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Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen Werken
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Abstract (German Version)

Diese Dissertation verbindet die Sozialwahltheorie mit der Wachstumstheorie und be-
handelt das Problem der Aggregation heterogener Zeitpräferenzen. Ein Überblick über
die Literatur zur sozialen Wahl in Wachstumsmodellen mit vielen Agenten zeigt, dass
es fundamentale Schwierigkeiten bei der Aggregation heterogener Zeitpräferenzen in dy-
namischen Wachstumsmodellen gibt. Es wird insbesondere gezeigt, dass es aufgrund
der Hochdimensionalität des Wahlmöglichkeitenraumes in diesen Modellen keine Abstim-
mungsgleichgewichte gibt.
Um diese Schwierigkeiten zu überwinden wird ein einfaches und intuitives Abstim-

mungsverfahren (die intertemporale Mehrheitswahl) vorgeschlagen. Dieses Verfahren
beruht auf zwei Prinzipien: (i) die Abstimmung erfolgt Schritt für Schritt in jeder Periode
neu, und (ii) es wird dabei nicht über die absoluten Größen (z.B. das Konsumniveau),
sondern über deren relativen Wert (z.B. die Konsumrate) entschieden. Die intertem-
porale Mehrheitswahl wird auf ein einfaches Wachstumsmodell mit einem öffentlichen
Gut angewendet, in dem die Agenten unter verschiedenen momentanen Nutzenfunktio-
nen und verschiedenen Zeitpräferenzraten einen gemeinsamen Konsumpfad wählen. Das
vorgeschlagene Abstimmungsverfahren stellt eine mikroökonomische Fundierung der Wahl
des optimalen Konsumpfades des Medianwähler dar.
Die intertemporale Mehrheitswahl wird dann auf ein allgemeines Gleichgewichtsmod-

ell mit einer nicht erneuerbaren Ressource angewendet. Die Agenten haben wiederum
verschiedene Zeitpräferenzraten und wählen die Extraktionsraten, um eine sozial opti-
male Nutzung der Ressource zu bestimmen. Das vorgeschlagene Abstimmungsverfahren
ergibt sich in diesem Zusammenhang besonders natürlich, da es sich um eine kollektive
Entscheidung über einen relativen Wert (die Extraktionsrate) handelt. Auch hier stellt
sich heraus, dass das Abstimmungsgleichgewicht der intertemporalen Mehrheitswahl von
der Median-Zeitpräferenzrate abhängt. Das vorgeschlagene Abstimmungsverfahren lässt
sich daher sehr einfach auf dynamische allgemeine Gleichgewichtsmodelle anwenden.

Schlagworte: Theorie kollektiver Entscheidungen, Wachstumsmodelle, heterogene Agen-
ten, Mehrheitswahl.

JEL-Klassifikation: D11, D71, D91, O13, O43.
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Abstract (English Version)

My thesis combines social choice theory with economic growth theory and is concerned
with the problem of aggregating heterogeneous time preferences. A survey of the literature
on the problem of social choice in growth models with many agents indicates that there are
serious difficulties with the aggregation of heterogeneous time preferences in many-agent
dynamic growth models. In particular, it is shown that due to the multi-dimensional
setting, there is no reason to expect that voting in such models yields a stable outcome.
To overcome these difficulties, we propose a simple and intuitive voting procedure (in-

tertemporal majority voting). This procedure is based on the two principles: (i) voting is
done step by step, and (ii) voting is not over the absolute value (e.g., consumption level),
but over the relative value (e.g., consumption rate). We apply intertemporal majority
voting to a simple optimal growth model with common consumption in which agents who
differ in their felicity functions and discount factors choose a common consumption path.
We show that our procedure provides a microfoundation for the choice of the optimal
path of the “median” agent (whenever this notion is well defined).
We also apply intertemporal majority voting to a general equilibrium growth model

with exhaustible natural resources. Agents who differ in their discount factors vote over
extraction rates. Our procedure naturally arises in this context, because voting is precisely
over the relative values. We show that the outcome of intertemporal majority voting is
determined by the agent with the median discount factor. Hence our voting procedure
can be applied also in a dynamic general equilibrium framework.

Keywords: collective choice, economic growth, heterogeneous agents, voting.

JEL Classification: D11, D71, D91, O13, O43.
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1. Introduction

In dynamic models of economic growth, time preference (patience) appears as the fun-
damental factor which governs aggregate accumulation processes. Many such models
typically rely on the representative agent assumption, so that economic growth in these
models (e.g., the long-run level or the growth rate of per capita output) depends on the
rate of time preference of the representative agent. In particular, the widely known Ram-
sey optimal growth model implies that the more patient is the representative agent, the
higher is the steady-state output in the economy.
However, models with a representative agent are subject to serious criticism, as individ-

uals in the real world differ in many characteristics that affect their economic decisions.
The qualitative results obtained from models with heterogeneous agents are completely
different from those of models with a representative agent. For instance, many stan-
dard economic policies that increase aggregate income in the representative agent models,
influence only the distribution of income in the heterogeneous agents models.
It is generally acknowledged that individuals are not equally patient. Recent empirical

evidence shows that different people value the future differently, and this heterogeneity
in time preferences plays a crucial role in the process of economic development. When
individuals are heterogeneous in their time preferences, it is not clear at all whether there
is any “representative” individual, what is the rate of time preference from the society’s
perspective, and how this heterogeneity affects economic growth.
Thus the recognition of the fact that individuals in the society discount their future

differently leads to a very important problem of aggregating heterogeneous time prefer-
ences. This problem is at the junction of economic growth theory and social choice theory,
and has lately received significant attention. It is reasonable to assume that each indi-
vidual plays a role in collective action, and the question is, what is the relation between
individual and collective behavior. This is where the present thesis aims to contribute.
In Chapter 2 we provide a survey of the literature on the aggregation of heterogeneous

time preferences. Recently there appeared a number of technically sophisticated papers,
which treat the problem of social choice in a purely abstract and axiomatic manner, creat-
ing the impression of complexity of the problem. We want to show that this complexity is
somewhat artificial, and the problem of social choice in growth models with many agents
is more understandable that it may seem. To achieve this goal, we illustrate contributions

1



1. Introduction

to the literature in the simplest framework of a one-sector deterministic Ramsey model
with agents who are identical except for their time preferences. Agents derive utility from
lifetime consumption and face a trade-off between present and future consumptions. The
simplicity of this framework is sufficient for our purposes and allows us to explain the
main results in an instructive manner.
There are two principal ways of aggregation considered in the literature. The first is to

construct a social welfare function, which somehow takes into account individual utility
functions of different agents. The second is to aggregate heterogeneous preferences via
some social choice procedure (majority voting being the most important example).
It follows from the surveyed literature that both principal ways of aggregating heteroge-

neous time preferences in many-agent growth models face serious difficulties. In particular,
a social welfare function which is a weighted sum of different individual utility functions
satisfies certain reasonable conditions (e.g., Pareto-efficiency and time consistency) if and
only if it coincides with the utility function of some agent, so that the preferences of
all other agents are completely ignored. Moreover, a natural attempt to determine the
decisions of the society via some voting procedure also does not lead to an unambiguous
outcome. A Condorcet winner in voting over multi-dimensional choice space fails to exist
even if agents are heterogeneous only in one dimension, and any non-dictatorial voting
rule appears to be inherently intransitive.
In the remaining chapters of the thesis we propose and study a simple and natural voting

procedure (intertemporal majority voting) which is based on the two principles: (i) voting
is done step by step, and (ii) voting is not over the absolute value (e.g., consumption level),
but over the relative value (e.g., consumption rate). These two principles allow us to avoid
all the difficulties with majority voting in multi-dimensional settings and obtain a stable
voting outcome (intertemporal voting equilibrium) under reasonable assumptions.
In Chapter 3 we apply our voting procedure to the many-agent Ramsey model with

common consumption.1 In this framework, agents who may differ in their felicity func-
tions and time preferences (discount factors) share a common consumption stream which
arises from a collectively consumed public good or a common property resource. Agents’
personal utilities are based on their collective decisions, and the main question is how a
common consumption stream is chosen.
Our voting procedure can be described as follows. At each point in time agents vote

over the current consumption rate, given the expectations about future consumption rates.
We show that in this one-dimensional voting problem agents’ preferences over the current
consumption rate are single-peaked, and the median voter theorem applies. Therefore, at
each point in time there exists an “instantaneous” Condorcet winner, which generically

1 Chapter 3 is an adapted version of the paper “On Discounting and Voting in a Simple Growth Model”
(Borissov, Pakhnin and Puppe, 2017).
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depends on all expected future consumption rates. An intertemporal voting equilibrium is
the sequence of instantaneous Condorcet winners under perfect foresight about outcomes
of future votes.
We show that if agents have the same felicity function and differ only in their dis-

count factors, then there is a unique intertemporal voting equilibrium which coincides
with the optimal consumption path for the agent with the median discount factor. We
also consider the multi-dimensional heterogeneity case in which agents differ both in their
felicity functions and discount factors. In this general case we characterize steady-state
and balanced-growth voting equilibria. The steady-state voting equilibrium is fully de-
termined by the median discount factor, and the balanced-growth voting equilibrium is
determined by the preferences of the agent with the median growth rate. Thus, in some
sense, our procedure provides a microfoundation for the assumption that the median agent
(whenever this notion is well defined) is the representative of society.
In Chapter 4 we apply our voting procedure to the general equilibrium Ramsey-type

model with exhaustible natural resources.2 The goal of this chapter is to compare private
and public property regimes over natural resources in terms of economic growth.
In the private property regime, the resource stock is an asset to its owner. Agents can

invest in natural resources as well as in physical capital. Extraction rates are determined
in an equilibrium by the market forces of supply and demand. We show that every
competitive equilibrium converges to a balanced-growth equilibrium, and the long-run
growth rate depends on the discount factor of the most patient agent.
In the public property regime, the resource stock is controlled by a government that

acts in the interest of the agents. Resource income is equally distributed among agents.
There are no market forces to determine extraction rates, so they are chosen by majority
voting. Here our voting procedure is naturally applied because agents vote precisely over
the relative values. We show that the sequence of winners in one-dimensional votes over
the current extraction rate under perfect foresight is determined by the agent with the
median discount factor. We define an intertemporal voting equilibrium (in this model
it consists of the voting equilibrium sequence of extraction rates along with the corre-
sponding competitive equilibrium) and prove that it also converges to a balanced-growth
equilibrium. In this case the long-run growth rate depends on the median discount factor.
Thus the application of our voting procedure allows us to reasonably model the public
property regime over natural resources in the general equilibrium framework.
Each chapter of this thesis has a slightly different focus and can be read independently.

To facilitate readability and maintain a consistent presentation, the conclusions and in-
troductions are connecting passages between the chapters.

2 Chapter 4 is an adapted version of the paper “Economic Growth and Property Rights on Natural
Resources” (Borissov and Pakhnin, 2018).

3





2. Social Choice in Growth Models with Many Agents:
An Overview

Time preference — the intrinsic propensity of the individual decision-maker to postpone
immediate gratification in exchange for larger but delayed rewards — have been at the
core of economic analysis for a very long time. Without any exaggeration it can be
argued that questions of time preferences and intertemporal choice have occupied the
minds of economists since the development of the discipline. It was Adam Smith who
first pointed out the connection between intertemporal choice and economic growth. He
saw thrift, i.e., the propensity to save and invest some amount of capital instead of
spending it immediately, as an important virtue which leads to the accumulation of capital
and increases the wealth of a nation. His ideas were developed further by many other
scholars, and nowadays time preference (patience) is widely regarded as the fundamental
factor influencing economic growth. The rate of time preference is tied to the growth rate
of per capita output in many dynamic models of economic growth.
A vast amount of literature on time preferences is devoted to the analysis of representa-

tive agent models. The role of time preferences in economic models with a representative
agent as well as theoretical contributions in this field are reviewed by Hamada and Takeda
(2009). However, it is becoming increasingly recognized that models with a representative
agent are subject to serious criticism, as individuals in the real world differ in many char-
acteristics that may affect their economic decisions. For instance, Alan Kirman argues
that the representative agent assumption “is not simply an analytical convenience as often
explained, but is both unjustified and leads to conclusions which are usually misleading
and often wrong” (Kirman, 1992, p. 117).
This is particularly evident when comparing policy implications from models with het-

erogeneous agents and models with a representative agent. Many standard economic
policies that increase aggregate income in the representative agent models do influence
only the distribution of income in the heterogeneous agents models. This effect is appar-
ent already in models with only two types of agents (see, e.g., Smetters, 1999; Mankiw,
2000, for the discussion of fiscal policy and Palivos, 2005, for the discussion of monetary
policy under agents’ heterogeneity).
It is reasonable to assume that in the presence of heterogeneous agents the policy

parameters are chosen by the agents themselves. Policy should be a collective decision,

5



2. Social Choice in Growth Models with Many Agents: An Overview

and hence policy cannot be pursued without taking into account heterogeneous preferences
of individuals.
The same argument applies to the growth models, and becomes especially important

in this framework. It is generally acknowledged that individuals are not equally patient,
and there is no convergence toward an agreed-on or unique rate of time preference. It is
not clear at all, what are the rate of time preference and the growth rate in the economy
where agents are heterogeneous in their time preferences.
Thus the recognition of the fact that individuals in the society discount their future

differently leads to a very important problem of collective choice and aggregation of het-
erogeneous time preferences. This is the topic of social choice theory.1 How a society can
make a collective decision when all its members have different time preferences? Which
rate of time preference determines the growth rate in the heterogeneous society? These
questions are at the junction of economic growth theory and social choice theory, and
have lately received considerable attention.
In this chapter we will review the main results related to the aggregation of heteroge-

neous time preferences and discuss the problem of social choice in growth models with
many agents. In recent years there appeared a number of technically sophisticated and
obscure papers that create the impression of complexity of the problem. One of the goals
of this chapter is to show that this complexity is somewhat artificial, while the problem
is more understandable that it may seem.
To make our presentation as clear as possible, we focus on one-sector deterministic

growth models with two agents whose preferences exhibit constant exponential discount-
ing. Though there is a vast literature on hyperbolic and quasi-hyperbolic discounting,
including some empirical evidence (see, e.g., Frederick et al., 2002), we do not discuss
departures from exponential discounting. The problem of collective choice when individ-
ual preferences exhibit non-exponential discounting is studied, e.g., by Lizzeri and Yariv
(2015) and Drugeon and Wigniolle (2017). There is also a substantial amount of literature
on discounting under uncertainty (see, e.g., Gollier and Weitzman, 2010; Traeger, 2013).
Though this is a promising line of research which remains a topic of current interest, the
introduction of uncertainty complicates matters quite dramatically, so this chapter deals
only with deterministic models. The simplicity of our framework is actually an advantage
here, as this allows us to explain the main difficulties in an instructive manner and to
highlight the role of discounting.
This chapter is organized as follows. Section 2.1 reviews some novel empirical evidence

which shows that people in the real world differ in their time preferences, and that their
heterogeneity plays an important role in the process of economic development. In Section

1 For the recent contributions in the field of social choice and welfare which seem to be close to the subject
of this chapter, see Anand et al. (2009).
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2.1. Empirical studies

2.2 we briefly describe the Ramsey model with many agents that are heterogeneous in
their time preferences. Sections 2.3 and 2.4 are devoted to the properties of social optima
in the many-agent Ramsey model with private and common consumption correspondingly.
In Section 2.5 we study majority voting over the common consumption streams. Section
2.6 reviews and discusses different answers to the normative question of how a social
discount rate should be determined. Section 2.7 concludes.

2.1. Empirical studies

The empirical side of the discounting literature is excellently and extensively reviewed by
Frederick et al. (2002) and Cohen et al. (2016). In this section we want to emphasize
the most recent empirical evidence which shows that different individuals value the future
differently, and this heterogeneity in time preferences plays an important role in the
process of economic development.
Falk et al. (2015) provide the results of the Global Preference Survey implemented

through the Gallup World Poll in 2012. Their data on time preferences, collected for
80 000 individuals from 76 countries, is representative within country as well as across
countries. The measure of patience is based on respondents’ hypothetical binary choices
between receiving a payment now or a larger payment in a year. It was found that while
average patience across countries varies by 1.7 of a standard deviation, the within-country
variation is much larger than the between-country variation. In the total individual-
level variation in patience, the variance of the average patience across countries amounts
to 13.5%, while the remaining 86.5% is due to the within-country variance. It is also
documented that in the world population as a whole, time preferences vary significantly
with individual characteristics such as gender or age. For instance, patience has a hump-
shaped age profile: the middle-aged are more patient than young people and the elderly.
The rich and comprehensive data from the Global Preference Survey allowed the same

group of researchers to study how time preferences are related to income and capital ac-
cumulation both at the country and individual levels. Dohmen et al. (2016) report that
average degree of patience in a country is strongly correlated with this country’s level of
economic and institutional development. The correlation between the patience measure
and log GDP per capita is 0.63, i.e., patience alone explains about 40% of the variation in
income per capita. This result is robust to including other explanatory variables (patience
continues to have strong explanatory power even in the specification with geographic, cli-
matic, colonial, and diversity covariates), changing the dependent variable (the observed
positive relationship holds for log GDP per worker and the United Nations Human Devel-
opment Index as measures of development), and controlling for inflation, deposit interest
rates and borrowing constraints. It also turns out that greater patience is significantly

7



2. Social Choice in Growth Models with Many Agents: An Overview

associated with higher annual growth rates. A one standard deviation increase in patience
leads to 1.1 percentage points increase in annual growth rate from 1975 to 2010.
Patience is found to be positively related to both the stocks of and investments into

physical capital, human capital, and productivity. Patience alone explains about a third
of the variation in the capital stock per capita, and more than 40% of the variation in the
average years of schooling. Authors’ estimates also suggest that patience is a significant
correlate of democracy, property rights, social infrastructure, and long-term credit ratings.
What is more, the same relationship between time preferences and income holds at the
individual level. Within countries, more patient people tend to be richer and have higher
educational attainment.
Though the causality here can flow in either direction, there is also some tentative

evidence that it is exactly patience that affects aggregate or individual income. Using
the share of protestants in a country as an instrument for patience, Dohmen et al. (2016)
estimate the corresponding instrumental variable regressions and find that the reported
effect of patience on income remains large and significant.
Wang et al. (2016) provide the results of another international survey on time prefer-

ences, comprising about 7000 university students in 53 advanced and developing countries.
Their main measure of patience is the share of participants in each country who preferred
a higher future reward over immediate payoff in the answer to the hypothetical binary
choice question. They also find that the measured level of patience is heterogeneous both
at individual and country levels, and this heterogeneity on a cross-country level cannot be
explained by differences in interest or inflation rates. It is reported that time preferences
are systematically correlated with the economic growth: participants from countries with
higher GDP per capita tend to be more patient. Their results suggest that people seem
to be more patient in countries that are politically more stable, hold more public trust to
politicians or have more efficient markets.
Hübner and Vannoorenberghe (2015) use three different proxies for patience (the mea-

sure taken from Wang et al. (2016), the Index of Long-Term Orientation and the Future
Orientation Index) and analyze a panel of 89 countries. The average degree of patience
appears to have a strong positive impact on income per worker, total factor productiv-
ity and the capital stock. Their regressions suggest that patience explains about 40%
of the cross-country variation in income, which is very close to the results of Dohmen
et al. (2016). It is also found that increasing patience by one standard deviation raises
per-capita income by between 43% and 78%.
Apart from hypothetical binary choice questions, the individuals’ rates of time prefer-

ence can be measured directly from some real-life decisions. In the discrete-time frame-
work, time preferences are usually expressed in terms of the (one-period) discount factor,
β, which is the relative weight that individual attaches to her next period utility from
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the current-period perspective. A closely related notion is the discount rate, ρ, which de-
termines the present value of a next period utility. The discount factor and the discount
rate are related by β = 1/(1 + ρ). It follows that greater patience implies higher discount
factors and lower discount rates.2

In the empirical literature on discounting, typical measures of the rates of time prefer-
ence are discount rates, since they are easier to estimate and are directly comparable to
interest rates. In particular, Simon et al. (2015) provide estimates of the U.S. military
personnel’s discount rates based on their actual choices of retirement plans. The esti-
mated discount rates range from 3.1% to 9.5% per year. It is documented that individual
discount rates vary significantly depending on the race, gender, income and education.
For instance, white personnel are more patient than black, and female personnel are more
patient than male.3 More educated and cognitively more able personnel appear to be
more patient. Statistically as well as economically significant is the fact that less patient
individuals tend to save less, are more likely to experience financial difficulties, and face
higher average credit card and car loan interest rates.
As we have seen, empirical research not only supports “the internal consistency of a

dynamic development framework in which time preferences play a critical role” (Dohmen
et al., 2016, p. 30), but also clearly indicates that people have heterogeneous time prefer-
ences. Thus empirical evidence strongly suggests that heterogeneity in individuals’ time
preferences should be explicitly taken into account in economic modeling.

2.2. Equilibria and optima in growth models with
many agents

As we have mentioned, Adam Smith (1776) was the first who noted that the propensity
to save (i.e., thrift) leads to the accumulation of capital. However, he did not address
the question of what determines this propensity. This problem was explored by another
classical Scottish economist, John Rae (1834), who argued that there are differences in
the strength of the desire to accumulate among different members of society. He stated
that people whose desire to accumulate is low become poor, while people whose desire
to accumulate is high become rich. Hence funds are gradually redistributed from the
impatient consumers to the patient ones. Further, Irving Fisher (1907) developed a more

2 These notions also have continuous-time generalizations. In continuous-time framework, future utility is
discounted by the instantaneous discount rate ρ, which is related to the instantaneous discount factor:
β = exp(−ρ).

3 Castillo et al. (2011) obtain qualitatively similar results in a field experiment with almost 900 eighth
graders in a school district in Georgia, U.S. They show that white children are more patient than black
children and that girls are more patient than boys.
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precise notion of time preference and argued that it is ultimately differences in rates of
time preference that drive the redistribution of income and wealth.
This idea was formalized in a seminal paper by Frank Ramsey (1928). He proposed a

model of optimal capital accumulation in which a consumer acting over an infinite horizon
maximizes discounted utility from consumption at different moments in time subject to
the resource constraints and given the initial capital stock. This model is now widely
known as the optimal growth model, or the Ramsey model. Apart from this, in the latter
part of his paper Ramsey considered a model with many infinitely lived consumers who
differ in their time preferences. He conjectured that in a stationary equilibrium, i.e., an
equilibrium where all variables are constant over time, the whole capital stock belongs to
the most patient individual in the society whose consumption is the largest. All other,
less patient individuals, consume only at the subsistence level necessary to support their
lives. This property of an equilibrium is known in the literature as the Ramsey conjecture
(though it is more correct to label it the “Rae–Fisher–Ramsey conjecture”).
Though Ramsey himself neither spelled out the details of his many-agent model nor gave

a definition of equilibrium, his insights were developed further by many other scholars. In
particular, Bewley (1982) proposed an interpretation of the many-agent Ramsey model as
a general equilibrium model with infinitely many commodities. He considered an economy
with complete markets populated by consumers who have private consumption streams
and differ in their discount factors. Extending the Arrow–Debreu theory, Bewley proved
that there exists a competitive equilibrium and any equilibrium allocation is Pareto-
optimal. Bewley (1982) also established a link between general equilibrium theory and
turnpike theory by showing that in every equilibrium eventually only the most patient
consumer, i.e. the individual with the highest discount factor, has positive consumption
levels. All the less patient consumers after some finite time consume nothing.4 The
impatient individuals borrow against their wealth in order to consume more early and
repay their loans later, thus driving their future consumption levels towards zero, which
can be seen as a justification of the Ramsey conjecture.
The latter property of an equilibrium (and optimal) allocation was considered somewhat

unsatisfactory, because despite the fact that the less patient agents consume nothing
from some time onward thereby leaving the economy’s demand side, they still continue
to supply their labor services. This objection can be overcome following Becker (1980).
He considered a many-agent Ramsey model with borrowing constraints. In each period,
consumers can sell or accumulate capital, but cannot borrow, which implies that nobody
consumes zero or even approaches zero asymptotically: even the less patient individuals

4 This result was obtained under the assumption that a felicity function of consumption, u(c), is such
that u′(0) <∞. In the case of the more general felicity functions, consumption levels of the less patient
agents converge to zero as time goes to infinity.
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will always consume at least part of their labor income. Becker (1980) showed that under
appropriate assumptions a stationary equilibrium (steady state) in this model exists, is
unique and verifies the Ramsey conjecture: all the capital is owned by the most patient
consumer. Models of this kind received reasonable attention, and many properties of
equilibria were established (see Becker, 2006, for an excellent survey).
Since the many-agent Ramsey model with borrowing constraints is an incomplete mar-

kets model, there is no reason to expect that the first welfare theorem holds, i.e., that
equilibria are Pareto-optimal. Nevertheless, Becker and Mitra (2012) proved that the
equilibrium sequences of aggregate capital and consumption in this kind of models are
technologically efficient.5 Recent studies (see Borissov and Dubey, 2015; Becker et al.,
2015b) show that the extreme no-borrowing constraints introduced initially can be re-
laxed to allow more liberal borrowing by agents. Equilibria in the many-agent Ramsey
model under alternative borrowing regimes are proved to exist, and it is shown that if an
equilibrium converges to the steady state, then this equilibrium is also efficient.

2.3. Social optima in growth models with private
consumption

Let us take a closer look at the general equilibrium version of the many-agent Ramsey
model proposed by Bewley (1982). Our goal is to explore this model from the social
welfare perspective, and discuss certain difficulties that arise with the notion of a social
optimum under heterogeneous time preferences (for details, see Le Van and Vailakis, 2003;
Becker, 2012). For ease of exposition, we restrict our consideration to a one-sector two-
agent Ramsey model with private consumption. To highlight the role of discounting, we
assume that the two consumers in our economy differ only in their discount factors and
are otherwise identical.
Let the preferences of agent i = 1, 2 over infinite consumption streams Ci = {cit}∞t=0 be

given by the additively time-separable intertemporal utility function of the form

U i(Ci) =
∞∑
t=0

βtiu(cit),

where βi is her discount factor and u(c) is her felicity (instantaneous utility) function.6

Suppose that agent 1 is the most patient: 1 > β1 > β2 > 0.

5 Becker and Mitra (2012) prove that the aggregate capital and consumption sequences are intertemporally
efficient if the most patient consumer’s capital stock is positive from some time onward — a condition
satisfied in all currently known examples.

6 This form of preference representation, the exponential discounting model, was introduced by Samuelson
(1937) and axiomatized later by Koopmans (1960). Nowadays, exponential discounting is the most
convenient and popular framework for analyzing intertemporal decisions.

11



2. Social Choice in Growth Models with Many Agents: An Overview

A single homogeneous good is produced. In each period t the available amount of
good is allocated between aggregate consumption Ct = c1

t + c2
t and capital kt+1 for use in

the next period production: Ct + kt+1 = f(kt), where f(k) is a neoclassical production
function. Capital is assumed to depreciate completely within the period.
If there is only one consumer (“representative agent”) with the discount factor β, the

felicity function u(c), and the intertemporal utility function

∞∑
t=0

βtu(Ct) = u(C0) + βu(C1) + β2u(C2) + . . . , (2.1)

then the problem in question is the standard optimal growth problem. The optimal
consumption stream in the economy is obtained as a solution to the optimization problem
of this representative agent:

max
∞∑
t=0

βtu(Ct),

s. t. Ct + kt+1 = f(kt),

Ct ≥ 0, kt+1 ≥ 0, t = 0, 1, . . . ,

k0 = k̂0.

(2.2)

Under some reasonable assumptions on the felicity function u(c) and the production
function f(k), problem (2.2) has a unique solution {C∗t , k∗t+1}∞t=0.
In the optimal growth problem, the representative agent with the discount factor β

determines the optimal consumption stream. However, in our economy there are two
different consumers, each with her own discount factor βi. It is not clear who should “rep-
resent” the society and determine the aggregate consumption stream, so it is reasonable
to take into account the preferences of both consumers. This is typically done by intro-
ducing a social welfare function W (C1, C2) which evaluates different consumption streams
from the perspective of the society as a whole.
A very natural and widely accepted property of a social welfare function W (C1, C2) is

Pareto-efficiency, i.e., the requirement that for any consumption bundles C = {C1, C2}
and C̃ = {C̃1, C̃2}, W (C1, C2) ≥ W (C̃1, C̃2) whenever U i(Ci) ≥ U i(C̃i) for both i = 1, 2, and
the first inequality is strict whenever the second is strict for both i = 1, 2. Hence a Pareto-
efficient (Paretian) social welfare function must respect the preferences of individuals.
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In the two-agent Ramsey model with private consumption, a Paretian social welfare
function naturally appears as a weighted sum of the intertemporal utilities of both agents:

W (C1, C2) = λ
∞∑
t=0

βt1u(c1
t ) + (1− λ)

∞∑
t=0

βt2u(c2
t )

= λu(c1
0) + (1− λ)u(c2

0) + λβ1u(c1
1) + (1− λ)β2u(c2

1)

+ λβ2
1u(c1

2) + (1− λ)β2
2u(c2

2) + . . . ,

(2.3)

where λ ≥ 0 and 1− λ ≥ 0 are the constant non-negative Pareto weights that sum to 1.
A Pareto-optimal allocation is a solution to the optimization problem of a social planner

who maximizes social welfare function (2.3):

max

{
λ
∞∑
t=0

βt1u(c1
t ) + (1− λ)

∞∑
t=0

βt2u(c2
t )

}
,

s. t. c1
t + c2

t + kt+1 = f(kt),

c1
t ≥ 0, c2

t ≥ 0, kt+1 ≥ 0, t = 0, 1, . . . ,

k0 = k̂0.

(2.4)

All Pareto-optimal allocations can be found by varying 0 ≤ λ ≤ 1. Under some mild
assumptions, problem (2.4) also has a unique solution, {c1∗

t , c
2∗
t , k

∗
t+1}∞t=0 (see, e.g., Le Van

and Vailakis, 2003). Clearly, this solution depends on λ.
The properties of the Paretian social welfare function of the form (2.3) in a continuous-

time framework are studied by Gollier and Zeckhauser (2005). In their model, agents
have additively time-separable utility functions and differ in their discount rates as well
as felicity functions. A social planner determines a Pareto-optimal allocation of an exoge-
nously given flow of the single consumption good among agents. Gollier and Zeckhauser
construct the Paretian social welfare function (i.e., a weighted sum of the utility func-
tions of all agents), show that it is also additively time-separable and naturally define the
instantaneous discount rate of the social planner. They prove that the discount rate of
the social planner is a weighted mean of the agents’ discount rates with weights being
proportional to the corresponding individual tolerances for consumption fluctuations (i.e.,
the reciprocals of the Arrow–Pratt measure of absolute risk-aversion). Whenever agents
are heterogeneous in their rates of time preference, the Paretian social planner generically
has the time-varying discount rate. Moreover, under the usual assumption that felicity
functions of all agents exhibit increasing tolerance for consumption fluctuations (i.e., de-
creasing absolute risk aversion), the weights of the more patient consumers are growing in
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the discount rate of the social planner as time goes forward. It is shown that the discount
rate of the social planner tends to the discount rate of the most patient agent.7

Note that in both problems (2.2) and (2.4) the sum of discounted utilities is maximized
“once-and-for-all” at date 0. This is an atemporal view on the problems in question.
However, choices in the real world can hardly be regarded as once-and-for-all choices
among specific plans of actions. Instead, they are sequential step-by-step choices based
on the presently available opportunities. To illustrate this point, Koopmans (1967) used
a metaphor of ascending a mountain covered with fog. In these circumstances, “Rather
than searching for a largely invisible optimal path, one may have to look for a good rule
for choosing the next stretch of the path with the help of all information available at the
time” (Koopmans, 1967, p. 12).
A typical difficulty with the once-and-for-all choices is a problem of precommitment.

The optimality criteria in both problems (2.2) and (2.4) presume that the decision maker
(“representative agent” and “social planner” correspondingly) can credibly commit to im-
plement her decisions in the future. But what happens if a decision maker cannot pre-
commit her future behavior?8 Then at each date τ (“today”) she has to reconsider the
optimal solution implemented at date τ − 1 (“yesterday”) and to solve a new problem.
Thus each decision maker actually faces a sequence of problems, each problem at dif-
ferent date. This view on growth models, emphasized by Koopmans (1967), is essentially
intertemporal.
Problem (2.2) in our terms is the date 0 problem. At date 1 the representative agent

faces with the new optimization problem:

max
∞∑
t=1

βt−1u(Ct),

s. t. Ct + kt+1 = f(kt),

Ct ≥ 0, kt+1 ≥ 0, t = 1, 2, . . . ,

k1 = k∗1,

(2.5)

7 In the model of Gollier and Zeckhauser (2005), the amount of consumption good at each date is fixed
and non-storable. Heal and Millner (2013) generalize this model by endogenizing agents’ consumption.
In their model agents derive consumption from a common managed resource which can be thought of as
physical or natural capital. They also show that the discount rate of the social planner asymptotically
approaches the discount rate of the most patient member of the society.

8 It is well-known (see, e.g., Kydland and Prescott, 1977; Fischer, 1980) that if the current decision
explicitly affects future opportunity sets, then the currently chosen plan of actions typically will not
be followed in the future by the rational individual. The problems of precommitment and dynamic
inconsistency in the framework of the optimal growth model were studied by a number of prominent
economists (see, e.g., Strotz, 1956; Pollak, 1968; Phelps and Pollak, 1968; Peleg and Yaari, 1973), and
many of their insights are also helpful in the social choice framework.
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where k∗1 is the optimal capital stock at date 1 from the time 0 perspective (i.e., the capital
stock in the economy at the beginning of period 1 in the optimal solution determined at
date 0).
The date 1 utility function,

∞∑
t=1

βt−1u(Ct) = u(C1) + βu(C2) + β2u(C3) + . . . ,

has the same form as the date 0 utility function (2.1), because from the perspective of
the decision maker time is restarted. However, being multiplied by β, the date 1 utility
function coincides with the “tail” of the date 0 utility function (2.1) which starts from the
moment of time 1:

β

∞∑
t=1

βt−1u(Ct) = βu(C1) + β2u(C2) + β3u(C3) + . . . .

Hence the date 1 problem (2.5) is equivalent to the following problem:

max
∞∑
t=1

βtu(Ct),

s. t. Ct + kt+1 = f(kt),

Ct ≥ 0, kt+1 ≥ 0, t = 1, 2, . . . ,

k1 = k∗1.

Clearly, the solution to the latter problem, and hence to problem (2.5), coincides with the
“tail” of the solution determined at date 0, {C∗t , k∗t+1}∞t=1.
Thus for the representative agent whose utility function at date 0 is given by (2.1),

i.e., whose preferences exhibit constant exponential discounting, it makes no difference
whether she can commit or not: the optimal solution chosen at date 0 once and for all
remains optimal at any future date.
This well-known observation creates a wrong impression that the preferences of the

decision maker can be described by a single utility function and obscures the fact that the
decision maker actually has to solve a sequence of problems, so that her preferences
are described by a sequence of utility functions.
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This becomes clear when we consider the problem of precommitment for the social
planner. At date 1 the social planner faces with the new optimization problem:

max

{
λ1

∞∑
t=1

βt−1
1 u(c1

t ) + (1− λ1)
∞∑
t=1

βt−1
2 u(c2

t )

}
,

s. t. c1
t + c2

t + kt+1 = f(kt),

c1
t ≥ 0, c2

t ≥ 0, kt+1 ≥ 0, t = 1, 2, . . . ,

k1 = k∗1,

(2.6)

where λ1 ≥ 0 and 1 − λ1 ≥ 0 are the constant non-negative Pareto weights at date 1.
Since this is a new problem, posed at different date, a priori there is no particular reason
to assume that the planner generically weighs the utilities of agents with the same Pareto
weights as at date 0.
The planner’s date 1 social welfare function is given by

λ1u(c1
1) + (1− λ1)u(c2

1) + λ1β1u(c1
2) + (1− λ1)β2u(c2

2) + . . . ,

and it does not necessarily coincide with the “tail” of the date 0 social welfare function
(2.3):

λβ1u(c1
1) + (1− λ)β2u(c2

1) + λβ2
1u(c1

2) + (1− λ)β2
2u(c2

2) + . . . .

Note that different cases may arise. If at date 1 the planner uses the same Pareto
weights as at date 0, λ1 = λ, then the date 1 social welfare function has the same form
as the date 0 social welfare function, but does not coincide with the “tail” of the date 0

social welfare function. It follows that the “tail” of the optimal solution at date 0 is not
a solution to the date 1 optimization problem. On the contrary, if at date 1 the planner
uses the properly adjusted weights, namely,

λ1 =
λβ1

λβ1 + (1− λ)β2

, 1− λ1 =
λβ2

λβ1 + (1− λ)β2

,

then the date 1 social welfare function coincides with the “tail” of the date 0 social welfare
function (up to the constant factor 1/ (λβ1 + (1− λ)β2)). In this case, the optimal solution
determined at date 0 remains optimal at date 1.
Hence the problem of precommitment, i.e., whether the decision maker can precommit

to the initially chosen optimal plan, is actually the problem of which sequence of utility
functions the decision maker has. The answer to the question of whether the currently
chosen plan of actions is followed in the future by the rational decision maker, is deter-
mined by the property of the sequence of preferences which is called time consistency.
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In order to clarify the notion of time consistency, we have to consider sequences of
preferences and distinguish between three different properties: time consistency, time
invariance and stationarity. Later we will formally define these properties for the sequences
of social welfare functions, but let us begin with three simple examples which illustrate
time consistency, time invariance and stationarity in terms of the sequences of individual
utility functions and shed light to the differences between these properties.
First, consider the sequence of utility functions {UTC

τ }∞τ=0 over consumption streams
{ct}∞t=0 which is given by

UTC
0 = u(c0) + αβu(c1) + αβ2u(c2) + . . . ,

UTC
1 = u(c1) + βu(c2) + β2u(c3) + . . . ,

UTC
2 = u(c2) + βu(c3) + β2u(c4) + . . . ,

. . . .

It is easily checked that up to the constant factor αβτ the utility function UTC
τ at any date

τ coincides with the “tail” of the utility function UTC
0 . However, due to the presence of

α, UTC
0 does not have the same form as UTC

τ . Moreover, the discount factor in the utility
function UTC

0 is not constant: the discount factor between periods 1 and 0 is αβ, while
it is β between periods t+ 1 and t for all t ≥ 1. It is said that the sequence {UTC

τ }∞τ=0 is
time-consistent, but non-stationary and not time-invariant.
Second, consider the sequence of utility functions {UTI

τ }∞τ=0 given by

UTI
0 = u(c0) + αβu(c1) + αβ2u(c2) + . . . ,

UTI
1 = u(c1) + αβu(c2) + αβ2u(c3) + . . . ,

UTI
2 = u(c2) + αβu(c3) + αβ2u(c4) + . . . ,

. . . .

