the TLM, i.e., how do sender and receiver
agree on which area of the TLM to use for a particular communication
operation? One possibility is dynamic allocation, i.e., if the sender wants
to put a message into the receiver’s TLM, the sender explicitly requests
a memory area of the needed size before sending the message. This
does not waste any space, because we allocate exactly what is needed
when it is needed. However, it requires an additional forth-and-back
communication between sender and receiver, which may be expensive
relative to the transfer of the actual message content, e.g., for very small
messages.



96 4. Compiling X10 to Invasive Architectures

Alternatively, we can use a static allocation scheme. For example, on a
system with n tiles, we could partition each TLM into n − 1 partitions
and, for each memory, exclusively assign one partition to each other tile
in the system. Hence, with a push-style data placement, the sending tile
could store the message to this sender’s exclusive part of the receiver’s
TLM. Thereby, we avoid all run-time allocation overhead, but significantly
decrease the amount of data that can be sent with a single message. For
example, Ureña et al. [URK] report a maximum message size of 160 bytes
on the Intel SCC when using 48 cores with a static allocation scheme for
the 16 KiB on-chip memory per tile.

Synchronization. How do we wait until writing back cache lines has
finished? Here, the hardware must provide appropriate support. If the
hardware guarantees that write operations are processed in program
order, implementation is straightforward. This is the solution chosen by
the Intel SCC [Mat+10, section III; Rot11, section II.B]. Here, the software
only has to ensure writing complete cache lines. Then, the hardware
guarantees that pending write requests complete before the next write
request starts. If the hardware only gives weaker guarantees, it must
provide support for awaiting the destination’s response that the write
operation has completed.

Notification. How do we inform our communication partner that data
has arrived? In the simplest case, we manage, in each TLM, an array of
n − 1 boolean flags; one for each other tile in the system (assuming n tiles).
If tile i wants to signal tile j, it sets the i-th flag in tile j’s array. With
software-managed coherence and appropriate synchronization means
(see above), this allows us to realize the required notification scheme.
However, the resulting notification mechanism requires polling, which is,
in general, inefficient. As such notification between tiles is a potentially
frequent operation, invasive hardware provides specialized support via
the remote spawning of i-lets described in Section 3.3.

As mentioned before, using TLMs provides a number of advantages: they
are decentralized and they provide higher bandwidth as well as lower
latency compared to off-chip memory. Hence, we see that TLM allows us
to implement efficient message-passing functionality.



4.3. Block-Based Data Transfers 97

However, they also require copying data between address space backed by
off-chip memory and TLMs. This becomes important if we consider larger
messages. At some point, the message size exceeds the size of TLM12.
Then, the sender must split the message into chunks and the receiver
must reassemble these chunks. In the simplest case, the sender writes
a chunk, waits until the receiver has acknowledged copying the chunk
to its partition of the off-chip memory, and then writes the next chunk.
This process is repeated until the complete message has been transmitted.
Splitting and reassembling messages causes significant overhead.

To partially hide this overhead, we can use pipelined communication [Cla+11,
section 3.2]. Here, we use multiple disjoint areas of the TLM. The sender
writes a first chunk and notifies the receiver. Then, the receiver copies
the first message chunk from its local TLM to off-chip memory while, at
the same time, the sender writes the next chunk to a different area of the
receiver’s TLM.

However, regardless of how we design our message-passing scheme, we
cannot avoid the problem that at some message size, the overhead for
splitting and reassembling messages is higher than the bandwidth and
latency advantages gained by using TLMs. At this point, it becomes
worthwhile to exploit off-chip memory to transfer messages.

4.3.2. Using Off-Chip Memory

We can use off-chip memory to copy B to B′ as follows (see Figure 4.5):

1. copy & writeback: S copies B to B′ and then performs an explicit
writeback of the address range of B′. Then, S waits until all relevant
cache lines have been written back to off-chip memory.

2. notify: S notifies R via a message that it is now safe to read from B′.

3. invalidate: R invalidates the address range B′ in its local cache to
guarantee reading up-to-date values from memory. It can then work
with B′.

12Or the part of TLM that is used for the communication operation in case of a static
allocation scheme.



98 4. Compiling X10 to Invasive Architectures

TS TR

Sender S’s partition Receiver R’s partition

S R

B B′

Figure 4.5: Transferring a contiguous buffer B to a copy B′ via off-chip
memory.

Here, we use TLM solely for notification. The actual data transfer happens
purely using off-chip memory. The approach is a straightforward extension
of the techniques from Section 2.2.2.3 from a single memory location to a
memory block, i.e., an address range.

The design space is similar to that of using TLM. Regarding placement, we
again have a symmetric situation: in our proposed push-style approach,
we copy B to B′ using tile S, however, we could also use tile R to perform
the copy operation. In this pull-style case, S performs a writeback of B (so
that off-chip memory contains up-to-date values), and notifies R of B and
B’s size. R then invalidates B and copies B to B′.

For large messages, using off-chip memory can offer a performance
advantage over using TLMs. This becomes clear if we look at messages
significantly larger than the cache size. In this case, most of B already
resides in the off-chip memory and not in caches in S. Hence, it is
relatively cheap to write back the remaining parts from caches in S to
off-chip memory. In contrast, chunk-wise copying of the complete buffer B
from off-chip memory to TLM may be significantly more expensive.



4.3. Block-Based Data Transfers 99

4.3.3. Related Work

There has been a considerable amount of work on the efficient implemen-
tation of message passing on non-cache-coherent architectures.

Rotta [Rot11] investigates efficient message-passing implementations using
on-chip memory on the Intel SCC. The author studies the design space of
message-passing protocols, identifies six design dimensions, and classifies
existing approaches according to this framework.

Chapman et al. [CHH11] port X10 (cf. Section 3.4) to the Intel SCC. They
only use on-chip memory for message passing. They consider this a
bottleneck and report their plans to also use off-chip memory for message
passing.

Ureña et al. [URK] present an MPI implementation for the Intel SCC.
They observe that using off-chip memory is faster than on-chip mem-
ory for passing messages of size 5.6 KiB and higher. Thus, their MPI
implementation chooses the communication channel (on-chip or off-chip)
depending on the message size. In their experiments, off-chip memory
was marked uncacheable, i.e., accesses to off-chip memory were executed
on a granularity of individual loads and stores (and not whole cache
lines). This avoids the need for software-managed coherence, but sig-
nificantly decreases performance [Cla+11]. In spite of this shortcoming,
communicating via off-chip memory provided a performance advantage
for sufficiently large messages. With caching of off-chip memory enabled,
the observed break-even point is likely to be at significantly lower message
sizes.

Clauss et al. [Cla+11] study the shared-memory and the message-passing
programming models on the Intel SCC. They enable caching of the off-
chip memory. Unfortunately, the Intel SCC provides no hardware means
for fine-grained cache control. In particular, it does not allow forcing
writebacks or invalidations of the L2 cache (neither on individual lines nor
on the whole cache). Therefore, Clauss et al. use a workaround that reads
from a sufficiently large contiguous memory area to evict the complete
current L2-cache contents. Hence, this causes dirty lines to be written
back to memory, i.e., flushes the complete L2 cache. However, while this
workaround allowed Clauss et al. to confirm the functional correctness



100 4. Compiling X10 to Invasive Architectures

of their approach, the workaround’s significant overhead renders their
scalability measurements unrepresentative.

Van Tol et al. [Tol+11] investigate memory copy operations on the Intel SCC.
They enable caching of the off-chip memory. Van Tol et al. propose “copy
cores”, which are dedicated cores that asynchronously copy memory
regions and are used by other cores as a service. Their implementation
is also hindered by the missing means for invalidating and writing back
L2-cache contents. In principle, this idea is also applicable to invasive
architectures. However, the DMA unit present in every tile is preferable.

Reble et al. [RCL13] and Christgau et al. [CS16] present implementations
of MPI-based one-sided communication [Mes15, chapter 11] for the
Intel SCC. With one-sided communication, one party is passive, i.e., the
other party specifies all communication parameters. This contrasts two-
sided communication, where each send operation requires a matching
receive operation by a cooperating party. Reble et al. exploit both on-chip
and off-chip memory for one-sided communication. However, they turn
off caching of off-chip memory and do not manage coherence in software.
Despite the significant performance loss due to disabled caching, using
off-chip memory is faster than using on-chip memory for sufficiently large
messages.

Christgau et al. improve upon this previous work by enabling caching of
off-chip memory. However, they are also hindered by the missing L2-cache
functionality. They work around this problem by using a special caching
policy available on the Intel SCC for shared off-chip memory (we discuss
this topic in more detail in Section 4.5). Here, stores to these memory
areas are not cached. Read operations to this memory area are only cached
in the L1 cache, for which the Intel SCC offers a dedicated invalidation
instruction, but bypass the L2 cache. Despite being forced to use this
workaround, they report a 5× reduction of communication costs for large
messages when compared to the default message-based implementation.
As we have seen in Section 2.4.4, one-sided communication is important
for PGAS languages. This supports our idea that precise cache control is
crucial on non-cache-coherent architectures, which we investigate in more
detail in Section 4.5.

We developed our approach to transfer data via off-chip memory inde-
pendently of Christgau et al. Christgau et al.’s main contributions are



4.3. Block-Based Data Transfers 101

Figure 4.6: A detailed view of the structure inside a tile. Depiction taken
from [Hei14].

the sophisticated exploitation of the Intel SCC’s architectural features,
the integration of their technique with MPI semantics, and the idea of
remote invalidations (which we discuss in Appendix A.1). Concerning
the aspect of software-managed coherence, our technique and theirs are
equivalent.

4.3.4. Implementation on the Hardware Prototype

The FPGA-based prototype of invasive hardware (cf. Section 3.6) is a bit
more complicated than the model we used in the previous sections to
study data-transfer techniques. Figure 4.6 shows a detailed view of the
structure inside a tile. We have private L1 caches per core and a shared
L2 cache per tile. The L1 cache is configured in write-through mode and
the L2 cache is configured in write-back mode. The caches cache all reads
and writes to both remote TLMs and the off-chip memory. However,
only the L1 cache caches the local TLM; the TLM is not cached by the
L2 cache (compare the positioning of the L2 cache in Figure 4.6). The
L2 cache’s main purpose is to reduce utilization of the on-chip network



102 4. Compiling X10 to Invasive Architectures

due to possibly frequent L1-cache misses when accessing remote data
(remote TLM or off-chip).

In the following, we present possible implementations of the necessary
functionality we identified in Sections 4.3.1 and 4.3.2: (i) transfers, (ii) syn-
chronization, and (iii) notification.

Transfers. To transfer data between TLMs of a sending tile S and a
receiving tile R, we have three alternatives. First, we can use i-lets. An
i-let can carry two 32-bit words. Hence, for very small transfers, we can
directly encode data into an i-let, spawn it on R and let it write the data
to the target location [Moh+15]. As we also use i-lets as our notification
mechanism (see below), it is almost always preferable to integrate a data
transfer if possible.

Second, we can write to the remote TLM using regular stores13. These
stores are cached by the sender’s local L2 cache. Hence, we now have to
manage coherence in software to guarantee that written data is actually
visible to the receiver. We use platform-specific operations [Cob16, section
74.3.3] to force writebacks of individual L2 cache lines. The provided
interface allows to supply an address whose corresponding cache line is
then looked up and written back. This allows to implement the writeback
of an address range [S, E] with a cache line size of L using a loop as
follows:

for x := S − (S mod L) to E − (E mod L) step L:
writeback(x)

We use mod to denote the modulus operation on integers. The term
A − (A mod L) rounds the address A down to the nearest multiple of L14.
Hence, the loop issues one writeback operation per relevant cache line.
Writing back one cache line takes 6 clock cycles [Cob16, section 74.3.3]
plus the latency for handing the cache line to the network-on-chip.

We do not have to manage coherence in software on the receiving side.
On the receiving tile, its network adapter receives the stores issued by
13The “swcpy” variant of OctoPOS uses this mechanism.
14If L is a power of two, we can express the term more efficiently using bitwise operations,

e.g., A & ~(L - 1) in C notation.



4.3. Block-Based Data Transfers 103

the sending tile and translates them to stores inside the receiving tile.
Hence, these stores trigger the tile-local hardware coherence mechanism
and invalidate potential copies of the written TLM parts in the L1 caches
of R’s cores.

The third and preferred method for transferring data between TLMs are
push-DMA transfers (cf. Section 3.3). The network adapter of each tile
includes a DMA unit capable of copying contiguous memory blocks from
the tile’s local TLM to a remote memory without CPU interaction [Hei14,
section 3.2.2.1]. Unfortunately, in the current hardware prototype, the
remote memory can only be another TLM. Currently, the DMA unit cannot
copy from TLM to off-chip memory.

Figure 4.7 shows the full control flow of a DMA-based data transfer. As
the first step, we copy from B to BS in the sender’s TLM. We use a dynamic
allocation strategy for our TLMs. Hence, before we can initiate a DMA
transfer, we allocate the destination buffer in R’s TLM. We spawn a remote
i-let on R, allocate the buffer BR in R’s TLM, and pass the address back to
S via another remote i-let spawning.

After setting up our target buffer, S initiates a push-DMA transfer from
BS to BR. We specify two i-lets to execute once the data transfer has
finished:

1. the first i-let runs on S and frees the source buffer BS; and
2. the second i-let runs on R and copies BR to B′ in off-chip memory,

to free up the TLM space of BR subsequently.

In case S’s TLM cannot hold a copy of B, we have to split B into as many
chunks as needed and transmit each chunk using one DMA transfer. Then,
only the last DMA transfer triggers i-lets to free the source buffer on the
sender and work with B′ on the receiver.

Copying data between TLMs using the hardware-based DMA transfer
does not require software-managed coherence. As the L2 cache does not
cache accesses to the local TLM and the L1 cache is write-through, the
sender’s network adapter can directly read up-to-date values from the local
TLM. Then, the network-on-chip passes the data to the target tile’s network
adapter. On the target tile, the network adapter writes the transmitted
memory block to the target tile’s TLM. This write operation again triggers
the tile-local hardware coherence mechanism, which invalidates potential



104 4. Compiling X10 to Invasive Architectures

i-let S DMA R

DMADMA

copy BR
to B′

copy B
to BS

allocate BR

start
DMA copy BS

to BR

cleanup BS

Figure 4.7: Sequence diagram for transferring data via TLM on invasive
architectures. We use a dynamic allocation strategy. Depiction based on
[Moh+15].



4.3. Block-Based Data Transfers 105

copies of the written TLM part in the receiver’s cores’ L1 caches. Thus,
after the write has finished, all cores of the target tile have a coherent view
of the copied data in the target TLM.

To transfer data via off-chip memory, we need to manage coherence in
software on both sending and receiving side. The reason for this is that
now the memory is “remote” from the view of both parties. Hence, in
contrast to the on-chip case, the writes that affect the target memory are
not visible to the receiver’s caches, as the involved network adapter is
located on the memory tile. Thus, no coherence actions are triggered, e.g.,
no L1-cache invalidations happen on the sending or the receiving tile.

Therefore, after writing a memory block located in off-chip memory, we
must write back the respective address range. Before reading this memory
block on the receiving side, we must invalidate its address range. We
must do this on both levels of the cache hierarchy.

Hence, on the sending tile, we must write back the address range first in
the L1 caches and then in the L2 cache. As the L1 caches are configured in
write-through mode, the write-back can be omitted. We write back the
relevant L2 cache part using the method described above.

On the receiving tile, we need to invalidate the relevant parts of both
L1 cache and L2 cache. For the L2 cache, we use the same software-based
loop construct as for write-backs, but with an invalidate operation. The
provided interface is the same as for writing back cache lines [Cob16,
section 74.3.3]: we supply an address whose corresponding cache line is
then looked up and invalidated. Invalidating one cache line takes 5 clock
cycles [Cob16, section 74.3.3].

Unfortunately, the L1 data cache offers no such fine-grained control: it
can only be flushed completely [Cob16, section 77.10.7] (we later improve
this situation in Section 4.5). However, as the cache is configured in write-
through mode, no modified data is written back. Therefore, the resulting
overhead consists of a higher than necessary number of subsequent
L1 cache misses, which are mostly compensated by the L2 cache.

Synchronization. In order to wait until writing back cache lines has
finished, we use the following implementation. The L2 cache blocks all



106 4. Compiling X10 to Invasive Architectures

accesses (i.e., further loads or stores) until prior write-back operations
have finished [Cob16, section 74.3.3]. However, the invasive hardware
prototype, in contrast to the Intel SCC as described in Section 4.3.1, does not
guarantee that pending write requests to remote memory complete before
the next write request can start. Thus, as soon as the network adapter has
handed the cache line of a write-back operation to the network-on-chip,
the next write-back operation can proceed. There is no acknowledgment,
i.e., the hardware does not wait for this cache line to be actually written
back to remote memory.

However, the invasive NoC guarantees that loads do not overtake pre-
ceding stores to the same destination tile. Hence, after issuing all our
write-back operations, we load from a reserved address W in the remote
memory. This load from W only completes once the previous write-backs
have finished. It is crucial that we really load from remote memory and
not from a local cache. To prevent that the load from W is served by a
cache, we take the following precautions:

• For each core c in the system, we use a different address Wc . All
addresses Wc are aligned so that they reside in different cache lines.
Hence, there can be no interference between the synchronization
operations of multiple cores.

• We invalidate the L2 cache line of Wc before reading.
• To load from Wc , we use a cache-bypassing load instruction [Cob16,

section 77.10.2] that bypasses the L1 cache. On our platform, this
does not bypass the L2 cache, hence the explicit invalidation of the
L2 cache line is required.

Notification. To implement notification, we have two alternatives. First,
we can use the mechanism described in Section 4.3.1, i.e., stores to dedicated
notification flags located in TLMs in conjunction with software-managed
coherence. OctoPOS uses this scheme during early bootup before all
hardware has been properly initialized.

However, as notification is a frequent operation, invasive architectures pro-
vide dedicated hardware support. The preferred method for notification
between tiles works via i-lets. Hence, to notify the receiver of a message,
we spawn an i-let on the receiving tile. There, the i-let can locally trigger
the appropriate action, e.g., using signaling primitives (cf. Section 3.3).



4.3. Block-Based Data Transfers 107

Before spawning the i-let, we have to ensure the completion of potential
write-back operations using synchronization as described above.

In the case of a DMA transfer, the hardware provides support for starting
i-lets on the sending and the receiving sides as soon as the data has been
transferred completely (cf. Section 3.3). This allows us to merge synchro-
nization, notification, and the actual data transfer into one operation that
is fully hardware-accelerated.

Implementation of asyncCopy(). In the following, we use the presented
building blocks for transfers, synchronization, and notification to describe
two concrete implementations of X10’s Rail.asyncCopy()method: Ac-
Tlm, which uses TLM, and Ac-Off, which uses off-chip memory to transfer
data. The method Rail.asyncCopy() actually exists in two variants: one
to push data, i.e., to copy from a local array to a remote array, and one to
pull data, i.e., to copy from a remote array to a local array. We focus on the
push-style transfer; the pull-style variant works analogously. We assume
a call like Rail.asyncCopy(B, B′).

We implement Ac-Tlm as follows. We use a dynamic allocation strategy
for the TLM. Then, we copy from B to BS in S’s TLM and use a push-
DMA transfer to copy BS to BR. The receiver then copies BR to B′. The
hardware handles synchronization and notification; as described before,
no software-managed coherence is necessary.

We implement Ac-Off as follows. We use a core of the sending tile to
copy B directly to B′. Then, we trigger a write-back of all L2 cache lines
relevant for B′. We synchronize and then spawn an i-let on the tile R that
invalidates the complete L1 cache and the relevant L2 cache lines for B′.

Here, we have to be careful as multiple L1 caches exist on R. In general, to
guarantee coherence, we must invalidate the address range of B′ in all of
them. Either we ensure that the i-let that issues the invalidation is the only
i-let that ever accesses B′ on R. Due to our restricted scheduling policy,
i-lets never change their core unless they block, in which case they may
be scheduled on a different core in the same claim. Hence, on invasive
architectures, we have some control over whether an i-let gets rescheduled.
Or, if other cores may also access B′, we must issue invalidations on all
cores of tile R. We discuss this topic again in Appendix A.1.



108 4. Compiling X10 to Invasive Architectures

Sender S’s partition Receiver R’s partition

G G′

Copy

Figure 4.8: Copying an object graph to another memory partition.

root

Figure 4.9: An object graph containing cycles.

4.4. Transferring Pointered Data Structures

We now turn to the problem of implementing efficient data transfers of
more complex structured data. We first define our task more precisely,
before we discuss possible techniques using our simplified model of an
invasive architecture. We then discuss concrete implementations for the
invasive hardware prototype.

Figure 4.8 shows our starting point. For clarity, we zoom in on the upper
part of Figure 4.2. We want to copy a data structure G from the off-chip
memory partition of tile S to a copy G′ of that data structure in the off-chip
memory partition of the receiver R. Again, when we speak of data being
located “in off-chip memory”, we mean that it is located in a part of the
address space that is backed by the off-chip memory. As our architecture
has caches, the actual data might not be completely located in off-chip
memory physically, but can also be (partly) saved in a cache.

An object graph is a rooted directed graph15 16 where the vertices are
objects and an edge (x , y)means that x points to y. In the context of our
15We implicitly consider this graph to be connected.
16Strictly speaking, we have to model object graphs as multigraphs, because objects can

contain multiple pointers to the same target object. However, for simplicity, we ignore
this detail and use regular graphs.



4.4. Transferring Pointered Data Structures 109

S’s partition R’s partition

(a) Shallow copy.

S’s partition R’s partition

(b) Deep copy.

Figure 4.10: Comparison of shallow and deep copy of an object graph.
With a shallow copy, pointers contained in the object copies of the right
memory partition still point to the original objects in the left memory
partition. With a deep copy, this problem is avoided.

discussion, we restrict ourselves to object graphs with a single root vertex,
i.e., we speak of “the” root. Object graphs can contain cycles, e.g., the
graph of a cyclic linked list. Figure 4.9 shows an example of such an object
graph.

We call a data structure flat iff its respective object graph has a single
vertex and no edges, and pointered otherwise. Note that distinguishing
between contiguous and non-contiguous data structures is not equivalent.
A contiguous data structure may contain pointers to itself, hence its object
graph may consist of a single vertex with one or multiple loops. While
this case is somewhat contrived, in the following we make an effort to be
precise and speak of pointered and flat data structures when referring to
the presence (or absence) of pointers in the objects. We use contiguous
and non-contiguous only to refer to the memory layout of objects.

It is important to understand what it means to make a copy of a pointered
data structure or, equivalently, its object graph (cf. Figure 4.10). Making a
copy of an object graph in a different memory partition requires creating
a deep copy. Hence, we must copy all objects and at the same time modify
the contained pointers so that they point to the newly created objects. A
shallow copy, obtained by bytewise copying of the objects, is not sufficient
as the contained references would point to the original objects. In the
context of a non-cache-coherent architecture with a logically partitioned
memory, these original objects reside in a different memory partition.
Hence, accessing them is inherently unsafe in the sense that we have no



110 4. Compiling X10 to Invasive Architectures

guarantee of reading up-to-date values due to the missing coherence. This
difference between shallow and deep copy only matters for pointered data
structures. For flat objects, both types of copy coincide.

Additionally, we require referential integrity [Ora16]. Hence, if two objects
in the original object graph point to the same object, the copies of these
two objects must point to the same (copied) object as well. This must
also hold if the object graph contains cycles. With referential integrity,
operations behave the same whether executed on the original object graph
or its copy17.

We now explain why object graphs and their copies are important for
X10. X10’s primary language means for distributed-memory parallelism
are the concept of places and the at construct for changing the place of
execution (cf. Section 3.4). In the following, we discuss the semantics of
X10’s at operation in more detail.

X10 objects stay on their place of creation during their whole lifetime, i.e.,
objects cannot migrate between places. Additionally, all data accesses
must be place-local in X10. This means that we can only access remote data
by migrating our computation to the place where the data is located.

The at construct allows us to do exactly that; for example:

val x = ...;
at (B) {
val y = ...;
compute(x, y);
}

Here, we change to place B and execute the method compute on that
place. We assume the expression is well-typed, i.e., B has type Place
(or a subtype). Suppose we execute this at expression on place A. As
explained in Section 3.4, the at operation is a synchronous construct18.
Hence, conceptually, the activity executing the at operation changes its
current place of execution from A to B. After it has finished computation
on B, it shifts back to A.
17Referential integrity concerns object identity. If object addresses can be queried, different

behaviors are possible. X10, just like Java, does not allow querying addresses.
18We can combine it with async to get an asynchronous variant.



4.4. Transferring Pointered Data Structures 111

class Foo {
var p: Foo;
def this(q: Foo) { p = q; }
static def bar() {
val a = new Foo(null);
val b = new Foo(a);
a.p = b;
val x = new Foo(a);
at (B) {
val y = new Foo(null);
compute(x, y);
}
}
}

(a) X10 code.

ox oa ob

(b) Object graph.

Figure 4.11: An X10 program containing an at expression that captures
variables, and the matching object graph.

The body S of a statement at (B) S is allowed to refer to variables that
are not defined in S itself. In our example, the call to compute refers to x,
which is defined in an enclosing scope. However, as all data access must
be place-local, we cannot access x on B.

Therefore, X10 semantics dictate that the values of all free variables in
Smust be copied from A to B before S is executed on B [Sar+16, §13.3.1].
Hence, X10’s at statements close over the values of the free variables in S.
To implement this semantics, the X10 compiler first determines the set
of free variables F in S. Extending our initial example to the example
from Figure 4.11a, the X10 compiler determines the set of free variables
F � {x}.
Then, at run-time, at the program point where the at expression is to be
executed, all variables in F are evaluated, resulting in a set V of values.
The X10 runtime system now determines the set V∗ of all values that are
transitively reachable from values in V . Using V∗ as the vertex set and
the (immediate) reachability relation as the edge set, this results in an



112 4. Compiling X10 to Invasive Architectures

val x = O();
val y = O();
at (B) use(x, y);

(a) Before transformation.

class C {
val x, y;
def operator()() {
use(x, y);
}
}
val x = O();
val y = O();
Runtime.runAt(B, new C(x, y));

(b) After transformation.

Figure 4.12: An example of how the X10 compiler transforms at state-
ments.

object graph. In our example from Figure 4.11a, V∗ � {ox , oa , ob}, where
oz denotes the value (or object) pointed to by z. This leads to the object
graph shown in Figure 4.11b.

In general, an at statement may lead to an object graph with multiple roots
(one per value of a free variable). However, the X10 compiler implements
at blocks using closure objects. Hence, for each at block T, it creates a
new class that contains a field for each free variable of T. At the program
point of the at statement, the compiler then creates an instance of this
new class, initializing its fields to the values of the variables at that point.
See Figure 4.12 for an example of the transformation.

Essentially, for a particular at block T, this adds a new root object (the
instance of C in the example) that points to all old root objects. In the
following, we therefore assume that the arguments that must be copied
for an at block always correspond to exactly one object graph with one
root.

X10 also offers at in expression form to copy results back to the original
place. Hence, it is possible to write:

val result = at (B) compute(x);



4.4. Transferring Pointered Data Structures 113

In this case, the result computed by compute on place B is transferred back
to place Awith the same deep-copy semantics as the arguments we studied
before. Hence, this result object corresponds to exactly one object graph.
In general, at expressions are allowed to refer to variables from enclosing
scopes as well. Therefore, executing an at expression can involve the
transfer of two object graphs: one from A to B for the arguments and one
back from B to A for the result.

Hence, we see that in the context of X10, we must be able to transfer object
graphs with deep-copy semantics between memory partitions.

Related Work. The problem of transferring object graphs with deep-
copy semantics also arises in the context of other systems that support
object-oriented programming in a distributed setting. Java RMI [Ora16]
(for “Remote Method Invocation”) is an official Java API that introduces
the concept of remote objects. Remote objects appear like regular objects
to the programmer, but may live in remote address spaces, i.e., another
JVM, possibly running on another host machine.

Calling a method on a remote object triggers a remote method invocation,
i.e., the method call is forwarded to a remote JVM that actually hosts
the object. For all objects passed as arguments to such a remote method
invocation, Java RMI uses the same deep-copy semantics as X10. Hence,
all object graphs rooted at the objects passed as arguments are shipped
to the remote host as part of the remote method invocation. The same
deep-copy semantics is used for a potential method return value.

To this purpose, Java RMI employs serialization (cf. Section 4.4.1). Multiple
articles [Phi11; VP03] identified this serialization step as one of the main
performance bottlenecks of remote method invocations and proposed
various optimizations to accelerate the process.

Task. In summary, we investigate the following scenario:

• There is an object graph G in the off-chip-memory partition of the
sending tile S.

• Size and shape of G are not known a-priori.

• We require a deep copy G′ of G in the off-chip-memory partition of
the receiving tile R.



114 4. Compiling X10 to Invasive Architectures

TS TR

Sender S’s partition Receiver R’s partition

S R

G B B′ G′

Figure 4.13: Using serialization to make a deep copy of an object graph G.
Temporary buffers are denoted by B, B′; and G′ is the resulting copy of G.

We assume no knowledge about the size and shape of the object graph G
at the program point where the copy is required. We denote with the size
of an object graph G the sum of all object sizes in G. It is unrealistic to
assume that size and shape of this dynamic data structure are known to
compiler or runtime system at the program point where data must be
transferred. For example, suppose a program builds a tree data structure.
This tree can depend on input data. Hence, size and shape can only be
determined by traversing the data structure at run-time.

In the following, we discuss multiple approaches for creating this deep
copy G′. We first focus on serialization-based approaches and then present
cloning-based approaches.

4.4.1. Serialization-Based Approaches

One possibility to deep copy an object graph is using serialization. This
approach proceeds according to the following three steps:

1. Serialize the object graph G to a flat representation B.

2. Copy B to B′ in the receiver’s partition.

3. Deserialize from B′ a deep copy G′ of G.



4.4. Transferring Pointered Data Structures 115

Figure 4.13 illustrates the process using a simplified depiction of Figure 4.2.
Note that the buffers B and B′ must, in general, also be placed in off-chip
memory, as the size of G, and therefore the space requirement of B and
B′, is not known a-priori.

This approach uses serialization to reduce the problem of copying a
pointered data structure to the problem of copying a single flat data
structure. Serializing an object means converting its state into a contiguous
byte stream in a reversible way so that we can reconstruct (deserialize)
the object from the byte stream. To serialize an object graph we must
serialize all objects in the graph. Algorithm 1 shows pseudo code for
serialization. The algorithm is basically a depth-first search with cycle
detection. We assume that O is the root of the object graph and that B
refers to a buffer that holds the serialized representation. Furthermore,
for ease of presentation, we assume that fields with compound types (e.g.,
structs in X10) are “flattened” into their containing object. Hence, each
field is either a pointer to another object or is a non-pointer type that
cannot contain further pointers.

Algorithm 1 Object serialization.

1 procedure Serialize(O, B)
2 if AlreadySerialized.contains(O) then
3 // Get position of serialized version of O in B
4 pos ← AlreadySerialized[O]
5 B.append(reference to pos)
6 return
7 AlreadySerialized[O] ← current position in B
8 for each F in O.type.fields do
9 if ¬F.type.pointer then B.append(O.F)

10 else Serialize(O.F, B)

After serializing the object graph, we have to copy the resulting byte
stream B to B′ in another memory partition. We discussed the general
idea behind shallow copying of data between shared-memory partitions
in Section 2.4.3. We saw that we can implement this operation using TLMs
or directly via off-chip memory. We refer to these approaches as Ser-Tlm
and Ser-Off.



116 4. Compiling X10 to Invasive Architectures

TS TR

Sender S’s partition Receiver R’s partition

S R

G B G′

Figure 4.14: Optimized variant of transferring an object graph G using
off-chip memory. B is a temporary buffer and G′ is the resulting copy of
G.

In our special setting of transferring pointered data structures, we can
make one additional optimization. We can eliminate one of the buffers B
and B′—after all, one serialized copy of G is enough on a machine with a
shared physical address space. We only need two copies if we treat our
system as a pure message-passing platform. However, in our setting we
can exploit the shared physical address space and our knowledge that B
and B′ are only used temporarily.

Hence, our optimized variant for passing messages via off-chip memory
(Ser-Off-Opt) follows these three steps (see Figure 4.14):

1. write & writeback: S serializes G into a buffer B located in its memory
partition. Then, S forces a writeback for the cache lines of B from its
local cache. The writeback guarantees that R can read up-to-date
values for B from memory. S waits until all relevant cache lines have
been committed to memory.

2. notify: S sends a message carrying the starting address and size of B
to R. This informs R that it is now safe to read B.

3. invalidate & read: R invalidates the cache lines relevant for B. The
cache invalidation is necessary to ensure that B is actually read from
memory. Then, R deserializes from B a copy G′ of the object graph.



4.4. Transferring Pointered Data Structures 117

Thus, Ser-Off-Opt avoids creating a copy of B on the receiving side. Hence,
it reduces the memory requirement by 25% compared to our previous
approach using off-chip memory. It also avoids copying B to B′.

The main advantage of using serialization is that we only have to transfer
a single flat data structure. As message passing is often a preferred
approach for programming non-cache-coherent architectures [Kum+11],
architectures often provide optimized libraries for this purpose [URK;
Mat+10].

However, serialization has a number of drawbacks in our scenario of
transferring pointered data structures. In total, employing this approach
requires up to four times as much memory as the initial object graph G.
A serialized version of G requires about the same amount of memory
as G itself and both sender and receiver hold the object graph and its
serialized representation in memory. In the optimized case, the serialized
representation is only held in memory once.

Additionally, (de-)serialization is itself a costly operation. It puts significant
stress on the memory subsystem, especially the caches. Serializing an
object graph requires reading every byte of each object in the graph
and writing approximately the same amount of data for the serialized
representation; the same for deserialization. This may evict more useful
data from the caches. Moreover, sender and receiver only use the serialized
representations in B (and B′ in the non-optimized case) temporarily. Hence,
after the transfer operation has finished, the buffers will not be used again,
but accessing them evicts potentially more useful data from the caches.

4.4.2. Cloning-Based Approaches
There is an alternative approach to deep copy an object graph that does
not require a serialized representation. In the context of our discussion,
we call this operation cloning to differentiate it from serialization.

Algorithm 2 shows pseudo code for cloning. The clone operation is a
depth-first traversal of G with cycle detection like serialization. Passing
the root object of G to the procedure Clone returns a deep copy of G. The
important difference between cloning and serialization is that cloning
does not construct a flat representation of G. Instead, it traverses G and,
at each object o, it directly creates a copy o′ of o.



118 4. Compiling X10 to Invasive Architectures

Algorithm 2 Object cloning.

1 procedure Clone(O)
2 if AlreadyCloned.contains(O) then
3 return AlreadyCloned[O]
4 O’ ← Allocate(O.size)
5 AlreadyCloned[O] ← O’
6 for each F in O.type.fields do
7 if ¬F.type.pointer then O’.F ← O.F
8 else O’.F ← Clone(O.F)
9 return O’

Cloning is often used on regular shared-memory machines (compare, e.g.,
java.lang.Cloneable). However, it is not dependent on a shared address
space and we can also use it on message-passing systems. There, the
process is more complicated due to the missing shared address space and
requires cooperating actions on sending and receiving side. In general,
using cloning with a message-passing system proceeds according to the
following scheme (see Algorithms 3 and 4):

• Initially, we copy the address of the root object of G from S to R.

• We now traverse the object graph in lockstep on both sender and
receiver. On the sender, at each object we have not visited before, we
shallow-copy the object to the receiver. On the receiver, at each object
we have not visited before, we receive the shallow object copy o′.
We then repair all pointers contained in o′ by awaiting additional
object copies. We use sender-local addresses to differentiate between
visited and unvisited objects on the receiver. However, we never
access memory at these addresses on the receiver, hence this is safe.

Algorithms 3 and 4 illustrate the cooperation between sender and receiver.
On the receiver, A is the sender-local address of the object to be cloned.
Initially, it contains the address of the root object. We use C notation and
denote with *p a dereference operation on address p.

In general, cloning-based approaches provide a different trade-off than
serialization-based approaches. Cloning avoids constructing a serialized



4.4. Transferring Pointered Data Structures 119

representation. However, each object in the object graph requires a separate
message. Hence, cloning trades the need to reformat (i.e., serialize) the
object graph for more frequent communication operations.

Algorithm 3 On sender.

procedure CloneSend(O)
if AlreadySent[O] then
return
Send(*O)
AlreadySent[O] ← True
for each F in O.type.fields do
if F.type.pointer then
CloneSend(O.F)

Algorithm 4 On receiver.

procedure Clone(A)
if AlreadyCloned.contains(A) then
return AlreadyCloned[A]
O’ ← Recv()
AlreadyCloned[A] ← O’
for each F in O’.type.fields do
if F.type.pointer then
O’.F ← Clone(O’.F)

return O’

In principle, we can implement the send()/recv() pair using the tech-
niques from Section 4.3, i.e., using TLM (Clone-Tlm) or using off-chip
memory (Clone-Off). However, in the case of using off-chip memory,
there is again an optimization opportunity: why do we even copy the
objects? Why not use the instances that are already in off-chip memory?

Hence, we propose the following approach (Clone-Off-Opt), which is a
central contribution of this chapter. Our approach proceeds according to
the following three step scheme (see Figure 4.15):

1. writeback: S forces a writeback of all objects in G. For each object
we know its starting address and size. Hence, by traversing G, we
can write back the relevant cache lines of each object. Then, S waits
until all relevant cache lines have been committed to memory.

2. notify: S sends a message carrying the address of the root object of G
to R. This notifies R that it is now safe to clone G.

3. invalidate & clone: R clones G, resulting in G′. Before reading an
object o, R invalidates the relevant cache lines for o. Then, R creates
a copy o′ of o in R’s memory partition.

Again, we have some freedom regarding the placement of data and
responsibilities. In our description from Figure 4.15, we used a pull-style



120 4. Compiling X10 to Invasive Architectures

TS TR

Sender S’s partition Receiver R’s partition

S R

G G′

Figure 4.15: Transferring an object graph G using object cloning. G′ is
the resulting copy of G.

approach, i.e., the receiver performs the actual object cloning. However,
it is also possible to use a push approach and let the sender perform the
cloning. In this case, the sender traverses G and clones it while placing all
newly created objects in R’s memory partition. After creating an object o,
S writes back the address range of o. After S has finished creating the
copy G′, S notifies R of the root object’s address. R then traverses G′ and
at each object o invalidates the address range of o. This ensures that R
reads up-to-date values for all objects in G′.

In practice, a push-style approach may be more difficult to realize as it
requires to create objects in a foreign memory partition. Depending on
the memory allocation scheme for objects used by the tiles, the required
synchronization can cause significant overhead. For example, the tiles
might classify objects according to their size and allocate all objects of a
certain size range in dedicated memory areas to reduce fragmentation.
Then, with a push-style approach, each object allocation would need to
happen on the receiving tile. Hence, each allocation would require a
forth-and-back communication between sending and receiving tile. This
is expensive for object graphs with many objects. If the tile uses a simpler
memory allocation technique, using a push-style cloning approach is
unproblematic. With a push-style approach the write-back is integrated
into the cloning process, whereas on the receiver we invalidate all address
ranges spanned by the objects in the graph. Hence, this is the dual



4.4. Transferring Pointered Data Structures 121

situation to the pull-style approach (compare Algorithms 3 and 4). In
general, as PGAS languages prefer one-sided communication, the push-
style is preferable in this context.

The main difference between Clone-Off-Opt and serialization-based
approaches is that Clone-Off-Opt avoids serialization and thus requires
no temporary buffers. Hence, it is cache-friendlier, as no temporary buffers
pollute the cache.

For flat data structures, Clone-Off-Opt is equivalent to Ser-Off-Opt. In
this case, there is no need for serialization on the sending side (“G � B”)
and “deserialization” is equivalent to copying the single object, i.e., cloning
it. Viewed this way, Clone-Off-Opt is a generalization of Ser-Off-Opt
from flat to pointered data structures. Viewed another way, Clone-Off-
Opt augments the widely-used object-cloning technique with automatic
writebacks and invalidations to allow its use on non-cache-coherent
systems.

Correctness. At this point, we briefly discuss correctness of our ap-
proach. We cannot offer any formal proofs, hence we only discuss this
topic informally.

In order to prevent data races, the object graph must not be modified
concurrently to the clone operation. With a push-style approach, this
requires appropriate synchronization on the sender (the same applies
when using serialization). The pull-style variant has one additional
complication. Here, the sender must wait until the receiver acknowledges
that it has finished cloning the object graph. Hence, the necessary
synchronization involves a remote party and can therefore be more
expensive.

It is also not intuitively clear that multiple concurrent transfers of the
same object graph do not cause issues. Let us first look at the situation
where multiple receivers clone the same object graph G using pull-style
cloning. Hence, multiple writebacks of G can happen concurrently on
the sender. This is unproblematic, as writing back a non-dirty cache line
is a no-operation. Hence, multiple cores may compete to write back G,
but as long as they properly synchronize afterwards, this does not cause
issues.



122 4. Compiling X10 to Invasive Architectures

On the receiver, multiple invalidations of the same address range can
happen concurrently. For example, it is possible that core 1 invalidates
range A, begins to read data from A, and then core 2 invalidates A again.
However, this is unproblematic, as the next read request, even if it comes
from core 1, fetches the data from memory again. The data at A must
still be the same as before, as otherwise there would be a data race in the
program (as G was modified while being cloned). In general, multiple
competing invalidations are not a problem, as we do not modify data
in the sender’s partition. We only read from this memory area, hence
competing transfers may invalidate the same cache line multiple times,
which causes unnecessary costs, but is harmless.

With a push-style approach, the write-back issued by the sender is po-
tentially problematic. Imagine that we create an object in the receiver’s
partition and then issue a write-back of the relevant cache lines. If the
receiver modified data located at a different location in the same cache
line, we overwrite the receiver’s changes. However, we can easily prevent
this problem by using reserved memory locations for writing to foreign
memory partitions (similar to MPI windows [Mes15, section 11.2]).

4.4.3. Related Work

The problem of transferring pointered data structures frequently arises
on architectures with physically separate address spaces, such as clusters
of machines connected by a network. Various prior work explores the
simplification of transferring pointered data structures for programs using
MPI [GRR00; WBJ16]. The authors focus on assisting the programmer
with writing the necessary serialization routines and orchestrating the
necessary communication operations.

A similar problem arises in the context of platforms composed of a host
CPU and an accelerator, e.g., a GPU, with separate address spaces. The
OpenACC standard [Ope17] provides an API for offloading tasks from
CPU to accelerator. This involves copying data from the CPU’s address
space to that of the accelerator. As of version 2.5 of the standard, OpenACC
only allows transferring flat data structures. Beyer et al. [BOS14] report
that, according to user feedback, this restriction is the most important
impediment to porting interesting data structures and algorithms to



4.4. Transferring Pointered Data Structures 123

OpenACC. Beyer et al. propose a solution based on compiler directives
that allow (semi-)automatic deep-copy support.

This body of work shows that transfers of pointered data structures occur
frequently and are important in real-world programs. In contrast to
this body of work, non-cache-coherent architectures do allow accesses to
remote memory partitions, albeit without coherence guarantees, as we
only partition memory on a logical level.

In the context of non-cache-coherent architectures, our work is closely re-
lated to the work on data transfers presented in Section 4.4.1. However, this
body of work only considers flat data structures. In some cases [CHH11],
authors mention pointered data structures, but use serialization with the
message-passing approach.

Regarding pointered data structures, it is interesting to look at the work of
Prescher et al. [PRN11; Rot+12] and Lyberis et al. [Lyb+12b]. Prescher et al.
present MESH, a C++ framework for distributed shared memory that
supports non-cache-coherent architectures. While X10 enforces a central
instance for each object, i.e., each object exists on exactly one place, MESH
allows choosing between different sharing models (object replication,
central instance, and mixtures of both). However, MESH is library-based
as opposed to our compiler- and language-based approach. As such,
existing software must be modified to be used with MESH. Moreover,
their implementation requires a consistency-controller object per shared
object and triggers additional communication for coherence management.
We avoid this overhead, as we manage coherence in a more restricted
environment under control of the compiler.

Lyberis et al. present Myrmics [Lyb+12b], a memory-allocation scheme
based on regions aimed at non-cache-coherent architectures. They observe
that transferring pointered data structures using messages is an expensive
and complicated operation. As discussed above, low-level libraries, such as
MPI, provide no dedicated support, i.e., the programmer must orchestrate
the necessary serialization and deserialization.

Lyberis et al. propose to use regions, which are growable memory pools
that contain objects. The Myrmics runtime system ensures that objects
allocated in such a region have a globally unique address across all
coherence domains. This means that if one coherence domain allocates an



124 4. Compiling X10 to Invasive Architectures

object at a globally valid address A, no other coherence domain allocates
an object at A even if that address is backed by distinct memory on different
coherence domains.

Users can then allocate logically associated objects, e.g., each element of a
linked list, in the same region. If a core from a different coherence domain
requires access to that data structure, Myrmics can transfer the whole
region it is contained in as one block. As the object addresses, i.e., the
pointers, are globally unique, even pointered data structures are valid
without modification after a transfer. Hence, the receiving domain can
operate locally on the copied data structure using the same pointers as the
sending domain. Thus, Myrmics avoids the need for pointer translation
completely.

However, using this approach requires program modifications. Specifi-
cally, the programmer must identify data structures that may be shared
and use regions (and sub-regions) accordingly. Moreover, this approach
requires a virtual-memory subsystem. Otherwise, the same addresses
cannot refer to different memory locations on different domains.

Kumar et al. present HabaneroUPC++ [Kum+14], a C++ library that
enables an asynchronous PGAS programming style in C++. The library
implements constructs similar to those found in X10 (mainlyfinish, async,
and at). The programmer must transfer necessary data manually.

Transferring non-contiguous data types is a frequent operation [KHS12].
Therefore, MPI provides explicit support for specifying so-called derived
data types [Mes15, chapter 4]. For example, derived data types allow to
describe the transfer of the first column of a matrix that is saved row-wise
in memory. An MPI implementation can decide to pack this data into a
contiguous format before the transfer. Alternatively, certain interconnect
hardware supports the transfer of such derived data types directly from
memory (“zero copy”) [KHS12]. However, derived data types still require
regularly structured data and are unsuitable for irregular pointered data
structures. For the same reason, scatter/gather DMA transfers are not
ideal, as they can copy non-contiguous data structures but only make
shallow copies.



4.4. Transferring Pointered Data Structures 125

4.4.4. Implementation on the Hardware Prototype

In this section, we describe the concrete implementations of the data-
transfer techniques for invasive architectures that we use in our evaluation
in Section 4.6. Our starting point is an object graph G located in the off-chip
memory partition of sending tile S. We want to transfer G with deep-copy
semantics to G′ in the off-chip memory partition of a receiving tile R. First,
we briefly describe our implementation of serialization needed for the
message-passing-based approaches. Then, we cover the implementation
of the actual data-transfer techniques.

For serialization, we implement Algorithm 1. We do not iterate over all
fields of a type at run-time, i.e., we do not use reflection. Instead, our
X10 compiler generates specialized serialization functions per type. At
run-time, we invoke a type-specific serialization function that knows about
the memory layout of the specific type. Therefore, it can directly invoke
the serialization function for all non-pointer fields. For pointer fields, due
to subtyping, we do not necessarily know the run-time type of objects in
the graph. Hence, in general, we have to dynamically dispatch calls to
serialization functions for pointer fields using the vtable mechanism.

To implement Ser-Tlm, we first serialize G to a contiguous buffer B in the
off-chip memory of S. Now, we have to transfer B to B′ in R’s partition.
We saw in Section 4.3.4 that the preferred data-transfer technique is via
DMA transfers from TLM to a remote memory. Unfortunately, the current
prototype (cf. Section 3.6) only supports TLM as the possible remote
memory type. Hence, we copy B to a buffer BS in the sending tile’s TLM,
transfer it to R’s TLM using a DMA transfer, and then deserialize a copy G′

(see Section 4.3.4 for details).

This process may seem overly redundant. However, suppose we have a
library that implements message passing using DMA transfers between
TLMs on invasive architectures. In this case, the X10 compiler is in charge
of serializing the object graph G and passes the resulting buffer B to the
library. On the receiving side, the library expects to be passed a buffer B′

to store the received data, as the data cannot stay in TLM permanently.
Hence, the X10 compiler would allocate a buffer B′ on the receiving side
as well. Thus, (possibly redundant) copying of data between off-chip
memory and TLMs may happen due to library usage.



126 4. Compiling X10 to Invasive Architectures

To implement Ser-Off-Opt, we first serialize G into a contiguous buffer B
in the off-chip memory partition of S. Then we force a write-back of B’s
address range using the previously described process. We wait until all
cache lines have been written to memory. Then, we notify the receiving
tile using an i-let, which carries the address of B. We store the buffer size
in B before the actual payload. On the receiving tile, the i-let invalidates
B’s address range. Then, it deserializes a copy G′ of the original object
graph from B.

To implement Clone-Off-Opt, we choose pull-style object cloning. Hence,
we first force a write-back of each object in the object graph G. As
with serialization, our X10 compiler generates type-specific write-back
functions. We implement this write-back operation using a modified
variant of Algorithms 1 and 2; see Algorithm 5. Hence, the generated
functions perform a depth-first traversal of G and at each object write
back its respective address range. We use the C-style syntax p + xwith
an address p and offset x for byte-wise address arithmetic. As with
serialization, if the type of an object is statically known, we can directly
invoke the matching writeback function. Otherwise, we use dynamic
dispatch.

Algorithm 5 Type-specific write-back function.

