Dehydration of the Uranyl Peroxide Studtite, \([\text{UO}_2(\eta^2-\text{O}_2)(\text{H}_2\text{O})_2] \cdot 2\text{H}_2\text{O}\), Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis

Tonya Vitova, Ivan Pidchenko, Saptarshi Biswas, George Beridze, Peter W. Dunne, Dieter Schild, Zheming Wang, Piotr M. Kowalski, and Robert J. Baker

ABSTRACT: The minerals studtite, \([\text{UO}_2(\eta^2-\text{O}_2)(\text{H}_2\text{O})_2] \cdot 2\text{H}_2\text{O}\), and metastudtite, \([\text{UO}_2(\eta^2-\text{O}_2)(\text{H}_2\text{O})_2] \cdot 2\text{H}_2\text{O}\), are uranyl peroxide minerals that are major oxidative alteration phases of \(\text{UO}_2\) under conditions of geological storage. The dehydration of studtite has been studied using X ray photoelectron spectroscopy (XPS) and X ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite being the highest reported for a uranyl mineral studied by this technique. Further information about the changes in the electronic structure was elucidated using U M4\text{edge} high energy resolution X ray absorption near edge structure (HR XANES) spectroscopy, which directly probes \(f\) orbital states. The transition from the 3d to 5f orbitals is sensitive to variations in the \(\text{U}=\text{O}_{\text{rad}}\) bond length and to changes in the bond covalency. We report evidence that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR XANES spectra. These illustrate the sensitivity of the 3d to 5f \(\sigma\) transition toward \(\text{U}=\text{O}_{\text{rad}}\) bond variation. Small structural changes upon dehydration have been shown to have an important electronic effect on the uranyl fragment.

INTRODUCTION

The renaissance in actinide coordination chemistry over the past decade has, in part, been driven by the requirements to fully understand the chemistry that underpins separation science with respect to nuclear fuel reprocessing and the long term storage of nuclear waste in geological disposal facilities. The radiation load from a nuclear repository will become more important in the underlying chemistry of a geological repository. Studtite and metastudtite can be formed by dissolution of \(\text{UO}_2\) in the presence of \(\text{H}_2\text{O}_2\) or upon \(\alpha^2\beta^3\) and \(\gamma^3\) irradiation of \(\text{UO}_2\) surfaces in contact with water. They have also been characterized on the surface of spent nuclear fuel and depleted uranium munitions discharged during the war in the Balkans. Studtite has also been noted to act as a passivating layer for further dissolution when electroplated onto stainless steel, although this is dependent on the concentration of \(\text{H}_2\text{O}_2\). The pH is also important, as under alkaline conditions compounds such as \([\text{UO}_2(\text{O}_2)(\text{CO}_3)_2]^{4-}\), \([\text{UO}_2(\text{O}_2)(\text{OH})_4]^{6-}\) \([x = 1, y = 1, z = 2, n = 2; x = 1, y = 2, z = 2, n = 4 \text{ (ref 9)}; x = 1, y = 1, z = 1, n = 1; x = 2, y = 1, z = 1, n = 1 \text{ (ref 10)}; x = 1, y = 3, z = 0, n = 4 \text{ (ref 11)}]\), and, most spectacularly, uranyl nanosized clusters can be formed. The latter have been proposed as a uranium speciation product in...
The reactors in the Fukushima Daiichi power plant. The addition of ancillary ligands such as oxalates or pyrophosphates affords further building blocks for cluster assembly. The thermodynamic stability of both studtite and metastudtite has been assessed using high temperature oxide calorimetry, and the dehydration of studtite to metastudtite has been found to be irreversible. Given that temperature will be a key factor in long term storage of spent nuclear fuels, the mechanism of dehydration is important to understand, and previous work using thermogravimetric analysis and variable temperature powder X-ray diffraction has shown that studtite is stable to approximately 60–100 °C, at which point it forms metastudtite. This decomposes between 180 and 240 °C to form an amorphous phase of hydrated UO₃ followed by dehydration up to 500 °C and eventually U₃O₈. More recently on the basis of neutron scattering experiments and thermochemical analysis, this amorphous UO₃ was suggested to be U₂O₅H₂O; however, vibrational spectroscopic data suggest the presence of [UO₅(OH)₁₂]·2H₂O. While the structure of naturally occurring studtite has been reported from single crystal X-ray diffraction, the only structural data for metastudtite have been acquired by using EXAFS at the U L₂ edge. We also noted an unusual change in the electronic structure that could be difficult to rationalize on the basis of the removal of two interstitial water molecules in studtite that are not coordinated to the uranium center. We wish to report further results obtained by spectroscopic and theoretical methods that probe this dehydration to metastudtite. In particular, a combination of X-ray photoelectron spectroscopy (XPS), high energy resolution X-ray absorption near edge structure (HR XANES) at the uranium M₄ absorption edge, to reduce the core–hole broadening, and emission spectroscopy at 8 K has corroborated our initial supposition that a significant electronic change occurs upon dehydration. More over, metastudtite appears to be electronically similar to metaschoepite, [(UO₂)₂O(OH)₁₀]·2H₂O. We have used the oretical methods to improve our understanding of the origin of this change.