The utility function UTI
0 has precisely the same form as the utility function UTI

τ at any
date τ . However, UTI

τ does not coincide with the corresponding “tail” of UTI
0 , and again

the discount factor in UTI
τ is not constant. It is said that the sequence {UTI

τ }∞τ=0 is
time-invariant, but non-stationary and not time-consistent.
Finally, consider the sequence of utility functions {UST

τ }∞τ=0 given by

UST
0 = u(c0) + β0u(c1) + β2

0u(c2) + . . . ,

UST
1 = u(c1) + β1u(c2) + β2

1u(c3) + . . . ,

UST
2 = u(c2) + β2u(c3) + β2

2u(c4) + . . . ,

. . . .
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for β0 6= β1 6= β2 6= . . .. For any τ , the discount factor in UST
τ is constant, and UST

τ is the
exponentially discounted utility function. However, the function UST

τ depends on τ and is
not related to any other function in this sequence. It is said that the sequence {UST

τ }∞τ=0

is stationary, but not time-consistent and not time-invariant.
Now let us give formal definitions of time consistency, time invariance and stationarity

for the sequences of social welfare functions. In order to link these properties directly to
discounting, we assume that any social welfare function in this sequence is a weighted
sum of additively time-separable individual utility functions.9

Let Ci = {cit}∞t=0 be a private consumption stream for agent i. Suppose that the sequence
of preferences over bundles of consumption streams C = {C1, C2} at different decision dates
τ is given by the following sequence of social welfare functions:

Wτ =
2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(cit) = λ1
τ

∞∑
t=τ

γ1
τ,t u(c1

t ) + λ2
τ

∞∑
t=τ

γ2
τ,t u(c2

t ), τ = 0, 1, . . . ,

where λ1
τ ≥ 0 and λ2

τ ≥ 0 are non-negative Pareto weights at date τ , and

Γiτ = {γiτ,t}∞t=τ

is a discount function of agent i at date τ .10

In other words, we assume that the sequence of preferences is such that every element
of this sequence (the planner’s social welfare function at some decision date) is a weighted
sum of additively time-separable utility functions (individual utility functions at the same
date). The sequence of individual utility functions is of the form

U i
τ =

∞∑
t=τ

γiτ,t u(cit), τ = 0, 1, . . . ,

i.e., in this sequence the felicity function of agent i, u(c), is the same in all U i
τ (at all dates

and for both agents), but discount functions of agent i, Γiτ , may differ for different dates
τ .
Note that any discount function Γiτ is defined up to some constant factor: the sequences
{γiτ,τ , γiτ,τ+1, γ

i
τ,τ+2, . . .} and {1, γ

i
τ,τ+1

γiτ,τ
,
γiτ,τ+2

γiτ,τ
, . . .} determine the same utility function U i

τ .
Similarly, the Pareto weights {λ1

τ , λ
2
τ} and the same weights multiplied by some constant

9 General definitions in terms of sequences of preference relations are given in Halevy (2015). See also
definitions in terms of history-dependent intertemporal utility functions in Millner and Heal (2016).
Once it is understood that these properties should be defined in terms of sequences, the ideas which are
behind these notions become clear and transparent.

10 The term “discount function” originally appeared in continuous-time models, and may be somewhat
misleading in the discrete-time framework. Perhaps it would be more correct to call Γiτ a “discount
sequence”, but we will continue to use the more familiar term “discount function”.
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factor determine the same social welfare function Wτ . Without any loss of generality we
will apply the following convenient and standard normalizations:

γiτ,τ = 1, τ = 0, 1, . . . , i = 1, 2,

λ1
τ + λ2

τ = 1, τ = 0, 1, . . . .

Clearly, the sequence of social welfare functions {Wτ}∞τ=0 is fully determined by the se-
quences of discount functions and Pareto weights {Γ1

τ ,Γ
2
τ ;λ

1
τ , λ

2
τ}∞τ=0.

Now let us define three properties of the sequences of social welfare functions. Time
consistency, introduced by Strotz (1956), requires that the different elements of the
sequence of preferences are consistent, in the sense that social welfare functions at dif-
ferent dates preserve the preference order between any two consumption streams. Time
consistency is a rationality criterion which implies that the choice for any future date is
independent of the decision date. If a sequence of the planner’s preferences is not time-
consistent, she may reverse a decision made at the earlier date. For instance, she may
decide to undertake certain expensive project this year, but cancel it halfway next year.
Formally, a sequence {Wτ}∞τ=0 is time consistent if for any τ , τ ′ > τ , and any two bundles
of consumption streams C and C̃,

2∑
i=1

λiτ

∞∑
t=τ ′

γiτ,t u(cit) ≥
2∑
i=1

λiτ

∞∑
t=τ ′

γiτ,t u(c̃it)

⇐⇒
2∑
i=1

λiτ ′

∞∑
t=τ ′

γiτ ′,t u(cit) ≥
2∑
i=1

λiτ ′

∞∑
t=τ ′

γiτ ′,t u(c̃it).

(2.7)

Time invariance, introduced recently by Halevy (2015), requires that different ele-
ments of the sequence of preferences are the same. In other words, time invariance “by
itself . . . does not impose restrictions on the structure of preferences at any given time,
but only implies that preferences are not a function of calendar time” (Halevy, 2015, p.
341). Formally, a sequence {Wτ}∞τ=0 is time invariant if for any τ , τ ′ > τ , C and C̃,

2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(cit) ≥
2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(c̃it)

⇐⇒
2∑
i=1

λiτ ′

∞∑
t=τ

γiτ ′,τ ′+t−τ u(cit) ≥
2∑
i=1

λiτ ′

∞∑
t=τ

γiτ ′,τ ′+t−τ u(c̃it).

(2.8)

Stationarity, introduced by Koopmans (1960), requires that for a given decision date
the preference order between any two consumption streams is preserved when the streams
are postponed by the same amount of time. This property plays a key role in the Koop-
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mans’ axiomatization of discounted utilitarian time preferences. Formally, a social welfare
function Wτ is stationary if for any τ ′ > τ , C and C̃,

2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(cit) ≥
2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(c̃it)

⇐⇒
2∑
i=1

λiτ

∞∑
t=τ

γiτ,τ ′+t−τ u(cit) ≥
2∑
i=1

λiτ

∞∑
t=τ

γiτ,τ ′+t−τ u(c̃it).

(2.9)

A sequence {Wτ}∞τ=0 is stationary if Wτ is stationary for each τ .
Note that stationarity is a property of the preferences at a given decision date. Time

consistency and time invariance deals with decisions made at different dates, and hence
they are applied to the sequences of preferences.11

The above definitions look somewhat complicated and cumbersome. They are usually
given in a general axiomatic context, where they look even more obscure. However, these
complicated definitions are actually related to simple properties of discounting. The
following three propositions show that time consistency, time invariance and stationarity
of the sequence of social welfare functions imply special forms of the individuals’ discount
functions. While these results are by no means new or surprising, they deserve to be
explicitly stated and proved in simple terms of sequences of social welfare functions, as
they clarify many important issues regarding collective intertemporal choice.
The following proposition characterizes a time-consistent sequence of social welfare

functions.

Proposition 2.1. A sequence of discount functions and positive Pareto weights
{Γ1

τ ,Γ
2
τ ;λ

1
τ , λ

2
τ}∞τ=0 determines a time-consistent sequence {Wτ}∞τ=0 if and only if for all

τ , τ ′ > τ and i = 1, 2,

λiτγ
i
τ,t

λ1
τγ

1
τ,τ ′ + λ2

τγ
2
τ,τ ′

= λiτ ′γ
i
τ ′,t, t = τ ′, τ ′ + 1, . . . . (2.10)

Proof. Suppose that (2.10) holds. Then the condition in (2.7) is trivially satisfied, as for
all τ , τ ′ > τ , Ci = {cit}∞t=0 and i = 1, 2,

1

λ1
τγ

1
τ,τ ′ + λ2

τγ
2
τ,τ ′

λiτ

∞∑
t=τ ′

γiτ,t u(cit) = λiτ ′

∞∑
t=τ ′

γiτ ′,t u(cit).

11 It is clear that the above definitions can be easily generalized to the case where any number of agents
with arbitrary felicity functions enjoy private consumption streams, as well as to the case where an
arbitrary number of agents have common consumption stream.
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Conversely, suppose that (2.7) holds for all bundles C and C̃. Denote for simplicity
µiτ = λiτ

λ1τγ
1
τ,τ ′+λ

2
τγ

2
τ,τ ′

, and suppose further that (2.10) fails to hold, i.e., for some τ , τ ′ > τ

and some i∗ there exists T ≥ τ ′ such that

µi
∗

τ γ
i∗

τ,T 6= λi
∗

τ ′γ
i∗

τ ′,T , µiτγ
i
τ,T = λiτ ′γ

i
τ ′,T , i 6= i∗,

µiτγ
i
τ,t = λiτ ′γ

i
τ ′,t , t 6= T, i = 1, 2.

Let for definiteness i∗ = 1, and µ1
τγ

1
τ,T > λ1

τ ′γ
1
τ ′,T (all other cases can be considered

similarly). Then it is possible to construct two consumption bundles, C = {C1, C2} and
C̃ = {C̃1, C̃2}, which satisfy the following conditions:

u(c1
T )− u(c̃1

T ) = 1, λ1
τ ′γ

1
τ ′,T < µ1

τ

∑
t≥τ ′, t6=T

γ1
τ,t

(
u(c̃1

t )− u(c1
t )
)
≤ µ1

τγ
1
τ,T ,

c2
t = c̃2

t , t = τ ′, τ ′ + 1, . . . .

It follows that

µ1
τγ

1
τ,T

(
u(c1

T )− u(c̃1
T )
)

= µ1
τγ

1
τ,T ≥ µ1

τ

∑
t≥τ ′, t6=T

γ1
τ,t

(
u(c̃1

t )− u(c1
t )
)
,

which is equivalent to

λ1
τ

∞∑
t=τ ′

γ1
τ,t u(c1

t ) ≥ λ1
τ

∞∑
t=τ ′

γ1
τ,t u(c̃1

t ).

Moreover,

λ2
τ

∞∑
t=τ ′

γ2
τ,t u(c2

t ) = λ2
τ

∞∑
t=τ ′

γ2
τ,t u(c̃2

t ),

and hence
2∑
i=1

λiτ

∞∑
t=τ ′

γiτ,t u(cit) ≥
2∑
i=1

λiτ

∞∑
t=τ ′

γiτ,t u(c̃it). (2.11)

At the same time,

λ1
τ ′γ

1
τ ′,T

(
u(c1

T )− u(c̃1
T )
)

= λ1
τ ′γ

1
τ ′,T

< µ1
τ

∑
t≥τ ′, t6=T

γ1
τ,t

(
u(c̃1

t )− u(c1
t )
)

= λ1
τ ′

∑
t≥τ ′, t 6=T

γ1
τ ′,t

(
u(c̃1

t )− u(c1
t )
)
,

from which follows that

λ1
τ ′

∞∑
t=τ ′

γ1
τ ′,t u(c1

t ) < λ1
τ ′

∞∑
t=τ ′

γ1
τ ′,t u(c̃1

t ).
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Furthermore,

λ2
τ ′

∞∑
t=τ ′

γ2
τ ′,t u(c2

t ) = λ2
τ ′

∞∑
t=τ ′

γ2
τ ′,t u(c̃2

t ),

and hence
2∑
i=1

λiτ ′

∞∑
t=τ ′

γiτ ′,t u(cit) <
2∑
i=1

λiτ ′

∞∑
t=τ ′

γiτ ′,t u(c̃it). (2.12)

Clearly, (2.11) and (2.12) contradict (2.7), which proves the proposition.

It immediately follows from Proposition 2.1 that for a sequence of social welfare func-
tions to be time-consistent, the Pareto weights at different dates should be such that for
all τ , τ ′ > τ and i = 1, 2,

λiτ ′ =
λiτγ

i
τ,τ ′

λ1
τγ

1
τ,τ ′ + λ2

τγ
2
τ,τ ′

.

The following proposition provides a characterization of a time-invariant sequence of
social welfare functions.

Proposition 2.2. A sequence of discount functions and positive Pareto weights
{Γ1

τ ,Γ
2
τ ;λ

1
τ , λ

2
τ}∞τ=0 determines a time-invariant sequence {Wτ}∞τ=0 if and only if for all τ ,

τ ′ > τ and i = 1, 2,

λiτγ
i
τ,t = λiτ ′γ

i
τ ′,τ ′+t−τ , t = τ, τ + 1, . . . . (2.13)

Proof. The “if” part is trivial: it follows from (2.13) that for all τ , τ ′ > τ , Ci = {cit}∞t=0

and i = 1, 2,

λiτ

∞∑
t=τ

γiτ,t u(cit) = λiτ ′

∞∑
t=τ

γiτ ′,τ ′+t−τ u(cit).

To prove the “only if” part, suppose that (2.8) holds for all bundles C and C̃, while
(2.13) fails to hold, i.e., for some τ , τ ′ > τ there exists T ≥ τ such that

λ1
τγ

1
τ,T > λ1

τ ′γ
1
τ ′,τ ′+T−τ , λ2

τγ
i
τ,T = λ2

τ ′γ
2
τ ′,τ ′+T−τ ,

λiτγ
i
τ,t = λiτ ′γ

i
τ ′,τ ′+t−τ , t 6= T, i = 1, 2.

Again, all other cases can be considered similarly. It is possible to construct two con-
sumption bundles, C = {C1, C2} and C̃ = {C̃1, C̃2}, which satisfy the following conditions:

u(c1
T )− u(c̃1

T ) = 1, λ1
τ ′γ

1
τ ′,τ ′+T−τ < λ1

τ

∑
t≥τ, t6=T

γ1
τ,t

(
u(c̃1

t )− u(c1
t )
)
≤ λ1

τγ
1
τ,T ,

c2
t = c̃2

t , t = τ, τ + 1, . . . .
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Therefore,

λ1
τγ

1
τ,T

(
u(c1

T )− u(c̃1
T )
)

= λ1
τγ

1
τ,T ≥ λ1

τ

∑
t≥τ, t6=T

γ1
τ,t

(
u(c̃1

t )− u(c1
t )
)
,

while

λ1
τ ′γ

1
τ ′,τ ′+T−τ

(
u(c1

T )− u(c̃1
T )
)

= λ1
τ ′γ

1
τ ′,τ ′+T−τ

< λ1
τ

∑
t≥τ, t6=T

γ1
τ,t

(
u(c̃1

t )− u(c1
t )
)

= λ1
τ ′

∑
t≥τ, t 6=T

γ1
τ ′,τ ′+t−τ

(
u(c̃1

t )− u(c1
t )
)
.

Since

λ2
τ

∞∑
t=τ

γ2
τ,t u(c2

t ) = λ2
τ

∞∑
t=τ

γ2
τ,t u(c̃2

t ), and

λ2
τ ′

∞∑
t=τ

γ2
τ ′,τ ′+t−τ u(c2

t ) = λ2
τ ′

∞∑
t=τ

γ2
τ ′,τ ′+t−τ u(c̃2

t ),

it follows that for these C and C̃,

2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(cit) ≥
2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(c̃it), but

2∑
i=1

λiτ ′

∞∑
t=τ

γiτ ′,τ ′+t−τ u(cit) <
2∑
i=1

λiτ ′

∞∑
t=τ

γiτ ′,τ ′+t−τ u(c̃it),

which contradicts (2.8).

It follows from Proposition 2.2 that a time-invariant sequence of social welfare functions
{Wτ}∞τ=0 is characterized by the same Pareto weights and the same discount functions at
each date: for all τ , τ ′ > τ and i = 1, 2, λiτ = λiτ ′ and Γiτ = Γiτ ′ . This is the only way to
ensure that the social welfare function Wτ in this sequence does not depend on τ .
The following proposition fully characterizes a stationary social welfare function.

Proposition 2.3. Discount functions and positive Pareto weights {Γ1
τ ,Γ

2
τ ;λ

1
τ , λ

2
τ} deter-

mine a stationary social welfare function Wτ if and only if

γiτ,t = βt−ττ , t = τ, τ + 1, . . . , i = 1, 2, (2.14)

for some constant 0 < βτ < 1.
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Proof. Suppose that (2.14) holds. Then for all τ ′ > τ , Ci = {cit}∞t=0 and i = 1, 2,

∞∑
t=τ

γiτ,t u(cit) =
∞∑
t=τ

βt−ττ u(cit) =
1

βτ ′−ττ

∞∑
t=τ

βτ
′+t−2τ
τ u(cit) =

1

βτ ′−ττ

∞∑
t=τ

γiτ,τ ′+t−τ u(cit),

which ensures (2.9) for any λ1
τ and λ2

τ .
Conversely, suppose that (2.9) holds for all bundles C and C̃, while (2.14) fails to hold,

i.e., there exists T ≥ τ such that

γ1
τ,T > βT−ττ , γ2

τ,T = βT−ττ , γiτ,t = βt−ττ , t 6= T, i = 1, 2.

Let us construct two consumption bundles, C = {C1, C2} and C̃ = {C̃1, C̃2}, such that

u(c1
T )− u(c̃1

T ) = 1, βT−ττ <
∑

t≥τ, t6=T

βt−ττ

(
u(c̃1

t )− u(c1
t )
)
≤ γ1

τ,T ,

c2
t = c̃2

t , t = τ, τ + 1, . . . .

It follows that for these consumption bundles,

γ1
τ,T

(
u(c1

T )− u(c̃1
T )
)

= γ1
τ,T ≥

∞∑
t≥τ, t6=T

βt−ττ

(
u(c̃1

t )− u(c1
t )
)
,

and hence
∞∑
t=τ

γ1
τ,t u(c1

t ) ≥
∞∑
t=τ

γ1
τ,t u(c̃1

t ).

At the same time,

βT−ττ

(
u(c1

T )− u(c̃1
T )
)

= βT−ττ <
∑

t≥τ, t6=T

βt−ττ

(
u(c̃1

t )− u(c1
t )
)
,

from which follows that
∞∑
t=τ

βt−ττ u(c1
t ) <

∞∑
t=τ

βt−ττ u(c̃1
t ),

and hence for any τ ′ > T ,

∞∑
t=τ

γ1
τ,τ ′+t−τ u(c1

t ) <
∞∑
t=τ

γ1
τ,τ ′+t−τ u(c̃1

t ).

Since
∞∑
t=τ

βt−ττ u(c2
t ) =

∞∑
t=τ

βt−ττ u(c̃2
t ),
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for any λ1
τ > 0, λ2

τ > 0 and τ ′ > T we have

2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(cit) ≥
2∑
i=1

λiτ

∞∑
t=τ

γiτ,t u(c̃it), but

2∑
i=1

λiτ

∞∑
t=τ

γiτ,τ ′+t−τ u(cit) <
2∑
i=1

λiτ

∞∑
t=τ

γiτ,τ ′+t−τ u(c̃it),

a contradiction with (2.9).

Proposition 2.3 implies that the planner’s social welfare functionWτ , which is a weighted
sum of individual utility functions, is stationary if and only if both individual utility
functions exhibit constant exponential discounting with the same discount factor. This
is a famous result of Koopmans (1960), formulated in our terms. Whenever the discount
factors of individuals are different, the social welfare function which takes into account
both of them is non-stationary.
Now let us show that time consistency, time invariance and stationarity are closely inter-

related. Consider the sequence of discount functions and Pareto weights {Γ1
τ ,Γ

2
τ ;λ

1
τ , λ

2
τ}∞τ=0

such that discount functions of both agents are exponential and at each date are generated
by the same discount factor 0 < β < 1:

Γiτ = {1, β, β2, . . .}, τ = 0, 1, . . . , i = 1, 2,

and positive Pareto weights are the same at each date:

λiτ = λi, τ = 0, 1, . . . , i = 1, 2.

The corresponding sequence of social welfare functions {Wτ}∞τ=0 is given by

Wτ =
2∑
i=1

λi
∞∑
t=τ

βt−τu(cit) =
∞∑
t=τ

βt−τ
2∑
i=1

λiu(cit), τ = 0, 1, . . . . (2.15)

We show that a sequence of social welfare functions satisfies any two of the considered
properties if and only if it is given by (2.15).

Proposition 2.4. A sequence of social welfare functions {Wτ}∞τ=0 satisfies any two of the
three properties: time consistency, time invariance and stationarity, if and only if it is of
the form (2.15).

Proof. First, {Wτ}∞τ=0 is stationary and time-invariant if and only if for all τ and i = 1, 2,
the date τ discount functions of both agents are of the same form Γiτ = {1, βτ , β2

τ , . . .},
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and for all τ ′ > τ , λiτ = λiτ ′ and Γiτ = Γiτ ′ . This is possible if and only if for all τ , τ ′ > τ ,
and i = 1, 2, λiτ = λiτ ′ = λi and βτ = βτ ′ = β.
Second, {Wτ}∞τ=0 is stationary and time-consistent if and only if for all τ and i = 1, 2,

Γiτ = {1, βτ , β2
τ , . . .} and for all τ ′ > τ , (2.10) holds, i.e.,

λiτ ′ =
λiτβ

τ ′
τ

λ1
τβ

τ ′
τ + λ2

τβ
τ ′
τ

= λiτ ,

λiτ ′βτ ′ =
λiτβ

τ ′+1
τ

λ1
τβ

τ ′
τ + λ2

τβ
τ ′
τ

= λiτ ′βτ ,

. . . .

Obviously, this is also equivalent to (2.15).
Finally, {Wτ}∞τ=0 is time-consistent and time-invariant if and only if for all τ , τ ′ > τ

and i = 1, 2, λiτ = λiτ ′ , Γiτ = Γiτ ′ and (2.10) holds:

λiτ ′ =
λiτγ

i
τ,τ ′

λ1
τγ

1
τ,τ ′ + λ2

τγ
2
τ,τ ′

,

λiτ ′γ
i
τ ′,τ ′+1 =

λiτγ
i
τ,τ ′+1

λ1
τγ

1
τ,τ ′ + λ2

τγ
2
τ,τ ′

= λiτ ′
γiτ,τ ′+1

γiτ,τ ′
,

. . . .

Since λiτ = λiτ ′ , it is clear that γ1
τ,τ ′ = γ2

τ,τ ′ . Using the fact that Γiτ = Γiτ ′ , we also get

γiτ,τ ′+t
γiτ,τ ′

= γiτ ′,τ ′+t = γiτ,τ+t , t = 1, 2, . . . .

Hence for all τ and i = 1, 2,

γiτ,τ+1+t =
(
γiτ,τ+1

)t
, t = 1, 2, . . . .

Denoting γ1
τ,τ+1 = γ2

τ,τ+1 = β and λiτ = λiτ ′ = λi, again yields (2.15).

Our results indicate that while stationarity, time consistency and time invariance are
pairwise independent, any two properties imply the third.12 Moreover, Proposition 2.4
shows that a sequence of social welfare functions satisfies any two of the considered prop-
erties if and only if the corresponding individual utility functions at each date exhibit
constant exponential discounting with the same discount factor.

12 This illustrates a general result of Halevy (2015), proved in terms of preference relations over temporal
payments.
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Now let us illustrate these definitions and properties in our two-agent Ramsey model.
The sequence of individual preferences in the two-agent Ramsey model with private con-
sumption naturally has the form

U i
τ =

∞∑
t=τ

βt−τi u(cit), τ = 0, 1, . . . .

For each individual, this sequence is time-consistent, time-invariant and stationary. Which
of these properties are inherited by the sequence of the planner’s social welfare functions?
The first and the most evident result is that if a Paretian social welfare function at some
date takes into account heterogeneous preferences of both agents, then it is necessarily
non-stationary.
Indeed, it follows from Proposition 2.3 that a Paretian social welfare function at date

τ , i.e., a weighted sum of functions U i
τ ,

Wτ = λτ

∞∑
t=τ

βt−τ1 u(c1
t ) + (1− λτ )

∞∑
t=τ

βt−τ2 u(c2
t ),

is non-stationary unless λτ = 1, in which case Wτ coincides with U1
τ , or λτ = 0, in which

case Wτ coincides with U2
τ .

Non-stationarity of the social welfare function Wτ leads to the following consequence.
Rewrite the function Wτ as

∞∑
t=τ

βt−τ1

{
λτu(c1

t ) +

(
β2

β1

)t−τ
(1− λτ )u(c2

t )

}
.

Since agent 1 is the most patient agent, the factor (β2/β1)t−τ converges to zero as time
goes to infinity. Hence for 0 < λτ < 1, the relative weight associated with consumption of
the less patient agent decreases and become arbitrarily small in the long run. The most
patient agent eventually dominates in the date 0 social welfare function, and increasingly
influences consumption decisions of the society.
Moreover, since the most patient agent emerges as the dominant consumer in the social

welfare function, her socially optimal level of consumption is always positive, and its share
in aggregate consumption converges to 1. At the same time, for the less patient agent
both the socially optimal level of consumption and its share in aggregate consumption
converge to 0. Recall that this effect was already mentioned in Section 2.2, where we
have discussed the properties of a competitive equilibrium in the many-agent Ramsey
model. The above observation illustrates this property of a competitive equilibrium from
the social welfare perspective.
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Another interesting result is that a non-stationary sequence of social welfare functions
can be either time consistent or time invariant. It is seen by comparing Propositions 2.1
and 2.2. Consider the following sequence of social welfare functions:

W TI
τ = λ

∞∑
t=τ

βt−τ1 u(c1
t ) + (1− λ)

∞∑
t=τ

βt−τ2 u(c2
t )

= λu(c1
τ ) + (1− λ)u(c2

τ ) + λβ1u(c1
τ+1) + (1− λ)β2u(c2

τ+1) + . . . , τ = 0, 1, . . . .

The planner uses the same Pareto weights λ and 1 − λ at each date. It follows from
Propositions 2.1 and 2.2 that for 0 < λ < 1, the sequence {W TI

τ }∞τ=0 is time-invariant but
not time-consistent.
Suppose now that at date τ the planner assigns to agents the weights

λ1
τ =

λβτ1
λβτ1 + (1− λ)βτ2

, 1− λ1
τ =

(1− λ)βτ2
λβτ1 + (1− λ)βτ2

, 0 ≤ λ ≤ 1,

and consider the following sequence of social welfare functions:

W TC
τ = λ1

τ

∞∑
t=τ

βt−τ1 u(c1
t ) + (1− λ1

τ )
∞∑
t=τ

βt−τ2 u(c2
t ), τ = 0, 1, . . . .

Clearly, up to the constant factor 1/ (λβτ1 + (1− λ)βτ2 ), the date τ social welfare function
has the form

W TC
τ = λβτ1u(c1

τ )+(1−λ)βτ2u(c2
τ )+λβτ+1

1 u(c1
τ+1)+(1−λ)βτ+1

2 u(c2
τ )+ . . . , τ = 0, 1, . . . .

Hence at any date τ , W TC
τ coincides with the corresponding “tails” of the functions W TC

t

at all earlier dates, 0 < t < τ . It follows from Propositions 2.1 and 2.2 that the sequence
{W TC

τ }∞τ=0 is time-consistent, but not time-invariant (again, unless λ = 0 or λ = 1).13

Note that when λ = 0, λ = 1 or β1 = β2, the social welfare functions W TI
τ and W TC

τ

at each date τ coincide. Hence in these special cases, where the planner’s preferences
essentially depend on a single discount factor, the sequences {W TI

τ }∞τ=0 and {W TC
τ }∞τ=0

define the same sequence of social welfare functions which is both time-consistent and
time-invariant. Moreover, this sequence is also stationary, as Proposition 2.3 indicates.
It follows from Proposition 2.4 that these special cases are actually the only exam-

ples in which the sequence of planner’s preferences simultaneously satisfies these three
properties. Thus our simple two-agent model shows that it is precisely heterogeneity in
discount factors that plays a key role here. This conclusion is a particular case of a very

13 The general case of the time-consistent sequences of social welfare functions with time-varying Pareto
weights is studied in Alcalá (2016).
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general result proved by Zuber (2011). In his framework, agents with arbitrary utility
functions choose arbitrary consumption streams. He studies the properties of utilitarian
aggregation of individual preferences, i.e., social welfare functions in which the individual
utility functions get equal weights. In our terms, utilitarian aggregation combines Pareto-
efficiency and time invariance. Zuber proves that the sequence of planner’s preferences
is Paretian, time-invariant, stationary and time-consistent if and only if all sequences of
individual preferences exhibit constant exponential discounting with the same discount
factor. As he puts it, “Although some people seem to be more patient than others, any
departure from the homogeneous patience case would introduce non-stationarity in the
planner’s objective” (Zuber, 2011, p. 375).
An important way to deal with heterogeneous discount factors in the one-sector many-

agent Ramsey model with private consumption was recently proposed by Drugeon and
Wigniolle (2016). They consider a slightly different concept of social optimum which is
based on the “strategy of consistent planning” introduced by Strotz (1956). At each date
the planner chooses the “today’s” optimal consumption level for each agent as a function
of the current capital stock, under the assumption that the future consumption levels are
also chosen optimally using the same function. This procedure ensures time consistency
in the optimal choices of the planner at each date. Actually, the proposed sequence of
consumption levels is an equilibrium in the Nash sense and has the following consistency
property: in any period there is no motivation for the planner to change or to regret her
action, given her actions in all other periods.
Drugeon and Wigniolle show that their time-consistent solution can be obtained as a

once-and-for-all solution to a standard discounted optimization problem with some time-
varying discount function. In our two-agent case, this problem would take the form

max
∞∑
t=0

γ0,t

(
λu(c1

t ) + (1− λ)u(c2
t )
)
,

s. t. c1
t + c2

t + kt+1 = f(kt), c1
t ≥ 0, c2

t ≥ 0, kt+1 ≥ 0, t = 0, 1, . . . ,

for a properly chosen discount function {γ0,t}∞t=0 and given k0 = k̂0.
Drugeon and Wigniolle (2016) study the properties of this solution and show that if

agents differ in their discount factors, but have the same felicity function and get equal
weights in the social welfare function (in our case, λ = 1/2), then in the time-consistent
solution both agents have identical consumption levels at any date (c∗1t = c∗2t for all t).
Here the distribution of discount factors in the population determines only the aggregate
consumption level at different dates, and does not influence the allocation of consumption
between heterogeneous agents.

29



2. Social Choice in Growth Models with Many Agents: An Overview

The general equilibrium version of the many-agent Ramsey model with private con-
sumption, studied in this section, is usually not paid much attention in social choice
theory. The reason is that, as we have mentioned, any equilibrium allocation is Pareto-
optimal, and hence all the discussed difficulties with social optima can be circumvented
by decentralization and application of the first welfare theorem. Establishing complete
system of financial markets in which consumers can lend or borrow against their wealth
and letting the markets do their job, leads to an optimal allocation. However, in the next
section we consider the many-agent Ramsey model with common consumption, which is
very much like the model studied above, but in which social choice plays a central role.

2.4. Social optima in growth models with common
consumption

Now let us consider the many-agent Ramsey model with common consumption. In this
framework, instead of independent private consumption streams, agents share a common
consumption stream which arises from a collectively consumed public good or a common
property resource. Hence agents’ personal utilities are based on their collective decisions,
and an important question is how the society can make a collective decision, i.e., how a
common consumption stream can be chosen.
Problems of this kind naturally arise in a wide range of settings related to common

property resources. Examples include hunting for animals or grazing of cattle in a common
land, pollution of the atmosphere, or drilling for oil in the common underground reservoir.
Consider a village situated near a fishing ground. The fishing ground is self-managed

by village citizens who differ in their time preferences. What could be said about the
fish stock exploitation, i.e., what is the harvest rate of the fish stock, collectively set by
heterogeneous agents? If all village citizens were identical, then the rate of the fish stock
exploitation depends on their common discount factor. However, it is not immediately
clear, how to determine the harvest rate when there are many different discount factors.
The discussion of the common property resource management was initiated by Hardin

(1968), who noted that an open-access resource tends to be overexploited and labeled this
situation the “tragedy of the commons”. The absence of property rights or difficulties with
establishing them lead to the exploitation of the resource at an excessive rate (compared
to the socially optimal one). A free access market equilibrium is not Pareto optimal: in
the aforementioned different settings there are always excessive fishing, overgrazing, or
redundantly rapid depletion of oil.
A typical solution to the “tragedy of the commons” is to establish private property

rights. Suppose that instead of the fishing ground, there is a meadow near the village
where the citizens graze their cattle. This meadow can be divided into equal plots, and
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each citizen can be assigned proprietary rights over one of these plots. The introduc-
tion of private ownership decentralizes the decision-making process, and the resource
exploitation becomes optimal from the perspective of the society.14 When citizens make
individually rational decisions on how many cattle to graze, each citizen’s choice does
not affect the ability of others to graze, and there is no damage to the commons. Once
the property rights are established, each owner acts optimally according to her own rate
of time preference. This is quite similar to the case of the many-agent Ramsey model
with private consumption considered in the previous section: decentralization leads to a
socially optimal outcome.
The situation is different in the case of common property resources or public goods,

e.g., underground oil reservoir, the fishing ground or the so-called “global commons”. The
non-excludability of these goods prevents the enforcement of suitable private property
rights (or makes the introduction of private ownership extremely costly). For instance, an
obvious tendency of fish to migrate makes it almost impossible to define property rights
over the fish stock. At the same time it is pointless to parcel the fishing ground into the
different plots, which is anyway a complex and costly technical issue.
One might argue that in these cases a solution may be to introduce a governmental

or community resource ownership, and then use quota and licensing systems. There are
reasons to believe that if the socially optimal level of total catch is set equal to the sum of
quotas, then the competitive price established in the market for quotas ensures the optimal
resource exploitation. However, there is immediately another question: what is the level
of total catch? There are no market forces to determine the socially optimal level of total
catch; it depends on the harvest rate collectively set by the village citizens. Therefore, we
came to the point where we have started our discussion: the real question is, what is the
rate of the resource exploitation in a heterogeneous society. Thus the difficulties with the
common property resource management provide a clear incentive to study the decision-
making process under heterogeneous preferences over common consumption streams.
As a natural framework for the analysis of a collective intertemporal decision problem,

we employ the one-sector two-agent Ramsey model with common consumption. Again,
to simplify the presentation, two consumers in the economy differ only in their discount
factors. As in the previous section, in order to discuss the difficulties with collective
intertemporal choice, we need to analyze the sequences of preferences.

14 Of course, this is true only under additional assumption that the property rights are established and
enforced costlessly.
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Let the preferences of agent i over consumption streams C = {ct}∞t=0 at decision date
τ be given by the additively time-separable intertemporal utility function with constant
exponential discounting:

U i
τ (C) =

∞∑
t=τ

βt−τi u(ct), τ = 0, 1, . . . , (2.16)

where βi is the discount factor and u(c) is the felicity function of agent i. As before, agent
1 is the most patient: 1 > β1 > β2 > 0.
We assume that C = {ct}∞t=0 is a common consumption stream. In this model, con-

sumption ct in each period t can be thought as the amount of the extracted renewable or
exhaustible natural resource (public good). The increase in the resource stock, kt+1 − kt,
i.e., its regenerative capacity, is described by a regeneration function g(kt) which depends
on the current size of the stock. If we denote f(k) = g(k) + k, then the dynamics of the
resource stock becomes ct + kt+1 = f(kt), which is the familiar resource constraint. If the
resource is exhaustible, then f(k) = k. If the resource is renewable, it is assumed that
f(k) satisfies the same properties as a neoclassical production function. This model is
very much like the model with private consumption considered in the previous section,
but conveniently interpreted as a common property resource model.
Each agent i = 1, 2 at each date τ can determine a consumption stream that is optimal

from her perspective, by solving the following problem:

max
∞∑
t=τ

βt−τi u(ct),

s. t. ct + kt+1 = f(kt),

ct ≥ 0, kt+1 ≥ 0, t = τ, τ + 1, . . . ,

kτ = k̂τ .

(2.17)

Since there are two agents that are heterogeneous in their time preferences, at each date
there are two different “optimal” consumption streams, each stream is optimal for differ-
ent agent. Which consumption stream will be chosen by the society consisting of these
heterogeneous agents?
It is natural to assume that each agent plays a role in social decision making, and thus

the question is how to aggregate heterogeneous preferences at each single date. This is
actually a problem of constructing an appropriate social welfare function. There are two
principal ways in which this can be done. The first is to construct a social welfare function
ex ante, and determine the common consumption stream as a result of the maximization
of this function by a social planner. The second is to determine the common consumption
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stream directly by some social choice procedure (such as majority voting). In the latter
case, a social welfare function appears ex post being induced by the outcome of this
procedure. Now we will focus on the first of these ways. For the discussion of the second
way, see Section 2.5.
Suppose that a common consumption stream is determined by a benevolent social

planner who maximizes a social welfare function. The social welfare function (sometimes
referred to as the collective utility function) at each particular date is constructed from
individual utility functions, and somehow takes into account and aggregates the prefer-
ences of different agents. Thus the social welfare function (at date τ) Wτ (C) evaluates
different consumption streams from the perspective of the society.
As in the case of private consumption, a very important property of a social welfare func-

tion is Pareto-efficiency. A social welfare function Wτ (C) is Paretian (Pareto-efficient)
if for any consumption streams C and C̃, U i

τ (C) ≥ U i
τ (C̃) for both i = 1, 2 implies

Wτ (C) ≥ Wτ (C̃), and the second inequality is strict whenever the first is strict for both
i = 1, 2. Pareto efficiency means that if all agents prefer consumption stream C to con-
sumption stream C̃, then the social planner should also prefer C to C̃, i.e., the Paretian
social welfare function respects unanimous preference of individuals. Hence this prop-
erty is sometimes referred to as unanimity and is considered as the minimum reasonable
requirement for the social welfare function.
In the two-agent Ramsey model with common as well as with private consumption, the

Paretian social welfare function at an arbitrary date τ naturally appears as a weighted
sum of the individual date τ utility functions of both agents:

Wτ = λ1
τ

∞∑
t=τ

βt−τ1 u(ct) + λ2
τ

∞∑
t=τ

βt−τ2 u(ct) =
∞∑
t=τ

(
λ1
τβ

t−τ
1 + λ2

τβ
t−τ
2

)
u(ct), (2.18)

where the Pareto weights λ1
τ ≥ 0 and λ2

τ ≥ 0 are non-negative and sum to one.
The consumption stream for the society at date τ is obtained as the result of the

maximization of the Paretian social welfare function by the social planner, who solves the
following problem:

max
∞∑
t=τ

(
λ1
τβ

t−τ
1 + λ2

τβ
t−τ
2

)
u(ct),

s. t. ct + kt+1 = f(kt),

ct ≥ 0, kt+1 ≥ 0, t = τ, τ + 1, . . . ,

kτ = k̂τ .
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Note that Paretian social welfare function (2.18) at each date τ resembles the date
τ individual utility function from the sequence (2.16), and is clearly additively time-
separable. The sequence of social welfare functions has the form

Wτ =
∞∑
t=τ

γτ,tu(ct), τ = 0, 1, . . . , (2.19)

where the planner’s discount function at each date τ , Γτ = {γτ,t}∞t=τ , is the weighted
average of the individual discount functions with the corresponding Pareto weights λ1

τ

and λ2
τ :

γτ,t = λ1
τβ

t−τ
1 + λ2

τβ
t−τ
2 , t = 0, 1, . . . .