1 procedure Writeback(O)
2 if AlreadyVisited.contains(O) then
3 return
4 WritebackRange(O, O + O.size) // Automatic write-back
5 AlreadyVisited[O] ← True
6 for each F in O.type.fields do
7 if F.type.pointer then
8 Writeback(F)

Subsequently, we wait until all write-back operations have finished and
then notify the receiver using the method discussed in Section 4.3.4. After
that, the receiver clones G. We implement Algorithm 2. Again, our X10
compiler generates specialized clone functions per type. However, there
is one crucial alteration we make to Algorithm 2: we adapt the code
generation so that, before we access an object o from S’s partition, we



4.4. Transferring Pointered Data Structures 127

invalidate o’s address range. See line 6 in Algorithm 6. As every access to
objects from S’s partition happens in compiler-generated clone functions,
we issue invalidation commands for exactly the necessary memory regions.
Other data from R’s own partition is accessed normally.

Algorithm 6 Object cloning with integrated cache invalidation.

1 procedure CloneInv(O)
2 if AlreadyCloned.contains(O) then
3 return AlreadyCloned[O]
4 O’ ← Allocate(O.size)
5 AlreadyCloned[O] ← O’
6 InvalidateRange(O, O + O.size) // Automatic invalidation
7 for each F in O.type.fields do
8 if ¬F.type.pointer then O’.F ← O.F
9 else O’.F ← CloneInv(O.F)

10 return O’

As we can only invalidate our L1 cache completely, we employ the
following method to avoid invalidating the whole cache each time we
read an object. We invalidate the relevant L2 cache lines before reading
an object. However, we ignore the L1 cache and issue no operations.
After visiting all objects of the graph, we thus have an L2 cache that does
not contain valid lines from foreign memory partitions. Of course, our
L1 cache can still contain such lines. We now issue one invalidation of
the complete L1 cache. As our L1 cache is configured in write-through
mode, this invalidates all cache lines that cache data from foreign memory
partitions while not discarding local modifications. The following L1
cache misses are mostly compensated by the L2 cache.

There is one remaining complication that we need to discuss. The X10
runtime system handles statements of the form at (B) async S specially.
Such a statement immediately terminates locally (cf. Section 3.4). Hence,
this construct is the X10 equivalent of an active message [Eic+92]. When
using a push-style approach, after preparing the object graph (either via
serialization or cloning), we can spawn the activity on the remote place
and require no further synchronization. With our pull-style approach, we
have to wait for the remote tile to finish cloning the object graph.



128 4. Compiling X10 to Invasive Architectures

4.5. Hardware Support

In this section, we propose a hardware extension to allow the invalida-
tion, write-back, and flushing of address ranges. We first motivate this
hardware extension and discuss the design space. We then describe our
implementation and relate it to existing work. The complete hardware
was implemented by Michael Mechler and Carsten Tradowsky [MT17;
Mec16; Tra16].

We saw in Sections 2.4, 4.3.4 and 4.4.4 that software-managed coherence
is a fundamental operation to implement efficient communication on
non-cache-coherent architectures, regardless of the programming model
used. However, the granularity with which we manage coherence may
differ. An implementation of the shared-memory programming model
may require managing the coherence of individual variables, i.e., the
ability to operate on individual addresses and their respective cache lines
or even words within cache lines (cf. Section 2.2.2.3). On the other hand,
with a message-passing or PGAS programming model, we operate on a
coarser granularity, e.g., contiguous buffers or contiguous objects. Here,
we often require the ability to invalidate or write back address ranges.

It is easy to build such range-based cache operations using line-based
variants. Assume that the hardware provides means to invalidate the
cache line associated with a particular address. As mentioned before,
we can then invalidate a whole address range [S, E] using the following
program, assuming a cache line size of L bytes:

for x := S − (S mod L) to E − (E mod L) step L:
invalidate(x)

Again, we use mod to denote the modulus operation on integers. The
term A − (A mod L) rounds the address A down to the nearest multiple
of L.

However, as communication operations using these range-based cache
operations may be frequent, better hardware support is desirable. We are
not the first to realize that fact. We found multiple instances of this insight
in the literature on non-cache-coherent architectures:



4.5. Hardware Support 129

• Peter et al. [Pet+11a, section IV.B] write:

In our message-passing implementations, we generally
know precisely which addresses we wish to invalidate.
Consequently, we would find more fine-grained cache
control very useful. An instruction which would invalidate
a region around a given address would be ideal for us.

• Rotta et al. [Rot+12, section VI] write:

The presented framework would benefit from a write-back
and a write-back-invalidate instruction on logical address
ranges.

• Christgau et al. [CS16, section 8] write:

Consequently, more fine-grained control is required to
prevent unnecessary invalidation. Therefore, it would be
beneficial to supply the starting (virtual) address and the
size of the region to the invalidation instruction.

Thus, we see that ranged-based cache operations are generally considered
useful on non-cache-coherent architectures.

4.5.1. Design Space

In the following, we discuss the design space of range-based cache
operations. We assume a standard cache architecture (cf. right half of
Figure 4.17), i.e., the cache is organized in cache lines. Each cache line
saves a tag for identifying the cache line as well as two status bits valid and
dirty to signal whether the data of the cache line is up-to-date (valid), or
up-to-date but locally modified (dirty).

Conceptually, we desire instructions invalidate and writeback, which
operate on address ranges, with the following semantics:

• invalidate S E invalidates all cache lines that hold data from the
address range [S, E]. Hence, this instruction clears the valid bit of all
affected cache lines. It performs invalidation regardless of whether
the cached data is marked as modified or not.



130 4. Compiling X10 to Invasive Architectures

• writeback S E writes back the contents of all cache lines that are
marked as modified and hold data from the address range [S, E].
Hence, this instruction writes the data of the affected cache lines to
the next component in the memory hierarchy (i.e., the next cache or
the backing memory) and clears their modified (dirty) bits.

Ideally, these hypothetical instructions would run in one clock cycle.
This is feasible in theory; however, the overhead would be significant.
Essentially, such a fully parallel implementation of this concept would
require two hardware comparators per cache line. These comparators
would need to compare the address range given in the instruction against
the tag of the respective cache line. In case the cached address is part of
the address range, the respective action (invalidation or writeback) would
be triggered.

The area overhead of having two comparators per cache line seems
prohibitive. Typical addresses have 32 or 64 bits. We only need to compare
the number of bits occupied by the tag of a cache line. While the tag
typically has fewer bits, depending on the concrete cache structure, the
required comparators for that number of bits would still cause massive
area overhead.

Therefore, the designers of the Intel SCC chose a different approach. They
introduced an additional status bit, “MPBT” for “message-passing buffer
type”19, for each cache line in the L1 cache. Software can mark memory
regions as MPBT memory with page granularity. Reads from MPBT
memory get cached in the L1 cache, but bypass the L2 cache. L1 cache
lines holding data from MPBT memory have their respective MPBT bit
set. The Intel SCC then provides the instruction CL1INVMB to invalidate
all cache lines marked as MPBT in the L1 cache. This instruction runs in
one clock cycle.

Unfortunately, there is no official documentation available about the inter-
nal implementation of this instruction. We suspect that it is implemented
using 1-bit comparators, i.e., a single AND gate, per cache line. When a
core executes the CL1INVMB instruction, the hardware checks the MPBT
19Named after the SCC’s on-chip memories (message-passing buffers, cf. Section 2.3.1). This

memory type was designed to be used with message-passing buffer memory, but is not
limited to it, i.e., off-chip memory can be marked as MPBT as well [Mat+10].



4.5. Hardware Support 131

bit of all cache lines in parallel. For each cache line, if its MPBT bit is set,
the hardware clears the valid bit of the respective cache line.

The Intel SCC does not provide a counterpart for writing back cache lines.
Writes to MPBT memory do not get cached. However, the Intel SCC offers
a “write-combine buffer” that aggregates writes. This buffer is flushed
once a full cache line has been written, or a different cache line is written
to. Thus, as long as applications are aware of this behavior, no explicit
writeback functionality is required.

While CL1INVMB allows the efficient invalidation of many cache lines at
the same time, it is imprecise. This may cause the unneeded invalidation
of cache lines, resulting in unneeded memory accesses the next time these
addresses are accessed. In fact, all statements from the authors quoted
at the end of the previous section referenced the Intel SCC’s imprecise
invalidation instruction. Hence, this design sacrifices precision to achieve
the goal of low running time (one clock cycle) with manageable area
overhead.

In the following, we propose a different trade-off to approximate the ideal
of range-based cache operations that complete in one clock cycle. Our
proposal does not impede precision, i.e., it operates exactly on the cache
lines belonging to a given address range. Instead, it compromises on the
running time: our proposed instruction takes one clock cycle (from the
view of the processor) only in the best case; in the worst case it takes
n clock cycles to operate on an address range spanning n cache lines.

4.5.2. Concept and Implementation

In the following, we present our concept and implementation of non-
blocking range-based cache operations (or range operations for short).
Our range operations offload the work to an enhanced cache controller.
The underlying processor for our implementation is a Gaisler LEON 3,
which implements the SPARC V8 ISA (cf. Section 3.6). However, neither
our concept nor our implementation are tied to this particular ISA or
microarchitecture. We first present the instruction format we used and
then discuss our implementation of the cache-controller logic.



132 4. Compiling X10 to Invasive Architectures

11 type 111000 rstart 0 unused rlength
31 29 24 18 13 12 4 0

11 type 111000 rstart 1 length
31 29 24 18 13 12 0

Figure 4.16: Instruction encoding of range operations. The type field
encodes the operation type (invalidate, writeback, flush); rstart, rlength are
register operands; length is a 13-bit immediate.

CPU Cache Controller

Range
Buffers

B1

. . .
Bn

Load-Store
Management

. . .

. . .

. . .

. . .

. . .

. . .
Tag 1
Tag 0

V D
V D
V D
V D
V D
V D
V D
V D

Cache Memory Flags

Figure 4.17: Schematic view of our modified cache architecture. The
modified cache controller containing the range buffers is highlighted bold.

We develop new instructions compatible with the SPARC V8 ISA. Fig-
ure 4.16 shows the encoding used for the range operations. We use the
instruction format for load/store instructions and describe the address
range as a starting address and a length in bytes. The starting address
must be supplied in a general-purpose register. The length can be given
as either a 13-bit immediate or in a register. During the Execute stage of
the pipeline, the accumulator calculates the end address (cf. Section 5.2
for details on the pipeline structure). During the Memory stage, start and
end address are forwarded to the cache controller.

Figure 4.17 shows a schematic view of the modified cache architecture
with changed parts of the cache controller highlighted bold. First, we add
an interface to transfer the operation type as well as the affected address
range from processor to cache controller. When the processor executes a



4.5. Hardware Support 133

range operation, the processor pipeline is halted and control is transferred
to the cache controller.

Then, we extend the cache controller with the ability to invalidate, write
back, or flush multiple cache lines. We implement our range operations
as multi-cycle instructions. Thus, we enhance the cache controller with
a simple state machine that iterates over the address range specified by
the range operation. The cache controller can modify one cache line per
clock cycle. Modification consists of performing an address lookup and,
if a cache line is present, applying the respective operation. Hence, it
takes n clock cycles to apply a range operation spanning n cache lines.
Essentially, this implements the loop from our introduction of Section 4.5
in hardware.

However, our initial goal was an instruction that completes in one clock
cycle. An obvious shortcoming of our current approach is that we
halt the processor until the range operation has finished, i.e., our range
operations are blocking. Can we drop this restriction and let the processor
continue executing its program? For non-memory-related instructions,
e.g., arithmetic or control-flow instructions, this is unproblematic20, as
these instructions do not require any cache functionality. However, load or
store instructions must perform cache lookups, which interferes with the
lookups performed by our range operation logic. Additionally, they might
access an address that is part of the range the cache controller operates on.
It is not obvious how to handle this situation correctly.

We propose the following design. In order to make our range operations
non-blocking, we add range buffers Bi (cf. Figure 4.17) to the cache controller.
Each range buffer holds a triple (s , e , t) of start address s, end address e,
and operation type t (invalidation, writeback, or flush). Each time the
processor executes a range operation on a range A, the cache controller
stores A along with its operation type in a range buffer as follows:

(i) If there is no free range buffer, we halt the processor until a buffer
becomes free.

(ii) If A overlaps with a range A′ already stored in another buffer, we
halt the processor until A′ has been processed.

(iii) Otherwise, we store A and its type in a free range buffer.
20Assuming a load/store architecture.



134 4. Compiling X10 to Invasive Architectures

Then, the processor continues executing the program. Every time it
executes a load or store to an address D, the cache controller checks
D against all stored ranges. We perform the checking in parallel using
separate comparators for each range buffer. If D ∈ A for a stored range A,
we halt the processor until the operation on A has finished. Otherwise,
we perform a cache lookup as usual.

We call a clock cycle, during which the processor does not execute a load
or store instruction, a spare cycle. We observe that, from the view of the
cache controller, the cache is idle in every clock cycle where the processor
does not lookup an address. Our modified cache controller uses these
spare cycles to work on range operations. Hence, during every spare
cycle, as long as there is at least one range A stored in a range buffer, the
cache controller applies the respective operation to the next cache line
relevant for A, e.g., clearing a line’s valid bit for an invalidation. The cache
controller keeps track of its progress using an internal register.

Therefore, it takes n spare cycles to apply an operation to a range span-
ning n cache lines. In the best case, between the execution of two range
operations, there (i) are at least n spare cycles, and (ii) we execute no
interfering load or store instructions. Then, the first range operation takes
only one clock cycle from the view of the processor.

In summary, our proposed instructions inhabit a new point in the design
space of instructions that support software-managed coherence. They
are precise and operate exactly on the given address range. To limit the
area overhead, they compromise on the running time and give no hard
guarantee: execution can take 1 clock cycle, but may take up to n clock
cycles for an address range that spans n cache lines21.

4.5.3. Related Work

As already mentioned in the introduction of Section 4.5, our range op-
erations are related to the CL1INVMB instruction of the Intel SCC. The
execution time of that instruction is guaranteed to be one clock cycle.
However, it is imprecise as it invalidates all cache lines of a certain type.
21If the cache is shared between multiple cores, execution may take more than n cycles due

to interference with cache accesses of other cores.



4.6. Evaluation 135

Multiple authors [Pet+11a; Rot+12; CS16] criticize this lack of fine-grained
control.

Range-based cache operations have been implemented before. Certain
processors from the ARM11 family, e.g., the ARM1136J(F)-S processors,
can perform invalidation, writeback, and flushing of address ranges via a
system control coprocessor [ARM09, section 3.3.17]. The range operations
are blocking. In contrast, our concept only requires an enhanced cache
controller instead of a full-blown coprocessor. Additionally, we provide
non-blocking range operations.

4.6. Evaluation

In the following, we evaluate some of the presented data-transfer tech-
niques on our hardware prototype. First, we investigate transfers of flat
data structures and analyze the performance of Ac-Tlm and Ac-Off. We
use a synthetic benchmark program. Then, we turn towards complex data
structures. Here, we analyze the performance of Clone-Off-Opt compared
to Ser-Tlm and Ser-Off-Opt. We first consider individual data transfers
using a synthetic benchmark and then look at distributed benchmark
programs from an existing test suite. We perform all experiments on the
invasive hardware prototype. Finally, we investigate overhead and benefit
of our cache controller extension.

4.6.1. Setup

We conducted all running time measurements on the invasive hardware
prototype described in Section 3.6. Recall that the architecture consists of
4 tiles with 4 cores each. Each tile forms a coherence domain, where cache
coherence is guaranteed by a classical bus snooping protocol. However,
there is no cache coherence between tiles. The tiles are connected by the
invasive network on chip [Hei+14] (NoC).

All cores are Gaisler SPARC V8 LEON 3 [Cob17b; SPA92] processors. Each
processor has a private 16 KiB 2-way instruction cache with a cache line
size of 32 bytes and a private 8 KiB 2-way write-through L1 data cache



136 4. Compiling X10 to Invasive Architectures

with a cache line size of 16 bytes. Additionally, the 4 cores of each tile
share a 64 KiB 4-way write-back L2 cache with a cache line size of 32 bytes.
Each tile has 8 MiB of SRAM-based on-chip memory. Tile 3 has 256 MiB of
DDR3 memory, used as shared memory, attached to its internal bus. We
do not execute any application code on this tile during our experiments.
Hence, all cores used by our applications access the off-chip memory via
the NoC.

We only use two compute tiles to increase stability in case of concurrent
DMA transfers22. As two tiles still require inter-tile data transfers, two
tiles are sufficient for our purposes. The hardware design was synthesized
to a CHIPit Platinum system [Syn15], a multi-FPGA platform based on
Xilinx Virtex 5 LX 330 FPGAs23.

On the software side, we use X10 as our PGAS programming language. We
use the modified X10 compiler (cf. Section 3.5) based on version 2.324. We
compiled all programs using the -O3 flag. We use OctoPOS (cf. Section 3.3)
as our operating system25. We use the perf variant of OctoPOS, which
results in an optimized build with disabled assertions and without sanity
checks. We used the hwcpy variant, which uses hardware-accelerated data
transfers between TLMs.

We use a conservative stop-the-world garbage collector [BW88]26 for
memory management on each tile. We compiled all C components
of our software stack using the official SPARC toolchain provided by
Gaisler [Cob15a], which is based on GCC 4.4.2. We used GRMON [Cob17a]
version v2.0.69.1 to load and run binaries27. We used temci [Bec16] version
0.7.9 to analyze some of our benchmark data. As we work on custom
hardware, we did not use any benchmark-data acquisition tools provided
by temci; we only used it to visualize and analyze already collected
benchmark data.
22At the time of writing, these problems have been fixed in current hardware revisions.
23We used hardware revision 2016_04_18 from April 18, 2016.
24We used Git revision 1faf26498de2eb3e25f85bdc0e74a5f9b816ab59.
25We used Git revision 510073385ec96b75fafdd91c0aac894f99357315. This revision is

based on Git revision 741f34079a5e968d6002b7e8d3270a2b0f58fe07, but adapts some
parameters, such as using fewer but larger contexts, i.e., stacks, for i-lets.

26We used Git revision 5f1b891d30626dc4074686aa2ea061356c635b93.
27Extended with grmon_toolsGit revision 65189723b9cee70505a66ceff2244ed9bd826524.



4.6. Evaluation 137

4.6.2. Establishing an Evaluation Environment

On our FPGA-based prototype, latency and bandwidth differences be-
tween TLMs and off-chip memory are not as pronounced as on a real
ASIC. We measured latency and bandwidth of reading accesses to local
TLM, remote TLM, and off-chip memory on the default hardware design.
We use cycle-accurate performance counters provided by the NoC. We
determined the cost to query the performance counter to be 6 cycles
and substract it from all measurements. We performed the bandwidth
measurements with a fully unrolled loop that uses double-word load
instructions to read 256 bytes. We report minimum latency and maximum
bandwidth numbers, as we are interested in the best case.

Latency (in clock cycles) Bandwidth (in MiB s−1)
Local TLM 13 19.0
Remote TLM 99 4.0
Off-chip 104 3.8

Table 4.1: Memory latency and bandwidth numbers on the default hard-
ware prototype design.

Table 4.1 shows the resulting numbers. We see that reading from remote
memory is significantly more expensive than accessing local memory,
as all accesses to remote memory proceed via the NoC. However, the
difference between remote TLM and off-chip memory is miniscule, which
is unrealistic. The whole point of adding TLM to a non-cache-coherent
system is to improve latency and bandwidth.

Hence, we would like to investigate the performance of data-transfer
techniques on a system that is more realistic than our default FPGA design.
So how do latency and bandwidth numbers look on other non-cache-
coherent architectures, preferably ones available as an ASIC? We use the
Intel SCC as a reference as it is comparatively well-documented.

First, let us look at the memory latencies. Let Cc , Cn , and Cd be the
cycle lengths of core, network-on-chip, and DRAM. On the Intel SCC, the
latencies L to read one 32-byte cache line are as follows [PN14].



138 4. Compiling X10 to Invasive Architectures

• Reading from local on-chip memory: Llocal � 45 · Cc + 8 · Cn .
• Reading from remote on-chip memory: Lremote � 45 · Cc + k · 8 · Cn .
• Reading from DRAM: LDRAM � 40 · Cc + k · 8 · Cn + 46 · Cd .

Here, k is the number of hops in the network-on-chip from source to
destination (0 ≤ k ≤ 8).

However, computing these latencies is not straightforward, as the Intel
SCC’s cores, network-on-chip, and DRAM can be clocked at different
frequencies. The possible frequencies (in MHz) are fc ∈ {533, 800},
fn ∈ {800, 1600}, and fd ∈ {800, 1066}. We assume the recommended
setting of fc � 533 MHz, fn � 800 MHz, and fd � 800 MHz, which is also
used in most papers. The latencies compute to (assuming k � 4 as an
average and rounding up the values):

• Llocal � 90 ns
• Lremote � 110 ns
• LDRAM � 165 ns

Hence, accessing DRAM on the Intel SCC has a roughly 50% higher
latency than accessing on-chip memory. However, the SCC is only a
prototype chip as well. Its core clock of 533 MHz is low in comparison
to current microprocessors. Therefore, on a non-prototype chip the core
and network-on-chip frequencies would be several times higher than
the DRAM frequency. This would likely increase the latency difference
between accessing on-chip and off-chip memory even further.

Second, let us look at bandwidth on the Intel SCC. Van Tol et al. [Tol+11]
report bandwidth measurements on the Intel SCC, also with the standard
frequency settings. The Intel SCC has four memory controllers resulting in
a theoretical peak transfer rate of 6.4 GiB s−1. Van Tol et al. determine the
maximum bandwidth load generated by one core to be about 107 MiB s−1

when reading from off-chip memory (and not from a cache). For the case
when 48 cores read from off-chip memory at the same time, van Tol et al.
measure a peak bandwidth requirement of 5.9 GiB s−1. Hence, even 48
cores cannot saturate the available memory bandwidth. Again, this
is unrealistic, as current multi-core processors can easily saturate the
memory bandwidth with far fewer than 48 cores. Hence, the Intel SCC
can serve as a guideline, but is not an ideal example of realistic latency or
bandwidth numbers.



4.6. Evaluation 139

Besides the lack of clear target numbers for latency and bandwidth,
also emulating more realistic hardware on an FPGA is challenging. For
example, we cannot arbitrarily reduce the clock frequency of our DRAM
chips as they are very sensitive to timing, especially regarding the necessary
DRAM refresh cycles. On the other hand, increasing the clock frequency
of the cores is not possible either due to critical-path lengths and timing
constraints.

Hence, we focus on one aspect that we can influence comparatively easily:
latency. We modified the default hardware design to artifically increase
off-chip memory latency by 1000 clock cycles28. We consciously chose the
high penalty of 1000 clock cycles to clearly separate the default design
from the modified design. In the modified design, additional logic has
been inserted into the network adapter of each compute tile. If a core (or
the L2 cache) issues a load or store request to an address that is backed by
off-chip memory (i.e., DRAM), the network adapter artificially delays the
serving of this request by 1000 clock cycles. All other requests proceed
normally. Hence, the delay is implemented on the requesting side of
memory accesses.

In the following, we call the default hardware variant Hw-Default29, and
the modified hardware variant with artificial off-chip delay Hw-Delay30.

Latency [clock cycles] Bandwidth [MiB s−1]
Local TLM 13 19.0
Remote TLM 99 4.0
Off-chip 1104 (+1000) 0.7 (−3.1)

Table 4.2: Memory latency and bandwidth numbers on Hw-Delay with
artifical DRAM latency. We list the absolute change compared to
Hw-Default in parentheses.

Table 4.2 shows latency and bandwidth numbers on Hw-Delay. We
observe exactly the artificial latency penalty of 1000 clock cycles for off-
28Sven Rheindt provided the modified hardware design.
29We used hardware revision 2016_04_18 dated from April 18, 2016.
30We used hardware revision 2016_04_18_delay_ddr_ls dated from December 7, 2017

based on the design from April 18, 2016.



140 4. Compiling X10 to Invasive Architectures

chip accesses. At the same time, the increased latency also significantly
reduces the bandwidth of off-chip accesses.

Now, we we have two designs that represent extremes: Hw-Default, where
off-chip memory is almost as fast as remote TLMs, and Hw-Delay, where
off-chip memory is significantly slower, even more so than on the Intel
SCC. To investigate the behavior of our data transfer approaches at these
two extremes, we perform all following benchmarks on both hardware
designs. As the hardware designs are functionally equivalent, we can run
the same binaries on both hardware variants. For each benchmark, this
provides us with lower and upper bounds for the running times. The
running time on a realistic system would likely fall somewhere in this
range, depending on the parameters of its memory system.

4.6.3. Block-Based Data Transfers

We now compare our implementations of Ac-Tlm to Ac-Off on the invasive
hardware prototype. We use a synthetic X10 benchmark program31 that
issues one-sided copy operations via Rail.asyncCopy() to copy data from
the sender’s off-chip memory partition to the receiver’s off-chip memory
partition. We vary the size of the transferred memory block from 25 bytes
to 218 bytes. We measure running times using cycle-accurate counters
provided by the NoC and use 25 as the divisor to compute microseconds
(as our cores run at 25 MHz). We repeat each experiment at least 50 times;
for small transfer sizes we use 200 iterations to stabilize measurements.
We verify the received data after the transfer; this verification step is not
part of the measured running time.

We expect to see that Ac-Off is faster at least for large transfers. In this
case, taking the detour via TLM should be slower. For small transfers,
the situation is not as clear. Here, if data is served from cache to TLM,
transferred to another TLM, and then again cached, blocking off-chip
memory accesses are completely avoided. Hence, we might see a break-
even point, i.e., Ac-Off is faster for memory blocks larger than some
threshold.
31We used Git revision 0888071439f58a06c116fd56af46bd4c74b41905.



4.6. Evaluation 141

25 26 27 28 29 210 211 212 213 214 215 216 217 218102

103

104

105

106

L1
$

si
ze

L2
$

si
ze

Size (in bytes)

Ru
nn

in
g

tim
e

(in
µs

)

Ac-Tlm
Ac-Off

1

1.5

2

2.5

3

3.5

4

Sp
ee

du
p

A
c-

O
ff

A
c-

Tl
m

Speedup Ac-Off
Ac-Tlm

Figure 4.18: Running times (in microseconds) and speedup of Ac-Off
over Ac-Tlm on Hw-Default. We issue individual block-based transfers
of sizes ranging from 25 bytes to 218 bytes. We show standard deviations
with error bars. Both axes are logarithmic.



142 4. Compiling X10 to Invasive Architectures

Figure 4.18 shows the running times of both approaches, as well as the
computed speedups of Ac-Off over Ac-Tlm using Hw-Default. Here,
directly transferring the data to off-chip memory is always faster than
going via TLMs. For small buffers, the standard error is quite high, but still
allows us to state that Ac-Off is about 2× faster than Ac-Tlm. The speedup
then reaches its maximum of about 3.5× for transfers of 1 KiB. After
exceeding the size of the L1 cache, the speedup decreases significantly.
Interestingly, as we reach the size of the L2 cache, the speedup increases.
We do not have a convincing theory to explain this observation.

Figure 4.19 shows the running times of both approaches and the computed
speedups on Hw-Delay. We see that for buffer sizes less than 28 bytes,
the standard deviations are too high to declare one of the approaches
superior. For buffers of size 29 bytes and higher, Ac-Off is about 2.5×–3×
faster than Ac-Tlm. As we exceed the size of the L1 cache, the speedup
declines sharply and stays between 1.5× and 2×. Suprisingly, we do not
observe a break-even point. This may be due to the requirement of our
platform to copy data to TLM before issuing DMA transfers.

These speedup numbers agree with the numbers reported by Christ-
gau et al. [CS16] who measured a speedup of 2× to 5× on the Intel
SCC using one-sided communication via off-chip memory relative to
on-chip-based message passing. They performed their measurements in
the context of MPI one-sided communication using MPI_Put. Just as in
our experiment, the one-sided version was always faster, even for small
transfers.

4.6.4. Transfers of Pointered Data Structures

In the following, we look at transfers of pointered data structures. We
select a subset of the presented data-transfer techniques and analyze
the performance of Clone-Off-Opt compared to Ser-Tlm and Ser-Off-
Opt. Comparing to Ser-Tlm shows whether using on-chip memory is
worthwhile. Comparing to Ser-Off-Opt shows whether it is worthwhile
to avoid serialization.

We first consider individual data transfers using synthetic benchmarks
and then look at distributed benchmark programs from an existing test



4.6. Evaluation 143

25 26 27 28 29 210 211 212 213 214 215 216 217 218102

103

104

105

106

107

L1
$

si
ze

L2
$

si
ze

Size (in bytes)

Ru
nn

in
g

tim
e

(in
µs

)

Ac-Tlm
Ac-Off

1

1.5

2

2.5

3

3.5

4

Sp
ee

du
p

A
c-

O
ff

A
c-

Tl
m

Speedup Ac-Off
Ac-Tlm

Figure 4.19: Running times (in microseconds) and speedup of Ac-Off
over Ac-Tlm on Hw-Delay. We issue individual block-based transfers of
sizes ranging from 25 bytes to 218 bytes. We show standard deviations
with error bars. Both axes are logarithmic.



144 4. Compiling X10 to Invasive Architectures

suite. For execution on the invasive hardware prototype, we used the
scripts developed as part of the octopos-testsuite-infrastructure
project32. We repeated each experiment 50 times unless otherwise noted.
As our software has full control over the hardware and there is no
resource virtualization, the running time was highly deterministic. The
standard deviation for all runs was below 0.1%, so we omit giving standard
deviations and report minimum running times. The Ser-Tlm approach
did not have to split messages in our experiments as our TLMs provide
ample size.

4.6.4.1. Individual Data Transfers

First, we look at individual transfers using a synthetic benchmark33. We
transfer a circular doubly linked list and vary two parameters: the number
of list elements n and the size per list element E. We create a new data
structure for each transfer. We compare Clone-Off-Opt to Ser-Tlm and
Ser-Off-Opt. We first perform experiments on Hw-Default and then on
Hw-Delay.

Regarding the presentation of our benchmark results, we decided to use
a series of tables. We have a two-dimensional parameter space (n and
E), running times for three approaches, and the computed speedups.
We tried using a visualization as in Figures 4.18 and 4.19. However, the
resulting three-dimensional plot was difficult to read and understand.
Hence, we use four tables. Each has our two-dimensional parameter
space as rows and columns, and as table entries shows the computed
speedup numbers for Clone-Off-Opt over either Ser-Tlm or Ser-Off-
Opt on either Hw-Default or Hw-Delay, resulting in four tables. In all
following experiments, we measure speedups for lists from n � 1 to 256
elements with element sizes E ranging from 64 bytes up to 4 KiB.

On Hw-Default, we expect Clone-Off-Opt to be superior to Ser-Tlm,
except maybe for certain medium-sized object graphs. For these graphs,
their serialized representation would fit into the cache, hence no blocking
off-chip memory access occur. Furthermore, the hardware-accelerated
32We used Git revision 4edfb2558b8c5bde5fe18ba76da86ac6cd50538c.
33We used Git revision 1faf26498de2eb3e25f85bdc0e74a5f9b816ab59.



4.6. Evaluation 145

DMA transfer between TLMs could outweigh the cost of serialization.
Concerning Ser-Off-Opt, we expect Clone-Off-Opt to be strictly superior
to Ser-Off-Opt as Clone-Off-Opt avoids constructing a temporary buffer.
Additionally, for both comparisons, we expect to see a noticeable increase
in speedup numbers as n · E exceeds the L2 cache size, i.e., 64 KiB. Then,
a large part of the object graph is already in off-chip memory and not
in the sender’s cache. Hence, most of the write-back operation issued
by Clone-Off-Opt are no-operations, whereas the serialization-based
approaches must construct an expensive temporary buffer.

Table 4.3 shows the speedup of Clone-Off-Opt over Ser-Tlm on Hw-
Default. Suprisingly, we see that Clone-Off-Opt is always at least as fast
as Ser-Tlm and provides speedups of up to 8.39×. There is no object graph
size where copying to TLM and using a DMA transfer is worthwhile.

Table 4.4 shows the speedup of Clone-Off-Opt over Ser-Off-Opt on Hw-
Default. Again, Clone-Off-Opt is always at least as fast as Ser-Off-Opt
and provides speedups of up to 7.45×.

In both comparisons, speedups increase with increasing element size and
increasing element count. Interestingly, if the object graph consists of
many small elements, Clone-Off-Opt provides little or no benefit over Ser-
Tlm or Ser-Off-Opt. We suspect that here the overhead for traversing the
object graph, which is needed in all approaches, dominates and whether
we serialize or clone the data has little influence on the running time.

For object graphs that are significantly larger than the cache size we
observe high speedups compared to serialization-based approaches. In
these cases, serializing the object graph into a buffer puts heavy load on
the memory subsystem, which is avoided by cloning. However, we notice
a significant speedup increase at a total size of 219 bytes � 512 KiB. This is
eight times the size of our L2 cache, significantly higher than we expected.
We do not have a convincing theory that explains this observation.

On Hw-Delay, we expect the situation to be not as clear. Here, using
TLMs offers a real benefit as accessing TLM is now significantly faster
than accessing off-chip memory. Hence, we expect Ser-Tlm to outperform
Clone-Off-Opt at least for small object graphs. For larger object graphs,
where some or most of the data is already contained in off-chip memory,
Clone-Off-Opt should still be faster. The result of the comparison with



146 4. Compiling X10 to Invasive Architectures

Element size E (in bytes)
n 26 27 28 29 210 211 212

20 1.77× 1.71× 1.67× 1.56× 1.55× 1.49× 1.54×
21 1.61× 1.59× 1.57× 1.53× 1.50× 1.53× 1.85×
22 1.50× 1.54× 1.49× 1.47× 1.59× 1.84× 1.88×
23 1.43× 1.39× 1.45× 1.54× 1.80× 1.91× 2.18×
24 1.17× 1.29× 1.46× 1.67× 1.82× 2.14× 2.57×
25 1.10× 1.34× 1.46× 1.68× 2.00× 2.48× 2.79×
26 1.13× 1.34× 1.53× 1.86× 2.31× 2.67× 2.86×
27 1.08× 1.33× 1.63× 2.09× 2.48× 2.72× 6.63×
28 1.12× 1.41× 1.80× 2.19× 2.52× 6.15× 8.39×

Table 4.3: Speedup of Clone-Off-Opt over Ser-Tlm for individual data
transfers on Hw-Default. We copy a circular doubly linked list with n
elements of size E.

Element size E (in bytes)
n 26 27 28 29 210 211 212

20 1.32× 1.33× 1.34× 1.35× 1.39× 1.39× 1.40×
21 1.28× 1.30× 1.36× 1.38× 1.45× 1.42× 1.45×
22 1.26× 1.33× 1.36× 1.39× 1.40× 1.47× 1.52×
23 1.25× 1.31× 1.37× 1.38× 1.45× 1.51× 1.58×
24 1.13× 1.21× 1.31× 1.30× 1.44× 1.57× 1.77×
25 1.05× 1.22× 1.27× 1.36× 1.54× 1.73× 1.86×
26 1.01× 1.17× 1.30× 1.47× 1.68× 1.78× 1.84×
27 1.03× 1.16× 1.33× 1.54× 1.69× 1.77× 5.62×
28 1.04× 1.19× 1.36× 1.54× 1.70× 5.20× 7.45×

Table 4.4: Speedup of Clone-Off-Opt over Ser-Off-Opt for individual
data transfers on Hw-Default. We copy a circular doubly linked list with
n elements of size E.



4.6. Evaluation 147

Ser-Off-Opt is difficult to predict. Both approaches use off-chip memory
to transfer data. The only difference is that Ser-Off-Opt writes a single
contiguous block to memory, whereas Clone-Off-Opt writes (potentially
many) smaller objects.

Table 4.5 shows the speedup of Clone-Off-Opt over Ser-Tlm on Hw-Delay.
As expected, the situation is not as clear as before. For small object graphs
of size less than 214 � 16 KiB, Ser-Tlm is faster than Clone-Off-Opt by
roughly a factor of 2. We observe the highest speedup of Ser-Tlm (or
lowest speedup for Clone-Off-Opt) for n � 32 and E � 64. Here, the
latency and bandwidth advantages of TLM seem to be most pronounced.
For large object graphs, Clone-Off-Opt is still significantly faster than
Ser-Tlm and provides speedups of up to 8.36×.

Table 4.6 shows the speedup of Clone-Off-Opt over Ser-Off-Opt on Hw-
Delay. Now, Ser-Off-Opt is sometimes a bit faster than Clone-Off-Opt
but not by a large margin. We again observe the highest speedup of
Ser-Off-Opt (or lowest speedup for Clone-Off-Opt) for n � 32 and E � 64.
We suspect that the speedup of Ser-Off-Opt relative to Clone-Off-Opt
is due to more predictable access behavior on the receiver. For Ser-Off-
Opt, the receiver reads the contiguous serialized representation from
off-chip memory. Hence, as the access behavior is predictable, many
load instructions are cache hits. In contrast, Clone-Off-Opt traverses the
object graph on the receiver. The objects may be scattered across off-chip
memory, which may lead to a higher number of cache misses. For large
object graphs, Clone-Off-Opt significantly outperforms Ser-Off-Opt and
provides speedups of up to 7.54×.

Again, in both comparisons speedups increase with increasing element
size and increasing total data size. The significant speedup increase is
again at a total size of 219 bytes � 512 KiB, for which we cannot offer an
explanation.

Our results show that, in general, cloning is beneficial for large object
graphs. If the speed difference between TLM and off-chip memory is large
enough, we observe a break-even point P. For object graphs larger than
this P, cloning is the fastest approach. For object graphs smaller than P,
exploiting TLM offers a performance advantage.



148 4. Compiling X10 to Invasive Architectures

Element size E (in bytes)
n 26 27 28 29 210 211 212

20 0.77× 0.68× 0.64× 0.47× 0.53× 0.47× 0.48×
21 0.80× 0.60× 0.60× 0.50× 0.50× 0.52× 0.66×
22 0.62× 0.56× 0.51× 0.44× 0.52× 0.64× 0.76×
23 0.58× 0.42× 0.55× 0.53× 0.63× 0.79× 1.30×
24 0.40× 0.47× 0.55× 0.65× 0.79× 1.28× 2.07×
25 0.37× 0.57× 0.55× 0.81× 1.30× 2.10× 2.61×
26 0.47× 0.74× 0.91× 1.32× 2.04× 2.53× 2.65×
27 0.75× 0.96× 1.38× 1.98× 2.46× 2.69× 6.57×
28 0.94× 1.40× 1.93× 2.30× 2.58× 6.34× 8.36×

Table 4.5: Speedup of Clone-Off-Opt over Ser-Tlm for individual data
transfers on Hw-Delay. We copy a circular doubly linked list with n
elements of size E.

Element size E (in bytes)
n 26 27 28 29 210 211 212

20 0.98× 0.93× 0.93× 1.00× 0.98× 1.06× 0.92×
21 1.05× 1.00× 0.95× 0.92× 0.96× 0.95× 0.99×
22 0.94× 0.90× 0.92× 0.97× 0.98× 1.06× 1.18×
23 0.83× 0.93× 0.99× 0.93× 1.05× 1.17× 1.42×
24 0.85× 0.88× 1.02× 1.04× 1.14× 1.41× 1.63×
25 0.75× 1.01× 1.00× 1.14× 1.34× 1.62× 1.74×
26 1.09× 1.08× 1.18× 1.34× 1.60× 1.77× 1.85×
27 0.94× 1.17× 1.39× 1.56× 1.71× 1.82× 5.64×
28 1.11× 1.34× 1.53× 1.68× 1.76× 5.46× 7.54×

Table 4.6: Speedup of Clone-Off-Opt over Ser-Off-Opt for individual
data transfers on Hw-Delay. We copy a circular doubly linked list with n
elements of size E.



4.6. Evaluation 149

4.6.4.2. Distributed Kernel Benchmarks

We now compare the running times of X10 applications using Ser-Tlm,
Ser-Off-Opt, and Clone-Off-Opt. We use the X10 programs from the
IMSuite benchmark suite [GN15] as our test inputs. IMSuite consists of
12 programs that implement popular, mostly graph-based distributed
algorithm kernels. More specifically, the programs are:

• BF, an implementation of the Bellman-Ford algorithm;
• DST, which computes shortest routes according to Dĳktra’s method;
• BY, a solver for the Byzantine generals’ problem;
• DR, which computes a routing table for a graph;
• DS, which finds a dominating set;
• KC, which partitions the nodes of a network into committees of size

at most k;
• MIS, which computes a maximal independent set of a set of nodes;
• LCR, HS, DP, which all implement leader election algorithms with

different graph constraints;
• MST, which computes a minimum spanning tree; and
• VC, which colors the nodes of a tree with three colors.

Being distributed in nature means that, when run on an invasive archi-
tecture, the programs must communicate between tiles. Hence, they are
a good fit for assessing data-transfer performance. The sizes of the test
programs range from 300 loc to 1000 loc.

We use the iterative X10-FA configuration of the benchmark programs
with the input data set of size 64. We use the running time measurement
infrastructure already present in the programs. We modified the programs
so that they contain their input data as our prototype platform does not
provide a file system. Input data is read during the initialization phase,
which is not included in the running time measurements.

IMSuite contains implementations of each algorithm in two languages:
X10 and Habanero Java [Cav+11]. Habanero Java extends Java with
features very similar to those found in X10. As both languages aim to
increase programmer productivity, the IMSuite authors decided against
writing highly tuned implementations of the respective algorithms. In-



150 4. Compiling X10 to Invasive Architectures

stead, IMSuite intentionally contains rather straightforward algorithm
translations to the two target languages.

Unfortunately, the X10 implementations contain multiple instances of
a common pitfall that can lead to serious performance degradations if
the programs are executed on multiple places. The pitfall, also explicitly
mentioned in the X10 language specification [Sar+16, §13.3.7], may cause
X10’s at construct to copy more values than necessary (cf. Section 4.4.4).
To understand the problem, let us look at the following X10 program.

1 class Foo {
2 val large = new Large();
3 val x = 42;
4 public def get() { return x; }
5
6 public def test(p: Place) {
7 at (p) x;
8 at (p) get();
9 }

10 }

Here, the method test uses at to evaluate the expressions x (in line 7)
and get() (in line 8) on place p. At first glance, it seems that both at
expressions (in lines 7 and 8) only capture the field x. Thus, both should
be relatively lightweight operations.

However, both at expressions actually capture the implicit this reference
as x is a field and get() is a non-static method. Therefore, both at
expressions lead to the transfer of all objects transitively reachable from
this. This includes the Large object referenced by the large field, which
is potentially costly to transfer.

The X10 developers are aware of this pitfall [Sar+16, §13.3.7] and have
proposed multiple possible solutions34. These proposals include “copy
specifiers” that allow programmers to specify the variables they expect
to be captured (which enables the compiler to warn if more variables

34See also X10 issue reports https://xtenlang.atlassian.net/browse/XTENLANG-1913
and https://xtenlang.atlassian.net/browse/XTENLANG-2466.

https://xtenlang.atlassian.net/browse/XTENLANG-1913
https://xtenlang.atlassian.net/browse/XTENLANG-2466.


4.6. Evaluation 151

are captured than expected), and allowing capturing individual fields
(without also capturing the reference to their enclosing object).

However, at the time of writing, the X10 compiler does not implement any
of these techniques. Hence, the pragmatic solution to avoid accidentally
capturing too many variables is to manually apply the following two
rewrite rules, which we describe in a semi-formal style.

1. For each field reference of the form o.f (where o can be an implicit
this reference) inside an at block A, introduce a final local vari-
able f’ in A’s enclosing scope, initialize f’ with o.f, and replace all
occurrences of o.f in A with f’. Hence, in the above example, rewrite

at (p) x; to val x’ = x;
at (p) x’;

2. For each non-static method of the form m(p1 , . . . , pn) B (with pa-
rameters pi and method body B), which is called inside an at block
A, add a static copy m’(p1 , . . . , pn , p′n+1 , . . . , p

′
k) B′ of m in m’s scope.

For each field that is referenced in the form this.f in B, add a
parameter p′j to the parameter list of m’, replace each occurrence of
this.f in B′ with p′j , and add o.f to the argument list of each call to
o.m in A. Finally, replace all calls to m in A with calls to m’. We must
now rewrite the newly added method arguments of o.m according
to rule 1.

Hence, in the above example, we rewrite

public def get() { return x; }
public def test() {
at (p) get();
}

to



152 4. Compiling X10 to Invasive Architectures

public def get() { return x; }
public static def get’(x: Int) { return x; }
public def test() {
val x’ = x;
at (p) get’(x’);
}

As our proposed optimizations from Section 4.3 concern the at construct,
we need to ensure a realistic usage pattern of this construct in our bench-
marks. If the benchmarks spent an unrealistic portion of their running time
performing data transfers, the impact of our optimization on an average
program would be overestimated. Therefore, we manually adapted the
programs from IMSuite using the presented rewrite rules. Figure 4.20
shows that the changes are purely mechanical.

We sent our adapted benchmark programs to the IMSuite authors, who
acknowledged the problem, agreed that our fixes are correct, and stated
that they planned to release a new version of IMSuite. However, at the
time of writing of this dissertation, no new testsuite version has been
released yet. We provide our adapted program versions as part of the
software artifacts described in Appendix B. In the following, we always
use the adapted benchmark programs35.

Table 4.7 shows statistics about the object graphs that we observe during
a full run of our IMSuite benchmark programs. We instrumented our
runtime system to collect these numbers. We see that the benchmarks
have distinct communication patterns. Some communicate little, e.g., BF
only transfers a total of about 81 KiB between tiles, while others send
more data, e.g., MST transfers more than 44 MiB. The same holds for the
number of object graphs, which varies from few (1151 in the case of BF) to
many (625104 for BY).

Interestingly, the average number of vertices per object graph does not vary
that much and is roughly within the same order of magnitude (between
about 3 and 13) across all benchmarks. However, the average size of object
graphs differs significantly. Some benchmarks, such as DS, transfer lots of

35We used Git revision 100264ac8cbac654e6f57358bb13e654501f00cd.



4.6. Evaluation 153

static def loadweight(weight: Long) {
... loadValue ...
}
def bfsForm() {
finish for (i in D) async
at (D(i)) {
for (var j: Int = 0; j < nodeSet(i).tMH.size(); j++)
nodeSet(i).mH.add(nodeSet(i).tMH.get(j));
nodeSet(i).tMH.clear();
if (loadValue != 0)
nval(i) = loadweight(nval(i) + i(0));

}
// ...
}

(a) Original program code.

static def myloadweight(weight: Long, lv: Long) { ... }
def bfsForm() {
finish for (i in D) async {
val mynodeSet = nodeSet;
val myloadValue = loadValue;
val mynval = nval;
at (D(i)) {
for (var j: Int = 0; j < mynodeSet(i).tMH.size(); j++)
mynodeSet(i).mH.add(mynodeSet(i).tMH.get(j));
mynodeSet(i).tMH.clear();
if (myloadValue != 0)
mynval(i) = myloadweight(mynval(i) + i(0), myloadValue);

}
}
// ...
}

(b) Adapted program code.

Figure 4.20: Excerpts from inner loop of benchmark program
bfsBellmanFord before (top) and after (bottom) changes. The code
has been reformatted and some identifiers have been shortened to im-
prove readability.



154 4. Compiling X10 to Invasive Architectures

Benchm
ark

BF
D

ST
BY

D
R

D
S

M
IS

Σ
#objectgraphs

1151
4502

625104
28624

68052
4648

Σ
#objects

7486
29322

3141072
96696

229992
28757

ø
#objects

6.50
6.51

5.02
3.38

3.38
6.19

Σ
sizes(in

bytes)
81191

3507332
37636416

3739712
2285971

313244
ø

size
(in

bytes)
70.54

779.06
60.21

130.65
33.59

67.39

Benchm
ark

KC
D

P
H

S
LC

R
M

ST
VC

Σ
#objectgraphs

31107
22558

25858
12545

32034
1303

Σ
#objects

165327
133297

326186
99333

201665
11011

ø
#objects

5.31
5.91

12.61
7.92

6.30
8.45

Σ
sizes(in

bytes)
2000704

2585623
3088640

1055796
44124424

114340
ø

size
(in

bytes)
64.32

114.62
119.45

84.16
1377.42

87.75

Table
4.7:O

bject-graph
propertiesfrom

allprogram
sin

ourtestsuite.
W

e
acquired

allnum
bersthrough

instrum
entation

ofthe
runtim

e
system

during
a

fullrun
ofthe

IM
Suite

program
susing

the
sam

e
input

data
as

for
our

running
tim

e
m

easurem
ents.

W
e

listthe
totalnum

ber
ofgraphs,the

totalnum
ber

of
contained

objects,the
average

num
berofobjectspergraph,the

totalsize
ofalltransferred

objects,and
the

average
size

ofthe
objectspergraph.



4.6. Evaluation 155

small object graphs (about 32 bytes on average). Others, such as DST or
MST, transfer larger object graphs in the order of 1 KiB on average.

From these numbers, we would suspect DST and MST to have the largest
speedup potential as they transfer the largest object graphs. As an
experiment, we take Tables 4.3 to 4.6 as “lookup tables” for the speedups
we can expect in the best case and use the numbers from Table 4.7 as
indices. Regarding indices, the closest match for DST (779 B in 6.51 objects,
i.e., about 119 B per object) is n � 23 and E � 27. For MST, the closest match
is n � 23 and E � 210. We retrieve the following best case speedups:

• On Hw-Default relative to Ser-Tlm: 1.39× for DST, and 1.80× for
MST;

• On Hw-Default relative to Ser-Off-Opt: 1.31× for DST, and 1.45×
for MST;

• On Hw-Delay relative to Ser-Tlm: 0.42× for DST, and 0.63× for MST;
• On Hw-Delay relative to Ser-Off-Opt: 0.93× for DST, and 1.05× for

MST.