RESULTS AND DISCUSSION

The samples of studtite, metastudtite, and metaschoepite used in our study were prepared following the procedure explained in our previous publication. We first examined the three compounds by XPS to ensure that the samples had the correct atomic concentrations (Table S1) and to ensure that no unexpected redox chemistry had occurred during the synthesis. XP survey spectra are shown in Figures S1 and S2 and narrow scans of U 4f and O 1s elemental lines in Figure 1.

The XPS data shed some light on the differences in electronic structure between studtite and metastudtite, but for more detailed information, we utilized HR XANES spectra copy. We previously reported the U L₁ edge spectra of these compounds, and we were able to trace a change in the band gaps to the slight change in the U–O bond lengths upon dehydration. The U L₁ edge HR XANES region of the spectra provided some evidence of this structural difference. However, given the limitations of measuring at this edge, particularly the large core–hole broadening contributing to the spectrum (≈4 eV), we decided to look at the M₄ edge where this is reduced (≈0.3 eV), notably, the number of HR XANES measurements at this edge is very limited. The studtite and metastudtite spectra are shown in Figure 2. The spectrum of metastudtite is slightly shifted to lower energies (≈0.1 ± 0.05 eV) compared to the spectrum of studtite (Figure S3), which is generally consistent with the offsets in binding energies observed in XPS spectra (vide supra). The fact that this energy

![Figure 1. XPS narrow scans of U 4f and O 1s elemental lines of studtite (red), metastudtite (blue), and metaschoepite (black).](image-url)
Figure 2. U M₄ edge HR XANES spectra of studtite (red), metastudtite (blue), and metaschoepite (black).

The shift is very small substantiates the computational result that there are no significant variations in the electronic density on U.

The first three peaks of the uranyl M₄ edge HR XANES spectra have been assigned to transitions of 3d electrons to 5f δ/ϕ, π*, and σ* molecular orbitals with predominant 5f character. Recently, it has been demonstrated for Pu(VI) plutonyl, which has a local coordination environment similar to that of uranyl, that the ligand field has a profound impact and is responsible for the appearance of more than one peak in the Pu M₄ edge HR XANES spectrum. Atomic multiplet calculations (using the DIRAC program system) of Pu(VI) reproduce only the first main peak, whereas the spectrum computed with the finite difference method (FDMNES code) taking into account the ligand field successfully calculates all spectral features. It was recently illustrated that the σ* peak shifts toward the main 5f δ/ϕ peak when the overlap driven U=Oaxial bond covalence decreases. This can potentially correlate with elongation of the U=Oaxial bond. The energy shift of the 5f σ* peak compared to the 5f δ/ϕ peak is 6.2 ± 0.05 and 5.5 ± 0.05 eV for studtite and metastudtite, respectively (Figures S3 and S4). In addition, EXAFS at the U L₃ edge reported for metastudtite shows a very slight (+0.01 ± 0.01 Å) elongation of the U=Oaxial bond and a more pronounced shortening of the equatorial U–Operoxo bond (−0.04 ± 0.01 Å). This experimental evidence suggests that the covalence of the U=Oaxial bond has decreased for metastudtite compared to that of studtite upon dehydration. Currently, there are no experimental or theoretical indications in the literature that this energy shift between the 5f σ* and 5f δ/ϕ peaks can be caused by other effects. Interestingly, after storage of a sample of studtite in air for 20 months, the energy positions of the spectral peaks are very similar to those of metastudtite, suggesting comparable electronic structure (Figure S5). We do not attempt here to interpret differences in intensities because they can be easily influenced by, for example, self absorption effects. From thermodynamic measurements, dehydration is an irreversible process, and this observation gives further experimental proof.