Due to the heterogeneity in the discount factors, the planner’s discount function at date
τ is not a geometric progression unless λτ = 1 (in which case γτ,t = βt1) or λτ = 0 (in
which case γτ,t = βt2). Hence the problem of the social planner is in general a time varying
discounted optimal growth problem. Nevertheless, under some reasonable assumptions
on the felicity function u(c) and the production function f(k), this problem also has a
solution (see, e.g., Mitra, 1979).
Let us show that in the model with common consumption there arise the same dif-

ficulties with time consistency, time invariance and stationarity as in the model with
private consumption. The definitions given in Section 2.3 can be easily adapted to the
sequences of the social welfare functions of the form (2.19). The following propositions
are restatements of Propositions 2.1–2.4, and can be proved analogously.

Proposition 2.1′. A sequence of discount functions {Γτ}∞τ=0 determines a time consistent
sequence {Wτ}∞τ=0 if and only if for all τ and τ ′ > τ the discount function Γτ ′ up to the
constant factor coincides with the “tail” of the discount function Γτ starting from τ ′, i.e.,

γτ,t
γτ,τ ′

= γτ ′,t , t = τ ′, τ ′ + 1, . . . .

Proposition 2.2′. A sequence of discount functions {Γτ}∞τ=0 determines a time invariant
sequence {Wτ}∞τ=0 if and only if for all τ and τ ′ > τ , the discount functions Γτ ′ and Γτ

are the same, i.e.,
γτ,t = γτ ′,τ ′+t−τ , t = τ, τ + 1, . . . .

Proposition 2.3′. A discount function Γτ determines a stationary utility function Wτ if
and only if

γτ,t = βt−ττ , t = τ, τ + 1, . . . ,

for some constant 0 < βτ < 1.
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Proposition 2.4′. A sequence of social welfare functions {Wτ}∞τ=0 satisfies any two of
the three properties: time consistency, time invariance and stationarity, if and only if it
is of the form

Wτ =
∞∑
t=τ

βt−τu(ct), τ = 0, 1, . . . , (2.20)

for some 0 < β < 1.

Again we find that time consistency, time invariance and stationarity are interrelated.
Any two of these properties necessarily imply the third, and lead to the sequence of social
welfare functions, each element of which exhibits constant exponential discounting with
the same discount factor.
It also follows that aggregation of heterogeneous time preferences in the case of common

consumption is subject to the same difficulties as in the case of private consumption. The
sequences of individual intertemporal utility functions (2.16) are time-consistent, time-
invariant and stationary, while the sequence of social welfare functions (2.19) is in general
not.
Indeed, it follows from Proposition 2.4′ that the sequence of social welfare functions
{Wτ}∞τ=0 is time-consistent, time-invariant and stationary if and only if one of the following
three conditions holds:

1. {Wτ}∞τ=0 coincides with {U1
τ }∞τ=0 (i.e., λ1

τ = 1 for all τ);

2. {Wτ}∞τ=0 coincides with {U2
τ }∞τ=0 (i.e., λ1

τ = 0 for all τ);

3. Both agents have the same discount factor, β1 = β2.

This observation is easily generalized to the case with an arbitrary number of agents
who differ both in their discount factors and felicity functions, as shown by Jackson and
Yariv (2015). Their result can be expressed in our terms as follows: a sequence of time-
invariant Paretian social welfare functions is time-consistent if and only if each element
of this sequence exhibits constant exponential discounting with the same discount factor
which is exactly that of some agent i.15 In other words, the only well-behaved sequence
of social welfare functions is the one which coincides with the sequence of individual utility
functions of some agent. If Pareto weights of at least two agents with different discount
factors are positive, then the time-invariant sequence of social welfare functions is non-
stationary and not time-consistent.
This “impossibility result” in the spirit of Arrow (1950) deserves some comments and

discussion. Jackson and Yariv actually formulate their result as follows: “If there is any
15 The result of Jackson and Yariv (2015) is basically the same as that of Zuber (2011), but obtained in a

slightly different setting. While Zuber considers independent and private consumption streams, Jackson
and Yariv focus on common consumption streams.
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heterogeneity in temporal preferences by way of differing discount factors, then the only
well-behaved collective utility functions that are time consistent and respect unanimity
are dictatorial: they ignore the preferences of all but one agent (or a group of agents who
share the same exact preferences)” (Jackson and Yariv, 2015, p. 161).
It should be emphasized that Jackson and Yariv consider only time-invariant sequences

of social preferences, though not explicitly acknowledging it. Millner and Heal (2016)
note that there is actually a trade-off between time consistency and time invariance in a
non-stationary sequence of social welfare functions. They show that if the planner assigns
different Pareto weights at different dates, then it is possible to achieve time consistency
(at the expense of time invariance).
Their observation can be illustrated in our two-agent case. Suppose that at each date

τ the planner assigns to agents the same positive weights, i.e., λ1
τ = λ and λ2

τ = 1− λ for
some 0 < λ < 1. Then the sequence of social welfare functions (2.19) has the form

Wτ =
∞∑
t=τ

(
λβt−τ1 + (1− λ)βt−τ2

)
u(ct), τ = 0, 1, . . . ,

and Propositions 2.1′–2.3′ imply that this sequence is time-invariant, though not time-
consistent and non-stationary. Instead, suppose that at each date τ the planner assigns
to agents different weights, namely:

λ1
τ =

λβτ1
λβτ1 + (1− λ)βτ2

, λ2
τ =

(1− λ)βτ2
λβτ1 + (1− λ)βτ2

,

for some 0 < λ < 1. Then the sequence of social welfare functions is given by

Wτ =
1

λβτ1 + (1− λ)βτ2

∞∑
t=τ

(
λβt1 + (1− λ)βt2

)
u(ct), τ = 0, 1, . . . ,

and it follows from Propositions 2.1′–2.3′ that this sequence is time-consistent, though
not time-invariant and non-stationary.
This fact has led Millner and Heal (2016) to the conclusion that the choice between

time consistency and time invariance of the planner’s preferences is purely normative.
They argue that time consistency may be more attractive for intragenerational choices,
while time invariance is more suitable for intergenerational choice.
In a recent contribution to the field, Feng and Ke (2017) suggest that in the context

of intergenerational choice, the notion of Paretio-efficiency seems to be too strong, which
may be the key to the problem. Note that the two-agent Ramsey model with common
consumption admits a natural interpretation as an intergenerational model. The sequence
of individual utility functions (2.16) is interpreted as a sequence of intertemporal utility
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functions of different individuals from successive generations. Individual i from generation
τ lives for one period, and her intertemporal utility function is given by U i

τ . Her offspring,
individual i from generation τ + 1, inherits her discount factor and felicity function, and
has the intertemporal utility function U i

τ+1.
Feng and Ke (2017) note that the standard Pareto property is essentially “current-

generation”, in the sense that at each date the planner takes into account only the pref-
erences of the current generation. However, future generations are also affected by the
planner’s decision, and hence the planner at each date should take into account their pref-
erences as well. Thus it is reasonable to introduce the weaker “intergenerational Pareto”
property: if one consumption stream is preferred to another by every individual from
every generation, then the planner should also prefer the former. Clearly, if the planner is
current-generation Paretian, she is also intergenerationally Paretian, but not vice versa.
Recall that in our two-agent case the current-generation Paretian social welfare function

at date τ is given by (2.18), for some non-negative weights λ1
τ and λ2

τ . The intergenera-
tionally Paretian social welfare function at date τ has the form

Wτ =
∞∑
t=τ

{
λ1
τ,t

∞∑
s=t

βs−t1 u(cs) + λ2
τ,t

∞∑
s=t

βs−t2 u(cs)

}
=
(
λ1
τ,τ + λ2

τ,τ

)
u(cτ ) +

(
λ1
τ,τ+1 + λ2

τ,τ+1 + λ1
τ,τβ1 + λ2

τ,τβ2

)
u(cτ+1) + . . . ,

where the sequence of Pareto weights is such that 0 <
∑∞

t=τ

{
λ1
τ,t + λ2

τ,t

}
<∞.

It follows from the results of Feng and Ke (2017) that for any β > β1, each element in
the sequence of the social welfare functions

Wτ =
∞∑
t=τ

βt−τu(ct), τ = 0, 1, . . . ,

is intergenerationally Paretian and strongly non-dictatorial, i.e., the planner at each date
τ does not ignore the preferences of any individual from any generation. In other words,
there always exist appropriate and strictly positive Pareto weights such that for each τ ,

∞∑
t=τ

βt−τu(ct) =
∞∑
t=τ

{
λ1
τ,t

∞∑
s=t

βs−t1 u(cs) + λ2
τ,t

∞∑
s=t

βs−t2 u(cs)

}
.

Thus if the current-generation Pareto property is replaced by the intergenerational Pareto
property, then the sequence of planner’s preferences is stationary, time-consistent and
time-invariant whenever the planner is more patient than the most patient individual.
Another subtlety in Jackson and Yariv (2015) concerns the use of the term “dictato-

rial”, which is slightly misleading. By “dictatorial”, they mean social welfare functions
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that coincide with the individual utility function of one of the agents. However, this is
not the same as the usual definition of dictatorship in social choice theory: an agent is
a dictator if she is chosen to represent the preferences of the society regardless of the
agents’ preferences. This notion can be labeled as ex ante dictatorship. The definition of
dictatorship given by Jackson and Yariv is different: they call an agent a dictator if she
appears to represent the preferences of the society for some fixed profile of preferences.
This notion is essentially ex post dictatorship. The difference between these two notions is
substantial: for instance, an aggregation rule that chooses the preferences of the median
agent in the society is “ex post dictatorial” (in the sense of Jackson and Yariv), while it is
not “ex ante dictatorial” (in the usual sense of social choice theory), because the median
agent clearly differs across profiles of preferences.
Nevertheless, the discussed result of Jackson and Yariv (2015) stresses a very important

problem for aggregation of heterogeneous time preferences. Even though each individual
with her own discount factor is time-consistent, the utilitarian planner (in the standard
Pareto sense) who assigns equal weights to different agents with different discount factors,
is not.16 The only case in which the sequence of social preferences satisfies time consis-
tency, time invariance and stationarity is when only one individual represents the society
as a whole. This case may be realized not only by selecting some agent as a dictator,
but also as a result of some social choice procedure. One of these procedures, namely,
majority voting, we will discuss in the next section.

2.5. Voting over common consumption streams

Another possible way to obtain a social preference ordering is to abandon the idea of
a social planner and instead explicitly model the fact that decisions of the society are
determined through some political process.
A natural way of aggregating heterogeneous preferences is voting: if a feasible plan is

preferred to all other plans according to some voting procedure, then this is the plan a
society chooses. As rightfully noted by Beck (1978), we can thus get rid of the troublesome
terms “social welfare function” and “social discount rate”, and work instead with the more
familiar terms “individual utility” and “individual discount rate”.
Evidently, there exist a lot of different voting procedures, which have been studied in

theory and used in practice. In our discussion we will focus only on the majority voting
rule. First of all, it is the most common in practice as well as in the literature. Second,
the majority rule is known to be the most robust voting procedure in the sense that it

16 See also Anchugina et al. (2016) who generalize the results of Jackson and Yariv (2015) and study
the properties of utilitarian aggregations of heterogeneous discount functions from certain equivalence
classes.
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satisfies a number of desirable normative properties over a larger domain than any other
voting procedure (see Dasgupta and Maskin, 2008).
Suppose that in the many-agent Ramsey model with common consumption, agents

choose their common consumption stream by voting over all feasible streams. A natural
idea is to find a Condorcet winner, i.e., a consumption stream that would be preferred
by a majority of agents when pairwise compared with every other feasible consumption
stream. In voting over one-dimensional choice space, under certain plausible assumptions
a Condorcet winner exists and coincides with the optimal plan of the “median voter”. This
outcome holds much favor in economic and political contexts, because the median voter
effectively appears as the representative of the population whose preferences determine
all decisions of the society.
However, there immediately arises an important difficulty. Agents choose their common

consumption stream over an infinite horizon, hence the choice space is made up of infinite
sequences of consumption and is clearly multi-dimensional. It is known that due to the
high dimensionality of the choice space, a Condorcet winner in general does not exist. A
majority rule in this case is generically intransitive, and one should expect the emergence
of cycles: a majority of agents would prefer consumption stream C2 to C1, C3 to C2 and
C1 to C3, which is known as the Condorcet (1785) paradox. Bernheim and Slavov (2009)
characterize this situation as the “curse of dimensionality”.
Indeed, there are a number of classical theoretical papers (e.g., Davis et al., 1972;

Kramer, 1973; Bucovetsky, 1990) in which different forms of necessary and/or sufficient
conditions for the existence of a Condorcet winner in a general context are derived. It
turns out that when a choice space is multi-dimensional, almost any departure from homo-
geneity of tastes would immediately lead to the intransitivity of majority rule. Moreover,
De Donder et al. (2012) show that there is in general no Condorcet winner in voting over
multi-dimensional choice space even if agents are heterogeneous only in one dimension.
They also argue that in most cases and for any feasible proposal, it is possible to find
another feasible proposal that is favored by all voters except one. These results are nicely
summarized in a quote by Gerald Kramer (1973, p. 296):

when the preferences of individual voters over a multi-dimensional space of
commodity or policy vectors are representable by quasi-concave, differentiable
utility functions, all exclusion conditions for equilibrium under majority rule
are extremely restrictive in the sense that they are incompatible with even
a very modest degree of heterogeneity of tastes. . . . For most purposes such
conditions are probably not significantly less restrictive than the condition of
complete unanimity, and it seems unlikely that they will be of much prac-
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tical help in making social welfare judgements or in understanding political
processes based on majority rule, for multi-dimensional choice problems.

Let us illustrate these difficulties with a simple three-agent three-period example of the
many-agent Ramsey model with common consumption.17 Let the production function be
given by f(k) = k; hence we are faced with the cake eating problem described by Gale
(1967). Suppose that agents have the same logarithmic felicity function u(c) = ln c, and
are heterogeneous only in their discount factors: 1 > β1 > β2 > β3 > 0. Then the utility
function of agent i is given by

U i = ln c0 + βi ln c1 + β2
i ln c2.

Note also that in this case the median voter is the agent with the median discount factor,
i.e., agent 2.
Problem (2.17) for agent i at date 0 becomes as follows:

max ln c0 + βi ln c1 + β2
i ln c2,

s. t. c0 + c1 + c2 = k̂0,

ct ≥ 0, t = 0, 1, 2.

The solution to this problem, the optimal consumption path for agent i, Ci∗ = {ci∗0 , ci∗1 , ci∗2 },
is given by

ci∗0 =
k̂0

1 + βi + β2
i

, ci∗1 =
βik̂0

1 + βi + β2
i

, ci∗2 =
β2
i k̂0

1 + βi + β2
i

.

Suppose that agents vote for the whole consumption stream at time 0. Clearly, the set
of alternatives over which they vote is

C =
{

(c0, c1, c2) ∈ R3
+ | c0 + c1 + c2 = k̂0

}
.

Let us show that if a Condorcet winner exists, then it should coincide with the optimal
consumption path for agent 2. Indeed, suppose the opposite, i.e., that a Condorcet winner
is a consumption stream C∗ = {c∗0, c∗1, c∗2} which lies in C and does not coincide with C2∗.
It is easily seen that C∗ and C2∗ differ at least in two elements if and only if one of the
following inequalities holds:

c∗1 6= β2c
∗
0, or c∗2 6= β2c

∗
1.

17 It is convenient to have an odd number of voters, so from now on our simplest example includes three
agents who differ in their time preferences. Note also that the finite horizon does not reduce the
generality of the analysis, as this example can be easily generalized to the case of infinite time horizon.
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2.5. Voting over common consumption streams

Let for definiteness c∗1 > β2c
∗
0 (all other cases can be considered similarly). Note that in

this case also c∗1 > β3c
∗
0.

Consider the gradient of U i at the point (c∗0, c
∗
1, c
∗
2):

∇U i(c∗0, c
∗
1, c
∗
2) =

(
1

c∗0
,
βi
c∗1
,
β2
i

c∗2

)
.

Compute the inner product of ∇U i(c∗0, c
∗
1, c
∗
2) and the vector z = (1,−1, 0):

∇U i(c∗0, c
∗
1, c
∗
2) · z =

1

c∗0
− βi
c∗1

=
c∗1 − βic∗0
c∗0c
∗
1

.

It is positive for β2 and β3. It follows that for a sufficiently small perturbation of (c∗0, c
∗
1, c
∗
2)

in the direction z (i.e., slightly increasing consumption at time 0 and decreasing consump-
tion at time 1), there exists a consumption stream C ′ = {c′0, c′1, c′2} which lies in C and
which agents 2 and 3 prefer to C∗. Since two agents out of three prefer C ′ to C∗, the
latter consumption stream is not a Condorcet winner. Thus a Condorcet winner, if it
exists, should coincide with the optimal consumption path for agent 2, C2∗.
However, let us now show that C2∗ is not a Condorcet winner. Indeed, the gradient of

U i at the point (c2∗
0 , c

2∗
1 , c

2∗
2 ) is

∇U i(c2∗
0 , c

2∗
1 , c

2∗
2 ) =

1 + β2 + β2
2

k̂0

(
1,
βi
β2

,
β2
i

β2
2

)
.

Compute the inner product of ∇U i(c2∗
0 , c

2∗
1 , c

2∗
2 ) and the vector z = (1,−2, 1):

∇U i(c2∗
0 , c

2∗
1 , c

2∗
2 ) · z =

(
1− 2

βi
β2

+
β2
i

β2
2

)
1 + β2 + β2

2

k̂0

=

(
1− βi

β2

)2
1 + β2 + β2

2

k̂0

.

It is positive for β1 and β3. Hence for a sufficiently small perturbation of (c∗0, c
∗
1, c
∗
2) in the

direction z, there is a consumption stream C̃ which lies in C and which agents 1 and 3

prefer to C2∗. This consumption stream has more consumption at time 0 (to satisfy the
relatively impatient agent 3), more consumption at time 2 (to satisfy the relatively patient
agent 1) and less consumption at time 1 (to make it feasible). Again, since two agents
out of three prefer C̃ to C2∗, the latter consumption stream is not a Condorcet winner.
This contradiction leads to the conclusion that a Condorcet winner does not exist.
Boylan et al. (1996) provide a generalization of our simple example and explicitly prove

that there is no Condorcet winner in the many-agent Ramsey model with common con-
sumption (public good) even when agents differ only in their discount factors. Announcing
their own result, Boylan and McKelvey (1995, p. 863) provide the following comment:
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2. Social Choice in Growth Models with Many Agents: An Overview

The above result may seem surprising at first glance. One might think that,
when utility functions differ only by one parameter, the median voter theorem
would apply, implying that the optimal plan for the voter with the median
discount factor would be a majority core point. In fact, the optimal plan for
the median-discount-factor voter is defeated by a plan supported by a coalition
including patient and impatient voters.

Hence their result is actually well in line with the previously mentioned literature.
Furthermore, Jackson and Yariv (2015) in the already mentioned paper prove another

general impossibility theorem, which implies that voting over consumption streams when
agents have heterogeneous time preferences cannot lead to an unambiguous outcome.
Any non-dictatorial voting rule (in particular, majority and weighted supermajority vot-
ing rules) leads to cycles in collective decisions, unless the set of potential consumption
streams is severely restricted. It follows from their result that the preferences of any single
agent, including the agent with the median discount factor, cannot determine a voting
equilibrium (as it would have to be transitive).
Thus an attempt to incorporate political institutions into the many-agent Ramsey

model faces a serious difficulty. Though the optimal plan of the median agent seems
to be the stable and desirable outcome of majority voting, it is not clear whether there
even exist political institutions that could support and justify the choice of the agent with
the median discount factor.
However, it turns out that there are some ways to overcome all the above mentioned

“impossibility results”. One of these ways was considered by Beck (1978) and, more
recently, by Heal and Millner (2014). Instead of the infinite-dimensional set of all feasible
consumption streams, agents are allowed to vote only over the set of individually optimal
consumption paths. This voting procedure can be actually interpreted as majority voting
over the set of discount factors, and then implementing the optimal consumption path
for the agent with the winning discount factor. Alternatively, Heal and Millner (2014)
propose the following two-step procedure: each agent nominates a consumption stream for
the society to follow, and then agents vote over each pair of nominated streams choosing
a Condorcet winner. It is shown that in voting over all individually optimal paths there
exists a Condorcet winner, which is the optimal consumption path for the agent with the
median discount factor.
In our three-agent three-period example this procedure can be illustrated as follows. In-

stead of voting over the set of all feasible consumption streams,
C =

{
(c0, c1, c2) ∈ R3

+ | c0 + c1 + c2 = k̂0

}
, agents vote over the three-dimensional set

{C1∗, C2∗, C3∗}, where Ci∗ is the optimal consumption path for agent i.
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2.5. Voting over common consumption streams

Let us show that C2∗, the optimal consumption path for the agent with the median
discount factor, is a Condorcet winner in voting over this three-element set. Consider a
pairwise contest between C2∗ and C1∗. Clearly, agent 1 prefers her optimal consumption
stream C1∗, while agent 2 prefers her optimal stream C2∗. The decisive vote belongs
to agent 3, and it is easily checked that she prefers the stream C2∗ to C1∗. Indeed,
ci∗0 = k̂0/(1 + βi + β2

i ) is decreasing in βi, and thus c3∗
0 > c2∗

0 > c1∗
0 . Since agent 2 prefers

C2∗ to C1∗, the same should be true for the more impatient agent 3 who prefers more
consumption at earlier dates even stronger. Similar argument can be applied to a pairwise
contest between C2∗ and C3∗: only agent 3 prefers the stream C3∗, while both agents 1

and 2 prefer the stream C2∗. It turns out that C2∗ wins each of its pairwise contests, and
is thus a Condorcet winner. It is easily seen that though this voting procedure ensures the
existence of a stable outcome, this result comes at the expense of the severely restricted
choice set.
A different voting procedure in the many-agent Ramsey model with common consump-

tion is proposed by Boylan et al. (1996). They start with a finite horizon model and
introduce two additional agents (“political candidates”). In each period the candidates
propose a consumption level for the agents and care only about being elected. Agents
vote for one of the candidates and take into account only their own intertemporal utility of
consumption. The consumption level proposed by the winning candidate is implemented
and becomes the actual consumption for this period. A specific noncooperative game is
then constructed and a subgame perfect Nash equilibrium is studied. Boylan et al. (1996)
prove that for any finite horizon, the optimal consumption path for the agent with the
median discount factor is a unique subgame perfect Nash equilibrium. They also show
that when the time horizon tends to infinity, the sequence of Nash equilibria converges
to the optimal path for the agent with the median discount factor in the infinite horizon
model. This voting procedure, though also yielding the intuitively appealing outcome,
seems quite contrived.
As we have seen, all the considered ways to overcome the absence of a Condorcet

winner are unnecessarily complex. There is, however, a much simpler procedure that
avoids many of the difficulties mentioned above. A natural idea to overcome the “curse of
dimensionality” is to convert an infinite-dimensional choice space, made up of consumption
streams, into a series of one-dimensional choice spaces. The notion of “coordinate-wise”
majority voting was proposed independently by Kramer (1972) and Shepsle (1979). The
proposed procedure implies that agents vote separately in each period, and the resulting
sequence of voting outcomes is an equilibrium in the Nash sense: each element is a
one-dimensional Condorcet winner, given that all other elements are chosen in the same
manner. The outcome of this procedure is known as a Kramer–Shepsle equilibrium.
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A Kramer–Shepsle procedure has many advantages, especially in dynamic models.
First, it has a convenient interpretation as intertemporal (step-by-step) majority vot-
ing under perfect foresight about outcomes of future votes. This is well in line with the
Koopmans’ intertemporal view on economic models discussed in Section 2.3.18 Second,
the impossibility result of Jackson and Yariv (2015) does not hold here. In their frame-
work intransitivities arise only when individuals atemporally vote once and for all on the
whole sequence, while in the Kramer–Shepsle procedure majority voting is done intertem-
porally, step by step. Finally, a Condorcet winner in the multi-dimensional problem is
always a Kramer–Shepsle equilibrium, but the converse need not be true. This actually
means that a Kramer–Shepsle equilibrium may exist in more general circumstances.
Unfortunately, the direct application of the Kramer–Shepsle procedure to the many-

agent Ramsey model leads to a new difficulty. Let us return to the three-agent three-
period example and find a Kramer–Shepsle equilibrium, i.e., a consumption stream each
element of which coincides with the majority choice given the choices of all other elements.
Suppose that at time 0 agents have some common expectations about future consumption,
ce1 and ce2, and vote over the time 0 consumption c0. The preferred time 0 consumption
for agent i is a solution to the following problem:

max
c0

ln c0, s. t. c0 + ce1 + ce2 = k̂0.

Clearly, this optimization problem is degenerate. The overall resource constraint under
given expectations fully predetermines the optimal value of c0. Moreover, this value
is the same for all agents: it is optimal for each agent to consume today as much as
possible, given the future consumption profile and the initial amount of resource. The
same argument applies to voting over c1 and c2. It follows that every consumption stream
{c0, c1, c2} such that ct > 0 for all t and c0+c1+c2 = k̂0, can be obtained as the outcome of
intertemporal voting over consumption levels under perfect foresight. While a Condorcet
winner fails to exist in the considered framework, there is an uncountable number of
Kramer–Shepsle equilibria.

However, Borissov et al. (2014b) propose a Ramsey-type model in which the Kramer–
Shepsle procedure leads to an unambiguous outcome. In the model, agents who differ in
their discount factors, in each period vote on the current shares of public goods in the
aggregate output. It is shown that the equilibrium sequence of these shares is fully deter-
mined by the median discount factor. It follows that the voting outcome is stable and is
determined by the preferences of the median agent — a property which seemed improb-
able according to our previous discussion. The two crucial principles in their framework

18 Note also the similarity between the Kramer–Shepsle procedure and the concept of social optimum in
the many-agent Ramsey model with private consumption proposed by Drugeon and Wigniolle (2016).
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is that agents vote step by step, in accordance with the Kramer–Shepsle procedure, and
agents vote not over the levels of public good, but over its shares in the aggregate output.
It is the combination of these principles that appears to be very fruitful.
Indeed, these ideas can be developed and successfully applied to voting in dynamic

settings, as shown by Borissov et al. (2017). In the framework of the many-agent Ramsey
model with common consumption they consider the following voting procedure (intertem-
poral majority voting): agents vote step by step over the consumption rates (i.e., values
ct/f(kt)) under perfect foresight about the future outcomes of votes. It is proved that the
outcome of intertemporal majority voting coincides with the optimal consumption path
for the agent with the median discount factor.
Note that the described procedure indirectly determines a sequence of social welfare

functions,

W ∗
τ =

∞∑
t=τ

(βmed)
t−τu(ct), τ = 0, 1, . . . .

In each social welfare function W ∗
τ , the Pareto weight of the agent with the median

discount factor is equal to 1, while the Pareto weights of all other agents are equal to
zero. As we have seen in Section 2.4, this sequence is time-consistent, time-invariant and
stationary. The outcome of intertemporal majority voting is both Pareto-optimal and
time-consistent, and coincides with the result of the maximization of the social welfare
function W0. This observation can be interpreted in terms of Jackson and Yariv (2015):
the sequence of Paretian social welfare functions {W ∗

τ }∞τ=0 is well-behaved (i.e., is time-
consistent, time-invariant and stationary) and is “ex post dictatorial”, in the sense that
it coincides with the sequence of utility functions of one particular agent (i.e., the agent
with the median discount factor).

2.6. Discussion

In this chapter we have considered the problem of aggregation of heterogeneous time
preferences in one-sector many-agent Ramsey models. If these models are interpreted as
intergenerational models, then the topic of this chapter is closely related to the important
normative question, how should we discount the future as a society? This problem is
widely discussed in the literature as the problem of determining an appropriate social
discount rate.19

19 Strictly speaking, the social discount rate does not necessarily coincide with the social rate of time
preference. Using the Ramsey (1928) equation, the social discount rate can be written as r = ρ + ηg,
where ρ is the social rate of time preference, η is the consumption elasticity of marginal utility (i.e., a
measure of relative risk aversion) and g is the growth rate of per capita consumption. However, where
this does not lead to misinterpretation, we would use the term “social discount rate” meaning “social
rate of time preference”.
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There is no consensus on how the social discount rate should be determined. Some
theorists argue that the social discount rate should be chosen based on a set of ethical
principles. For instance, Ramsey (1928) himself strongly advocated a social discount rate
of zero: in order not to discriminate against future generations, individuals from different
generations should be counted equally. He saw discounting as “a practice which is ethically
indefensible and arises merely from the weakness of the imagination” (Ramsey, 1928, p.
543). However, Pearce et al. (2003) note that not discounting is in fact discounting at
0%, which also has its own ethical implications that may not be acceptable. This point
of view is emphasized by Koopmans (1967) who coined the term “the paradox of the
indefinitely postponed splurge”: under zero discounting, current generation could never
use the resources because reinvesting them will always do more good for future generations.
According to him, “too much weight given to generations far into the future turns out
to be self-defeating. It does nobody any good. How much weight is too much has to be
determined in each case” (Koopmans, 1967, p. 9).
It seems that we should apply a strictly positive social discount rate. But should this

rate be low or high? This question is especially important in the cost-benefit analysis of
environmental projects, particularly in the models of climate change and global warming,
which appear to be incredibly sensitive to the choice of the social discount rate. The
disagreement about the correct value for the social discount rate resulted in the famous
Stern–Nordhaus debate.
Stern (2007) in his review on the economics of climate change uses the ethical principle

of “intergenerational equity” and applies a very low social rate of time preference of 0.1%,
which results in the social discount rate of around 1.4%. This leads to the assertion that we
should give strong and immediate response to global warming. Nordhaus (2007), in turn,
uses “consumer sovereignty” as the ethical principle, i.e., believes that the social discount
rate should reflect consumers’ real decisions and be based on the revealed preferences of
the members of society. He argues that the social discount rate should coincide with the
real interest rate of 5.5%, and hence postulates the social rate of time preference of 1.5%.
It turns out that Stern’s conclusion no longer holds if costs and benefits from climate
change are discounted at the market interest rate. Thus ethics by itself does not provide
an unambiguous answer as to whether the social discount rate should be zero, small, or
large.
By adopting certain elements of utilitarian ethics, one can apply the “economic” ap-

proach to the choice of the social discount rate. The social discount rate in this approach
is interpreted as the rate of time preference of the social planner whose social welfare
function is a utilitarian aggregation of individual utility functions. As we have seen in
Sections 2.3 and 2.4, there arise certain difficulties with the construction of the appropri-
ate social welfare function. Even when the preferences of individuals are time-consistent,
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time-invariant and stationary, the preferences of the social planner are in general not.
Moreover, when individuals have constant and different discount rates, the planner’s dis-
count rate is non-constant — it declines as time goes on, and tends to the discount rate
of the most patient agent.
The declining discount rates also emerge from some other approaches, for instance,

when uncertainty about the future is taken into account (see, e.g., Pearce et al., 2003;
Gollier and Weitzman, 2010). All these observations can be used to argue that instead
of a single and constant social discount rate, we should use a declining discount rate in
cost-benefit analysis from the perspective of the society (see also the discussion in Arrow
et al., 2014). However, at least in the deterministic case, the declining discount rate of
the social planner leads to the problem of time consistency.20

Yang (2003) suggests that economic modeling of climate change may use a dual-rate
discounting approach. In this framework, social (environmental) discounting is separated
from private (consumption) discounting. A social planner is assumed to have two dif-
ferent discount rates: a consumption discount rate used to discount utility from private
consumption goods, and an environmental discount rate used to discount utility from
public goods (e.g., environmental quality). It is assumed that the environmental discount
rate is lower than the consumption discount rate. Clearly, the sequence of (utilitarian)
social welfare functions here would take the form

Wτ =
∞∑
t=τ

{
βt−τ1 v(qt) + βt−τ2 u(ct)

}
, τ = 0, 1, . . . ,

where v(qt) is the utility from the environmental quality and β1 > β2 (see also Borissov
and Shakhnov, 2011).
It follows from the results discussed in Section 2.3 that each social welfare function Wτ

is non-stationary, and in the long run environmental quality determines the decisions of
the society, while the weight of private consumption becomes negligible. Moreover, the
sequence {Wτ}∞τ=0 is time-inconsistent, which is another difficulty with this approach.21

Relating back to the Stern–Nordhaus debate, the consumer sovereignty principle is
sometimes criticized on the grounds that the application of the revealed preference princi-
ple can be justified only under some strong and unrealistic conditions, which include both
time consistency and time invariance (see, e.g., Caplin and Leahy, 2004). It is claimed
that under more reasonable assumptions, the social planner should be more patient than

20 Newell and Pizer (2003) argue that in the uncertainty case the use of the term “time inconsistency” is
slightly incorrect, because it can be applied only to the cases where it is known with certainty that the
today’s optimal plan will be not followed in the future.

21 It is argued that “As long as public goods and private goods are not substitutable, heterogenous discount
rates can be time-consistent” (Yang, 2003, p. 942), but it does not seem to help in this case.
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consumers. This conclusion is also supported by the results of Feng and Ke (2017) which
we have discussed in Section 2.4. They show that the intergenerationally Paretian so-
cial planner is more patient than the most patient individual in the society. Note that
in equilibrium models with agents that are heterogeneous in their time preferences, the
long-run interest rate exactly coincides with the discount rate of the most patient agent.
Therefore, this approach supports the choice of the social discount rate which is lower
than the market interest rate.
At the same time, the results surveyed in Section 2.5 indicate that it is also possible to

apply the “political” approach to the choice of the social discount rate, i.e., use political
institutions to determine collective choices among heterogeneous agents. As we have
seen, the common result in the literature is that in the presence of heterogeneous time
preferences, multi-dimensional voting cannot lead to an unambiguous outcome. However,
we argue that there exists a simple voting procedure (intertemporal majority voting) in
which the agent with the median discount rate effectively appears as the representative
of the population, whose preferences determine all decisions of the society.
In the case where the discount rates of consumers are heterogeneous, it seems reason-

able that the preferences are revealed through voting decisions. It may be also speculated
that consumer sovereignty is justified, since there is a voting procedure that aggregates
well-behaved preferences, and the outcome of this procedure is Pareto-optimal and time-
consistent, as we have noted in the end of Section 2.5. However, in this case the social
discount rate coincides with the median discount rate in the population, which is presum-
ably much higher than the real interest rate, i.e., the discount rate of the most patient
agent.

2.7. Conclusion

The above discussion, inspired by a purely normative concern, clearly shows the impor-
tance of discounting in economic theory and practice. As we have seen, the question of
discounting causes a lot of controversy even if heterogeneity in time preferences is ig-
nored. However, an increasing number of empirical studies (see Section 2.1) show that
different individuals discount the future differently, and this heterogeneity in individuals’
time preferences should be taken into account in economic modeling.
Hence there arises the problem of aggregation of heterogeneous time preferences, which

is especially relevant in growth models with many agents. Here economic growth theory
meets social choice theory. In this chapter we have considered simple one-sector two-agent
Ramsey models with private as well with common consumption. In order to highlight the
role of discounting, we have assumed that consumers are identical and differ only in
their discount factors. This allowed us to review the literature devoted to aggregation of

48



2.7. Conclusion

heterogeneous time preferences, and to explain the main difficulties related to the problem
of social choice in many-agent growth models as instructive as possible.
The main results here are in the spirit of Arrow’s famous impossibility theorem. In

particular, the preferences (the sequence of preferences) of the social planner satisfy certain
reasonable conditions (time consistency, time invariance, stationarity) if and only if either
all individuals have the same discount factor and are thus identical or the preferences of
the social planner coincide with the preferences of some individual and hence the planner
completely ignores the preferences of all but one individual.
Moreover, a natural attempt to aggregate heterogeneous discount factors via some

voting procedure also faces serious difficulties. A Condorcet winner fails to exist in voting
over multi-dimensional choice space, even though agents are heterogeneous only in one
dimension, and any non-dictatorial voting rule appears to be inherently intransitive. At
the same time, all the considered approaches to overcome the absence of a Condorcet
winner seem quite contrived and complex.
This is where the present thesis fits in and aims to contribute. In Chapter 3 we propose

a simple voting procedure (intertemporal majority voting) and apply it to the collective
choice in the framework of the many-agent Ramsey model with common consumption.
We prove that if agents vote step by step over consumption rates under perfect foresight
about future outcomes of votes, then the outcome of this procedure coincides with the
optimal consumption path for the agent with the median discount factor. This outcome
holds much favor in economic and political contexts, but it was unclear whether there even
exist political institutions that could support and justify this outcome. In some sense, we
provide a microfoundation of the choice of the median agent as the representative of the
society. In Chapter 4 we consider intertemporal majority voting over extraction rates in
the general equilibrium Ramsey-type model with borrowing constraints and exhaustible
natural resources. It is also proved that the equilibrium sequence of extraction rates is
determined by the agent with the median discount factor.
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Model

As we have seen in Chapter 2, the aggregation of heterogeneous preferences via voting
in dynamic resource allocation problems faces a serious difficulty. Due to the multi-
dimensionality of the choice space, voting equilibria under majority rule fails to exist
generically, even in cases where the agents’ type space is one-dimensional. At the same
time, all the proposed ways to overcome the absence of a Condorcet winner are unneces-
sarily complex.
We note that, despite all the “impossibility” results, at each point in time there may

exist a “median voter” whose preferred choice of instantaneous consumption rate is sup-
ported by a majority of agents. Based on this observation, in this chapter we propose
a simple institutional setup in the many-agent Ramsey model with common consump-
tion (intertemporal majority voting) that does not suffer from the problem of generic
non-existence of equilibrium. Importantly, in this setup the temporary voting is not over
consumption levels but over consumption rates. The equilibrium concept that we employ
is Kramer–Shepsle equilibrium with perfect foresight; that is, (i) each period’s decision
follows the majority vote under the assumption that agents maximize their utility given
the decisions in all other periods, and (ii) agents’ expectations about these decisions are
correct in equilibrium (“perfect foresight”). It is worth emphasizing that the institutional
framework is well-defined also without the assumption of perfect foresight.
We show that if agents have the same felicity function and differ only in their discount

factors, the outcome of intertemporal majority voting (an intertemporal voting equilib-
rium) is unique and coincides with the optimal consumption stream for the agent with
the median discount factor. In a sense, our voting procedure provides a microfoundation
of the choice of the optimal consumption stream of the “median” agent.
As an important intermediate result we establish that, for each fixed agent, the step-

by-step determination of the optimal consumption rate under perfect foresight yields the
optimal intertemporal consumption stream. While this technical result probably belongs
to the body of “folk wisdom” within the Ramsey model, we are not aware of a rigorous
proof and include one in this chapter.
We also consider the multi-dimensional heterogeneity case in which agents differ both

in their felicity functions and discount factors. For this general case we provide a charac-
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terization of steady-state and balanced-growth voting equilibria and show the important
difference between them. The steady-state voting equilibrium is fully determined by the
median discount factor, while the balanced-growth voting equilibrium depends not only
on the agents’ discount factors, but also on the agents’ intertemporal elasticities of sub-
stitution.
This chapter is based on the published article “On Discounting and Voting in a Simple

Growth Model” (Borissov, Pakhnin and Puppe, 2017) and is organized as follows. Section
3.1 provides a preliminary discussion of the topic. Section 3.2 introduces our model. In
Section 3.3 two simple examples illustrate the idea of intertemporal voting and explain
the role of consumption rate. In Section 3.4 we define temporary and intertemporal voting
equilibria. In Section 3.5 we consider the step-by-step decision-making process for a single
agent. Section 3.6 states our main results. In Section 3.7 we study the general case where
agents differ both in their discount factors and felicity functions, and characterize steady-
state and balanced-growth voting equilibria. Section 3.8 concludes. All the proofs are
relegated to Section 3.9.