The upper three rows of Table 4.8 show the running times of all benchmarks
on Hw-Default for the three tested variants Ser-Tlm, Ser-Off-Opt, and
Clone-Off-Opt. First, we see clear differences in the running times
between the three variants, which means that due to their distributed
nature, the benchmarks spend a significant portion of their running time
on communication. This supports our case that efficient data transfers are
crucial for application performance on invasive architectures.

The middle two rows show the speedup of Clone-Off-Opt compared to
Ser-Tlm and Ser-Off-Opt. On average, Clone-Off-Opt provides a speedup
of 1.17× compared to Ser-Tlm. Compared to Ser-Off-Opt, Clone-Off-Opt
achieves an average speedup of 1.05×. For every test case, Clone-Off-Opt
is at least as fast as Ser-Tlm or Ser-Off-Opt.

We expected the highest speedups for DST and MST. Our running time
measurements confirm our supicion. For example, for MST, compared to
Ser-Off-Opt, the observed speedup of 1.24× is suprisingly close to the best-
case speedup of 1.45× we approximated before. In general, speedups are
somewhat lower due to interferences with program behavior unrelated to
data transfers. For example, the invalidation of the complete L1 cache may



156 4. Compiling X10 to Invasive Architectures
Benchm

ark
BF

D
ST

BY
D

R
D

S
M

IS
G

eom
ean

Ser-Tlm
1.30

9.35
736.79

83.22
50.92

1.75
Ser-O

ff-O
pt

1.17
7.94

677.27
82.13

47.24
1.60

C
lone-O

ff-O
pt

1.13
7.35

658.39
80.42

45.49
1.57

Speedup
Ser-Tlm

1.15×
1.27×

1.12×
1.03×

1.12×
1.12×

Speedup
Ser-O

ff-O
pt

1.03×
1.08×

1.03×
1.02×

1.04×
1.02×

Reduction
Ser-Tlm

33.7%
57.6%

28.2%
22.5%

22.0%
33.7%

Reduction
Ser-O

ff-O
pt

9.7%
28.4%

8.6%
15.0%

8.3%
7.7%

Benchm
ark

KC
D

P
H

S
LC

R
M

ST
VC

G
eom

ean
Ser-Tlm

27.10
36.59

43.86
14.24

69.82
1.60

Ser-O
ff-O

pt
25.86

34.14
34.81

11.92
62.87

1.30
C

lone-O
ff-O

pt
25.84

32.61
34.00

11.88
50.70

1.26
Speedup

Ser-Tlm
1.05×

1.12×
1.29×

1.20×
1.38×

1.27×
1.17×

Speedup
Ser-O

ff-O
pt

1.00×
1.05×

1.02×
1.00×

1.24×
1.03×

1.05×
Reduction

Ser-Tlm
12.5%

35.2%
56.2%

49.0%
50.9%

50.1%
34.5%

Reduction
Ser-O

ff-O
pt

0.3%
17.3%

9.9%
1.8%

39.8%
9.5%

8.1%

Table
4.8:Running

and
com

m
unication

tim
e

foralltestprogram
sfrom

IM
Suite

on
H

w-D
efault.

U
pper

row
s:Running

tim
es(in

seconds)foreach
ofthe

three
variantsSer-Tlm,Ser-O

ff-O
pt,and

C
lone-O

ff-O
pt.

M
iddle

and
low

errow
s:O

verallspeedupsand
reduction

ofcom
m

unication
tim

e
ofC

lone-O
ff-O

ptover
Ser-Tlm

and
Ser-O

ff-O
pt.



4.6. Evaluation 157

negatively affect following load operations if they cannot be compensated
by the L2 cache.

In general, we see that exploiting off-chip memory for data transfers is
beneficial on Hw-Default: for most benchmarks, there is a large gap
between Ser-Tlm and the other two variants as Ser-Tlm transfers data via
TLMs. We suspect that this is at least partly due to the current requirement
of our DMA units of copying data to TLM instead of going directly to
off-chip memory.

The lower two rows of the table show the reduction of the time spent
on communication of Clone-Off-Opt over Ser-Tlm and Ser-Off-Opt.
We instrumented our runtime system to determine the time spent on
communication. To this end, we employ a global timestamp mechanism
provided by the NoC. On average, Clone-Off-Opt provides a 34.5%
reduction in communication time relative to Ser-Tlm. Compared to
Ser-Off-Opt, Clone-Off-Opt achieves an average communication time
reduction of 8.1%.

Table 4.9 shows the running times of all programs on Hw-Delay. We
reduced to number of iterations for BY to 10 due to its high running
time. In general, running times are significantly higher (by roughly a
factor of 5×) compared to Hw-Default due to increased access latency and
decreased bandwidth to off-chip memory. We observe an interesting effect:
for some benchmarks, Ser-Tlm is now the fastest approach. This shows
how important it is to evaluate data-transfer techniques with different
memory parameters.

If we take a closer look at the programs for which Ser-Tlm is the fastest, we
notice that all these programs transfer comparatively small object graphs.
For such graphs, serialization is relatively cheap. In the best case, we
never have to access off-chip memory during the whole transfer. Here,
the object graph is still in a local cache, gets serialized and copied into the
local TLM, transferred to the receiver’s TLM via a DMA transfer, where
the receiver then deserializes the object graph and again holds it in a local
cache. On Hw-Default, this does not provide a significant advantage as
TLM and off-chip memory are about equally fast.

For programs that transfer comparatively large object graphs, such as DST
and MST, Clone-Off-Opt is still superior. In this case, serialization is



158 4. Compiling X10 to Invasive Architectures

Benchm
ark

BF
D

ST
BY

D
R

D
S

M
IS

G
eom

ean
Ser-Tlm

4.27
42.14

1995.26
128.05

115.81
14.95

Ser-O
ff-O

pt
4.36

43.91
2041.17

132.99
121.78

15.21
C

lone-O
ff-O

pt
4.33

39.71
2085.32

128.93
121.95

14.98
Speedup

Ser-Tlm
0.99×

1.06×
0.96×

0.99×
0.95×

1.00×
Speedup

Ser-O
ff-O

pt
1.01×

1.11×
0.98×

1.03×
1.00×

1.01×

Benchm
ark

KC
D

P
H

S
LC

R
M

ST
VC

G
eom

ean
Ser-Tlm

104.47
120.52

114.67
36.70

280.31
3.93

Ser-O
ff-O

pt
106.88

122.75
118.73

37.79
286.57

4.01
C

lone-O
ff-O

pt
108.01

121.22
107.81

36.03
233.65

3.85
Speedup

Ser-Tlm
0.97×

0.99×
1.06×

1.02×
1.20×

1.02×
1.02×

Speedup
Ser-O

ff-O
pt

0.99×
1.01×

1.10×
1.05×

1.23×
1.04×

1.04×

Table
4.9:Running

tim
esforalltestprogram

sfrom
IM

Suite
on

H
w-D

elay.
U

pperthree
row

s:Running
tim

es(in
seconds)foreach

ofthe
three

variantsSer-Tlm
,Ser-O

ff-O
pt,and

C
lone-O

ff-O
pt.Low

ertw
o

row
s:O

verallspeedupsofC
lone-O

ff-O
pt

overSer-Tlm
and

Ser-O
ff-O

pt.



4.6. Evaluation 159

so expensive that avoiding it is worth more frequent accesses to off-chip
memory. The speedups of Clone-Off-Opt compared to Ser-Tlm are lower
than on Hw-Default. This shows that the larger the gap of access speeds
between off-chip and on-chip memory, the better it is to exploit TLM for
transferring data.

Interestingly, Clone-Off-Opt is faster than Ser-Tlm for DST and MST
although our previous considerations suggested otherwise. We suspect
that this is due to Clone-Off-Opt being more cache-friendly. Our synthetic
benchmark program from Section 4.6.4.1 only measured individual data
transfers and did not consider the effect of cache pollution on further
program execution. This effect might be what causes Clone-Off-Opt to be
faster in this scenario.

In general, Clone-Off-Opt trades the need to serialize for more frequent
off-chip memory accesses. On Hw-Default, where accessing off-chip
memory is extremely cheap, this trade is always beneficial. As TLM and
off-chip memory are almost equal in terms of latency and bandwidth,
Clone-Off-Opt practically avoids some copies without increasing cost.
Hence, it is not surprising that Clone-Off-Opt is strictly superior to Ser-
Tlm. The situation changes on Hw-Delay. Now, more frequent copies can
be worth avoiding costly accesses to off-chip memory. Then, depending on
the size of the object graphs, Ser-Tlm can be faster than Clone-Off-Opt.

4.6.5. Hardware Overhead

Tradowsky et al. implemented our proposed range operations as an
extension to the cache controller of the Gaisler LEON3 processor [Cob17b].
Table 4.10 shows that compared to the unmodified cache controller, about
15% of additional logic is necessary to implement non-blocking range
operations with one range buffer on the Xilinx XUPV5 Virtex-5 FPGA.

Table 4.11 shows the overhead of implementing blocking range operations
compared to the non-blocking variant. The numbers differ from Table 4.10
as Tradowsky et al. used a more recent version of our modified cache
controller. Interestingly, adding range operations in the first place is far
more expensive than making them additionally non-blocking. Making the
operations non-blocking causes a slight increase of the number of slices



160 4. Compiling X10 to Invasive Architectures

Additional resources
absolute relative

Slices 1489 15.2%
Register 623 14.6%
LUTs 1491 15.0%
BRAM 1 4.9%

Table 4.10: Additional resources for the implementation of non-blocking
range operations compared to original cache controller.

Blocking Non-blocking Relative change
Slices 680 734 +7.9%
Registers 775 775 0.0%
LUTs 1688 1672 −0.9%
BRAMs 0 0 0.0%

Table 4.11: Additional resources used for blocking range operations com-
pared to non-blocking range operations. Numbers differ from Table 4.10
as a more recent version of the modified cache controller was used.

used, while the number of LUTs even decreases. We suspect that this
decrease is due to heuristic optimizations that happen during hardware
synthesis. The expensive part of adding support for range operations
is the required state machine that implements the loop over all relevant
cache lines, which is required independent of whether the operations are
blocking or not.

As explained in Section 4.5, our implementation needs at most n spare
cycles to execute a range operation on a range spanning n cache lines.
We instrumented the programs from IMSuite and found that the average
object graph size is 257.3 bytes. On our system, the minimum cache line
size is 16 bytes. Hence, there must be at least 17 spare cycles between two
range operations to avoid blocking. Analysis of the generated code for our
cloning approach showed that this is fulfilled. For both write-back and the
cloning operation itself, we use a resizable hash set to detect cycles in the



4.6. Evaluation 161

object graph. Operating on the hash set involves enough arithmetic and
control flow instructions to hide the range operation’s latency. Therefore,
executing a range operation during Clone-Off-Opt takes one cycle from
the view of the processor for the average object graph.

So, is it worth the effort? Let us take the L2 cache of our prototype system
as a concrete example. This cache offers means to invalidate a single
cache line, identified by an address, but does not have the extensions that
we proposed in Section 4.5. Hence, to invalidate an address range, the
processor has to execute a software loop and issue one invalidation per
relevant cache line. The loop boils down to an addition, a store (which
triggers the invalidation via a memory-mapped register), a comparison,
and a conditional branch. Additionally, the cache takes five clock cycles to
process each invalidation [Cob16, section 74.3.3]. Hence, each invalidation
takes roughly 10 cycles.

With an average object graph size of 17 cache lines, our loop takes
in the order of 200 clock cycles, which we can reduce to 1 (from the
view of the processor) in the best case using the non-blocking range
operation extension. This sounds like an impressive speedup. However,
compared to the latency of the memory accesses following the invalidation,
this difference is negligible, as fetching a single cache line can easily
take hundreds of cycles, depending on the structure of the memory
subsystem.

Hence, we conclude that while adding range operations is feasible, it
is not worth the additional hardware cost. The literature that requests
such instructions (cf. Section 4.5) probably did not consider this cost. We
agree that more fine-grained cache control is crucial for performance on
non-cache-coherent architectures to support software-managed coherence.
However, means to invalidate or write back individual cache lines are
sufficient and cheap to implement. All remaining functionality should
be implemented in software. However, our findings may be useful in the
implementation of remote invalidation operations, which we discuss in
Appendix A.1.



162 4. Compiling X10 to Invasive Architectures

4.6.6. Threats to Validity

In this section, we try to list all limitations of our experiments as well as
decisions that may have influenced our results.

The most important limitation of our prototype is that the difference
concerning latency and bandwidth of TLMs compared to off-chip memory
is far less pronounced than on real systems. We tried to alleviate this
limitation by using a hardware variant with artificially increased DRAM
latency. However, this does not capture all differences between our
prototype and a real chip. Hence, behavior on a real ASIC with realistic
clock frequencies and latencies may be significantly different.

Our prototype architecture is compute-bound. Our cores only run at
25 MHz, while our SRAM and DRAM are disproportionately faster. This
is not realistic, as on a real chip this relationship would be reversed: the
memory would be much slower than the cores. While this effect is not
as pronounced on Hw-Delay as on Hw-Default, it may still have led us
to overstate the cost of serialization. On a real chip it may thus not be
worthwhile to use cloning instead of a serialization-based approach or it
may only be worthwhile for object graphs of a certain minimum size, as
we observed on Hw-Delay. On Hw-Default, such a break-even point is
not measurable: our numbers show that cloning is always at least as fast
as serialization-based approaches.

We did not reproduce the state of the art for message passing techniques
using on-chip memories. Almost all existing work has been done in
the context of the Intel SCC. As our hardware is sufficiently different,
we could not reuse that work directly. Due to time constraints, we
did not port existing projects to our hardware platform. Additionally,
differences between on-chip and off-chip memory are hard to emulate on
an FPGA (see above), thus porting these approaches is also problematic
conceptually. Hence, it is possible that our numbers acquired for Ser-Tlm
are not representative and thus must be interpreted carefully.

Our TLMs are too large compared to other system parameters. A size
of 8 MiB per tile is unrealistic, e.g., the Intel SCC has 16 KiB of on-chip
memory per tile, which contains two cores. This does not affect the
comparison of Ser-Off-Opt with Clone-Off-Opt, as they do not use TLMs



4.6. Evaluation 163

to transfer data. It gives Ser-Tlm an unfair advantage, as it does not need
to split messages because every message fits completely into the TLM.

We did not integrate our hardware extension into the platform on which
we performed our benchmarks. Hence, we did not have fine-grained
control over the L1 cache; we could only flush it completely. This affects
both Ser-Off-Opt and Clone-Off-Opt. Hence, their absolute running
times are skewed; however, the relative comparison of the two approaches
is fair.

Our proposed pull-style cloning approach is not one-sided as the receiver
actively partakes in the data transfer. In contrast, serialization-based
approaches are easy to implement in a one-sided fashion. In conjunction
with possibly lower costs for serialization (see above) this could lead to
serialization-based approaches being superior to cloning. For example,
assume that our architecture was memory-bound, had larger caches, and
our DMA units supported transfer to off-chip memory. Then, it is possible
that serializing an object graph and then copying it using a DMA transfer
would be more efficient.

We use only one I/O tile with external memory, hence our system does not
have distributed off-chip memory. Additionally, our synthesized chip is
quite small and every tile has a low maximum distance to off-chip memory
of two hops.

Our cores have write-through L1 caches, which avoids some difficult
problems. Suppose we had write-back L1 caches and core 1 wanted to
write back a block of memory B. It is now possible that part of B is
held in the L1 cache of a different core, say core 2. Hence, we either
synchronize all cores and force the software to execute the necessary
writeback operation on all cores of a tile. Or, we add hardware support
for writing back or invalidating cache lines in caches other than the one of
the current core. This could, for example, be realized by letting all cache
controllers snoop such operations and execute them on their respective
caches; see Appendix A.1 for details.

We do not support custom serialization formats in our cloning approach.
X10 allows types to implement the interfacex10.io.CustomSerialization.
This signifies that these types do not use the default serialization methods
generated by the compiler but specify their own custom serialization



164 4. Compiling X10 to Invasive Architectures

format. Supporting custom serializable types in the cloning approach is
cumbersome. Our cloning approach hinges on the fact that all accesses to
foreign memory partitions happen under control of the compiler. Hence,
the necessary write-backs and invalidations can be inserted automati-
cally. If we look at custom serialization formats, its counterpart in the
cloning approach would be a user-implemented clone function. Hence,
user-controlled code would need to access objects from foreign memory
partitions, which requires a write-back on the sending side and a preced-
ing invalidation on the receiving side. We see no other possibility than
letting the user issue these cache operations, which is error-prone.

We did not consider cache architectures with more than two levels. If
we assume a cache hierarchy consisting of L1, L2, and L3 cache, which
is common on current processors, invalidations and write-backs must be
effective on all cache levels. This can influence the cost and complexity of
the necessary hardware support.

We do not evaluate the power impact of our proposed cache extension. Our
extension causes the cache to become active during more cycles; specifically
during spare cycles. This causes an increased power usage, which could
make our extension unattractive. However, if an address range must be
invalidated or written back, some component has to do this work. If
the hardware does not support it directly, a general-purpose processor
must take over, which probably requires significantly more power. Hence,
depending on the frequency of range operations, a hardware-accelerated
implementation could even lower power usage.

4.7. Relation to Invasive X10

So far, we have run standard X10 programs on our platform. However,
as explained in Section 3.1, Invasive Computing also proposes a new
programming paradigm. In the following, we first explain how we
integrated this paradigm into X10. We call the resulting extended language
Invasive X10 [Bra+14] to differentiate it from regular X10. Subsequently,
we argue that our work on data transfers from the previous sections is
especially important in the context of Invasive X10.



4.7. Relation to Invasive X10 165

Invasive X10. The invasive paradigm focuses on exclusive resource
allocation. Resources are partitioned into claims. Invasive applications
can create (“invade”), resize (“reinvade”), use (“infect”), and destroy
(“retreat”) claims.

When trying to integrate the idea of claims with existing X10 language
semantics, one quickly notices the following problem. Suppose we run
an invasive X10 application on an invasive architecture with four tiles.
Assume that, initially, the application only has one claim containing cores
on tile 0. How many X10 places does this application see if it queries, e.g.,
the number of places?

One possibility would be that it sees four places (as we represent each
tile by one place). In regular X10, the number of places is fixed during a
program run [Sar+16, section 13]. If we want to keep this rule, the answer
to our question from before must be four; otherwise, we would never be
able to use more than one tile. Hence, all places would be visible, but only
some places should be usable for the application. Thus, if an application
uses places not currently contained in its claim, we would need to report
some kind of error, e.g., by throwing an exception. We could then provide
means to query whether a place is contained in a given claim to enable
the programmer to prevent these errors.

This basically adds the notion of “allowed” and “disallowed” places to
X10. As existing X10 code does not know about this distinction, it has to
be adapted. For example, all existing X10 standard library code that deals
with multiple places must be changed. Thus, we conclude that this design
is feasible in theory, but inelegant and impractical.

Instead, we propose to lift the concept of claims to a level above the
concept of places. Now, regular X10 lives inside a claim: an X10 application
only sees multiple places if the claim it currently runs in contains cores
from multiple tiles. In general, the application’s view is restricted to the
resources that are contained in its claim. Hence, in this design the answer
to our question from before is one.

This design breaks X10’s rule that the number of places is fixed. Suppose
a program changes its claim. It may acquire additional cores on a different
tile, which we must, according to our new design, make available as a



166 4. Compiling X10 to Invasive Architectures

new place. Hence, the number of places may increase. Conversely, the
application may free resources so that the number of places decreases.

In general, the number of places is now dynamic, and we call the re-
sulting extended X10 language Invasive X10. Invasive X10 requires
changes to the runtime system. For example, we have to convert the static
field Place.NUM_PLACES to a method Place.numPlaces(); for details
see [Bra+14].

The programmer deals with claims analogously to places. Hence, each
claim is represented as a regular X10 object of type Claim, just like
each place is an object of type Place. The class Claim offers a static
method invade() to create new claims, and non-static methods infect(),
reinvade(), and retreat() to operate on existing claims. Just like
at allows changing between places, infect allows changing between
claims.

From the viewpoint of an application running inside a claim, the regular
X10 semantics hold. Therefore, regular X10 can be embedded naturally
into Invasive X10: a regular X10 program behaves exactly like an Invasive
X10 program that runs inside a claim containing all resources in the
system. In fact, this is exactly how we performed all our experiments in
Section 4.6. Here, we configured our X10 runtime system to create a single
claim containing all system resources during initialization and destroyed
it on program exit, never modifying it in the meantime. Hence, we could
run regular unmodified X10 programs.

Data redistribution. If the number of places changes, the program has
to adapt. As such resource changes only happen at well-defined program
points, such as calls to reinvade(), the programmer does not have to deal
with asynchronous events36. For details on how to handle appearing and
disappearing places, see [Bra+14] and [Cun+14]. In the following, we
focus on one aspect: data redistribution.

Suppose an invasive application has acquired additional cores and its
claim has grown from cores on one tile to cores on three tiles. In order
to exploit the processing power of the cores on the two new tiles, they
36Except for the special class of malleable applications, see [BMZ15] for details.



4.7. Relation to Invasive X10 167

must be fed enough data. Hence, the application must redistribute its
data from one place to three places.

As we have discussed before, the primary means for data transfers between
places in X10 are Array.asyncCopy() and at for simple and complex data
structures, respectively. We can accelerate both means to transfer data
using the techniques we presented in Sections 4.3 and 4.4.

The invasive paradigm requires resource-aware applications that fre-
quently adapt their resource needs. Otherwise, the system has little room
to optimize resource usage for efficiency or predictability. In general,
frequent resource changes induce frequent data transfers to redistribute
data.

To support our argument, we perform the following experiment. We use
an existing X10 application that exists in an invasive and a non-invasive
variant. We use the multigrid [Bun+13] application37. This application
stems from the high performance computing domain and is a numeric
simulation of heat distribution on a metal plate. We instrumented the X10
runtime library to measure the amount of data transferred. We then ran
the invasive and the non-invasive variant of the application with the same
parameters38 and determined the amount of data transferred.

We did not perform our experiments on the hardware prototype. Instead,
we generated x86 code and used the x86guestvariant of OctoPOS39 , which
runs as a guest operating system under Linux. The OctoPOS interface
to applications and compiler is exactly the same as on the hardware
prototype. As the sizes of all X10 data types are fixed and pointers have
32 bits on both x86 and SPARC, the number of transferred bytes is the
same as on the hardware prototype. Using the x86 variant of OctoPOS
allowed us to simulate three different invasive hardware configurations: a
replica of the prototype with 4 tiles with 4 cores each; a variant with 6 tiles
having 4 cores each; and a variant with 8 tiles having 6 cores each.

37We use x10i Git revision 31183335a89917f489046da746c5181174a7bdb3 and the multi-
grid application of Git revision 6bb6ef6ff5c260eb0391bd12b82f052184c3a097.

38We set the number of simulated timesteps to 50 and used the defaults for all other
parameters.

39We used Git revision a0a23ef38fe2b6d7b9c9544a94c990cb2201ad57.



168 4. Compiling X10 to Invasive Architectures

Non-invasive Invasive Relative change
4 tiles, 4 cores each 10 809 196 14 902 232 +37.9%
6 tiles, 4 cores each 17 851 708 24 872 572 +39.3%
8 tiles, 6 cores each 24 872 572 32 300 660 +29.9%

Table 4.12: Amount of data transferred (in bytes) during run of multigrid
application. The table compares the amount for the non-invasive variant
to the invasive variant on three different architecture configurations.

Table 4.12 shows the amount of data transferred (in bytes) during runs
of the multigrid application and, for each simulated hardware design,
compares this amount for the non-invasive to the invasive application
variant. We see that due to resource adaptations and thus more frequent
data redistribution, the invasive application transfers between 30% and 40%
more data than the non-invasive variant. We suspect that the difference
between variants with 4 cores per tile and the variant with 6 cores per tile is
that with 6 cores per tile, more resource adaptations can happen inside the
tiles without requiring inter-tile data transfers, hence the relative change
is lower.

This experiment shows that efficient data transfers are even more important
for invasive X10 programs than for regular X10 programs. Invasive X10
programs have been shown to improve resource efficiency and through-
put [Bun+13]. However, in general, this comes at the price of more frequent
data transfers, which should therefore be as efficient as possible.



4.7. Relation to Invasive X10 169

Summary

• X10 maps naturally to invasive architectures by viewing each
tile (i.e., coherence domain) as one place.

• Data transfers between off-chip memory partitions are central
to the performance of X10 programs on invasive architectures.

• TLMs offer interesting trade-offs for implementing such data
transfers.

• One-sided transfers of simple contiguous data structures should
always proceed directly via off-chip memory.

• Transfers of complex pointered data structures should proceed
via TLMs for small data structures, and via off-chip memory for
larger data structures.

• Object cloning can be adapted to work in the presence of non-
coherent caches through automatic compiler-directed software-
managed coherence.

• It is worthwile to avoid serialization by using object cloning
when transferring large pointered data structures.

• Means for coarse-grained cache control are important for the
efficient execution of PGAS and message-passing programs.

• Implementing such cache functionality completely in hardware
is feasible, but not worth the overhead.

• Data transfers are even more important for invasive programs
than for regular programs due to more frequent data redistribu-
tion.





Values: 1 2 3 4 5
Values: 2 3 4 5 1
Values: 3 4 5 1 2
Values: 4 5 1 2 4

Output of a test program on an
early hardware prototype

5
Code Generation with Permutation Instructions

In this chapter, we investigate the use of permutation instructions to
speed up the execution of shuffle code. We first present an instruction
set extension and describe a possible hardware implementation. We then
study different code-generation approaches and evaluate benefits and
overheads. Parts of this chapter have been published in [Moh+13] and
[BMR15b; BMR15a].

Motivation. During compilation of a program, register allocation is
the task of mapping program variables to machine registers. During
register allocation, the compiler often emits shuffle code, consisting of copy
and swap operations, that transfers data between the registers. Three
common sources of shuffle code are (i) conflicting register mappings at
joins in the control flow of the program, e.g., due to if-statements or
loops; (ii) the calling convention for procedures, which often dictates
that input arguments or results must be placed in certain registers; and
(iii) constrained machine instructions that only allow a subset of registers
to occur as operands.

Figure 5.1 shows an example situation where the compiler needs to emit
shuffle code. In Figure 5.1a, we assume that the compiler has mapped

171



172 5. Code Generation with Permutation Instructions

a = 10; // in r1
b = 20; // in r3
c = 30; // in r4
...
foo(a, a, c, b);

(a) Source program.

r1 r2 r3 r4

(b) Necessary transfers.

copy r1, r2
swap r3, r4

(c) An implementation.

Figure 5.1: Example of shuffle code. We assume that the platform
requires passing function arguments in consecutive registers, i.e., the i-th
argument in ri .

variables a, b, and c to registers r1, r3, and r4, respectively. Additionally, we
assume that the calling convention requires us to put function arguments
into consecutive registers, i.e., the first argument must go into r1, the
second into r2, and so on. Hence, the compiler needs to emit code that
shuffles register values before the function call to foo, so that the registers
contain the values expected by the function.

Figure 5.1b illustrates the necessary value transfers using a register-transfer

graph, which we study in more detail in Section 5.1.1. Every vertex
represents a register and edges are transfer operations between registers.
Semantically, all copy operations are supposed to happen in parallel.
Here, r1 needs to retain its value (hence the loop) but we also need
to copy its value to r2 as variable a is passed twice as an argument to
foo. At the same time, we need to swap r3 and r4. Figure 5.1c shows
a possible implementation to achieve the required data redistribution
between registers. Depending on the quality of register allocation, such
shuffle code may be frequent. Additionally, it may potentially involve
many registers and thus may be expensive to implement. For example,
the following register transfer graph is also possible, with a possible
implementation shown on the right.

r1 r2 r3 r4 r5 r6 r7
copy r6, r7
copy r5, r6
swap r5, r4

swap r4, r3
swap r3, r2
swap r2, r1

We now take a look at the hardware that executes this shuffle code.
Modern processors often support out-of-order execution and rename



173

logical registers physical registers

r1

r2

r3

p1
p2
p3
p4
p5

Figure 5.2: A register alias table. It holds the current mapping from
logical registers ri (visible in the instruction set) to physical registers p j .
There are usually more physical than logical registers.

registers to exploit instruction level parallelism. Such a processor executes
instructions in an order consistent with the data dependencies between
the instructions, but not necessarily in the program order. To remove
so-called false dependencies, these processors employ register renaming.

i1: r1 ← add r2, r2
i2: r3 ← add r1, r1
i3: r1 ← add r4, r4
i4: r5 ← add r1, r1

For example, in this instruction sequence we have two instructions i1, i3
that do not require each other’s computed results but write to the same
destination register r1. By renaming r1 in i3 (and in i4) to some temporary
register rt , we can execute both i1 and i3 in parallel40. To this end, these
processors have more physical registers than there are logical registers
visible in the instruction set. Hence, we can choose a free physical register
as our temporary register rt .

To implement register renaming, the processor maintains a mapping
from logical to physical registers. A popular way to implement this
mapping is a register alias table (RAT). Figure 5.2 illustrates the concept.
The RAT is indexed by a logical register ri and provides the mapping
to the corresponding physical registers p j . Using our previous example,
we could in i3 rename r1 to another free physical register, say p3, by
40Of course, we have to take care that we later make the changes to r1 visible according to

the program order of instructions; see also Section 5.5.1.



174 5. Code Generation with Permutation Instructions

adapting the RAT accordingly. Subsequent instructions all access their
input registers via the RAT. Hence, instruction i4 would read its inputs
from p3.

We can also use register-renaming techniques to efficiently rearrange
register contents. For example, by exchanging the targets of two entries in
the RAT, we can effectively swap the register contents. Note that we do not
physically move the register contents; all we do is modify an indirection
table that reroutes subsequent register uses. As a table entry is usually just
a register index, it is fairly small and can therefore be modified efficiently.
In contrast, typical sizes of actual register contents are 32 or 64 bits, hence
they are more costly to modify. In principle, there is no limit on the
number of RAT entries that we modify at the same time, hence we can
also imagine performing operations involving more than two registers.

We now observe the following: on the hardware side, we have register-
renaming units providing the ability to efficiently rearrange register
contents for multiple registers at once. On the software side, we have
the compiler needing exactly this functionality to implement shuffle code.
Currently, however, the compiler cannot directly use this hardware. The
register renaming is purely controlled by hardware and is transparent
to software. Hence, the compiler has to use what usual instruction sets
provide: copy instructions and, if available, exchange instructions on two
registers. This results in potentially long sequences of copy and swap
instructions.

At this point, we pose the following questions:

1. How can we eliminate the detour induced by the instruction set
and give the compiler direct access to the underlying hardware’s
register-renaming capabilities?

2. How can the compiler leverage the new functionality to implement
shuffle code more efficiently?

3. Is it worthwhile?

Contribution. In this chapter, we investigate these questions. We propose
novel permutation instructions that allow to permute the contents of small
sets of registers, develop code-generation approaches that exploit the new



175

instructions to implement shuffle code more concisely, and evaluate when
using the new instructions is advantageous. We base our presentation
on an in-order architecture extended with renaming capabilities similar
to the RAT mentioned before. We later discuss how our findings may
carry over to an out-of-order architecture already incorporating register
renaming.

Structure. The structure of the following chapters is as follows:

• In Section 5.1, we give an introduction to the problem setting. We
cover relevant work related to register allocation and explain the
origin of shuffle code. This motivates our concept of permutation
instructions that permute up to five registers, which we introduce
in the following. We describe how to extend an existing RISC ISA
with the new instructions.

• In Section 5.2, as an instruction set extension must always undergo
a feasibility study, we describe a prototype implementation of the
permutation-instruction concept in an existing RISC microarchitec-
ture.

• In Section 5.3, we study code-generation approaches for the imple-
mentation of shuffle code exploiting the new instructions. After first
formalizing the problem statement, we propose two algorithms: a
fast heuristic and a dynamic-programming-based technique. We for-
mally prove the optimality of the dynamic-programming approach,
i.e., we show that its solutions always have minimal length.

• In Section 5.4, we implement both code-generation approaches in
a compiler and extensively evaluate compile times as well as code
quality using a comprehensive testsuite. We collect precise dynamic
instruction counts and validate these numbers by measuring actual
running times on an FPGA-based prototype implementation of the
permutation hardware.

• In Section 5.5, we argue that the proposed permutation instructions
should be cheap to implement on current out-of-order processors that
already support register renaming. We describe register-renaming
hardware techniques in more detail and discuss how our permuta-
tion instructions fit into this scenario.



176 5. Code Generation with Permutation Instructions

Acknowledgments. This part of this dissertation is joint work with
Lars Bauer, Sebastian Buchwald, Artjom Grudnitsky, Sebastian Hack,
Jörg Henkel, Tobias Modschiedler, and Ignaz Rutter [Moh+13; BMR15b;
BMR15a]. The complete microarchitecture extension we describe in
Section 5.2 as well as the FPGA-based prototype we use in Section 5.4
were designed and implemented by Lars Bauer, Artjom Grudnitsky,
Tobias Modschiedler, and Jörg Henkel [Mod13; Moh+13]. The hardware
extensions described in Section 5.2 as well as their overhead analysis in
Section 5.4.6 are thus not a contribution of this dissertation.

The formal foundations of the code-generation problem and the optimal
code-generation algorithm are joint work with Sebastian Buchwald and
Ignaz Rutter [BMR15b; BMR15a]. Concerning the theoretical groundwork
in Section 5.3, it is difficult to determine exactly who contributed what. The
author did contribute significantly to the proofs and proof structure for the
greedy algorithm (Section 5.3.3). The optimal dynamic program and its
proofs (Section 5.3.5) are almost exclusively Rutter’s work. In both cases,
the formal rigor with which we present the material is exclusively Rutter’s
contribution. We thus do not consider Section 5.3.5 a contribution of this
dissertation. However, as the author was closely involved, throughout all
sections we use “we” instead of “Rutter” and “they”.

5.1. Introduction

In this section, we give a brief explanation of the origin of shuffle code in
the context of SSA-based register allocation. Then, we present our concept
of permutation instructions to permute register contents. We do not build
our presentation from first principles. Instead, we restrict ourselves to
briefly introducing the most important terms and refer to appropriate
literature where needed.

5.1.1. Parallel Copies and Register Transfer Graphs

Static Single Assignment Form (SSA form) [ASU86, section 6.2.4] has
become a key property of modern compiler intermediate representations.



5.1. Introduction 177

x = ...;
y = ...;
if (C) {
t = x;
x = y;
y = t;
}
a = x;
b = y;

(a) Source program.

x1 = ...;
y1 = ...;
if (C) {
t1 = x1;
x2 = y1;
y2 = t1;
}
a1 = φ(x1, x2);
b1 = φ(y1, y2);

(b) In SSA form.

x1 = ...;
y1 = ...;
if (C) {

}
a1 = φ(x1, y1);
b1 = φ(y1, x1);

(c) After copy propagation.

Figure 5.3: Example of conversion to SSA form.

In programs in SSA form, every variable is textually defined exactly once.
We can convert a program to SSA form by renaming multiple definitions
of each variable x to subscripted versions xi of that variable. Figure 5.3a
shows a simple program that defines two variables x and y, swaps them
if some non-constant condition holds, and subsequently uses x and y.
Figure 5.3b shows the resulting program in SSA form.

At control-flow joins, we must merge multiple subscripted versions zi of
the same original variable z. For this purpose, SSA form introduces the
concept of φ-functions. These φ-functions are virtual functions41 that are
placed at the beginning of a basic block. They have as many arguments as
their containing basic block has predecessors in the control-flow graph.
A φ-function selects one of its arguments depending on the control-flow
path that was taken to reach the current basic block.

After eliminating redundant variables via copy propagation, we get the
program shown in Figure 5.3c. We see that the conditional swapping of x
and y in the source program is completely encoded in the φ-functions. For
example, the first φ-function selects its first argument x1 if the condition C
is false, and selects the second argument y1 if the condition C is true, which
complies with the semantics of the original program.

41Here used in the sense of “imaginary” and unrelated to the object-oriented term.



178 5. Code Generation with Permutation Instructions

x〈r1〉 = . . .
y〈r2〉 = . . .
condjump

a〈r1〉 = φ(x〈r1〉 , y〈r2〉)
b〈r2〉 = φ(y〈r2〉 , x〈r1〉)

(a) After register allocation.

x〈r1〉 = . . .
y〈r2〉 = . . .
condjump

a〈r1〉 = φ(x〈r1〉 , y〈r1〉)
b〈r2〉 = φ(y〈r2〉 , x〈r2〉)

r1 r2

(b) Inserted shuffle code.

Figure 5.4: Example of SSA-based register allocation We use x〈R〉 to denote
that value x is kept in register R.

While the semantics of φ-functions is precisely defined, φ-functions are
a theoretical construct and must be translated into primitive machine
operations during code generation. This process is often called “SSA
elimination”, “SSA destruction”, or “translating out of SSA”.

Traditionally, SSA form is destructed before register allocation to make
the resulting intermediate code compatible with non-SSA-aware register
allocators. However, premature SSA destruction unnecessarily constrains
register allocation [Hac07]. Research in SSA-based register allocation has
led to register allocators that directly work on intermediate code in SSA
form [Bri+06; Bou+07; HGG06]. These allocators sustain the SSA property
until after register allocation. Hence, the φ-functions are still present in
the register allocated program.

Figure 5.4a shows the control flow graph of the program from Figure 5.3c
after SSA-based register allocation. We use x〈R〉 to denote that the value x
is kept in register R at this program point. The φ-functions now choose
between values held in different registers. As no regular processor directly
offers φ-instructions, the φ-functions must be implemented using shuffle

code that compensates for register mismatches. In the example from
Figure 5.4a, this means that the compiler has to insert shuffle code that
swaps the contents of registers r1 and r2 in the second basic block (see
Figure 5.4b). The semantics of φ-functions dictates that all φ-functions



5.1. Introduction 179

x〈r4〉 = ...

y〈r5〉 = ...

foo(x〈r1〉, y〈r2〉)

(a) Function call.

x〈r4〉 = ...

y〈r5〉 = ...
r4 r1 r5 r2

foo(x〈r1〉, y〈r2〉);

(b) With parallel copy.

Figure 5.5: Adding a parallel copy to satisfy register constraints.

in a basic block must be evaluated simultaneously. Hence, shuffle code
consists of parallel copy operations.

In general, we may also need to insert such parallel copies before instruc-
tions with register constraints. Additionally, the calling convention may
enforce certain registers for function call arguments, which we can treat
as a special case of register constraint. For example, assume that an archi-
tecture requires to pass function arguments in registers with ascending
numbers, i.e., r1, r2, etc. Figure 5.5 shows an example where we insert a
parallel copy before the function call to ensure that the requirements are
satisfied.

We see that parallel copies represent the set of mismatching register
assignments and at the same time express the necessary copy operations
to fix up these mismatches [BC13]. In the examples from Figures 5.4 and 5.5
we have already intuitively visualized parallel copies using register-transfer

graphs [Hac07, page 56], which we define formally in the following.

Definition 2 A register-transfer graph (RTG) is a directed graph, where
vertices represent registers and edges represent parallel copy operations
between registers. Every vertex has at most one incoming edge, so each
register contains an unambiguous value after all copy operations have
taken place. 2

In our example from Figure 5.4b, the RTG states that r1 must be transferred
to r2 and, in parallel, r2 must be transferred to r1, effectively swapping
r1 and r2. In Figure 5.5b, the RTG states that we must copy r4 to r1 and,
independently, copy r5 to r2.



180 5. Code Generation with Permutation Instructions

The size and shape of RTGs in the program directly depends on the
quality of the copy coalescing that has been performed during register
allocation. Copy coalescing tries to reduce the cost for copying values
between registers as much as possible, i.e., in general tries to reduce the
size and number of RTGs. As copy coalescing is NP-complete [BDR07],
this reduction comes at great cost in terms of compilation time. Therefore,
in certain scenarios, such as just-in-time compilation, we sometimes cannot
avoid many potentially large RTGs.

r0 r1 r2 r3 r4 r5 r6 r7 r8

Figure 5.6: A more complex register transfer graph.

Figure 5.6 shows such a large RTG. On regular processor architectures,
RTGs must be implemented using register-register copies and, if available,
register-register swaps. For large RTGs, this can lead to a substantial
amount of code being generated. Hence, it is desirable to be able to
implement RTGs more concisely, ideally with a single instruction. This
would require fewer instructions, and thus increase performance and
decrease code size.

5.1.1.1. Related Work

The most influential approach to register allocation is graph coloring,
introduced by Chaitin [Cha82]. Here, program variables are abstracted
to nodes in the so-called interference graph. The interference graph is
an undirected graph. Two nodes are connected by an edge if a liveness
analysis [ASU86, section 9.2.5] determined that the two corresponding
variables are live at the same time. A coloring of the interference graph
then yields a correct register allocation. Chaitin also showed that for
every undirected graph there exists a program, which has that graph as
its interference graph [Cha82]. Hence, graph coloring register allocation
is NP-hard.

Register allocation is always a trade-off between coalescing and live-range
splitting. We say that two variables (or their respective nodes in the
interference graph) are copy-related if the two variables are involved in



5.1. Introduction 181

a copy instruction. Coalescing aims to assign the same register to two
copy-related variables, thereby eliminating the copy altogether. In the
interference graph, this corresponds to merging two copy-related nodes.
In general, coalescing decreases the number of copies but may increase
the register pressure and therefore may cause additional spill code. Spill
code saves registers to memory (usually in the current stack frame) and
later reloads the spilled value to a register, which is potentially costly.

On the other hand, splitting the live range of a variable means creating a
new definition of this variable and inserting a copy instruction between
the old definition and the new definition. In the interference graph,
this corresponds to splitting a single node into two distinct nodes. The
copy instruction gives the register allocator additional freedom as the
variable can now effectively change its register after the copy instruction
(as represented by the two unconnected nodes in the interference graph).
However, this flexibility is not for free: too many copy instructions can
slow down execution significantly. In general, live-range splitting may
reduce the number of spills, but may increase the number of copies.

Chaitin’s original approach always merges two copy-related nodes in the
interference graph. This can increase the register pressure of the program
and, in turn, can lead to additional spill code. Therefore, this coalescing
approach is called aggressive coalescing.

Since Chaitin’s fundamental work, various improved coalescing techniques
have been proposed. Briggs et al. [BCT94] derived criteria for conservative

coalescing, which means that coalescing never trades a copy for a spill. Park
and Moon [PM04] proposed optimistic coalescing, which is a conservative
technique that tries to undo aggressive coalescing in case a spill was
introduced because of a coalesced copy. In general, as the gap between
processor speed and memory speed steadily increased, splitting live
ranges more often and thereby trading spills for more copies became more
attractive.

In 2006, different articles independently proposed performing register
allocation on programs in SSA form [Bri+06; Bou+07; HGG06]. In contrast
to traditional graph-coloring allocation, the φ-functions are still present
after register allocation [HGG06]. For programs in SSA form, the contained
φ-functions provide implicit live-range splits. The interference graph of a



182 5. Code Generation with Permutation Instructions

program in SSA form is chordal. This means it is optimally colorable in
polynomial time.

In SSA-based register allocation, it is up to the register assignment or a
later coalescing pass to find an assignment that involves as few copies
as possible. This problem is again NP-hard even on SSA-form pro-
grams [BDR07; Hac07]. Various coalescing techniques for SSA-based
register allocation have been proposed. Pereira et al. [PP05] and Bouchez
et al. [BDR08] proposed novel conservative criteria for node coalescing.
Hack and Goos [HG08] introduced recoloring to improve a previously
found coloring by trying to assign two copy-related nodes the same color.
Grund and Hack [GH07] presented an efficient ILP-based algorithm.

Braun et al. [BMH10] and Colombet et al. [Col+11] presented biasing tech-
niques for the register-assignment phase. Usually, the allocator chooses
one register out of a list of free registers. By biasing this choice, those allo-
cators try to pick the same registers for copy-related variables in the first
place instead of relying on a post pass, such as recoloring. Biasing usually
produces colorings of inferior quality compared to more heavyweight
techniques like recoloring or even optimal ILP-based ones. However,
biasing techniques are in general more efficient. Wimmer et al. [WF10]
adapted the linear-scan register allocator to work directly on SSA form,
which simplifies the algorithm. Buchwald et al. [BZB11] presented an
approach that integrates register assignment and coalescing by mapping
it to the Partitioned Boolean Quadratic Problem.

5.1.2. Permutation Instructions

We first motivate our chosen instruction format and argue why the
restriction to permutations is sensible. The instruction format is important
as it heavily influences code generation, which we discuss in Section 5.3.
The instruction format, as the interface between software and hardware,
was developed in collaboration with Lars Bauer, Artjom Grudnitsky, Jörg
Henkel, and Tobias Modschiedler.

Our overall goal is to implement RTGs more concisely, therefore increasing
performance and decreasing code size. This requires rearranging register
contents, which is an extension to the base processor capabilities. The



5.1. Introduction 183

two most common ways to access a processor extension are (i) via a
new instruction, i.e., extending the ISA of the CPU, or (ii) by connecting
the processor extension to the system bus and using memory-mapped
access. Method (ii) can be a good choice for operations that take a long
time to complete (e.g., offloading tasks to a co-processor). However, it is
unsuitable for an instruction that needs to complete without delay, such as
rearranging register contents, due to the inherent latency when accessing
the system bus. Therefore, we choose alternative (i).

Ideally, we could implement an arbitrary RTG using a single instruction.
However, this raises practical problems, as we must encode the RTG in
the instruction. The hardware must be able to decode the instruction
quickly, so the encoding scheme must be simple. Moreover, space inside
the instruction word is severely limited as well. For most RISC instruction
sets, instructions have a fixed size, e.g., 32 bit. CISC instruction sets
typically offer instructions with variable length, but also CISC instructions
should be as short as possible.

A simple but general encoding scheme encodes each edge of the RTG
separately. For example, encoding edges (ri , r j) as a pair of register
numbers i and j is simple. However, this approach wastes a lot of space.
Assuming a standard 32-bit RISC architecture with 32-bit instruction
words and 32 registers, we need 5 bits to encode a register index. Hence,
we would need 20 bits to encode a small RTG with just two edges.

On the other hand, we could envision a more sophisticated encoding
scheme. As we only have a finite (and small) set of registers available,
we could enumerate all possible RTGs in some fixed way. We could then
identify an RTG with its number according to this enumeration scheme
and encode this number in the instruction. However, the matching decoder
hardware would be difficult to implement.

Hence, the three goals of (i) encoding arbitrary RTGs, (ii) a compact
instruction format, and (iii) efficient decoding hardware are incompatible.
Thus, we have to compromise on at least one of these goals. As we extend
a RISC architecture, we must adhere to a compact instruction format.
Moreover, we are interested in improving performance, so the decoding
hardware must be efficient. Thus, we relax our requirement (i) and restrict
ourselves to a subset of all possible RTGs.



184 5. Code Generation with Permutation Instructions

In this work, we restrict ourselves to permutations of registers. Our new
permutation instructions must carry with them the permutation that we
want to execute. Hence, we must first choose a suitable encoding for
permutations. We can express permutations using different notations.
An intuitive way of representing a permutation is the two-line notation,
where for a permutation σ of a set S, we list the elements x of S in the
first row and their images σ(x) in the second row. The left hand side of
Equation (5.1) shows an example of a particular permutation σ1 of the set
{1, 2, 3, 4, 5, 6}.

σ1 �

(
1 2 3 4 5 6
3 1 2 6 5 4

)
≡ (1 3 2)(4 6) ≡ (2 1 3)(6 4) (5.1)

However, we can express permutations more concisely using the cycle
notation. The cycle notation uses the fact that we can write every per-
mutation as a product of cycles. To build the cycle notation, we start
with some element x ∈ S and repeatedly apply σ, resulting in a sequence
(x σ(x) σ(σ(x)) . . .). We stop as soon as we reach the initial element x
again, do not append x a second time and call the resulting sequence a
cycle. We repeat this process for each element of S that is not part of a
cycle yet. The product of all cycles constructed this way is equal to the
original permutation, as shown by the right-hand side of Equation (5.1).
Note that there are multiple cycle notations for the same permutation
depending on which starting element we choose.

We choose the cycle notation for our permutation instructions as it is
compact as well as easy to encode and decode. Thus, our permutation
instructions take a permutation in cycle form as an argument.

We call the number of elements that a permutation affects its size. For
register-file permutation, the maximum size of a permutation is the
number of logical registers. In our work, we extend the SPARC V8
ISA [SPA92] with permutation instructions. The SPARC V8 ISA has
32 logical registers. However, instruction width limits the size of a
permutation that we can encode in a single instruction. The opcode uses
o bits of the instruction word, leaving n−o bits for encoding a permutation,
with n being the instruction width. For 32 visible registers, dlog2 32e � 5
bits are required to identify one register (i.e., encode one element of the



5.1. Introduction 185

permutation). In our implementation for SPARC V8 we need 7 bits for
the opcode, leaving us with 25 bits for encoding the permutation. This
allows us to encode permutations with a size of up to 5 elements as the
immediate of the permutation instruction.

Alternatively, we could store the permutation in a register instead of using
an immediate. However, for a 32-bit register, this would only increase
the maximum permutation size to b32/dlog2 32ec � 6. Moreover, we now
need two instructions to load the permutation into the register, as it does
not fit into an immediate, and an additional instruction to actually execute
the permutation. Furthermore, we increase the register pressure by 1.
Thus, we decided that this alternative is too expensive and provides too
little benefit to be worthwhile. Additionally, as we will see in Section 5.4,
small permutations are far more common than large permutations.