Given that XPS and emission spectroscopy (vide supra) suggest that metaschoepite and metastudtite are similar, we have measured the uranium M₄ edge spectrum of metaschoepite, and this is shown in Figure 2. Importantly, the lengths of the U=Oaxial (average of 1.759 Å), U–O (2.208 Å), and U–OH (2.41–2.58 Å) bonds determined from a crystallographic study compare well to that of metastudtite, although metaschoepite has a pentagonal bypyramidal UO₅ geometry compared to the octahedral UO₆ geometry for metastudtite. In addition, the band gaps measured at the absorption edge in the diffuse reflectance ultraviolet–visible spectrum of 3.45, 2.71, and 2.66 eV for studtite, metastudtite, and metaschoepite (Figure S6), respectively, suggest an electronic likeness between metastudtite and metaschoepite. Therefore, there is a local structural and electronic similarity between metastudtite and metaschoepite, which is reflected in the HR XANES spectra in both the M₄ and L₃ edge spectra.

It is clear from the X-ray spectroscopy that the uranyl unit is perturbed upon dehydration, and luminescence spectroscopy can be used to further probe this effect. We have reported that both studtite and metastudtite are non emissive at room temperature and when cooled to 77 K. Recently, it has been demonstrated that cooling samples to liquid helium temperatures provides a dramatic enhancement of the emission intensity, likely corresponding to the suppression of phonon assisted energy transfer. The cryogenic luminescence spectra of studtite and metastudtite displayed dramatic differences in their spectral profiles, spectral intensities, and luminescence decay behavior (Figures 3 and 4 and Figure S7). The studtite spectra consist of a series of well resolved, even spaced vibronic bands. The average vibronic band spacing of 878 cm⁻¹ is one of the largest observed among uranyl compounds, indicating strong U=Oaxial bonds; this can be compared to the vibrational band at 819 cm⁻¹ as measured by Raman spectroscopy. Time resolved luminescence spectra of studtite at delay times of >5 ms showed that the primary spectral features remained at all delay times (Figure 3), although the fine details among each of...
and a relative intensity of \(\sim \) respectively.

Figure 4. Laser induced time resolved luminescence emission spectra at different delay times of studtite (left) and metastudtite (right) at near liquid helium temperature \((T = 8 \pm 2 \text{ K}; \lambda_{\text{em}} = 415 \text{ nm}) \). The spectra were normalized to unity intensity and offset along the intensity axis for the sake of clarity. The delay time and gate width are (a) ≤5 ns and 100 μs, (b) 100 and 100 μs, (c) 400 and 100 μs, (d) 900 and 200 μs, (e) 1500 and 200 μs, and (f) 4100 and 500 μs, respectively.

the vibronic bands evolve in a systematic way where the relative intensity of the peaks with lower energies (longer wavelength) decreased as the delay time increased. The exact mechanism of this spectral change is not clear. It could be due to time dependent relaxation of coupling between the electronic and vibrational transitions or the presence of more than one crystalline phase of the same studtite structure under cryogenic conditions.