3.1. Introduction

The problem of aggregating heterogeneous time preferences arises in many contexts. The
many-agent Ramsey model with common consumption that we employ in this chapter
admits two interpretations. It can be viewed either as a model of growth and physical
(man-made) capital accumulation, or as a model of renewable or exhaustible natural
resource allocation over time.
Though we present our model in terms of the traditional theory of economic growth, it

is instructive to consider the problem of aggregating heterogeneous time preferences also
within the common property resource framework. Examples are the hunting for animals,
the grazing of cattle on a common ground, the pollution of the atmosphere, or the drilling
for oil in a common underground reservoir.
In these contexts, an issue of evident importance is the determination of the socially

desirable harvest (extraction) rate. Consider a village situated near a fishing ground. The
fishing ground is self-managed by village citizens, who differ in their time preferences. The
question is: what is the harvest rate of the fish stock collectively set by heterogeneous
agents? If all citizens in the village are identical, then the rate of the fish stock exploitation
can be easily determined by their common discount factor. However, it is not clear how
to determine the harvest rate when citizens have different discount factors.
One might try to argue that the introduction of property rights can (indirectly) solve

the problem. Indeed, the typical and well-known solution to the “tragedy of the commons”
is to establish private property rights. Once the property rights are enforced, each owner
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acts optimally according to her own time preference. This might circumvent the problem
in cases where suitable property rights can be established.1 However, often the non-
excludability of public goods prevents the enforcement of suitable private property rights.
This is likely to occur in the case of the underground oil reservoir, the fishing ground, or
the so-called “global commons”. For instance, the tendency of fish to migrate makes it
impossible to define geographically determined property rights over the fish stock. In this
case a solution may be to introduce a governmental or community resource ownership,
but then it is necessary to find a non-market mechanism of determining the harvest rate.
The Ramsey (1928) optimal growth framework is often used to study general equilib-

rium models with heterogeneous agents who differ in their discount factors (see Becker,
2006, for an excellent survey). In this kind of models each agent separately solves her
own optimization problem and thus has an independent private consumption stream.
However, the Ramsey framework also allows one to study how heterogeneous agents

make joint decisions over common consumption streams. It does not matter whether
“common consumption” is a collectively consumed public good or a private good that is
consumed according to some fixed and commonly known sharing rule. What is impor-
tant is that agents’ personal utilities are based on their collective decisions, i.e., on the
common consumption stream they choose. Here, economic growth theory meets social
choice theory, and there is indeed a literature that analyzes how political institutions
can be incorporated into growth models in order to determine collective choices among
heterogeneous agents (see, e.g., Beck, 1978; Boylan, 1995; Boylan et al., 1996).
A natural way of aggregating heterogeneous preferences is voting. Suppose that agents

vote over all feasible consumption streams by pairwise majority voting. Then, it is well-
known that, due to the high dimensionality of the underlying choice space, there does not
in general exist a Condorcet winner, i.e., for every feasible consumption stream there exists
another feasible consumption stream that is preferred by a majority (see, e.g., Plott, 1967;
Davis et al., 1972; Kramer, 1973; McKelvey, 1976; Bucovetsky, 1990).2 Moreover, the fact
that agents differ only in one parameter does not help: there still is no Condorcet winner
in voting over a multi-dimensional choice space even if the agents’ type space is one-
dimensional (see, e.g., De Donder et al., 2012). Boylan et al. (1996) consider voting over
feasible consumption paths in the Ramsey optimal growth model and prove that there
is in general no Condorcet winner. In a more recent paper, Jackson and Yariv (2015)
analyze general aggregation methods when agents differ only in their discount factors;
they prove that, at any given profile of individual preferences, the collective preferences

1 If the “owners” are groups of individuals with heterogeneous time preferences, the problem might of
course persist within these groups.

2 Bernheim and Slavov (2009) characterize this kind of situation as the “curse of dimensionality”.
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resulting from any Pareto efficient aggregation rule are either time-inconsistent or they
coincide with the preferences of one individual in the given profile.3

Despite these negative results, it appears that in a model in which agents differ only
in their discount factors, the optimal consumption path for the agent with the median
discount factor has some claim to be a natural and appealing collective choice. But clearly,
the mentioned impossibility results imply in particular that also the optimal consumption
path for the “median” agent is in general not a Condorcet winner among all feasible paths.
One way to overcome this difficulty has been considered by Beck (1978) and, more

recently, by Heal and Millner (2014). In these models, agents are only allowed to vote
over the set of individually optimal paths. It can be shown that, among all individually
optimal paths, the optimal path for the agent with the median discount factor is indeed
a Condorcet winner. However, ensuring the existence of a stable voting outcome in this
way is not very satisfactory since it is made possible only by severely restricting the choice
set.
A different voting mechanism is proposed by Boylan et al. (1996) who introduce two

additional agents (“political candidates”) to the model. In each period the candidates
propose a consumption level for the agents and care only about being elected. Agents
vote for one of the candidates and care only about consumption. A specific noncooperative
game is then constructed, and it is shown that the subgame perfect equilibrium coincides
with the optimal path for the agent with the median discount factor. Although it yields the
desired and intuitive outcome, this voting procedure seems quite contrived and complex.
The purpose of this chapter is to propose a more intuitive and tractable voting procedure

that yields as outcome the optimal consumption path for the agent with the median
discount factor if agents have the same felicity function, and that can be applied also
in the general case in which agents have different discount factors and different felicity
functions.4

We consider a Ramsey-type growth model with agents who may differ in their felicity
functions and time preferences. Agents maximize their intertemporal discounted utilities
by allocating at each point in time a given amount of a single good between consumption
which provides instant utility, and investment which is used in production. The technology

3 Note that the latter property, which may be labelled “ex post dictatorship”, is weaker than the standard
Arrowian notion of dictatorship since the individual whose preference coincides with the collective
preference may differ across profiles.

4 The idea to use dynamic voting in order to determine a stable outcome has been investigated in a
number of specific models. In Borissov et al. (2014a) agents vote for a tax aimed at environmental
maintenance, Borissov et al. (2014b) study voting over the shares of public goods in GDP, and Borissov
and Pakhnin (2018) consider voting over extraction rates in a model with exhaustible natural resources.
In all cases, the equilibrium policy is determined by the agent with the median discount factor as in
this chapter. However, these models lack generality because they use specific forms of the felicity and
production functions.
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is described by a production function, which is assumed to be either strictly concave or
linear.
We suppose that agents share a common consumption stream. The good is consumed

either collectively or privately according to some fixed sharing rule. In the common prop-
erty resource interpretation of our model, the capital stock is viewed as the renewable
resource stock, the production function becomes the regeneration function, and the con-
sumption level is the amount of the resource extracted (= the harvest rate times the
available resource stock).
Within our framework, we propose a simple and natural voting procedure according to

which agents choose a consumption path from the set of all feasible consumption paths
by “intertemporal majority voting”. The two crucial principles in this institutional setup
are that (i) voting is done “step-by-step”, and (ii) voting is not over the consumption
level itself, but over the consumption rate. We avoid the “curse of dimensionality” by
transforming a multi-dimensional choice space into a series of one-dimensional choice
spaces. Indeed, the dynamic intertemporal structure of the model itself naturally suggests
to consider institutions that also allow for intertemporal choices of agents. The solution
concept given the proposed intertemporal voting procedure is Kramer–Shepsle equilibrium
(Kramer, 1972; Shepsle, 1979).5

Given the general idea to transform the multi-dimensional choice problem into a se-
quence of one-dimensional choice problems, an important issue that has to be addressed
is how the expectations should be formed. The important feature of our approach is that
expectations are formed precisely about future consumption rates. If this is the case,
agents can vote today over the consumption level as well as over the consumption rate,
the outcome of voting will be the same. On the other hand, one-dimensional voting over
the current consumption level under given expectations about the consumption levels in
all other periods is pointless, since consumption in each period is uniquely determined
by consumption in all other periods via the overall resource constraint. Thus, if future
consumption is given, there is no trade-off between consumption today and consumption
in the future (we provide a simple example in Section 3.3.1 below to illustrate this point),
and formally, every feasible consumption path is a Kramer–Shepsle equilibrium in our
model.
To implement the idea of intertemporal majority voting in a fruitful manner, we look

at the problem at hand from a slightly different perspective. Originally, the model is
formulated in terms of consumption levels, and mathematically, it involves an optimal

5 In general, a vector of policies is a Kramer–Shepsle equilibrium if for any single dimension the corre-
sponding policy in this dimension coincides with the majority choice, given the equilibrium choices in
all other dimensions. Clearly, if the multi-dimensional problem admits a Condorcet winner, then the
Condorcet winner constitutes a Kramer–Shepsle equilibrium.
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control problem with the consumption level as control variable. We make a change of
variables and use instead the consumption rate (= 1− savings rate) as control variable.6

Using this change of variable, we define a voting equilibrium in two stages, following the
traditions of dynamic macroeconomics and applying the Hicks–Grandmont temporary
equilibrium approach (Hicks, 1939; Grandmont, 1977).
First, for any point in time agents vote by majority rule over the current consumption

rate, given the current capital stock and some expectations about future consumption
rates. This yields a one-dimensional decision problem, and we show that agents’ pref-
erences over the current consumption rate are single-peaked, and therefore the median
voter theorem applies. If, in addition, agents have the same felicity function and the
same expectations, at each given point in time the temporary voting equilibrium (i.e., the
instantaneous Condorcet winner) is the preferred consumption rate for the agent with the
median discount factor.
Second, an intertemporal majority voting equilibrium is defined as a sequence of tempo-

rary voting equilibria such that all agents have perfect foresight about outcomes of future
votes. We prove that if agents have the same felicity function, there is a unique intertem-
poral voting equilibrium, which is the optimal consumption path for the agent with the
median discount factor. The proof is based on the general result that the step-by-step
determination of the consumption rate under perfect foresight for any given agent results
in the (“once-and-for-all”) optimum in terms of consumption levels for this agent. This
result, though not surprising, is of interest in itself, and we present it in Section 3.5 below.
We thus view our analysis as providing an institutional “microfoundation” for the choice

of the optimal consumption path for the agent with the median discount factor, a proposal
that has been repeatedly put forward in the literature but without an ultimately appealing
justification so far.
If agents differ both in their discount factors and felicity functions, the intertemporal

voting equilibrium is clearly no longer determined by the discount factor alone. However,
even with infinite-dimensional heterogeneity we are still able to obtain some results. In
the case of a strictly concave production function, we define the notion of a steady-state
voting equilibrium, and show that it is unique and again determined by the median
discount factor. In the case of a linear production function, we define the notion of a
balanced-growth voting equilibrium, prove its existence and uniqueness, and show that it
is determined by the “median growth rate”.

6 The savings rate as control variable in the Ramsey model has been used by Phelps and Pollak (1968)
and Peleg and Yaari (1973). These authors study agents’ behavior under time-inconsistent preferences,
and ask when the chosen plan of actions will be actually followed by rational individuals in the future.
By contrast, we assume time-consistent preferences throughout.
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Note that the outcome of intertemporal majority voting (i.e., the optimal consumption
path for the “median” agent) is clearly both time-consistent and Pareto efficient. This is
well in line with the aforementioned result of Jackson and Yariv (2015) since the collective
choice in our setup indeed coincides with the preferences of one particular (“median”)
agent.
In this chapter we do not address questions related to uncertainty of future economic

development. There is a lively and ongoing discussion on how to discount the future under
uncertainty (see, e.g., Pearce et al., 2003; Gollier and Weitzman, 2010; Traeger, 2013).
While the introduction of uncertainty seems to bring the problem of choosing a consump-
tion path closer to real life decisions, it also complicates matters quite dramatically. Our
hope is that, even though our analysis does not directly contribute to the literature of
discounting the future under uncertainty, the idea of intertemporal majority voting might
be also fruitfully applicable to this more general setting.

3.2. The model

We consider a Ramsey-type growth model with heterogeneous agents and common con-
sumption. Suppose T ∈ N∪{∞} is the length of the time horizon, which can be finite or
infinite. Let time be T = {0, 1, . . . , T} when T <∞, and T = {0, 1, . . .} when T =∞.
There is an odd number L of heterogeneous agents indexed by i = {1, 2, . . . , L}. The

heterogeneity is captured by agents’ discount factors and felicity functions. Agent i has
a discount factor βi ∈ (0, 1), and a felicity function ui : R++ → R which satisfies the
following conditions:

u′i(c) > 0, u′′i (c) < 0, lim
c→0

u′i(c) = +∞.

Her intertemporal utility function is of the form
∑

t∈T β
t
iui(ct), where C = {ct}t∈T is the

common consumption stream. It is not critical whether actual consumption is common
or private. In the latter case there is a fixed and commonly known sharing rule. For
example, if this rule is egalitarian, then ui(c) should be replaced with ui(c/L). What is
important is that agents’ personal utilities are based on their collective decisions.
A single homogeneous good is produced. In each period t ∈ T the available amount

of good is allocated between consumption ct and capital kt+1 for use in the next period
production: ct + kt+1 = f(kt), where f : R+ → R+ is a production function.
As was noted above, our model can also be considered as a common property resource

model. In this case k should be viewed as the stock of a renewable or exhaustible nat-
ural resource, f(k) as a function describing regenerative capacity of the resource, and
consumption as the amount of the resource extracted. In resource economics, the regen-
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erative capacity of a resource is typically described in terms of a so-called regeneration
(net growth) function g(k), which gives the level of net growth of the resource stock de-
pending on the size of the stock, k. If the resource stock at the beginning of period t is kt
and harvest during period t is ct, then the resource stock at the beginning of period t+ 1

is kt+1 = g(kt)− ct + kt. Thus, if we interpret our model as a common property resource
model, then f(k) = g(k) + k. If the resource is exhaustible, then f(k) = k.
We assume that either

Case 1. Strictly concave production function
The production function satisfies the following properties:

f(0) = 0, f ′(k) > 0, f ′′(k) < 0, ∃k̄ : f(k̄) = k̄, βminf
′(0) > 1, (3.1)

where βmin is the minimal discount factor in the set {βi}Li=1

or

Case 2. Linear production function
The production function is linear:

f(k) = Ak, A > 0.

In this case we additionally assume that the felicity function of every agent is of the CIES
(constant intertemporal elasticity of substitution) form:

ui(c) =

 c1−ρi
1−ρi , if 0 < ρi < +∞, ρi 6= 1,

ln c, if ρi = 1.
(3.2)

For each agent i, consider the following optimization problem:

max
∑
t∈T

βtiui(ct), s. t. ct + kt+1 = f(kt), ct ≥ 0, kt+1 ≥ 0, t ∈ T. (3.3)

In Case 1 (strictly concave production function), maximization problem (3.3) has a
unique solution (optimal path) for each agent i. The same holds true in Case 2 (linear
production function) if βiA1−ρi < 1.

Definition. The solution to problem (3.3), {ci∗t , ki∗t+1}t∈T, is called an optimum in terms
of consumption levels for agent i.
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3.3. Intertemporal voting: examples

If all agents have the same felicity function and discount factor, they have the same
optimal path, so there is no collective choice problem. Which consumption stream will
be chosen by a society that consists of heterogeneous agents?
A natural way of aggregating heterogeneous preferences is voting, and one may hope

that some form of majority voting would result in the outcome supported by the “median
voter”. For instance, in the case where agents differ only in their time preferences, the
median voter is the agent with the median discount factor. However, Boylan et al. (1996)
show that in the latter case the path optimal for the agent with the median discount
factor is “blocked” by the coalition consisting of all other agents. Moreover, a Condorcet
winner does not in general exist.
A natural idea to overcome the absence of a Condorcet winner is to convert a multi-

dimensional choice space, made up of consumption streams, into a series of one-dimensional
choice spaces. The basic notion of “coordinate-wise” majority voting was proposed in-
dependently by Kramer (1972) and Shepsle (1979). This approach in dynamic models
can be interpreted as intertemporal (step-by-step) voting under perfect foresight about
outcomes of future votes. In this section we consider two simple examples in order to
gain intuition about intertemporal voting procedures and analyze the applicability of such
procedures to our model.
The aim of the first example is to explain our approach within the simplest framework.

It illustrates the absence of a Condorcet winner and shows that one-dimensional voting
over current consumption under given expectations about the future consumption levels
is pointless, but if the voting agents have perfect foresight about the future consumption
rates, then the outcome of intertemporal voting coincides with the optimal consumption
stream for the “median” agent. The second example relates intertemporal voting to well-
known results for the Ramsey model with logarithmic preferences and Cobb–Douglas
production function.

3.3.1. Finite horizon example

Consider the following three-period three-agent example: T = 3, L = 3, ui(c) = ln c, and
f(k) = k (thus we are dealing with an intertemporal cake-eating problem).
First, suppose that agents vote over the whole consumption stream only once, at time

0. It is easy to note that in this case, the set of alternatives over which they vote is
C = {(c0, c1, c2) ∈ R3

+ | c0+c1+c2 = k0}, the objective function of agent i is U i(c0, c1, c2) =

ln c0 + βi ln c1 + β2
i ln c2, and problem (3.3) becomes as follows:

max U i(c0, c1, c2) s. t. c0 + c1 + c2 = k0, c0 ≥ 0, c1 ≥ 0, c2 ≥ 0.
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The solution to this problem, {ci∗0 , ci∗1 , ci∗2 }, is given by

ci∗0 =
k0

1 + βi + β2
i

, ci∗1 =
βik0

1 + βi + β2
i

, ci∗2 =
β2
i k0

1 + βi + β2
i

.

As was noted above, it seems natural to conjecture that a Condorcet winner exists and
coincides with the solution to problem (3.3) for the agent with the medial discount factor
βmed, i.e., with the triple {c∗0, c∗1, c∗2} given by

c∗0 =
k0

1 + βmed + β2
med

, c∗1 =
βmedk0

1 + βmed + β2
med

, c∗2 =
β2
medk0

1 + βmed + β2
med

.

However, this conjecture is false. Indeed, the gradient of U i at the point (c∗0, c
∗
1, c
∗
2) is

∇U i(c∗0, c∗1, c∗2) =
1 + βmed + β2

med

k0

(
1,

βi
βmed

,
β2
i

β2
med

)
.

Let us compute the inner product of ∇U i(c∗0, c∗1, c∗2) and z = (1,−2, 1):

∇U i(c∗0, c∗1, c∗2) · z =

(
1− 2

βi
βmed

+
β2
i

β2
med

)
1 + βmed + β2

med

k0

=

(
1− βi

βmed

)2
1 + βmed + β2

med

k0

.

It is positive if βi 6= βmed. It follows that for a sufficiently small perturbation of {c∗0, c∗1, c∗2}
in the direction z, we can find a consumption stream {c′0, c′1, c′2} which lies in C and which
the agents with βi 6= βmed prefer to {c∗0, c∗1, c∗2}. This consumption stream has more
consumption at time 0 (to satisfy the agent whose discount factor is lower than βmed),
more consumption at time 2 (to satisfy the agent whose discount factor is higher than
βmed) and less consumption at time 1 (to make it feasible). Since two agents out of three
prefer {c′0, c′1, c′2} to {c∗0, c∗1, c∗2}, the latter consumption stream is not a Condorcet winner.
Moreover, it is possible to show (see Boylan et al., 1996) that no other consumption stream
is a Condorcet winner and thus a Condorcet winner does not exist.

Let us now try to find a Kramer–Shepsle equilibrium, i.e., a consumption stream each
element of which coincides with the majority choice, given the choices of all other elements.

Suppose that at time 0 agents have some common expectations about future consump-
tion, c1 and c2, and vote over the time 0 consumption c0. The preferred time 0 consumption
for agent i is the solution to the following problem:

max
c0

ln c0, s. t. c0 + c1 + c2 = k0.
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However, this optimization problem is degenerate. The overall resource constraint under
given expectations fully predetermines the optimal value of c0. Moreover, this value is
the same for all agents: it is optimal for all agents to consume today as much as possible,
given the future consumption profile and the initial amount of capital. The same argument
applies to voting over c1 and c2. It follows that every consumption stream {c0, c1, c2} such
that c0 < k0, c1 < k0−c0, and c2 = k0−c0−c1, can be obtained as a result of intertemporal
voting over consumption levels under perfect foresight. Such a voting procedure seems to
be meaningless.
However, this observation does not invalidate the idea to transform a multi-dimensional

choice problem into a sequence of one-dimensional choice problems. To look at the same
example from a different perspective, let us formulate the initial problem in terms of
consumption rates e0 = c0/k0, e1 = c1/k1, e2 = c2/k2, instead of consumption levels
{c0, c1, c2}. Then the utility function of agent i takes the form

V i(e0, e1, e2) = ln (e0k0) + βi ln (e1(1− e0)k0) + β2
i ln (e2(1− e1)(1− e0)k0) ,

the problem of utility maximization for agent i becomes

maxV i(e0, e1, e2), s. t. 0 ≤ e0 ≤ 1, 0 ≤ e1 ≤ 1, 0 ≤ e2 ≤ 1,

and its solution {ei∗0 , ei∗1 , ei∗2 } is given by

ei∗0 =
1

1 + βi + β2
i

, ei∗1 =
1

1 + βi
, ei∗2 = 1.

Let us apply the intertemporal majority voting procedure to the problem formulated in
terms of consumption rates. Agents vote over the current consumption rate under given
past consumption rates and expectations about future consumption rates. Suppose that
at time 0 expectations about future consumption rates are e1 and e2. Then the preferred
time 0 consumption rate for agent i, ei0, is the solution to the following problem:

max
0≤e0≤1

V i(e0, e1, e2).

It is not difficult to check that it coincides with the first element of the optimum in terms
of consumption rates for agent i: ei0 = ei∗0 .7

Clearly, the preferences of agents in one-dimensional voting over e0 are single-peaked,
and the preferred values ei0, i = 1, 2, 3, are decreasing in βi. By the median voter theorem,

7 Due to the simplicity of the example, ei0 does not depend on expectations about future consumption
rates.
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the Condorcet winner in this vote exists. It is equal to the preferred time 0 consumption
rate for the agent with the median discount factor, e∗0 = 1

1+βmed+β2
med

.
Now consider voting over the time 1 consumption rate. Agents already know that the

time 0 consumption rate is equal to e∗0 and have expectations about the time 2 consumption
rate, e2. Then the preferred time 1 consumption rate for agent i, ei1, is the solution to the
following problem:

max
0≤e1≤1

V i(e∗0, e1, e2).

Evidently, the preferred time 1 consumption rate for agent i coincides with the second
element of her optimum in terms of consumption rates: ei1 = ei∗1 . By the median voter
theorem, a Condorcet winner exists and is equal to the preferred time 1 consumption rate
for the agent with the median discount factor, e∗1 = 1

1+βmed
.

Finally, the problem of finding the preferred time 2 consumption rate for agent i takes
the form:

max
0≤e2≤1

V i(e∗0, e
∗
1, e2).

The solution to this problem coincides with ei∗2 = 1. Since all agents vote unanimously, a
Condorcet winner exists and is equal to e∗2 = 1.
Thus we obtain the sequence of consumption rates E∗ =

{
1

1+βmed+β2
med

, 1
1+βmed

, 1
}
. Each

element of E∗ is the Condorcet winner in one-dimensional voting over the single consump-
tion rate at the corresponding instant in time under known values of previous consumption
rates and given expectations about future consumption rates. It is clear that the sequence
E∗ is the solution to the utility maximization problem in terms of consumption rates for
the agent with the median discount factor.

3.3.2. Infinite horizon example

Consider now the infinite horizon problem with the same logarithmic felicity function
for all agents and a Cobb–Douglas production function. Given k0 > 0, the optimization
problem in terms of consumption levels for agent i is as follows:

max
∞∑
t=0

βti ln ct, s. t. ct + kt+1 = kαt , ct ≥ 0, kt+1 ≥ 0, t = 0, 1, . . . ,

where 0 < α ≤ 1. It is well-known that the solution to this problem is characterized by
a constant over time savings rate, equal to αβi. Therefore the optimal consumption rate
is also constant over time and equal to 1− αβi. It follows that the optimum in terms of
consumption rates for agent i is given by the sequence {1− αβi, 1− αβi, . . .}.
Let us introduce consumption rates: et = ct/k

α
t , t = 0, 1, . . .. To describe intertemporal

majority voting over consumption rates, suppose that at an arbitrarily chosen point in
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time, τ , the stock of capital, kτ > 0, is given and agents have some expectations about
future consumption rates, {et}∞t=τ+1. Then the objective function of agent i in voting over
eτ is given by

ln (eτ (kτ )
α)+βi ln

(
eτ+1(1− eτ )α(kτ )

α2
)

+β2
i ln

(
eτ+2(1− eτ+1)α(1− eτ )α

2

(kτ )
α3
)

+ . . .

= ln eτ + αβi ln(1− eτ ) + α2β2
i ln(1− eτ ) + . . .+ Γiτ = ln eτ +

αβi
1− αβi

ln(1− eτ ) + Γiτ ,

where

Γiτ = ln ((kτ )
α) + βi ln

(
eτ+1(kτ )

α2
)

+ β2
i ln

(
eτ+2(1− eτ+1)α(kτ )

α3
)

+ . . .

is a term that depends on kτ and expectations, but does not depend on the variable over
which agents vote. If 0 < et < 1, t > τ, and 0 < lim inft→∞ et ≤ lim supt→∞ et < 1, then
−∞ < Γiτ < +∞ and hence the objective function of each agent is well-defined. To find
her preferred time τ consumption rate, agent i needs to solve the following equation:

d

deτ

(
ln eτ +

αβi
1− αβi

ln(1− eτ )
)

= 0.

Clearly, the solution to this equation is equal to the optimal consumption rate 1− αβi.8

The preferences of agents in one-dimensional voting over the time τ consumption rate
are single-peaked and the preferred consumption rates negatively depend on βi. Therefore,
by the median voter theorem, the winner in majority voting over the time τ consumption
rate is the preferred consumption rate for the “median” agent (i.e., the agent with the
median discount factor βmed), 1−αβmed. If voting takes place at each time, we obtain the
sequence {1−αβmed, 1−αβmed, . . .}, which is exactly the optimum in terms of consumption
rates for the agent with the median discount factor.
The above examples illustrate two important aspects of using the consumption rate

as the control variable. First, for each agent the sequence of the preferred consumption
rates coincides with the optimum in terms of consumption rates. Second, intertemporal
majority voting over consumption rates yields, as outcome, the optimum in terms of
consumption rates for the agent with the median discount factor.
It is natural to ask whether these results can be generalized to a general Ramsey-

type model. The main difficulty is that the preferred time τ consumption rate for each
agent is generically a function of all expected future consumption rates. If agents form

8 Due to the logarithmic felicity functions and the Cobb–Douglas production function, the preferred time
τ consumption rate for each agent is independent of expectations. In a number of papers (see Borissov
et al., 2014a,b; Borissov and Pakhnin, 2018), this fact is used to generalize the considered example to
voting in a dynamic general equilibrium framework.
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expectations arbitrarily, there is no reason to expect that a reasonable outcome of step-
by-step voting procedure will be obtained. However, we shall show that if agents have
perfect foresight about future decisions, then under appropriate assumptions the outcome
of such a procedure indeed coincides with the optimum in terms of consumption rates for
the “median” agent.

3.4. Intertemporal voting: definitions

As we have seen, the intertemporal majority voting procedure is based on the two cru-
cial principles: (i) voting is done step-by-step, and (ii) voting is not over consumption
levels, but over consumption rates. In this section we begin by presenting the initial opti-
mization problem in terms of consumption rates, and then give a formal definition of an
intertemporal voting equilibrium.

3.4.1. Optimization problem in terms of consumption rates

The control variable in problem (3.3) is the consumption level ct. Let us make a change
of variables and take the consumption rate

et =
ct

f(kt)
, t ∈ T, (3.4)

as the control variable.9 Clearly, to be feasible, the sequence of consumption rates must
be such that 0 ≤ et ≤ 1, t ∈ T. If we interpret our model as a model of natural resource
allocation over time, then the consumption rate et becomes the rate of extraction.
Taking into account (3.4) and the constraints in (3.3), we can express the time t con-

sumption and capital stock in terms of k0 and all previous consumption rates:{
ct = etf ((1− et−1)f ((1− et−2)f(· · · f(k0)))) , t ∈ T,
kt+1 = (1− et)f ((1− et−1)f ((1− et−2)f(· · · f(k0)))) , t ∈ T.

(3.5)

Clearly, given k0, there is a one-to-one correspondence between feasible consumption paths
{ct}t∈T and feasible sequences of consumption rates {et}t∈T.
Substituting the resource constraints into the objective function and using (3.5), we

rewrite the utility function of agent i in terms of consumption rates as follows:

ui (e0f(k0)) + βiui (e1f ((1− e0)f(k0))) + β2
i ui (e2f ((1− e1)f ((1− e0)f(k0)))) + . . . .

9 We apply the change of control variable similar to that of Phelps and Pollak (1968), and Peleg and
Yaari (1973). They used as control variable savings rate, which in the Ramsey model is naturally
related to consumption rate: kt+1/f(kt) = st = 1 − et. However, in the decision-making context it
seems reasonable to use consumption rate instead of savings rate.
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Then problem (3.3) becomes

max
∑
t∈T

βtiui (etf ((1− et−1)f ((1− et−2)f(· · · f(k0))))) , s. t. 0 ≤ et ≤ 1, t ∈ T.

(3.6)

Definition. The solution to problem (3.6), Ei∗ = {ei∗t }t∈T, is called an optimum in terms
of consumption rates for agent i.

It is clear that, given k0, there is a one-to-one correspondence between optima in terms
of consumption levels and optima in terms of consumption rates. It follows that there is
a unique optimum in terms of consumption rates for each agent.

3.4.2. Intertemporal voting equilibria

We give the definition of an intertemporal voting equilibrium in two stages, following the
Hicks–Grandmont approach (Hicks, 1939; Grandmont, 1977). First, for an arbitrary point
in time τ we define a time τ temporary voting equilibrium as a Condorcet winner in voting
over the current consumption rate given a current stock of capital and some expectations
about future consumption rates. Secondly, we define an intertemporal voting equilibrium
as a sequence, each element of which is a time τ temporary voting equilibrium provided
agents have perfect foresight about future consumption rates.
Consider an arbitrary point in time τ . Suppose that the capital stock is kτ > 0 and

agents have some expectations about future consumption rates represented by a sequence
Eτ+1,T = {et}Tt=τ+1.10 Preferences of agent i in voting over the time τ consumption rate
are given by the following objective function:

V i
τ (kτ , eτ , Eτ+1,T ) =

T∑
t=τ

βt−τi ui (etf ((1− et−1)f ((1− et−2)f(· · · f(kτ ))))) .

It is clear that the objective function is well-defined only if V i
τ (kτ , eτ , Eτ+1,T ) 6= ±∞.

In order to ensure that the objective function is finite, it is necessary to impose certain
restrictions on the sequence of expectations. We shall require that the sequence of ex-
pectations is non-degenerate . The formal definition of a non-degenerate sequence can
be found in Section 3.9.1. Here it is sufficient to say that if the sequence of expecta-
tions, Eτ+1,T , is non-degenerate, then for any kτ > 0, the function V i

τ (kτ , eτ , Eτ+1,T ) is
well-defined and differentiable with respect to eτ on the interval (0, 1).11

10 For simplicity of presentation, we assume that all agents have the same expectations, though as a general
rule each agent can have her own expectations.

11 In particular, in the case of a finite horizon, the sequence Eτ+1,T = {et}Tt=τ+1 is called non-degenerate
if 0 < et < 1, t = τ + 1, t = τ + 2, ..., T − 1, and 0 < eT ≤ 1. In the case of an infinite horizon, the
definition is a little more complicated.
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3. On Discounting and Voting in a Simple Growth Model

Definition. Given the stock of capital at time τ < T , kτ > 0, and non-degenerate expec-
tations Eτ+1,T , we call eiτ a preferred time τ consumption rate for agent i if it is a solution
to the one-dimensional optimization problem

max
0≤eτ≤1

V i
τ (kτ , eτ , Eτ+1,T ).

If T <∞, the preferred time T consumption rate for agent i is eiT = 1.

It should be emphasized that a preferred time τ consumption rate depends on the
current capital stock and expectations.

Definition. Given the current stock of capital at time τ < T , kτ > 0, and non-degenerate
expectations Eτ+1,T , we call e∗τ a time τ (temporary) voting equilibrium if it is a Condorcet
winner in one-dimensional voting over the time τ consumption rate. If T <∞, the time
T voting equilibrium is e∗T = 1.

Now let us explain what we mean by an intertemporal voting equilibrium. Suppose
that agents vote step by step starting from time 0. They are given the initial capital
stock k0 and some non-degenerate expectations about future consumption rates, E1,T .
The winner in voting over the time 0 consumption rate, the time 0 voting equilibrium
e∗0, generically depends on expectations. At time 1, all relevant information about the
decision made at time 0 is gathered in the new capital stock k1. Agents vote over the
time 1 consumption rate given k1 and some non-degenerate expectations about future
consumption rates, E2,T . And so on. If agents have perfect foresight, then an outcome of
this dynamic procedure is called an intertemporal voting equilibrium.
Formally, suppose that we are given an initial stock of capital, k0 > 0, and a sequence

of consumption rates, E0,T = {eτ}Tτ=0. At every date τ , the current capital stock kτ

is unambiguously determined by the past consumption rates. Hence for every τ ∈ T,
kτ+1 can be considered as a function of k0 and the past values of consumption rates
E0,τ = {e0, e1, . . . , eτ}. Denote k0,0 = k0, and recursively define the functions k0,τ (·, ·) as

k0,1(k0, E0,0) = (1− e0)f (k0,0) ,

k0,τ (k0, E0,τ−1) = (1− eτ−1)f (k0,τ−1(k0, E0,τ−2)) , τ = 2, 3, . . . .

Definition. We call a non-degenerate sequence of consumption rates E∗0,T = {e∗τ}Tτ=0

an intertemporal voting equilibrium starting from k0 > 0 if for each τ , e∗τ is a time τ
voting equilibrium for the current stock of capital given by kτ = k0,τ (k0, E

∗
0,τ−1)12 under

perfect foresight about outcomes of future votes (i.e., under expectations given by E∗τ+1,T =

{e∗t}Tt=τ+1).
12 The sequence E∗0,τ−1 contains the first τ elements from an intertemporal voting equilibrium E∗0,T , i.e.,
E∗0,τ−1 = {e∗t }τ−1t=0 .
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Technically, an intertemporal voting equilibrium is a non-degenerate sequence, every
element of which is chosen by a majority of agents provided all other consumption rates
are already chosen according to the same procedure. Hence an intertemporal voting
equilibrium is essentially a Kramer–Shepsle equilibrium.

3.5. Step-by-step intertemporal optimum

Before presenting our main results about an intertemporal voting equilibrium, let us gain
more insight into the proposed voting procedure by analyzing the optimization problem
in terms of consumption rates for a single agent. In this section we introduce the notion
of a step-by-step intertemporal optimum, to which the notion of an intertemporal voting
equilibrium is reduced in the case with only one agent, and show that it coincides with
the optimum in terms of consumption rates. This simple result, which will be useful in
what follows, seems not surprising and is in fact quite natural. However, to the best of
our knowledge, it has not yet been explicitly stated and proved.
Consider problem (3.6) for an arbitrary agent, and omit the index i for the simplicity

of notation:

max
∑
t∈T

βtu (etf ((1− et−1)f ((1− et−2)f(· · · f(k0))))) , s. t. 0 ≤ et ≤ 1, t ∈ T. (3.7)

Suppose that instead of solving this problem “once-and-for-all” at time 0, the agent tries
to solve it in a step-by-step manner. Namely, suppose that at each time τ she determines
eτ by solving the problem

max
0≤eτ≤1

Vτ (kτ , eτ , Eτ+1,T ), (3.8)

where

Vτ (kτ , eτ , Eτ+1,T ) =
T∑
t=τ

βt−τu (etf ((1− et−1)f ((1− et−2)f(· · · f(kτ ))))) , (3.9)

kτ > 0 is the capital stock at time τ (it is determined in the previous step) and Eτ+1,T =

{et}Tt=τ+1 are expectations about future consumption rates. Clearly, the outcome of this
procedure depends on the way expectations are formed. We are interested in the case
where the agent has perfect foresight about her future decisions about consumption rate.

Definition. Consider problem (3.7). We call a non-degenerate sequence of consumption
rates E∗0,T = {e∗τ}Tτ=0 a step-by-step intertemporal optimum if for each τ ∈ T, e∗τ is a
solution to the following problem:

max
0≤eτ≤1

Vτ (kτ , eτ , E
∗
τ+1,T ),
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3. On Discounting and Voting in a Simple Growth Model

where kτ = k0,τ (k0, E
∗
0,τ−1) and E∗τ+1,T = {e∗t}Tt=τ+1.