Hence, we encode our permutations in cycle notation as immediates. We
have extended the SPARC V8 ISA with two instructions for permuting the
register file:

(i) permi5 applies a permutation consisting of a single cycle of size up
to 5, and

(ii) permi23 applies a permutation that is the product of a 2-cycle and a
cycle of size up to 3.

The instructions always have five operands. We encode permutations
smaller than 5 elements by repeating the last member of the respective
cycle. For example, the permutation instruction

permi5 r2, r3, r3, r3, r3

encodes swapping registers r2 and r3. We can encode two 2-cycles in a
permi23, i.e., a “double swap”, using the same technique. Hence,

permi23 r2, r3, r4, r5, r5

swaps r2 and r3 as well as r4 and r5. In the remainder of this dissertation
we will use permiwhen referring to either permutation instruction.

Both instructions use the same format shown in Figure 5.7, where we refer
to the five operands as a, b, c, d, and e. Due to limitations of the free
opcode space, we cannot encode a as 5 consecutive bits, but we have to



186 5. Code Generation with Permutation Instructions

0001 000a1 b c d e
31 27 21 19 14 9 4 0

a2

24

Figure 5.7: Permutation instruction format implemented for the SPARC
V8 ISA.

split it into the upper 3 bits a1 and the lower 2 bits a2. For permi5, each
argument corresponds to a member of the 5-cycle. For permi23, a and b
encode the 2-cycle, while c, d, and e encode the 3-cycle.

The hardware discerns permi5 and permi23 instructions by comparing
the first two operands. If the register numbers are in ascending order
(i.e., a < b), the instruction is interpreted as permi5, otherwise as permi23.
Here, we exploit that there are multiple cycle notations for the same
permutation. The compiler chooses the cycle representation that results
in the correct instruction, i.e., permi5 or permi23, as the assembler only
knows one permi instruction. We found it simpler to add this functionality
to the compiler instead of the assembler.

5.1.2.1. Related Work

Some SIMD extensions of existing instruction sets support value permu-
tation, e.g., Intel x86 [Int17] and PowerPC [Fre16]. The x86 instruction
set offers the PSHUFB (Packed Shuffle Bytes) instruction as part of SSE3,
which permutes bytes in a 256-bit register. It expects the permutation
to be passed in a second operand register. Moreover, Advanced Vector
Extension (AVX) introduces the VPERM* instructions, which do not perform
in-place permutations, but write the permuted values into a destination
register. In addition, the VPERM* instructions allow value duplication. The
PowerPC AltiVec extension offers the vperm instruction, which extracts
bytes from two 128-bit source registers and arranges them according to
a user-definable mask into a 128-bit destination register. As for VPERM*,
value duplication is permitted.

Both ISAs allow permutation only on values within one (or two) registers,
but not between registers. Furthermore, the instructions are limited to
special vector registers reserved for SIMD processing. Hence, they are



5.2. Hardware Implementation 187

unsuitable for implementing RTGs. In contrast, our proposed permutation
instructions work on general-purpose registers.

Instructions of VLIW architectures include one operation per functional
unit of the processor. Hence, on a 4-way VLIW architecture it may be
possible to encode 4 swaps or 4 copies in one instruction. In contrast, our
proposed permutation instructions target a non-VLIW architecture.

5.2. Hardware Implementation

This section describes the hardware implementation of our permutation
instructions. The details of the hardware implementation are not necessary
to follow the discussion of code-generation approaches in Section 5.3.
Hence, the reader may skip this section. Still, we provide an overview of
the hardware implementation for the sake of completeness.

The hardware implementation we describe in this section is not a contribu-
tion of this dissertation. The complete hardware was implemented by Lars
Bauer, Artjom Grudnitsky, Tobias Modschiedler, and Jörg Henkel [Moh+13].
The content in this section is based on an unpublished extended version
of [Moh+13]. Modschiedler [Mod13] gives the most extensive description
of the hardware implementation available.

5.2.1. Fundamental Pipeline Modifications

The underlying processor for the implementation is a Gaisler LEON 3 [Cob17b].
The LEON 3 uses an in-order 7-stage pipeline. As an example, Figure 5.8
shows the processing of an add instruction.

The pipeline stages have the following tasks:

Fetch Retrieve the instruction word from the instruction cache.
Decode Extract instruction type as well as operand and destination

registers from the instruction word. Use the operand registers as
address inputs to the register file (one cycle latency for read or write
access).



188 5. Code Generation with Permutation Instructions

Fetch Decode Register Execute Memory Exception Writeback

I$

in
sn

reg data

r5 1233

r7 3105

r9 7404

Operand
Regs

r5

r7

Operand
Data

1233

3105
4338

Result
Data

+ 4338

Result
Data

4338

Result
Data

add

Operation

add

Operation

5 7add 9

Instruction Word

Register File

reg data

r5 1233

r7 3105

r9 4338

Register File
ALU

Result
Reg

r9

Result
Reg

r9

Result
Reg

r9

Result
Reg

r9

Result
Reg

r9

Figure 5.8: 7-stage RISC pipeline of the base architecture executing an add
instruction.

Register Read operand data requested in the Decode stage from the
register file and write it into operand-data pipeline registers.

Execute Execute arithmetic and branch operations. For an arithmetic
operation, the ALU uses the contents of the operand-data pipeline
registers as inputs and stores the result in the result-data register.

Memory Perform load and store operations.
Exception Handle traps and interrupts. This requires the following steps:

1. save the program counter (PC) and next program counter
(NPC),

2. annul all instructions before the Exception stage,
3. execute the trap-handler routine,
4. restore the saved PC and NPC, and
5. resume execution of the original program.

Writeback If the instruction has a result, write the result data to the
register file at the address specified by the result register.

SPARC V8 architectures organize the register file in multiple register

windows. While the register file holds 136 entries in an implementation
with 8 register windows, only 32 registers are visible at a time, defined
by the current-window pointer. Certain SPARC V8 instructions, such as,
e.g., restore or save, modify the current-window pointer. We refer to
the SPARC V8 standard [SPA92] for details about register windows.

To support register file permutation, Bauer et al. introduce the distinction
between logical and physical register addresses. All instructions only
refer to logical register addresses, whereas actual register file accesses



5.2. Hardware Implementation 189

Fetch Decode

I$

in
sn

8 6permi 5

Instruction Word

log phys

r5

r6

r7

r5

r6

r7

re
tr

ie
v

e 
o

ld
p

er
m

u
ta

ti
o

n

7 9

r8 r9

r9 r8

generate new
permutation

r5 → r8
r6 → r9
r7 → r6
r8 → r5
r9 → r7

write new
permutation

Figure 5.9: Applying the permutation (5 8 6 7 9) using the permi5 instruc-
tion.

use physical register addresses. Bauer et al. add the permutation table to
translate logical to physical register addresses. The permutation table
stores the current logical-to-physical mapping of register addresses for
all registers (i.e., it has 136 entries for 8 register windows used in their
implementation). This corresponds to a permutation written in two-line
notation (see left part of Equation (5.1) in Section 5.1.2).

Figure 5.9 shows how a permi5 instruction applies the permutation (58679)
to the register file. We only show the entries for registers r5 to r9 of the
permutation table. The application of a permi23works analogously.

The execution of a permutation instruction consists of four steps, all of
which happen in the Decode stage:

1. The instruction decoder recognizes a permi5 or permi23 instruction
and extracts the five operands that define the permutation πi carried
by the instruction word.

2. As we have to apply πi to an already existing permutation πt saved
in the permutation table, we first read πt from the table.

3. Permutation instructions define a permutation on the current win-
dow, thus we use the current window pointer to filter the entries of
the current window from πt .



190 5. Code Generation with Permutation Instructions

Fetch Decode             Register

I$

in
sn

reg data

r6 6410

r7 3105

r8 7404

Operand
Regs

r8

r6

Operand
Data

7404

6410

add

Operation

add

Operation

7 9add 5

Instruction Word

Register File

log phys

r5

r7

r9

r8

r6

r7

Result
Reg

r7

Result
Reg

r7
lookup phys.
register addrs

Figure 5.10: Executing the instruction add r5, r7, r9 on a permuted
register file. Logical registers r5 and r7 are operands, r9 is the logical
destination register.

4. We compute π′t � πt ◦ π−1
i and write π′t back to the permutation

table. Intuitively, for some given register r, we look up the logical
source register s of r (with π−1

i ) and then look up which physical
register p we currently map s to (with πt). This p is the new physical
register for r, thereby implementing “copying” s to r.

In the example from Figure 5.9, the permutation table initially contains the
cycle πt � (8 9). The permi5 instruction encodes the cycle πi � (5 8 6 7 9).
We compute π′t � (8 9) ◦ (5 8 6 7 9)−1 � (8 9) ◦ (5 9 7 6 8) � (5 8)(6 9 7) and
write π′t back to the permutation table.

To execute a regular instruction with the modified pipeline, the important
difference happens in the Decode stage. Figure 5.10 shows the pipeline ac-
tivities of an add instruction immediately following the permi5 instruction
from the example shown in Figure 5.9. It shows how, in the Decode stage
of the pipeline, we first translate the logical register addresses from the
instruction to physical register addresses. The translation is equivalent
to the application of the permutation πt from the table to the registers of
the instruction. We then use the resulting physical register addresses to
access the register file.



5.2. Hardware Implementation 191

Permutation instructions do not induce read-after-write hazards in the
pipeline, thus Bauer et al. do not have to extend the pipeline-forwarding
logic. This is because permutation instructions commit their changes
in the Decode stage. Hence, once the following instruction (add in the
example) is in the Decode stage one cycle later, the permutation table has
already been updated with the new permutation. Bauer et al. call this
characteristic early committing.

At system reset, they initialize the permutation table with the identity
permutation, i.e., the physical address of each register is the same as
its logical address. Subsequent permutation instructions modify the
permutation table. Permutations are transparent to the operating system
(OS), so Bauer et al. do not need to modify OS code for context switches.
For instance, if the OS wants to save r5 from a task (to restore it later), it
will actually access the physical register that currently holds the value of
r5 (which is r8 in Figure 5.10). When restoring r5 later, it may be written
to a different register; however, an access to r5 will provide the same data
that was initially saved.

5.2.2. Exception Handling

The architecture outlined in the previous section can execute programs
that use permutation instructions, unless traps occur during execution.
The SPARC V8 standard specifies three categories of traps:

1. Precise traps are induced by particular instructions, e.g., unknown
instructions, trap-on-condition instructions or instructions causing
a register-window overflow or underflow.

2. Deferred traps are caused by floating-point and co-processor instruc-
tions and become visible after the instruction that caused them has
committed.

3. Interrupting traps are caused by external interrupts, e.g., timer
interrupts or I/O components notifying the processor that a buffer
is full.

A program that runs directly on the hardware (without an OS), does not
use any I/O components, and uses the register windows in a way that



192 5. Code Generation with Permutation Instructions

incurs neither window overflows nor underflows42 will not cause any
traps. However, when executing on a multi-tasking OS, the program is
likely to be interrupted, e.g., by the timer used to periodically invoke
the OS scheduler, by the page fault handler or by interrupts caused by
peripherals.

The underlying architecture handles traps in the Exception stage. Af-
ter the trap-handler code has finished, the program counter and next
program counter are restored and regular program execution continues.
Instructions must not be executed twice, i.e., instructions already in the
pipeline before the trap is detected must not first proceed through the
pipeline at the start of the trap handler and then be executed again after
the old program counter is restored and the corresponding instruction is
reloaded.

Therefore, at the time of trap detection, the pipeline automatically annuls
all instructions that are currently in pipeline stages Exception or earlier.
This ensures that they are executed only once: after trap handling has
finished, the old program counter is restored and the instructions are
loaded into the pipeline again.

However, Bauer et al. cannot simply annul permutation instructions as
described above, as, due to their early committing characteristic, these
instructions already modify the permutation table in the Decode stage.
Hence, they differentiate between three cases for annulling permutation
instructions during a trap:

1. They flag permutations in the Fetch stage with an annul bit. Permu-
tations marked this way do not update the permutation table in the
Decode stage.

2. They notify permutations in the Decode stage with a cancel signal.
They send the cancel signal at the time they detect a trap in the
Exception stage. If they see the cancel signal in the Decode stage,
they create the new permutation π′t but do not write it back to the
permutation table.

42This is possible by compiling the program in a way that does not change the register
window during function calls. This is often called a “flat” register model. For GCC, the
option -mflat enables the flat register model.



5.2. Hardware Implementation 193

Register Execute Memory Exception
permi π3 permi π2 permi π1permi π4

Figure 5.11: Traps require reversal of up to four permutations, depending
on the pipeline state.

3. Permutations in the Register, Execute, Memory, and Exception stages
have already passed the Decode stage. Hence, they have already
modified the permutation table. Thus, Bauer et al. cannot annul or
cancel them anymore. Instead, they need to revert their change to
the permutation table.

It is imperative to handle all three cases. Otherwise, a permutation could
modify the permutation table more than once, possibly leading to wrong
register contents and a violation of program semantics.

In order to revert the change of a permutation π, Bauer et al. compute its
inverse π−1 and apply it to the permutation table. As π−1 ◦ π � id, this
reverts the change of π.

At the time of a trap, up to four pipeline stages might hold permutation
instructions that we cannot annul or cancel: Register, Execute, Memory,
and Exception. To invert multiple permutations, we compute the inverse
of each of them and apply the inverse permutations in the reverse order
we have applied the original permutations. Assuming, at the time of a
trap, the pipeline state shown in Figure 5.11, we need to apply four inverse
permutations to restore the original state of the permutation table. As
π−1

1 ◦π−1
2 ◦π−1

3 ◦π−1
4 ◦ (π4 ◦π3 ◦π2 ◦π1) � id, this reverts the permutation

table to its previous state.

The implementation of this concept requires that Bauer et al. propagate the
permutations carried by permutation instructions through the pipeline up
to the Exception stage. This requires four additional 25-bit wide pipeline
registers and four corresponding 1-bit registers, which indicate whether
the instruction was a permutation.

Figure 5.12 shows the updated pipeline structure. Bauer et al. extend the
Exception stage to check whether at least one of the instructions in the
Register, Execute, Memory, or Exception stages is a permutation. If they



194 5. Code Generation with Permutation Instructions

Decode

- --

log phys

r5

r6

r7

r8

r9

r6

- -

r8 r5

r9 r7

generate new
permutation

r5 → r5
r6 → r6
r7 → r7
r8 → r9
r9 → r8write new

permutation

Register Execute Memory Exception

Permutation

- -- - -

inverted permutation

9 75 6 8

6 78

Permutation

9 5

Permutation

- -- - -

Permutation

- -- - -re
tr

ie
v

e 
o

ld
p

er
m

u
ta

ti
o

n

select

Figure 5.12: Implementation of permutation reversion during trap detec-
tion. Here, only one permutation from the Execute stage needs to be
reverted.

detect no permutations in these stages, exception handling continues as
usual.

Otherwise, they halt the pipeline and check each of the mentioned stages
for a permutation. Bauer et al. check in the reverse order of application, i.e.,
Register, Execute, Memory, and finally Exception. For each permutation
they detect, they compute an inverse permutation and apply it to the
permutation table like a regular permutation. They can compute and
apply one inverse permutation per cycle. Thus, permutation inversion
can take up to four cycles per trap.

Implementing inversion as a multi-cycle operation is necessary to prevent
increasing critical path length (and thus reducing processor frequency).
Bauer et al. generate inverse permutations by reversing the cycle(s) of the
original permutation (i.e., reversing the order of the arguments of the
permutation).

5.3. Code Generation

As we now know what our new instructions look like and work they work,
we discuss code-generation approaches for RTGs in the following. First,
we briefly describe how we can implement RTGs on regular machines
without permutation instructions, i.e., just using copy and swap. Then, we



5.3. Code Generation 195

study how to exploit our new permutation instructions. Hence, our goal
is to implement a given RTG with a minimal number of instructions using
copy, permi23, and permi5.

Let us restate that a register-transfer graph (RTG) is a directed graph,
where each vertex represents a register and an edge (u , v) means that
the content of register u before the execution of the RTG must be in v
after the execution. All copy operations in an RTG are assumed to be
performed in parallel. Therefore, each vertex in the graph has at most
one incoming edge, because the register content would be undefined if
multiple concurrent copy operations wrote to the same destination register.
However, a vertex can have multiple outgoing edges, which means that
the register value is duplicated, and even loops (u , u), indicating that the
register contents must be preserved.

We call a sequence of register-transfer instructions, such as copy, swap,
permi23, and permi5, a shuffle code. A shuffle code implements an RTG if
after the execution of the shuffle code, every register whose corresponding
vertex has an incoming edge has the correct content. We call a shuffle code
optimal regarding a certain RTG if the shuffle code has minimal length and
implements the RTG.

Additionally, we introduce two special types of RTGs. First, outdegree-1

RTGs are RTGs where the maximum out-degree of every vertex is 1. Hence,
outdegree-1 RTGs do not allow value duplication. And second, PRTGs

(for permutation RTGs), where the in-degree and out-degree of every vertex
are exactly 1. Every PRTG is an outdegree-1 RTG. We call an RTG trivial if
it has only self-loops. In this case, it needs no shuffle code as every register
already contains the right value.

In the rest of this chapter, we will identify registers ri with their numbers i
to improve readability and simplify dealing with permutations. Figure 5.13
shows simple RTGs, presented in the style we will use in the following.

5.3.1. Implementing RTGs on Regular Machines

We first look at how we can implement RTGs on traditional machines,
i.e., using copy and swap instructions on registers. Implementing a given
RTG G works as follows [Hac07, p. 56–57]. We assume that registers that



196 5. Code Generation with Permutation Instructions

1
2

3
4 5 6 7 8 9

Figure 5.13: Example RTGs. On the left an RTG containing a loop; in the
middle a PRTG; on the right an outdegree-1 RTG.

do not take part in the shuffle code, i.e., whose respective vertices in the
RTG would have no incident edges, have been removed from the input
RTG. Denote with F the set of free registers (see [Hac07, p. 56] on how to
determine F).

1. If there is a vertex n with no outgoing edges, there must be exactly one
edge (n′, n) with n , n′. Emit a register-register copy n′→ n. We may
overwrite the value in n, as we do not need it anymore (as n has no
outgoing edges). Remove the edge (n′, n) from G’s edge set.
Then, replace each edge (n′,m) (except for self-loops (n′, n′)) with an
edge (n ,m). This is correct as, after the copy, n and n′ contain the same
value. Replacing self-loops as well would be correct, but would lead to
unnecessary copy instructions. Put n′ into the set of free registers F.
Repeat step 1.

2. Now G is a (possibly empty) PRTG. Cycles of length 1 (self-loops) do
not require any instructions. We can implement cycles of length 2 or
greater as follows:
• If there is a free register, i.e., F , ∅, let rt ∈ F. Implement a

cycle (r1 , . . . , rk) by k copies following the scheme rk → rt , rk−1 →
rk , . . . , rt → r1.

• If there is no free register, decompose a cycle of length k into k − 1
transpositions, and implement these using k−1 register-register swap
instructions. If the instruction set does not offer a swap instruction,
we can use arithmetic or bitwise operations to achieve the same
effect [War02, section 2–19].

Figure 5.14 shows the implementation that the algorithm generates for a
simple input RTG under the condition that F � ∅43.

43Technically, we could use registers r2 or r3 as temporary registers, implement the cycle
first, and then copy r1 to r2 and r3.



5.3. Code Generation 197

1
2

3
4 5 6 1 4 5 6

copy r1, r2
copy r1, r3

copy r1, r2
copy r1, r3
swap r5, r6
swap r4, r5

Figure 5.14: Implementation of an example RTG using copy and swap
instructions. On the left the input RTG before step 1 of the algorithm; in
the middle the RTG after step 1 with the code emitted up to this point;
on the right the finished implementation after step 2. We omit registers
without incident edges for presentation reasons.

We now turn to the question of optimality. Note that each edge (except self-
loops) in an RTG expresses a transfer operation and thus some instruction
must perform that transfer. A copy instruction can implement an arbitrary
RTG edge. A swap instruction can implement two RTG edges at the same
time; however, the edges must be of the form (a , b) and (b , a).

Step 1 of the above algorithm is clearly optimal as we use copies to
implement edges (u , v) whose target vertex v does not have further
outgoing edges—in particular, there is no edge (v , u). Hence, we would
not gain anything by using a swap and thus implementing (u , v)with a
copy instruction is optimal. Note that, as long as u has no self-loop, it
would be correct to use a swap instruction; it is just not better than using
a copy.

Step 2 of the algorithm does, in general, not lead to an optimal shuffle code
(according to our definition of optimality) as it prefers k copy instructions
over k − 1 swap instructions for a cycle of size k. This is because modern
processors often handle copy instructions specially, as they are far more
common than swap instructions; see Section 5.5 for details. However, a
slightly modified algorithm that always chooses swap instructions for
cycles is optimal.



198 5. Code Generation with Permutation Instructions

5.3.2. Reformulation as a Graph Problem

We will now look at generating code RTGs with permutation instructions.
As our set of instructions, we use permi23, permi5, and copy. As permi5
can also encode the swapping of two registers, it is strictly more powerful
than swap. Hence, we do not consider swap in the following.

Before we discuss the actual code-generation scheme, we will first rephrase
our problem statement as a graph problem. If we can define the effect of
an instruction on an RTG, we can view our problem as finding a shuffle
code that, applied to an RTG, makes it trivial.

It is easy to define the effect of a permutation on an RTG. Let G be
an RTG and let π be an arbitrary permutation that is applied to the
contents of the registers. We define π • G � πG � (V, πE), where
πE � {(π(u), v) | (u , v) ∈ E}. This models the fact that if v should receive
the data contained in u, then after π moves the data contained in u to
some other register π(u), the data contained in π(u) should end up in v.
By applying this definition, we can now, for example, formally explain
why the permutation (1 2 3) resolves a cyclic shift of registers r1, r2, r3:

[(1 2) ◦ (2 3)] • 1 2 3

� [(1 2) ] • 1 2 3

� 1 2 3

Unfortunately, it is not possible to directly define the effect of a copy
operation on an RTG. There are often multiple RTGs that could be the
result of applying a copy operation to an RTG. Figure 5.15 shows an
example where we apply a copy operation to a simple RTG. After the copy
operation 1→ 2, there are two possible sources for the value of r3 and it
is unclear how to choose one.

Even more problematic are copy operations that do not work along an
existing edge in the RTG. For example, how should we define the effect of
the copy operation 2→ 1 on the input RTG from Figure 5.15? Applying
this copy operation would overwrite the value in r1. This value is then
lost, and it is not recoverable. Hence, we are somehow stuck, and the



5.3. Code Generation 199

value transfers described by the original RTG are now impossible (as we
lost one of the required values). This asymmetry between permutation
and copy operations reflects a fundamental difference in their semantics:
permutations only redistribute values, but never duplicate or destroy
them, wheras copy operations can do that.

[1→ 2] • 1
2

3
� 1

2

3
or 1

2

3

Figure 5.15: Attempt at defining the effect of copy operations on RTGs.
After the copy operation 1 → 2, there are two possible sources for the
value of r3 and it is unclear how to choose one.

Therefore, instead of trying to define the semantics of applying an arbitrary
copy operation to an RTG, we rely on the following observation. Consider
an arbitrary shuffle code that contains a copy a → b with source a and
target b that is followed by a transposition τ � (c d) of the contents of
registers c and d. We can replace this sequence with the same transposition
(c d) and a copy τ(a) → τ(b). Thus, given a sequence of operations, we
can successively move the copy operations to the end of the sequence
without increasing its length. Hence, for any RTG there exists a shuffle
code that consists of a pair of sequences ((π1 , . . . , πp), (c1 , . . . , ct)), where
the πi are permutation operations and the ci are copy operations.

We now strengthen our assumption on the copy operations. The following
proofs of Lemmas 1 and 2 are the work of Rutter and thus not a contribution
of this dissertation.

Lemma 1 Every instance of the shuffle code generation problem has an optimal

shuffle code ((π1 , . . . , πp), (c1 , . . . , ct)) such that

(i) No register occurs as both a source and a target of copy operations.

(ii) Every register is the target of at most one copy operation.

(iii) There is a bĳection between the copy operations ci and the edges of πG that

are not loops, where π � πp ◦ πp−1 ◦ · · · ◦ π1.

(iv) If u is the source of a copy operation, then u is incident to a loop in πG.

(v) The number of copies is

∑
v∈V max{deg+

G(v) − 1, 0}. 2



200 5. Code Generation with Permutation Instructions

u v wckci

c j

c j

(a)

u

v
w

ck

ci
c j

(b)

v wck ci x
c jc j

(c)

Figure 5.16: Illustration of the proof of Lemma 1. The copies c j with
i < j < k along the dashed edges would contradict the choice of i or k.

Proof Consider an optimal shuffle code of the form ((π1 , . . . , πp), (c1 , . . . , ct))
as above and assume that the number t of copy operations is minimal
among all optimal shuffle codes.

Suppose there exists a register that occurs as both a source and a target of
copy operations or a register that occurs as the target of more than one
copy operation. Let k be the smallest index such that in the sequence
c1 , . . . , ck there is a register occurring as both a source and a target or
a register that occurs as a target of two copy operations. We show that
we can modify the sequence of copy operation such that the length of
the prefix without such registers increases. Inductively, we then obtain a
sequence without such registers.

Let v and w denote the source and target of ck , respectively. Let i denote
the largest index such that ci is a copy operation that has w as a source
or target or such that ci is a copy operation with target v. We distinguish
three cases based on whether ci has target v, target w, or source w.

Case 1: The target of ci is v; see Figure 5.16a. Let u denote the source
of operation ci . The sequence first copies a value from u to v and from
there to w. Then, we replace ck with a copy with source u and target
w. (If u � w, we omit the operation altogether.) This only changes the
outcome of the shuffle code if the value contained in u or v is modified
between operations ci and ck , i.e., if there exists a copy operation c j with
i < j < k whose target is either u or v. But then already the smaller
sequence c1 , . . . , c j has u occur as both a source and a target or v as a
target of two operations, contradicting the minimality of k.

Case 2: The target of ci is w; see Figure 5.16b. In this case, the copy
operation ci copies a value to w and later this value is overwritten by the



5.3. Code Generation 201

operation ck . Note that by the choice of i there is no operation c j with
i < j < k with source w. Thus, omitting the copy operation ci does not
change the outcome of the shuffle code. A contradiction to optimality.

Case 3: The source of ci is w; see Figure 5.16c. Let x denote the target
of operation ci . In this case, first a value is copied from w to x and later
the value in v is copied to w. We claim that no copy operation c j with
i < j < k involves x or w. If x occurs as the source of c j , then x occurs as a
source and target in the sequence c1 , . . . , c j . If x occurs as the target of c j ,
then x occurs twice as a target in c1 , . . . , c j . In both cases, this contradicts
the minimality of k. If w is the target of c j , then w occurs as a source and
a target in the sequence c1 , . . . , c j , contradicting the choice of k. If w is the
source of c j we have a contradiction to the choice of i. This proves the
claim.

We can thus, without changing the outcome of the shuffle code, move
the operation ci immediately before the operation ck . Then, our sequence
contains consecutive copy operations w → x and v → w. Replace these
two operations with a cyclic shift of { v, w, x } and a copy operation w → v.
This decreases the number of copy operations by 1 and thus contradicts
the minimality of t.

Altogether, in each case, we have either found a contradiction to the
optimality of the shuffle code, to the minimality of the number of copy
operations, or we have succeeded in producing a shuffle code that has a
longer prefix satisfying properties (i) and (ii). Inductively, we obtain a
shuffle code satisfying both (i) and (ii). Fix such a code. Since no register
is both source and target of a copy operation, the copy operations are
commutative and can be reordered arbitrarily without changing the result.

For property (iii) first observe that the only way to transfer a value from
u to v is via a copy operation u → v. This is due to the facts that the
shuffle code is correct, that no node occurs as both a source and a target
of copy operations, and that π only permutes the values in the initial
registers but does not duplicate them. Thus, for every edge there must
be a corresponding copy operation. Conversely, this number of copy
operations certainly suffices for a correct shuffle code for πG.

For property (iv) consider a copy operation from u to v such that u is not
incident to a loop. If the indegree of v in πG were 1, then there would



202 5. Code Generation with Permutation Instructions

be an incoming edge, which would correspond to a copy operation with
target u, which is not possible by property (i). Thus, u has indegree 0. But
then, the contents of u are irrelevant and we can replace the copy from
u to v by an operation that swaps the contents of u and v, resulting in a
shuffle code with fewer copy operations.

By property (iv) every vertex that is the source of an edge in πG is
incident to a loop. Hence

∑
v∈V max{deg+

πG(v) − 1, 0} is the number
of non-loop edges in πG, which is the same as the number of copy
operations by property (iii). Note that by definition π only permutes
the outdegrees of the vertices, and hence

∑
v∈V max{deg+

πG(v) − 1, 0} �∑
v∈V max{deg+

G(v) − 1, 0}. This shows property (iv) and finishes the
proof. �

We call a shuffle code satisfying the conditions of Lemma 1 normalized.
Observe that the number of copy operations used by a normalized shuffle
code is a lower bound on the number of necessary copy operations since
permutations, by definition, only permute values but never create copies
of them.

Consider now an RTG G together with a normalized optimal shuffle code
and one of the shuffle code’s copy operations u → v. Since the code is
normalized, the value transferred to v by this copy operation is the one
that stays there after the shuffle code has been executed. If v had no
incoming edge in G, then we could shorten the shuffle code by omitting
the copy operation. Thus, v has an incoming edge (u′, v) in G, and we
associate the copy u → v with the edge (u′, v) of G. In fact, u′ � π−1(u),
where π � πp ◦ · · · ◦ π1. In this way, we associate every copy operation
with an edge of the input RTG. In fact, this is an injective mapping by
Lemma 1 (ii). We define G − C :� (V, E \ C) for an RTG and an edge
set C.

Lemma 2 Let ((π1 , . . . , πp), (c1 , . . . , ct)) be an optimal shuffle code S for an

RTG G � (V, E) and let C ⊆ E be the edges that are associated with copies in S.

Then

(i) Every vertex v has max{deg+

G(v) − 1, 0} outgoing edges in C.

(ii) G − C is an outdegree-1 RTG.

(iii) π1 , . . . , πp is an optimal shuffle code for G − C. 2



5.3. Code Generation 203

1 2 3 4 5 6

(a) With C � {(1, 2)}, we need one per-
mutation and one copy operation.

1 2 3 4 5 6

(b) With C � {(2, 3)}, we need two per-
mutation operations and one copy.

Figure 5.17: The choice of the copy set is crucial for obtaining an optimal
shuffle code. We show edges in the copy set as dotted lines. With
C � {(1, 2)}, the RTG obtains the normalized optimal shuffle code (π1, c1),
where π1 � (2 3 4 5 6) and c1 � 3→ 1. However, after putting the edge
(2, 3) (instead of (1, 2)) into the copy set, we cannot achieve an optimal
solution anymore.

Proof For property (i) observe that, since permuting the register contents
does not duplicate values, it is necessary that at least max{deg+

G(v) − 1, 0}
of the edges of v are implemented by copy operations and thus are in C.
By property (v) of Lemma 1, the number of copy operations is exactly the
sum of these values, which immediately implies that equality holds at
every vertex.

Property (ii) follows immediately from property (i).

Finally, for property (iii), suppose there is a shorter optimal shuffle code
π′1 , . . . , π

′
p′ with p′ < p for G−C. Let π′ � π′p′ ◦ · · · ◦π′1. Then π′G has |C |

edges that are not loops and by creating a copy operation for each of them
we obtain a shorter shuffle code. This is a contradiction to the optimality
of the original shuffle code. Hence property (iii) holds. �

Lemma 2 shows that we can find an optimal shuffle code for an RTG G
by first picking for each vertex one of its outgoing edges (if it has any)
and removing the remaining edges from G; second finding an optimal
shuffle code for the resulting outdegree-1 RTG; and finally creating one
copy operation for each of the previously removed edges. We call the set
of edges that we implement by copies a copy set and will denote it with C
by default. We will study copy sets further in Section 5.3.4. Figure 5.17
shows that the choice of the copy set is crucial to obtain an optimal shuffle
code.



204 5. Code Generation with Permutation Instructions

RTG outdegree-1 RTG Trivial RTG

Heuristic

Section 5.3.4

Optimal
Section 5.3.5

Greedy
Section 5.3.3

Figure 5.18: Structure of the following sections. We first study a greedy
approach to generate shuffle code for an outdegree-1 RTG. We then
present two approaches for picking a copy set: a heuristic and an optimal
approach.

Overview. Hence, to generate code for an RTG, we first pick a copy
set and then generate shuffle code for the resulting outdegree-1 RTG.
Figure 5.18 shows an overview of the following sections. We start with the
last step: generating shuffle code for an outdegree-1 RTG. Section 5.3.3
shows how to compute an optimal shuffle code for an outdegree-1 RTG
using a greedy algorithm. Afterwards, we present two techniques for
choosing a copy set:

(i) a simple heuristic with linear running time in Section 5.3.4, and
(ii) an optimal algorithm with running time O(n4) in Section 5.3.5.

In this case optimal means that, for an input RTG G, the algorithm chooses
a copy set C such that the resulting outdegree-1 RTG G − C (where we
removed all edges in C from G) still admits a shuffle code with the smallest
number of operations.

5.3.3. Optimal Shuffle Code for Outdegree-1 RTGs

In this section we propose a greedy algorithm to generate code for
outdegree-1 RTGs. Furthermore, we prove its optimality.

Before we formulate the algorithm, let us look at the effect of applying a
transposition τ � (u v) to contiguous vertices of a k-cycle K � (VK , EK) in
a PRTG G, where k-cycle denotes a cycle of size k. Hence, u , v ∈ VK and



5.3. Code Generation 205

(u , v) ∈ EK . Then, in τG, the cycle K is replaced by a (k − 1)-cycle and a
vertex v with a loop. We say that τ has reduced the size of K by 1. If τK is
trivial, we say that τ resolves K. It is easy to see that permi5 reduces the
size of a cycle by up to 4 and permi23 reduces the sizes of two distinct
cycles by 1 and up to 2, respectively.

We can now formulate Greedy as follows.

1. Complete each directed path of the input outdegree-1 RTG into a
directed cycle, thereby turning the input into a PRTG.

2. While there exists a cycle K of size at least 4, apply a permi5 operation
to reduce the size of K as much as possible.

3. While there exist a 2-cycle and a 3-cycle, resolve them with a permi23
operation.

4. Resolve pairs of 2-cycles by permi23 operations.
5. Resolve triples of 3-cycles by pairs of permi23 operations.

Figure 5.19 shows how Greedy generates code for the example RTG with
9 vertices shown in Figure 5.19a. First, we complete the right component,
a path, into a cycle (Figure 5.19b) and obtain a PRTG. Then, the right
component is a cycle of size 6, so, as shown in Figure 5.19c, we apply step
2 of Greedy, generating a permi5. We thereby reduce the right component
to a 2-cycle. Now, as Figure 5.19d shows, step 3 of Greedy resolves the
remaining 2-cycle and 3-cycle with one permi23 operation. Hence, Greedy
has transformed our input outdegree-1 RTG into a trivial RTG using two
permutation operations.

We claim that Greedy computes an optimal shuffle code. Let G be an
outdegree-1 RTG and let Q denote the set of paths and cycles of G. For
a path or cycle σ ∈ Q, we denote by size(σ) the number of vertices of σ.
We define X �

∑
σ∈Q bsize(σ)/4c and ai � |{σ ∈ Q | size(σ) � i mod 4}|

for i � 2, 3. We call the triple sig(G) � (X, a2 , a3) the signature of G.

Lemma 3 Let G be an outdegree-1 RTG with sig(G) � (X, a2 , a3). The number

Greedy(G) of operations in the shuffle code produced by the greedy algorithm is

Greedy(G) � X + max{d(a2 + a3)/2e , d(a2 + 2a3)/3e}. 2

Proof After the first step we have a PRTG with the same signature as
G. Clearly Greedy produces exactly X operations for reducing all cycle



206 5. Code Generation with Permutation Instructions

(a) 1 2 3 4 5 6 7 8 9

(b) 1 2 3 4 5 6 7 8 9

(c)

1 2 3 4 5 6 7 8 9

permi5 r5, r6, r7, r8, r9

(d)

1 2 3 4 5 6 7 8 9

permi23 r4, r5, r1, r2, r3

Figure 5.19: Example illustrating how Greedy generates code for an
outdegree-1 RTG. In (a), we show the input RTG; (b) shows the re-
sulting PRTG; (c) shows the permi5 operation generated by Greedy and
the resulting modified PRTG; and (d) shows the second operation issued
by Greedy as well as the final trivial RTG.



5.3. Code Generation 207

G Trivial RTG

πG

Greedy(G)

1 (π)
Greedy(πG)

Figure 5.20: Idea behind the strategy to prove the optimality of Greedy.
G is an outdegree-1 RTG, π is a permutation instruction.

sizes below 4. Afterwards, only permi23 operations are used to resolve
the remaining cycles of size 2 and 3.

If a2 ≥ a3, then first a3 operations are used to resolve pairs of cycles of size 2
and 3. Afterwards, the remaining a2 − a3 cycles of size 2 are resolved by
using d(a2 − a3)/2e operations. In total, these are d(a2 + a3)/2e operations.

If a3 ≥ a2, then first a2 operations are used to resolve pairs of cycles of size 2
and 3. Afterwards, the remaining a3 − a2 cycles of size 3 are resolved by
using d2(a3− a2)/3e operations. In total, these are d(a2+2a3)/3e operations.

We observe that (a2 + a3)/2 ≤ (a2 + 2a3)/3 holds if and only if a2 ≤ a3
and that equality holds for a2 � a3. Since d·e is a monotone function, this
implies that the total cost produced by the last part of the algorithm is
max{d(a2 + a3)/2e , d(a2 + 2a3)/3e}. �

In particular, the length of the shuffle code computed by Greedy only
depends on the signature of the input RTG G. In the remainder of
this section, we prove that Greedy is optimal for outdegree-1 RTGs and
therefore the formula in Lemma 3 actually computes the length of an
optimal shuffle code.

Before we turn to the actual proof, we give an intuition of our proof
strategy. Figure 5.20 depicts the idea behind the proof. Suppose we have
an arbitrary outdegree-1 RTG G. We can now apply our Greedy algorithm,
which will use Greedy(G) operations to transform G into a trivial RTG.

Alternatively, we can apply some arbitrary permutation instruction π
to G, resulting in πG. Note that π does not have to be the permutation



208 5. Code Generation with Permutation Instructions

instruction that Greedy would choose next. Transforming πG into a trivial
RTG using Greedy takes Greedy(πG) instructions.

Now, if we can show that, regardless of which permutation instruction
π we choose, directly applying Greedy is never worse than first using
π and then Greedy, Greedy is optimal. Hence, we have to show that,
for an arbitrary π, it is Greedy(G) ≤ Greedy(πG) + 1. Or, equivalently,
Greedy(G) −Greedy(πG) ≤ 1.

Thus, it is crucial that we formally study the cost difference of Greedy for
two given RTGs. With the following lemma we will do just that. As they
are easier to handle, we will first look at PRTGs and then later generalize
our findings to outdegree-1 RTGs in a straightforward manner.

Lemma 4 Let G,G′ be PRTGs with sig(G) � (X, a2 , a3), sig(G′) � (X′, a′2 , a′3)
and Greedy(G) −Greedy(G′) ≥ c, and let (∆X ,∆2 ,∆3) � sig(G) − sig(G′). If

a2 ≥ a3, then 2∆X + ∆2 + ∆3 ≤ −2c + 1. If a3 > a2, then 3∆X + ∆2 + 2∆3 ≤
−3c + 2. 2

Proof We assume that Greedy(G) − Greedy(G′) ≥ c and start with the
case that a2 ≥ a3. By Lemma 3 and basic calculation rules for d·e, we have
the following.

Greedy(G) � X + d(a2 + a3)/2e ≤ X + (a2 + a3 + 1)/2
Greedy(G′) ≥ X′ + d(a′2 + a′3)/2e ≥ X + ∆X + (a2 + a3 + ∆2 + ∆3)/2

Therefore, their difference computes to

Greedy(G) −Greedy(G′) ≤ −∆X − (∆2 + ∆3 − 1)/2
� −(2∆X + ∆2 + ∆3 − 1)/2.

By assumption, we thus have −(2∆X + ∆2 + ∆3 − 1)/2 ≥ c, or equivalently
2∆X + ∆2 + ∆3 ≤ −2c + 1.

Now consider the case a3 > a2. By Lemma 3, we have the following.

Greedy(G) � X + d(a2 + 2a3)/3e ≤ X + (a2 + 2a3 + 2)/3
Greedy(G′) ≥ X′ + d(a′2 + 2a′3)/3e ≥ X + ∆X + (a2 + 2a3 + ∆2 + 2∆3)/3



5.3. Code Generation 209

1

2
3

4
5

6
7

8
⇔ 1

2
3

4

5

6
7

8

Figure 5.21: The transposition τ � (5 8) acting on PRTGs. Affected edges
are drawn thick. Read from left to right, the transposition is a merge; read
from right to left, it is a split.

Similar to above, their difference computes to

Greedy(G) −Greedy(G′) ≤ −∆X − (∆2 + 2∆3 − 2)/3
� −(3∆X + ∆2 + 2∆3 − 2)/3.

Similarly as above, by assumption we have −(3∆X + ∆2 + 2∆3 − 2)/3 ≥ c,
which is equivalent to 3∆X + ∆2 + 2∆3 ≤ −3c + 2. �

Lemma 4 gives us necessary conditions for when the Greedy solutions of
two RTGs differ by some value c. These necessary conditions depend only
on the difference of the two signatures. To study them more precisely, we
defineΨ1(∆X ,∆2 ,∆3) � 2∆X + ∆2 + ∆3 andΨ2(∆X ,∆2 ,∆3) � 3∆X + ∆2 +
2∆3.

Next, we study the effect of a single transposition on these two functions.
Let G � (V, E) be a PRTG with sig(G) � (X, a2 , a3) and let τ be a transpo-
sition of two elements in V . We distinguish cases based on whether the
swapped elements are in different connected components or not. In the
former case, we say that τ is a merge, in the latter we call it a split; see
Figure 5.21 for an illustration.

Merges. We start with the merge operations as they are a bit simpler.
When merging two cycles of size s1 and s2, respectively, they are replaced
by a single cycle of size s1 + s2. Note that removing the two cycles may
decrease the values a2 and a3 of the signature by at most 2 in total. On
the other hand, the new cycle can potentially increase one of these values



210 5. Code Generation with Permutation Instructions

0 1 2 3
0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
1 (0, 1, 0) (0,−1, 1) (1, 0,−1)
2 (1,−2, 0) (1,−1,−1)
3 (1, 1,−2)

(a) Signature change (∆X ,∆2 ,∆3).

0 1 2 3
0 0 0 0 0
1 1 0 1
2 0 0
3 1

0 1 2 3
0 0 0 0 0
1 1 1 1
2 1 0
3 0

(b) Values ofΨ1 (left) andΨ2 (right).

Table 5.1: Signature changes andΨ values for merges. Row and column
are the cycle sizes modulo 4 before the merge.

by 1. The value X never decreases, and it increases by 1 if and only if
s1 mod 4 + s2 mod 4 ≥ 4.

Table 5.1a shows the possible signature changes (∆X ,∆2 ,∆3) resulting
from a merge. The entry in row i and column j shows the result of merging
two cycles whose sizes modulo 4 are i and j, respectively. Table 5.1b
shows the corresponding values of Ψ1 and Ψ2. Only entries with i ≤ j
are shown, the remaining cases are symmetric.

Lemma 5 Let G be a PRTG with sig(G) � (X, a2 , a3) and let τ be a merge.

Then Greedy(G) ≤ Greedy(τG). 2

Proof Suppose we have Greedy(τG) < Greedy(G). Then it is Greedy(G)−
Greedy(τG) ≥ 1 and by Lemma 4 eitherΨ1 ≤ −1 orΨ2 ≤ −1. However,
Table 5.1b shows the values ofΨ1 andΨ2 for all possible merges. In all
cases it isΨ1 ,Ψ2 ≥ 0. A contradiction. �

In particular, the lemma shows that merges never decrease the cost of the
greedy solution, even if they were for free.



5.3. Code Generation 211

Splits. We now perform a similar analysis for splits. It is, however,
obvious that splits indeed may decrease the cost of greedy solutions. In
fact, we can always split cycles in a PRTG until it is trivial.

First, we study again the effect of splits on the signature change (∆X ,∆2 ,∆3).
Since a split is the inverse of a merge, we can essentially reuse Table 5.1a. If
merging two cycles whose sizes modulo 4 are i and j, respectively, results
in a signature change of (∆X ,∆2 ,∆3), then, conversely, we can split a cycle
whose size modulo 4 is i + j into two cycles whose sizes modulo 4 are
i and j, respectively, such that the signature change is (−∆X ,−∆2 ,−∆3),
and vice versa. Note that given a cycle whose size modulo 4 is s we have
to look at all cells (i , j)with i + j ≡ s (mod 4) to consider all the possible
signature changes. SinceΨ1 ,Ψ2 are linear, negating the signature change
also negates the corresponding value. Thus, we can reuse Table 5.1b for
splits by negating each entry.

Lemma 6 Let G � (V, E) be a PRTG and let π be a cyclic shift of c vertices

in V . Let further (∆X ,∆2 ,∆3) be the signature change affected by π. Then

Ψ1(∆X ,∆2 ,∆3) ≥ −d(c − 1)/2e andΨ2(∆X ,∆2 ,∆3) ≥ −d(3c − 3)/4e. 2

Proof We can write π � τc−1 ◦ · · · ◦ τ1 as a product of c − 1 transpositions
such that any two consecutive transpositions τi and τi+1 affect a common
element for i � 1, . . . , c − 1.

Each transposition decreases Ψ1 (or Ψ2) by at most 1, but a decrease
happens only for certain split operations. However, it is not possible to
reduceΨ1 (orΨ2) with every single transposition since for two consecutive
splits the second has to split one of the connected components resulting
from the previous split.

To get an overview of the sequences of splits that reduce the value ofΨ1
(or ofΨ2) by 1 for each split, we consider the following transition graphs
Tk forΨk (k � 1, 2) on the vertex set S � {0, 1, 2, 3}. In the graph Tk there
is an edge from i to j if there is a split that splits a component of size
i mod 4 such that one of the resulting components has size j mod 4 and
this split decreasesΨk by 1. The transition graphs T1 and T2 are shown in
Figure 5.22.

For Ψ1 the longest path in the transition graph has length 1. Thus, the
value ofΨ1 can be reduced at most every second transposition and thereby
Ψ1(∆X ,∆2 ,∆3) ≥ −d(c − 1)/2e.



212 5. Code Generation with Permutation Instructions

0 1

23

0 1

23

Figure 5.22: Transition graphs forΨ1 (left) andΨ2 (right).

ForΨ2 the longest path has length 3 (vertex 1 has outdegree 0). Therefore,
after at most three consecutive steps that decreaseΨ2, there is one that
does not. It follows that at least b(c − 1)/4c operations do not decreaseΨ2,
and consequently at most d(3c − 3)/4e operations decreaseΨ2 by 1. Thus,
Ψ2(∆X ,∆2 ,∆3) ≥ −d(3c − 3)/4e. �

Sincepermi5performs a single cyclic shift andpermi23 is the concatenation
of two cyclic shifts, Lemmas 4 and 6 can be used to show that no such
operation may decrease the number of operations Greedy has to perform
by more than 1.

Corollary 1 Let G be a PRTG and let π be an operation, i.e., either a permi23
or a permi5. Then Greedy(G) ≤ Greedy(πG) + 1. 2

Proof Assume for a contradiction that Greedy(G) > Greedy(πG) − 1. By
Lemma 4 we have that eitherΨ1(∆X ,∆2 ,∆3) ≤ −3 orΨ2(∆X ,∆2 ,∆3) ≤ −4.

We distinguish cases based on whether π is a permi5 or a permi23. If π
is a permi5, then it is a c-cycle with c ≤ 5. By Lemma 6, we have that
Ψ1(∆X ,∆2 ,∆3) ≥ −2 andΨ2(∆X ,∆2 ,∆3) ≥ −3. This contradicts the above
bounds from Lemma 4.

If π is a permi23, then it is a composition of a 2-cycle and a c-cycle with
c ≤ 3. According to Lemma 6, both cycles contribute at least −1 to Ψ1,
and at least −1 and −2 toΨ2. Therefore, we haveΨ1(∆X ,∆2 ,∆3) ≥ −2 and
Ψ2(∆X ,∆2 ,∆3) ≥ −3. This is again a contradiction. �

Using this corollary and an induction on the length of an optimal shuffle
code, we show that Greedy is optimal for PRTGs. If no operation reduces
the number of operations Greedy needs by more than 1, why not use the
operation suggested by Greedy?



5.3. Code Generation 213

Theorem 1 Let G be a PRTG. An optimal shuffle code for G takes Greedy(G)
operations. Algorithm Greedy computes an optimal shuffle code in linear time.2

Proof The proof is by induction on the overall length of an optimal shuffle
code. Clearly, Greedy computes optimal shuffle codes for all instances
that have a shuffle code of length 0.

Assume that G admits an optimal shuffle code of length k + 1. We show
that Greedy(G) � k + 1. First of all, note that Greedy(G) ≥ k + 1 as it
computes a shuffle code of length Greedy(G). Let π1 , . . . , πk+1 be a shuffle
code for G. Then obviously πk+1G admits an optimal shuffle code of
length k, and therefore Greedy(πk+1G) � k by our inductive assumption.
Corollary 1 implies Greedy(G) ≤ Greedy(πk+1G)+1 � k+1; the induction
hypothesis is proved. Hence, algorithm Greedy indeed computes a correct,
and thus optimal, shuffle code.