In contrast, the spectra of metastudtite show a single broad band with the peak maximum red shifted \(\sim 40 \text{ nm} \) to \(550 \text{ nm} \) and a relative intensity of \(\sim 0.5\% \) as compared to those of studtite. Both the spectral profile and the spectral position are similar to those of metaschoepite\(^3\) as well as uranium doped in studtite. Both the spectral profile and the spectral position are similar to those of studtite but reported a volume \(\Delta V = 168.418(1) \). Given the limitations of this method, and the paucity of bent uranyls in the literature,\(^4\) we do not give significant weight to the analysis. A recent review of bending in uranyls suggests this could be due to electron or, in this case unlikely, steric effects.\(^4\) Nonetheless, it could explain the results of luminescence spectroscopy (if the uranyl bends, then the coupling of the symmetric \(\text{U} \equiv \text{O} \) vibration will be partially lost and the well resolved bands no longer observable), and we note that further dehydration of metastudtite may form the \(\text{U}_2\text{O}_7 \) moiety with a bent uranyl.\(^4\)

It is possible that one of the structural consequences of dehydration of studtite is an increasing bending of the uranyl moiety, and further investigations will be published in due course.

Our spectroscopic investigations have indicated a change in the uranium electronic structure, so we next initiated a thorough computational investigation. The lattice parameters of the computed structures are listed in Table 1 and compared to the experimental single crystal X ray diffraction data for studtite\(^2\) and previous theoretical studies. Although detailed structural information about metastudtite is not available, the lattice parameters of this mineral have been measured by powder diffraction patterns by us (Figure S8) and reported by others.\(^4\) Some studies have been published in which metastudtite was modeled \textit{ab initio}\(^4\) and are somewhat inconsistent. As a starting point, we used the structure calculated by Weck et al.,\(^4\) which predicts metastudtite to be in orthorhombic space group \(\text{Pnma} (Z = 4) \). Ostanin et al.\(^4\) proposed \(D_{2h} \) symmetry for metastudtite but reported a volume 4.3% larger than the experimental values reported by Deliens et

Table 1. Comparison of the Computed and Measured Lattice Parameters of Studtite and Metastudtite

<table>
<thead>
<tr>
<th>method</th>
<th>(V)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(V)</th>
<th>(A)</th>
<th>(b)</th>
<th>(c)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE+U</td>
<td>697.8</td>
<td>14.15</td>
<td>6.84</td>
<td>8.58</td>
<td>510.9</td>
<td>6.82</td>
<td>8.80</td>
<td>8.51</td>
<td>this work</td>
</tr>
<tr>
<td>PBESol+U</td>
<td>650.8</td>
<td>13.71</td>
<td>6.71</td>
<td>8.46</td>
<td>483.9</td>
<td>6.72</td>
<td>8.57</td>
<td>8.41</td>
<td>this work</td>
</tr>
<tr>
<td>PW91</td>
<td>685.6</td>
<td>13.93</td>
<td>6.84</td>
<td>8.55</td>
<td>497.4</td>
<td>6.75</td>
<td>8.72</td>
<td>8.45</td>
<td>46</td>
</tr>
<tr>
<td>PBE</td>
<td>669.9</td>
<td>13.81</td>
<td>6.80</td>
<td>8.50</td>
<td>502.1</td>
<td>6.80</td>
<td>8.68</td>
<td>8.51</td>
<td>45</td>
</tr>
<tr>
<td>exp</td>
<td>665.6(3)</td>
<td>14.008(6)</td>
<td>6.721(3)</td>
<td>8.428(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

gradually disappeared as the delay time increased, and at least two additional spectral profiles emerged at intermediate to long delay times (Figure 4b–d), suggesting the presence of more than one uranyl coordination environment or the generation of minor impurities during the mineral transformation process. Consistent with the spectral changes, the fitting of the luminescence decay of metastudtite (as well as studtite) required a minimum of two exponential functions, and the resulting luminescence lifetimes of metastudtite were significantly shorter than those of studtite: 862 μs (dominant) and 143 μs for studtite and 28 μs (dominant) and 123 μs for metastudtite (Figure S7).