If we call a solution to problem (3.8) a time τ temporary optimum, then a step-by-
step intertemporal optimum is a sequence of temporary optima obtained under perfect
foresight about future extractions rates. It should be noted that in an intertemporal voting
equilibrium the agent has perfect foresight about future collective decisions (outcomes of
voting), while in a step-by-step intertemporal optimum she has perfect foresight about
her personal decisions.
Also it is noteworthy that if we adopt an atemporal point of view, then a step-by-step

intertemporal optimum can simply be considered as a result of coordinate-wise maximiza-
tion of the function

∑
t∈T β

tu (etf ((1− et−1)f ((1− et−2)f(· · · f(k0))))).
Clearly, if some sequence is a “once-and-for-all” solution to problem (3.7), then this

sequence is a step-by-step intertemporal optimum. There arises a question, whether the
opposite is also true. Is it correct that any step-by-step intertemporal optimum is the
optimum in terms of consumption rates?
The answer to this question is positive if either T < ∞ or T = ∞ and the felicity

function u(c) satisfies

Regularity condition. There exists γ > 0 such that limc→0 cγu′(c) = 0.

This condition means that u′(c) tends to infinity at c → 0 no faster than any power
function. For instance, every CIES felicity function meets the regularity condition.13

Moreover, every felicity function such that u(0) > −∞ also satisfies this condition.

Proposition 3.1. Consider problem (3.7). Suppose that T < ∞, or T = ∞ and the
felicity function satisfies the regularity condition. A step-by-step intertemporal optimum
exists and coincides with the optimum in terms of consumption rates.

Proof. See Section 3.9.2.

It follows that there exists a unique (non-degenerate) step-by-step intertemporal opti-
mum for each agent. It coincides with the unique optimum in terms of consumption rates,
and corresponds to the unique optimum in terms of consumption levels for this agent.

3.6. Main results

Now we are ready to characterize temporary and intertemporal voting equilibria. We
begin by explicitly stating the existence of a time τ voting equilibrium.

13 The class of felicity functions that satisfy the regularity condition is similar to that considered by
Ekeland and Scheinkman (1986). In Case 2 (linear production function), this condition is redundant.
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Proposition 3.2. For any non-degenerate expectations, the preferences of each agent in
voting over the time τ consumption rate are strictly concave and single-peaked; hence the
median voter theorem applies and a time τ voting equilibrium exists.

Proof. See Section 3.9.3.

It follows that at each given point in time there exists an instantaneous Condorcet
winner, which is by definition a time τ voting equilibrium. Proposition 3.2 states that
our institutional framework (intertemporal majority voting) is well-defined even if expec-
tations are not correct and differ for different agents. In any case, voting over the current
consumption rate is a well-defined one-dimensional decision problem.
Now we can provide a characterization of an intertemporal voting equilibrium in the

special but important case where all agents have the same felicity function, so that agents
are heterogeneous only in their time preferences. First we characterize a time τ voting
equilibrium.

Proposition 3.3. Suppose all agents have the same felicity function and the same non-
degenerate expectations. A time τ voting equilibrium exists, is unique, and coincides with
the preferred time τ consumption rate for the agent with the median discount factor βmed.

Proof. Here we give only a sketch the proof. For the details, see Section 3.9.3. We prove
that if agents have the same felicity function and the same non-degenerate expectations,
then higher values of the discount factor correspond to lower values of the preferred
time τ consumption rate. Therefore it follows from Proposition 3.2 that a time τ voting
equilibrium is the preferred consumption rate for the agent with the median discount
factor.

Combining Propositions 3.1 and 3.3, we can formulate the following theorem.

Theorem 3.1. Suppose all agents have the same felicity function. Suppose further that
T < ∞, or T = ∞ and the felicity function satisfies the regularity condition. An in-
tertemporal voting equilibrium starting from any k0 > 0 exists, is unique and coincides
with the optimum in terms of consumption rates for the agent with the median discount
factor βmed.

Proof. Proposition 3.3 states that the time τ voting equilibrium is the time τ temporary
optimum for the agent with the median discount factor. Taking into account the defi-
nition of a step-by-step intertemporal optimum, it follows from Proposition 3.1 that an
intertemporal voting equilibrium is the optimum in terms of consumption rates for the
agent with the median discount factor.
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Since there is a one-to-one correspondence between the optimum in terms of consump-
tion rates and the optimum in terms of consumption levels, there is a one-to-one cor-
respondence between the intertemporal voting equilibrium and the optimum in terms of
consumption levels for the agent with the median discount factor. Thus in the case where
all agents have the same felicity function, the proposed voting procedure yields as the out-
come the optimum in terms of consumption levels for the agent with the median discount
factor.
Note that when T =∞ in Case 2 (linear production function) the optimum in terms of

consumption levels is a balanced-growth path. If all agents have the same CIES felicity
function with the parameter ρ, then the solution to problem (3.3) is

ci∗t+1 = (βiA)
1
ρ ci∗t , ki∗t+1 = (βiA)

1
ρ ki∗t , t = 0, 1, . . . .

Therefore, regardless of the initial conditions, consumption and the capital stock for agent
i grow at a constant rate (βiA)

1
ρ . The corresponding intertemporal voting equilibrium

is a constant sequence of consumption rates, {e∗, e∗, . . .}, where e∗ is determined by the
median discount factor:

e∗ = 1− 1

A

(
1 + (βmedA)

1
ρ

)
.

3.7. Steady-state and balanced-growth voting equilibria

Now suppose that agents differ both in their time preferences and felicity functions.
Clearly, there is no reason to expect that the result of Theorem 3.1 still holds in this
case. Because of multi-dimensional heterogeneity, it is in principle impossible to claim
that an intertemporal voting equilibrium is determined by the discount factor alone. How-
ever, we are able to obtain some results even with multi-dimensional heterogeneity. In
Case 1 (strictly concave production function) these results concern steady-state voting
equilibria, and in Case 2 (linear production function) — balanced-growth voting equilib-
ria. We show the important difference between the two cases: in Case 1 (strictly concave
production function), the steady-state voting equilibrium is fully determined by the me-
dian discount factor, whereas in Case 2 (linear production function), the balanced-growth
voting equilibrium depends not only on the agents’ discount factors, but also on the
agents’ intertemporal elasticities of substitution.14

14 See also Nakamura (2014) who stresses the role of the intertemporal elasticity of substitution in de-
termining the long-run growth in the Ramsey model with AK technology, as opposed to the standard
Ramsey model.
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3.7.1. Steady-state voting equilibrium

In the Case 1 (strictly concave production function), if T = ∞ and the sequence of con-
sumption rates is constant over time, E = {e, e, . . .}, then the considered model becomes
the Solow model with a unique steady state. The capital stock in this steady state, k(e),
is the only positive solution to the following equation15 in k:

k = (1− e)f(k). (3.10)

Definition. Consider Case 1 (strictly concave production function). We call e∗ a steady-
state voting equilibrium if the sequence {e∗, e∗, . . .} is an intertemporal voting equilibrium
starting from k0 = k(e∗) > 0.

Suppose first that all agents have the same felicity function that satisfies the regularity
condition. It follows from Theorem 3.1 that for any k0 there is a unique intertemporal
voting equilibrium, which corresponds to the optimum for the agent with the median
discount factor. Take as the initial capital stock the value k∗ determined by the “modified
golden rule” for the agent with the median discount factor βmed: βmedf ′(k∗) = 1. The
optimum for the agent with the median discount factor starting from k0 = k∗ is her
steady-state optimum. The corresponding optimum in terms of consumption rates is a
constant sequence E∗ = {e∗, e∗, . . .}, and, by Theorem 3.1, is a unique intertemporal
voting equilibrium. Clearly, k∗ is the unique solution to equation (3.10) at e = e∗. Hence
e∗, the optimal consumption rate for the agent with the median discount factor βmed, is
the unique stationary voting equilibrium.
Since k∗ is given by the “modified golden rule” and e∗ depends only on the median

discount factor, the stationary voting equilibrium does not depend on the felicity function
of agents. This observation leads to the following theorem which holds in the general case
where agents have different felicity functions.

Theorem 3.2. In Case 1 (strictly concave production function), there is a unique steady-
state voting equilibrium. It is given by

e∗ = 1− k∗

f(k∗)
. (3.11)

Proof. See Section 3.9.4.

Thus, even in the case with different felicity functions there is a unique steady-state
voting equilibrium. It is completely determined by the “modified golden rule” for the
agent with the median discount factor and independent of felicity functions.

15 It exists if (1− e)f ′(0) > 1.

71



3. On Discounting and Voting in a Simple Growth Model

It is well-known that in a single-agent Ramsey model, the optimal capital stock con-
verges to the modified golden rule path, which is fully determined by the discount factor
of the agent, and is independent of her felicity function. In our model, any intertemporal
voting equilibrium converges to the steady-state voting equilibrium if all agents have the
same felicity function. Is the same result true in the case where agents have different
felicity functions? This, as well as the proof of the existence of an intertemporal voting
equilibrium in the general case, is a topic for further research.

3.7.2. Balanced-growth voting equilibrium

As we noted above, in Case 2 (linear production function) with T = ∞ if all agents
have the same CIES felicity function, then the optimum in terms of consumption levels
for each agent is a balanced-growth path, and the intertemporal voting equilibrium is
characterized by a constant consumption rate.
If agents have different CIES felicity functions, then the optimum in terms of consump-

tion levels for each agent i is also a balanced-growth path in which consumption and
capital grow at a constant rate γi given by

1 + γi = (βiA)
1
ρi . (3.12)

Though agents differ both in the discount factors and in the elasticities of intertemporal
substitution, their heterogeneity can in some sense be considered as one-dimensional. Due
to the linear production function, agents are naturally characterized by their growth rates
that aggregate both heterogeneity parameters.
It is natural to conjecture that any intertemporal voting equilibrium in this case is also

characterized by a constant growth rate. At the moment, we cannot prove this conjecture.
However, we shall prove now that a balanced-growth voting equilibrium exists and, what
is important, is determined not by the median discount factor, but by the median growth
rate γmed.
If we are given a constant over time consumption rate e, then for any initial stock k0 > 0

the corresponding capital stock and consumption grow at a constant rate:

kt+1 = (1 + γ)kt, ct+1 = (1 + γ)ct, t = 0, 1, . . . ,

where γ = (1− e)A− 1.

Definition. Consider Case 2 (linear production function). We call e∗ a balanced-growth
voting equilibrium starting from k0 > 0 if the sequence {e∗, e∗, . . .} is an intertemporal
voting equilibrium starting from k0.
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The following theorem shows that a balanced-growth voting equilibrium is fully deter-
mined by the preferences of the agent with the median growth rate γmed.

Theorem 3.3. In Case 2 (linear production function), for any k0 > 0, there is a unique
balanced-growth voting equilibrium starting from k0. It is given by

e∗ = 1− 1

A
(1 + γmed). (3.13)

Proof. See Section 3.9.5.

Clearly, the consumption path corresponding to the balanced-growth voting equilibrium
E∗ = {e∗, e∗, . . .} is the balanced-growth path for the agent with the median growth rate
γmed. However, it is a topic for further research whether there exist intertemporal voting
equilibria that are not balanced-growth voting equilibria.

3.8. Conclusion

The problem of collective choice naturally arises in many economic applications with het-
erogeneous agents. In this chapter, we study a Ramsey-type growth model with common
consumption and agents who may differ in their instantaneous utility (“felicity”) functions
and discount factors. It is well known that, in general, there is no Condorcet winner if
agents vote over feasible consumption streams. This is true even if agents differ only in
their discount factors and heterogeneity is one-dimensional. Notwithstanding these nega-
tive findings, we show in this chapter that the choice of the optimal consumption stream
of the “median” agent in many important cases can be obtained as the result of a simple
and natural institutional setup, intertemporal majority voting.
Our voting procedure is based on two principles. First, agents vote step-by-step at each

point in time. Second, agents vote over the consumption rate, not over the consumption
level. We define a temporary voting equilibrium, which is a Condorcet winner among
all current consumption rates under some expectations about future consumption rates.
Then, we define an intertemporal voting equilibrium as a sequence of temporary voting
equilibria under the assumption that agents have perfect foresight about future consump-
tion rates. From the technical point of view, an intertemporal voting equilibrium is a
Kramer–Shepsle equilibrium in terms of consumption rates.
Our main result concerns the case where agents have identical felicity functions and

differ only in their discount factors. We prove that an intertemporal voting equilibrium
exists, is unique, and coincides with the optimum in terms of consumption rates for the
agent with the median discount factor. We thus show that even in the absence of a
Condorcet winner there is a stable outcome of intertemporal majority voting. Since this
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outcome is determined by the preferences of the agent with the median discount factor,
it is both time-consistent and Pareto efficient.
We also consider the general framework where agents may differ also in their felicity

functions, and analyze two special cases. In the case of a strictly concave production
function and arbitrary felicity functions, we define a steady-state voting equilibrium,
and show that it is unique and is fully determined by the median discount factor. Our
analysis suggests that in the case of a strictly concave production function the analogy
with the standard Ramsey model may fruitfully be applied. One may conjecture that
every intertemporal voting equilibrium converges to the steady-state voting equilibrium,
and thus the winner of the voting procedure eventually depends only on the discount
factor. However, further research is needed to confirm or reject this conjecture.
In the case of a linear production function and CIES felicity functions, we define a

balanced-growth voting equilibrium, prove its uniqueness, and show that it is determined
by the median growth rate, where the growth rate for each agent depends not only on the
discount factor, but also on the elasticity of intertemporal substitution.
It should be recognized that on the one hand, in our model agents are excessively

sophisticated because in an intertemporal voting equilibrium they have perfect foresight
about outcomes of future votes. On the other hand, they are sophisticated to a limited
extent, because the set of their strategies is limited (consumption depends on production
in a linear way). Introducing either less or more sophisticated agents into our framework
might be a topic for further research.
Another possible research avenue is to apply the proposed procedure to voting in a

dynamic general equilibrium framework. This is done in Chapter 4 of the thesis, where
we consider intertemporal majority voting in the general equilibrium Ramsey-type model
with exhaustible natural resources. The goal of the next chapter is to compare different
property regimes over natural resources in terms of economic growth, and our voting
procedure serves to determine the equilibrium sequence of extraction rates in the public
property regime over natural resources.
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3.9. Proofs

3.9.1. Non-degenerate sequences and properties of the objective
functions

For an arbitrary τ and a sequence of consumption rates Eτ,T = {eτ , eτ+1, . . . , eT}, denote

Eτ,τ = {eτ}, Eτ,t = {eτ , eτ+1, . . . , et} = {eτ , Eτ+1,t}, t = τ + 1, τ + 2, . . . ,

kτ,τ = kτ , kτ,τ+1(kτ , Eτ,τ ) = (1− eτ )f (kτ,τ ) ,

kτ,t+1(kτ , Eτ,t) = (1− et)f (kτ,t(kτ , Eτ,t−1)) , t = τ + 1, τ + 2, . . . ,

fτ,τ = f (kτ ) , fτ,τ+1(kτ , Eτ,τ ) = f ((1− eτ )fτ,τ ) ,

fτ,t+1(kτ , Eτ,t) = f ((1− et)fτ,t(kτ , Eτ,t−1)) , t = τ + 1, τ + 2, . . . .

Thus for t > τ ,

kτ,t+1(kτ , Eτ,t) = (1− et)fτ,t (kτ , Eτ,t−1) , fτ,t+1(kτ , Eτ,t) = f (kτ,t+1(kτ , Eτ,t)) .

For simplicity of notation, we often drop the arguments of these functions when they
play no significant role. However, the reader should bear in mind that fτ,t+1 is a function
of kτ and the t− τ + 1 consumption rates {eτ , eτ+1, . . . , et}.
The derivatives of fτ,t+1 can be obtained using the chain rule of differentiation:

∂fτ,t+1

∂et
= −f ′(kτ,t+1)fτ,t,

∂fτ,t+1

∂et−1

= −f ′(kτ,t+1)(1− et)f ′(kτ,t)fτ,t−1,

∂fτ,t+1

∂et−2

= −f ′(kτ,t+1)(1− et)f ′(kτ,t)(1− et−1)f ′(kτ,t−1)fτ,t−2, . . . .

It is clear that the derivative of fτ,t+1(kτ , Eτ,t) with respect to each consumption rate
{eτ , eτ+1, . . . , et} is negative.

Definition. A) Suppose that T <∞. We call a sequence Eτ,T = {et}Tt=τ non-degenerate
if

0 < et < 1, t = τ, τ + 1, . . . , T − 1; 0 < eT ≤ 1.

B) Suppose that T = ∞ and consider a sequence Eτ,∞ = {et}∞t=τ such that 0 < et < 1

for all t.

1. In Case 1 (strictly concave production function), the sequence Eτ,∞ = {et}∞t=τ is
called non-degenerate if

1.1.
0 < lim inf

t→∞
et ≤ lim sup

t→∞
et < 1, (3.14)

75



3. On Discounting and Voting in a Simple Growth Model

1.2. for some k̃τ > 0 the sequence {k̃t}∞t=τ given by k̃t+1 = (1 − et)f(k̃t), t =

τ, τ + 1, . . ., satisfies
lim inf
t→∞

k̃t > 0. (3.15)

2. In Case 2 (linear production function), the sequence Eτ,∞ = {et}∞t=τ is called non-
degenerate if there exist e and ē such that

2.1.
0 ≤ e < lim inf

t→∞
et ≤ lim sup

t→∞
et < ē ≤ 1, (3.16)

2.2. for all i,16 {
βi (A(1− e))1−ρi < 1, if ρi ≤ 1,

βi (A(1− ē))1−ρi < 1, if ρi > 1.
(3.17)

We need the above definition to establish certain important properties of the agents’
objective functions. Recall that the objective function of agent i in voting over the time
τ consumption rate is given by

V i
τ (kτ , eτ , Eτ+1,T ) = ui (eτfτ,τ ) + βiui (eτ+1fτ,τ+1) + β2

i ui (eτ+2fτ,τ+2) + . . . .

Let us show that if the sequence of expectations Eτ+1,T is non-degenerate, then for any
kτ > 0 the objective function of agent i is well-defined.

Lemma 3.1. Suppose that the sequence of expectations Eτ+1,T is non-degenerate. For
any kτ > 0, −∞ < V i

τ (kτ , eτ , Eτ+1,T ) < +∞.

Proof. When T < ∞, the finiteness of V i
τ (kτ , eτ , Eτ+1,T ) is evident, since the expected

consumption rates are bounded away from 0 and 1 (except for the time T ).
Suppose T =∞ and consider Case 1 (strictly concave production function). Since there

is a maximum sustainable stock, k̄ = f(k̄) (see (3.1)), condition (3.14) guarantees that
V i
τ (kτ , eτ , Eτ+1,∞) is bounded from above. Conditions (3.14) and (3.15)17 also ensure that

for any kτ > 0 the path of the capital stock {kt}∞t=τ constructed by kt+1 = (1 − et)f(kt)

and the corresponding consumption path {ct}∞t=τ constructed by ct = etf(kt) are bounded
away from zero:

lim inf
t→∞

kt > 0, lim inf
t→∞

f(kt) > 0, lim inf
t→∞

ct > 0. (3.18)

Indeed, if kτ > k̃τ , then kt > k̃t, f(kt) > f(k̃t) and ct > c̃t for all t = τ, τ+1, . . .. If kτ < k̃τ ,
then for all t = τ, τ + 1, . . ., kt < k̃t and kt+1/k̃t+1 > kt/k̃t, because f(k)/k is decreasing

16 Recall that in Case 2 (linear production function) the felicity function is given by (3.2).
17 Note that if f ′(0) = +∞, then condition (3.15) is redundant, because it follows from condition (3.14).
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in k. Therefore limt→∞ kt/k̃t > 0, limt→∞ f(kt)/f(k̃t) > 0 and limt→∞ ct/c̃t > 0. Hence,
in both cases the inequalities in (3.18) hold true and V i

τ (kτ , eτ , Eτ+1,∞) is also bounded
from below.
Consider Case 2 (linear production function). The objective function of agent i takes

the form18

V i
τ (kτ , eτ , Eτ+1,∞) =

∞∑
t=τ

βt−τi

1− ρi
(
At−τ+1et(1− et−1)(1− et−2) · · · (1− eτ )kτ

)1−ρi .

For i such that 0 < ρi < 1 it follows from (3.16) and (3.17) that

0 < V i
τ (kτ , eτ , Eτ+1,∞) ≤ 1

1− ρi
(Aeτkτ )

1−ρi +
1

1− ρi
βi
(
A2(1− eτ )kτ

)1−ρi ×

×
[
(ē)1−ρi + βiA

1−ρi(ē(1− e))1−ρi + (βiA
1−ρi)2(ē(1− e)2)1−ρi + . . .

]
=

1

1− ρi
(Aeτkτ )

1−ρi +
1

1− ρi
βi
(
A2(1− eτ )kτ

)1−ρi (ē)1−ρi×

×
[
1 + βi(A(1− e))1−ρi + (βi(A(1− e))1−ρi)2 + . . .

]
=

1

1− ρi
(Aeτkτ )

1−ρi +
βi

1− ρi
(A2(1− eτ )kτ )1−ρi (ē)1−ρi

1− βi (A(1− e))1−ρi < +∞.

Slightly modifying the above argument, for i such that ρi > 1 we obtain that

0 > V i
τ (kτ , eτ , Eτ+1,∞) >

1

1− ρi
(Aeτkτ )

1−ρi +
βi

1− ρi
(A2(1− eτ )kτ )1−ρi (e)1−ρi

1− βi (A(1− ē))1−ρi > −∞,

which completes the proof.

Thus we have shown that for a non-degenerate sequence of expectations Eτ+1,T , the
objective function of agent i exists and is well-defined. However, we also need to prove
that V i

τ (kτ , eτ , Eτ+1,T ) is continuously differentiable with respect to eτ . By differentiating
the objective function term by term, we get

∂V i
τ (kτ , eτ , Eτ+1,T )

∂eτ
= f(kτ )

(
Φiτ (kτ , eτ )− Ψ iτ (kτ , eτ , Eτ+1,T )

)
, (3.19)

where
Φiτ (kτ , eτ ) = u′i (eτf(kτ )) , (3.20)

18 Here and hereafter we consider ρi 6= 1. The case with the logarithmic felicity function (ρi = 1) can be
considered similarly.
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and

Ψ iτ (kτ , eτ , Eτ+1,T ) = βiu
′
i (eτ+1fτ,τ+1) eτ+1f

′ ((1− eτ )fτ,τ )

+β2
i u
′
i (eτ+2fτ,τ+2) eτ+2f

′ ((1− eτ+1)fτ,τ+1) (1− eτ+1)f ′ ((1− eτ )fτ,τ ) + . . .

+βsi u
′
i (eτ+sfτ,τ+s) eτ+s

[
s−1∏
t=1

[f ′ ((1− eτ+t)fτ,τ+t) (1− eτ+t)]

]
f ′ ((1− eτ )fτ,τ ) + . . . .

(3.21)

The following lemma shows that term-by-term differentiation is valid.

Lemma 3.2. Suppose that the sequence of expectations Eτ+1,T is non-degenerate. For any
kτ > 0, V i

τ (kτ , eτ , Eτ+1,T ) is continuously differentiable with respect to eτ on the interval
(0, 1), and its derivative is given by (3.19).

Proof. When T < ∞, the statement of the lemma is evident. When T = ∞, the proof
is based on a well-known theorem of analysis (see, e.g., Zorich, 2015, p. 388). We need
to show that Ψ iτ (kτ , eτ , Eτ+1,∞), which is the infinite series of continuous functions, is
uniformly convergent on the interval {eτ | ξ ≤ eτ ≤ 1− ξ} for any 0 < ξ < 1.
Consider Case 1 (strictly concave production function). It follows from (3.14) and (3.18)

that
0 < lim inf

t→∞
u′ (eτ+tfτ,τ+t) eτ+t ≤ lim sup

t→∞
u′ (eτ+tfτ,τ+t) eτ+t < +∞.

Using the fact that f ′(k) ≤ f(k)/k for any k, for s = 2, 3, . . . we have

s−1∏
t=1

[f ′ ((1− eτ+t)fτ,τ+t) (1− eτ+t)] ≤
s−1∏
t=1

[
f ((1− eτ+t)fτ,τ+t)

(1− eτ+t)fτ,τ+t

(1− eτ+t)

]

=
s−1∏
t=1

[
fτ,τ+t+1

fτ,τ+t

]
=
fτ,τ+s

fτ,τ+1

=
fτ,τ+s

f ((1− eτ )fτ,τ )
≤ f̄

f ((1− eτ )fτ,τ )
≤ f̄

f (ξfτ,τ )
,

where f̄ = max{f(k̄), f(kτ )}. The penultimate inequality follows from the existence of a
maximum sustainable stock k̄, and from the fact that if kt > k̄, then kt+1 < kt.
By the Weierstrass M-test (see, e.g., Zorich, 2015, p. 374), Ψ iτ (kτ , eτ , Eτ+1,∞) converges

uniformly on the interval {eτ | ξ ≤ eτ ≤ 1 − ξ} for any 0 < ξ < 1, and hence, by the
uniform limit theorem (see, e.g., Zorich, 2015, p. 383), is continuous in eτ . It follows that
for a non-degenerate sequence Eτ+1,∞, ∂V i

τ (kτ , eτ , Eτ+1,∞)/∂eτ exists, is continuous in eτ ,
and is given by (3.19).
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Consider now Case 2 (linear production function). The function Ψ iτ (kτ , eτ , Eτ+1,∞)

defined by (3.21) takes the form

Ψ iτ (kτ , eτ , Eτ+1,∞) = βiAeτ+1

(
eτ+1(1− eτ )A2kτ

)−ρi
+ β2

i eτ+2(1− eτ+1)A2
(
eτ+2(1− eτ+1)(1− eτ )A3kτ

)−ρi + . . .

= βiA(A2kτ )
−ρi(1− eτ )−ρi

[
(eτ+1)1−ρi + βiA

1−ρi (eτ+2(1− eτ+1))1−ρi

+
(
βiA

1−ρi
)2

(eτ+3(1− eτ+2)(1− eτ+1))1−ρi + . . .
]
.

Applying the same argument as in the proof of the finiteness of the objective function
in Case 2, we obtain that for i such that 0 < ρi < 1 it follows from (3.16) and (3.17) that

0 < Ψ iτ (kτ , eτ , Eτ+1,∞) <
βiA(A2kτ )

−ρi (ē)1−ρi (1− eτ )−ρi

1− βi (A(1− e))1−ρi <
βiA(A2kτ )

−ρi (ē)1−ρi ξ−ρi

1− βi (A(1− e))1−ρi .

Analogously, it can be shown that for i such that ρi > 1,

0 < Ψ iτ (kτ , eτ , Eτ+1,∞) <
βiA(A2kτ )

−ρi (e)1−ρi (1− eτ )−ρi

1− βi (A(1− ē))1−ρi <
βiA(A2kτ )

−ρi (e)1−ρi ξ−ρi

1− βi (A(1− ē))1−ρi .

It follows that Ψ iτ (kτ , eτ , Eτ+1,∞) converges uniformly on the interval {eτ | ξ ≤ eτ ≤ 1−ξ}
for any 0 < ξ < 1, and hence is continuous in eτ . Therefore, for a non-degenerate sequence
Eτ+1,∞, ∂V i

τ (kτ , eτ , Eτ+1,∞)/∂eτ exists, is continuous in eτ , and is given by (3.19).

Remark 3.1. Note that Φiτ (kτ , 0) = +∞, Φiτ (kτ , eτ ) is continuous and strictly decreasing
in eτ for any 0 < eτ ≤ 1. Furthermore, Ψ iτ (kτ , eτ , Eτ+1,T ) is continuous in eτ , and, due to
the strict concavity of ui and f , is strictly increasing in eτ . Each term in Ψ iτ (kτ , eτ , Eτ+1,T )

contains a multiplier of the form

u′i (etfτ,t) = u′i (etf ((1− et−1)f ((1− et−2)f (· · · f ((1− eτ )f(kτ )))))) .

If eτ = 1, due to the fact that f(0) = 0, Ψ iτ (kτ , 1, Eτ+1,T ) = +∞. Taking into ac-
count Lemma 3.2, we obtain that there exists a unique interior solution to the equation
Φiτ (kτ , eτ ) = Ψ iτ (kτ , eτ , Eτ+1,T ) in eτ .

3.9.2. Proof of Proposition 3.1

Consider problem (3.3) with omitted index i:

max
∑
t∈T

βtu(ct), s. t. ct + kt+1 = f(kt), ct ≥ 0, kt+1 ≥ 0, t ∈ T.
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The first-order conditions are given by

u′(ct)

u′(ct+1)
= βf ′(kt+1), t < T. (3.22)

The transversality condition in the case of a finite horizon is as follows:

kT+1 = 0. (3.23)

In the infinite horizon case, the transversality condition is given by

lim
t→∞

βtu′(ct)kt+1 = 0. (3.24)

Let us show that the sequence {ct, kt+1}Tt=0 corresponding to a step-by-step intertem-
poral optimum, satisfies the first-order conditions (3.22).
Let E0,T be a non-degenerate sequence of consumption rates. For any τ < T consider

the objective function Vτ (kτ , eτ , Eτ+1,T ) given by (3.9). By Remark 3.1, a step-by-step
intertemporal optimum is a solution to the following system of equations19:

∂Vt (k0,t(k0, E0,t−1), et, Et+1,T )

∂et
= 0, t < T. (3.25)

Consider two adjacent equations of the system (3.25), for t = τ and for t = τ + 1.
It follows from (3.19)–(3.21) (again omitting index i) that the equation for t = τ is as
follows:

u′(eτf0,τ ) = βeτ+1u
′(eτ+1f0,τ+1)f ′(k0,τ+1)

+β2(1− eτ+1)eτ+2u
′(eτ+2f0,τ+2)f ′(k0,τ+2)f ′(k0,τ+1)

+β3(1− eτ+1)(1− eτ+2)eτ+3u
′(eτ+3f0,τ+3)f ′(k0,τ+3)f ′(k0,τ+2)f ′(k0,τ+1) + . . . .

(3.26)

Note that the right-hand side of the above equation can be rewritten as

βf ′(k0,τ+1)eτ+1u
′(eτ+1f0,τ+1)

+βf ′(k0,τ+1)(1− eτ+1)
[
βeτ+2u

′(eτ+2f0,τ+2)f ′(k0,τ+2)

+ β2(1− eτ+2)eτ+3u
′(eτ+3f0,τ+3)f ′(k0,τ+3)f ′(k0,τ+2) + . . .

]
.

(3.27)

19 If T < +∞, then there is an additional equation eT = 1.
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The equation for t = τ + 1 is as follows:

u′(eτ+1f0,τ+1) = βeτ+2u
′(eτ+2f0,τ+2)f ′(k0,τ+2)

+ β2(1− eτ+2)eτ+3u
′(eτ+3f0,τ+3)f ′(k0,τ+3)f ′(k0,τ+2) + . . . .

Substituting the right-hand side of the above equation into (3.27), we infer from (3.26)
that

u′(eτf0,τ ) = βf ′(k0,τ+1) (eτ+1u
′(eτ+1f0,τ+1) + (1− eτ+1)u′(eτ+1f0,τ+1))

= βf ′(k0,τ+1)u′(eτ+1f0,τ+1).

Applying this argument for all τ < T , we obtain that the system of equations (3.25) is
equivalent to the system

u′(etf0,t) = βf ′(k0,t+1)u′(et+1f0,t+1), t < T. (3.28)

Now it is straightforward to see that the mapping defined by (3.5) converts the system of
equations (3.28) to the system of the first-order conditions (3.22).
It remains to show that the sequence {ct, kt+1}Tt=0 corresponding to a step-by-step in-

tertemporal optimum satisfies the transversality condition.
Consider the case T < ∞. Then the transversality condition (3.23) follows from the

fact that the optimal consumption rate at time T for every agent is eT = 1.
Consider the case T = ∞. Iterating equation for t = τ from the system (3.28), we

obtain

u′(eτf0,τ ) = βt−τu′(etf0,t)f
′(k0,t)f

′(k0,t−1) · · · f ′(k0,τ+1), t = τ + 1, τ + 2, . . . .

Hence equation (3.26) can be rewritten as follows:

u′(eτf0,τ )− eτ+1u
′(eτf0,τ )

−(1− eτ+1)eτ+2u
′(eτf0,τ )− (1− eτ+1)(1− eτ+2)eτ+3u

′(eτf0,τ )

−(1− eτ+1)(1− eτ+2)(1− eτ+3)eτ+4u
′(eτf0,τ )− . . . = 0.

(3.29)
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Regrouping the terms on the left-hand side of (3.29), we get

u′(eτf0,τ )(1− eτ+1)− eτ+2(1− eτ+1)u′(eτf0,τ )

− (1− eτ+1)(1− eτ+2)eτ+3u
′(eτf0,τ )− (1− eτ+1)(1− eτ+2)(1− eτ+3)eτ+4u

′(eτf0,τ )− . . .

= u′(eτf0,τ )(1− eτ+1)(1− eτ+2)− (1− eτ+1)(1− eτ+2)eτ+3u
′(eτf0,τ )

− (1− eτ+1)(1− eτ+2)(1− eτ+3)eτ+4u
′(eτf0,τ )− . . .

= u′(eτf0,τ )(1−eτ+1)(1−eτ+2)(1−eτ+3)−(1−eτ+1)(1−eτ+2)(1−eτ+3)eτ+4u
′(eτf0,τ )−. . . .

Repeating this argument, (3.29) finally can be rewritten as

u′(eτf0,τ )(1− eτ+1)(1− eτ+2)(1− eτ+3)(1− eτ+4) · · · = 0.

Since τ is chosen arbitrarily, and u′(eτf0,τ ) > 0, it follows that
∏∞

t=1(1− et) = 0, which is
equivalent to

∞∑
t=1

et = +∞. (3.30)

Now let us show that the sequence {ct, kt+1}∞t=0 corresponding to the solution to the
system (3.25) satisfies the transversality condition (3.24).
Consider Case 1 (strictly concave production function). Let us analyze the possible

dynamics of the sequence {ct, kt+1}∞t=0. We begin with two lemmas.

Lemma 3.3. Suppose that βf ′(kΘ+1) > 1 for some Θ, and kΘ+1 ≤ kΘ. Then the transver-
sality condition (3.24) holds.

Proof. Let us show that the conditions of the lemma imply kt+1 < kt for all t ≥ Θ. Indeed,
by (3.22), u′(cΘ) > u′(cΘ+1), or cΘ+1 > cΘ. Hence, kΘ+2 − kΘ+1 = (f(kΘ+1)− f(kΘ)) +

(cΘ − cΘ+1) < 0. Thus kΘ+2 < kΘ+1 and hence βf ′(kΘ+2) > 1. Repeating the argument,
we infer that for all t > Θ, kt+1 < kΘ, and u′(ct) < u′(cΘ). Therefore, starting from t = Θ,
βtu′(ct)kt+1 < βtu′(cΘ)kΘ, which implies (3.24).

Lemma 3.4. Suppose that there exists Θ such that βf ′(kt+1) ≤ 1 for all t ≥ Θ. Then the
transversality condition (3.24) holds.

Proof. Recall that there is k̄ such that 0 < f(k̄) = k̄ < +∞, and thus kt is bounded
from above. Since βf ′(0) > 1, it follows that for t > Θ, kt ≥ (f ′)−1(1/β) > 0. Hence
f(kt) ≥ f((f ′)−1(1/β)) > 0, and from (3.4) we get ct = etf(kt) ≥ etf ((f ′)−1(1/β)), t > Θ.
Therefore, due to (3.30),

∞∑
t=Θ

ct = +∞. (3.31)
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It follows from (3.22) that u′(ct+1) ≥ u′(ct), t ≥ Θ. Therefore, the sequence {ct}∞t=Θ

is monotonically non-increasing and converges. Suppose that ct → 0 as t → ∞. Then
kt → k̄ = f(k̄), and since f ′(k̄) < 1, for some 0 < ξ < 1 there exists Θ′ such that for all
t > Θ′, βf ′(kt+1) < 1− ξ. Thus u′(ct) = βf ′(kt+1)u′(ct+1) < (1− ξ)u′(ct+1). At the same
time, it follows from the regularity condition that for some γ > 0, the sequence u′(ct)cγt
converges, and hence there exists Θ′′ such that for all t > Θ′′,

u′(ct+1)cγt+1

u′(ct)c
γ
t

< 1 + ξ.

Thus for all t > max{Θ′,Θ′′},

ct+1

ct
<

(
(1 + ξ)

u′(ct)

u′(ct+1)

) 1
γ

< ((1 + ξ)(1− ξ))
1
γ = (1− ξ2)

1
γ < 1,

which contradicts (3.31).
It follows that ct converges to a positive number, and so does u′(ct). Since kt is bounded,

(3.24) clearly holds.

Let us consider different cases that may arise. If βf ′(kt+1) ≤ 1 for all sufficiently large
t, then the transversality condition (3.24) holds by Lemma 3.4.
Suppose there exists Θ such that βf ′(kΘ+1) > 1. Then there are only two possibilities.

Either there exists Θ1 > Θ such that βf ′(kΘ1+1) ≤ 1 or βf ′(kt+1) > 1 for all t > Θ. In
the former case, either βf ′(kt+1) ≤ 1 for all t > Θ1 so that Lemma 3.4 holds or there
exists Θ2 > Θ1 such that βf ′(kΘ2+1) > 1 in which case we are in the conditions of Lemma
3.3. In the latter case, for all t > Θ, u′(ct) < u′(cΘ) and kt+1 ≤ (f ′)−1(1/β). Therefore,
βtu′(ct)kt+1 < βtu′(cΘ)(f ′)−1(1/β), which implies (3.24).
Now consider Case 2 (linear production function). The first-order conditions in this

case state that Atβtc−ρit = c−ρi0 , t = 1, 2, . . ..
Assume that the transversality condition (3.24) fails. Then there exist Θ and N > 0

such that βtc−ρit kt+1 ≥ N , for all t > Θ, and hence kt+1/A
t ≥ N/c−ρi0 . It follows that for

all t > Θ, et+1 = ct+1/Akt+1 ≤
(
c−ρi0 /N

)
(ct+1/A

t+1). Therefore, by (3.30),

∞∑
t=Θ

ct+1

At+1
= +∞.

However, iterating the equation ct+kt+1 = Akt, we easily get c0+c1/A+c2/A
2+. . . ≤ Ak0,

a contradiction.

83



3. On Discounting and Voting in a Simple Growth Model

3.9.3. Proof of Propositions 3.2 and 3.3

Consider agent i with the discount factor βi and the felicity function ui(c). Note that for
all τ (except τ = T in the finite horizon case) and any non-degenerate expectations Eτ+1,T ,
her preferred time τ consumption rate is a unique solution to the following equation:

∂V i
τ (kτ , eτ , Eτ+1,T )

∂eτ
= 0, 0 ≤ τ < T.