Also, it computes this optimal shuffle code in linear time, as we can see as
follows. The first step (completing directed paths into cycles) is clearly
linear. In each iteration of Greedy, one of the steps 2–5 is active and Greedy
generates one instruction. This instruction creates at least one loop. As
Greedy never touches vertices with loops again and stops when the RTG
is trivial, the number of vertices n is an upper bound for the number of
iterations. As splitting a cycle only takes constant time, each iteration
takes constant time as well. Hence, Greedy runs in linear time. �

Moreover, since merge operations may not decrease the cost of Greedy
and any PRTG that can be formed from the original outdegree-1 RTG G by
inserting edges can be obtained from the PRTG G′ formed by Greedy and
a sequence of merge operations, it follows that the length of an optimal
shuffle for G is Greedy(G′).

Lemma 7 Let G be an outdegree-1 RTG and let G′ be the PRTG formed by

completing each directed path into a directed cycle. Then the length of an optimal

shuffle code of G is Greedy(G′). 2

Proof Assume π1 , . . . , πk is an optimal shuffle code for G. Of course,
applying π � πk ◦ · · · ◦ π1 to G maps every value of G somewhere, that
is, π1 , . . . , πk is actually an optimal shuffle code for some instance G′′

that consists of a disjoint union of directed cycles and contains G as a



214 5. Code Generation with Permutation Instructions

subgraph. It is not hard to see that G′′ can be obtained from G′ by a
sequence of merge operations τ1 , . . . , τt , i.e., G′′ � τt ◦ · · ·◦τ1G′. Lemma 5
implies that Greedy(G′) ≤ Greedy(τ1G′) ≤ · · · ≤ Greedy(τt ◦ · · · ◦ τ1G′) �
Greedy(G′′) � k, where the last equality follows from Theorem 1, the
optimality of Greedy for PRTGs. �

By combining Theorem 1 and Lemma 7, we obtain the main result of this
section.

Theorem 2 Let G be an outdegree-1 RTG. Then an optimal shuffle code for G
requires Greedy(G) operations. Greedy computes such a shuffle code in linear

time. 2

Remark. Recall that the combination of permi5 and permi23 enables us
to express any permutation of up to five elements. We define the size of a
permutation to be the number of elements affected by the permutation.
Viewed this way, we can use Greedy to solve a more general problem
than computing shuffle code: it decomposes a given permutation into a
shortest product of permutations of maximum size 5.

5.3.4. A Heuristic for Finding Copy Sets

We now turn to the general case, i.e., our input is not an outdegree-1 RTG,
but an arbitrary RTG. Following the idea from Section 5.3.2, we must now
pick a copy set. To recap: the idea behind a copy set is that, at each vertex
with more than one outgoing edge, we pick one outgoing edge, remove
the other outgoing edges from the graph and put them into the copy set.
By doing that, the graph becomes an outdegree-1 RTG and is suitable for
Greedy. We then implement all edges in the copy set with copy operations,
adapting their source vertices as described in Section 5.3.2.

More formally, a copy set of an RTG G � (V, E) is a set C ⊆ E such
that G − C � (V, E − C) is an outdegree-1 RTG. It is always |C | �∑

v∈V max{deg+(v) − 1, 0}. We denote by C(G) the set of all copy sets of
G.



5.3. Code Generation 215

Once we have chosen a copy set C ∈ C(G)we can, by Theorem 2, compute
an optimal shuffle code for G − C with the greedy algorithm and we can
compute its length according to Lemma 3. We now propose a simple
heuristic for finding a good copy set fast. After that, in Section 5.3.5, we
propose an approach to find an optimal copy set C ∈ C(G), i.e., a copy set
such that the outdegree-1 RTG G − C admits a shortest shuffle code.

Our heuristic is based on two ideas: (i) as our permutation instructions are
good at handling cycles, we always preserve existing cycles in the RTG, and
(ii) as our permutation instructions are most useful when implementing
large outdegree-1 RTGs, we try to choose our copy set so that the resulting
outdegree-1 RTG is as large as possible.

We directly translate these two ideas into the following two simple rules:

1. We always keep cycles. Hence, at each vertex that is part of a cycle,
we keep the outgoing edge that is part of the cycle, and put all other
outgoing edges into the copy set.

2. We prefer creating large outdegree-1 RTGs. Hence, at each vertex
that is not part of a cycle, we keep the edge that is part of the longest
path starting at that vertex.

0 1 2 3 4

5

6

7

8

9

Figure 5.23: An RTG after the heuristic has chosen a copy set (depicted as
dotted edges).

Figure 5.23 shows an example RTG, for which the heuristic has chosen a
copy set (shown as dotted edges). Because of rule 1, we put edge (2, 3) into
the copy set as edge (2, 0) is part of the existing cycle (0 1 2). After doing
this for all cycles, the remaining components are either cycles (which we
can keep) or trees.

For the tree-shaped RTGs, we apply rule 2. Hence, at vertex 3 we keep
the edge (3, 4) as the path from 3 to 9 is longer than the path from 3 to
8 (rule 2). Rule 2 also applies for vertex 4, hence we keep (4, 6), whereas
(4, 7) becomes part of the copy set.



216 5. Code Generation with Permutation Instructions

Time Complexity. Our heuristic has running-time complexity O(n) for
an RTG with n vertices. As each vertex has at most one incoming edge, n
is also an upper bound for the number of edges. For step 1 of our heuristic,
we need to find all cycles in the RTG. We can do this in O(n) time using,
e.g., Tarjan’s SCC algorithm [Tar72]. Additionally, for the tree-shaped
RTGs, we need to determine the longest path starting at each vertex, which
we can do in linear time using a depth-first search. In total, we have linear
worst-case complexity.

Quality. We will analyze the quality of the code generated by the heuristic
empirically in Section 5.4. However, as the following examples show, both
rules of the heuristic can lead to finding non-optimal copy sets.

0
1 2

3 4
5 6

7 8 9
(a) Heuristic solution, requires 5 instruc-
tions.

0
1 2

3 4
5 6

7 8 9
(b) Optimal solution, requires 4 instruc-
tions.

Figure 5.24: Comparison of copy set chosen by heuristic with optimal
copy set. We show copy sets with dotted edges.

Figure 5.24 shows the smallest RTG known to the author, for which the
heuristic computes a non-optimal copy set. As depicted in Figure 5.24a,
due to rule 2, the heuristic puts edges (0, 1) and (4, 5) into the copy set in
order to preserve the longest path 0 to 9 in the RTG. The remaining three
components require three instructions, hence, including two copies, we
require five instructions in total.

However, as shown in Figure 5.24b, an optimal copy set, e.g., {(0, 1), (4, 7)},
can reduce the number of required instructions to four. Here, the remain-
ing components (paths of lengths 2, 3 and 5) fit perfectly into a permi23
and a permi5 instruction. Hence, rule 2 of the heuristic can lead to a
non-optimal choice for the edges in the copy set.

Figure 5.25 shows that also rule 1 of the heuristic can lead to a non-
optimal copy set. Due to the size of the RTG, we omit vertex numbers. In



5.3. Code Generation 217

(a) Heuristic solution, requires 9 instruc-
tions.

(b) An optimal solution, requires 8 in-
structions.

Figure 5.25: Comparison of copy set chosen by heuristic with an optimal
copy set.

Figure 5.25a, we see how rule 1 of the heuristic preserves the cycle, hence
we put the 4 edges leaving the cycle into the copy set. This leaves us with
5 components of size 4, for which Greedy needs 5 permi5 instructions.
Thus, we need 9 instructions in total.

However, as Figure 5.25b shows, it is beneficial to break the cycle. If we
put all edges that are part of the cycle into the copy set, we can implement
the remaining 4 paths of size 5 using just 4 permi5 instructions. Hence, in
total, we need 8 instructions, one instruction less than with the copy set
found by the heuristic.

This raises the question of how to find optimal copy sets for RTGs.
The presented examples suggest that small changes to the heuristic will
probably not be sufficient to achieve optimality, as both ideas that we based
our heuristic on can lead to suboptimal solutions. Hence, an algorithm to
find optimal copy sets will likely have an entirely different structure.



218 5. Code Generation with Permutation Instructions

0 1 2 3

4 5

6 7 8 9

Figure 5.26: Example where a locally optimal copy set is not globally
optimal. If we just look at the right component, the copy set C1 � {(3, 6)}
is locally optimal; we then need 3 instructions to implement the RTG,
which is minimal. However, C1 is not globally optimal: if we must
implement a path of length 3 (shown on the left side) at the same time, we
need 4 instructions. In this case, C2 � {(3, 4)} is a globally optimal copy
set for the right component; we then need 3 instructions for the whole
RTG.

5.3.5. Finding Optimal Copy Sets

We now want to find an optimal copy set. Thus, for an RTG G, we seek
a copy set C ∈ C(G) that minimizes the cost function Greedy(G − C) �
X + max{d(a2 + a3)/2e , d(a2 + 2a3)/3e}, where (X, a2 , a3) is the signature
of G − C. We call such a copy set optimal.

Before we study this problem formally, we give an intuition for the idea
behind our approach. We will find optimal copy sets using dynamic
programming. The idea is that for some RTG G, we compute optimal
copy sets for progressively larger subgraphs of G until we have found an
optimal copy set for G. For example, suppose G is a tree-shaped RTG
with root vertex v, we would like to compute optimal copy sets for all tree
RTGs rooted at the children of v and then combine them to get an optimal
copy set for G.

Unfortunately, it is, in general, not possible to determine an optimal
copy set locally. This is because the cost function Greedy(G − C) strongly
depends on a2 and a3, the number of 2-cycles and 3-cycles, of the complete

RTG G − C.

Figure 5.26 shows an example where a locally optimal copy set is not
globally optimal. Here, we have a disconnected RTG G consisting of a path
of length 3 (shown on the left) and a tree-shaped component G′ (shown
on the right). An optimal copy set for G′ in isolation is C1 � {(3, 6)}. Then,



5.3. Code Generation 219

G′ − C1 leaves a 4-cycle and a 3-cycle, so we need 3 instructions in total,
which is minimal.

However, if we look at the complete RTG, it is better to choose C2 � {(3, 4)}
as a copy set for G′. Locally, it does not make a difference: we would
still need 3 instructions for G′ alone. Yet, globally, we have a surplus of
3-cycles because of the path of size 3. Hence, it is beneficial to choose C2
as copy set for G′ to create a local surplus of 2-cycles. Globally, this results
in an equal number of 2-cycles and 3-cycles, so Greedy can then match the
pair and our overall costs are minimal.

Hence, we keep track of optimal copy sets for all possible combinations of
numbers of remaining 2-cycles and 3-cycles. This guarantees that, at the
end with a global view, we can choose the optimal copy set for the whole
RTG. In the following, we will formalize this idea.

Minimizing Greedy(G − C) is equivalent to minimizing the function
Greedy′ where we drop the rounding expressions:

Greedy′(G−C) � X+max{ a2 + a3
2 ,

a2 + 2a3
3 } �

{
X +

a2
2 +

a3
2 if a2 ≥ a3

X +
a2
3 +

2a3
3 if a2 < a3

To keep track of which case is used for evaluating Greedy′, we define
diff(G − C) � a2 − a3 and compute for each of the two function parts and
every possible value d a copy set Cd with diff(G − Cd) � d that minimizes
that function.

More formally, we define cost1(G −C) � X +
1
2 a2 +

1
2 a3 and cost2(G −C) �

X +
1
3 a2 +

2
3 a3. We then seek two tables T1

G[·], T
2
G[·], such that T i

G[d] is the
smallest cost costi(G − C) that can be achieved with a copy set C ∈ C(G)
with diff(G − C) � d.

We observe that T i
G[d] � ∞ for d < −n and for d > n. The following

lemma shows how to compute the length of an optimal shuffle code from
these two tables.

Lemma 8 Let G � (V, E) be an RTG. The length of an optimal shuffle code for G
is

∑
v∈V max{deg+(v) − 1, 0} + min{mind≥0dT1

G[d]e ,mind<0dT2
G[d]e}. 2



220 5. Code Generation with Permutation Instructions

Proof Let m �
∑

v∈V max{deg+(v) − 1, 0}. Consider an optimal normal-
ized shuffle code for G, which, according to Lemma 2, consists of a copy
set C ⊆ E and a sequence of k permutation operations, i.e., the length of
the shuffle code is m + k. Let (X, a2 , a3) denote the signature of G − C and
let d � a2 − a3.

If a2 ≥ a3, or equivalently d ≥ 0, then according to Theorem 2, we have
k � Greedy(G−C) � X+ d(a2+ a3)/2e � dX+ (a2+ a3)/2e � dcost1(G−C)e,
and therefore the length of the shuffle code is at most m + dT1

G[d]e.
If a2 < a3, i.e., if d < 0, then we have k � Greedy(G − C) � X + d(a2 +

2a3)/3e � dX + (a2 + 2a3)/3e � dcost2(G − C)e, and therefore the length of
the shuffle code is at most m + dT2

G[d]e.
In either case the length of the shuffle code is bounded by the expression
given in the statement of the theorem.

Conversely, assume that the minimum of the expression is obtained for
some value T i

G[d].
If d ≥ 0, there exists a copy set C such that sig(G − C) � (X, a2 , a3) and
Greedy(G−C) � dcost1(G−C)e is at most dT1

G[d]e. Then, the shuffle code
defined by C and Greedy applied to G − C has length at most m + dT1

G[d]e.
If d < 0, there exists a copy set C such that sig(G − C) � (X, a2 , a3) and
Greedy(G−C) � dcost2(G−C)e is at most dT2

G[d]e. Then, the shuffle code
defined by C and Greedy applied to G−C has length at most m+ dT2

G[d]e.�

In the following, we show how to compute for an RTG G a table TG[·]
with

TG[d] � min
C∈C(G)

diff(G−C)�d

cost(G − C)

for an arbitrary cost function cost(G − C) � c(sig(G − C)), where c is a
linear function. We do this in several steps depending on whether G is
disconnected, is a tree, or is connected and contains a cycle. Before we
continue, we introduce several preliminaries to simplify the following
calculations. We denote by Ps a directed path on s vertices.

Definition 3 A map f that assigns a value to an outdegree-1 RTG is
signature-linear if there exists a linear function g : R3 → R such that
f (G) � g(sig(G)) for every outdegree-1 RTG G. For a signature-linear
function f , ∆ f (s) � f (Ps+1) − f (Ps) is the correction term. 2



5.3. Code Generation 221

Note that both cost � c ◦ sig and diff � d ◦ sig with d(X, a2 , a3) � a2 − a3
are signature-linear. The correction term ∆ f (s) describes the change of f
when the size of one connected component is increased from s to s + 1.

Lemma 9 Let f be a signature-linear function. Then the following hold:

(i) f (G1 ∪ G2) � f (G1) + f (G2) for disjoint outdegree-1 RTGs G1 ,G2,

(ii) Let G � (V, E) be an outdegree-1 RTG and let v ∈ V with in-degree 0.

Denote by s the size of the connected component containing v and let

G+ � (V ∪ {u}, E ∪ {(u , v)}) where u is a new vertex. Then f (G+) �
f (G) + ∆ f (s). 2

Proof For Statement (i) observe that sig(G1 ∪ G2) � sig(G1) + sig(G2);
then the statement follows from the signature-linearity of f .

For Statement (ii) observe that by adding u, we replace a connected
component of size s with one of size s + 1. Thus sig(G+) � sig(G) −
sig(Ps) + sig(Ps+1). The statement follows from the signature-linearity of
f and the definition of ∆ f (s). �

Note that ∆ f (s) � ∆ f (s + 4) for all values of s and hence it suffices to know
the size of the enlarged component modulo 4.

The main idea for computing table TG[·] by dynamic programming is to
decompose G into smaller edge-disjoint subgraphs G � G1 ∪ · · · ∪Gk such
that the copy sets of G can be constructed from copy sets for each of the
Gi .

We call such a decomposition proper partition if for every vertex v of G
there exists an index i such that Gi contains all outgoing edges of v. Let
G1 , . . . ,Gk be a proper partition of G and let Ci ⊆ C(Gi) for i � 1, . . . , k.
We define C1 ⊗ · · · ⊗ Ck � {C1 ∪ · · · ∪ Ck | Ci ∈ Ci , i � 1, . . . , k}. It is not
hard to see that C(G1 ∪ · · · ∪ Gk) � C(G1) ⊗ · · · ⊗ C(Gk).

5.3.5.1. Disconnected RTGs

We start with the case that G is disconnected and consists of connected
components G1 , . . . ,Gk , which form a proper partition of G. Our intuition



222 5. Code Generation with Permutation Instructions

x x

x x x

x x x

x x x

G1

x

x x x

x x x

x x

G2

Figure 5.27: A disconnected RTG with 2 components. Dotted edges are in
the copy set. If we have copy sets C1 and C2 for the components, C1 ∪ C2
is a copy set for the complete RTG.

is that if we have a copy set Ci for each of the components Gi , their union⋃
i Ci forms a copy set for G. Figure 5.27 illustrates this idea. We can

then find an optimal copy set for the overall RTG by choosing the best
combination of copy sets of its components. In the following we will see
that this intuition is indeed correct.

When studying this problem formally, the main issue is to keep track of diff
and cost. For an RTG G, we define C(G; d) � {C ∈ C(G) | diff(G−C) � d}.
By Lemma 9 (i) and the signature-linearity of diff, if Ci ∈ C(Gi ; di) for
i � 1, 2, then C1 ∪ C2 ∈ C(G1 ∪ G2; d1 + d2). This leads to the following
lemma.

Lemma 10 Let G be an RTG and let G1 ,G2 be vertex-disjoint RTGs. Then

(i) C(G) � ⋃
d C(G; d) and

(ii) C(G1 ∪ G2; d) � ⋃
d′ (C(G1; d′) ⊗ C(G2; d − d′)). 2

Proof Equation (i) follows immediately from the definition of C(G; d).

For Equation (ii) observe that if C1 ∈ C(G1; d′) and C2 ∈ C(G2; d − d′),
then C � C1 ∪ C2 is a copy set of G and by Lemma 9 (i) diff(G − C) �
diff((G1 −C1) ∪ (G2 −C2)) � diff(G1 −C1)+diff(G2 −C2) � d′+ d − d′ � d,
and hence C1 ∪ C2 ∈ C(G; d).



5.3. Code Generation 223

Conversely, if C ∈ C(G; d), define Ci � C∩Ei where Ei is the edge set of Gi
for i � 1, 2. Let d′ � diff(G1 − C1). As above, it follows from Lemma 9 (i)
that d � diff(G −C) � diff(G1 −C1)+diff(G2 −C2) � d′ +diff(G −C), and
hence diff(G − C) � d − d′. Thus C ∈ C(G1; d′) ⊗ C(G2; d − d′). �

By further exploiting the signature-linearity of cost, we also get cost((G1 ∪
G2) − (C1 ∪ C2)) � cost(G1 − C1) + cost(G2 − C2), allowing us to compute
the cost of copy sets formed by the union of copy sets of vertex-disjoint
graphs.
Lemma 11 Let G1 ,G2 be two vertex-disjoint RTGs and let G � G1 ∪G2. Then

TG[d] � mind′{TG1[d′] + TG2[d − d′]}. 2

Proof Applying the definition of TG[·] as well as Lemma 10 (ii) and
Lemma 9 (i) yields

TG[d] � min
C∈C(G;d)

cost(G − C)

� min
C∈⋃d′ (C(G1;d′)⊗C(G2;d−d′))

cost(G − C)

�min
d′

{
min

C∈C(G1;d′)⊗C(G2;d−d′)
cost(G − C)

}
�min

d′

{
min

C1∈C(G1;d′)
cost(G1 − C1) + min

C2∈C(G2;d−d′)
cost(G2 − C2)

}
�min

d′
{TG1[d′] + TG2[d − d′]}. �

By iteratively applying Lemma 11, we compute TG[·] for a disconnected
RTG G with an arbitrary number of connected components.
Lemma 12 Let G be an RTG with n vertices and connected components

G1 , . . . ,Gk . Given the tables TGi [·] for i � 1, . . . , k, the table TG[·] can be

computed in O(n2) time. 2

Proof Let ni denote the number of vertices of Gi . For two graphs H1 and
H2 with h1 and h2 vertices, respectively, computing TH1∪H2[·] according
to Lemma 11 takes time O(h1 · h2) and the table size is O(h1 + h2). Thus,
iteratively combining the table for Gi+1 with the table for

⋃i
j�1 G j takes time

O(∑k−1
i�1 ni+1

∑i
j�1 n j). It is

∑k−1
i�1 ni+1

∑i
j�1 n j ≤

∑k−1
i�1 ni+1n � n

∑k−1
i�1 ni+1 ≤

n2. Hence, the running time is O(n2). �



224 5. Code Generation with Permutation Instructions

x

x x x

x x x x x

... ... ... ...

Figure 5.28: Finding a copy set for a tree RTG G. At each inner vertex,
we can keep exactly one outgoing edge; all others must go into the copy
set C. Hence, in each component of G − C, there is a path, which we call
root path, from the root vertex of the component to one of its leaves. We
draw the root path of G with thick edges.

5.3.5.2. Tree RTGs

For a tree RTG G, our overall strategy is to compute TG[·] in a bottom-up
fashion. Hence, we start at the leaves and at each inner vertex v we
compute the table for the subtree rooted at v by combining the already
computed tables of v’s children.

Figure 5.28 illustrates our idea of how to find a copy set for a tree RTG G.
The main insight is that at each inner vertex, we can keep exactly one of
the outgoing edges and we must put all others into the copy set C. In the
example shown, we choose to keep the rightmost edge.

This construction implies that for a tree RTG G with root vertex r and
matching copy set C, each component of G − C contains exactly one path,
which we call root path, from the component’s root vertex to one of the
leaves. If there were a path from the root to another leaf, there would have
to exist a vertex with multiple outgoing edges, which would mean C is
not a valid copy set.

As we use a bottom-up approach, we assume that we have already found
a copy set for each of the subtrees rooted at the children of r. Choosing an
outgoing edge for r prolongs the root path of the respective component



5.3. Code Generation 225

x

x ... x ... x

v

v jv1 vk

G(v)

G¬ jG+(v j)

Z j

Figure 5.29: Nomenclature used for tree RTGs in the formalization.

by 1. By trying out all possible outgoing edges of the root vertex r, we
find the optimal copy set for G.

The direction of the edges naturally defines a unique root vertex r that
has no incoming edges and we consider G as a rooted tree. Figure 5.29
illustrates the nomenclature used in the following. For a vertex v, we
denote by G(v) the subtree of G with root v. Let v be a vertex with children
v1 , . . . , vk . What does a copy set C of G(v) look like?

Clearly, G(v) − C contains precisely one of the outgoing edges of v, say
(v , v j). Then Z j � {(v , vi) | i , j} ⊆ C. The graph G(v) − Z j has
connected components G(vi) for i , j, whose union we denote G¬ j , and
one additional connected component G+(v j) that is obtained from G(v j)
by adding the vertex v and the edge (v , v j). This forms a proper partition
of G(v) − Z j .

As above, we decompose the copy set C −Z j further into a union of a copy
set C¬ j of G¬ j and a copy set C j of G+(v j). Graph G¬ j is disconnected and
can be handled as above. Note that the only child of the root of G+(v j) is
v j and hence C j is a copy set of G(v j).

For expressing the cost and difference measures for copy sets of G+(v j) in
terms of copy sets of G(v j), we use the correction terms ∆cost and ∆diff. By
Lemma 9 (ii), diff(G+(v j) − C j) � diff(G(v j) − C j) +∆diff(s), where s is the
size of the root path P(v j , C j) of G(v j) − C j , i.e., the size of the connected
component of G(v j) − C j containing v j . An analogous statement holds for
cost. More precisely, it suffices to know s modulo 4.



226 5. Code Generation with Permutation Instructions

Therefore, we further decompose our copy sets as follows, which allows
us to formalize our discussion.

Definition 4 For a tree RTG G with root v and children v1 , . . . , vk , we
define C(G; d , s) � {C ∈ C(G; d) | |P(v , C)| ≡ s (mod 4)}. We further de-
compose these by C(G; d , s , j) � {C ∈ C(G; d , s) | (v , v j) < C}, according
to which outgoing edge of the root is not in the copy set. 2

Lemma 13 Let G be a tree RTG with root v and children v1 , . . . , vk and for

a fixed vertex v j , 1 ≤ j ≤ k, let G+(v j) be the subgraph of G induced by

the vertices in G(v j) together with v. Let further G¬ j �
⋃k

i�1,i, j G(vi) and

Z j � {(v , vi) | i , j}. Then

(i) C(G; d) � ⋃3
s�0 C(G; d , s) and C(G; d , s) � ⋃k

j�1 C(G; d , s , j).
(ii) C(G+(v j); d , s) � C(G(v j); d − ∆diff(s), s − 1).
(iii) C(G; d , s , j) � ⋃

d′
(
C(G¬ j ; d′) ⊗ C(G+(v j); d − d′, s) ⊗ {Z j}

)
. 2

Proof Statements (i) follow immediately from the definitions of C(G; d , s)
and C(G; d , s , j).

We continue with Statement (ii). Since v in G+(v j) has only one child v j ,
the edge (v , v j) is not in any copy set of G+(v j). Therefore, the copy sets
of C(G+(v j)) and C(G(v j)) are in one-to-one correspondence.

We need to understand how the partition into copy sets with difference
measure d and root path length s (modulo 4) respects this bĳection. Let s
be the root path size of G+(v j)−C for a copy set C ∈ C(G+(v j)). Obviously,
|P(G(v j) − C)| � |P(G+(v j) − C)| − 1 � s − 1. Moreover, going from
G+(v j) −C to G(v j) −C replaces a connected component of size s with one
of size s−1. Therefore sig(G(v j)−C) � sig(G+(v j)−C)−sig(Ps)+sig(Ps+1).

By the signature-linearity of diff, we have diff(G(v j) − C) � diff(G+(v j) −
C) − ∆diff(s). Note further that ∆diff(s) � ∆diff(s + 4) for every value of
s, and hence it suffices to know s mod 4. Overall, it follows that a
copy set C ∈ C(G+(v j); d , s) is a copy set of G(v j) with difference measure
diff(G+(v j)−C)−∆diff(s) and root path size modulo 4 being s−1. Thus C ∈
C(G(v j), d−∆diff(s), s −1). And conversely C ∈ C(G(v j), d−∆diff(s), s −1)
satisfies C ∈ C(G+(v j); d , s).



5.3. Code Generation 227

Next, we consider Statement (iii). First observe that the copy sets C of G
whose root path starts with (v , v j) are exactly those copy sets of G that
contain all edges in Z j . These sets correspond bĳectively to copy sets of
G − Z j . Thus C(G; d , s , j) � C(G − Z j ; d , s) ⊗ {Z j}.

Observe that G − Z j � G¬ j ∪ G+(v j) is a proper partition of G − Z j .
Furthermore, the root path of any copy set of this graph lies in G+(v j).
Therefore Lemma 10 (ii) implies that C(G − Z j ; d , s) � ⋃

d′(C(G¬ j ; d′) ⊗
(C(G(v j)+; d − d′, s). Combining this with the previously derived descrip-
tion of C(G; d , s , j) yields Statement (iii). �

To make use of this decomposition of copy sets, we extend our ta-
ble T with an additional parameter s to keep track of the size of the
root path modulo 4. We call the resulting table T̃. More formally,
T̃v[d , s] � minC∈C(G(v);d ,s) cost(G(v) − C). It is not hard to see that TG[·]
can be computed from T̃r[·, ·] for the root r of a tree RTG G.

Lemma 14 Let G be a tree RTG with root r. Then TG[d] � mins T̃r[d , s]. 2

Proof Using the definitions of TG[·] and T̃r[·, ·], we obtain

TG[d] � min
C∈C(G;d)

cost(G−C) � min
s∈{0,...,3}

min
C∈C(G;d ,s)

cost(G−C) � min
s∈{0,...,3}

T̃r[d , s].
�

To compute T̃v[·, ·] in a bottom-up fashion, we exploit the decompositions
from Lemma 13 and the fact that we can update the cost function from
G(v j) − C j to G+(v j) − C j using the correction term ∆cost. The proof is
similar to that of Lemma 11 but more technical.

Lemma 15 Let G be a tree RTG, let v be a vertex of G with children v1 , . . . , vk ,

and let G(vi) � (Vi , Ei) for i � 1, . . . , k. Then with G¬ j � (V¬ j , E¬ j) �⋃k
i�1,i, j G(vi) it is

T̃v[d , s] � min
j∈{1,...,k}

min
d′

TG¬ j [d′] + T̃v j [d − d′ − ∆diff(s), (s − 1)mod 4]

+ ∆cost(s).
2



228 5. Code Generation with Permutation Instructions

Proof According to the definition of T̃v[d , s] and Lemma 13 (i), we find
that

T̃v[d , s] � min
C∈C(G;d ,s)

cost(G − C) � min
j

min
C∈C(G;d ,s , j)

cost(G − C) (5.2)

Using Lemma 13 (iii) yields

min
C∈C(G;d ,s , j)

cost(G − C) � min
d′

min
X∈C(G¬ j ;d′)

Y∈C(G+(v j );d−d′ ,s)

cost(G − X − Y − Z j). (5.3)

Note that G − Z j � G¬ j ∪ G+(v j). By Lemma 10, we have that for
X ∈ C(G¬ j ; d′),Y ∈ C(G+(v j); d − d′, s), it is cost(G − X − Y − Z j) �
cost(G¬ j ∪G+(v j) −X −Y) � cost(G¬ j −X)+ cost(G+(v j) −Y). Therefore,

min
X∈C(G¬ j ;d′)

Y∈C(G+(v j );d−d′ ,s)

cost(G − X − Y − Z j)

� min
X∈C(G¬ j ;d′)

cost(G¬ j − X) + min
Y∈C(G+(v j );d−d′ ,s)

cost(G+(v j) − Y).
(5.4)

By definition minX∈C(G¬ j ;d′) cost(G¬ j −X) � TG¬ j [d′]. Furthermore, G+(v j)
is a tree RTG whose root v has the single child v j . Hence, by Lemma 13 (ii)
and Lemma 9 (ii), we find

min
Y∈C(G+(v j );d−d′ ,s)

cost(G+(v j) − Y)

� min
Y∈C(G(v j );d−d′−∆diff(s),s−1)

cost(G(v j) − Y) + ∆cost(s)

� T̃v j [d − d′ − ∆diff(s), s − 1] + ∆cost(s)

(5.5)

Combining Equations 5.2–5.5 yields the claim. �

For leaves v of a tree RTG G, T̃v[0, 1] � 0 and all other entries are∞. We
compute TG[·] by iteratively applying Lemma 15 in a bottom-up fashion,
using Lemma 14 to compute T[·] from T̃[·, ·] in linear time when needed.

Lemma 16 Let G � (V, E) be a tree RTG with n vertices and root r. The tables

T̃r[·, ·] and TG[·] can be computed in O(n3) time. 2

Proof First observe that given T̃v[·, ·] for v ∈ V , table TG(v)[·] can be
computed in linear time according to Lemma 14. In particular, TG[·] can
be computed from T̃r[·, ·] in linear time.



5.3. Code Generation 229

x x x x

x x x x

x x

x x x

x x x x

(a) Leaving cycle intact.

x x x x

x x x x

x x

x x x

x x x x

(b) Splitting cycle.

Figure 5.30: Two ways of dealing with RTG containing a cycle. Either we
put all edges leaving the cycle into the copy set and keep the cycle (left
side), or we split the cycle, leaving us with a tree RTG (right side).

We now bound the computation time for T̃r[·, ·]. Let v ∈ V with children
v1 , . . . , vk . Given the tables T̃vi [·, ·], we can compute T̃v[·, ·] by Lemma 15.
More precisely, for each j � 1, . . . , k, we first compute TG¬ j [·] in quadratic
time by Lemma 12 followed by O(n) table lookups, one for each value of d′.
Hence, processing v takes time O(deg+(v)·n2). Since

∑
v∈V deg+(v) � n−1,

the total processing time to compute T̃r[·, ·] in a bottom-up fashion is
O(n3). �

5.3.5.3. Connected RTGs Containing a Cycle

We now look at connected RTGs that contain a cycle. Such an RTG contains
a single directed cycle. Figure 5.30 shows our idea: every copy set contains
either an edge of that cycle or it contains all edges that have their source
on the cycle but do not belong to the cycle. This leads to a linear number
of tree instances, which we solve using Lemma 16.

We first introduce an additional decomposition for copy sets to simplify
the following calculations.



230 5. Code Generation with Permutation Instructions

Lemma 17 Let G � (V, E) be a connected RTG containing a directed cycle K
and let e1 , . . . , ek denote the edges of K whose source has out-degree at least 2.

Let further O � {(u , v) ∈ E | u ∈ K, (u , v) < K}. Then

C(G; d) � C(G − O; d) ⊗ {O} ∪
k⋃

i�1
C(G − ei ; d) ⊗ {{ei}}. 2

Proof Every copy set C ∈ C(G; d) contains either some edge of K or it
contains all edges in O. Note that edges of K that are not among e1 , . . . , ek
are not contained in any copy set. Thus, in the former case, ei ∈ C for
some i ∈ {1, . . . , k} and hence C ∈ C(G − ei ; d) ⊗ {{ei}}. In the latter case
C \ O is a copy set of G − O, hence C ∈ C(G − O; d) ⊗ {O}. Conversely,
any copy set in C(G − O; d) ⊗ {O} forms a copy set of G and also every
copy set in C(G − ei ; d) ⊗ {{ei}} for any value of i forms a copy set of G.
This finishes the proof. �

As before, this decomposition can be used to efficiently compute TG[·]
from the tables of smaller subgraphs of a connected RTG G containing a
cycle.

Lemma 18 Let G � (V, E) be a connected RTG containing a directed cycle K
and let e1 , . . . , ek denote the edges of K whose source has out-degree at least 2.

Let further O � {(u , v) ∈ E | u ∈ K, (u , v) < K}. Then

TG[d] � min
{
TG−O[d],

k
min
i�1

TG−ei [d]
}
.

2

Proof Using the definition of TG[·] and Lemma 17, we find that

TG[d] � min
C∈C(G;d)

cost(G−C) � min
C∈(C(G−O;d)⊗{O})∪⋃k

i�1(C(G−ei ;d)⊗{{ei }})
cost(G−C).

As we minimize cost over a union of sets, we can minimize it over the sets
individually and then take the minimum of the results. Hence, we find
that

min
C∈C(G−O;d)⊗{O}

cost(G − C) � min
C∈C(G−O;d)

cost(G − O − C) � TG−O[d]



5.3. Code Generation 231

and

min
C∈C(G−ei ;d)⊗{{ei }}

cost(G − C) � min
C∈C(G−ei ;d)

cost(G − ei − C) � TG−ei [d],

which together yield the claim. �

Lemma 19 Let G � (V, E) be a connected RTG containing a directed cycle. The

table TG[·] can be computed in O(n4) time. 2

Proof Let e1 , . . . , ek be the edges of the cycle K. First, observe that G − ei
is a tree for i � 1, . . . , k. Hence, we can compute each table TG−ei [·] in
O(n3) time by Lemma 16. Thus, computing all these tables takes O(n4)
time.

Second, let O � {(u , v) ∈ E | u ∈ K, (u , v) < K}. The graph G − O is the
disjoint union of the cycle K and several tree RTGs G1 , . . . ,Gt . The table
TK[·] has only one finite entry and can be computed in constant time. The
tables TGi [·] can be computed in O(n3) time. Using Lemma 12, we then
compute TG−O[·] in quadratic time.

With these tables available, we can compute TG[·] according to Lemma 18.
This takes O(n2) time. The overall running time is thus O(n4). �

5.3.5.4. Putting Things Together

To compute TG[·] for an arbitrary RTG G, we first compute TK[·] for each
connected component K of G using Lemmas 16 and 19. Then, we compute
TG[·] using Lemma 12 and the length of an optimal shuffle code using
Lemma 8. To actually compute the shuffle code, we augment the dynamic
program computing TG[·] such that an optimal copy set C can be found
by backtracking in the tables. An optimal shuffle code is then found by
applying Greedy to G − C and adding one copy operation for each edge in
C.

Theorem 3 Given an RTG G, an optimal shuffle code can be computed in O(n4)
time. 2



232 5. Code Generation with Permutation Instructions

Proof We compute all tables TC[·] where C is a connected component
of G in O(n4) time using Lemmas 16 and 19. Using Lemma 12, we then
compute TG[·] in O(n2) time. From this, we can compute the length of an
optimal shuffle code by Lemma 8.

In fact, it is not difficult to modify the dynamic program in a way that, given
an entry TG[d], a corresponding copy set C of G with cost(G − C) � TG[d]
can be computed by backtracking in the tables. Hence, to compute an
optimal shuffle code for G, we first compute an optimal copy set Copt of G
in O(n4) time. Then, we compute an optimal shuffle code π1 , . . . , πk for
G − Copt using Greedy, which takes linear time according to Theorem 2.

Let π � πk◦. . .◦π1. For each edge (u , v) ∈ Copt, we define a corresponding
copy operation π(u) → v. Let c1 , . . . , ct be these copy operations in
arbitrary order. Then the sequence S � π1 , . . . , πk , c1 , . . . , ct is an optimal
shuffle code.

This can be seen as follows. First, by Lemma 8, the length of S is minimal.
It remains to show that S is indeed a shuffle code for G. This is clearly
true, as it first shuffles the values in the registers so that a subset of the
values is in the correct position and then uses copy operations to transfer
the remaining values to their destinations. �

5.3.6. Related Work

From a practical point of view, our work is related to work that studies
parallel copies in the context of SSA-based register allocation. Instead
of implementing the parallel copies at the place where the φ-function is
(usually the end of the preceding basic blocks), Bouchez et al. [Bou+10]
propose a technique to move the parallel copy so that its implementation
involves fewer copies. Brandner et al. [BC13] further improve upon this
technique using data dependence graphs. Rideau et al. [RSL08] give a
formal proof for the implementation correctness of parallel copies.

From a theoretical point of view, the most closely related work studies the
case where the input RTG consists of a union of disjoint directed cycles,
which can be interpreted as a permutation π. Then, no copy operations
are necessary for an optimal shuffle code and hence the problem of finding



5.3. Code Generation 233

an optimal shuffle code using permi23 and permi5 is equivalent to writing
π as a shortest product of permutations of maximum size 5, where a
permutation of n elements has size k if it fixes n − k elements.

There has been work on writing a permutation as a product of permutations
that satisfy certain restrictions. The factorization problem on permutation
groups from computational group theory [Ser03] is the task of writing
an element g of a permutation group as a product of given generators
S. Hence, an algorithm for solving the factorization problem could be
applied in our context by using all possible permutations of size 5 or less
as the set S. However, the algorithms do not guarantee minimality of the
product. For the case that S consists of all permutations that reverse a
contiguous subsequence of the elements, known as the pancake sorting
problem, it has been shown that computing a factoring of minimum size
is NP-complete [Cap97].

Farnoud and Milenkovic [FM12] consider a weighted version of factoring
a permutation into transpositions. They present a polynomial constant-
factor approximation algorithm for factoring a given permutation into
transpositions where transpositions have arbitrary non-negative costs. In
our problem, we cannot assign costs to an individual transposition as its
cost is context-dependent, e.g., four transpositions whose product is a
cycle require one operation, whereas four arbitrary transpositions may
require two.

Stanley [Sta81] investigates the number of ways a permutation π ∈ Sn
can be expressed as a product of k n-cycles. Similarly, [Str96] presents an
overview of work on the problem of determining the number of ways a
given permutation can be written as the product of transpositions such that
the transpositions generate the full symmetric group, and such that the
number of factors is as small as possible. However, we are not interested
in the number of ways a given permutation can be expressed as products
of transpositions or cycles. Instead, we want to efficiently find a specific
product minimizing a special cost measure.



234 5. Code Generation with Permutation Instructions

5.4. Evaluation

Our experimental evaluation consists of four parts. First, we analyze
the structure of the RTGs in our test inputs. Second, we compare the
quality of our two proposed code-generation approaches relative to each
other by comparing the number of instructions generated for the RTGs
in our test inputs. Moreover, we investigate the running times of our
code-generation approaches. Third, and most importantly, we determine
the benefit of using permutation instructions. We generate code for our
test inputs and then measure precise dynamic instruction counts of the
produced executables. We then validate these numbers by measuring the
actual running time of the same executables on our hardware prototype
presented in Section 5.2. In both cases, we compare an executable using
permutation instructions to an executable that uses the regular instruction
set. Finally, we discuss the impact of permutation reversion and present
an area and frequency overhead analysis for the hardware prototype
implementation.

5.4.1. Setup

We have implemented the code generation strategies from Sections 5.3.4
and 5.3.5 in libFirm [BBZ11]44. This compiler features a mature SPARC
backend and multiple completely SSA-based register allocators and copy-
coalescing schemes. As compiler input, we used the test programs
contained in the integer part CINT2000 of the SPEC CPU2000 benchmark
suite [Hen00]. We excluded the program 252.eon from the measurements
because the frontend45 does not support C++ code.

We performed all compile-time measurements on an Intel Core i7-3770
workstation with 3.4 GHz and 16 GiB RAM using Linux kernel 3.5. To
measure the quality of the generated code, we modified the CPU emulator

44For libFirm, we used Git revision 88c319e982d42c57b06ccecfee20b5286aafe3ec.
For the comparison with the optimal code-generation approach, we used Git revision
778065d2dde3b7c20d4f7a25485f2d63068f6f1b of libFirm.

45We used Git revision 7c6cd91cc5a2bef0b9f4555250c1266cf07d0da5 for the C frontend
cparser.



5.4. Evaluation 235

QEMU [Bel05]46 to support our ISA extension consisting of the permi
instructions and to count the number of executed instructions. Using
QEMU, we were able to obtain precise dynamic instruction counts for the
generated executables. All programs were compiled in soft-float mode
because our prototype did not have an FPU.

To validate the results acquired from QEMU, we conducted running-time
measurements on an FPGA prototype implementation of a CPU supporting
our proposed instruction set extension as described in Section 5.2, in
the following called PERM. We used the same binaries that ran under
QEMU.

The Gaisler LEON 3 CPU [Cob17b] served as a basis for this prototype. We
synthesized a LEON 3 System-on-Chip design for the ML509 evaluation
board based on Xilinx Virtex-5 FPGAs [Xil16]; Figure 5.31 shows our board
setup. We configured the CPU with 32 KiB instruction cache, 32 KiB data
cache, 8 register windows, no FPU, and a hardware multiplier. Our board
had 256 MiB of 667 MHz DDR2 SO-DIMM DRAM (not visible on picture
as slot is located on the underside of the board).

We booted a self-compiled Buildroot Linux (kernel version 2.6.36) dis-
tribution [Kor16] on the FPGA prototype. We did not compile Linux
with our modified compiler, i.e., the kernel was regular SPARC code and
did not use permutation instructions. We connected to the board via
GRMON [Cob17a] using a USB-JTAG cable during initialization and using
ssh via ethernet once Linux was running. We used a compact flash card
to flash a hardware design onto the FPGA. However, the booted operating
system did not have access to this flash memory. Hence, our system only
had a RAM disk backed by our DRAM memory. To decrease RAM usage,
for each experiment, we only copied the necessary input data and binaries
via ethernet onto the RAM disk. After the experiment, we deleted the
files to free up memory.

To test our architecture extension with a varying number of RTGs and RTGs
of varying complexity, we used four different copy-coalescing strategies,
ordered from best to worst coalescing quality.

46We used Git revision 09c6c738e23ea8737ea01ec5f54a84f6b83b6d75.



236 5. Code Generation with Permutation Instructions

Figure 5.31: The Xilinx Virtex-5 ML509 evaluation board as used in our
experiments. The board connects to a host PC via a USB-JTAG cable and
to the LAN via the integrated ethernet port.

ILP An integer-linear-programming-based copy coalescer [GH07]. This
produces RTGs with minimal cost according to the cost model. The
cost incurred for a parallel copy is the number of unequally assigned
registers multiplied by the estimated execution frequency of the
parallel copy. Note that the number of unequally assigned registers
is an estimate for the number of copy and swap operations that have
to be generated for the parallel copy.
In our experiments, we set the ILP solver’s timeout to 5 minutes per
instance of the coalescing problem. If the time limit was exceeded,
we used the best solution found so far. Note that exceeding the
time limit does not imply the non-optimality of the found solution.
In some cases, although the solution is optimal, the solver cannot
prove this fact in time. The solver used in these experiments was
Gurobi 5.10 [Gur12].

Recoloring A recoloring approach, which is currently one of the best
conservative coalescing heuristics [HG08], resulting in RTGs with
slightly higher costs.

Biased A biased coloring approach that yields good coalescing results
while offering very fast allocation [BMH10]. For our benchmarks,
we disabled the initial preference analysis. In this configuration, the



5.4. Evaluation 237

approach is highly suitable for just-in-time compilation scenarios.
The generated code contains RTGs of higher cost than with the
recoloring approach.

Naive This approach does not perform any sophisticated copy coalescing
at all. Except for trying to avoid copy instructions because of register
constraints, no effort is made to coalesce copies. In general, this
results in RTGs with high costs.

For each coalescing strategy, we inspected the properties of typical RTGs
occurring in our test programs to estimate the potential benefit of using
permutation instructions. Furthermore, for each of the four coalescing
strategies, we tested three compiler configurations: one that generated
permutation instructions using the heuristic code-generation strategy
presented in Section 5.3.4, one that used the optimal strategy from Sec-
tion 5.3.5, and one that emitted regular SPARC code. In the following, we
focused on two configurations: the one using heuristic code generation
and the one emitting SPARC code. For each of the resulting eight compiler
configurations, we measured the compilation time and the quality of the
generated code.

We mentioned parallel-copy-motion techniques in Section 5.3.6. In libFirm,
we use a faster but less sophisticated technique, which leaves more parallel
copies in the code as it only works on a single basic block. Essentially, it
tries to hoist parallel copies inside a block to a location with less register
pressure. However, this technique is not a contribution of this dissertation.
It was enabled during all measurements.

5.4.2. Register-Transfer-Graph Properties

The number and properties of RTGs directly depend on the used coalescing
strategy, which tries to minimize the cost of RTGs according to a cost model.
For ease of presentation, we will use the number of RTGs and their average
size as an approximation for the costs assigned to the RTGs. In general,
the number and sizes of RTGs and their costs are highly correlated.

For each coalescing strategy, we analyzed the number and average size of
RTGs over all programs of the CINT2000 benchmark suite. Moreover, we
checked what percentage of RTGs do not duplicate any values, i.e., can



238 5. Code Generation with Permutation Instructions

Number Average No value
Coalescer of RTGs size duplication
ILP (best) 77 783 2.9 74%
Recoloring 78 194 2.9 74%
Biased 178 812 4.6 54%
Naive (worst) 185 035 6.6 89%

Table 5.2: Register-transfer-graph properties. Numbers accumulated
over all input programs.

be implemented only with our permi instructions and without additional
copy instructions.

Table 5.2 shows that the number of RTGs as well as the average complexity
of an RTG, represented by its number of nodes, increase with decreasing
coalescing quality. Furthermore, depending on the coalescing scheme,
between about half and almost 90% of the RTGs did not duplicate any
values, i.e., did not need additional copy instructions. For the RTGs that
did need additional copies, on average 1.26 copies per RTG were needed
for the ILP, the recoloring and the naive coalescing, and 1.99 copies per
RTG were needed for the biased coalescing approach. This means that
the vast majority of RTGs already are in permutation form or very close
to it. Thus, few additional copy instructions must be inserted during the
conversion step presented in Sections 5.3.4 and 5.3.5, and most of the work
can be done using only permutation instructions.

5.4.3. Heuristic and Optimal Code Generation

In the following, we compare the quality of the heuristic from Section 5.3.4
and the optimal approach from Section 5.3.5. We first analyze the heuristic
and then compare it to the optimal approach.

Table 5.3 shows the total number of instructions generated by the heuristic
solution for implementing the RTGs of all programs of the CINT2000
benchmark suite. The numbers confirm the expressivity of the presented



5.4. Evaluation 239

SPARC Per PERM Per Change
RTG RTG

ILP (best) 144 356 1.86 88 670 1.14 −38.6%
Recolor 159 511 2.04 89 274 1.14 −44.0%
Biased 534 378 2.99 275 079 1.54 −48.5%
Naive (worst) 947 439 5.12 343 582 1.85 −63.7%

Table 5.3: Number of instructions generated by the heuristic approach for
implementing RTGs.

permutation instructions as we can implement RTGs more concisely,
reducing the number of needed instructions by up to 63.7%. As every
SPARC instruction, including our permi instructions, is encoded with
4 bytes, this also means that the code size induced by implementing
RTGs is reduced by the same percentage. Additionally, regardless of the
coalescing scheme, the average RTG can be implemented using fewer than
two instructions when permi instructions are available, whereas up to
5.12 instructions are needed using the regular instruction set.

Table 5.4 compares the number of instructions generated by the heuristic
with the number of instructions generated by the optimal approach. We
omitted the ILP approach due to its high compilation time. As ILP
solutions are at least as good as the solutions found by the recoloring
approach, the change for the ILP approach is (according to the absolute
amount) at most as high as for the recoloring approach and probably even
lower.

We see that the quality difference between heuristic and optimal solution
is negligible in practice. The heuristic finds the optimal solution for the
overwhelming majority of RTGs. Additionally, the maximum difference
in RTG implementation length is 1, hence using the optimal approach
saves at most one instruction for all observed RTGs.

We found that the RTGs where it does make a difference are mostly
variants of the RTG shown in Figure 5.32, which we already mentioned in
Section 5.3.4. In practice, it seems most important to efficiently combine
small paths or cycles to exploit permi23. Both approaches use the same
efficient and optimal greedy algorithm from Section 5.3.3 for this step.