While we routinely check the purity of our synthetic samples by powder X ray diffraction, we have additionally analyzed the data via a Rietveld refinement for metastudtite. The details are recorded in Figure S8 and Tables S3–S5, but the most pertinent factor is the bending of the \(\text{O} = \text{U} = \text{O} \) moiety \(\langle \text{O} = \text{U} = \text{O} \rangle = 168.418(1)^\circ \). Given the limitations of this method, and the paucity of bent uranyls in the literature,\(^4\) we do not give significant weight to the analysis. A recent review of bending in uranyls suggests this could be due to electron or, in this case unlikely, steric effects.\(^4\) Nonetheless, it could explain the results of luminescence spectroscopy (if the uranyl bends, then the coupling of the symmetric \(\text{U} = \text{O} \) vibration will be partially lost and the well resolved bands no longer observable), and we note that further dehydration of metastudtite may form the \(\text{U}_2\text{O}_7 \) moiety with a bent uranyl.\(^4\)
al. and Rodriguez et al. and 1% larger than the computed result of Weck et al. It has to be noted that the mismatch in volumes also strongly depends on the density functional theory (DFT) functional and the computational methodology. The structural details of these calculations are provided for comparison in Table 1. In our calculations, the PBE+U method slightly overestimates the lattice parameters by ~5% in terms of volume, which is a common feature of this particular functional. This is illustrated by a better fit to the experimental lattice parameters when the PBEsol functional was used in the calculations. This is expected as the PBEsol functional is a modification of the PBE functional, which improves the prediction of structural parameters, however, often at the cost of making the description of other properties worse. However, despite these differences, the lattice parameters of both phases are relatively well reproduced, with our PBEsol+U approach giving a match to the experimental volumes better than that of the previous computational studies.

The structural parameters of the minerals computed with the DFT+U method are listed in Table 2. The computations result in nearly identical U=Oaxial and U=Operoxo bond lengths for the two phases, with slightly different U=Oaxial bond lengths in each phase. As a result, the f density of states (f DOS), plotted in Figure 5 (solid line), is nearly identical, which does not reflect the differences seen in the experimental HR XANES spectra. We therefore modified our structures so that they reflect the EXAFS measurements of U-O bond lengths. The f DOS values computed on these structures are given in Figure 5 (dashed line), and a closer match to the M4 edge HR XANES is observed. The low intensity peak at 9 eV, corresponding to the 5f σ* transition, is shifted to lower energies in the case of metastudtite, with the offset being consistent with the HR XANES measurements. The most intense peak at 4 eV, corresponding to the 5f 6/2 transition, is also qualitatively well reproduced. To further probe the origin of the relative differences between the HR XANES spectra of the two phases, we computed the DFT+U structures with U=Operoxo bond lengths manually shifted by 0.05 Å. As shown in Figure 6, the f

<table>
<thead>
<tr>
<th>bond</th>
<th>EXAFS</th>
<th>PBE+U</th>
<th>PBEsol+U</th>
<th>EXAFS</th>
<th>PBE+U</th>
<th>PBEsol+U</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Oaxial</td>
<td>1.78</td>
<td>1.81</td>
<td>1.81</td>
<td>1.79</td>
<td>1.79</td>
<td>1.78</td>
</tr>
<tr>
<td>U Operoxo</td>
<td>2.36</td>
<td>2.42</td>
<td>2.40</td>
<td>2.32</td>
<td>2.43</td>
<td>2.40</td>
</tr>
<tr>
<td>U Operoxo</td>
<td>2.50</td>
<td>2.45</td>
<td>2.39</td>
<td>2.52</td>
<td>2.47</td>
<td>2.41</td>
</tr>
</tbody>
</table>

Figure 5. f DOS calculated with the DFT+U method for relaxed DFT +U structures and their modified versions reflecting EXAFS U-O bond lengths (dashed lines) and bending of uranyl (with an O=U=O angle of 168.5°), which are essentially indistinguishable from the unperturbed structure. The dotted lines represent the experimentally determined U M edge HR XANES. ST, studtite; MST, metastudtite.

Figure 6. f DOS calculated with the DFT+U method for relaxed DFT +U structures (solid lines) with elongated U-O uranyl (dashed lines) and peroxo (dotted-dashed lines, which overlap solid lines and are indistinguishable) bond lengths. The dotted lines represent the experimentally determined U M edge HR XANES.