Indeed, the above equation can be rewritten as

Φiτ (kτ , eτ ) = Ψ iτ (kτ , eτ , Eτ+1,T ). (3.32)

where Φiτ (kτ , eτ ) is defined by (3.20), and Ψ iτ (kτ , eτ , Eτ+1,T ) is defined by (3.21). It follows
from Remark 3.1 that there exists a unique solution e∗τ to equation (3.32), and 0 < e∗τ < 1.
Thus there is a unique time τ preferred consumption rate for agent i.
Using (3.19) and Remark 3.1, we infer that ∂V i

τ (kτ , eτ , Eτ+1,T )/∂eτ is strictly decreasing
in eτ , and hence the preferences of agent i in voting over the time τ consumption rate are
strictly concave. Thus the preferences of each agent in voting over any consumption rate
are single-peaked, which proves Proposition 3.2.
Now suppose that all agents have the same felicity function u(c) and the same non-

degenerate expectations Eτ+1,T . Then for all τ (except τ = T in the finite horizon case)
higher values of the discount factor βi correspond to lower values of the preferred time τ
consumption rate ei∗τ . Indeed, Φiτ (kτ , eτ ) is independent of βi and strictly decreasing in
eτ , while Ψ iτ (kτ , eτ , Eτ+1,T ) is strictly increasing both in βi and eτ . Therefore, the solution
to equation (3.32), e∗τ , is strictly decreasing in βi.
It follows from the median voter theorem that the time τ voting equilibrium is the

preferred consumption rate for the agent with the median discount factor, which proves
Proposition 3.3.

3.9.4. Proof of Theorem 3.2

Consider the constant sequence of consumption rates E∗ = {e∗, e∗, . . .}, where e∗ is given
by (3.11). Consider a fictitious agent with the discount factor βmed and felicity function
ui(c), i.e., the agent with the median discount factor and the felicity function of agent i.
It is clear that e∗ is the preferred time τ consumption rate for this agent, and E∗ is her
optimum in terms of consumption rates.
Let τ be an arbitrary point in time. Suppose that expectations of agents are constant

and equal to Eτ+1,∞ = {e∗, e∗, . . .}. It follows from Proposition 3.2 that the preferences
of each agent in voting over the time τ consumption rate are strictly concave. Consider
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agent i with the discount factor βi and the felicity function ui(c). She has the unique
preferred time τ consumption rate ei∗τ . It follows from the results of Section 3.9.3 that if
βi > βmed (βi < βmed) then ei∗τ < e∗ (ei∗τ > e∗).
Hence the winner in voting over the time τ consumption rate under constant expecta-

tions Eτ+1,∞ = {e∗, e∗, . . .} is precisely e∗ given by (3.11). Since the point in time τ is
chosen arbitrarily, e∗ is the winner in voting over each consumption rate under the expec-
tations {e∗, e∗, . . .}. Thus the sequence {e∗, e∗, . . .} is an intertemporal voting equilibrium,
and hence e∗ is a stationary voting equilibrium.
Let us now prove that e∗ is the unique stationary voting equilibrium. Suppose that there

is another stationary voting equilibrium ẽ. Consider an arbitrary point in time τ . Suppose
that the expectations of agents are constant and equal to Eτ+1,∞ = Ẽ = {ẽ, ẽ, . . .}.
It follows from Proposition 3.2 that the preferences of each agent in voting over the
time τ consumption rate are strictly concave. By the median voter theorem, ẽ is the
most preferred consumption rate for some “median” voter. Clearly, ẽ is the preferred
consumption rate for this same agent for all τ = 0, 1, . . .. Therefore, the sequence {ẽ, ẽ, . . .}
is a step-by-step intertemporal optimum for this agent.
Denote the discount factor of this agent by β̃. Consider the corresponding k̃, which is

the unique positive solution to the equation k = (1 − ẽ)f(k). Clearly, k̃ is determined
by the “modified golden rule” for this agent: β̃f ′(k̃) = 1. It follows that ẽ depends only
on β̃, and is independent of the felicity function of this agent. In other words, ẽ is the
preferred time τ consumption rate for the fictitious agent with the discount factor β̃ and
any felicity function, in voting over eτ given kτ = k̃ and the expectations Ẽ.
Now suppose that ẽ > e∗ (ẽ < e∗), and thus β̃ < βmed (β̃ > βmed). Consider agent i with

the discount factor βi ≥ βmed (βi ≤ βmed) and the felicity function ui(c). Since βi > β̃

(βi < β̃), it follows from the results of Section 3.9.3 that ei∗τ < ẽ (ei∗τ > ẽ). Hence for at
least N+1

2
agents their preferred time τ consumption rates are are lower (resp. greater)

than ẽ. It follows that ẽ is not a Condorcet winner in voting over the time τ consumption
rate under expectations Ẽ, and cannot be a stationary voting equilibrium. Thus e∗ is the
unique stationary voting equilibrium.

3.9.5. Proof of Theorem 3.3

Let τ be an arbitrary point in time. Consider how agents vote over the time τ consumption
rate under constant non-degenerate expectations Eτ+1,∞ = {e, e, . . .}.
The objective function of agent i in the time τ voting problem under these expectations

is given by:

V i
τ (kτ , eτ , Eτ+1,∞) = ui (eτAkτ )+βiui

(
e(1− eτ )A2kτ

)
+β2

i ui
(
e(1− e)(1− eτ )A3kτ

)
+ . . . .
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It follows from Proposition 3.2 that the preferences of agent i are concave, and her
preferred time τ consumption rate, ei∗τ , is the unique solution to the following equation:

∂V i
τ (kτ , eτ , Eτ+1,∞)

∂eτ
= 0,

which can be rewritten as

Akτ (eτAkτ )
−ρi = βieA

2kτ
(
e(1− eτ )A2kτ

)−ρi
+ β2

i e(1− e)A3kτ
(
e(1− e)(1− eτ )A3kτ

)−ρi + . . . .

Dividing both parts of the above equation by (Akτ )
1−ρi , we get

(eτ )
−ρi = (1− eτ )−ρi

(
Aβie(Ae)

−ρi + A2β2
i e(1− e)(A2e(1− e))−ρi + . . .

)
,

and hence, taking into account that expectations {e, e, . . .} are non-degenerate, we obtain

(
1− eτ
eτ

)ρi
= Aβi

(
e (Ae)−ρi + Aβie(1− e)

(
A2e(1− e)

)−ρi + . . .
)

=
βi(Ae)

1−ρi

1− βi (A(1− e))1−ρi .

Using (3.12) and the above equation, we conclude that the preferred time τ consumption
rate for agent i is the solution to the following equation in eτ :(

1− eτ
eτ

)ρi
=

(
1+γi
A

)ρi
e1−ρi

1−
(

1+γi
A

)ρi
(1− e)1−ρi . (3.33)

Note that the preferred time τ consumption rate for each agent is independent of the
current capital stock kτ , and depends only on constant expectations e.
Denote the solution to equation (3.33) depending on e by ei∗τ (e).

Lemma 3.5. If 1 + γi T A(1− e), then ei∗τ (e) S e.

Proof. Suppose that 1 + γi T A(1− e). Since ei∗τ (e) is the solution to equation (3.33), we
have (

1− ei∗τ (e)

ei∗τ (e)

)ρi
T

(1− e)ρie1−ρi

1− (1− e)ρi(1− e)1−ρi
=

(1− e)ρie1−ρi

e
=

(
1− e
e

)ρi
.

The expression 1−e
e

is decreasing in e for 0 < e < 1. Therefore, ei∗τ S e.
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Let e∗ be given by (3.13). Then 1 + γmed = A(1− e∗). If the expectations are given by
{e∗, e∗, . . .}, then, by Lemma 3.5,

γi T γmed ⇒ ei∗τ S e∗.

Therefore, for any time τ , e∗ is the Condorcet winner in voting over the time τ con-
sumption rate under the expectations {e∗, e∗, . . .}. Hence e∗ is a balanced-growth voting
equilibrium.
Moreover, any other consumption rate ẽ cannot be a balanced-growth voting equilib-

rium. It follows from Lemma 3.5 that if ẽ > e∗ (ẽ < e∗), then A(1 − ẽ) < 1 + γmed

(A(1 − ẽ) > 1 + γmed), and for at least N+1
2

agents their preferred time τ consumption
rates in voting over the time τ consumption rate under expectations {ẽ, ẽ, . . .} are lower
(resp. greater) than ẽ. Hence ẽ is not a Condorcet winner, and is not a balanced-growth
voting equilibrium.
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4. Economic Growth and Property Rights on Natural
Resources

In Chapter 3 we have proposed a simple and natural voting procedure (intertemporal
majority voting) in which agents vote step by step not over the absolute values, but over
the relative values. Change of variable over which agents vote and make expectations,
from level to rate, allowed us to obtain a stable outcome of voting.
We have also noted that in the evident interpretation of the model from Chapter 3 as the

common property resource problem, consumption rate becomes harvest or extraction rate.
In the field of resource economics, rates are the most natural variables, and this observation
suggests that our procedure can be successfully applied to the choice of extraction rate in
models where heterogeneous in their time preferences agents collectively manage a stock
of exhaustible natural resource. Indeed, in the present chapter we show how this idea
may be implemented.
We consider two general equilibrium Ramsey-type models with exhaustible natural

resources and agents who are heterogeneous in their time preferences. In the first model,
we assume private ownership of natural resources. The privately owned resource stock is
an asset to its owner; agents can invest in natural resources as well as in physical capital.
Extraction rates are determined in an equilibrium by the market forces of supply and
demand. In the private property regime we define a competitive equilibrium and show
that it converges to a balanced-growth equilibrium with the long-run growth rate being
determined by the discount factor of the most patient agents.
In the second model, natural resources are public property. The resource stock is con-

trolled by a benevolent government that acts in the interest of the agents. Resource
income is equally distributed among agents, and extraction rates are determined by ma-
jority voting. In the public property regime, our voting procedure is naturally applied,
because agents vote precisely over the rates. We show that the sequence of winners in
one-dimensional votes over current extraction rate under perfect foresight is determined
by the agent with the median discount factor. For this model we define an intertemporal
voting equilibrium (which consists of the voting equilibrium sequence of extraction rates
along with the corresponding competitive equilibrium) and prove that it also converges to
a balanced-growth equilibrium. In the public property regime the long-run rate of growth
is determined by the median discount factor.
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Our results suggest that if the most patient agents do not constitute a majority of the
population, private ownership of natural resources results in a higher rate of growth than
public ownership. At the same time, private ownership leads to higher inequality than
public ownership, and if inequality impedes growth, then the public property regime is
likely to result in a higher long-run rate of growth. However, an appropriate redistributive
policy can eliminate the negative impact of inequality on growth.
This chapter is based on the published article “Economic Growth and Property Rights

on Natural Resources” (Borissov and Pakhnin, 2018) and is organized as follows. The
main body of the chapter focuses on the description of the models and on the general
statement of the results. Section 4.1 provides a preliminary discussion of the topic. Sec-
tion 4.2 presents the basic building blocks of the model and the descriptions of property
regimes. In Section 4.3 we study the model with private ownership of natural resources.
We define competitive and balanced-growth equilibria, and present the explicit expression
for the equilibrium rate of growth. In Section 4.4 the model with public ownership of nat-
ural resources is considered. We define a competitive equilibrium under given extraction
rates, characterize a temporary voting equilibrium, and study an intertemporal voting
equilibrium, deriving the expression for the long-run rate of growth. Section 4.5 compares
the long-run consequences of the two different property regimes. In Section 4.6 we modify
the two models by taking into account the impact of sociopolitical instability caused by
inequality on the growth rates. In Section 4.7 a model with private ownership is modified
to include capital taxation. Section 4.8 concludes.
All technical details and proofs are relegated to the additional sections. Section 4.9

contains mathematical details and proofs of the statements related to the private property
regime. Section 4.10 provides a thorough formulation of the public property regime.
Section 4.11 is devoted to the private property regime with capital taxation.

4.1. Introduction

The question of property rights1 is one of the most controversial and complicated issues
concerning the regulation of natural resources. Who should own natural resources and in
what form? Which individual, group or institution will best manage the resource stock in
the short and long run? How do different forms and extents of property rights on natural
resources affect both present and future generations? These are important and inherently
complex problems.

1 As many other scholars, we do not make any difference between property rights and ownership through-
out this chapter. On our level of abstraction these two constructs are essentially the same. Therefore
we use the terms “property regime” and “ownership” interchangeably.
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The vast amount of literature on property regimes over natural resources (see, e.g.,
Ostrom, 1990; Barnes, 2009; Cole and Ostrom, 2011) usually places great emphasis on
the market failure that occurs when property rights are not properly specified. The
relative advantages of private and common property rights in terms of efficiency, equity,
and sustainability of natural resource use patterns have been widely discussed and studied.
However, even if property rights are clearly defined and assigned, the optimal choice

from a wide array of diverse property regimes is not so obvious. Especially significant in
this connection is the choice between private and public property. There has been much
debate on the economic and political merits of private versus public ownership in general
(see, e.g., a survey by Shleifer, 1998). It is believed that private firms are more efficient,
mainly because of strong incentives to invest in improving the ways of using the assets.
At the same time, state firms are usually considered inefficient for a number of reasons,
e.g., weak incentives to reduce costs (agency problem), and government subsidies to the
state-owned sector (soft budget constraints).2 Moreover, it is widely recognized that
public enterprises pursue political rather than economic goals (see Shleifer and Vishny,
1994). However, in this chapter we do not take into account any political considerations
and other possible sources of efficiency losses. We assume a government that acts in the
interest of the people. Since we assume that extraction costs are zero, it is irrelevant for
us, which kinds of enterprises (private or state-owned) extract and sell resources held in
public ownership. There is no such an enterprise in our model. Our goal is to compare
private and public property regimes over natural resources in terms of economic growth,
and not in terms of profitability or efficiency.
Interestingly enough, economists have only recently begun to pay attention to the

comparison of private and public ownership in the particular case of natural resources
like crude oil or gold. This is even more surprising considering the ambiguity of this issue
and its consequences for societies in resource-rich countries. There are many countries in
the world that maintain full state ownership of their natural resources. In such countries
private firms, especially foreign firms, have little or no operational and managerial control.
Examples include Uzbekistan, Turkmenistan, Nigeria, and modern Venezuela. At the
same time, there are countries like Kazakhstan or the Russian Federation, where leaders
chose to privatize their energy sector (see Jones Luong and Weinthal, 2001). One should
also mention the USA and Japan, where private firms own and control much of the
countries’ subsurface minerals.
There are certain rationales for such cleavage. On the one hand, exhaustible resource

stocks (oil and gas fields, coal and ore mines) are universally regarded by the public at

2 Bajona and Chu (2010) show that reduction in government subsidies leads to an increase in economic ef-
ficiency, and Gupta (2005) reports that even partial privatization increase productivity and profitability
of state-owned enterprises.
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large as public property. It is felt that natural resources should belong to local peoples,
who claim sovereign rights on their territorial habitat. It is often argued that “resources
found in the territory of a state belong to the population of that state (. . .) The right
to natural resources is a right of peoples or communities to determine how their natural
resources should be protected, managed and explored” (Blanco and Razzaque, 2011, p.
76). As Joseph Stiglitz put it, “a country’s natural resources should belong to all of
its people” (Stiglitz, 2016, p. 354). Moreover, for many countries around the world,
especially developing countries, natural resources represent a significant share of income
and are too important to be left to the market. It is believed that direct state control over
resources is an indispensable feature of national sovereignty and political decision-making
(see Mommer, 2002).
On the other hand, most economists are convinced that private ownership of natural

resources leads to higher efficiency than public ownership. Empirical evidence shows that
private natural resource companies are more efficient and profitable than nationalized
firms, though the effects of privatization on employment and income distribution are not
as desirable (see, e.g., Chong and de Silanes, 2005; Schmitz and Teixeira, 2008).
One may conjecture that this divergence between the positions of the public at large

and economists partly explains the fact that privatization–nationalization cycles tend to
occur more often in the natural resource sector (see, e.g., Kobrin, 1984; Chua, 1995;
Hogan et al., 2010). This tendency provides an additional incentive to study the impact
of property regime over natural resources on macroeconomic performance.
The existing empirical literature on ownership of the primary sectors (e.g., Meggin-

son, 2005; Wolf, 2009) concentrates mostly on the productive efficiency and profitability
of firms. The effects of different property regimes on aggregate income are studied by
Brunnschweiler and Valente (2013), though they use a slightly different classification of
ownership instead of the usual dichotomy between the categories of “private” and “public”.
In this chapter, we study private and public property regimes over exhaustible natural

resources from the standpoint of economic growth theory. We do not compare private
and public ownership in terms of efficiency or optimality. Thus we can abstract from
any political considerations and focus only on the following question: which of the two
property regimes does lead to a higher long-run rate of economics growth?
Developing the ideas of Borissov and Surkov (2010), we consider two models of eco-

nomic growth with heterogeneous agents and exhaustible resources. These models are
modifications to a well-known Ramsey-type model of economic growth with exhaustible
resources (see, e.g., Dasgupta and Heal, 1979). Technical progress is exogenous. Under
this assumption the long-run rate of growth is fully determined by the extraction rate.
The two models differ in the property regimes over natural resources. The first model

assumes private ownership of natural resources. The resource stock is an asset. Agents
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can invest their savings in natural resources as well as in physical capital. This implies
that resource income belongs to the owners of natural resources. The extraction rate is
determined by market forces. In the second model we assume that the resource stock
is held in trust by the government for the common benefit. Resource income is equally
distributed among all agents, and it is up to the agents to determine the extraction rate.
Following Becker (1980, 2006), we assume that agents are heterogeneous in their time

preferences. The rates of time preference, or the degrees of impatience, are represented
by agents’ discount factors. The discount factors are higher for more patient agents and
lower for less patient ones.
In the private property regime, only the most patient agents obtain income from the

capital and resource stocks in the long run. We show that the discount factor of the most
patient agents determines both the long-run extraction rate and the rate of growth. The
extraction rate is decreasing and the growth rate is increasing in the discount factor of
the most patient agents.
In the public property regime, the heterogeneity of agents results in different prefer-

ences over the resource extraction rate. Relatively impatient agents care less about the
future and prefer to extract resources faster than relatively patient agents. Thus there
naturally arises a problem of aggregating heterogeneous preferences. We use a conven-
tional collective choice mechanism and suppose that the resource extraction rate is chosen
by majority voting.
The problem of social choice in dynamic settings has attracted growing interest and at-

tention in recent years (see, e.g., Rangel, 2003; Zuber, 2011; Le Kama et al., 2014; Asheim
and Ekeland, 2016). A number of papers (see, e.g., Krusell et al., 1997; Bernheim and
Slavov, 2009) study appropriate dynamic generalizations of standard solution concepts.
One of these generalizations is presented by Borissov and Surkov (2010), who consider
voting on extraction rates. The same voting mechanism is considered also in Borissov
et al. (2014a), where heterogeneous agents vote for a tax aimed at environmental main-
tenance. In both cases the outcome of voting is the optimal policy for the agent with
the median discount factor. However, this voting mechanism is oversimplified; it does not
imply perfect rationality of agents, and allows one to analyze voting outcomes only in a
balanced-growth equilibrium.
In this chapter, we apply the approach to voting in a dynamic general equilibrium

framework described in Chapter 3. We use the intertemporal setting of the model, and
ask agents to vote over the extraction rate at each point in time under given expectations
about future extraction rates. The sequence of winners in these one-dimensional votes
under perfect foresight determines an intertemporal voting equilibrium. We show that in
the long run an intertemporal voting equilibrium converges to a balanced-growth voting
equilibrium. The long-run extraction rate and the rate of growth are determined by the
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median discount factor. The extraction rate is decreasing and the growth rate is increasing
in the median discount factor.
Our results suggest that the long-run growth rate in the case of private ownership is

equal to that of public ownership if the most patient agents constitute the majority of
the population, and is higher otherwise. It seems reasonable to conclude that the private
property regime is more favorable for promoting long-run economic growth than the public
property regime, but this conclusion is somewhat hasty. The private property regime over
natural resources, all other things being equal, results in higher income inequality. This
can have detrimental effects on economic growth.
High inequality increases sociopolitical instability, the probability of revolutions and

mass violence, and the risk of expropriation, thus creating uncertainty in the politico-
economic environment. These factors reduce investment incentives and affect the security
of property rights. Increased social tension can lead either to a higher extraction rate,3 or
to unproductive costs and losses in output. In both cases the growth rate of the economy
is adversely affected.
We consider two different channels through which sociopolitical instability caused by

inequality affects economic growth. The first channel assumes that the discount factors of
agents are formed endogenously, and the rise in income inequality increases the impatience
of agents (see Borissov and Lambrecht, 2009).4 The second channel assumes that a certain
share of output, depending on inequality, is unproductively thrown away. This share might
be used to increase military expenditures, to support and expand various social programs
to pacify the population, etc. Under both assumptions, if inequality in the society is
sufficiently high, then the public property regime over natural resources is likely to result
in a higher long-run rate of growth compared with the private property regime.
In the most of the chapter we compare two different institutional frameworks, private

and public ownership of natural resources, in a purely positive manner. However, it may
be interesting to ask whether differences in growth rate and inequality between private
and public ownership could be undone by a social planner implementing certain economic
policies. We show that the private property regime with an appropriately chosen capital

3 The common wisdom (see, e.g., Long, 1975; Long and Sorger, 2006) has been that ownership risk induces
a firm to overuse the stock of a resource, though the empirical evidence is ambiguous. For instance,
Jacoby et al. (2002) support this point of view by reporting that a higher risk of expropriation reduces
private investments and raises the current extraction. At the same time, Bohn and Deacon (2000)
show that insecure ownership reduces present extraction for resources with capital-intensive extraction
technology.

4 The reasoning behind this assumption is as follows. All risks emerging from high inequality can be
reduced to the threat of total political and economic breakdown. When making their decisions, agents
do not take into account a new economic order which will be established after breakdown of the current
economic order. This new order will be better for some agents, and worse for others, but agents can
behave rationally only within the current economic order, and cannot extend their rationality beyond
its end. Therefore, an increase in the probability of breakdown increases the impatience of all agents.
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income tax can have less inequality and a higher long-run growth rate than the public
property regime.

4.2. The model

We consider a discrete time dynamic general equilibrium model of an economy endowed
with exhaustible resources. The economy is populated with L agents who are heteroge-
neous in their time preferences.

4.2.1. Production and resource extraction

Firms use physical capital, labor and natural resources to produce a homogeneous good,
which is a numeraire in the model. Extraction is costless, and all markets are competitive.
Output is given by the Cobb–Douglas production function:

Yt = AtK
α1
t Lα2Eα3

t , αi > 0 (i = 1, 2, 3),
3∑
i=1

αi = 1,

where At is total factor productivity, Kt is the physical capital stock, Et is the amount of
resources extracted in period t (which is identified with the amount of resources utilized
in production), and L is the constant over time labor supply. Capital fully depreciates
during one time period. We assume that total factor productivity grows at an exogenously
given constant rate λ > 0: At = (1 + λ)At−1.
The production function in intensive form is given by

yt =
Yt
L

= Atk
α1
t e

α3
t ,

where kt = Kt/L and et = Et/L.
The amount of resources extracted for production decreases the available stock: Rt =

Rt−1 − Et. We denote the resource extraction rate by

εt =
Et
Rt−1

,

so that the per capita volume of extraction et and the dynamics of the resource stock Rt

are given by

et =
εtRt−1

L
, Rt = (1− εt)Rt−1.
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Since all markets are competitive, the interest rate rt, the wage rate wt, and the price
of natural resources qt coincide with the respective marginal products:

1 + rt = α1At(kt)
α1−1(et)

α3 , wt = α2At(kt)
α1(et)

α3 , qt = α3At(kt)
α1(et)

α3−1.

4.2.2. Households

There is an odd number L of agents, indexed by j = 1, . . . , L. Each agent is endowed
with one unit of labor. Agent j discounts future utilities by the factor βj. We assume
that

1 > β1 ≥ β2 ≥ . . . ≥ βL > 0,

i.e., agents are ordered by their patience, from more to less patient. We denote by
J = {j | βj = β1} the set of agents with the highest discount factor. These agents
appreciate the future higher than the others, and we refer to them as the most patient
agents.
Agents obtain utility from their consumption over an infinite time horizon. Preferences

of agent j over consumption stream {cjt}∞t=0 are given by the log-linear utility function:

U j =
∞∑
t=0

βtj ln cjt .

4.2.3. Property regimes

In almost every country of the world the state is the de jure owner of domestic natural
resources. Thus the primary questions are: who has control over the rights to exploit the
resource stock, and who has the right to obtain resource income?
Following Borissov and Surkov (2010), we consider two different property rights regimes

over exhaustible resources: private and public. We suppose that the stock of natural
resources (e.g., oil or gas fields, coal mines, diamond mine with kimberlite pipes) is di-
visible, and do not consider common-pool resources (e.g., oil in a common underground
reservoir).5 It is possible to divide the stock into individual parcels and to assign property
rights over each parcel.
If proprietary rights over these parcels are established, we refer to this situation as

the private property regime. The privately owned resource stock in situ is an asset to
its owner. Agents can invest in natural resources as well as in physical capital. By the
Hotelling (1931) rule, the equilibrium rate of return on the resource stock as an asset is
equal to the return on capital. Resource income goes to the resource owner.

5 For a dynamic model of the common property resource exploitation, see, e.g., Mitra and Sorger (2014).
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There can be other property rights regimes over natural resources. It is reasonable
to consider the situation in which the exhaustible resource stock is controlled by a gov-
ernment that acts in the interest of the agents. We refer to this situation as the public
property regime. In this case resource income is equally distributed among agents, who
choose the resource extraction rate by majority voting.
Note that in the public property regime there is no reason to expect that the Hotelling

rule holds. There are incentives for arbitrage operations, as the rate of change of the
natural resource price can differ from the interest rate. However, we assume that pri-
vate storages are forbidden. There is no possibility to store resources; they are utilized
immediately after extraction.6 Thus no arbitrage opportunities can be exploited.

4.3. Private property regime

Consider first the case in which the exhaustible resource stock is privately owned. In this
section our exposition follows Borissov and Surkov (2010). We introduce the model and
specify its main properties. Formal definitions and proofs can be found in Section 4.9.

4.3.1. Competitive equilibrium

Suppose we start at time 0. Agent j is endowed with some amount of physical capital
k̂j ≥ 0 and natural resources R̂j ≥ 0. Given the equilibrium price of natural resources at
time t = −1, q−1, the initial savings of agent j are determined by sj−1 = q−1R̂

j + k̂j ≥ 0.7

Agent j chooses her consumption plan by solving the problem of maximizing lifetime
utility:

max
∞∑
t=0

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + rt) s
j
t−1 + wt,

sjt ≥ 0, t = 0, 1, . . . ,

sj−1 = q−1R̂
j + k̂j.

Here cjt and s
j
t are consumption and savings of agent j, rt is the interest rate, and wt is

the wage rate at time t.
Agents are prohibited from borrowing against their future earnings. Thus their sav-

ings must be non-negative. They can be invested in both physical capital and natural

6 See, e.g., Bommier et al. (2017) for the discussion of exhaustible resource markets when resource storage
is possible.

7 Note that the price of natural resources at time t = −1 is determined endogenously. Therefore, the
initial savings of agent j are not given exogenously. To ensure that the initial savings are non-negative,
we impose the non-negativity constraints on initial holdings of physical capital and resources.
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resources.8 From the agents’ point of view, the two assets are perfect substitutes, so
we do not distinguish between physical capital and natural resource in agents’ portfolio.
The return to investment into physical capital and natural resources must be equal (the
Hotelling rule), hence the price of natural resources qt grows at the rate rt:

qt = (1 + rt) qt−1.

We define a competitive equilibrium in the private property regime,

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

,

in a standard way by the following conditions:

• agents maximize their utilities subject to budget constraints;

• capital, labor and natural resources are paid their marginal products;

• the Hotelling rule holds;

• aggregate savings are equal to investment into physical capital and natural resources.

A competitive equilibrium exists (see Appendix A), and if initially the stocks of phys-
ical capital and natural resources belong to the most patient agents, then the competitive
equilibrium starting from this state is unique (see Proposition 4.1 in Section 4.9). Also, in
each competitive equilibrium from some time onward only the most patient agents can make
positive savings, and from this time resources are extracted at a constant rate ε∗ = 1− β1

(Proposition 4.2).

4.3.2. Balanced-growth equilibrium

A balanced-growth equilibrium is a competitive equilibrium in which output, consumption,
savings, the capital stock and the wage rate grow at a constant rate γ∗, while the interest
rate r∗ is constant over time. The price of natural resources grows at a constant rate
equal to r∗ (by the Hotelling rule), and resources are depleted at a constant extraction
rate ε∗.
In our model, there exists a balanced-growth equilibrium (see Proposition 4.3). In such an

equilibrium only the most patient agents make positive savings, while relatively impatient

8 Formally speaking, the non-negativity constraint on savings does not rule out the possibility that some
agents have positive holdings of physical capital and negative holdings of resources, or vice versa.
However, in an equilibrium only agents’ savings are of interest for us, and it is irrelevant in which form
they are held.
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4.4. Public property regime

agents make no savings and consume their wages. This important property is known in
the literature as the Ramsey (1928) conjecture.9

It can be checked that the interest rate r∗, the extraction rate ε∗, and the growth rate
γ∗ are the same for every balanced-growth equilibrium (Proposition 4.4). Moreover, every
competitive equilibrium converges to a balanced-growth equilibrium (for the precise mean-
ing of this statement see Proposition 4.5). Thus we can concentrate on the characterization
of balanced-growth equilibria when exploring the long-run perspective.
It is well known that unlike Ramsey-type models without natural resources, in which

the long-run growth rate is determined by the exogenously given rate of technical progress,
in economies with natural resources the growth rate typically depends on the extraction
rate, and hence is affected by the time preferences of the agents. For instance, in models
with a representative agent, the optimal extraction rate is ε = 1 − β, where β is the
discount factor of the representative agent (see, e.g., Stiglitz, 1974; Dasgupta and Heal,
1979).
In our model, the equilibrium extraction rate is determined by the discount factor of

the most patient agents,
ε∗ = 1− β1,

and the equilibrium rate of balanced growth depends on the extraction rate and is given
by

1 + γ∗ = (1 + λ)
1

1−α1 (1− ε∗)
α3

1−α1 .

Thus the rate of balanced growth is determined by the discount factor of the most patient
agents:

1 + γ∗ = (1 + λ)
1

1−α1 β
α3

1−α1
1 .

The equilibrium extraction rate is decreasing and the rate of balanced growth is in-
creasing in the discount factor of the most patient agents. An increase in patience of the
resource stock owners means that they put more weight on additional future consumption
compared to additional present consumption. Thus they prefer to extract less amount of
resources today, and the rate of natural resource utilization becomes lower. In turn, a
lower extraction rate leads to a higher growth rate in the future.

4.4. Public property regime

Consider now the case in which the stock of exhaustible resources is held in trust by the
government. Resources are extracted and sold to the private production sector. Income
from the sale of natural resources is equally distributed among agents who choose the

9 For the history and discussion of this conjecture, see Becker (2006).
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resource extraction rate by majority voting.10 In this section we focus on the description
of the model and on the general statement of the results. See Section 4.10 for formal
definitions and proofs.

4.4.1. Competitive equilibrium under given extraction rates

Let us first define a competitive equilibrium under given extraction rates starting from an
arbitrary point in time. Suppose that instead of time 0, we start at time τ . Each agent
j has savings ŝjτ−1 ≥ 0 such that the corresponding stock of physical capital is positive,
kτ = 1

L

∑L
j=1 ŝ

j
τ−1 > 0. The stock of natural resources is also positive, R̂τ−1 > 0.

Suppose that at time τ agents have some non-degenerate expectations about future
extraction rates, {εet}∞t=τ+1.11 For any ετ ∈ (0, 1), denote

Eτ (ετ ) = {ετ , εeτ+1, ε
e
τ+2, . . .},

and notice that the sequence of extraction rates Eτ (ετ ) is in fact arbitrary.
Clearly, given the sequence of extraction rates, the per capita volumes of extraction et

and the dynamics of the exhaustible resource stock Rt are predetermined as follows:

Rτ (ετ ) = (1− ετ )R̂τ−1, Rt(ετ ) = (1− εet )Rt−1(ετ ), t = τ + 1, τ + 2, . . . ;

eτ (ετ ) =
ετ R̂τ−1

L
, et(ετ ) =

εetRt−1(ετ )

L
, t = τ + 1, τ + 2, . . . .

Our notation emphasizes the fact that the future volumes of extraction and the dynamics
of the resource stock depend on the time τ extraction rate ετ .
Given the future volumes of extraction, agent j solves the following maximization prob-

lem:

max
∞∑
t=τ

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + rt) s
j
t−1 + wt + vt,

sjt ≥ 0, t = τ, τ + 1, . . . ,

sjτ−1 = ŝjτ−1.

Here cjt and sjt are consumption and savings of agent j, rt is the interest rate, wt is the
wage rate, and vt is per capita resource income at time t. The latter is the income from

10 This regime is also discussed by Borissov and Surkov (2010). However, their voting approach has certain
major drawbacks. The voting mechanism in their model allows one to define voting only in a balanced-
growth equilibrium, and agents do not take into account the fact that policy changes have general
equilibrium effects.

11 We call a sequence of extraction rates non-degenerate if it is bounded away from 0 and 1.
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the sale of the extracted resource to the production sector, equally distributed among all
agents.
In this model, agents are also prohibited from borrowing against their future income,

and their savings must be non-negative. Savings can be invested only in physical capital,
but not in natural resources. This is an important difference between the public property
regime and the private property regime considered in Section 4.3.
A competitive equilibrium

E∗∗τ (ετ ) =
{

(cj∗∗t (ετ ))
L
j=1, (s

j∗∗
t (ετ ))

L
j=1, k

∗∗
t (ετ ), r

∗∗
t (ετ ), w

∗∗
t (ετ ), q

∗∗
t (ετ ), v

∗∗
t (ετ )

}
t=τ,τ+1...

is defined in a standard way by the following conditions:

• agents maximize their utilities subject to the budget constraints, perfectly anticipat-
ing the profile of factor returns and resource incomes, {r∗∗t (ετ ), w

∗∗
t (ετ ), v

∗∗
t (ετ )}∞t=τ ;12

• capital, labor and natural resources are paid their marginal products;

• resource income is determined by the marginal product of natural resources;

• aggregate agents’ savings are equal to investment into physical capital.

Let us clarify our notation E∗∗τ (ετ ). We use two stars (∗∗) to denote the equilibrium val-
ues in the public property regime. The equilibrium starts at time τ , hence the subscript.
The equilibrium also depends on agents’ expectations about future extraction rates, and
on the parameters of the model. However, we are interested in the dependence of equilib-
rium variables on the current extraction rate ετ . For instance, the notation {cj∗∗t (ετ )}∞t=τ
emphasizes the dependence of the equilibrium consumption stream for agent j (and thus
her utility) on ετ .
In the above definition we do not suppose that the Hotelling rule holds. Indeed, the

Hotelling rule corresponds to the equilibrium on the asset market, i.e., to the private
property regime, where the stock of natural resources is an asset in which agents can
invest. In the public property regime, the natural resource stock is not an asset, so
the Hotelling rule can be violated.13 Under some circumstances the rate of change of
the resource price may not be equal to the interest rate. However, since we assume
that resources cannot be stored privately, all arbitrage opportunities that arise from the
violation of the Hotelling rule are forbidden.
A competitive equilibrium exists (see Appendix B), and, similarly to the private prop-

erty regime, if initially the stock of physical capital is owned by the most patient agents,
12 Note that the definition of a competitive equilibrium does not presume that agents perfectly anticipate

future extraction rates; here they are considered as given.
13 See Chermak and Patrick (2002) for a discussion of the Hotelling rule applicability to the observable

price dynamics.
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then the competitive equilibrium is unique (see Proposition 4.6 in Section 4.10). Also,
in every competitive equilibrium all but the most patient agents run their capital to zero
(Proposition 4.7). Eventually the whole capital stock belongs to the most patient agents.
Thus in the public property regime the Ramsey conjecture also holds true.

4.4.2. Balanced-growth equilibrium under given extraction rate

Suppose that a sequence of extraction rates is constant over time. A balanced-growth
equilibrium under given extraction rate ε is a competitive equilibrium in which output,
consumption, savings, the capital stock, the wage rate and resource income grow at a
constant rate γ∗∗, while the rate of change of the resource price and the interest rate are
constant over time.
We show that for any ε there exists a balanced-growth equilibrium (its characterization

is given in Proposition 4.8). In any balanced-growth equilibrium only the most patient
agents make positive savings and thus own the whole capital stock. It follows that the rate
of balanced growth, the interest rate, and the rate of change of the resource price depend
on the parameters of the model and on the given extraction rate ε (see Proposition 4.9).
Moreover, every competitive equilibrium under a constant sequence of extraction rates
converges to a balanced-growth equilibrium (Proposition 4.10).
Thus, we can give a qualitative description of competitive equilibria under given ex-

traction rates. In every competitive equilibrium from some time onward only the most
patient agents own the whole capital stock. They obtain not only wages and resource in-
come, but also capital income. The incomes of all other agents consist only of wages and
resource income. If, in addition, from some time onward the sequence of extraction rates
is constant, then a competitive equilibrium converges to a balanced-growth equilibrium.

4.4.3. Time τ voting equilibrium

Now we make extraction rates endogenous and introduce a voting procedure into our
model. Our approach to voting in a dynamic general equilibrium framework follows
Borissov et al. (2014b).14 In our model agents vote over the current extraction rate at
each point in time.
First we define a voting equilibrium under the assumption that a competitive equilib-

rium under given extraction rates is unique. Recall that this is true, in particular, when
the stock of physical capital is initially owned only by the most patient agents. Further,
in Section 4.4.6, we generalize our voting procedure to the case in which this assumption
may not hold.

14 Borissov et al. (2014b) study voting on the shares of public goods in the GDP. Here we apply their
approach to voting on extraction rates.
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4.4. Public property regime

Under the uniqueness assumption a voting equilibrium is defined as follows. At each
point in time agents choose the today’s extraction rate by majority voting under given
expectations about future extraction rates. We show that the agents’ preferences are
single-peaked, and hence the median voter theorem applies: at each point in time there
exists an instantaneous Condorcet winner, i.e., an extraction rate which is preferred by
a majority of agents to any other extraction rate. A time τ (temporary) equilibrium is
determined by this Condorcet winner. We obtain the closed-form solution for the preferred
extraction rate for each agent, and show that it depends only on the discount factor of the
agent and is independent of expectations.15 Hence the instantaneous Condorcet winner
is the preferred extraction rate for the agent with the median discount factor. Since the
outcome of voting at each point in time does not depend on expectations, an intertemporal
voting equilibrium is defined in a natural way.
Formally, suppose at time τ agents are asked to vote over the time τ extraction rate.