240 5. Code Generation with Permutation Instructions

Heuristic Optimal Change

ILP (best, omitted) — — —
Recolor 89 274 89 194 −0.08%
Biased 275 079 274 431 −0.24%
Naive (worst) 343 582 341 141 −0.71%

Table 5.4: Number of instructions generated for implementing RTGs of
the heuristic solution compared to the optimal approach.

Finding the optimal copy set seems far less important. Hence, the
additional effort for implementing the optimal approach is not worthwhile.
In the following, we therefore focus exclusively on the heuristic and leave
the optimal approach aside.

0
1 2

3 4
5 6

7 8 9
(a) Heuristic solution, requires 5 instruc-
tions.

0
1 2

3 4
5 6

7 8 9
(b) Optimal solution, requires 4 instruc-
tions.

Figure 5.32: Comparison of copy set chosen by heuristic with optimal
copy set. Variants of this RTG show up in the set of input programs. We
show copy sets with dotted edges.

5.4.4. Compilation Time

We measured the running time of our heuristic code-generation approach
described in Section 5.3.4 compiling the entire CINT2000 benchmark set
and compared it to the default version described in Section 5.3.1, which
was already implemented in libFirm.

Table 5.5 shows the compilation times for the biased coalescing strategy.
This compiler configuration has the fastest register allocation and copy



5.4. Evaluation 241

Default Our code gen.
RTG impl. (total) 629.1 917.3

decomposition 394.3 413.7
conversion 234.8 503.6

Backend (total) 63 598.0 63 927.0

Table 5.5: Time spent (in milliseconds) for RTG implementation during
the compilation process.

coalescing while producing a high number of non-trivial RTGs. Hence, in
this configuration, the relative compile-time impact of our code generation
scheme is larger than in all other configurations.

We divide the total time needed for implementing RTGs into the time
needed for the conversion step (from RTG to PRTG) and the time needed for
the decomposition step (from PRTG to trivial RTG). Without permutation
instructions, i.e., in the default implementation of libFirm, the conversion
and decomposition steps correspond to the two steps in the approach
presented in Section 5.3.1. With permutation instructions, the two steps
correspond to the heuristic for finding copy sets explained in Section 5.3.4
and to the Greedy decomposition algorithm presented in Section 5.3.3. We
repeated each experiment ten times. The standard deviation was below
1% in all cases, so we just report the minimum running time.

We found that the running time of the initial conversion into a PRTG
is nearly identical for both systems. This is not surprising, considering
that, as presented in Section 5.4.2, at least half of the RTGs do not require
additional copies and thus can be left untouched by the conversion step.
Moreover, if an RTG does require copies, on average it only requires
between one and two copies, depending on the coalescing scheme. Hence,
the conversion step has a low influence, both on the compile time and on
the code quality.

The time needed for the decomposition step increases by a factor of
2.1. This was to be expected considering the more complex nature of
our permutation instructions. To put these numbers into perspective,
we included the total time spent in the backend, i.e., the total time for



242 5. Code Generation with Permutation Instructions

code selection, instruction scheduling, register allocation and emitting
of assembly code. The total time spent in the backend increases by 0.5%,
so the presented code generation approach does not cause significant
overhead.

5.4.5. Code Quality

We evaluated the quality of the generated code using two experiments:

1. We performed a full run of the CINT2000 benchmark suite, collecting
precise dynamic instruction counts using our modified QEMU
version.

2. We validated these results by measuring the running times of the
same executables on our FPGA prototype.

Table 5.6 shows the absolute number of executed instructions during a
full CINT2000 run. We used the full input datasets provided by SPEC.
The table lists the instruction count of the version using permutation
instructions and the regular SPARC version, as well as the matching
instruction-count change. The results are shown separately for each of the
four coalescing schemes.

As expected from the numbers presented in Section 5.4.2, the benefit
of using permutation instructions directly depends on the quality of
coalescing: the worse the coalescing, the higher the benefit of using
permutation instructions. However, regardless of the coalescing scheme
used, every program profited from the use of permutation instructions.
For the biased coalescing scheme, suitable for just-in-time compilation
scenarios, the number of executed instructions is reduced by up to 5.1%.
Even using the optimal coalescing solution, permutation instructions can
reduce the instruction count by up to 1.9%.

Interestingly, the use of permutation instructions can often more than
compensate for a copy coalescing of lower quality: For 8 of the 11 tested
programs, the executable with permutation instructions and shuffle code
produced by the worst copy-coalescing scheme (naive) executes fewer

instructions than the regular SPARC version with shuffle code produced
by the next best coalescing scheme (biased).



5.4. Evaluation 243

Benchmark ILP Recoloring
SPARC PERM Change SPARC PERM Change

164.gzip 427.3 424.5 −0.7% 428.7 424.4 −1.0%
175.vpr 2 204.9 2 199.2 −0.3% 2 209.5 2 201.8 −0.3%
176.gcc 184.5 183.7 −0.4% 184.8 183.8 −0.5%
181.mcf 64.6 63.4 −1.9% 64.7 63.4 −1.9%
186.crafty 251.4 248.9 −1.0% 251.0 249.0 −0.8%
197.parser 515.0 510.5 −0.9% 515.7 510.4 −1.0%
253.perlbmk 558.3 555.2 −0.6% 531.8 531.0 −0.1%
254.gap 243.7 243.1 −0.3% 243.6 241.3 −0.9%
255.vortex 358.9 357.0 −0.5% 361.0 358.1 −0.8%
256.bzip2 331.0 330.0 −0.3% 333.1 331.1 −0.6%
300.twolf 1 261.2 1 256.9 −0.3% 1 261.5 1 257.1 −0.3%
Geom. mean −0.5% −0.5%

Benchmark Biased Naive
SPARC PERM Change SPARC PERM Change

164.gzip 450.5 441.8 −1.9% 542.9 454.1 −16.4%
175.vpr 2 252.9 2 229.8 −1.0% 2 309.3 2 230.7 −3.4%
176.gcc 197.1 191.8 −2.7% 215.9 191.2 −11.4%
181.mcf 68.0 66.0 −2.8% 71.5 65.9 −7.8%
186.crafty 276.1 265.3 −3.9% 315.2 267.4 −15.2%
197.parser 539.1 524.4 −2.7% 617.4 539.7 −12.6%
253.perlbmk 550.9 541.0 −1.8% 611.6 551.1 −9.9%
254.gap 257.6 252.4 −2.0% 275.4 255.9 −7.1%
255.vortex 402.1 381.6 −5.1% 467.3 396.9 −15.1%
256.bzip2 360.2 349.2 −3.1% 393.1 348.5 −11.3%
300.twolf 1 275.0 1 264.7 −0.8% 1 288.9 1 264.7 −1.9%
Geom. mean −2.2% −8.7%

Table 5.6: Number of executed instructions (in billions) during a full run
of the CINT2000 benchmark suite. Results are shown separately for each
of the four coalescing schemes (ILP, Recoloring, Biased, and Naive). The
third column for each scheme shows the relative change of the number of
executed instructions when using permutation instructions.



244 5. Code Generation with Permutation Instructions

In some cases, the solution found by the ILP coalescing approach executes
more instructions than the executable produced by the recoloring scheme,
which can happen due to two reasons. First, if the ILP solver exceeds its
timeout, the best solution found up to this point might be worse than the
solution found by the recoloring scheme. Second, the cost model, which is
based on statically-computed execution frequencies, might not reflect the
actual running time profile of the program. Hence, the optimal solution
according to the cost model can be worse in practice.

To validate the results presented in Table 5.6, we measured the running
times of the same executables on our FPGA prototype. As our test
platform ran at a clock speed of only 80 MHz, we used the reduced input
dataset distribution provided by SPEC [KL02]. The reduced inputs try to
preserve the profile of the original programs while significantly reducing
the running time compared to using the full input datasets.

The next issue we have to address are interferences with other system
activities. The benchmark programs we used require certain system
features, such as a file system for basic file I/O. Hence, it is not directly
possible to execute them on the bare hardware. Instead, we used a
Buildroot Linux (kernel version 2.6.36) distribution [Kor16] and run our
executables in a Linux environment. As a side effect, this enables us to
use the exact same binaries that we used with QEMU.

However, running under a multi-tasking OS means that inevitably some
other background processes run on the system. Periodically, the Linux
scheduler may perform context switches, which disturb our measurements.
To alleviate this effect, we reduced background activity to a minimum by
disabling all unnecessary services. Additionally, we ran our executables
with the highest scheduling priority. We then ran each executable ten
times, found that the standard deviation is all cases was below 5% and
thus report the lowest running time.

Table 5.7 shows the running times of the executables. In general, the
measurements on our FPGA prototype support our observations from
the QEMU runs: the worse the coalescing, the higher the speedup gained
using permutation instructions. Also, the magnitude of the speedups
matches the magnitude of the instruction count reductions for each of
the four coalescing configurations. Again, every program ran faster with
permutation instructions.



5.4. Evaluation 245

Benchmark ILP Recoloring
SPARC PERM Change SPARC PERM Change

164.gzip 256.8 255.6 −0.5% 257.4 255.8 −0.6%
175.vpr 446.6 443.6 −0.7% 448.3 445.7 −0.6%
176.gcc 175.9 175.0 −0.5% 175.8 175.4 −0.2%
181.mcf 45.5 45.5 −0.2% 45.6 45.5 −0.2%
186.crafty 59.3 59.3 −0.1% 59.7 58.4 −2.2%
197.parser 123.7 123.6 −0.1% 126.2 123.2 −2.4%
253.perlbmk 127.9 125.2 −2.1% 124.8 123.7 −0.9%
254.gap 31.1 30.9 −0.7% 31.2 31.0 −0.4%
255.vortex 51.4 51.0 −0.7% 51.5 51.1 −0.8%
256.bzip2 171.4 170.8 −0.3% 172.2 171.2 −0.6%
300.twolf 90.9 88.7 −2.4% 91.5 89.5 −2.2%
Geom. mean −0.5% −0.7%

Benchmark Biased Naive
SPARC PERM Change SPARC PERM Change

164.gzip 263.1 258.3 −1.8% 278.2 261.3 −6.1%
175.vpr 456.4 452.6 −0.8% 466.9 464.5 −0.5%
176.gcc 190.9 185.2 −3.0% 210.8 186.5 −11.5%
181.mcf 45.7 45.2 −1.0% 45.9 45.5 −0.7%
186.crafty 64.3 62.6 −2.8% 71.7 63.2 −11.8%
197.parser 128.5 124.7 −3.0% 139.3 125.9 −9.7%
253.perlbmk 131.6 125.0 −5.0% 141.2 126.7 −10.2%
254.gap 33.3 32.1 −3.6% 34.8 32.6 −6.3%
255.vortex 56.8 52.9 −7.0% 65.2 56.1 −14.1%
256.bzip2 177.9 175.4 −1.4% 187.3 176.5 −5.7%
300.twolf 92.6 90.6 −2.2% 95.8 91.7 −4.3%
Geom. mean −2.4% −5.1%

Table 5.7: Running times (in seconds) of the executables on the FPGA pro-
totype with enabled caches. We used reduced input datasets. Results are
shown separately for each of the four coalescing schemes (ILP, Recoloring,
Biased, and Naive).



246 5. Code Generation with Permutation Instructions

Benchmark ILP Recoloring
SPARC PERM Change SPARC PERM Change

164.gzip 1118.51 1096.06 −2.0% 1116.67 1102.69 −1.3%
175.vpr 2407.49 2406.62 −0.0% 2412.93 2406.44 −0.3%
176.gcc 726.55 721.08 −0.8% 728.25 717.38 −1.5%
181.mcf 131.57 131.30 −0.2% 131.02 129.16 −1.4%
186.crafty 201.52 200.58 −0.5% 201.84 200.48 −0.7%
197.parser 714.81 706.20 −1.2% 717.13 703.99 −1.8%
253.perlbmk 630.58 598.83 −5.0% 612.13 610.01 −0.3%
254.gap 140.28 138.63 −1.2% 139.83 139.50 −0.2%
255.vortex 225.10 221.69 −1.5% 222.54 222.41 −0.1%
256.bzip2 1054.36 1054.36 −0.0% 1068.79 1063.88 −0.5%
300.twolf 372.65 372.18 −0.1% 372.47 372.12 −0.1%
Geom. mean −0.8% −0.5%

Benchmark Biased Naive
SPARC PERM Change SPARC PERM Change

164.gzip 1129.68 1111.77 −1.6% 1169.46 1142.56 −2.3%
175.vpr 2430.95 2421.36 −0.4% 2431.55 2415.02 −0.7%
176.gcc 738.68 738.12 −0.1% 762.74 723.85 −5.1%
181.mcf 135.17 131.19 −2.9% 131.99 131.23 −0.6%
186.crafty 207.12 205.10 −0.1% 214.84 203.75 −5.2%
197.parser 711.73 709.41 −0.3% 758.16 717.07 −5.4%
253.perlbmk 632.39 615.77 −2.6% 644.34 639.22 −0.8%
254.gap 144.30 141.39 −2.0% 148.47 143.04 −3.7%
255.vortex 228.89 225.26 −1.6% 238.20 232.58 −2.4%
256.bzip2 1082.61 1072.50 −0.9% 1131.31 1094.96 −3.2%
300.twolf 373.30 366.47 −1.8% 375.85 372.58 −0.9%
Geom. mean −0.8% −2.1%

Table 5.8: Running times (in seconds) of the executables on the FPGA pro-
totype with disabled caches. We used reduced input datasets. Results are
shown separately for each of the four coalescing schemes (ILP, Recoloring,
Biased, and Naive).



5.4. Evaluation 247

To further improve the reliability of our results, we repeated the experi-
ments on the FGPA prototype with disabled caches. In the following we
will give details on our test setup and explain our rationale for choosing
this configuration.

To avoid the influence of caches on our measurements, we disabled
both the L1 code cache and the L1 data cache of our system. It is well
documented [CB13; Myt+09] that the memory layout of code and data
can have a significant impact on the running time. The root cause of this
are architectural features of the underlying hardware whose behavior
depends on memory addresses, mainly caches and branch predictors.

For example, multiple load instructions in a program may compete for
the same cache line, resulting in frequent cache misses. Whether this
actually happens depends on the addresses that are accessed by the load
instructions as well as on the cache structure. Likewise, some branch
predictors take into account (parts of) the addresses of conditional branch
instructions. Hence, the predictor’s behavior depends on the memory
location where the branch instruction resides.

Obviously, different executable versions, e.g., with or without permutation
instructions, may result in a different code layout. Unfortunately, many
other factors influence code and data layout as well. Examples include
the ordering of the object files during linking [CB13], the size of the envi-
ronment variables [Myt+09], which influences the stack’s starting address,
and security features such as address space layout randomization [FSA97],
which may randomize, amongst other parameters, the starting addresses
of stack and heap.

By disabling the caches, we eliminate the biggest cause of address sensi-
tivity from our setup. Moreover, our LEON 3 processor uses the simple
“always taken” strategy for its branch prediction [Cob15b, §2.3.1]. The
idea behind this strategy is that for loops, the conditional branch usually
jumps back to the loop header as most loops run many times and therefore
it makes sense to predict such conditional branches as “always taken”.
Hence, the LEON’s branch prediction is independent of the addresses of
branch instructions. Combined with the deactivation of the caches, we
have thus reduced the influence of memory addresses on the behavior of
our hardware to a minimum.



248 5. Code Generation with Permutation Instructions

Disabling the caches naturally increases the running times of our executa-
bles, making them possibly less meaningful. After all, are we not actually
interested in how permutation instructions behave under realistic condi-
tions? However, we will argue in the following that, for our particular
architecture, measuring speedups with deactivated caches and combining
the results with the speedups from Table 5.6 should allow deriving lower
and upper speedup bounds.

First, consider the dynamic instruction count obtained using QEMU.
Here, we treat all instructions equally; in particular, every load and
store instruction has a cost of 1. In other words, we treat each load and
store instruction as if it triggered a cache hit. Furthermore, our LEON 3
processor is a non-superscalar in-order processor, i.e., it executes at most
one instruction per clock cycle. Viewed this way, we can interpret the
dynamic instruction-count reduction as the speedup in a best-case scenario
in which the execution of every instruction takes exactly one clock cycle
and every memory access is a cache hit. Hence, the dynamic instruction-
count reduction should serve as an upper bound for the speedup that is
possible due to permutation instructions.

Now consider running time measurements on the FPGA prototype with
disabled caches. Here, every memory access is a cache miss and will there-
fore take multiple clock cycles. Hence, viewed this way, this experiment
is a worst-case scenario and the measured speedup should form a lower
bound for the possible speedup on this platform.

Therefore, when running the benchmarks with enabled caches and elim-
inating the influence of caches on the measurements, e.g., using the
randomization techniques from [CB13], the observed speedup should fall
into the range established by our lower and upper bounds. More precisely,
Sdisabled ≤ Senabled ≤ Sqemu should hold, where Sdisabled and Senabled are
the speedups with disabled and enabled caches, and Sqemu is the speedup
computed via dynamic instruction counts gathered by QEMU.

Table 5.8 shows the running times of the executables on the system with
disabled caches. Again, we ran each experiment ten times and checked
that the standard deviation was below 5%. To indicate geometric means
despite some (rounded) speedups of 0%, we only consider non-zero
speedups when computing the geometric means.



5.4. Evaluation 249

Surprisingly, the inequalities do not hold. In fact, it is hard to find a bench-
mark where they do hold, as most numbers violate our considerations.
We cannot fully explain these effects, but discuss possible ideas in the
following.

First, there is one exception, which violates our inequality also in theory: as
a side effect of the shorter encoding of RTGs with permutation instructions,
it could happen that an important part of the code, say a loop body,
now fits into the code cache independently of other factors, such as
link order, mentioned above. Then it would, in theory, be possible to
observe a speedup that is higher than our established upper bound,
i.e., Senabled > Sqemu . Of course, this is highly specific to the platform
parameters, such as cache size and structure. While we think it quite
unlikely to happen, it could contribute to the observed effect.

To our knowledge, there are three possible reasons left that could further
distort our results. First, there could be random effects, such as small
fluctuations in DRAM latency and hardware interrupts due to I/O or
network devices. We account for these by repeating the measurements
ten times and checking the standard deviation, so that it is unlikely that
we only measured outliers.

Second, we used different input datasets for the two runs. While the small
input datasets are specifically engineered to preserve the program profiles,
they may not do so perfectly. Thus, program sections that contain a lot of
permutation instructions might be underrepresented or overrepresented
in the profile of the run with the reduced input, leading to a lower or to a
higher speedup, respectively.

And third, permutation reverts can reduce the speedup. Due to the early
committing nature of the permutation instructions, up to four permutation
instructions must be reverted in case of traps. Hence, permutation rever-
sion is potentially a multi-cycle operation. Reversion is only performed
when using permutation instructions, so this could penalize the executa-
bles using permutation instructions. However, we study the performance
impact of reversion in Section 5.4.6 in more detail and find that its effect is
negligible.



250 5. Code Generation with Permutation Instructions

● ●

●

●

●
●

●

●
●

● ●

10−8
10−7
10−6
10−5
10−4
10−3

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

30
0.

tw
olfre

ve
rt

 ti
m

e 
/ t

ot
al

 ti
m

e

Figure 5.33: Ratio of time spent for permutation reversion to total running
time of each SPEC benchmark. Data gathered from FPGA prototype
using the reduced input dataset.

5.4.6. Hardware Overhead

As the hardware implementation was done by Bauer et al. (see Section 5.2),
they also performed the following evaluation. Hence, this section is not a
contribution of this dissertation, but the work of Bauer et al. and based
on [Moh+13]. We still include this section for the sake of completeness.

Performance impact of permutation reverts. Bauer et al. measured the
impact of permutation reversion, which is required to handle traps (see
Section 5.2.2). They performed the measurements using a performance
counter in the FPGA implementation, which counts the cycles spent for
reversion. Figure 5.33 shows the ratio of time spent for reversion compared
to total application running time. If traps were occurring with the same
frequency for all applications, the ratio would be the same. However,
the large spread of nearly 104 shows that for some applications window
overflow/underflow traps (e.g., due to recursion) or traps due to I/O
or syscalls occur more frequently. Still, the performance loss due to
permutation reversion is always below 0.1% (i.e., 10−3).

Area overhead of FPGA implementation. Table 5.9 shows the resource
usage for the base system compared to the PERM. The PERM imple-
mentation uses multiple large multiplexers for extracting the current
window and applying the new permutation to the existing one. When



5.4. Evaluation 251

base system PERM Overhead
LUTs 15 024 (21%) 21 630 (31%) 44%
Slices 7 249 (41%) 9 507 (55%) 31%
Flip-flops 7 607 (11%) 8 851 (12%) 16%
BlockRAMs 28 (19%) 28 (19%) 0%
Frequency 80 MHz 80 MHz 0%

Table 5.9: Hardware implementation comparison between base system
and PERM with 8 register windows. FPGA resource utilization percentage
in parentheses.

using an FPGA as target technology, multiplexers are realized by look-up
tables (LUTs), which explains the increased number of required LUTs.
As, to the best of Bauer et al.’s knowledge, there are no publicly available
memory-compilers for multi-port memories targeting ASICs, Bauer et al.
focused their evaluation on FPGAs. However, multiplexer synthesis is
discussed in [EL09], stating that “Multiplexers are expensive in FPGAs and

cheap in ASICs”. Therefore, it can be assumed that the area overhead of an
ASIC implementation would be considerably smaller.

Additional flip-flops are required for storing the logical-physical register-
address mapping (highlighted table component in Figures 5.9 and 5.10).
Compared to the base system, there is no frequency loss, as the Decode
(where the extensions for register-file permutation are added) and Excep-
tion (where permutation reverts are performed if necessary) stages are
not the critical path in the system. The implementation does not need
additional on-chip block memory (BlockRAM).

Figure 5.34 shows the floorplan of the placed and routed PERM design on
the Virtex-5 LX110T FPGA. The main logic of the permutator (multiplexers
and permutation table) is in the purple area P○. The LEON 3 CPU is
located in the yellow area L○, while the remaining components in the
system (e.g., DDR controller, debug unit, bus arbiter, etc.) are in the green
area S○.

Bauer et al. synthesized the design with different numbers of register
windows to analyze the impact on area. Figure 5.35 shows the number of
LUTs and Flip-flops. Decreasing the number of register windows from 8



252 5. Code Generation with Permutation Instructions

Figure 5.34: Floorplan of
our FPGA implementation.

● ● ● ● ●

0

5000

10000

15000

20000
22500

2 4 6 8
# register windows

re
so

ur
ce

 u
til

iz
at

io
n

●●LUTs Flip−flops

Figure 5.35: Design space exploration for
different number of register windows.

to 2 significantly reduces the number of required LUTs (approximately by
half)—which contribute the largest part to the area overhead. The reason is
the reduction of the size of the multiplexers used for extracting the current
window from the permutation table. However, programs that make use
of nested function calls generally profit from a large number of register
windows, thus the number of register windows is a performance-area
trade-off determined at design time.

5.4.7. Threats to Validity

In this section, we try to list all limitations of our experiments as well as
decisions that may have influenced our results.

The weakest point in our evaluation is that we extended an in-order archi-
tecture with a permutation table instead of reusing existing components
of an out-of-order architecture (we share our thoughts on this topic in
Section 5.5). We made this decision for practical reasons. At that time, no
open-source out-of-order processor was available to us. Hence, Bauer et al.
chose the LEON3, as they already had prior experience with that platform.



5.4. Evaluation 253

However, choosing an in-order architecture means that our overhead
numbers are significantly higher than necessary and not representative
for our originally targeted architectures.

Additionally, we performed our running-time measurements on a scalar
in-order architecture. A real out-of-order superscalar architecture can
process multiple instructions in one clock cycle. Hence, we assume that
running times on such an architecture are distinctly different than on our
test platform.

Our architecture is compute-bound. As our CPU runs at 80 MHz but
we use regular DDR2 SO-DIMM clocked at 667 MHz, our memory is
disproportionally faster compared to a real chip. Hence, loads and stores
to main memory are significantly cheaper, which means the total program
running time is less than what it would be if the memory speed matched
the processor speed. This, in turn, means that shuffle code, which does
not contain any memory accesses, takes up a higher relative portion of the
total program running time. Therefore, our speedup numbers may be too
high.

On the other hand, our system only has an L1 cache (no L2 cache) and
the cache is quite small (only 32 KiB). This is significantly less than real
machines. Therefore, the working sets of our test programs may not fit into
the data cache, increasing the total program running time and reducing
the relative portion spent on shuffle code. Hence, our speedup numbers
may be too low.

If we compare the running-time numbers with enabled caches to those
gathered with disabled caches, we find that the running time only increases
by roughly a factor in the order of 5. On a real chip, where memory is
much slower than the CPU, the slowdown would be multiple orders of
magnitude higher. This could support our argument that our memory
is unrealistically fast. On the other hand, it could also mean that the
working sets of our benchmark programs are too large and we often
hit main memory even with enabled caches. While our platform even
had performance counters for querying the number of cache misses,
unfortunately, we did not gather this data during our benchmark runs.
We did not repeat the benchmark runs due to time constraints.



254 5. Code Generation with Permutation Instructions

Additionally, multiple factors increase the cost of shuffle code on our
platform. First, the SPARC instruction set has no swap instruction on
registers. Hence, if there is no free register at the program point of the
RTG, its implementation must use three xor instructions to implement
each transposition. Here, it would have been interesting to compare code
quality of full permutation support to a baseline where we restricted
the use of permi to swaps, i.e., use permi to emulate the missing swap
instruction. However, we did not perform this experiment due to time
constraints.

Second, our prototype did not have an FPU. Hence, we compiled all
programs in soft-float mode. In this mode, all floating-point computations
are performed on integer registers. Hence, for programs that used
float-point computations this overstates the amount of shuffle code for
integer registers. However, only two programs of our integer benchmark
set make noteworthy use of floating-point arithmetics: 175.vpr and
300.twolf47. Hence, for all other programs, the amount of shuffle code is
representative.

Third, the SPARC calling convention passes the first six function arguments
in registers (the rest via the stack). Hence, in general, there is an RTG
before every call, except if coalescing can make the RTG trivial. This
increases the amount of shuffle code in comparison to, e.g., 32-bit x86
code, where all arguments are passed via the stack. However, passing
registers is more common, and, e.g., the 64-bit x86 ABI and ARM ABI also
use registers to pass arguments. Hence, we do not consider this an unfair
advantage for our technique.

Lastly, we suspect register permutations to be interesting in just-in-time
compilation scenarios. However, we did not test them in that context.
There could be other factors, e.g., more inefficient code in general due
to compilation-time constraints, that could reduce the relative amount
of running time spent on shuffle code. Hence, the benefit of using
permutation instructions in that context could be lower than one would
expect from our results.

47This also explains the high number of executed instructions of these two benchmarks in
Table 5.6.



5.5. Generalization 255

5.5. Generalization

We saw in Section 5.4.6 that implementing permutation instructions in
an existing in-order architecture has a high area overhead. While this
implementation allowed us to evaluate our concept more thoroughly, the
real aim of permutation instructions are out-of-order architectures as
mentioned in the initial motivation of this chapter. In this section, we
first give a more detailed overview of an implementation technique for
out-of-order execution. Based on this presentation, we then argue that
permutation instructions could be added cheaply in this context, and
discuss their advantages.

5.5.1. Out-of-Order Execution

A simple pipelined processor (e.g., see Section 5.2.1) executing instructions
in-order can experience pipeline stalls due to data dependencies. For
example, suppose that we have a processor where division takes more than
one cycle. Furthermore, suppose that this processor has two functional
units that can both handle division and multiplication. Now, consider the
following sequence of instructions:

i1: r1 ← div r2, r3
i2: r4 ← mul r1, r1
i3: r4 ← mul r6, r7

Here, the multiplication i2 is data-dependent on the division i1 as it
requires the computed quotient in register r1. However, division is a
multi-cycle operation. Thus, i2 has to wait for the result of i1. In fact,
as instruction i2 cannot progress through the pipeline stages, no other
instruction can progress through earlier stages, such as instruction fetch
or decode. Hence, the pipeline is halted or stalled until the long-running
division has finished.

In this example, i3 is not data-dependent on the previous two instructions
and could be executed on the second functional unit, which is idle during
execution of the division. However, this requires executing the instructions
of the program in an order that is different from the program order.



256 5. Code Generation with Permutation Instructions

Out-of-order execution allows to dynamically rearrange instruction streams
in hardware to the extent permitted by the data dependencies between
the instructions. The main idea behind this approach is to track data
dependencies between instructions and begin their execution as soon as all
data operands are available. The technique was first proposed and imple-
mented in the context of the IBM 360 architecture by Tomasulo [Tom67].

However, such architectures also need to take care of false data dependen-
cies, i.e., anti-dependencies or output-dependencies, between instructions.
In our example, both i3 and i2 write their respective results to the same
register r4. This output dependence causes problems if i3 finishes first
and writes its result to r4 before i2 does. Subsequent instructions would
then read the wrong value from r4.

To prevent this problem, out-of-order architectures employ register renam-

ing. Register renaming removes false dependencies by using a different
register in one of the conflicting instructions. In our example, we could
change the destination register of i3 from r4 to rt , assuming that rt is a
temporary register. We must also rename possible subsequent uses of r4
to rt . Then, we can execute i2 and i3 in any order, as renaming removed
the output dependency.

Modern processors implement register renaming by providing more
physical registers than logical registers, i.e., the registers visible to compiler
and programmer through the instruction set architecture. Figure 5.36
shows a possible structure of such a renaming unit, see [Sim00] for
alternative implementations. Here, the processor contains a register alias

table (RAT) that maps logical register indices to physical register indices. In
addition to a RAT, such a processor also contains a free list (FL) of currently
unused physical registers and an active list (AL) with information about
physical registers that are currently in use.

With this setup, register renaming usually proceeds as follows [Jou+98]. A
group of instructions enter the register-renaming unit. For each instruction,
the renamer48 removes a physical register from the FL, which will be used
as the new (physical) destination register for the instruction. Then, the

48Also called “register allocator” in the literature, not to be confused with the compiler task
during code generation.



5.5. Generalization 257

RAT

FL AL

Renamer

logical
registers

physical
registers

updates

reclaim on retirement

Figure 5.36: Register-renaming unit using a register alias table (RAT). The
RAT maps logical to physical register indices. The free list FL contains
currently unused physical registers. The active list AL contains information
about physical registers that are in use.



258 5. Code Generation with Permutation Instructions

RAT and the AL are updated according to the new mapping from logical
to physical registers.

Accesses to the destination register by subsequent instructions will use
the register’s logical register name and will thus be rerouted to the correct
physical register by the RAT. Hence, the destination register has effectively
been renamed. Once the instruction has finished executing and its results
are visible in the architectural state (when the instruction has retired), the
physical register is reclaimed and transferred from the AL to the FL.

5.5.2. Implementing Permutation Instructions

In this section, we argue that permutation instructions should be cheap to
implement on modern high-performance processors that already support
out-of-order execution and register renaming to exploit instruction level
parallelism.

Once a RAT as presented in the previous section is available, we can
implement certain operations by just modifying this table. Hence, we
handle these instructions during the renaming phase and do not need to
actually execute them on a functional unit of the processor. For example,
current Intel microprocessors implement [Int16, §2.2.2] the move elimination

technique [Tom67; Jou+98]. These processors implement copy (or move)
instructions such as copy r1, r2 by changing the RAT mapping of r2 to
point to the physical register that r1 currently points to. Registers r1 and
r2 now effectively share a value saved in a single physical register.

To ensure correctness, these processors save a reference counter per
physical register [Jou+98, section 2.2]. Registers in the free list FL have a
reference count of 0. Whenever a physical register is allocated, its reference
count is incremented. When a physical register is reclaimed, its counter
value is decremented. During retirement, we only transfer a register to the
free list if its reference count is 0. Hence, compared to our permutation
table, a reference counter enables mapping multiple logical registers to
the same physical register. Such a RAT is thus strictly more powerful than
our permutation table.

Other applications of the RAT are exploiting so-called zero idioms and
implementing certain exchange instructions. Zero idioms [Int16, §3.5.1.8]



5.5. Generalization 259

denote instructions that set a register to zero, e.g., xor reg, reg. The
renamer recognizes these idioms and modifies the RAT so that reg points
to a special physical register that is permanently set to zero. Hence,
these instructions are also executed without being passed to a functional
unit. The renamer also handles the floating-point instruction fxch, which
exchanges two floating-point registers49 [Int16, §2.3.3.1].

We argue that with a RAT already in place, adding permutation instruc-
tions should be cheap. As we see from the support for fxch instructions,
swapping two registers is possible and already implemented in common
processors. The only difference for permutation instructions is that they
change more than two (in our case up to five) entries in the RAT at once.
According to a detailed study of Intel’s microarchitecture [Fog16, sections
8.7 and 9.8], Intel processors can rename up to four registers in one clock
cycle.

Assume that we add a permutation instruction to the instruction set of
such an out-of-order processor. Once a permutation instruction arrives at
the renaming unit, the unit is completely occupied for one clock cycle as
the instruction exhausts the available renaming capabilities. Hence, no
other instructions can be subject to renaming in the same cycle. However,
the permutation instructions still offer benefits: they are a more compact
encoding of the wanted operation, and they may reduce latency.

First, compared to expressing the permutation as a series of exchange
operations, the permutation instruction is more compact as it avoids
repeating register names. For example, to do a cyclic shift of registers
r1, r2, r3, the encoding of permi r1, r2, r3 is more compact than doing
swap r2, r3 followed by swap r1, r2.

And second, the permutation instruction may have a lower latency. In the
example, the second swap instruction has a true data dependency on the
first swap instruction, as it reads register r2, which is written by the first
swap instruction. Hence, depending on the capabilities of the renaming
hardware, this dependency may prevent renaming these instructions
in the same cycle. However, according to [Fog16, section 9.8], some
modern microarchitectures also support eliminating “chained movs”,
49To be precise, as x87 floating-point registers are organized as a stack, fxch allows

exchanging an arbitrary floating-point register with the register on top of the stack.



260 5. Code Generation with Permutation Instructions

i.e., sequences such as copy r1, r2; copy r2, r3. Here, the second
instruction has a true data dependency on the first. If a microarchitecture
is able to rename such dependent instructions in the same clock cycle, it
could also rename multiple dependent swap instructions as those shown
before. Then permutation instructions would offer no latency benefits.
Only if the hardware does not support renaming dependent instructions
in the same clock cycle do permutation instructions offer an advantage
regarding latency.

In summary, we are confident that adding support for permutation
instructions to a modern out-of-order processor is possible with low
implementation overhead. However, the benefit may be limited: if the
processor supports renaming dependent instructions in a single clock
cycle, permutation instructions only provide a more compact encoding of
RTGs. A more compact encoding is, in general, beneficial; for example, it
helps for keeping tight loops in the code cache. However, the performance
impact of a more compact encoding is difficult to quantify due to sensitivity
concerning addresses or cache structure.

Regarding code generation, a RAT with a reference counter per physi-
cal register is strictly more powerful than our permutation table from
Section 5.2 as it also allows mapping multiple logical registers to the
same physical register. This would enable more powerful instructions to
implement RTGs that also allow value duplication. However, it would
also require different instruction formats and different code generation
approaches to exploit the more powerful hardware.



5.5. Generalization 261

Summary

• The compiler benefits from the ability to permute small sets of
registers during the implementation of shuffle code.

• We can add such functionality to an existing architecture in the
form of novel permutation instructions that arbitrarily permute
up to five registers.

• Near-optimal implementation of shuffle code using these per-
mutation instructions is possible in linear time.

• Generating optimal code using the permutation instructions is
not worth the additional effort.

• Our permutation instructions offer a performance advantage
in practice and allow interesting trade-offs. Specifically, they
can sometimes compensate for a register allocation of inferior
quality.

• Permutation instructions should be cheap to realize in the context
of an out-of-order architecture; however, the benefits might be
limited.





Dissertations are not finished; they are abandoned.

Frederick P. Brooks, Jr.

6
Conclusion and Future Work

We have made contributions regarding compilation and code generation
along both dimensions of modern parallel architectures: memory and
core design. In the first part of this dissertation, we presented an in-depth
overview of non-cache-coherent architectures and explained the cost and
trade-offs of implementing common programming models. We then took
a concrete example as a case study, namely compiling the PGAS language
X10 to invasive many-core architectures. Based on this platform, we
identified data transfers between coherence domains as a crucial building
block for efficient program execution. We exhaustively studied possible
implementation techniques and trade-offs. Moreover, we developed a
novel approach to avoid serialization of complex data structures through
automatic compiler-directed software-managed coherence. We performed
an extensive evaluation of data-transfer techniques on a prototype of an
invasive many-core architecture. We could show using programs from
an existing benchmark suite that our novel approach provides a speedup.
Moreover, we investigated hardware acceleration for range-based cache
operations and evaluated benefits and overheads.

Regarding code generation, we investigated the use of permutation in-
structions to allow implementing shuffle code more efficiently. Starting
from a design driven by hardware constraints, we built a solid theoretical

263



264 6. Conclusion and Future Work

foundation for our problem setting. We developed two code generation
approaches and proved multiple optimality guarantees about them. We
then evaluated both approaches on an actual hardware prototype and
could show that our extension provides a speedup and enables interesting
trade-offs. We also discussed the implementation of such instructions on
modern out-of-order architectures.

In the following, we take a step back and share our ideas for possible
research directions in the future.

Compilation to invasive architectures. In our opinion, our most im-
portant realization concerning invasive architectures is that support for
fine-grained cache control is useful and enables efficient program exe-
cution. We think that right now, this topic does not get the attention it
deserves. The lack of such fine-grained control is one of the most promi-
nent points of criticism of the Intel SCC, which has a structure similar to
invasive architectures. The Invasive Computing project is in the unique
position that it can actually adapt and improve its hardware platform. Our
clear recommendation is to add support for fine-grained cache control.
We advise against putting too much logic into the hardware; functionality
to write back or invalidate the relevant cache line for a given address is
sufficient.

We also strongly recommend to add support for off-chip memory to the
existing DMA units. Currently, copying data forth and back between
off-chip memory and TLM using regular loads and stores often negates
the performance advantage of using hardware-accelerated asynchronous
transfers. There is no conceptual reason why the current DMA units are
limited to TLMs. In conjunction with fine-grained cache control, this
would enable very efficient implementation [CS16; CS17] of one-sided
block-wise communication means, such as Array.asyncCopy() in X10.
As our memory tile contains some cores close to off-chip memory, it
would even be possible to realize the idea of van Tol et al. [Tol+11] and let
dedicated copy cores located on the memory tile handle off-chip memory
transfers asynchronously without causing any NoC traffic.

It could be interesting to implement the idea of remote invalidation (and
its dual operation remote writeback) for true one-sided communication



265

as proposed by Christgau et al. [CS16; CS17]. These operations would
likely be implemented either in the network adapter of a tile, in the cache
controllers, or in a combination of both. We suspect that it is possible
to reuse some of our work on range operations that we presented in
Section 4.5.

We give more technical details on our ideas for improvements of invasive
architectures in Appendix A.1. There, we provide lists of concrete imple-
mentation steps that we suspect would improve the system as a whole
and make it more efficient.

Our main focus in Chapter 4 was the acceleration of copying data struc-
tures between memory partitions on non-cache-coherent architectures.
However, avoiding copies altogether would be even more worthwhile.
Friedley et al. [Fri+13] propose ownership passing for MPI programs on
clusters. As mentioned before, clusters usually provide shared memory
inside a node and use message passing between nodes. However, many
application developers use message passing also inside a node to avoid
having to combine multiple programming models.

Friedley et al. propose to avoid copying buffers if shared memory is
available and avoiding the copy does not change program semantics. In
this case, they transfer the ownership of the buffer, i.e., hand over a single
pointer, instead of copying the complete buffer. They devise a data-flow
analysis [ASU86, section 9.2] to identify where ownership passing is
applicable, and a matching compiler transformation to automatically
apply ownership passing. They mention [Fri+13, section 3] that their
approach is also usable on non-cache-coherent architectures, but did not
evaluate it there.

In the context of Invasive Computing, we can envision a similar compiler-
based technique for X10. Especially when distributing input data, which
is only read but not modified, it could be worthwhile to avoid copies.
It should be possible to apply approaches based on escape and shape
analysis used for detecting read-only methods in Java [Bog00] to X10’s at
blocks. We expect the object-oriented nature of X10 to be a challenge due
to frequent aliasing.

Regarding correctness, it may be interesting to look at formal verification
of (partially) software-based coherence protocols. There is a large body



266 6. Conclusion and Future Work

of work on verifying hardware-based coherence protocols; e.g., recently,
Li et al. [Li+16] presented an approach that generates Isabelle [NPW02]
proofs. However, to the best of our knowledge, no machine-checked
formalizations exist of software-based coherence protocols or hybrid
protocols with software and hardware components.

As a long-term research direction, we can envision the comparison of
multiple programming models on invasive architectures. So far, we have
focused on the PGAS programming model using X10. As we have seen in
Chapter 2, other programming models are feasible as well. Additionally,
as our hardware is not fixed, we can add the required features to lower the
costs of implementing, e.g., the shared-memory programming model.

Moreover, at the time of writing, there is an ongoing effort [Sri+17] to
enable invasive hardware to dynamically and selectively combine multiple
tiles into a single coherence domain. In our opinion, this allows to explore
an interesting design space. We have multiple programming models with
different requirements and can either avoid coherence-related problems
(e.g., with message passing), provide it (at least partially) in software (e.g.,
via the compiler or operating system), or provide it in hardware (using
the aforementioned extension).

To the best of our knowledge, no comprehensive study exists on which
programming model is the most suitable for non-cache-coherent archi-
tectures. Many papers propose a multitude of programming models and
evaluate them on, e.g., the Intel SCC. In our experience, the PGAS model is
a good match. Just like non-cache-coherent shared-memory architectures
are situated somewhere between shared-memory and message-passing ar-
chitectures, the PGAS model positions itself between the shared-memory
and message-passing programming models. However, we do not know of
a solid comparison that takes into account a wider range of programming
models and supports the comparison with empirical data gathered on
real non-cache-coherent hardware. Future work in the scope of Invasive
Computing could close this gap.

Code generation using permutation instructions. From the theoretical
side, it would be interesting to generalize our greedy algorithm to larger
permutations. We proved in Chapter 5 that our greedy algorithm finds



267

optimal solutions for expressing a permutation as a product of permuta-
tions of maximum size 5 (for our definition of permutation size). What if
we want to find optimal solutions using permutations of maximum size k?
Rutter proved that the shuffle-code-generation problem is NP-complete if
k is part of the input (see Appendix A.3). However, if k is fixed, we suspect
that for every maximum size k, we can find an optimal greedy algorithm.
That algorithm may increase exponentially in size due to combinatorial
explosion of the necessary case distinction. Still, we suspect that such a
greedy algorithm exists for every k.

As we have seen in Section 5.5, on real out-of-order microarchitectures, we
could even express more powerful operations that copy values and not just
permute them. It would be interesting to explore what an instruction set
extension would look like if it enabled permuting as well as copying values
between multiple registers. Also, this would require new code-generation
algorithms. We suspect that these algorithms would differ substantially
from our current ones.

From the practical side, it would be interesting to look at parallel-copy-
motion techniques [Bou+10; BC13]. By default, these techniques use
cost models that target traditional architectures with copy and swap
instructions. However, it could be interesting to tailor a cost model to
permutation instructions and see if that produces more efficient code.

Moreover, we would like to explore permutation instructions (or even
more powerful ones as mentioned above) on a real out-of-order microar-
chitecture. One possibility is to integrate the extension into an open-source
out-of-order core, such as BOOM v2 [Cel+17]. Here, our goal would be to
get a better idea of the costs and benefits of additional instructions in the
context of an architecture that already has some necessary components.
After our discussion in Section 5.5, we suspect that the benefits are not
worth the effort. However, in our opinion, this suspicion is best proved
by an actual implementation. Another possibility is to use a tool for ar-
chitectural simulation, such as Gem5 [Bin+11]. Here, we could gather no
hardware overhead numbers, but at least perform representative running
time measurements on an out-of-order architecture.





Just one more thing. . .

Columbo

A
Appendix

A.1. Recommendations for Invasive
Architectures

In this section, we make concrete recommendations for improvements of
invasive architectures in general, and the prototype platform in specific.
We describe our conclusions from Chapter 6 with more technical depth
and list concrete implementation steps. We cover both hardware and
software components.

We agree with Christgau et al. [CS16; CS17] that software-managed
coherence for efficient one-sided communication is important on non-
cache-coherent architectures. We showed in Section 4.6.3 that this also
applies to invasive architectures and in Section 4.7 that it is especially
important for invasive programs.

Concerning flat data structures, this requires an efficient implementation
of asynchronous copy operations, e.g., Rail.asyncCopy() in X10. To reach
this goal, the following steps are necessary (preferably to be implemented
in that order):

269



270 A. Appendix

1. Add support for fine-grained cache control to the L1 caches. We
showed in Section 4.6.5 that functionality to write-back and invalidate
the relevant cache line for a given address is sufficient. The functionality
in the L2 cache can serve as a model. As our L1 caches are configured
in write-through mode, invalidation is sufficient.

2. Add support for off-chip memory, i.e., DRAM, to the DMA units.
Ideally, DMA units would not only issue loads and stores but use larger
burst transfers via the NoC. Alternatively, we could offload memory
copy operations to the LEON cores present on our memory tile to avoid
NoC traffic completely. We suspect that the prototype platform would
benefit greatly from this approach. However, we think it is of limited
use regarding realistic architectures, as they are unlikely to have any
cores positioned near memory.

3. Ideally, add support for remote invalidations (as proposed by Christ-
gau et al. [CS16]) and remote write-backs. Remote invalidations enable
true one-sided copying from local memory to remote memory. Remote
write-backs enable true one-sided copying from remote memory to
local memory. We suspect that it is possible to implement such remote
cache operations on our platform by a collaboration of network adapter
and cache controllers. For example, if tile A issues a remote invalidation
to tile B, the network adapter of tile B would receive this request and
broadcast it on B’s local bus. Subsequently, all of B’s cache controllers
would snoop this request and then execute the invalidation on B’s
caches. As such remote operations should proceed without software
involvement, we suspect that our insights from Section 4.5 can be
useful. In particular, a design where the network adapter delegates
invalidations or write-backs to the cache controllers could completely
reuse our work on range operations.

Concerning pointered data structures, we recommend the following steps
(preferably to be implemented in that order):

1. Use a static (or even better, a hybrid) allocation approach for TLMs.
Our results from Section 4.6.4.2 show that most object graphs are quite
small. We recommend to extend the X10 runtime system to reserve a
fixed portion of each TLM for transferring small object graphs without
requiring a forth-and-back communication to allocate memory in the
remote TLM. It may be worthwhile to investigate directly serializing
object graphs into the TLM of the receiving tile, and then using software-



A.2. The Intermediate Representation Firm 271

managed coherence (see above). This avoids the overhead for copying
data between TLMs.

2. Use cloning only as an opt-in mechanism as it is, in general, incompatible
with custom serialization formats. We think adding an annotation
so that programmers can switch to cloning for performance-critical
transfers would be a viable way.

A.2. The Intermediate Representation Firm
Firm is graph-based intermediate representation (IR) for compilers [BBZ11].
The project was started in 1996 as the IR for the Sather-K compiler
Fiasco [AR96], giving Firm its name: Fiasco’s Intermediate Representation
Mesh. Today, libFirm [Fir17] provides an open-source implementation of
Firm as well as multiple frontends and code-generation backends.

Firm represents programs based on the “sea of nodes” idea by Click [CP95;
Cli95]. Each function of the program is represented by a graph, where
nodes represent operations and directed edges represent both data flow
and control flow. In contrast to representations relying on instruction lists,
the graph representation only defines a partial order on the operations.
Hence, it makes the compiler’s degrees of freedom explicit concerning,
e.g., evaluation order.

As an example, we look at the following function that computes the
maximum of its two signed integer parameters:

int max(int x, int y)
{
int res;
if (x > y)
res = x;
else
res = y;
return res;
}

In the following, we will give a brief explanation of how Firm models this
function. We refer to [BBZ11] for details.



272 A. Appendix

Start Block

End Block

Return

Phi

End

Proj M

Proj true Proj false

Cond

Cmp greater

Proj Arg 0 Proj Arg 1

Proj args

Start

0 1

0 1

0 1

Figure A.1: The Firm graph of a function returning the maximum of its
two integer parameters. The graph has been simplified for presentation
reasons.



A.2. The Intermediate Representation Firm 273

Figure A.1 shows a Firm graph of the function max. The graph has been
simplified for presentation reasons. Note that the direction of edges in
Firm is backwards, i.e., edges go from the dependent operation to the
operation it depends on. This applies to both reversed data-flow edges
(shown in black) and reversed control-flow edges (shown in red).

We see that there are three basic blocks: the start block, a middle block,
and the end block. The start block contains most of the program logic.
First, it compares the two function arguments using a Cmp node. The
arguments are retrieved using Proj nodes. As proposed by Click [CP95] for
efficiency reasons, Firm models operations that produce multiple results
as nodes that produce a result tuple. The desired component of a tuple is
then extracted (or “projected out”) using a Proj node. Hence, we have one
Proj node for each function argument value. Following the comparison,
the Cond node uses the truth value carrying the result of the comparison
and produces a tuple containing control-flow information. In our example,
we branch to the same basic block regardless of the comparison result.

In the second basic block, we see a Phi node. The Phi node always has
exactly as many operands as its basic block has predecessors in the control-
flow graph. Following the semantics of φ-functions, the Phi node selects
operand 0 (corresponding to parameter x) if its basic block is entered via
edge 0 (if x > y), or it selects operand 1 (corresponding to parameter y)
if its basic block is entered via edge 1 (if x <= y). The resulting value is
returned by the Return node.