Table 2. Computed and Experimental U-O Bond Lengths (in angstroms) for Studtite and Metastudtite

<table>
<thead>
<tr>
<th>bond</th>
<th>EXAFS</th>
<th>PBE+U</th>
<th>PBEsol+U</th>
<th>EXAFS</th>
<th>PBE+U</th>
<th>PBEsol+U</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Oaxial</td>
<td>1.78</td>
<td>1.81</td>
<td>1.81</td>
<td>1.79</td>
<td>1.79</td>
<td>1.78</td>
</tr>
<tr>
<td>U Operoxo</td>
<td>2.36</td>
<td>2.42</td>
<td>2.40</td>
<td>2.32</td>
<td>2.43</td>
<td>2.40</td>
</tr>
<tr>
<td>U Operoxo</td>
<td>2.50</td>
<td>2.45</td>
<td>2.39</td>
<td>2.52</td>
<td>2.47</td>
<td>2.41</td>
</tr>
</tbody>
</table>

CONCLUSION

In this work, we have presented X ray based spectroscopic characterization of studtite and metastudtite. XPS showed that there were differences in the U 4f5/2 peak for studtite, the highest reported binding energy, compared to that of metastudtite, and there were also differences in the O 1s region, though this peak was too broad to assign definitively to specific bondings. X ray spectroscopy at the uranium M4 edge
indicates that the overlap driven covalence of the U=O_{\text{bond}} bond decreases upon dehydration. Finally, time resolved luminescence spectroscopy at near liquid helium temperature shows a well resolved spectrum for studtite with a dominant lifetime of 862 μs; in contrast, metastudtite shows a broad, poorly resolved spectrum with a much reduced lifetime of 28 μs. A theoretical investigation, benchmarked to the X ray spectroscopy data, has also been undertaken, and the 3d to 5f σ^* transition appears to be the most sensitive to variations in the U=O_{\text{bond}} bond length. Although not conclusive, some experimental and theoretical evidence suggests that a bending of the uranyl fragment could occur during dehydration. Taken together, we have shown that the dehydration of studtite does have significant structural and electronic perturbations of the uranyl moiety.

EXPERIMENTAL SECTION

Studtite, metastudtite,^{50} and metaschoepite^{24} were prepared as described in the literature. XPS measurements were performed with a PHI 5000 VersaProbe II (ULVAC PHI Inc.) instrument equipped with a scanning microprobe X ray source [monochromatic Al K$_\alpha$ (1486.7 eV) X rays]. Charge compensation at isolating samples was obtained by combination of an electron flood gun and a floating ion gun generating low energy electrons (1.1 eV) and low energy argon ions (8 eV) (dual beam technique), respectively. Survey scans were recorded with a pass energy of 187.85 eV of the analyzer. Narrow scans of the elemental lines were recorded at a 23.5 eV pass energy and yield an energy resolution of 0.69 eV fwhm at the Ag 3d$_{5/2}$ elemental line of pure silver. Calibration of the binding energy scale of the survey scans were charge referenced to C 1s.

Figure 7. Oxygen DOS calculated with the DFT+U method for relaxed structures.
edge HR/XANES spectra (A−D) were determined by modeling the spectra with Fityk53 (Figure S3), and the values are listed in Table S2. X ray powder diffraction patterns were recorded on a Siemens D500 instrument using a Bragg−Brentano geometry with a step size of 0.02° at 16 s for metastudtite. Rietveld refinements were performed using the GSAS with EXPGUL.54 The structure of metastudtite predicted by Weck et al.55 was used as a starting model for the refinement.

Computational Studies. The \textit{ab initio} calculations of studtite and metastudtite were performed using the plane wave DFT package Quantum Espresso.55 A PBE exchange correlation functional56 and ultrasoft pseudopotentials were used to mimic the presence of core electrons.57 The plane wave energy cutoff was set to 50 Ry, and all the calculations were spin polarized assuming an antiferromagnetic spin arrangement. The DFT+U methodology was used to better capture the strongly correlated character of \textit{f} states. The value of the Hubbard \textit{U} parameter was derived \textit{ab initio} using the approach of Cococcioni and de Gironcoli;58 we obtained a value of 2.6 eV for both phases. We used the 2\textit{k} point grids 60 for calculations of studtite and metastudtite, and de Gironcoli;58 we obtained a value of 2.6 eV for both phases. We respecti

AUTHOR INFORMATION

Corresponding Authors
Telephone: +353 1 8963501. E mail: bakerrj@tcd.ie.
Telephone: +49 721 608 24024. E mail: tonya.vitova@kit.edu.
Telephone: +49 2461 61 9356. E mail: p.kowalski@fz-juelich.de.