Suppose that for given expectations about future extraction rates, {εet}∞t=τ+1, and for any
ετ ∈ (0, 1), a competitive equilibrium E∗∗τ (ετ ) is unique. Then we can unambiguously
define agents’ preferences over the time τ extraction rate by the indirect utility functions:

U jτ (ετ ) = ln cj∗∗τ (ετ ) + βj ln cj∗∗τ+1(ετ ) + . . . , j = 1, . . . , L, (4.1)

where {cj∗∗t (ετ )}∞t=τ is the equilibrium consumption stream for agent j. Consumption
streams and objective functions depend on expectations and on the parameters of the
model as well. However, we use a notation that emphasizes the dependence on the time
τ extraction rate ετ on which agents vote.
The voting method is majority rule. We define a time τ (temporal) voting equilibrium as

a couple {ε∗∗τ , E∗∗τ } such that the equilibrium extraction rate ε∗∗τ is a Condorcet winner in
voting on the time τ extraction rate, and E∗∗τ = E∗∗τ (ε∗∗τ ) is the corresponding competitive
equilibrium.
When voting, agents maximize their indirect utility functions given by (4.1). Therefore,

it is crucial to know how the competitive equilibrium E∗∗τ (ετ ) changes when ετ changes.
Suppose that the time τ extraction rate increases, while the initial resource stock and
expectations about future extraction rates remain intact. In other words, let ετ be replaced
by some other extraction rate, ε̃τ > ετ .
The time τ volume of extraction increases by the factor ε̃τ/ετ . Hence the output at time

τ increases by the factor (ε̃τ/ετ )
α3 . Some simple but tedious calculations (see Lemma 4.13)

show that consumption and savings of all agents, the wage rate, the gross interest rate,

15 This is due to the log-linear utility functions and the Cobb–Douglas production function. Only in this
particular case we can apply our approach to voting in a dynamic general equilibrium framework. A
model with general utility and production functions in a dynamic optimization context is proposed by
Borissov et al. (2017).
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resource income, and the time τ + 1 capital stock also increase by the factor (ε̃τ/ετ )
α3 ,

proportionally to the changed output.
Further, for all future periods of time the available resource stock decreases: it is

multiplied by the factor (1− ε̃τ )/(1− ετ ) < 1. Since expectations about future extraction
rates do not change, this leads to the proportional decline in the volumes of extraction.
Thus there is a trade-off between the future and today’s extraction, which leads to a
trade-off between the future and today’s consumption. The agent’s decision on the time τ
extraction rate explicitly affects her future consumption by changing the available resource
stock.
Under our assumptions, agents’ preferences in voting on the time τ extraction rate,

defined by (4.1), are single-peaked. We show that for each agent j there exists a unique
preferred time τ extraction rate, i.e., the value εjτ that maximizes her indirect utility
function U j(ετ ). It turns out that the preferred time τ extraction rate for each agent j is
given by

εjτ = 1− βj (4.2)

(see Proposition 4.11). The preferred time τ extraction rate for each agent is constant over
time, depends only on this agent’s discount factor, and does not depend on expectations
or on the current state of the economy.
By the median voter theorem, there exists a Condorcet winner in majority voting on

the time τ extraction rate, which is the preferred extraction rate for the agent with the
median discount factor. It follows that there is a unique time τ voting equilibrium, with
the extraction rate ε∗∗τ given by

ε∗∗τ = 1− βmed, (4.3)

where βmed is the median discount factor (see Theorem 4.3).
Note that the equilibrium time τ extraction rate actually depends neither on the current

state of the economy nor on the expectations of agents. The equilibrium extraction rate
is constant over time and depends only on the distribution of the discount factors across
the population. This result in particular eliminates a strategic motive to influence the
outcomes of future votes. This is the reason why they can really be taken as given.

4.4.4. Intertemporal voting equilibrium

Now let us assume perfect foresight about future extraction rates and define an intertem-
poral voting equilibrium.
Suppose we are given a sequence of extraction rates

E∗∗ = E∗∗0 = {ε∗∗t }∞t=0.
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Denote by

E∗∗ = E∗∗0 =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...

the corresponding competitive equilibrium starting at time t = 0.
Let also for τ = 1, 2, . . .

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

be the corresponding tail of E∗∗0 . Clearly, it is a competitive equilibrium starting at time
t = τ corresponding to the sequence of extraction rates E∗∗τ = {ε∗∗t }∞t=τ .
An intertemporal voting equilibrium is a couple which consists of the sequence of ex-

traction rates E∗∗ and the corresponding competitive equilibrium E∗∗ such that for every
τ = 0, 1, . . ., the time τ extraction rate ε∗∗τ and the competitive equilibrium E∗∗τ consti-
tute a time τ voting equilibrium under perfect foresight about future extraction rates
(εet = ε∗∗t , t = τ + 1, τ + 2, . . .).
It is clear that in every intertemporal voting equilibrium the sequence of extraction rates

E∗∗ is constant over time:
E∗∗ = {ε∗∗, ε∗∗, . . .}, (4.4)

where ε∗∗ = 1− βmed (see Theorem 4.4).
The existence and uniqueness of an intertemporal voting equilibrium are related to

the corresponding properties of an underlying competitive equilibria. In particular, if
initially the whole capital stock belongs to the most patient agents, then an intertemporal
equilibrium exists and is unique (Theorem 4.5).

4.4.5. Balanced-growth voting equilibrium

A balanced-growth equilibrium for which the sequence of extraction rates is given by (4.4)
is called a balanced-growth voting equilibrium. Put differently, a balanced-growth voting
equilibrium is an intertemporal voting equilibrium in which output, consumption, savings,
the capital stock, the wage rate, and resource income grow at a constant rate γ∗∗, while
the rate of change of the resource price and the interest rate are constant over time.
It can be checked that if initially the whole capital stock is owned by the most patient

agents, then the intertemporal voting equilibrium converges to a balanced-growth voting
equilibrium (Theorem 4.6).
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The most important conclusion to emerge from the characterization of a balanced-
growth voting equilibrium is that the voting equilibrium extraction rate is fully determined
by the median discount factor:

ε∗∗ = 1− βmed.

Consequently, the rate of balanced growth depends on the median discount factor:

1 + γ∗∗ = (1 + λ)
1

1−α1 (1− ε∗∗)
α3

1−α1 = (1 + λ)
1

1−α1 β
α3

1−α1
med .

It is clear that the more patient the population as a whole is (the higher βmed is), the
lower the voting equilibrium extraction rate is and the higher the long-run growth rate
is. These results capture the intuition that the more patient agents value the future more
highly and tend to smooth their consumption. They vote for the lower extraction rate
today in order to maintain a higher resource stock level in the future, which leads to a
higher growth rate.
As we have mentioned, the Hotelling rule can be violated. The rate of change of the

resource price π∗∗ is not necessarily equal to the interest rate r∗∗. Namely, we have

1 + π∗∗

1 + r∗∗
=

β1

βmed
.

It follows that if βmed < β1, then π∗∗ is larger than r∗∗. However, this should not be a
great surprise. In the public property regime agents cannot invest in natural resources,
so there is no reason for the Hotelling rule to hold. Indeed, in this model the return
on capital is related to the discount factor of the most patient agents, and the resource
extraction rate is determined by the agents with the median discount factor. Unless these
types of agents coincide (i.e., unless βmed = β1), the Hotelling rule is violated.

4.4.6. Generalized intertemporal voting equilibria

Our definition of an intertemporal voting equilibrium is given under the assumption that
there is a unique competitive equilibrium corresponding to a given sequence of extrac-
tion rates. In particular, this assumption ensures the uniqueness of the time τ voting
equilibrium and the existence of an intertemporal voting equilibrium.
Let us discuss the general case in which the uniqueness of a competitive equilibrium
E∗∗τ (ετ ) is not guaranteed. The difficulty here is that we cannot unambiguously define
agents’ indirect utility functions and obtain agents’ preferred values of extraction rates.
However, if we apply the technique proposed by Borissov et al. (2014b), we can get around
this difficulty. To do this, we impose a certain additional assumption on the beliefs of
agents.
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Let us assume that agents do not take into account the multiplicity of equilibria and
believe that a competitive equilibrium after the change of the time τ extraction rate is
associated with a competitive equilibrium before the change in the way discussed in Sec-
tion 4.4.3 (and described in Lemma 4.13). Our assumption implies that agents simply
act as if the competitive equilibrium E∗∗τ (ετ ) is unique for any given extraction rate ετ .
We define a generalized intertemporal voting equilibrium in essentially the same way as

an intertemporal voting equilibrium. The only difference is that we do not assume the
uniqueness of the competitive equilibrium; it is replaced with the additional assumption
about agents’ beliefs.
Clearly, any intertemporal voting equilibrium is a generalized intertemporal voting equi-

librium. Moreover, if initially the whole capital stock belongs to the most patient agents,
then any generalized intertemporal voting equilibrium is an intertemporal voting equilib-
rium.
Under our additional assumption all the results concerning voting equilibria remain the

same as in the case of a unique competitive equilibrium. Namely, the preferred value
of the time τ extraction rate for agent j is given by (4.2), and the equilibrium time τ
extraction rate is constant over time and given by (4.3). What is important, there always
exists a generalized intertemporal voting equilibrium, and the sequence of extraction rates
in every generalized intertemporal voting equilibrium is constant over time and given by
(4.4) (this is the statement of Theorem 4.7). Furthermore, every generalized intertemporal
voting equilibrium converges to a balanced-growth voting equilibrium (see Theorem 4.8).

4.5. Comparison of the balanced-growth equilibria

Now we can analyze the long-run consequences of different property regimes in terms of
economic growth. In the private property regime, every competitive equilibrium converges
to a balanced-growth equilibrium. In the long run only the most patient agents obtain
income from the capital and resource stocks. Therefore, the equilibrium extraction rate
and the rate of balanced growth are determined by the discount factor of the most patient
agents and given by

ε∗ = 1− β1, 1 + γ∗ = (1 + λ)
1

1−α1 β
α3

1−α1
1 .

In the public property regime, the sequence of the resource extraction rates is chosen
by majority voting. Every generalized intertemporal voting equilibrium converges to a
balanced-growth voting equilibrium. In the long run the economy is characterized by
the voting equilibrium extraction rate and the rate of balanced growth. They are given

107



4. Economic Growth and Property Rights on Natural Resources

by structurally similar equations as in the private property regime, but depend on the
median discount factor:

ε∗∗ = 1− βmed, 1 + γ∗∗ = (1 + λ)
1

1−α1 β
α3

1−α1
med .

It follows that in both regimes the more patient the decision makers are, the lower
the extraction rate is and the higher the long-run growth rate is. This is reasonable
since patient agents decide to extract less today in order to provide a higher standard of
consumption in the future. Therefore it is possible to sustain a higher growth rate in the
long run.
The question of which property regime leads to a higher long-run growth rate reduces

then to the question of the relationship between the median discount factor and the highest
discount factor. In other words, this is the question of whether the most patient agents
constitute the majority of the population. If the most patient agents do not constitute
the majority of the population (βmed < β1), then the equilibrium extraction rate in the
private property regime is lower than in the public property regime. This means that the
long-run growth rate is higher in the private property regime. If the most patient agents
constitute the majority of the population (βmed = β1), then there is no difference in the
growth rates between the two regimes in the long run.
It should be emphasized that we do not argue in favor of private or public ownership,

and do not claim that a higher growth rate is better than a lower one. To answer the
question of what property regime is better for the society, a social welfare function should
be used, and the optimal growth rate is determined by the discount factor of the social
planner. However, aggregation of individual preferences and the choice of the discount
factor of the social planner is not an easy task when agents are heterogeneous in their
time preferences. For instance, Zuber (2011) shows that if agents have different discount
factors, then no Paretian social welfare function satisfying natural requirements (history
independence, time consistency and stationary) exists.

4.6. Property regimes and income inequality

Recall that in the case of public ownership, resource income is equally distributed among
agents, while the capital stock in the long run belongs only to the most patient agents. In
the case of private ownership, the most patient agents obtain both capital and resource
incomes in the long run. Hence private ownership, all other things being equal, results
in higher income inequality than public ownership. Our results suggest that unless we
take into account inequality, the private property regime over exhaustible resources is
more favorable for promoting long-run economic growth than the public property regime.
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However, since inequality can have detrimental effects on economic growth, this conclusion
is somewhat hasty.
There is conflicting evidence concerning the relationship between income inequality

and economic growth (see, e.g., Henderson et al., 2015). However, there are some recent
convincing theoretical and empirical arguments that inequality has a negative and sta-
tistically significant long-lasting impact on economic development (see, e.g., Keefer and
Knack, 2002; Herzer and Vollmer, 2012; Cingano, 2014).
In particular, Alesina and Perotti (1996) emphasize the role of social conflict as a link

between inequality and growth. Inequality increases sociopolitical instability and causes
social tension. It creates uncertainty in the politico-economic environment, which in turn
reduces investment incentives and affects the security of property rights. Uncertainty and
social tension induce fear of losing the sources of income. All these can lead either to a
faster depletion of resources, or to unproductive costs and losses in output. Both channels
reduce the growth rate of the economy. Thus higher inequality in the private property
regime may result in a lower long-run rate of growth compared with the public property
regime.
Let us model two channels through which uncertainty and social tension caused by

inequality affect economic growth. Suppose that there is a value p which reflects a detri-
mental effect of inequality on the economy. Let us assume that p = ψ(G), where G is the
Gini coefficient, and the function ψ : [0, 1]→ [0, 1] satisfies the following properties:

• ψ(G) is continuous;

• ψ(G) = 0 for G smaller than some Ḡ;

• ψ(G) is increasing for G > Ḡ.

An exemplary form of this function is shown in Figure 4.1. Below we will embed the
function ψ(G) in our model and clarify its role in affecting the long-run variables.
Clearly, income inequality changes over time. However, for a balanced-growth equilib-

rium it is constant over time. Let us compare balanced-growth equilibria in the private
and public property regimes, taking into account inequality effects.
In a balanced-growth equilibrium the income distribution depends on two characteris-

tics. The first characteristic is the fraction of stock owners, which we denote by σ. Stock
owners are the agents who obtain income from both the capital and resource stocks in the
private property regime, or the agents who own the capital stock in the public property
regime. It is clear that the set of stock owners is a subset of the set of the most patient
agents, J . If every agent from the set J makes positive savings in a balanced-growth
equilibrium, then σ = |J |/N . Otherwise, σ < |J |/N .
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Figure 4.1.: An exemplary form of the function ψ(G)

The second characteristic is the distribution of savings across the set of the stock owners.
For simplicity we consider the case in which savings are distributed evenly (i.e., initial
holdings of capital and resources are equal) across the stock owners. Given σ, any other
pattern of the savings distribution in a balanced-growth equilibrium results in a higher
Gini coefficient. Therefore, for a given σ, the even distribution of savings across the stock
owners provides a lower bound on inequality in the society.16

It is not difficult to calculate the Gini coefficient based on the income distribution of
agents in a balanced-growth equilibrium for both property regimes. It is given by

G = α(1− σ),

where α = α1 in the case of the public property regime, and α = α1 + α3 in the case of
the private property regime.
Let us explore two channels through which inequality affects economic growth. Con-

sider first how uncertainty and social tension caused by inequality lead to a faster resource
depletion. Following Borissov and Lambrecht (2009), we model this possibility by assum-
ing that the discount factors of agents are formed endogenously. Insecure property rights
reduce confidence about the future and decrease the discount factors of agents. Agents

16 We assume that agents are negligible, and their decisions have no effect on inequality, which they take
as given. However, if patient agents can by their actions affect the general equilibrium (e.g., in the
case when they own shares in a single firm), then they should be treated as strategic actors who would
anticipate that high income inequality causes instability, and thus inequality would be endogenous. The
analysis of these issues typically adopts the Markov voting equilibria framework (see, e.g., Acemoglu
et al., 2012, 2015), which is beyond the scope of this chapter.
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are not sure of the future and are not able to put the high weight on their future utility.
Namely, let us assume that the objective function of agent j is given by

U j =
∞∑
t=0

((1− p)βj)t ln cjt ,

where p = ψ(G), as discussed above. In this case p reflects the insecurity of property
rights that lowers the discount factors of all agents.17 The value (1− p)βj may be called
the effective discount factor of agent j.
The long-run equilibrium extraction rates are now given by

ε∗ = 1− (1− ψ[(α1 + α3)(1− σ)]) β1,

ε∗∗ = 1− (1− ψ[α1(1− σ)]) βmed.

Thus the rates of balanced growth are given by

1 + γ∗ = (1 + λ)
1

1−α1 ((1− ψ[(α1 + α3)(1− σ)])β1)
α3

1−α1 ,

1 + γ∗∗ = (1 + λ)
1

1−α1 ((1− ψ[α1(1− σ)])βmed)
α3

1−α1 .

It follows that high inequality can lead to an increase in the resource extraction rate
and to a decrease in the rate of balanced growth. Indeed, suppose that σ satisfies the
following condition:

(α1 + α3)(1− σ) > Ḡ,

or, equivalently,

σ < 1− Ḡ

α1 + α3

. (4.5)

Clearly, this may happen when inequality in the society is sufficiently high, i.e., when there
are only a few stock owners. Then, the extraction rate ε∗ in the private property regime
becomes higher, and the corresponding rate of growth 1 + γ∗ becomes lower, compared
with the case in which we do not take into account the impact of the insecure property
rights.
If inequality is so high that

σ < 1− Ḡ

α1

,

then the equilibrium extraction rates under both property regimes become higher, and
both long-run growth rates become lower, compared with the case without the inequality
impact.

17 Similar reasoning is used by Gaddy and Ickes (2005).
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Let us compare the growth rates between the two property regimes. It is clear that for
1 + γ∗∗ > 1 + γ∗, the following condition must hold:

1− ψ[α1(1− σ)]

1− ψ[(α1 + α3)(1− σ)]
>

β1

βmed
. (4.6)

Notice that when βmed = β1, condition (4.6) is equivalent to condition (4.5). Thus if
the most patient agents constitute the majority of the population, and inequality is just
sufficient to increase the extraction rate in the private property regime, then our previous
conclusion about the same growth rates in the two regimes is no longer true. Taking
into account the impact of insecure property rights, it is the public property regime that
results in a higher rate of growth compared with the private property regime.
If the most patient agents do not constitute the majority of the population, then con-

dition (4.6) is more likely to hold when inequality is high, i.e., for the low values of σ.
In other words, when there are only a few stock owners, it is more likely that the public
property regime leads to a lower equilibrium extraction rate (ε∗∗ < ε∗) and a higher rate
of growth (γ∗∗ > γ∗) than the private property regime.
Suppose now that uncertainty and social tension caused by inequality lead to high social

costs and losses in output. Namely, assume that in each period a certain share of output
which depends on inequality is wasted. If inequality is low, then the wasted fraction is
zero. If inequality is high, then instability is also high. In order to pacify the population,
a certain share of output will be unproductively thrown away. This wasted share may
represent military, police or other special forces expenditure, social spending, etc.
It follows that output per capita is given by

yt = (1− p)Atkα1
t e

α3
t ,

where p = ψ(G) now reflects the share of GDP which is drawn away to maintain public
order and to prevent possible dissatisfaction of the population about inequality in the
society.
Here, the impact of uncertainty and social tension caused by inequality does not influ-

ence the equilibrium extraction rates. However, it changes the rates of balanced growth.
The growth rate in the case of private property is given by

1 + γ∗ = (1− ψ[(α1 + α3(1− σ)]) ((1 + λ)βα3
1 )

1
1−α1 .

The growth rate in the case of public property is given by

1 + γ∗∗ = (1− ψ[α1(1− σ)]) ((1 + λ)βα3
med)

1
1−α1 .
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It follows that 1 + γ∗∗ > 1 + γ∗ if

1− ψ[α1(1− σ)]

1− ψ[(α1 + α3)(1− σ)]
>

(
β1

βmed

) α3
1−α1

. (4.7)

Again note that when βmed = β1, condition (4.7) is equivalent to condition (4.5). This
means that if the most patient agents constitute the majority of the population, then as
soon as inequality matters, the public property regime results in a higher long-run rate
of growth than the private property regime. If the most patient agents do not constitute
the majority of the population, then condition (4.7) is more likely to hold for low values
of σ.
Therefore, the two considered channels through which uncertainty and social tension

caused by inequality affect economic growth lead to similar results. When inequality in
the society is sufficiently high, the public property regime may lead to a higher long-run
rate of growth than the private property regime.

4.7. Income inequality and capital taxation

Up to this point our analysis was purely positive, and our concern was in comparing
two different institutional frameworks, private and public ownership. As we have noticed
above, it is difficult to make normative judgements and discuss economic policy within
models where agents are heterogeneous in their time preferences. The very existence of a
social welfare function satisfying certain natural requirements is questionable (see Zuber,
2011), and, in particular, it is unclear, what discount factor a social planner should have.
One might conjecture that a social planner can achieve her goals by implementing an

appropriate economic policy in the form of taxes (e.g., introducing a capital income or
resource income tax). Following the logic of our models, it is natural to assume that the
tax rate is also chosen by majority voting. This seems to be a difficult task18 which may
be a fruitful topic for further study, as we have no developed theory of voting for this
case.19

Having said that, suppose that a social planner seeks to maximize the long-run growth
rate of the economy, and simultaneously tries to reach tolerable income inequality. Then it
is reasonable to consider the question of whether differences in growth rate and inequality
between private and public ownership could be undone by capital income taxation.

18 It should be noted that the impact of capital taxation on inequality depends on the distribution of
capital among the most patient agents, which is indeterminate on balanced-growth paths in our models
(cf. Alesina and Rodrik, 1994; Lindner and Strulik, 2004).

19 See, however, Benhabib and Przeworski (2006).
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Our initial model with private ownership of natural resources is easily modified to
include capital taxation (see Section 4.11 for details). Suppose that capital income is
taxed at some fixed rate θ, and tax revenues are lump-sum distributed to the agents.
Then in the private property regime with capital tax the long-run extraction and growth
rates are exactly the same as in the private property regime without capital tax:

ε∗ = 1− β1, 1 + γ∗ = (1 + λ)
1

1−α1 β
α3

1−α1
1

(see Proposition 4.12 in Section 4.11). The introduction of a capital income tax does not
affect the long-run growth rate, and, at the same time, increases the share of wages with
transfers in the total income (from α2 to α2 + θα1), thus decreasing inequality.20

Therefore, if a social planner seeks to maximize the long-run growth rate and explicitly
takes into account that inequality adversely affects the growth rate, she may effectively
implement a tax on capital income. Private ownership with capital tax is equivalent to
private ownership without tax in terms of growth rates, while an appropriately chosen cap-
ital tax (θ = α3/α1) generates the same income inequality as public ownership. Moreover,
it is possible to achieve less income inequality and obtain a higher long-run growth rate
in the private property regime with capital taxation compared with the public property
regime.

4.8. Conclusion

In this chapter, we consider two Ramsey-type models of economic growth with exhaustible
natural resources and agents who are heterogeneous in their time preferences. The impor-
tant difference between the two models lies in the property regime over natural resources.
The first model assumes that the resource stock is privately owned. The second model
assumes that the resource stock is controlled by a government for the common benefit.
In the private property regime, resource income belongs to the owners of natural re-

sources. The extraction rate is determined by the market forces of supply and demand.
Eventually only the most patient agents obtain income from both the capital and re-
source stocks. We show that every competitive equilibrium in this model converges to
a balanced-growth equilibrium. In the long run the discount factor of the most patient
agents determines the long-run extraction and growth rates.
In the public property regime, resource income is equally distributed among all agents,

who choose the resource extraction rate by majority voting. We define an intertemporal

20 Recall that in a balanced-growth equilibrium in the private property regime impatient agents consume
only their wages. In a balanced-growth equilibrium with capital taxation, each impatient agent receives
her wage, wt = α2yt, and a lump-sum transfer payment, θα1yt. In both cases the capital stock belongs
only to the most patient agents.
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voting equilibrium and establish its convergence to a balanced-growth voting equilibrium.
It turns out that the preferences of the agents with the median discount factor determine
all voting decisions. In particular, the long-run extraction rate and the rate of growth are
determined by the median discount factor.
When comparing the long-run effects of the two property regimes in terms of economic

growth, we have to distinguish between two cases. The first is the case in which the
most patient agents constitute the majority of the population. Here the rates of balanced
growth under the two regimes are equal. The second is the case in which the most patient
agents do not constitute the majority of the population. It follows that the equilibrium
extraction rate in the private property regime is lower than that in the public property
regime. Correspondingly, the growth rate is higher in the private property regime. The
intuition behind this result is as follows. More patient agents prefer to extract less amount
of resource today in order to provide a higher standard of consumption in the future.
Therefore, the private property regime, in which the extraction rate in the long run is
determined by the discount factor of the most patient agents, sustains a higher growth
rate.
The conclusion that the private property regime is better for economic growth than

the public property regime is not necessarily true if we take into account the detrimental
impact of inequality on economic development. In the case of private ownership, only the
most patient agents obtain resource income in the long run, while in the case of public
ownership, resource income is equally distributed among all agents. Hence the private
property regime, all other things being equal, results in higher income inequality than the
public property regime.
We explore two different channels through which uncertainty and social tension caused

by inequality affect economic growth. The first channel assumes that the discount factors
of agents are formed endogenously. When inequality is high, agents’ confidence about
the future reduces, their effective discount factors decrease, and thus inequality explicitly
affects the long-run extraction rates. The second channel assumes that a certain share
of output, depending on inequality, is unproductively wasted. This wasted share may be
thought of as military expenditures, or social spending to pacify the population. In both
cases if inequality is sufficiently high, then the public property regime will likely result in
a higher long-run rate of growth.
These results suggest that in the absence of redistributive policy, there is no unam-

biguous answer to the question, which of the two property regimes does lead to a higher
long-run rate of economics growth. In societies with moderate inequality, private owner-
ship of natural resources is likely to provide a higher long-run growth rate than public
ownership. In societies with high inequality, the public property regime may result in a
higher long-run growth rate compared to the private property regime.
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It turns out, however, that if a social planner seeks to maximize the growth rate of the
economy taking into account the detrimental effect of inequality on the economy, then
she may effectively implement a capital income tax and lump-sum transfers. The private
property regime accompanied with such a redistributive policy will lead to less income
inequality and a higher long-run growth rate compared with the public property regime.

4.9. Proofs. Private property regime

4.9.1. Competitive equilibrium

Suppose we are given an initial state of the economy, I0 = {(k̂j0)Lj=1, (R̂
j
−1)Lj=1}, where

(k̂j0)Lj=1 and (R̂j
−1)Lj=1 are initial distributions of physical capital and natural resources

among agents.
We assume that I0 is a non-degenerate initial state,21 i.e.,

k̂j0 ≥ 0, R̂j
−1 ≥ 0, j = 1, . . . , L;

1

L

L∑
j=1

k̂j0 > 0;
L∑
j=1

R̂j
−1 > 0.

Definition. A competitive equilibrium starting from the initial state I0 is a sequence

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

such that

1. For each j = 1, . . . , L, the sequence {cj∗t , s
j∗
t }∞t=0 is a solution to the following utility

maximization problem:

max
∞∑
t=0

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + rt) s
j
t−1 + wt, t = 0, 1, . . . ,

sjt ≥ 0, t = 0, 1, . . .

(4.8)

at rt = r∗t , wt = w∗t , and s
j
−1 =

q∗0
1+r∗0

R̂j
−1 + k̂j0;

2. Capital is paid its marginal product:

1 + r∗t = α1At(k
∗
t )
α1−1(e∗t )

α3 , t = 0, 1, . . . ,

21 We impose the non-negativity constraints on initial distributions of physical capital and natural resources
only for technical convenience. The individual holdings of capital and resources are indeterminate on the
equilibrium path, they may be positive as well as negative. However, they do not appear in the definition
of equilibrium; it is irrelevant, in which proportion agents invest their savings in different assets. Since
the two assets are perfect substitutes, only agents’ savings are important in an equilibrium.
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where k∗0 = 1
L

∑L
j=1 k̂

j
0;

3. Labor is paid its marginal product:

w∗t = α2At(k
∗
t )
α1(e∗t )

α3 , t = 0, 1, . . . ;

4. The price of natural resources is equal to the marginal product:

q∗t = α3At(k
∗
t )
α1(e∗t )

α3−1, t = 0, 1, . . . ;

5. The Hotelling rule holds:

q∗t+1 = (1 + r∗t+1)q∗t , t = 0, 1, . . . ;

6. The natural balance of exhaustible resources is fulfilled:22

R∗t = R∗t−1 − Le∗t , t = 0, 1, . . . ,

where R∗−1 =
∑L

j=1 R̂
j
−1;

7. Aggregate savings are equal to investment into physical capital and natural resources:

L∑
j=1

sj∗t =
q∗t+1

1 + r∗t+1

R∗t + Lk∗t+1, t = 0, 1, . . . .

Theorem 4.1. For any initial state I0 there exists a competitive equilibrium starting from
I0.

Proof. See Appendix A.

Let us prove two important results about this equilibrium. The following proposition
states that if at the initial instant the stocks of physical capital and natural resources are
owned by the most patient agents, then the competitive equilibrium starting from this
state is unique.

Proposition 4.1. Suppose that the initial state I0 is such that

k̂j0 = 0, R̂j
−1 = 0, j /∈ J.

22 Note that extraction rates are determined here in an equilibrium by the market forces of supply and
demand.
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Then there exists a unique competitive equilibrium starting from I0,

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

,

which is given for t = 0, 1, . . . by

cj∗t = (1− β1)(1 + r∗t )s
j∗
t−1 + w∗t , sj∗t = β1(1 + r∗t )s

j∗
t−1, j ∈ J,

cj∗t = w∗t , sj∗t = 0, j /∈ J,

k∗t+1 = β1(1 + r∗t )k
∗
t , 1 + r∗t = α1At(k

∗
t )
α1−1(e∗t )

α3 ,

w∗t = α2At(k
∗
t )
α1(e∗t )

α3 , q∗t = α3At(k
∗
t )
α1(e∗t )

α3−1,

R∗t = β1R
∗
t−1, e∗t =

1− β1

L
R∗t−1,

where R∗−1 =
∑L

j=1 R̂
j
−1, k∗0 = 1

L

∑L
j=1 k̂

j
0, and s

j∗
−1 =

q∗0
1+r∗0

R̂j
−1 + k̂j0.

The following proposition verifies that in every competitive equilibrium from some time
onward only the most patient agents can make positive savings. From this time relatively
less patient agents make no savings, and the extraction rate is constant over time and
equals 1− β1.

Proposition 4.2. Suppose that

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

is a competitive equilibrium starting from an arbitrary initial state I0. Then there exists
a point in time T such that for all t > T ,

sj∗t = 0, j /∈ J,

R∗t = β1R
∗
t−1, e∗t+1 = β1e

∗
t .

Proof of Propositions 4.1 and 4.2.
Consider a competitive equilibrium

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

starting from a non-degenerate state I0 = {(k̂j0)Lj=1, (R̂
j
−1)Lj=1}. Since for each j = 1, . . . , L,

the sequence {cj∗t , s
j∗
t }∞t=0 is a solution to problem (4.8), it satisfies the first-order condi-

tions,
cj∗t+1 ≥ βj(1 + r∗t+1)cj∗t (= if sj∗t > 0), t = 0, 1, . . . , (4.9)
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and the transversality condition,

lim
t→∞

βtjs
j∗
t

cj∗t
= 0. (4.10)

Lemma 4.1. Let β > 0 be such that for some T

k∗t+1 > β(1 + r∗t )k
∗
t = βα1At(k

∗
t )
α1(e∗t )

α3 , t > T.

If βj < β, then sj∗t = 0 for all sufficiently large t.

Proof. First let us show that if βj < β, then sj∗t = 0 for some t ≥ T . Assume the converse.
By (4.9), for all t ≥ T ,

cj∗t+1 = βj(1 + r∗t+1)cj∗t ,

and hence
cj∗t
k∗t+1

≤
βj(1 + r∗t )c

j∗
t−1

β(1 + r∗t )k
∗
t

≤ βj
β

cj∗t−1

k∗t
.

By assumption, βj/β < 1, and thus cj∗t /k∗t+1 −−−→
t→∞

0. Furthermore, it is clear that
k∗t+1 ≤ At(k

∗
t )
α1(e∗t )

α3 , and therefore

cj∗t
w∗t

=
cj∗t

α2At(k∗t )
α1(e∗t )

α3
≤ cj∗t
α2k∗t+1

−−−→
t→∞

0.

Thus for all sufficiently large t, cj∗t < w∗t , which is not optimal for agent j.
Now we know that sj∗t = 0 at least for some t. Let us show that sj∗t = 0 for all t ≥ T .

Indeed, assume the converse. Then there are only two possibilities. The first is that there
exists T ′ > T such that sj∗t > 0 for all t ≥ T ′. However, applying the same argument as
above, we obtain that sj∗t = 0 for some t ≥ T ′. The second possibility is that there are t1
and t2 such that T ≤ t1 < t2 − 1, and

sj∗t1 = 0, sj∗t2 = 0, sj∗t > 0, t1 < t < t2.

It follows from the budget constraints of agent j that

cj∗t1+1 < w∗t1+1, cj∗t2 > w∗t2 . (4.11)

However, for t ≥ T ,

α1

α2

w∗t+1

1 + r∗t+1

= k∗t+1 > β(1 + r∗t )k
∗
t =

α1

α2

βw∗t .
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Thus w∗t+1 > β(1 + r∗t+1)w∗t . Using (4.9), we get

cj∗t1+2 = βj(1 + r∗t1+2)cj∗t1+1 < βj(1 + r∗t1+2)w∗t1+1 < β(1 + r∗t1+2)w∗t1+1 < w∗t1+2.

Repeating this argument, we obtain

cj∗t+1 < w∗t+1, t1 < t < t2,

which implies cj∗t2 < w∗t2 , a contradiction of (4.11).

Lemma 4.2.
k∗t+1 ≤ β1(1 + r∗t )k

∗
t , t = 0, 1, . . . .

Proof. Assume the converse. Then there are T and ζ > 1 such that

k∗T+1 ≥ ζβ1(1 + r∗T )k∗T . (4.12)

Let us show that (4.12) implies

k∗t+1 ≥ ζβ1(1 + r∗t )k
∗
t , t ≥ T. (4.13)

Denote
J(T ) =

{
j ∈ {1, 2, . . . , L} | sj∗T > 0

}
,

and recall that
(1 + r∗t )k

∗
t

α1

=
w∗t
α2

=
q∗t e
∗
t

α3

. (4.14)
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We have

∑
j∈J(T )

(
cj∗T+1 + sj∗T+1

)
−

q∗T+2

1 + r∗T+2

R∗T+1

=
∑
j∈J(T )

(
(1 + r∗T+1)sj∗T + w∗T+1

)
−

q∗T+2

1 + r∗T+2

R∗T+1

= q∗T+1R
∗
T + (1 + r∗T+1)Lk∗T+1 + |J(T )|w∗T+1 − q∗T+1R

∗
T+1

= q∗T+1Le
∗
T+1 + (1 + r∗T+1)Lk∗T+1 + |J(T )|w∗T+1

= (1 + r∗T+1)k∗T+1

(
L+ L

α3

α1

+ |J(T )|α2

α1

)
≥ ζβ1(1 + r∗T+1)(1 + r∗T )k∗T

(
L+ L

α3

α1

+ |J(T )|α2

α1

)
= ζβ1(1 + r∗T+1) (L(1 + r∗T )k∗T + Lq∗T e

∗
T + |J(T )|w∗T )

= ζβ1(1 + r∗T+1)

(1 + r∗T )

(
L∑
j=1

sj∗T−1 −
q∗T

1 + r∗T
RT−1

)
+ Lq∗T e

∗
T +

∑
j∈J(T )

w∗T


≥ ζβ1(1 + r∗T+1)

(1 + r∗T )
∑
j∈J(T )

sj∗T−1 +
∑
j∈J(T )

w∗T − q∗TR∗T−1 + Lq∗T e
∗
T


= ζβ1(1 + r∗T+1)

 ∑
j∈J(T )

(cj∗T + sj∗T )−
q∗T+1

1 + r∗T+1

R∗T

 .

Thus

∑
j∈J(T )

(
cj∗T+1 + sj∗T+1

)
−

q∗T+2

1 + r∗T+2

R∗T+1 ≥ ζβ1(1 + r∗T+1)

 ∑
j∈J(T )

(cj∗T + sj∗T )−
q∗T+1

1 + r∗T+1

R∗T

 .

For j ∈ J(T ), (4.9) holds with equality, so∑
j∈J(T )

cj∗T+1 =
∑
j∈J(T )

βj(1 + r∗T+1)cj∗T ≤ β1(1 + r∗T+1)
∑
j∈J(T )

cj∗T < ζβ1(1 + r∗T+1)
∑
j∈J(T )

cj∗T .

Clearly, two above inequalities are consistent only if

∑
j∈J(T )

sj∗T+1 −
q∗T+2

1 + r∗T+2

R∗T+1 ≥ ζβ1(1 + r∗T+1)

 ∑
j∈J(T )

sj∗T −
q∗T+1

1 + r∗T+1

R∗T

 .
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Therefore,

Lk∗T+2 =
L∑
j=1

sj∗T+1 −
q∗T+2

1 + r∗T+2

R∗T+1 ≥
∑
j∈J(T )

sj∗T+1 −
q∗T+2

1 + r∗T+2

R∗T+1

≥ ζβ1(1 + r∗T+1)

 ∑
j∈J(T )

sj∗T −
q∗T+1

1 + r∗T+1

R∗T


= ζβ1(1 + r∗T+1)

(
L∑
j=1

sj∗T −
q∗T+1

1 + r∗T+1

R∗T

)
= ζβ1(1 + r∗T+1)Lk∗T+1.

Repeating the argument, we infer that (4.13) holds for all t ≥ T .
However, from Lemma 4.1 it follows that sj∗t = 0 for all j and for all sufficiently large

t. This contradicts the evident positivity of k∗t for all t = 0, 1, . . ..

Lemma 4.3.

w∗t+1 ≤ β1(1 + r∗t+1)w∗t , e∗t+1 ≤ β1e
∗
t , t = 0, 1, . . . .

Proof. Both inequalities follow from (4.14) and Lemma 4.2. Indeed, for all t

w∗t+1

1 + r∗t+1

=
α2(1 + r∗t+1)k∗t+1

α1(1 + r∗t+1)
≤ β1α2(1 + r∗t )k

∗
t

α1

= β1w
∗
t .

