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ABSTRACT
Time series clustering methods, such as Fuzzy C-Means (FCM) 
noise clustering, can be efficiently used to  obtain typical price-
influenced load profiles (TPILPs) through the data-driven analysis 
and modelling of the consumption behaviour of household elec-
tricity customers in response to price signals (Demand Response, 
DR). However, the analysis of load time series with cluster meth-
ods presupposes that the user has a lot of experience in selecting 
good cluster hyper-parameter values (e.g. number of clusters or 
fuzzifier). The present contribution proposes a practical method to 
the automatic selection of optimal hyper-parameter values for DR 
clustering.
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1 INTRODUCTION
The use of the demand side flexibility via control signals or price
signals is a promising approach to balance demand and supply in
smart grids [5]. The customers’ consumption behavior can be ana-
lyzed and modelled with data mining methods, such as time series
clustering [2]. The FCM clustering of smart meter data with the
goal of extracting TPILPs is shown and tested in [8]. Furthermore,
the authors of [8] suggest to apply noise clustering on FCM [6],
because noise in smart meter data could significantly affect the
found clusters. In addition to the goal of finding TPILPs, the DR
clustering should reveal seasonal differences or differences in the
consumption behavior on weekdays and weekends in response to a

price signal. The decision, whether the found TPILPs are represent-
ing the typical consumption behavior of electricity customers in
a meaningful way or not, presupposes that the users have a lot of
experience both in the area of clustering and of the power sector. As
an extension of [8], the new approach has the goal to automatically
find and select optimal hyper-parameter values for DR clustering.

2 METHODOLOGY
Within the FCM noise clustering algorithm, the first step is to define
the number of clusters C , the fuzzifier q and the noise distance δ .
These cluster hyper-parameters are decisive for the cluster result.
Hence, it is necessary to automatically find and select the best
cluster hyper-parameter values for a given smart meter dataset1.

The clustering is carried out multiple times, each time with a
different combination of the values of the cluster hyper-parameters
C , q and δ . The result of each clustering is evaluated using various
cluster quality measures (Xie-Beni index S [9], global silhouette
index SI [7]). The indexes indicate the similarity of data tuples
within one cluster (cohesion) and the dissimilarity of a cluster from
other clusters (separation). Additionally, the share of data tuples
assigned to the noise cluster in relation to the total number of
data tuples is used as a valuation criteria. This percentage share
is described by the parameter τoc, where a low τoc corresponds to
few data tuples and a high τoc corresponds to many data tuples in
the noise cluster. The dependency between the found clusters and
output variables, such as month, tariff or type of day, is quantified
by the relative mutual information Q(C,y) [8].

We apply a simple but effective ranking method (PROMETHEE:
Preference Ranking Organization Method for Enrichment Evalua-
tions [1]) to compare each combination of hyper-parameter values.
PROMETHEE performs a complete ranking of alternatives accord-
ing to several valuation criteria in an automated manner.

3 DATA & RESULTS
The analyzed smart meter dataset comes from the Olympic Penin-
sula Project2, in which the consumption behavior of electricity
customers in response to variable electricity tariffs and suitable
technology or bi-directional communication was examined [3].

We perform a comparison of seven strategies to find optimal
cluster hyper-parameter values. The mean cluster curves are pre-
sented in Figure 1. The first strategy is an excerpt from [8], where
the values for the hyper-parameters q and δ are defined by manual
parameter tuning. Afterwards, the optimal value for the hyper-
parameter C is derived by the first local minimum of S with S(C)
1The MATLAB toolbox SciXMiner [4] is used for the automatic selection of the hyper-
parameter values.
2Download of the dataset with previous registration under https://svn.pnl.gov/olypen

https://svn.pnl.gov/olypen
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Figure 1: Clusters found for the aggregated, normalized
daily time series of Olympic Peninsula Project dataset.

and C = 3 . . . 15. The strategies S2, S4 and S6 use a random search
approach with NCP repetitions to set the values for the hyper-
parameters C , q and δ . In case of S2 and S4, the optimal values for
the hyper-parameters are derived by the minimum of the Xie-Beni
index S with S(q,δ ,C) and by the maximum of the global silhou-
ette index SI with SI (q,δ ,C), respectively. S6 is a combination of
random search and PROMETHEE. S3, S5 and S7 correspond to S2,
S4 and S6, but apply grid search instead of random search. S7 is a
combination of grid search and PROMETHEE.

The results indicate that the strategy for choosing optimal hyper-
parameter values plays a decisive role regarding the number of
clusters. However, the optimal values for the hyper-parameters q
and δ are within a small value range for all strategies. Furthermore,

the method for setting the hyper-parameter values is not decisive.
By randomly setting the values for the hyper-parameters C , q and
δ and performing the clustering 1000 times, the whole value ranges
of C , q and δ are well covered. The method for ranking the cluster
runs determines the values of the hyper-parameters. If the Xie-Beni
index S is used as the only ranking criterion (S2, S3) there are many
cluster centers. The ranking of the cluster runs based on SI (S4, S5)
leads to few cluster centers.

The relative high values for Q(C,month) and Q(C,bd) (index bd:
business day, yes/no) for S6 and S7 indicate that the seasonal and
weekday influence on the price-influenced consumption behavior
can be explained by the found clusters. The comparison of S1 and
S7 with respect to the Q(C,y) values shows that the S7 clusters are
better suited to explain the seasonal and weekday influence price-
influenced consumption behavior. In addition, with S7 (and S6) the
time-intensive search for optimal hyper-parameter values is no
longer necessary. Another advantage of using the PROMETHEE
method is that the ranking also allows you to consider the second
and third best solutions.

4 CONCLUSIONS
We introduce a new strategy to automatically find optimal hyper-
parameter values for DR clustering. The strategy consists of two
parts: (1) a comprehensive time series clustering with different
hyper-parameter values (grid search) and (2) an effective ranking
method (PROMETHEE) to compare and assess the cluster runs. We
compare the new strategy (S7) with six other strategies (S1-S6) and
are able to show that the clusters found by S7 are better suited to
explain the seasonal and weekday influence on the price-influenced
consumption behavior than the other strategies.

The great advantage of the new strategy is that it provides opti-
mal hyper-parameter values for DR clustering, taking into account
several valuation criteria. The use of the new strategy also enables
non-specialists to evaluate the result of a time series clustering and
to find optimal combinations of hyper-parameter values according
to the selected valuation criteria and the weighting of these criteria.
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