ORCID
Tonya Vitova: 0000 0002 3117 7701
Robert J. Baker: 0000 0003 1416 8659

Present Address
S.B.: Department of Chemistry, Katwa College, Katwa, West Bengal 713130, India.

Author Contributions
R.J.B., T.V., and P.M.K. devised the project. I.P. and T.V. conducted and analyzed the XAS measurements, D.S. the XPS measurements, and Z.W. the cryogenic photoluminescence measurements. S.B. synthesized the materials. The \textit{ab initio} calculations and relevant discussion were performed by G.B. and P.M.K., and the Rietveld refinement was analyzed by P.W.D. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

R.J.B. and T.V. thank TALISMAN (TAL C03 02) for funding. S.B. thanks the Irish Research Council for a postdoctoral fellowship. T.V. acknowledges the Helmholtz Association of German Research Centres for Grant VH NG 734. G.B. and P.M.K. acknowledge the JARA HPC initiative for time on the RWTH Aachen and Forschungszentrum Jülich GmbH supercomputing resources awarded through JARA HPC Partition. The authors acknowledge Synchrotron Light Source ANKA for provision of instruments at their beamlines. Part of this work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) and sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research (BER).

REFERENCES

Aryloxide Complexes of Substituted Phenoxide Ligands on Product Structures of Uranyl.
Burns, C. J.; Morris, D. E.; Paine, R. T.; Scott, B. L. Steric Control.
35, 726–731.

Why Is Uranyl Formohydroxamate Red?
Kiericki, J. J.; Cladis, D. P.; Fanwick, P. E.; Zeller, M.; Bart, G. Bonding and Bending in the Actinyls. Complex of Uranyl. Berthet, J. C.; Thuery, P.; Ephritikhine, M. The first cyclopentadienyl Unit: the peculiar ligation mode of Nitrate in [UO2(NO3)2(Rbtp)]. Yantasee, W.; Catalano, J. G. Fluorescence spectroscopy of U(VI) with a significantly bent Uranyl unit (phen = 1,10 phenanthroline).

2011, 133, 6162–6165. (g) Berthet, J. C.; Thuery, P.; Degnon, J. P.; Guillaume, D.; Ephritikhine, M. Sterically Constrained Uranyl Complexes with Seven Coordination of the UO2 Unit: the Peculiar Ligation Mode of Nitrate in [UO2(NO3)2(Rbtp)] Complexes. Inorg. Chem.

Hayton, T. W. Understanding the origins of O3 U O3 bending in the uranyl unit. Dallon Trans.
2018, 47, 1003.

2007, 75, 073101.

2012, 41, 9748–9752.

2008, 100, 136406.

Colmenero, F.; Bonales, L. J.; Cobos, J.; Timon, V. Study of the thermal stability of studyte by in situ Raman spectroscopy and DFT calculations. Spectrochim. Acta, Part A

2012, 83, 043105.

2010, 43, 1126–1128.

1990, 41, 7892–7895.

2005, 71, 035105.

2014, 118, 11797–11810.

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:
Dehydration of the Uranyl Peroxide Studtite, [UO₂(η²-Ο₂)(H₂O)₂]·2H₂O, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis
2018. Inorganic chemistry, 57
doi: 10.554/IR/1000085079

Zitierung der Originalveröffentlichung:
Dehydration of the Uranyl Peroxide Studtite, [UO₂(η²-Ο₂)(H₂O)₂]·2H₂O, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis
doi:10.1021/acs.inorgchem.7b02326

Lizenzinformationen: KITopen-Lizenz