Actually, Firm nodes are weakly typed. The types are called “modes”50.
We omitted modes in our example graph for presentation reasons.

Other notable properties of Firm and libFirm are:

• libFirm directly constructs SSA form without taking a detour via
a non-SSA IR [Bra+13]. Moreover, optimizations, such as constant
folding, are performed during construction of the IR.

• libFirm performs SSA-based register allocation [Hac07]. This enables
libFirm to retain SSA form of programs even in its backend.

• Firm models memory (and side effects in general) as a special Memory
value. If Firm can prove operation independence, multiple Memory
values can coexist and are only joined when needed.

50Which probably comes from Algol 68.



274 A. Appendix

A.3. k-Shuffle Code Generation is NP-complete

Throughout this dissertation we have assumed that our permutation
instructions may arbitrarily permute up to five registers. Rutter considered
the case where a permutation instruction may permute up to k registers
arbitrarily. We call such a shuffle code a k-shuffle code. The problem
k-shuffle code generation asks for a shortest k-shuffle code that implements a
given RTG. Rutter shows that k-shuffle code generation is NP-complete if k
is part of the input. Moreover, Rutter presents an approximation algorithm
for k-shuffle code generation. These results are not a contribution of this
dissertation, but are original (and at the time of writing unpublished)
work by Rutter.

A.3.1. Complexity

Here we refer to the decision version of the k-shuffle code generation
problem where the task is to decide the existence of a k-shuffle code with
length at most b.

Theorem 4 k-shuffle code generation is NP-complete for PRTGs. 2

Proof The problem is clearly in NP, since we can guess a shuffle code
and verify that it implements the given PRTG and has size at most b.

To show NP-hardness, Rutter gives a reduction from the strongly NP-
complete problem 3-Partition [GJ90]. An instance (A, B) of 3-Partition
consists of an integer bucket size B and a multiset A � {a1 , . . . , a3m} of 3m
integers such that B/4 < ai < B/2. The task is to decide whether A can
be partitioned into sets S1 , . . . , Sm such that

∑
a∈S j

a � B for each S j . Note
that due to the restrictions on the ai , each set of the partition necessarily
contains precisely three elements.

Given an instance (A, B) of 3-Partition, we define a PRTG G that contains
for each element ai a directed cycle Ci of length ai . Since 3-Partition is
strongly NP-complete, we can assume that the ai and B are polynomially
bounded in m. The reduction can then be carried out in polynomial time.
We claim that G admits a B-shuffle code of length m if and only if (A, B)
is a yes-instance of 3-Partition.



A.3. k-Shuffle Code Generation is NP-complete 275

Given a partition S1 , . . . , Sm , we create for each S j � {ax , ay , az} a corre-
sponding instruction that resolves exactly the cycles Cx , Cy , and Cz , which
by assumption consist of exactly B vertices.

Conversely, assume we have a shuffle code consisting of m operations.
By construction, the PRTG G has mB vertices and none of them has a
self-loop, i.e., each vertex has to be touched by at least one operation.
However, each operation can touch at most B vertices, and hence every
vertex is touched exactly once. This in turn implies that every vertex that
is touched by an operation must be mapped to the target of its single
outgoing edge by this operation. It follows that if an operation touches
any vertex of a cycle, then it must resolve this cycle completely. It thus
follows that every operation resolves exactly three cycles whose total size
is B. Thus, the operations define a solution of 3-Partition. �

A.3.2. Approximation Algorithm
Rutter presents a simple linear-time approximation algorithm for k-shuffle
code generation.
Lemma 20 A (1 + 1/k)-approximation of an optimal k-shuffle code can be

computed in linear time. 2

Proof By Lemma 1 an optimal shuffle code exists with N �
∑

v∈V max{deg(v)−
1, 0} copy operations, and in fact every shuffle code uses at least N copy
operations. Let Copt denote an optimal copy set and let Gopt � G − Copt.
Let Kopt denote the number of vertices that are incident to a non-loop edge
in Gopt. Clearly, each of these vertices has to be touched by at least one
permutation instruction, each of which can touch up to k registers. Thus,
N + Kopt/k is a lower bound on the number of instructions.

Now let Capx be a copy set of G of size C that contains no loops. Let Kalg
denote the number of vertices of Galg � G − Kalg that are incident to a
non-loop. Since Capx contains no loops we have Kalg ≤ Kopt. It is not
hard to see that a k-shuffle code exists for Galg using at most Kalg/(k − 1)
operations. Thus, our algorithm requires N + Kalg/(k − 1) operations in
total. It follows that our algorithm is a (1 + 1/k)-approximation. �

For the case of k � 5, which we considered in this dissertation, this yields
a 1.2-approximation.





Weeks of coding can save you hours of planning.

Unknown author

B
Software Artifacts

In printed copies of this dissertation, we enclosed all relevant software
artifacts on a slightly anachronistic DVD. Additionally, we provide all
software artifacts as a download at

https://manuelmohr.de/dissertation/artifacts.tar.bz2

In the following, we give an overview of the directory structure. We
try to reflect the dissertation structure in our directory structure to ease
navigation. Hence, we provide artifacts for Chapters 4 and 5 separately.
Every software or hardware revision mentioned in the evaluation sections
in this dissertation is relative to the projects we provide here. We focus
on the software and provide necessary hardware artifacts as synthesized
bitfiles and not as VHDL sources.

For convenience, we also provide a PDF version of this dissertation with
clickable references at

https://manuelmohr.de/dissertation/diss-genehmigt.pdf

277

https://manuelmohr.de/dissertation/artifacts.tar.bz2
https://manuelmohr.de/dissertation/diss-genehmigt.pdf


278 B. Software Artifacts

/
Promotion
dissertation................LATEX sources of this dissertation
Formalities.......Various forms needed for this dissertation

Chapter4
Braun2012TR........................LATEX sources of [Bra+12]
Braun2014X10.......................LATEX sources of [Bra+14]
Mohr2015X10.......................LATEX sources of [Moh+15]
Mohr2017DATE........................LATEX sources of [MT17]
benchmarks.................Binaries and raw benchmark data
bitfiles....................Bitfiles used for CHIPit platform
chipit-runner.........Testrunner scripts for CHIPit platform
grmon_tools......................Scripts for CHIPit platform
imsuite.............Sources of adapted benchmark programs
irtss........................................Sources of iRTSS
multigrid..........................The multigrid application
x10i.........................Sources of adapted X10 compiler
bdwgc...........................Adapted garbage collector
cparser .......................C frontend (see Section 3.5)
jFirm...............................Java bindings for Firm
libfirm..........................Unmodified Firm library
liboo...................Object-orientation support library
tests......................Synthetic benchmark programs
x10.firm...................Firm backend for X10 compiler
x10.firm_runtime...........Adapted X10 runtime system
src-c/octopos.........Mapping to OctoPOS interfaces
src-c/posix..............Mapping to POSIX interfaces

Chapter5
Mohr2013CASES.....................LATEX sources of [Moh+13]
Buchwald2015WADS.......LATEX sources of [BMR15b; BMR15a]
prog/paper_impl.....C++ implementation of Section 5.3.5

bitfiles.....................Bitfiles used for FPGA platform
benchmarks.................Binaries and raw benchmark data
cparser................Sources of adapted libFirm C frontend
libfirm......Sources of adapted libFirm supporting permi

linux..................................Buildroot Linux image
qemu.......................Sources of adapted QEMU version



List of Figures

1.1. A possible design space of modern parallel hardware archi-
tectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. The point in the design space of modern parallel architec-
tures targeted by compilation techniques presented in this
dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. The structure of this dissertation. . . . . . . . . . . . . . . . 9

2.1. A comparison of memory architectures. . . . . . . . . . . . 15

2.2. Program running on two cores. . . . . . . . . . . . . . . . . 19

2.3. Overview of the hardware architecture of the IBM Cell
processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4. Overview of the hardware architecture of the Intel SCC [Int12]. 35

2.5. The contents of a block in the Runnemede architecture [Car+13]. 36

2.6. The overall chip architecture of the Intel Runnemede [Car+13]. 37



280 List of Figures

2.7. The EUROSERVER hardware architecture [Dur+14]. . . . . 38

2.8. Schematic comparison of the shared-memory, the message-
passing, and the PGAS programming models. . . . . . . . 42

2.9. A non-cache-coherent shared-memory architecture with a
partitioned address space. . . . . . . . . . . . . . . . . . . . 50

2.10. Transferring a message from sender S to receiver R. . . . . 51

3.1. State chart of an invasive program, adapted from [Han+11]. 58

3.2. A 3 × 3 design consisting of six compute tiles, one memory
tile, one I/O tile, and a specialized accelerator tile. . . . . . 60

3.3. Sequential X10 program highlighting key differences to Java. 70

3.4. X10 program exploiting shared-memory parallelism. . . . 71

3.5. X10 program exploiting distributed-memory and shared-
memory parallelism. . . . . . . . . . . . . . . . . . . . . . . 72

3.6. Structure of the modified X10 compiler. . . . . . . . . . . . 75

3.7. Structure of the modified X10 compiler. . . . . . . . . . . . 80

3.8. The 2 × 2 design consisting of three compute tiles and one
memory tile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.9. The Synopsys CHIPit Platinum prototyping system. . . . . 82

4.1. The 2 × 2 design as viewed by the X10 runtime system. . . 87

4.2. Model of an invasive architecture. . . . . . . . . . . . . . . . 92

4.3. Transferring a memory block B to a copy B′ from sending
tile S to receiving tile R. . . . . . . . . . . . . . . . . . . . . 92

4.4. Transferring a memory block B to a copy B′ via TLM from
sending tile S to receiving tile R using a push-style approach. 94

4.5. Transferring a contiguous buffer B to a copy B′ via off-chip
memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6. A detailed view of the structure inside a tile. . . . . . . . . 101



List of Figures 281

4.7. Sequence diagram for transferring data via TLM on invasive
architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8. Copying an object graph to another memory partition. . . 108

4.9. An object graph containing cycles. . . . . . . . . . . . . . . 108

4.10. Comparison of shallow and deep copy of an object graph. . 109

4.11. An X10 program containing an at expression that captures
variables, and the matching object graph. . . . . . . . . . . 111

4.12. An example of how the X10 compiler transforms at state-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.13. Using serialization to make a deep copy of an object graph G.114

4.14. Optimized variant of transferring an object graph G using
off-chip memory. . . . . . . . . . . . . . . . . . . . . . . . . 116

4.15. Transferring an object graph G using object cloning. . . . . 120

4.16. Instruction encoding of range operations. . . . . . . . . . . 132

4.17. Schematic view of our modified cache architecture. . . . . 132

4.18. Running times (in microseconds) and speedup of Ac-Off
over Ac-Tlm on Hw-Default. . . . . . . . . . . . . . . . . . . 141

4.19. Running times (in microseconds) and speedup of Ac-Off
over Ac-Tlm on Hw-Delay. . . . . . . . . . . . . . . . . . . . 143

4.20. Excerpts from inner loop of benchmark programbfsBellmanFord
before (top) and after (bottom) changes. . . . . . . . . . . . 153

5.1. Example of shuffle code. . . . . . . . . . . . . . . . . . . . . 172

5.2. A register alias table. . . . . . . . . . . . . . . . . . . . . . . 173

5.3. Example of conversion to SSA form. . . . . . . . . . . . . . 177

5.4. Example of SSA-based register allocation . . . . . . . . . . 178

5.5. Adding a parallel copy to satisfy register constraints. . . . . 179

5.6. A more complex register transfer graph. . . . . . . . . . . . 180



282 List of Figures

5.7. Permutation instruction format implemented for the SPARC
V8 ISA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.8. 7-stage RISC pipeline of the base architecture executing an
add instruction. . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.9. Applying the permutation (5 8 6 7 9) using the permi5
instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.10. Executing the instruction add r5, r7, r9 on a permuted
register file. . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.11. Traps require reversal of up to four permutations, depend-
ing on the pipeline state. . . . . . . . . . . . . . . . . . . . . 193

5.12. Implementation of permutation reversion during trap de-
tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.13. Example RTGs. . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.14. Implementation of an example RTG using copy and swap
instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.15. Attempt at defining the effect of copy operations on RTGs. 199

5.16. Illustration of the proof of Lemma 1. . . . . . . . . . . . . . 200

5.17. The choice of the copy set is crucial for obtaining an optimal
shuffle code. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.18. Structure of the following sections. . . . . . . . . . . . . . . 204

5.19. Example illustrating how Greedy generates code for an
outdegree-1 RTG. . . . . . . . . . . . . . . . . . . . . . . . . 206

5.20. Idea behind the strategy to prove the optimality of Greedy. 207

5.21. The transposition τ � (5 8) acting on PRTGs. . . . . . . . . 209

5.22. Transition graphs forΨ1 (left) andΨ2 (right). . . . . . . . . 212

5.23. An RTG after the heuristic has chosen a copy set (depicted
as dotted edges). . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.24. Comparison of copy set chosen by heuristic with optimal
copy set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



List of Figures 283

5.25. Comparison of copy set chosen by heuristic with an optimal
copy set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.26. Example where a locally optimal copy set is not globally
optimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.27. A disconnected RTG with 2 components. . . . . . . . . . . 222

5.28. Finding a copy set for a tree RTG G. . . . . . . . . . . . . . 224

5.29. Nomenclature used for tree RTGs in the formalization. . . 225

5.30. Two ways of dealing with RTG containing a cycle. . . . . . 229

5.31. The Xilinx Virtex-5 ML509 evaluation board as used in our
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.32. Comparison of copy set chosen by heuristic with optimal
copy set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

5.33. Ratio of time spent for permutation reversion to total run-
ning time of each SPEC benchmark. . . . . . . . . . . . . . 250

5.34. Floorplan of our FPGA implementation. . . . . . . . . . . . 252

5.35. Design space exploration for different number of register
windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.36. Register-renaming unit using a register alias table (RAT). . 257

A.1. The Firm graph of a function returning the maximum of its
two integer parameters. . . . . . . . . . . . . . . . . . . . . 272





List of Tables

2.1. Coherence states for the execution L1, L2, S1, S2 of the
program from Figure 2.2. . . . . . . . . . . . . . . . . . . . . 20

4.1. Memory latency and bandwidth numbers on the default
hardware prototype design. . . . . . . . . . . . . . . . . . . 137

4.2. Memory latency and bandwidth numbers on Hw-Delay
with artifical DRAM latency. . . . . . . . . . . . . . . . . . . 139

4.3. Speedup of Clone-Off-Opt over Ser-Tlm for individual data
transfers on Hw-Default. . . . . . . . . . . . . . . . . . . . . 146

4.4. Speedup of Clone-Off-Opt over Ser-Off-Opt for individual
data transfers on Hw-Default. . . . . . . . . . . . . . . . . . 146

4.5. Speedup of Clone-Off-Opt over Ser-Tlm for individual data
transfers on Hw-Delay. . . . . . . . . . . . . . . . . . . . . . 148

4.6. Speedup of Clone-Off-Opt over Ser-Off-Opt for individual
data transfers on Hw-Delay. . . . . . . . . . . . . . . . . . . 148



286 List of Tables

4.7. Object-graph properties from all programs in our test suite. 154

4.8. Running and communication time for all test programs
from IMSuite on Hw-Default. . . . . . . . . . . . . . . . . . 156

4.9. Running times for all test programs from IMSuite on Hw-
Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.10. Additional resources for the implementation of non-blocking
range operations compared to original cache controller. . . 160

4.11. Additional resources used for blocking range operations
compared to non-blocking range operations. . . . . . . . . 160

4.12. Amount of data transferred (in bytes) during run of multi-
grid application. . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.1. Signature changes andΨ values for merges. . . . . . . . . . 210

5.2. Register-transfer-graph properties. . . . . . . . . . . . . . . 238

5.3. Number of instructions generated by the heuristic approach
for implementing RTGs. . . . . . . . . . . . . . . . . . . . . 239

5.4. Number of instructions generated for implementing RTGs
of the heuristic solution compared to the optimal approach. 240

5.5. Time spent (in milliseconds) for RTG implementation dur-
ing the compilation process. . . . . . . . . . . . . . . . . . . 241

5.6. Number of executed instructions (in billions) during a full
run of the CINT2000 benchmark suite. . . . . . . . . . . . . 243

5.7. Running times (in seconds) of the executables on the FPGA
prototype with enabled caches. . . . . . . . . . . . . . . . . 245

5.8. Running times (in seconds) of the executables on the FPGA
prototype with disabled caches. . . . . . . . . . . . . . . . . 246

5.9. Hardware implementation comparison between base sys-
tem and PERM with 8 register windows. . . . . . . . . . . . 251



Bibliography

[Adv+91] Sarita V. Adve, Vikram S. Adve, Mark D. Hill, and Mary
K. Vernon. “Comparison of Hardware and Software Cache
Coherence Schemes”. In: Proceedings of the 18th Annual Interna-

tional Symposium on Computer Architecture. ISCA ’91. Toronto,
Ontario, Canada: ACM, 1991, pp. 298–308. isbn: 0-89791-394-9.
doi: 10.1145/115952.115982.

[Adv10] Advanced Micro Devices. AMD64 Architecture Programmer’s

Manual Volume 2: System Programming. http://developer.
amd.com/wordpress/media/2012/10/24593_APM_v21.pdf.
2010.

[Ald+11] Jonathan Aldrich, Ronald Garcia, Mark Hahnenberg, Manuel
Mohr, Karl Naden, Darpan Saini, Sven Stork, Joshua Sunshine,
Éric Tanter, and Roger Wolff. “Permission-Based Program-
ming Languages (NIER track)”. In: Proceedings of the 33rd

International Conference on Software Engineering. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 828–831. doi: 10 . 1145 /
1985793.1985915.

https://doi.org/10.1145/115952.115982
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
https://doi.org/10.1145/1985793.1985915
https://doi.org/10.1145/1985793.1985915


288 Bibliography

[All+05] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-
Willem Maessen, Sukyoung Ryu, Guy L Steele Jr, Sam Tobin-
Hochstadt, Joao Dias, Carl Eastlund, et al. The Fortress Language

Specification. Tech. rep. 2005.
[Alm11] George Almasi. “PGAS (Partitioned Global Address Space)

Languages”. In: Encyclopedia of Parallel Computing. Ed. by
David Padua. Springer Publishing Company, Incorporated,
2011, pp. 1539–1545. isbn: 9780387097657.

[AP03] Andrew W. Appel and Jens Palsberg. Modern Compiler Im-

plementation in Java. 2nd. New York, NY, USA: Cambridge
University Press, 2003. isbn: 052182060X.

[App97] Andrew W. Appel. Modern Compiler Implementation in ML:

Basic Techniques. New York, NY, USA: Cambridge University
Press, 1997. isbn: 0-521-58775-1.

[AR96] Markus Armbruster and Christian von Roques. “Entwurf und
Realisierung eines Sather-K-Übersetzers”. In German. MA
thesis. Dec. 1996. url: http://www.info.uni-karlsruhe.
de/papers/ArRo_96-fiasco_diplomarbeit.ps.gz.

[ARM09] ARM. ARM1136J-S technical reference manual. r1p5. ARM, 2009.
[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley series in computer sci-
ence and information processing. Addison-Wesley Publishing
Company, 1986. isbn: 9780201100884.

[BA08] Hans-J. Boehm and Sarita V. Adve. “Foundations of the C++
Concurrency Memory Model”. In: Proceedings of the 29th ACM

SIGPLAN Conference on Programming Language Design and

Implementation. PLDI ’08. Tucson, AZ, USA: ACM, 2008, pp. 68–
78. isbn: 978-1-59593-860-2. doi: 10.1145/1375581.1375591.

[Bal+16] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen,
Yanqi Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs,
Samuel Payne, Xiaohua Liang, Matthew Matl, and David
Wentzlaff. “OpenPiton: An Open Source Manycore Research
Framework”. In: Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages

and Operating Systems. ASPLOS ’16. Atlanta, Georgia, USA:

http://www.info.uni-karlsruhe.de/papers/ArRo_96-fiasco_diplomarbeit.ps.gz
http://www.info.uni-karlsruhe.de/papers/ArRo_96-fiasco_diplomarbeit.ps.gz
https://doi.org/10.1145/1375581.1375591


Bibliography 289

ACM, 2016, pp. 217–232. isbn: 978-1-4503-4091-5. doi: 10.
1145/2872362.2872414.

[Bar+15] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher
Jelesnianski, Akshay Ravichandran, Cagil Kendir, Alastair
Murray, and Binoy Ravindran. “Popcorn: Bridging the Pro-
grammability Gap in Heterogeneous-ISA Platforms”. In: Pro-

ceedings of the Tenth European Conference on Computer Systems.
EuroSys ’15. Bordeaux, France: ACM, 2015, 29:1–29:16. isbn:
978-1-4503-3238-5. doi: 10.1145/2741948.2741962.

[Bar16] Blaise Barney. Introduction to Parallel Computing. https://
computing.llnl.gov/tutorials/parallel_comp/. 2016.

[Bas+16] Arkaprava Basu, Sooraj Puthoor, Shuai Che, and Bradford M.
Beckmann. “Software Assisted Hardware Cache Coherence
for Heterogeneous Processors”. In: Proceedings of the Second

International Symposium on Memory Systems. MEMSYS ’16.
Alexandria, VA, USA: ACM, 2016, pp. 279–288. isbn: 978-1-
4503-4305-3. doi: 10.1145/2989081.2989092.

[Bas04] Cedric Bastoul. “Code Generation in the Polyhedral Model Is
Easier Than You Think”. In: Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques.
PACT ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 7–16. isbn: 0-7695-2229-7. doi: 10.1109/PACT.2004.
11.

[Bau+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand,
Tim Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe,
Adrian Schüpbach, and Akhilesh Singhania. “The Multik-
ernel: A New OS Architecture for Scalable Multicore Sys-
tems”. In: Proceedings of the ACM SIGOPS 22nd Symposium

on Operating Systems Principles. SOSP ’09. Big Sky, Montana,
USA: ACM, 2009, pp. 29–44. isbn: 978-1-60558-752-3. doi:
10.1145/1629575.1629579.

[Bau09] Lars Bauer. “RISPP: A Run-time Adaptive Reconfigurable
Embedded Processor”. Karlsruhe, KIT, Dissertation 2009. PhD
thesis. 2009.

https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/2741948.2741962
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://doi.org/10.1145/2989081.2989092
https://doi.org/10.1109/PACT.2004.11
https://doi.org/10.1109/PACT.2004.11
https://doi.org/10.1145/1629575.1629579


290 Bibliography

[BBZ11] Matthias Braun, Sebastian Buchwald, and Andreas Zwinkau.
Firm—A Graph-Based Intermediate Representation. Tech. rep.
35. Karlsruhe Institute of Technology, 2011. url: http://
pp.info.uni- karlsruhe.de/uploads/publikationen/
braun11wir.pdf.

[BC13] Florian Brandner and Quentin Colombet. “Elimination of
Parallel Copies using Code Motion on Data Dependence
Graphs”. In: Computer Languages, Systems & Structures 39.1
(2013), pp. 25–47.

[BCT94] Preston Briggs, Keith D. Cooper, and Linda Torczon. “Im-
provements to Graph Coloring Register Allocation”. In: ACM

Transactions on Programming Languages and Systems 16.3 (May
1994), pp. 428–455. issn: 0164-0925. doi: 10.1145/177492.
177575.

[BDR07] Florent Bouchez, Alain Darte, and Fabrice Rastello. “On the
Complexity of Register Coalescing”. In: Proceedings of the

International Symposium on Code Generation and Optimization.
CGO ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 102–114. isbn: 0-7695-2764-7. doi: 10.1109/CGO.2007.26.

[BDR08] Florent Bouchez, Alain Darte, and Fabrice Rastello. “Ad-
vanced Conservative and Optimistic Register Coalescing”. In:
Proceedings of the 2008 International Conference on Compilers,

Architectures and Synthesis for Embedded Systems. CASES ’08.
Atlanta, GA, USA: ACM, 2008, pp. 147–156. isbn: 978-1-60558-
469-0. doi: 10.1145/1450095.1450119.

[Bec+] Jürgen Becker, Stephanie Friederich, Jan Heißwolf, Ralf Koenig,
and David May. “Hardware Prototyping of Novel Invasive
Multicore Architectures”. In: Proceedings of the 17th Asia and

South Pacific Design Automation Conference. ASP-DAC ’12. Syd-
ney, Australia, pp. 201–206. doi: 10.1109/ASPDAC.2012.
6164945.

[Bec16] Johannes Bechberger. Besser Benchmarken. Bachelor’s thesis.
In German. Apr. 2016.

http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun11wir.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun11wir.pdf
http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun11wir.pdf
https://doi.org/10.1145/177492.177575
https://doi.org/10.1145/177492.177575
https://doi.org/10.1109/CGO.2007.26
https://doi.org/10.1145/1450095.1450119
https://doi.org/10.1109/ASPDAC.2012.6164945
https://doi.org/10.1109/ASPDAC.2012.6164945


Bibliography 291

[Bel05] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Trans-
lator”. In: Proceedings of the Annual Conference on USENIX

Annual Technical Conference. ATEC ’05. Anaheim, CA: USENIX
Association, 2005, pp. 41–41.

[Bin+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek
R. Hower, Tushar Krishna, Somayeh Sardashti, Rathĳit Sen,
Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. “The Gem5 Simulator”. In: SIGARCH

Comput. Archit. News 39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964.
doi: 10.1145/2024716.2024718.

[Blu+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:

An efficient multithreaded runtime system. Vol. 30. 8. ACM, 1995.
[BM02] L. Benini and G. De Micheli. “Networks on Chips: a New

SoC Paradigm”. In: Computer 35.1 (Jan. 2002), pp. 70–78. issn:
0018-9162. doi: 10.1109/2.976921.

[BMH10] Matthias Braun, Christoph Mallon, and Sebastian Hack.
“Preference-Guided Register Assignment”. In: Proceedings

of the 19th Joint European Conference on Theory and Practice

of Software, International Conference on Compiler Construction.
CC’10/ETAPS’10. Paphos, Cyprus: Springer-Verlag, 2010,
pp. 205–223. isbn: 978-3-642-11969-9. doi: 10.1007/978-3-
642-11970-5_12.

[BMR15a] Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter. “Opti-
mal Shuffle Code with Permutation Instructions”. In: CoRR

abs/1504.07073 (2015). url: http://arxiv.org/abs/1504.
07073.

[BMR15b] Sebastian Buchwald, Manuel Mohr, and Ignaz Rutter. “Opti-
mal Shuffle Code with Permutation Instructions”. In: Algo-

rithms and Data Structures. Ed. by Frank Dehne, Jörg-Rüdiger
Sack, and Ulrike Stege. Vol. 9214. WADS’15. Lecture Notes in
Computer Science. Springer International Publishing, 2015,
pp. 528–541. doi: 10.1007/978-3-319-21840-3_44.

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/2.976921
https://doi.org/10.1007/978-3-642-11970-5_12
https://doi.org/10.1007/978-3-642-11970-5_12
http://arxiv.org/abs/1504.07073
http://arxiv.org/abs/1504.07073
https://doi.org/10.1007/978-3-319-21840-3_44


292 Bibliography

[BMZ15] Sebastian Buchwald, Manuel Mohr, and Andreas Zwinkau.
“Malleable Invasive Applications”. In: Proceedings of the 8th

Working Conference on Programming Languages. ATPS’15. Springer
Berlin Heidelberg, 2015, pp. 123–126.

[Bog00] Jeff Bogda. “Detecting Read-Only Methods in Java”. In: Lan-

guages, Compilers, and Run-Time Systems for Scalable Computers:

5th International Workshop. Ed. by Sandhya Dwarkadas. Berlin,
Heidelberg: Springer Berlin Heidelberg, May 2000, pp. 143–
154. isbn: 978-3-540-40889-5. doi: 10.1007/3-540-40889-
4_11.

[BOS14] James Beyer, David Oehmke, and Jeff Sandoval. Transferring

user-defined types in OpenACC. 2014.
[Bou+07] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice

Rastello. “Register Allocation: What Does the NP-completeness
Proof of Chaitin Et Al. Really Prove? Or Revisiting Register
Allocation: Why and How”. In: Proceedings of the 19th In-

ternational Conference on Languages and Compilers for Parallel

Computing. LCPC’06. New Orleans, LA, USA: Springer-Verlag,
2007, pp. 283–298. isbn: 978-3-540-72520-6.

[Bou+10] Florent Bouchez, Quentin Colombet, Alain Darte, Fabrice
Rastello, and Christophe Guillon. “Parallel Copy Motion”.
In: Proceedings of the 13th International Workshop on Software

and Compilers for Embedded Systems. SCOPES ’10. St. Goar,
Germany: ACM, 2010, 1:1–1:10. isbn: 978-1-4503-0084-1. doi:
10.1145/1811212.1811214.

[Bra+12] Matthias Braun, Sebastian Buchwald, Manuel Mohr, and
Andreas Zwinkau. An X10 Compiler for Invasive Architectures.
Tech. rep. 9. Karlsruhe Institute of Technology, 2012. url:
http://digbib.ubka.uni- karlsruhe.de/volltexte/
1000028112.

[Bra+13] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland
Leißa, Christoph Mallon, and Andreas Zwinkau. “Simple and
Efficient Construction of Static Single Assignment Form”. In:
Compiler Construction. Ed. by Ranjit Jhala and Koen Bosschere.
Vol. 7791. Lecture Notes in Computer Science. Springer Berlin

https://doi.org/10.1007/3-540-40889-4_11
https://doi.org/10.1007/3-540-40889-4_11
https://doi.org/10.1145/1811212.1811214
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112


Bibliography 293

Heidelberg, 2013, pp. 102–122. doi: 10.1007/978-3-642-
37051-9_6.

[Bra+14] Matthias Braun, Sebastian Buchwald, Manuel Mohr, and An-
dreas Zwinkau. Dynamic X10: Resource-Aware Programming

for Higher Efficiency. Tech. rep. 8. X10 ’14. Karlsruhe Insti-
tute of Technology, 2014. url: http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000041061.

[Bri+06] P. Brisk, F. Dabiri, R. Jafari, and M. Sarrafzadeh. “Optimal
Register Sharing for High-Level Synthesis of SSA Form Pro-
grams”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 25.5 (May 2006), pp. 772–779.
issn: 0278-0070. doi: 10.1109/TCAD.2006.870409.

[BS93] William J. Bolosky and Michael L. Scott. “False Sharing and Its
Effect on Shared Memory Performance”. In: USENIX Systems

on USENIX Experiences with Distributed and Multiprocessor

Systems - Volume 4. Sedms’93. San Diego, California: USENIX
Association, 1993, p. 3.

[Bun+13] Hans-Joachim Bungartz, Christoph Riesinger, Martin Schreiber,
Gregor Snelting, and Andreas Zwinkau. “Invasive Computing
in HPC with X10”. In: Proceedings of the third ACM SIGPLAN

X10 Workshop. X10 ’13. New York, NY, USA: ACM, 2013,
pp. 12–19. doi: 10.1145/2481268.2481274.

[BW88] Hans-Juergen Boehm and Mark Weiser. “Garbage Collection
in an Uncooperative Environment”. In: Software: Practice and

Experience 18.9 (1988), pp. 807–820.
[BZB11] Sebastian Buchwald, Andreas Zwinkau, and Thomas Bersch.

“SSA-Based Register Allocation with PBQP”. In: Compiler

Construction. Ed. by Jens Knoop. Vol. 6601. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2011,
pp. 42–61. doi: 10.1007/978-3-642-19861-8_4.

[Cap97] Alberto Caprara. “Sorting by Reversals is Difficult”. In: Pro-

ceedings of the First Annual International Conference on Com-

putational Molecular Biology. RECOMB ’97. Santa Fe, New
Mexico, USA: ACM, 1997, pp. 75–83. isbn: 0-89791-882-7. doi:
10.1145/267521.267531.

https://doi.org/10.1007/978-3-642-37051-9_6
https://doi.org/10.1007/978-3-642-37051-9_6
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000041061
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000041061
https://doi.org/10.1109/TCAD.2006.870409
https://doi.org/10.1145/2481268.2481274
https://doi.org/10.1007/978-3-642-19861-8_4
https://doi.org/10.1145/267521.267531


294 Bibliography

[Car+13] Nicholas P. Carter, Aditya Agrawal, Shekhar Borkar, Romain
Cledat, Howard David, Dave Dunning, Joshua Fryman, Ivan
Ganev, Roger A. Golliver, Rob Knauerhase, Richard Lethin,
Benoit Meister, Asit K. Mishra, Wilfred R. Pinfold, Justin
Teller, Josep Torrellas, Nicolas Vasilache, Ganesh Venkatesh,
and Jianping Xu. “Runnemede: An Architecture for Ubiqui-
tous High-Performance Computing”. In: Proceedings of the

2013 IEEE 19th International Symposium on High Performance

Computer Architecture. HPCA ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 198–209. doi: 10.1109/HPCA.
2013.6522319.

[Cav+11] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
“Habanero-Java: The New Adventures of Old X10”. In: Pro-

ceedings of the 9th International Conference on Principles and

Practice of Programming in Java. PPPJ ’11. Kongens Lyngby,
Denmark: ACM, 2011, pp. 51–61. isbn: 978-1-4503-0935-6. doi:
10.1145/2093157.2093165.

[CB13] Charlie Curtsinger and Emery D. Berger. “STABILIZER: Sta-
tistically Sound Performance Evaluation”. In: Proceedings of

the Eighteenth International Conference on Architectural Support

for Programming Languages and Operating Systems. ASPLOS
’13. Houston, Texas, USA: ACM, 2013, pp. 219–228. isbn: 978-
1-4503-1870-9. doi: 10.1145/2451116.2451141.

[CCZ07] B.L. Chamberlain, D. Callahan, and H.P. Zima. “Parallel
Programmability and the Chapel Language”. In: Int. J. High

Perform. Comput. Appl. 21.3 (Aug. 2007), pp. 291–312. issn:
1094-3420. doi: 10.1177/1094342007078442.

[Cel+17] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolić, David A
Patterson, and Krste Asanović. “BOOMv2: an Open-Source
Out-Of-Order RISC-V Core”. In: First Workshop on Computer

Architecture Research with RISC-V (CARRV). 2017.
[Cha+05] Philippe Charles, Christian Grothoff, Vĳay Saraswat, Christo-

pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. “X10: An Object-oriented Approach
to Non-uniform Cluster Computing”. In: Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object-oriented Program-

https://doi.org/10.1109/HPCA.2013.6522319
https://doi.org/10.1109/HPCA.2013.6522319
https://doi.org/10.1145/2093157.2093165
https://doi.org/10.1145/2451116.2451141
https://doi.org/10.1177/1094342007078442


Bibliography 295

ming, Systems, Languages, and Applications. OOPSLA ’05. San
Diego, CA, USA: ACM, 2005, pp. 519–538. isbn: 1-59593-031-0.
doi: 10.1145/1094811.1094852.

[Cha82] G. J. Chaitin. “Register Allocation & Spilling via Graph Col-
oring”. In: Proceedings of the 1982 SIGPLAN Symposium on

Compiler Construction. SIGPLAN ’82. Boston, Massachusetts,
USA: ACM, 1982, pp. 98–105. isbn: 0-89791-074-5. doi: 10.
1145/800230.806984.

[Che+07] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. “Cell Broad-
band Engine Architecture and Its First Implementation: A
Performance View”. In: IBM J. Res. Dev. 51.5 (Sept. 2007),
pp. 559–572. issn: 0018-8646. doi: 10.1147/rd.515.0559.

[CHH11] Keith Chapman, Ahmed Hussein, and Antony L. Hosking.
“X10 on the Single-chip Cloud Computer: Porting and Prelim-
inary Performance”. In: Proceedings of the 2011 ACM SIGPLAN

X10 Workshop. X10 ’11. San Jose, California: ACM, 2011, 7:1–
7:8. isbn: 978-1-4503-0770-3. doi: 10.1145/2212736.2212743.

[Cho+11] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolin-
ski, Nima Honarmand, Sarita V. Adve, Vikram S. Adve,
Nicholas P. Carter, and Ching-Tsun Chou. “DeNovo: Re-
thinking the Memory Hierarchy for Disciplined Parallelism”.
In: Proceedings of the 2011 International Conference on Parallel Ar-

chitectures and Compilation Techniques. PACT ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 155–166. isbn:
978-0-7695-4566-0. doi: 10.1109/PACT.2011.21.

[Chr14] George Chrysos. “Intel® Xeon Phi™ Coprocessor — the
Architecture”. In: Intel Whitepaper (2014).

[Cla+11] Carsten Clauss, Stefan Lankes, Pablo Reble, and Thomas
Bemmerl. “Evaluation and Improvements of Programming
Models for the Intel SCC Many-core Processor”. In: Interna-

tional Conference on High Performance Computing Simulation.
July 2011, pp. 525–532. doi: 10.1109/HPCSim.2011.5999870.

[Cli95] Cliff Click. “Combining Analyses, Combining Optimizations”.
PhD thesis. Rice University, Feb. 1995.

https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/800230.806984
https://doi.org/10.1145/800230.806984
https://doi.org/10.1147/rd.515.0559
https://doi.org/10.1145/2212736.2212743
https://doi.org/10.1109/PACT.2011.21
https://doi.org/10.1109/HPCSim.2011.5999870


296 Bibliography

[Cob15a] Cobham Gaisler. LEON Bare-C Cross Compilation System. http:
//www.gaisler.com/index.php/products/operating-
systems/bcc. Retrieved on 2015-11-13. 2015.

[Cob15b] Cobham Gaisler. LEON SRMMU Behaviour. Technical note
2015-10-27, Doc. No GRLIB-TN-0002, Issue 1.0. 2015. url:
http://www.gaisler.com/doc/antn/GRLIB-TN-0002.pdf.

[Cob16] Cobham Gaisler. GRLIB IP Core User’s Manual. http://
gaisler.com/doc/grusbdc.pdf. Version 1.5.0, retrieved on
2017-04-21. Jan. 2016.

[Cob17a] Cobham Gaisler. GRMON. Debug monitor for LEON pro-
cessors. 2017. url: http://www.gaisler.com/index.php/
products/debug-tools/grmon.

[Cob17b] Cobham Gaisler. LEON 3. 2017. url: http://www.gaisler.
com/leonmain.html.

[Col+11] Quentin Colombet, Benoit Boissinot, Philip Brisk, Sebastian
Hack, and Fabrice Rastello. “Graph-Coloring and Treescan
Register Allocation Using Repairing”. In: Proceedings of the

14th International Conference on Compilers, Architectures and

Synthesis for Embedded Systems. CASES ’11. Taipei, Taiwan:
ACM, 2011, pp. 45–54. isbn: 978-1-4503-0713-0. doi: 10.1145/
2038698.2038708.

[CP95] Cliff Click and Michael Paleczny. “A Simple Graph-Based
Intermediate Representation”. In: Papers from the 1995 ACM

SIGPLAN Workshop on Intermediate Representations. IR ’95.
San Francisco, California, USA: ACM, 1995, pp. 35–49. isbn:
0-89791-754-5. doi: 10.1145/202529.202534.

[CS16] Steffen Christgau and Bettina Schnor. “Software-Managed
Cache Coherence for Fast One-Sided Communication”. In:
Proceedings of the 7th International Workshop on Programming

Models and Applications for Multicores and Manycores. PMAM’16.
Barcelona, Spain: ACM, 2016, pp. 69–77. isbn: 978-1-4503-4196-
7. doi: 10.1145/2883404.2883409.

http://www.gaisler.com/index.php/products/operating-systems/bcc
http://www.gaisler.com/index.php/products/operating-systems/bcc
http://www.gaisler.com/index.php/products/operating-systems/bcc
http://www.gaisler.com/doc/antn/GRLIB-TN-0002.pdf
http://gaisler.com/doc/grusbdc.pdf
http://gaisler.com/doc/grusbdc.pdf
http://www.gaisler.com/index.php/products/debug-tools/grmon
http://www.gaisler.com/index.php/products/debug-tools/grmon
http://www.gaisler.com/leonmain.html
http://www.gaisler.com/leonmain.html
https://doi.org/10.1145/2038698.2038708
https://doi.org/10.1145/2038698.2038708
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/2883404.2883409


Bibliography 297

[CS17] Steffen Christgau and Bettina Schnor. “Exploring One-Sided
Communication and Synchronization on a Non-Cache-Coherent
Many-Core Architecture”. In: Concurrency and Computation:

Practice and Experience 29.15 (2017). issn: 1532-0634. doi: 10.
1002/cpe.4113.

[Cun+14] David Cunningham, David Grove, Benjamin Herta, Arun
Iyengar, Kiyokuni Kawachiya, Hiroki Murata, Vĳay Saraswat,
Mikio Takeuchi, and Olivier Tardieu. “Resilient X10: Efficient
Failure-aware Programming”. In: Proceedings of the 19th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming. PPoPP ’14. Orlando, Florida, USA: ACM, 2014,
pp. 67–80. isbn: 978-1-4503-2656-8. doi: 10.1145/2555243.
2555248.

[De +15] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cut-
sem, and Wolfgang De Meuter. “Partitioned Global Address
Space Languages”. In: ACM Comput. Surv. 47.4 (May 2015),
62:1–62:27. issn: 0360-0300. doi: 10.1145/2716320.

[Den+74] Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest
Bassous, and Andre R. LeBlanc. “Design of Ion-Implanted
MOSFET’s with Very Small Physical Dimensions”. In: IEEE

Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.
[Dĳ02] Edsger W. Dĳkstra. “Cooperating Sequential Processes”. In:

The Origin of Concurrent Programming. Ed. by Per Brinch
Hansen. New York, NY, USA: Springer-Verlag New York, Inc.,
2002, pp. 65–138. isbn: 0-387-95401-5.

[Dur+14] Y. Durand, P. M. Carpenter, S. Adami, A. Bilas, D. Dutoit, A.
Farcy, G. Gaydadjiev, J. Goodacre, M. Katevenis, M. Maraza-
kis, E. Matus, I. Mavroidis, and J. Thomson. “EUROSERVER:
Energy Efficient Node for European Micro-Servers”. In: 17th

Euromicro Conference on Digital System Design (DSD). Aug.
2014, pp. 206–213. doi: 10.1109/DSD.2014.15.

[Eic+92] TV Eicken, David E Culler, Seth Copen Goldstein, and Klaus
Erik Schauser. “Active Messages: a Mechanism for Integrated
Communication and Computation”. In: Proceedings of the 19th

Annual International Symposium on Computer Architecture. IEEE.
1992, pp. 256–266.

https://doi.org/10.1002/cpe.4113
https://doi.org/10.1002/cpe.4113
https://doi.org/10.1145/2555243.2555248
https://doi.org/10.1145/2555243.2555248
https://doi.org/10.1145/2716320
https://doi.org/10.1109/DSD.2014.15


298 Bibliography

[EL09] Andreas Ehliar and Dake Liu. “An ASIC Perspective on
FPGA Optimizations”. In: Proceedings of the 19th International

Conference on Field Programmable Logic and Applications. FPL’09.
2009, pp. 218–223.

[Fat+16] P. Fatourou, N. D. Kallimanis, E. Kanellou, O. Makridakis,
and C. Symeonidou. “Efficient Distributed Data Structures for
Future Many-Core Architectures”. In: 2016 IEEE 22nd Interna-

tional Conference on Parallel and Distributed Systems (ICPADS).
Dec. 2016, pp. 835–842. doi: 10.1109/ICPADS.2016.0113.

[FHB14] S. Friederich, J. Heisswolf, and J. Becker. “Hardware/software
Debugging of Large Scale Many-Core Architectures”. In: 27th

Symposium on Integrated Circuits and Systems Design (SBCCI).
Sept. 2014, pp. 1–7. doi: 10.1145/2660540.2661013.

[Fir17] Firm Developers. libFirm: The Graph-Based Intermediate Rep-

resentation. http://libfirm.org. Retrieved on 2016-10-18.
2017.

[FM12] F. Farnoud and O. Milenkovic. “Sorting of Permutations by
Cost-Constrained Transpositions”. In: IEEE Transactions on

Information Theory 58.1 (2012), pp. 3–23. doi: 10.1109/TIT.
2011.2171532.

[FNW15] Yaosheng Fu, Tri M. Nguyen, and David Wentzlaff. “Co-
herence Domain Restriction on Large Scale Systems”. In:
Proceedings of the 48th International Symposium on Microarchi-

tecture. MICRO-48. Waikiki, Hawaii: ACM, 2015, pp. 686–698.
isbn: 978-1-4503-4034-2. doi: 10.1145/2830772.2830832.

[Fog16] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs:

An optimization guide for assembly programmers and compiler

makers. Jan. 2016. url: http : / / agner . org / optimize /
microarchitecture.pdf.

[Fre16] Freescale Semiconductor. AltiVec™ Technology Programming

Interface Manual. Revision 0. June 2016.
[Fri+13] Andrew Friedley, Torsten Hoefler, Greg Bronevetsky, An-

drew Lumsdaine, and Ching-Chen Ma. “Ownership Passing:
Efficient Distributed Memory Programming on Multi-core
Systems”. In: Proceedings of the 18th ACM SIGPLAN Symposium

https://doi.org/10.1109/ICPADS.2016.0113
https://doi.org/10.1145/2660540.2661013
http://libfirm.org
https://doi.org/10.1109/TIT.2011.2171532
https://doi.org/10.1109/TIT.2011.2171532
https://doi.org/10.1145/2830772.2830832
http://agner.org/optimize/microarchitecture.pdf
http://agner.org/optimize/microarchitecture.pdf


Bibliography 299

on Principles and Practice of Parallel Programming. PPoPP ’13.
Shenzhen, China: ACM, 2013, pp. 177–186. isbn: 978-1-4503-
1922-5. doi: 10.1145/2442516.2442534.

[Fri16] Stephanie Friederich. “Automated Hardware Prototyping for
3D Network on Chips”. PhD thesis. Karlsruher Institut für
Technologie, 2016.

[FSA97] S. Forrest, A. Somayaji, and D. H. Ackley. “Building Diverse
Computer Systems”. In: The Sixth Workshop on Hot Topics in

Operating Systems. May 1997, pp. 67–72. doi: 10.1109/HOTOS.
1997.595185.

[GH07] Daniel Grund and Sebastian Hack. “A Fast Cutting-plane
Algorithm for Optimal Coalescing”. In: Proceedings of the 16th

International Conference on Compiler Construction. CC’07. Braga,
Portugal: Springer-Verlag, 2007, pp. 111–125. isbn: 978-3-540-
71228-2.

[GJ90] Michael R. Garey and David S. Johnson. Computers and In-

tractability; A Guide to the Theory of NP-Completeness. New York,
NY, USA: W. H. Freeman & Co., 1990.

[GN15] Suyash Gupta and V. Krishna Nandivada. “IMSuite: A Bench-
mark Suite for Simulating Distributed Algorithms”. In: Journal

of Parallel and Distributed Computing 75 (2015), pp. 1–19. issn:
0743-7315. doi: 10.1016/j.jpdc.2014.10.010.

[Gos+14] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex
Buckley. The Java Language Specification, Java SE 8 Edition. First
Edition. Addison-Wesley Professional, 2014.

[Gro+11] David Grove, Olivier Tardieu, David Cunningham, Ben Herta,
Igor Peshansky, and Vĳay Saraswat. “A Performance Model
for X10 Applications”. In: ACM SIGPLAN 2011 X10 Workshop.
San Jose, California, June 2011.

[GRR00] T. Grundmann, M. Ritt, and W. Rosenstiel. “TPO++: an Object-
Oriented Message-Passing Library in C++”. In: Proceedings of

the International Conference on Parallel Processing. 2000, pp. 43–
50. doi: 10.1109/ICPP.2000.876070.

https://doi.org/10.1145/2442516.2442534
https://doi.org/10.1109/HOTOS.1997.595185
https://doi.org/10.1109/HOTOS.1997.595185
https://doi.org/10.1016/j.jpdc.2014.10.010
https://doi.org/10.1109/ICPP.2000.876070


300 Bibliography

[Gru+15] Charles Gruenwald III, Filippo Sironi, M. Frans Kaashoek,
and Nickolai Zeldovich. “Hare: A File System for Non-cache-
coherent Multicores”. In: Proceedings of the Tenth European

Conference on Computer Systems. EuroSys ’15. Bordeaux, France:
ACM, 2015, 30:1–30:16. isbn: 978-1-4503-3238-5. doi: 10.1145/
2741948.2741959.

[Gur12] Gurobi Optimization Inc. Gurobi Optimizer Reference Manual.
2012. url: http://www.gurobi.com.

[Hac07] Sebastian Hack. “Register Allocation for Programs in SSA
Form”. PhD thesis. Universität Karlsruhe, 2007. url: http://
digbib.ubka.uni-karlsruhe.de/volltexte/documents/
6532.

[Han+11] Frank Hannig, Sascha Roloff, Gregor Snelting, Jürgen Teich,
and Andreas Zwinkau. “Resource-Aware Programming and
Simulation of MPSoC Architectures through Extension of
X10”. In: Proceedings of the 14th International Workshop on

Software and Compilers for Embedded Systems. SCOPES ’11. New
York, NY, USA: ACM, June 2011, pp. 48–55. doi: 10.1145/
1988932.1988941.

[Han+14] Frank Hannig, Vahid Lari, Srinivas Boppu, Alexandru Tanase,
and Oliver Reiche. “Invasive Tightly-Coupled Processor Ar-
rays: A Domain-Specific Architecture/Compiler Co-Design
Approach”. In: ACM Trans. Embed. Comput. Syst. 13.4s (Apr.
2014), 133:1–133:29. issn: 1539-9087. doi: 10.1145/2584660.

[Hei+14] J. Heisswolf et al. “The Invasive Network on Chip - A Multi-
Objective Many-Core Communication Infrastructure”. In:
Proceedings of the 27th International Conference on Architecture of

Computing Systems. ARCS. Feb. 2014, pp. 1–8.
[Hei14] Jan Heißwolf. “A Scalable and Adaptive Network on Chip

for Many-Core Architectures”. Karlsruhe, KIT, Diss., 2014.
PhD thesis. Karlsruher Institut für Technologie (KIT), Nov.
2014.

[Hen+12] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. K.
Pujari, A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari,
and S. Kobbe. “Invasive Manycore Architectures”. In: 17th

https://doi.org/10.1145/2741948.2741959
https://doi.org/10.1145/2741948.2741959
http://www.gurobi.com
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532
https://doi.org/10.1145/1988932.1988941
https://doi.org/10.1145/1988932.1988941
https://doi.org/10.1145/2584660


Bibliography 301

Asia and South Pacific Design Automation Conference. Jan. 2012,
pp. 193–200. doi: 10.1109/ASPDAC.2012.6164944.

[Hen00] John L. Henning. “SPEC CPU2000: Measuring CPU Perfor-
mance in the New Millennium”. In: Computer 33.7 (July 2000),
pp. 28–35. issn: 0018-9162. doi: 10.1109/2.869367.

[HG08] Sebastian Hack and Gerhard Goos. “Copy Coalescing by
Graph Recoloring”. In: Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Implementation.
PLDI ’08. Tucson, AZ, USA: ACM, 2008, pp. 227–237. isbn:
978-1-59593-860-2. doi: 10.1145/1375581.1375610.

[HGG06] Sebastian Hack, Daniel Grund, and Gerhard Goos. “Register
Allocation for Programs in SSA-Form”. In: Proceedings of the

15th International Conference on Compiler Construction. CC’06.
Vienna, Austria: Springer-Verlag, 2006, pp. 247–262. isbn: 978-
3-540-33050-9. doi: 10.1007/11688839_20.

[Hof05] H. Peter Hofstee. “Power Efficient Processor Architecture and
The Cell Processor”. In: Proceedings of the 11th International

Symposium on High-Performance Computer Architecture. HPCA
’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 258–262. isbn: 0-7695-2275-0. doi: 10.1109/HPCA.2005.26.

[How+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla,
M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries,
T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V.
De, R. Van Der Wĳngaart, and T. Mattson. “A 48-Core IA-
32 message-passing processor with DVFS in 45nm CMOS”.
In: Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2010 IEEE International. Feb. 2010, pp. 108–109. doi:
10.1109/ISSCC.2010.5434077.

[How+16] David Howells, Paul E. McKenney, Will Deacon, and Peter
Zĳlstra. Linux Kernel Memory Barriers. http://git.kernel.
org/cgit/linux/kernel/git/torvalds/linux.git/tree/
Documentation/memory-barriers.txt?id=HEAD. 2016.

[HP11] John L. Hennessy and David A. Patterson. Computer Architec-

ture: a Quantitative Approach. Elsevier, 2011.

https://doi.org/10.1109/ASPDAC.2012.6164944
https://doi.org/10.1109/2.869367
https://doi.org/10.1145/1375581.1375610
https://doi.org/10.1007/11688839_20
https://doi.org/10.1109/HPCA.2005.26
https://doi.org/10.1109/ISSCC.2010.5434077
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt?id=HEAD
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt?id=HEAD
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt?id=HEAD


302 Bibliography

[IBM14] IBM. Elastic X10. http://x10-lang.org/documentation/
practical-x10-programming/elastic-x10.html. 2014.

[Int12] Intel Corporation. The SCC Platform Overview. https://
communities.intel.com/docs/DOC- 5512. Revision 0.80,
retrieved on 2016-10-17. 2012.

[Int16] Intel Corporation. Intel® 64 and IA-32 Architecture Optimization

Reference Manual. Jan. 2016.
[Int17] Intel Corporation. Intel® Architecture Instruction Set Extensions

Programming Reference. 319433-030. Oct. 2017.
[Jou+98] Stephen Jourdan, Ronny Ronen, Michael Bekerman, Bishara

Shomar, and Adi Yoaz. “A Novel Renaming Scheme to Exploit
Value Temporal Locality Through Physical Register Reuse and
Unification”. In: Proceedings of the 31st Annual ACM/IEEE In-

ternational Symposium on Microarchitecture. MICRO 31. Dallas,
Texas, USA: IEEE Computer Society Press, 1998, pp. 216–225.
isbn: 1-58113-016-3.

[KAC14] Rakesh Komuravelli, Sarita V. Adve, and Ching-Tsun Chou.
“Revisiting the Complexity of Hardware Cache Coherence
and Some Implications”. In: ACM Trans. Archit. Code Optim.

11.4 (Dec. 2014), 37:1–37:22. issn: 1544-3566. doi: 10.1145/
2663345.

[Kah+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy. “Introduction to the Cell Multiprocessor”.
In: IBM J. Res. Dev. 49.4/5 (July 2005), pp. 589–604. issn:
0018-8646.

[KCT12] Rob Knauerhase, Romain Cledat, and Justin Teller. “For Ex-
treme Parallelism, Your OS Is Sooooo Last-Millennium”. In:
Presented as part of the 4th USENIX Workshop on Hot Topics in

Parallelism. Berkeley, CA: USENIX, 2012. url: https://www.
usenix.org/conference/hotpar12/extreme-parallelism-
your-os-sooooo-last-millennium.

[Kel+10] John H. Kelm, Daniel R. Johnson, William Tuohy, Steven S.
Lumetta, and Sanjay J. Patel. “Cohesion: A Hybrid Memory
Model for Accelerators”. In: Proceedings of the 37th Annual

International Symposium on Computer Architecture. ISCA ’10.

http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
http://x10-lang.org/documentation/practical-x10-programming/elastic-x10.html
https://communities.intel.com/docs/DOC-5512
https://communities.intel.com/docs/DOC-5512
https://doi.org/10.1145/2663345
https://doi.org/10.1145/2663345
https://www.usenix.org/conference/hotpar12/extreme-parallelism-your-os-sooooo-last-millennium
https://www.usenix.org/conference/hotpar12/extreme-parallelism-your-os-sooooo-last-millennium
https://www.usenix.org/conference/hotpar12/extreme-parallelism-your-os-sooooo-last-millennium


Bibliography 303

Saint-Malo, France: ACM, 2010, pp. 429–440. isbn: 978-1-4503-
0053-7. doi: 10.1145/1815961.1816019.

[KHS12] Fredrik Kjolstad, Torsten Hoefler, and Marc Snir. “Automatic
Datatype Generation and Optimization”. In: Proceedings of

the 17th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming. PPoPP ’12. New Orleans, Louisiana,
USA: ACM, 2012, pp. 327–328. isbn: 978-1-4503-1160-1. doi:
10.1145/2145816.2145878.

[KK10] S. Kaxiras and G. Keramidas. “SARC Coherence: Scaling
Directory Cache Coherence in Performance and Power”. In:
IEEE Micro 30.5 (Sept. 2010), pp. 54–65. issn: 0272-1732. doi:
10.1109/MM.2010.82.

[KL02] A. J. KleinOsowski and David J. Lilja. “MinneSPEC: A New
SPEC Benchmark Workload for Simulation-Based Computer
Architecture Research”. In: IEEE Computer Architecture Letters

1.1 (Jan. 2002), p. 7. issn: 1556-6056. doi: 10.1109/L-CA.2002.
8.

[Kob+11] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang
Schröder-Preikschat, and Jörg Henkel. “DistRM: Distributed
Resource Management for On-chip Many-core Systems”. In:
Proceedings of the Seventh IEEE/ACM/IFIP International Con-

ference on Hardware/Software Codesign and System Synthesis.
CODES+ISSS ’11. Taipei, Taiwan: ACM, 2011, pp. 119–128.
isbn: 978-1-4503-0715-4. doi: 10.1145/2039370.2039392.

[Kor16] Peter Korsgaard. Buildroot Linux. 2005–2016. url: https://
buildroot.org/.

[Kum+11] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob
Van Der Wĳngaart. “The Case for Message Passing on Many-
Core Chips”. In: Multiprocessor System-on-Chip: Hardware De-

sign and Tool Integration. Ed. by Michael Hübner and Jürgen
Becker. New York, NY: Springer New York, 2011, pp. 115–123.
isbn: 978-1-4419-6460-1. doi: 10.1007/978-1-4419-6460-
1_5.

https://doi.org/10.1145/1815961.1816019
https://doi.org/10.1145/2145816.2145878
https://doi.org/10.1109/MM.2010.82
https://doi.org/10.1109/L-CA.2002.8
https://doi.org/10.1109/L-CA.2002.8
https://doi.org/10.1145/2039370.2039392
https://buildroot.org/
https://buildroot.org/
https://doi.org/10.1007/978-1-4419-6460-1_5
https://doi.org/10.1007/978-1-4419-6460-1_5


304 Bibliography

[Kum+14] Vivek Kumar, Yili Zheng, Vincent Cavé, Zoran Budimlić,
and Vivek Sarkar. “HabaneroUPC++: A Compiler-free PGAS
Library”. In: Proceedings of the 8th International Conference on

Partitioned Global Address Space Programming Models. PGAS
’14. Eugene, OR, USA: ACM, 2014, 5:1–5:10. isbn: 978-1-4503-
3247-7. doi: 10.1145/2676870.2676879.

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation”.
In: Proceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimization.
CGO ’04. Palo Alto, California: IEEE Computer Society, 2004,
pp. 75–86. isbn: 0-7695-2102-9.

[Li+16] Y. Li, K. Duan, Y. Lv, J. Pang, and S. Cai. “A Novel Approach
to Parameterized Verification of Cache Coherence Protocols”.
In: 34th International Conference on Computer Design. ICCD ’16.
Oct. 2016, pp. 560–567. doi: 10.1109/ICCD.2016.7753341.

[Lia99] Sheng Liang. The Java Native Interface: Programmer’s Guide and

Specification. Addison-Wesley Professional, 1999.
[Loc12] Andreas Lochbihler. “A Machine-Checked, Type-Safe Model

of Java Concurrency: Language, Virtual Machine, Memory
Model, and Verified Compiler”. PhD thesis. Karlsruher Insti-
tut für Technologie, Fakultät für Informatik, July 2012. doi:
10.5445/KSP/1000028867. url: http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000028867.

[Lot+12] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros
Volos, Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje
Jevdjic, Sachin Idgunji, Emre Ozer, and Babak Falsafi. “Scale-
out Processors”. In: Proceedings of the 39th Annual Interna-

tional Symposium on Computer Architecture. ISCA ’12. Portland,
Oregon: IEEE Computer Society, 2012, pp. 500–511. isbn:
978-1-4503-1642-2.

[LWZ14] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. “K2: A Mobile
Operating System for Heterogeneous Coherence Domains”.
In: Proceedings of the 19th International Conference on Architec-

tural Support for Programming Languages and Operating Systems.

https://doi.org/10.1145/2676870.2676879
https://doi.org/10.1109/ICCD.2016.7753341
https://doi.org/10.5445/KSP/1000028867
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028867
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028867


Bibliography 305

ASPLOS ’14. Salt Lake City, Utah, USA: ACM, 2014, pp. 285–
300. isbn: 978-1-4503-2305-5. doi: 10.1145/2541940.2541975.

[Lyb+12a] S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou, D.
Tsaliagkos, M. Katevenis, D. Pnevmatikatos, and D. Nikolopou-
los. “Formic: Cost-efficient and Scalable Prototyping of Many-
core Architectures”. In: Field-Programmable Custom Computing

Machines (FCCM), 2012 IEEE 20th Annual International Sympo-

sium on. Apr. 2012, pp. 61–64. doi: 10.1109/FCCM.2012.20.
[Lyb+12b] Spyros Lyberis, Polyvios Pratikakis, Dimitrios S. Nikolopou-

los, Martin Schulz, Todd Gamblin, and Bronis R. de Supin-
ski. “The Myrmics Memory Allocator: Hierarchical,Message-
passing Allocation for Global Address Spaces”. In: Proceedings

of the 2012 International Symposium on Memory Management.
ISMM ’12. Beĳing, China: ACM, 2012, pp. 15–24. isbn: 978-1-
4503-1350-6. doi: 10.1145/2258996.2259001.

[Lyb+16] Spyros Lyberis, Polyvios Pratikakis, Iakovos Mavroidis, and
Dimitrios S. Nikolopoulos. “Myrmics: Scalable, Dependency-
aware Task Scheduling on Heterogeneous Manycores”. In:
CoRR abs/1606.04282 (2016). url: http://arxiv.org/abs/
1606.04282.

[Mac11] C. A. Mack. “Fifty Years of Moore’s Law”. In: IEEE Transactions

on Semiconductor Manufacturing 24.2 (May 2011), pp. 202–207.
issn: 0894-6507. doi: 10.1109/TSM.2010.2096437.

[Mat+10] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul
Brett, Werner Haas, Patrick Kennedy, Jason Howard, Sri-
ram Vangal, Nitin Borkar, Greg Ruhl, and Saurabh Dighe.
“The 48-core SCC Processor: The Programmer’s View”. In:
Proceedings of the 2010 ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis.
SC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–11. isbn: 978-1-4244-7559-9. doi: 10.1109/SC.2010.53.

[Mec16] Michael Mechler. “Flexibles, partielles Parametrisieren von
softwaredefinierten Bereichen des adaptiven Caches zur
Laufzeit in einem Shared-Memory Multi-/Many-Core-System”.
In German. MA thesis. Karlsruhe Institute of Technology, June
2016.

https://doi.org/10.1145/2541940.2541975
https://doi.org/10.1109/FCCM.2012.20
https://doi.org/10.1145/2258996.2259001
http://arxiv.org/abs/1606.04282
http://arxiv.org/abs/1606.04282
https://doi.org/10.1109/TSM.2010.2096437
https://doi.org/10.1109/SC.2010.53


306 Bibliography

[Mes15] Message Passing Interface Forum. MPI: A Message-Passing

Interface Standard. Website. Version 3.1. June 2015. url: http:
//mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[MHS12] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. “Why
On-chip Cache Coherence is Here to Stay”. In: Communications

of the ACM 55.7 (July 2012), pp. 78–89. issn: 0001-0782. doi:
10.1145/2209249.2209269.

[MMT16] Louis Mandel, Josh Milthorpe, and Olivier Tardieu. “Control
Structure Overloading in X10”. In: Proceedings of the 6th ACM

SIGPLAN Workshop on X10. X10’16. Santa Barbara, CA, USA:
ACM, 2016, pp. 1–6. isbn: 978-1-4503-4386-2. doi: 10.1145/
2931028.2931032.

[Mod13] Tobias Modschiedler. “Erweiterung der LEON3-CPU um
einen Permutationsregistersatz zum beschleunigten Abbau
der SSA-Zwischendarstellung”. In German. MA thesis. Karl-
sruhe Institute of Technology, Aug. 2013.

[Moh+13] Manuel Mohr, Artjom Grudnitsky, Tobias Modschiedler,
Lars Bauer, Sebastian Hack, and Jörg Henkel. “Hardware
Acceleration for Programs in SSA Form”. In: International

Conference on Compilers, Architecture and Synthesis for Embedded

Systems. CASES’13. Piscataway, NJ, USA: IEEE Press, 2013,
14:1–14:10. doi: 10.1109/CASES.2013.6662518.

[Moh+15] Manuel Mohr, Sebastian Buchwald, Andreas Zwinkau, Christoph
Erhardt, Benjamin Oechslein, Jens Schedel, and Daniel Lohmann.
“Cutting out the Middleman: OS-Level Support for X10 Ac-
tivities”. In: Proceedings of the ACM SIGPLAN Workshop on

X10. X10’15. Portland, OR, USA: ACM, 2015, pp. 13–18. isbn:
978-1-4503-3586-7. doi: 10.1145/2771774.2771775.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. “The Java
Memory Model”. In: Proceedings of the 32Nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages.
POPL ’05. Long Beach, California, USA: ACM, 2005, pp. 378–
391. isbn: 1-58113-830-X. doi: 10.1145/1040305.1040336.

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1145/2209249.2209269
https://doi.org/10.1145/2931028.2931032
https://doi.org/10.1145/2931028.2931032
https://doi.org/10.1109/CASES.2013.6662518
https://doi.org/10.1145/2771774.2771775
https://doi.org/10.1145/1040305.1040336


Bibliography 307

[MS10] Ross McIlroy and Joe Sventek. “Hera-JVM: A Runtime System
for Heterogeneous Multi-core Architectures”. In: Proceedings

of the ACM International Conference on Object Oriented Pro-

gramming Systems Languages and Applications. OOPSLA ’10.
Reno/Tahoe, Nevada, USA: ACM, 2010, pp. 205–222. isbn:
978-1-4503-0203-6. doi: 10.1145/1869459.1869478.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill.
Patterns for Parallel Programming. First edition. Addison-Wesley
Professional, 2004. isbn: 0321228111.

[MT17] Manuel Mohr and Carsten Tradowsky. “Pegasus: Efficient
Data Transfers for PGAS Languages on Non-Cache-Coherent
Many-Cores”. In: Proceedings of Design, Automation and Test

in Europe Conference Exhibition. DATE’17. IEEE, Mar. 2017,
pp. 1781–1786. doi: 10.23919/DATE.2017.7927281.

[Myt+09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and
Peter F. Sweeney. “Producing Wrong Data Without Doing
Anything Obviously Wrong!” In: Proceedings of the 14th Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS XIV. Washington,
DC, USA: ACM, 2009, pp. 265–276. isbn: 978-1-60558-406-5.
doi: 10.1145/1508244.1508275.

[NL91] Bill Nitzberg and Virginia Lo. “Distributed Shared Memory:
A Survey of Issues and Algorithms”. In: Computer 24.8 (Aug.
1991), pp. 52–60. issn: 0018-9162. doi: 10.1109/2.84877.

[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel.
Isabelle/HOL: a Proof Assistant for Higher-Order Logic. Vol. 2283.
Springer Science & Business Media, 2002.

[Nür+14] Stefan Nürnberger, Gabor Drescher, Randolf Rotta, Jörg Nolte,
and Wolfgang Schröder-Preikschat. “Shared Memory in the
Many-Core Age”. In: European Conference on Parallel Processing.
Springer. 2014, pp. 351–362.

[Nys+08] Nathaniel Nystrom, Vĳay Saraswat, Jens Palsberg, and Chris-
tian Grothoff. “Constrained Types for Object-oriented Lan-
guages”. In: Proceedings of the 23rd ACM SIGPLAN Conference

on Object-oriented Programming Systems Languages and Applica-

https://doi.org/10.1145/1869459.1869478
https://doi.org/10.23919/DATE.2017.7927281
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1109/2.84877


308 Bibliography

tions. OOPSLA ’08. Nashville, TN, USA: ACM, 2008, pp. 457–
474. isbn: 978-1-60558-215-3. doi: 10.1145/1449764.1449800.

[Ode14] Martin Odersky. The Scala Language Specification v 2.9. 2014.
[Oec+11] Benjamin Oechslein, Jens Schedel, Jürgen Kleinöder, Lars

Bauer, Jörg Henkel, Daniel Lohmann, and Wolfgang Schröder-
Preikschat. “OctoPOS: A Parallel Operating System for Inva-
sive Computing”. In: Proceedings of the International Workshop

on Systems for Future Multi-Core Architectures. Ed. by Ross McIl-
roy, Joe Sventek, Tim Harris, and Timothy Roscoe. Vol. USB
Proceedings. SFMA ’11. Salzburg, 2011, pp. 9–14.

[Ope17] OpenACC Group. The OpenACC Application Program Interface.
2017. url: http://www.openacc.org/.

[Ora16] Oracle. The Java Remote Method Invocation API (Java RMI).
2016. url: http://docs.oracle.com/javase/8/docs/
technotes/guides/rmi/.

[Pet+11a] Simon Peter, Adrian Schüpbach, Dominik Menzi, and Timo-
thy Roscoe. “Early Experience with the Barrelfish OS and the
Single-Chip Cloud Computer”. In: MARC Symposium. 2011,
pp. 35–39.

[Pet+11b] Simon Peter, Adrian Schüpbach, Dominik Menzi, and Tim-
othy Roscoe. “Early experience with the Barrelfish OS and
the Single-Chip Cloud Computer”. In: Proceedings of the 3rd

Intel Multicore Applications Research Community Symposium

(MARC). Ettlingen, Germany, July 2011.
[Pha+05] D Pham, S Asano, M Bolliger, MN Day, HP Hofstee, C Johns, J

Kahle, A Kameyama, J Keaty, Y Masubuchi, et al. “The Design
and Implementation of a First-generation CELL Processor – a
Multi-core SoC”. In: 2005 International Conference on Integrated

Circuit Design and Technology. ICICDT ’05. IEEE. 2005, pp. 49–
52.

[Phi11] Michael Philippsen. “JavaParty”. In: Encyclopedia of Parallel

Computing. Springer, 2011, pp. 992–997.

https://doi.org/10.1145/1449764.1449800
http://www.openacc.org/
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/


Bibliography 309

[PM04] Jinpyo Park and Soo-Mook Moon. “Optimistic Register Co-
alescing”. In: ACM Transactions on Programming Languages

and Systems 26.4 (July 2004), pp. 735–765. issn: 0164-0925. doi:
10.1145/1011508.1011512.

[PN14] Anastasios Papagiannis and Dimitrios S. Nikolopoulos. “Hy-
brid Address Spaces: A Methodology for Implementing Scal-
able High-Level Programming Models on Non-Coherent
Many-Core Architectures”. In: Journal of Systems and Soft-

ware 97.Supplement C (2014), pp. 47–64. issn: 0164-1212. doi:
10.1016/j.jss.2014.06.058.

[Pöp+17] Alexander Pöppl, Marvin Damschen, Florian Schmaus, An-
dreas Fried, Manuel Mohr, Matthias Blankertz, Lars Bauer,
Jörg Henkel, Wolfgang Schröder-Preikschat, and Michael
Bader. “Shallow Water Waves on a Deep Technology Stack:
Accelerating a Finite Volume Tsunami Model using Recon-
figurable Hardware in Invasive Computing”. In: Euro-Par

2017: Parallel Processing Workshops. Lecture Notes in Computer
Science. Heidelberg, Berlin: Springer-Verlag, Aug. 2017.

[Pow+13] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Brad-
ford M. Beckmann, Mark D. Hill, Steven K. Reinhardt, and
David A. Wood. “Heterogeneous System Coherence for In-
tegrated CPU-GPU Systems”. In: Proceedings of the 46th An-

nual IEEE/ACM International Symposium on Microarchitecture.
MICRO-46. Davis, California: ACM, 2013, pp. 457–467. isbn:
978-1-4503-2638-4. doi: 10.1145/2540708.2540747.

[PP05] Fernando Magno Quintão Pereira and Jens Palsberg. “Register
Allocation via Coloring of Chordal Graphs”. In: Proceedings

of the Third Asian Conference on Programming Languages and

Systems. APLAS’05. Tsukuba, Japan: Springer-Verlag, 2005,
pp. 315–329. isbn: 978-3-540-29735-2. doi: 10.1007/11575467_
21.

[PP84] Mark S. Papamarcos and Janak H. Patel. “A Low-overhead
Coherence Solution for Multiprocessors with Private Cache
Memories”. In: Proceedings of the 11th Annual International

Symposium on Computer Architecture. ISCA ’84. New York,

https://doi.org/10.1145/1011508.1011512
https://doi.org/10.1016/j.jss.2014.06.058
https://doi.org/10.1145/2540708.2540747
https://doi.org/10.1007/11575467_21
https://doi.org/10.1007/11575467_21


310 Bibliography

NY, USA: ACM, 1984, pp. 348–354. isbn: 0-8186-0538-3. doi:
10.1145/800015.808204.

[PRN11] Thomas Prescher, Randolf Rotta, and Jörg Nolte. “Flexible
Sharing and Replication Mechanisms for Hybrid Memory
Architectures”. In: Proceedings of the 4th Many-Core Applications

Research Community Symposium. Vol. 55. MARC. 2011, pp. 67–
72.

[Rav15] Andreas Herkersdorf Ravi Kumar Pujari Thomas Wild. “A
Hardware-based Multi-objective Thread Mapper for Tiled
Manycore Architectures”. In: 33rd IEEE International Confer-

ence on Computer Design. ICCD ’15. New York, Oct. 2015,
pp. 459–462. doi: 10.1109/ICCD.2015.7357148.

[RCL13] Pablo Reble, Carsten Clauss, and Stefan Lankes. “One-sided
Communication and Synchronization for Non-coherent Memory-
coupled Cores”. In: International Conference on High Perfor-

mance Computing and Simulation (HPCS). IEEE. 2013, pp. 390–
397.

[Rot+12] Randolf Rotta, Thomas Prescher, Jana Traue, and Jörg Nolte.
“Data Sharing Mechanisms for Parallel Graph Algorithms on
the Intel SCC”. In: Proceedings of the 6th Many-core Applications

Research Community Symposium. MARC. ONERA, The French
Aerospace Lab. 2012, pp. 13–18.

[Rot11] Randolf Rotta. “On Efficient Message Passing on the In-
tel SCC”. In: 3rd Many-core Applications Research Community

(MARC) Symposium. Vol. 7598. KIT Scientific Publishing. 2011.
[RSL08] Laurence Rideau, Bernard Paul Serpette, and Xavier Leroy.

“Tilting at Windmills with Coq: Formal Verification of a
Compilation Algorithm for Parallel Moves”. In: Journal of

Automated Reasoning 40.4 (May 2008), pp. 307–326. issn: 0168-
7433. doi: 10.1007/s10817-007-9096-8.

[Sar+10] Vĳay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cas-
caval, David Cunningham, David Grove, Sreedhar Kodali,
Igor Peshansky, and Olivier Tardieu. “The Asynchronous Par-
titioned Global Address Space Model”. In: The First Workshop

on Advances in Message Passing. 2010, pp. 1–8.

https://doi.org/10.1145/800015.808204
https://doi.org/10.1109/ICCD.2015.7357148
https://doi.org/10.1007/s10817-007-9096-8


Bibliography 311

[Sar+16] Vĳay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu,
and David Grove. X10 Language Specification. Tech. rep. IBM,
June 2016. url:http://x10.sourceforge.net/documentation/
languagespec/x10-latest.pdf.

[Ser03] Ákos Seress. Permutation Group Algorithms. Vol. 152. Cam-
bridge University Press, 2003.

[SHW11] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer

on Memory Consistency and Cache Coherence. 1st. Morgan &
Claypool Publishers, 2011. isbn: 9781608455645.

[Sim00] Dezsö Sima. “The Design Space of Register Renaming Tech-
niques”. In: IEEE Micro 20.5 (Sept. 2000), pp. 70–83. issn:
0272-1732. doi: 10.1109/40.877952.

[Sin+13] Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung,
Mike O’Connor, and Tor M. Aamodt. “Cache Coherence
for GPU Architectures”. In: Proceedings of the 2013 IEEE

19th International Symposium on High Performance Computer

Architecture. HPCA ’13. Washington, DC, USA: IEEE Com-
puter Society, 2013, pp. 578–590. isbn: 978-1-4673-5585-8. doi:
10.1109/HPCA.2013.6522351.

[SPA92] SPARC International Inc. The SPARC Architecture Manual,

Version 8. Revision SAV080SI9308. 1992.
[Sri+17] Akshay Srivatsa, Sven Rheindt, Thomas Wild, and Andreas

Herkersdorf. “Region Based Cache Coherence for Tiled MP-
SoCs”. In: 30th IEEE International System-on-Chip Conference.
SOCC ’17. Munich, Germany, 2017.

[Sta81] Richard P. Stanley. “Factorization of Permutations into n-
Cycles”. In: Discrete Mathematics 37.2–3 (1981), pp. 255–262.
doi: 10.1016/0012-365X(81)90224-7.

[Ste90] Per Stenström. “A Survey of Cache Coherence Schemes for
Multiprocessors”. In: Computer 23.6 (June 1990), pp. 12–24.
issn: 0018-9162. doi: 10.1109/2.55497.

http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
https://doi.org/10.1109/40.877952
https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1016/0012-365X(81)90224-7
https://doi.org/10.1109/2.55497


312 Bibliography

[Sto+14] Sven Stork, Karl Naden, Joshua Sunshine, Manuel Mohr, Al-
cides Fonseca, Paulo Marques, and Jonathan Aldrich. “AEmi-
nium: A Permission Based Concurrent-by-Default Program-
ming Language Approach”. In: ACM Transactions on Program-

ming Languages and Systems. TOPLAS 36.1 (Mar. 2014), 2:1–
2:42. doi: 10.1145/2543920.

[Str96] Volker Strehl. “Minimal Transitive Products of Transpositions:
the Reconstruction of a Proof of A. Hurwitz”. In: Séminaire

Lotharingien De Combinatoire 37 (1996).
[Sut12] Herb Sutter. Welcome to the Jungle. https://herbsutter.com/

welcome-to-the-jungle/. 2012.
[Syn15] Synopsis Inc. CHIPit Platinum Edition and HAPS-600 Series

ASIC Emulation and Rapid Prototyping System – Hardware Refer-

ence Manual. 2015.
[SZG13] Joshua Suettlerlein, Stéphane Zuckerman, and Guang R. Gao.

“An Implementation of the Codelet Model”. In: Proceedings

of the 19th International Conference on Parallel Processing. Euro-
Par’13. Aachen, Germany: Springer-Verlag, 2013, pp. 633–644.
doi: 10.1007/978-3-642-40047-6_63.

[Tak+11] Mikio Takeuchi, Yuki Makino, Kiyokuni Kawachiya, Hiroshi
Horii, Toyotaro Suzumura, Toshio Suganuma, and Tamiya
Onodera. “Compiling X10 to Java”. In: ACM SIGPLAN 2011

X10 Workshop. San Jose, California, June 2011.
[Tar72] Robert Tarjan. “Depth-First Search and Linear Graph Algo-

rithms”. In: SIAM Journal on Computing 1.2 (1972), pp. 146–
160.

[Tav+16] Sanket Tavarageri, Wooil Kim, Josep Torrellas, and P Sa-
dayappan. “Compiler Support for Software Cache Coher-
ence”. In: 23rd IEEE International Conference on High Perfor-

mance Computing. HiPC ’16. IEEE, Dec. 2016, pp. 341–350. doi:
10.1109/HiPC.2016.047.

[Tei+11] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-
Landsiedel, Wolfgang Schröder-Preikschat, and Gregor Snelt-
ing. “Invasive Computing: An Overview”. In: Multiprocessor

System-on-Chip – Hardware Design and Tool Integration. Ed. by

https://doi.org/10.1145/2543920
https://herbsutter.com/welcome-to-the-jungle/
https://herbsutter.com/welcome-to-the-jungle/
https://doi.org/10.1007/978-3-642-40047-6_63
https://doi.org/10.1109/HiPC.2016.047


Bibliography 313

M. Hübner and J. Becker. Springer, Berlin, Heidelberg, 2011,
pp. 241–268.

[Tei+16] Jürgen Teich et al. Transregional Collaborative Research Center

89: Invasive Computing (InvasIC). http://www.invasic.de.
2016.

[Tex14] Texas Instruments. OMAP4470 Multimedia Device Technical

Reference Manual. http://www.ti.com/product/OMAP4470/
technicaldocuments. Silicon Revision 1.0, Texas Instruments
OMAP Family of Products, Version T, retrieved on 2017-01-12.
2014.

[TM97] Igor Tartalja and Veljko Milutinović. “Classifying Software-
Based Cache Coherence Solutions”. In: IEEE Softw. 14.3 (May
1997), pp. 90–101. issn: 0740-7459. doi: 10.1109/52.589244.

[Tol+11] Michiel W. van Tol, Roy Bakker, Merjin Verstraaten, Clemens
Grelck, and Chris R. Jesshope. “Efficient Memory Copy Oper-
ations on the 48-core Intel SCC Processor”. In: 3rd Many-core

Applications Research Community (MARC) Symposium. KIT
Scientific Publishing. 2011. isbn: 9783866447172.

[Tom67] R. M. Tomasulo. “An Efficient Algorithm for Exploiting Mul-
tiple Arithmetic Units”. In: IBM J. Res. Dev. 11.1 (Jan. 1967),
pp. 25–33. issn: 0018-8646. doi: 10.1147/rd.111.0025.

[Tra16] Carsten Tradowsky. “Methoden zur applikationsspezifischen
Effizienzsteigerung adaptiver Prozessorplattformen”. In Ger-
man. PhD thesis. Karlsruhe Institute of Technology, 2016. doi:
10.5445/IR/1000067258.

[TWL12] Olivier Tardieu, Haichuan Wang, and Haibo Lin. “A Work-
stealing Scheduler for X10’s Task Parallelism with Suspen-
sion”. In: Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming. PPoPP ’12.
New Orleans, Louisiana, USA: ACM, 2012, pp. 267–276. doi:
10.1145/2145816.2145850.

[URK] Isaías A. Comprés Ureña, Michael Riepen, and Michael
Konow. “RCKMPI – Lightweight MPI Implementation for
Intel’s Single-chip Cloud Computer (SCC)”. In: Proceedings of

http://www.invasic.de
http://www.ti.com/product/OMAP4470/technicaldocuments
http://www.ti.com/product/OMAP4470/technicaldocuments
https://doi.org/10.1109/52.589244
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.5445/IR/1000067258
https://doi.org/10.1145/2145816.2145850


314 Bibliography

the 18th European MPI Users’ Group Conference on Recent Ad-

vances in the Message Passing Interface. EuroMPI ’11. Santorini,
Greece: Springer-Verlag, pp. 208–217. isbn: 978-3-642-24448-3.

[VP03] R. Veldema and M. Philippsen. “Compiler Optimized Re-
mote Method Invocation”. In: Proceedings of the International

Conference on Cluster Computing. Dec. 2003, pp. 127–136. doi:
10.1109/CLUSTR.2003.1253308.

[War02] Henry S. Warren. Hacker’s Delight. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002. isbn: 0201914654.

[WBJ16] Joss Whittle, Rita Borgo, and Mark W. Jones. “Implementing
Generalized Deep-Copy in MPI”. In: PeerJ Computer Science 2
(2016), e95.

[WF10] Christian Wimmer and Michael Franz. “Linear Scan Register
Allocation on SSA Form”. In: Proceedings of the 8th Annual

IEEE/ACM International Symposium on Code Generation and

Optimization. CGO ’10. Toronto, Ontario, Canada: ACM, 2010,
pp. 170–179. isbn: 978-1-60558-635-9. doi: 10.1145/1772954.
1772979.

[Wil+16] Stefan Wildermann, Michael Bader, Lars Bauer, Marvin
Damschen, Dirk Gabriel, Michael Gerndt, Michael Glaß, Jörg
Henkel, Johny Paul, Alexander Pöppl, Sascha Roloff, Tobias
Schwarzer, Gregor Snelting, Walter Stechele, Jüurgen Teich,
Andreas Weichslgartner, and Andreas Zwinkau. “Invasive
Computing for Timing-Predictable Stream Processing on MP-
SoCs”. In: it – Information Technology 58.6 (2016), pp. 267–280.
issn: 1611-2776. doi: 10.1515/itit-2016-0021.

[Xil16] Xilinx. Xilinx University Program XUPV5-LX110T Development

System. 2016. url: http://www.xilinx.com/univ/xupv5-
lx110t.htm.

[Zai+15] Aurang Zaib, Jan Heißwolf, Andreas Weichslgartner, Thomas
Wild, Jürgen Teich, Jürgen Becker, and Andreas Herkers-
dorf. “Network Interface with Task Spawning Support for
NoC-Based DSM Architectures”. In: Architecture of Computing

Systems. ARCS ’15. Porto, Portugal: Springer, 2015, pp. 186–
198.

https://doi.org/10.1109/CLUSTR.2003.1253308
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1515/itit-2016-0021
http://www.xilinx.com/univ/xupv5-lx110t.htm
http://www.xilinx.com/univ/xupv5-lx110t.htm


Bibliography 315

[ZBS13] Andreas Zwinkau, Sebastian Buchwald, and Gregor Snelting.
InvadeX10 Documentation v0.5. Tech. rep. 7. Karlsruhe Institute
of Technology, 2013. url: http://pp.info.uni-karlsruhe.
de/~zwinkau/invadeX10-0.5/manual.pdf.

[ZP14] Foivos S. Zakkak and Polyvios Pratikakis. “JDMM: A Java
Memory Model for Non-cache-coherent Memory Architec-
tures”. In: Proceedings of the 2014 International Symposium on

Memory Management. ISMM ’14. Edinburgh, United King-
dom: ACM, 2014, pp. 83–92. isbn: 978-1-4503-2921-7. doi:
10.1145/2602988.2602999.

[ZP16a] Foivos S. Zakkak and Polyvios Pratikakis. “Building a Java™
Virtual Machine for Non-Cache-Coherent Many-core Archi-
tectures”. In: Proceedings of the 14th International Workshop on

Java Technologies for Real-Time and Embedded Systems. JTRES ’16.
Lugano, Switzerland: ACM, 2016, 1:1–1:10. isbn: 978-1-4503-
4800-3. doi: 10.1145/2990509.2990510.

[ZP16b] Foivos S. Zakkak and Polyvios Pratikakis. “DiSquawk: 512
Cores, 512 Memories, 1 JVM”. In: Proceedings of the 13th Inter-

national Conference on Principles and Practices of Programming

on the Java Platform: Virtual Machines, Languages, and Tools.
PPPJ ’16. Lugano, Switzerland: ACM, 2016, 2:1–2:12. isbn:
978-1-4503-4135-6. doi: 10.1145/2972206.2972212.

[Zuc+11] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase,
and Guang R. Gao. “Using a "Codelet" Program Execution
Model for Exascale Machines: Position Paper”. In: Proceed-

ings of the 1st International Workshop on Adaptive Self-Tuning

Computing Systems for the Exaflop Era. EXADAPT ’11. San
Jose, California, USA: ACM, 2011, pp. 64–69. doi: 10.1145/
2000417.2000424.

http://pp.info.uni-karlsruhe.de/~zwinkau/invadeX10-0.5/manual.pdf
http://pp.info.uni-karlsruhe.de/~zwinkau/invadeX10-0.5/manual.pdf
https://doi.org/10.1145/2602988.2602999
https://doi.org/10.1145/2990509.2990510
https://doi.org/10.1145/2972206.2972212
https://doi.org/10.1145/2000417.2000424
https://doi.org/10.1145/2000417.2000424




INDEX

Index

Symbols

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
C(G) . . . . . . . . . . . . . . . . . . . . . . . . 214
C(G; d) . . . . . . . . . . . . . . . . . . . . . . 221
C(G; d , s) . . . . . . . . . . . . . . . . . . . 225
⊗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
φ-function . . . . . . . . . . . . . . . . . . 177
Ψ1 . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Ψ2 . . . . . . . . . . . . . . . . . . . . . . . . . . 208
T̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A

activity. . . . . . . . . . . . . . . . . . . . . . .70
Allocation . . . . . . . . . . . . . . . . . . . . 95
asyncCopy . . . . . . . . . . . . . . . . . . . 91

C

Cache

dirty. . . . . . . . . . . . . . . . . . . . .22
hit . . . . . . . . . . . . . . . . . . . . . . . 17
miss . . . . . . . . . . . . . . . . . . . . . 17
write-back . . . . . . . . . . . . . . . 21
write-through . . . . . . . . . . . 21

cache line . . . . . . . . . . . . . . . . . . . 129
dirty . . . . . . . . . . . . . . . . . . . 129
tag . . . . . . . . . . . . . . . . . . . . . 129
valid . . . . . . . . . . . . . . . . . . . 129

CHIPit . . . . . . . . . . . . . . . . . . . . . . . 81
chordal . . . . . . . . . . . . . . . . . . . . . 181
cloning . . . . . . . . . . . . . . . . . . . . . 117
closure . . . . . . . . . . . . . . . . . . . . . . 112
coalescing. . . . . . . . . . . . . . . . . . .180
Coherence domain . . . . . . . . . . . 31
Coherence invariants . . . . . . . . . 17
Coherence island . . . . . . . . . . . . . 31
Coherence policy . . . . . . . . . . . . . 22

write-invalidate. . . . . . . . . .22

317



318 Index

write-update . . . . . . . . . . . . 22
Coherence protocol

directory protocol . . . . . . . 25
directory . . . . . . . . . . . . . . 25

MESI . . . . . . . . . . . . . . . . . . . . 25
MOESI . . . . . . . . . . . . . . . . . . 25
Snooping . . . . . . . . . . . . . . . . 24
software . . . . . . . . . . . . . . . . . 27

compiler-directed . . . . . 44
dynamic . . . . . . . . . . . . . . 29
invalidation . . . . . . . . . . . 27
library-based . . . . . . . . . . 47
operating-system-based48
static . . . . . . . . . . . . . . . . . . 29
writeback . . . . . . . . . . . . . 27

coherent . . . . . . . . . . . . . . . . . . . . . 18
copy set . . . . . . . . . . . . . . . . 203, 214
Core i-let Controller . . . . . . . . . . 61
correction term . . . . . . . . . . . . . 220
cost1 . . . . . . . . . . . . . . . . . . . . . . . . 219
cost2 . . . . . . . . . . . . . . . . . . . . . . . . 219

D

data-value invariant . . . . . . . . . . 18
deep copy. . . . . . . . . . . . . . . . . . . 109
diff . . . . . . . . . . . . . . . . . . . . . . . . . 219
distributed shared-memory . . 16
DMA transfer . . . . . . . . . . . . . . . . 65
DSM . . . . . . . . . . . . . . . . . . . . . . . . . 16

E

early committing . . . . . . . . . . . . 191
Epoch . . . . . . . . . . . . . . . . . . . . . . . . 18
EUROSERVER . . . . . . . . . . . . . . . 37

F

False sharing . . . . . . . . . . . . . . . . . 23

flat . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Formic Cube . . . . . . . . . . . . . . . . . 39

G

garbage collector . . . . . . . . . . . . . 88
GPU . . . . . . . . . . . . . . . . . . . . . . . . . 39
Greedy algorithm . . . . . . . . . . . 204

I

IBM Cell . . . . . . . . . . . . . . . . . . . . . 33
i-let . . . . . . . . . . . . . . . . . . . . . . . . . . 63
incoherent . . . . . . . . . . . . . . . . . . . 17
Intel Runnemede . . . . . . . . . . . . . 36
Intel SCC . . . . . . . . . . . . . . . . . . . . 33

message-passing buffer . . 34
Intel Xeon Phi . . . . . . . . . . . . . . . . 40
interference graph . . . . . . . . . . 180
Invasive hardware prototype . 80
Invasive programming . . . . . . . 58

claim . . . . . . . . . . . . . . . . . . . . 59
constraint . . . . . . . . . . . . . . . .59
infect . . . . . . . . . . . . . . . . . . . . 59
invade . . . . . . . . . . . . . . . . . . . 59
reinvade . . . . . . . . . . . . . . . . . 59
retreat . . . . . . . . . . . . . . . . . . . 59

Invasive X10 . . . . . . . . . . . . . . . . 164

J

Java memory model . . . . . . . . . . 45
happens-before relation. .45

Java virtual machines. . . . . . . . .44
JMM . . . . . . . . . . . . . . . . . . . . . . . . . 45
JVMs. . . . . . . . . . . . . . . . . . . . . . . . .44

L

live-range splitting . . . . . . . . . . 180



Index 319

M

memory-consistency model . . 19
memory model . . . . . . . . . . . . . . .19
merge . . . . . . . . . . . . . . . . . . . . . . . 209

N

network-on-chip . . . . . . . . . . . . . 34
NoC . . . . . . . . . . . . . . . . . . . . . . . . . 34
Non-cache-coherent

fully . . . . . . . . . . . . . . . . . . . . . 32
partially . . . . . . . . . . . . . . . . . 32

non-uniform memory access . 16
normalized . . . . . . . . . . . . . . . . . 202
Notification . . . . . . . . . . . . . . . . . . 96
NUMA . . . . . . . . . . . . . . . . . . . . . . 16
NUMA factor . . . . . . . . . . . . . . . . 53

O

object graph . . . . . . . . . . . . . . . . 108
size . . . . . . . . . . . . . . . . . . . . 113

OctoPOS . . . . . . . . . . . . . . . . . . . . . 63
OpenPiton . . . . . . . . . . . . . . . . . . . 39

P

parallel copy . . . . . . . . . . . . . . . . 179
parallel programming model . 41

message passing . . . . . . . . . 49
shared-memory . . . . . . . . . 44

Partitioned address space . . . . 49
Partitioned Global Address Space

53
permi23 . . . . . . . . . . . . . . . . . . . . . 185
permi5 . . . . . . . . . . . . . . . . . . . . . . 185
permutation reversal . . . . . . . . 193
permutations . . . . . . . . . . . . . . . 184

permutation table . . . . . . . . . . . 188
PGAS . . . . . . . . . . . . . . . . . . . . . . . . 53
place . . . . . . . . . . . . . . . . . . . . . . . . . 72
Placement . . . . . . . . . . . . . . . . . . . . 95
pointered . . . . . . . . . . . . . . . . . . . 109
proper partition . . . . . . . . . . . . . 221

R

RAT . . . . . . . . . . . . . . . . . . . . . . . . 256
referential integrity . . . . . . . . . 110
register address

logical . . . . . . . . . . . . . . . . . . 188
physical . . . . . . . . . . . . . . . . 188

register alias table . . . . . . . . . . . 256
register renaming . . . . . . . . . . . 255
register-transfer graph . . . . . . 179

outdegree-1 RTG . . . . . . . 195
permutation RTG. . . . . . . 195
trivial . . . . . . . . . . . . . . . . . . 195

register windows . . . . . . . . . . . 188
Resource-aware programming58
root path . . . . . . . . . . . . . . . . . . . . 224

S

sequentially consistent . . . . . . . 19
shuffle code . . . . . . . . . . . . . . . . . 195

implementation . . . . . . . . 195
optimal . . . . . . . . . . . . . . . . . 195

signature . . . . . . . . . . . . . . . . . . . 205
signature-linear . . . . . . . . . . . . . 220
single-writer-multiple-reader .18
SMP . . . . . . . . . . . . . . . . . . . . . . . . . 16
spare cycle . . . . . . . . . . . . . . . . . . 134
split . . . . . . . . . . . . . . . . . . . . . . . . .209
SSA form . . . . . . . . . . . . . . . . . . . 176
Static Single Assignment Form176



320 Index

SWMR . . . . . . . . . . . . . . . . . . . . . . . 18
symmetric multiprocessing . . . 16
Synchronization. . . . . . . . . . . . . .96

T

TCPA . . . . . . . . . . . . . . . . . . . . . . . . 62
tile . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Transfers . . . . . . . . . . . . . . . . . . . . . 95

U

UMA . . . . . . . . . . . . . . . . . . . . . . . . 16
uniform memory access . . . . . . 16
user-level scheduling . . . . . . . . . 87

X

X10 . . . . . . . . . . . . . . . . . . . . . . . . . . 68
X10 compiler . . . . . . . . . . . . . . . . . 75

Alles hat ein Ende, nur der Compiler

hat drei.


	Contents
	Introduction
	Contributions
	Structure
	Notation and Conventions
	List of Publications

	Non-Cache-Coherent Architectures
	A Taxonomy of Parallel Architectures
	Memory Organization
	Communication Model
	Typical Combinations

	Cache Coherence
	Separating Coherence from Consistency
	Implementation

	Hardware Architecture
	Examples of Non-Cache-Coherent Architectures

	Programming Model
	Parallel Programming Models
	Shared-Memory Programming Model
	Message Passing
	The PGAS Model


	Invasive Computing
	The Invasive Paradigm
	Hardware Architecture
	Related Work

	Operating System
	Related Work

	Programming Language
	Shared-Memory Parallelism
	Distributed-Memory Parallelism
	Related Work

	Compiler
	Compilation of Generic Classes and Methods
	Handling of Native Methods

	Hardware Prototype

	Compiling X10 to Invasive Architectures
	Intra-Tile Parallelism
	Inter-Tile Parallelism
	Block-Based Data Transfers
	Using TLM
	Using Off-Chip Memory
	Related Work
	Implementation on the Hardware Prototype

	Transferring Pointered Data Structures
	Serialization-Based Approaches
	Cloning-Based Approaches
	Related Work
	Implementation on the Hardware Prototype

	Hardware Support
	Design Space
	Concept and Implementation
	Related Work

	Evaluation
	Setup
	Establishing an Evaluation Environment
	Block-Based Data Transfers
	Transfers of Pointered Data Structures
	Hardware Overhead
	Threats to Validity

	Relation to Invasive X10

	Code Generation with Permutation Instructions
	Introduction
	Parallel Copies and Register Transfer Graphs
	Permutation Instructions

	Hardware Implementation
	Fundamental Pipeline Modifications
	Exception Handling

	Code Generation
	Implementing RTGs on Regular Machines
	Reformulation as a Graph Problem
	Optimal Shuffle Code for Outdegree-1 RTGs
	A Heuristic for Finding Copy Sets
	Finding Optimal Copy Sets
	Related Work

	Evaluation
	Setup
	Register-Transfer-Graph Properties
	Heuristic and Optimal Code Generation
	Compilation Time
	Code Quality
	Hardware Overhead
	Threats to Validity

	Generalization
	Out-of-Order Execution
	Implementing Permutation Instructions


	Conclusion and Future Work
	Appendix
	Recommendations for Invasive Architectures
	The Intermediate Representation Firm
	k-Shuffle Code Generation is NP-complete
	Complexity
	Approximation Algorithm


	Software Artifacts
	List of Figures
	List of Tables
	Index