Moreover, for all t

e∗t+1

e∗t
=

q∗t
q∗t+1

(1 + r∗t+1)k∗t+1

(1 + r∗t )k
∗
t

=
(1 + r∗t+1)q∗t

q∗t+1

k∗t+1

(1 + r∗t )k
∗
t

≤ β1,

since q∗t+1 = (1 + r∗t+1)q∗t by the Hotelling rule.

Lemma 4.4.
sj∗t+1 ≥ β1(1 + r∗t+1)sj∗t , j ∈ J, t = −1, 0, . . . . (4.15)

Proof. Consider j ∈ J . Then by (4.9),

βt1c
j∗
0 ≤

cj∗t
(1 + r∗1) · · · (1 + r∗t )

, t = 1, 2, . . . ,

and hence

cj∗0 (1 + β1 + β2
1 + . . .) ≤ cj∗0 +

cj∗1
(1 + r∗1)

+
cj∗2

(1 + r∗1)(1 + r∗2)
+ . . . . (4.16)
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Adding together all budget constraints of agent j, we obtain

cj∗0 +
cj∗1

(1 + r∗1)
+

cj∗2
(1 + r∗1)(1 + r∗2)

+ . . .

≤ (1 + r∗0)sj−1 + w∗0 +
w∗1

(1 + r∗1)
+

w∗2
(1 + r∗1)(1 + r∗2)

+ . . . .

(4.17)

Moreover, by Lemma 4.3 for t = 0, 1, . . .,

w∗t+1

(1 + r∗1) · · · (1 + r∗t+1)
≤ β1w

∗
t

(1 + r∗1) · · · (1 + r∗t )
≤ . . . ≤ βt+1

1 w∗0,

which implies

(1+r∗0)sj∗−1+w∗0+
w∗1

(1 + r∗1)
+

w∗2
(1 + r∗1)(1 + r∗2)

+. . . ≤ (1+r∗0)sj∗−1+w∗0(1+β1+β2
1+. . .). (4.18)

Combining (4.16)–(4.18), we finally get

cj∗0 (1 + β1 + β2
1 + . . .) ≤ (1 + r∗0)sj∗−1 + w∗0(1 + β1 + β2

1 + . . .),

and therefore
cj∗0 ≤ (1 + r∗0)(1− β1)sj∗−1 + w∗0.

Thus,

sj∗0 = (1 + r∗0)sj∗−1 +w∗0− c
j∗
0 ≥ (1 + r∗0)sj∗−1 +w∗0− (1 + r∗0)(1−β1)sj∗−1−w∗0 = β1(1 + r∗0)sj∗−1.

This proves (4.15) for t = −1. To prove it for t = 0, 1, . . ., it is sufficient to repeat the
argument.

Lemma 4.5. For any δ > 0 there exists a point in time T such that for all t > T ,

k∗t+1 > β1(1− δ)(1 + r∗t )k
∗
t .

Proof. From (4.9) and Lemma 4.3 it is clear that for j ∈ J

cj∗t+1

w∗t+1

≥
β1(1 + r∗t+1)cj∗t
β1(1 + r∗t+1)w∗t

=
cj∗t
w∗t
, t = 0, 1, . . . .

This means that the sequence
{
cj∗t
w∗t

}∞
t=0

is non-decreasing. It is also bounded from above,
as consumption cannot exceed total output:

cj∗t ≤ L
w∗t
α2

, t = 0, 1, . . . .
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Therefore, the sequence
{
cj∗t
w∗t

}∞
t=0

converges, so the sequence
{
cj∗t
w∗t

w∗t+1

cj∗t+1

}∞
t=0

converges to 1.

It follows from Lemma 4.4 that if sj−1 > 0, then sj∗t > 0 for all t ≥ 0 and j ∈ J . Thus,

cj∗t
w∗t

w∗t+1

cj∗t+1

=
w∗t+1

β1(1 + r∗t+1)w∗t
, t = 0, 1, . . . ,

and the sequence
{

w∗t+1

β1(1+r∗t+1)w∗t

}∞
t=0

converges to 1 as well. Hence for any δ > 0 there
exists T such that for t > T ,

w∗t+1

β1(1 + r∗t+1)w∗t
> (1− δ),

which implies

k∗t+1 =
α1

α2

w∗t+1

1 + r∗t+1

>
α1

α2

β1(1− δ)w∗t = β1(1− δ)(1 + r∗t )k
∗
t .

This proves the lemma.

Consider δ that satisfies β1(1−δ) > maxj /∈J βj. Applying Lemma 4.1 with β = β1(1−δ),
we obtain that for any competitive equilibrium starting from a non-degenerate initial state
there exists a point in time T such that for all t > T , sj∗t = 0 for j /∈ J .

Lemma 4.6. For all t > T ,

k∗t+1 = β1(1 + r∗t )k
∗
t ,

cj∗t = (1− β1)(1 + r∗t )s
j∗
t−1 + w∗t , sj∗t = β1(1 + r∗t )s

j∗
t−1, j ∈ J,

cj∗t = w∗t , sj∗t = 0, j /∈ J.

Moreover,
e∗t+1 = β1e

∗
t , R∗t = β1R

∗
t−1.

Proof. First let us show that
lim
t→∞

R∗t = 0. (4.19)

To prove this, note that for all j,

lim
t→∞

sj∗t
(1 + r∗1) · · · (1 + r∗t )

= 0.
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Indeed, it follows from (4.17) that this limit exists. Since savings are non-negative, this
limit is also non-negative. Suppose that limt→∞

sj∗t
(1+r∗1)···(1+r∗t )

> 0. Then sj∗t > 0 for all t,
and thus by (4.9),

cj∗t = βj(1 + r∗t )c
j∗
t−1 = . . . = βtj(1 + r∗t ) · · · (1 + r∗1)cj∗0 .

Hence
βtjs

j∗
t

cj∗t
=

sj∗t

(1 + r∗t ) · · · (1 + r∗1)cj∗0
=

1

cj∗0

sj∗t
(1 + r∗1) · · · (1 + r∗t )

.

It follows from (4.10) that limt→∞
sj∗t

(1+r∗1)···(1+r∗t )
= 0, which is a contradiction. Therefore,

lim
t→∞

∑L
j=1 s

j∗
t

(1 + r∗1) · · · (1 + r∗t )
= 0.

Since
∑L

j=1 s
j∗
t = q∗tR

∗
t + Lk∗t+1, and both terms are non-negative, we get

lim
t→∞

q∗tR
∗
t

(1 + r∗1) · · · (1 + r∗t )
= lim

t→∞
q∗0R

∗
t = 0.

As q∗0 > 0, (4.19) indeed holds.
Now suppose that t > T . By Lemma 4.4,

β1(1 + r∗t )

(
Lk∗t +

q∗t
1 + r∗t

R∗t−1

)
= β1(1 + r∗t )

∑
j∈J

sj∗t−1

≤
∑
j∈J

sj∗t = Lk∗t+1 +
q∗t+1

1 + r∗t+1

R∗t .

(4.20)

At the same time, by Lemma 4.2,

k∗t+1 ≤ β1(1 + r∗t )k
∗
t , t = 0, 1, . . . .

Therefore for t > T ,
q∗t+1

1 + r∗t+1

R∗t ≥ β1(1 + r∗t )
q∗t

1 + r∗t
R∗t−1,

or, equivalently,
R∗t ≥ β1R

∗
t−1. (4.21)
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It follows from the natural balance of exhaustible resources and (4.19) that

R∗T = R∗T+1 + Le∗T+1 = R∗T+2 + Le∗T+2 + Le∗T+1

= . . . = Le∗T+1

(
1 +

e∗T+2

e∗T+1

+
e∗T+3

e∗T+2

e∗T+2

e∗T+1

+ . . .

)
.

Hence, using Lemma 4.3, we conclude that

R∗T ≤ Le∗T+1

(
1 + β1 + β2

1 + . . .
)

= Le∗T+1

1

1− β1

.

It follows that (1− β1)
(
R∗T+1 + Le∗T+1

)
≤ Le∗T+1, or

R∗T+1 ≤ β1

(
R∗T+1 + Le∗T+1

)
= β1R

∗
T .

Thus, using (4.21) we get
R∗T+1 = β1R

∗
T .

Repeating the argument, we obtain that

R∗t = β1R
∗
t−1, t > T.

Therefore, for all t > T , Le∗t = R∗t−1 −R∗t = (1− β1)R∗t−1, and

e∗t+1

e∗t
=

R∗t
R∗t−1

= β1, t > T.

We have proved that eventually the extraction rate becomes constant over time and equal
to 1− β1.
Since for t > T ,

q∗t+1

1 + r∗t+1

R∗t = q∗tR
∗
t = β1q

∗
tR
∗
t−1,

it follows from (4.20) that

β1(1 + r∗t )k
∗
t ≤ k∗t+1, t > T.

Using Lemma 4.2, we obtain that

k∗t+1 = β1(1 + r∗t )k
∗
t , t > T,

and hence for t > T , sj∗t = β1(1 + r∗t )s
j∗
t−1 for j ∈ J , while sj∗t = 0 for j /∈ J .
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Proposition 4.2 is a corollary of Lemma 4.6. Proposition 4.1 also easily follows from
Lemma 4.6. If the initial state I0 is such that

k̂j0 = 0, R̂j
−1 = 0, j /∈ J,

then sj−1 = 0 for j /∈ J , and we can take T = −1. The sequences {r∗t }, {w∗t }, and {q∗t }
are derived from the known sequences {k∗t } and {e∗t}, described in Lemma 4.6.
Thus, in every competitive equilibrium from some time onward only the most patient

agents make positive savings, and from this time resources are extracted at the constant
rate ε∗ = 1− β1.

4.9.2. Balanced-growth equilibrium

Definition. A competitive equilibrium

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

starting from a non-degenerate initial state I0 is called a balanced-growth equilibrium if
there exist an equilibrium rate of balanced growth γ∗ and an equilibrium extraction rate ε∗

such that for t = 0, 1, . . .,

cj∗t+1 = (1 + γ∗)cj∗t , sj∗t = (1 + γ∗)sj∗t−1, j = 1, . . . , L, (4.22)

k∗t+1 = (1 + γ∗)k∗t , w∗t+1 = (1 + γ∗)w∗t , (4.23)

1 + r∗t = 1 + r∗, q∗t+1 = (1 + r∗) q∗t , (4.24)

e∗t+1 = (1− ε∗) e∗t , R∗t = (1− ε∗)R∗t−1. (4.25)

The following proposition proves the existence of a balanced-growth equilibrium, and
provides its characterization. In particular, it maintains that in every balanced-growth
equilibrium less patient agents make no savings.

Proposition 4.3. A balanced-growth equilibrium

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

starting from a non-degenerate initial state I0 = {(k̂j0)Lj=1, (R̂
j
−1)Lj=1} exists if and only if

k̂j0 = 0, R̂j
−1 = 0, j /∈ J, (4.26)

α1A0

(
1

L

L∑
j=1

k̂j0

)α1−1(
1− β1

L

L∑
j=1

R̂j
−1

)α3

= (1 + λ)
1

1−α1 β
α1+α3−1

1−α1
1 , (4.27)
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and (4.22)–(4.25) hold.

Proof. Necessity. Suppose that there exists a balanced-growth equilibrium

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

starting from a non-degenerate state I0. It is a competitive equilibrium which satisfies
(4.22)–(4.25) for some r∗, ε∗ and γ∗.
Repeating a well-known argument by Becker (1980, 2006), we infer that every balanced-

growth equilibrium is characterized by the following properties:

sj∗t−1 = 0, j /∈ J, t = 0, 1, . . . , (4.28)

1 + γ∗ = β1(1 + r∗). (4.29)

Moreover, comparing the definitions of competitive and balanced-growth equilibria, we
obtain that for every balanced-growth equilibrium the following relationships hold:

(1 + γ∗)1−α1 = (1 + λ) (1− ε∗)α3 , (4.30)

1 + r∗ =
1 + γ∗

1− ε∗
. (4.31)

Indeed, (4.30) follows from the fact that

1 =
1 + r∗t+1

1 + r∗t
=
At+1

At

(
k∗t+1

k∗t

)α1−1(e∗t+1

e∗t

)α3

= (1 + λ) (1 + γ∗)α1−1 (1− ε∗)α3 .

We also have

1 + r∗ =
q∗t+1

q∗t
=
At+1

At

(
k∗t+1

k∗t

)α1
(
e∗t+1

e∗t

)α3−1

= (1 + λ) (1 + γ∗)α1 (1− ε∗)α3−1 ,

which is equivalent to (4.31).
Using (4.29)–(4.31), it is easily checked that

1 + r∗ = (1 + λ)
1

1−α1 β
α1+α3−1

1−α1
1 . (4.32)
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It follows from (4.28) that sj∗−1 = 0 for j /∈ J . Since I0 is non-degenerate, k̂j0 ≥ 0 and
R̂j
−1 ≥ 0 for all j, and thus (4.26) holds.23 Furthermore, a constant over time interest rate

is consistent with the definition of a competitive equilibrium if and only if

1 + r∗ = 1 + r∗0 = α1A0(k∗0)α1−1(e∗0)α3 = α1A0

(
1

L

L∑
j=1

k̂j0

)α1−1(
1− β1

L

L∑
j=1

R̂j
−1

)α3

.

Taking into account (4.32), we obtain (4.27).
Sufficiency. Suppose that the initial state I0 is such that (4.26)–(4.27) hold. Consider

the sequence
E∗ =

{
(cj∗t )Lj=1, (s

j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

starting from I0 and determined by (4.22)–(4.25).
It is easily checked that this sequence is a competitive equilibrium which is described

in Proposition 4.1, with the constant interest rate

1 + r∗t = 1 + r∗0 = α1A0

(
1

L

L∑
j=1

k̂j0

)α1−1(
1− β1

L

L∑
j=1

R̂j
−1

)α3

.

Therefore, E∗ is a competitive equilibrium which satisfies (4.22)–(4.25), i.e., a balanced-
growth equilibrium.

It follows that the interest rate r∗, the equilibrium extraction rate ε∗, and the equilib-
rium rate of balanced growth γ∗ are uniquely determined by the parameters of the model
and are the same for every balanced-growth equilibrium.

Proposition 4.4. For every balanced-growth equilibrium,

1 + γ∗ = (1 + λ)
1

1−α1 β
α3

1−α1
1 , (4.33)

1 + r∗ =
1 + γ∗

β1

, (4.34)

ε∗ = 1− β1. (4.35)

Proof. It is sufficient to repeat the argument used in the proof of Proposition 4.3. Com-
bining (4.29)–(4.31), we obtain (4.33)–(4.35).

23 Recall that a balanced-growth equilibrium is defined up to the distribution of physical capital and
natural resources in the structure of each agent’s savings. Individual holdings of capital and resources
are indeterminate in an equilibrium. However, since we assumed for convenience that the initial state is
non-degenerate, and initial savings of less patient agents must be zero, it follows that a balanced-growth
equilibrium can start only from the state where individual holdings of capital and resources of less
patient agents are zero.
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The following proposition maintains that every competitive equilibrium converges in
some sense to a balanced-growth equilibrium.

Proposition 4.5. Every competitive equilibrium starting from an arbitrary non-degenerate
initial state satisfies the following asymptotic properties:

lim
t→∞

1 + r∗t = 1 + r∗ =
1 + γ∗

β1

, (4.36)

lim
t→∞

k∗t+1

k∗t
= lim

t→∞

w∗t+1

w∗t
= 1 + γ∗, (4.37)

lim
t→∞

sj∗t+1

sj∗t
= 1 + γ∗, j ∈ J, (4.38)

lim
t→∞

cj∗t+1

cj∗t
= 1 + γ∗, j = 1, . . . , L, (4.39)

lim
t→∞

q∗t+1

q∗t
= 1 + r∗, (4.40)

where 1 + γ∗ = (1 + λ)
1

1−α1 β
α3

1−α1
1 .

Proof. It follows from Proposition 4.2 that for t > T ,

1 + r∗t+1

1 + r∗t
=
At+1

At

(
k∗t+1

k∗t

)α1−1(e∗t+1

e∗t

)α3

= (1 + λ) (β1(1 + r∗t ))
α1−1 (β1)α3 ,

and thus
1 + r∗t+1 = (1 + λ) (β1)α1+α3−1 (1 + r∗t )

α1 .

Iterating, we get

1 + r∗t+1+n = (1 + λ)1+α1+...+αn1 (β1)(α1+α3−1)(1+α1+...+αn1 ) (1 + r∗t )
αn+1
1 ,

and
lim
n→∞

1 + r∗t+n+1 = (1 + λ)
1

1−α1 β
α1+α3−1

1−α1
1 .

From Lemma 4.6 we know that k∗t+1

k∗t
= β1(1 + r∗t ). Moreover, w∗t

k∗t
= α2

α1
(1 + r∗t ). Now

(4.37) is straightforward. It also follows from Lemma 4.6 that sj∗t+1

sj∗t
= β1(1 + r∗t ) for j ∈ J ,

which proves (4.38).
Clearly, for j ∈ J ,

cj∗t
k∗t

= (1− β1)(1 + r∗t )
sj∗t−1

k∗t
+
w∗t
k∗t
,
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and thus the sequence cj∗t /k∗t converges to a positive constant as t → ∞. For j /∈ J , we
have cj∗t = w∗t . Thus consumption of all agents asymptotically grows at a constant rate.
This proves (4.39).
It remains to note that (4.40) follows from the Hotelling rule.

4.10. Proofs. Public property regime

4.10.1. Competitive equilibrium under given extraction rates

Suppose that the economy at time τ is in a state Iτ−1 = {(ŝjτ−1)Lj=1, R̂τ−1}, where (ŝjτ−1)Lj=1

are agents’ savings and R̂τ−1 is the stock of natural resources. We assume that Iτ−1 is a
non-degenerate state, i.e.,

ŝjτ−1 ≥ 0, j = 1, . . . , L;
1

L

L∑
j=1

ŝjτ−1 > 0; R̂τ−1 > 0.

Suppose we are also given a sequence of extraction rates Eτ = {εt}∞t=τ . We call Eτ
non-degenerate if 0 < εt < 1 for all t ≥ τ , and

0 < lim inf
t→∞

εt ≤ lim sup
t→∞

εt < 1.

In other words, the sequence of extraction rates is non-degenerate if there exists δ > 0

such that for all t ≥ τ the following property holds:

δ ≤ εt ≤ 1− δ.

Given a sequence of extraction rates Eτ and the resource stock Rτ−1 = R̂τ−1, the volume
of extraction et and the dynamics of the exhaustible resource stock Rt are recursively
determined for t ≥ τ :

et = et(Eτ ) =
εtRt−1

L
, Rt = Rt(Eτ ) = (1− εt)Rt−1, t = τ, τ + 1, . . . . (4.41)

We use this notation to emphasize that the sequence of extraction rates determines the
volume of extraction and the dynamics of the resource stock.

Definition. Let Eτ be a non-degenerate sequence of extraction rates. A sequence

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

is a competitive Eτ -equilibrium starting from Iτ−1 if
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1. For each j = 1, . . . , L, the sequence {cj∗∗t , sj∗∗t }∞t=τ is a solution to the following
utility maximization problem:

max
∞∑
t=τ

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + rt) s
j
t−1 + wt + vt, t = τ, τ + 1, . . . ,

sjt ≥ 0, t = τ, τ + 1, . . .

(4.42)

at rt = r∗∗t , wt = w∗∗t , vt = v∗∗t , sjτ−1 = ŝjτ−1;

2. Aggregate savings are equal to the capital stock:

L∑
j=1

sj∗∗t−1 = Lk∗∗t , t = τ, τ + 1, . . . ;

3. Capital is paid its marginal product:

1 + r∗∗t = α1At(k
∗∗
t )α1−1(et)

α3 , t = τ, τ + 1, . . . ;

4. Labor is paid its marginal product:

w∗∗t = α2At(k
∗∗
t )α1(et)

α3 , t = τ, τ + 1, . . . ;

5. The price of natural resources is equal to the marginal product:

q∗∗t = α3At(k
∗∗
t )α1(et)

α3−1, t = τ, τ + 1, . . . ;

6. Resource income is given by:

v∗∗t = q∗∗t et, t = τ, τ + 1, . . . .

Here we do not suppose that the Hotelling rule holds. The Hotelling rule is an equi-
librium condition for the asset market. This is the reason why the Hotelling rule holds
in the private property regime, where the stock of natural resources is an asset in which
agents can invest. In the public property regime, the resource stock is not an asset, so
there is no particular reason for the Hotelling rule to hold. Under some circumstances the
rate of change of the resource price is not equal to the interest rate.
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It is clear that if

E∗∗0 =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...

is a competitive E0-equilibrium starting from {(ŝj−1)Lj=1, R̂−1}, then for each τ = 1, 2, . . .,
the sequence

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

is a competitive Eτ -equilibrium starting from {(sj∗∗τ−1)Lj=1, Rτ−1(E0)}. In other words, com-
petitive equilibria are time consistent.
There always exists a competitive Eτ -equilibrium.

Theorem 4.2. For any non-degenerate state Iτ−1 there exists a competitive Eτ -equilibrium
starting from Iτ−1.

Proof. See Appendix B.

The issue with uniqueness is more subtle. We can only conjecture that the competitive
equilibrium is unique, but we have no proof of this fact. At the same time, the following
proposition maintains that the competitive equilibrium starting from the state where the
whole stock of physical capital is owned by the most patient agents is unique.

Proposition 4.6. Suppose that Iτ−1 is such that ŝjτ−1 = 0 for j /∈ J . Then there exists
a unique competitive Eτ -equilibrium starting from Iτ−1,

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

,

which is given for t = τ, τ + 1, . . . by

cj∗∗t = (1− β1)(1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t , sj∗∗t = β1(1 + r∗∗t )sj∗∗t−1, j ∈ J,

cj∗∗t = w∗∗t + v∗∗t , sj∗∗t = 0, j /∈ J,

k∗∗t+1 = β1(1 + r∗∗t )k∗∗t , 1 + r∗∗t = α1At(k
∗∗
t )α1−1(et)

α3 ,

w∗∗t = α2At(k
∗∗
t )α1(et)

α3 , q∗∗t = α3At(k
∗∗
t )α1(et)

α3−1, v∗∗t = q∗∗t et,

where sj∗∗τ−1 = ŝjτ−1, and et = et(Eτ ).

This case is important because in every competitive Eτ -equilibrium less patient agents
inevitably lose their capital with time. The following proposition verifies that the whole
capital stock eventually belongs to the most patient agents.
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Proposition 4.7. Suppose that

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

is a competitive Eτ -equilibrium starting from an arbitrary state Iτ−1. Then there exists a
point in time T such that for all t ≥ T ,

sj∗∗t = 0, j /∈ J.

Proof of Propositions 4.6 and 4.7 is very similar to that of Propositions 4.1 and 4.2.
Without loss of generality, let us consider a competitive E0-equilibrium

E∗∗0 =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...

starting from I−1 = {(ŝj−1)Lj=1, R̂−1}, and give a sketch of the proof.

Lemma 4.7. Let β > 0 be such that for some T

k∗∗t+1 > β(1 + r∗∗t )k∗∗t = βα1At(k
∗∗
t )α1(et)

α3 , t > T.

If βj < β, then sj∗∗t = 0 for all sufficiently large t.

Proof. This lemma can be proved in the same way as Lemma 4.1.

Lemma 4.8.
k∗∗t+1 ≤ β1(1 + r∗∗t )k∗∗t , t = 0, 1, . . . .

Proof. It is sufficient to repeat the argument used in the proof of Lemma 4.2.

Lemma 4.9.

w∗∗t+1 ≤ β1(1 + r∗∗t+1)w∗∗t , v∗∗t+1 ≤ β1(1 + r∗∗t+1)v∗∗t , t = 0, 1, . . . .

Proof. This statement follows from Lemma 4.8.

Lemma 4.10.
sj∗∗t+1 ≥ β1(1 + r∗∗t+1)sj∗∗t , j ∈ J, t = −1, 0, . . . .

Proof. This lemma can be proved in the same way as Lemma 4.4.

Lemma 4.11. For any δ > 0 there exists a point in time T such that for all t > T ,

k∗∗t+1 > β1(1− δ)(1 + r∗∗t )k∗∗t .
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Proof. This lemma can be proved in the same way as Lemma 4.5.

Proposition 4.7 follows from Lemmas 4.7 and 4.11. Proposition 4.6 follows directly from
Lemma 4.12 which explicitly constructs a competitive E0-equilibrium starting from the
state I−1 such that ŝj−1 = 0 for j /∈ J .

Lemma 4.12. Suppose that

k∗∗0 =
1

L

∑
j∈J

ŝj−1, i.e., ŝj−1 = 0, j /∈ J.

Then for all t = 0, 1, . . .,

k∗∗t+1 = β1(1 + r∗∗t )k∗∗t ,

cj∗∗t = (1− β1)(1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t , sj∗∗t = β1(1 + r∗∗t )sj∗∗t−1, j ∈ J,

cj∗∗t = w∗∗t + v∗∗t , sj∗∗t = 0, j /∈ J.

Proof. By Lemma 4.10,

β1(1 + r∗∗0 )k∗∗0 = β1(1 + r∗∗0 )
1

L

∑
j∈J

ŝj−1 ≤
1

L

∑
j∈J

sj∗∗0 ≤ k∗∗1 .

At the same time, by Lemma 4.8,

k∗∗1 ≤ β1(1 + r∗∗0 )k∗∗0 .

Therefore, k∗∗1 = β1(1 + r∗∗0 )k∗∗0 , and hence sj∗∗0 = β1(1 + r∗∗0 )ŝj−1 for j ∈ J , while sj∗∗0 = 0

for j /∈ J . We have proved the lemma for t = 0. To prove it for t = 1, 2, . . ., it is sufficient
to repeat the argument.

This completes the proof of Propositions 4.6 and 4.7.

4.10.2. Balanced-growth equilibrium under given extraction rate

Suppose that the sequence of extraction rates is constant,

Eετ = Eε = {ε, ε, ε, . . .}.

Then, clearly,

Rt = (1− ε)t+1−τ R̂τ−1, et = (1− ε)t−τ εR̂τ−1

L
, t = τ, τ + 1, . . . .
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Definition. A competitive Eετ -equilibrium

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

starting from Iτ−1 is called a balanced-growth Eε-equilibrium if there exist an equilibrium
rate of balanced growth γ∗∗ and the rate of change of the resource price, π∗∗, such that for
t = τ, τ + 1, . . .,

cj∗∗t+1 = (1 + γ∗∗)cj∗∗t , sj∗∗t = (1 + γ∗∗)sj∗∗t−1, j = 1, . . . , L, (4.43)

k∗∗t+1 = (1 + γ∗∗)k∗∗t , w∗∗t+1 = (1 + γ∗∗)w∗∗t , v∗∗t+1 = (1 + γ∗∗)v∗∗t , (4.44)

q∗∗t+1 = (1 + π∗∗) q∗∗t , 1 + r∗∗t = 1 + r∗∗. (4.45)

The following proposition provides necessary and sufficient conditions for the existence
of a balanced-growth Eε-equilibrium. In particular, this proposition maintains that in a
balanced-growth equilibrium only the most patient agents make positive savings and own
the whole capital stock.

Proposition 4.8. Suppose that a constant sequence of extraction rates Eε is given. A
balanced-growth Eε-equilibrium

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

starting from a non-degenerate state Iτ−1 = {(ŝjτ−1)Lj=1, R̂τ−1} exists if and only if

ŝjτ−1 = 0, j /∈ J,

α1Aτ

(
1

L

L∑
j=1

ŝjτ−1

)α1−1(
εR̂τ−1

L

)α3

= (1 + λ)
1

1−α1 (1− ε)
α3

1−α1
1

β1

,

and (4.43)–(4.45) hold.

Proof. It can be proved exactly in the same way as Proposition 4.3.

The following proposition maintains that the interest rate, the equilibrium rate of bal-
anced growth, and the rate of change of the resource price are determined by the param-
eters of the model and by the constant over time extraction rate ε.

Proposition 4.9. Suppose that a constant sequence of extraction rates Eε is given. In a
balanced-growth Eε-equilibrium, the interest rate, the equilibrium rate of balanced growth,
and the rate of change of the resource price are determined as follows:

1 + γ∗∗ = (1 + λ)
1

1−α1 (1− ε)
α3

1−α1 , 1 + π∗∗ =
1 + γ∗∗

1− ε
, 1 + r∗∗ =

1 + γ∗∗

β1

.
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Proof. The proof is similar to that of Proposition 4.4.

The following proposition maintains that every competitive Eετ -equilibrium under given
constant sequence of extraction rates converges in some sense to a balanced-growth Eε-
equilibrium.

Proposition 4.10. Every competitive Eετ -equilibrium starting from an arbitrary state Iτ−1

satisfies the following asymptotic properties:

lim
t→∞

1 + r∗∗t = 1 + r∗∗ =
1 + γ∗∗

β1

,

lim
t→∞

k∗∗t+1

k∗∗t
= lim

t→∞

w∗∗t+1

w∗∗t
= lim

t→∞

v∗∗t+1

v∗∗t
= 1 + γ∗∗,

lim
t→∞

sj∗∗t+1

sj∗∗t
= 1 + γ∗∗, j ∈ J,

lim
t→∞

cj∗∗t+1

cj∗∗t
= 1 + γ∗∗, j = 1, . . . , L,

lim
t→∞

q∗∗t+1

q∗∗t
= 1 + π∗∗,

where 1 + γ∗∗ = (1 + λ)
1

1−α1 (1− ε)
α3

1−α1 , and 1 + π∗∗ = 1+γ∗∗

1−ε .

Proof. The proof is similar to that of Proposition 4.5.

4.10.3. Time τ extraction rate

Before making extraction rates endogenous, let us explore the dependence of a competitive
Eτ -equilibrium on the time τ extraction rate.
Suppose we are given a non-degenerate sequence of extraction rates E0

τ = {ε0
t}∞t=τ .

Assume that ε0
τ is replaced by some other extraction rate ετ , while all future extraction

rates remain intact. Clearly, the volumes of extraction and the dynamics of the resource
stock before and after this replacement are linked in the following way:

R̃t =
1− ετ
1− ε0

τ

Rt, t = τ, τ + 1, . . . ,

ẽτ =
ετ
ε0
τ

eτ , ẽt =
1− ετ
1− ε0

τ

et, t = τ + 1, τ + 2, . . . .

A competitive E0
τ -equilibrium should also change. The change of the competitive E0

τ -
equilibrium and the dependence of a new equilibrium on ετ is characterized in the following
lemma.
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Lemma 4.13. Suppose that for a non-degenerate sequence of extraction rates, E0
τ =

{ε0
t}∞t=τ , the sequence

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

is a competitive E0
τ -equilibrium starting from Iτ−1 = {(ŝjτ−1)Lj=1, R̂τ−1}.

Let
Eτ = {ετ , ε0

τ+1, ε
0
τ+2, . . .},

and
ντ =

1− ετ
1− ε0

τ

.

Consider the sequence

Ẽτ (ετ ) =
{

(c̃jt(ετ ))
L
j=1, (s̃

j
t(ετ ))

L
j=1, k̃t(ετ ), r̃t(ετ ), w̃t(ετ ), q̃t(ετ ), ṽt(ετ )

}
t=τ,τ+1,...

,

given by

k̃τ+1(ετ ) =

(
ετ
ε0
τ

)α3

k∗∗τ+1, (4.46)

k̃t+1(ετ ) =

(
ετ
ε0
τ

)α3α
t−τ
1

να3(1+α1+...+αt−τ−1
1 )

τ k∗∗t+1, t = τ + 1, τ + 2, . . . , (4.47)

w̃τ (ετ ) =

(
ετ
ε0
τ

)α3

w∗∗τ , (4.48)

w̃t(ετ ) =

(
ετ
ε0
τ

)α3α
t−τ
1

να3(1+α1+...+αt−τ−1
1 )

τ w∗∗t , t = τ + 1, τ + 2, . . . , (4.49)

ṽτ (ετ ) =

(
ετ
ε0
τ

)α3

v∗∗τ , (4.50)

ṽt(ετ ) =

(
ετ
ε0
τ

)α3α
t−τ
1

να3(1+α1+...+αt−τ−1
1 )

τ v∗∗t , t = τ + 1, τ + 2, . . . , (4.51)

c̃jτ (ετ ) =

(
ετ
ε0
τ

)α3

cj∗∗τ , j = 1, . . . , L, (4.52)

c̃jt(ετ ) =

(
ετ
ε0
τ

)α3α
t−τ
1

να3(1+α1+...+αt−τ−1
1 )

τ cj∗∗t , t = τ + 1, τ + 2, . . . , j = 1, . . . , L, (4.53)

s̃jτ (ετ ) =

(
ετ
ε0
τ

)α3

sj∗∗τ , j = 1, . . . , L, (4.54)

s̃jt(ετ ) =

(
ετ
ε0
τ

)α3α
t−τ
1

να3(1+α1+...+αt−τ−1
1 )

τ sj∗∗t , t = τ + 1, τ + 2, . . . , j = 1, . . . , L, (4.55)
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1 + r̃τ (ετ ) =

(
ετ
ε0
τ

)α3

(1 + r∗∗τ ), (4.56)

1 + r̃t(ετ ) =

(
ετ
ε0
τ

)α3(α1−1)αt−τ−1
1

να3α
t−τ−1
1

τ (1 + r∗∗t ), t = τ + 1, τ + 2, . . . , (4.57)

q̃τ (ετ ) =

(
ετ
ε0
τ

)α3−1

q∗∗τ , (4.58)

q̃t(ετ ) =

(
ετ
ε0
τ

)α3α
t−τ
1

να3(1+α1+...+αt−τ−1
1 )−1

τ q∗∗t , t = τ + 1, τ + 2, . . . . (4.59)

The sequence Ẽτ (ετ ) is a competitive Eτ -equilibrium starting from the same state
Iτ−1 = {(ŝjτ−1)Lj=1, R̂τ−1}.

This lemma plays a very important role in our further considerations. If both the
competitive E0

τ -equilibrium and the competitive Eτ -equilibrium are unique, then (4.46)–
(4.59) provides formulas of transition from the equilibrium before the change of the time τ
extraction rate to the equilibrium after the change. If we cannot guarantee the uniqueness
of a competitive Eτ -equilibrium, then the interpretation of this lemma is slightly different.
It maintains that after the change of the time τ extraction rate, there exists a competitive
equilibrium which is given by (4.46)–(4.59).

Proof. For the simplicity of exposition let us slightly abuse the notation and write simply
k̃t, w̃t, etc., instead of k̃t(ετ ), w̃t(ετ ), etc.
Obviously, k̃τ = k∗∗τ , as the initial state is the same. Directly from (4.46)–(4.47) and

(4.54)–(4.55), we get

k̃t+1 =
L∑
j=1

s̃jt , t = τ, τ + 1, . . . .

Let us show that capital is paid its marginal product:

1 + r̃τ =

(
ετ
ε0
τ

)α3

(1 + r∗∗τ ) =

(
ετ
ε0
τ

)α3

α1Aτ (e
∗∗
τ )α3(k∗∗τ )α1−1 = α1Aτ (ẽτ )

α3(k̃τ )
α1−1,

1 + r̃τ+1 =

(
ετ
ε0
τ

)α3(α1−1)

να3
τ (1 + r∗∗τ+1)

=

(
ετ
ε0
τ

)α3(α1−1)

να3
τ α1Aτ+1(e∗∗τ+1)α3(k∗∗τ+1)α1−1

=

(
ετ
ε0
τ

)α3(α1−1)

να3
τ α1Aτ+1(ẽτ+1)α3(k̃τ+1)α1−1ν−α3

τ

(
ετ
ε0
τ

)α3(1−α1)

= α1Aτ+1(ẽτ+1)α3(k̃τ+1)α1−1,
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1 + r̃t =

(
ετ
ε0
τ

)α3(α1−1)αt−τ−1
1

να3α
t−τ−1
1

τ (1 + r∗∗t )

=

(
ετ
ε0
τ

)α3(α1−1)αt−τ−1
1

να3α
t−τ−1
1

τ α1At(e
∗∗
t )α3(k∗∗t )α1−1

=

(
ετ
ε0
τ

)α3(α1−1)αt−τ−1
1

να3α
t−τ−1
1

τ α1At(ẽt)
α3(k̃t)

α1−1ν−α3
τ

(
ετ
ε0
τ

)(α3α
t−τ−1
1 )(1−α1)

×

× να3(1+α1+...+αt−τ−2
1 )(1−α1)

τ = α1At(ẽt)
α3(k̃t)

α1−1, t = τ + 2, τ + 3, . . . .

Similar calculations show that

w̃t = α2At(k̃t)
α1(ẽt)

α3 , q̃t = α3At(k̃t)
α1(ẽt)

α3−1, t = τ, τ + 1, . . . ,

and it is easy to check that

ṽt = q̃tẽt, t = τ, τ + 1, . . . .

It remains to show that the sequence {(c̃jt)Lj=1, (s̃
j
t)
L
j=1}∞t=τ is a solution to the problem

max
∞∑
t=τ

βtj ln cjt ,

s. t. cjt + sjt = (1 + rt)s
j
t−1 + wt + vt, t = τ, τ + 1, . . . ,

sjt ≥ 0, t = τ, τ + 1, . . . ,

at rt = r̃t, wt = w̃t, and vt = ṽt, or, equivalently, that the following conditions hold
(j = 1, . . . , L):

c̃jt + s̃jt = (1 + r̃t)s̃
j
t−1 + w̃t + ṽt, t = τ, τ + 1, . . . , (4.60)

c̃jt+1 ≥ βj(1 + r̃t+1)c̃jt (= if s̃jt > 0), t = τ, τ + 1, . . . , (4.61)

βtj s̃
j
t

c̃jt
−−−→
t→∞

0. (4.62)
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To do this, note that the sequence {(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1}∞t=τ is a solution to maximization

problem (4.42) and hence satisfies the following conditions:

cj∗∗t + sj∗∗t = (1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t , t = τ, τ + 1, . . . ,

cj∗∗t+1 ≥ βj(1 + r∗∗t+1)cj∗∗t (= if sj∗∗t > 0), t = τ, τ + 1, . . . ,

βtjs
j∗∗
t

cj∗∗t
−−−→
t→∞

0.

Consider (4.60) for t = τ . We have

c̃jτ + s̃jτ =

(
ετ
ε0
τ

)α3

(cj∗∗τ + sj∗∗τ ) =

(
ετ
ε0
τ

)α3 (
(1 + r∗∗τ )ŝjτ−1 + w∗∗τ + v∗∗τ

)
=

(
ετ
ε0
τ

)α3

(1 + r∗∗τ )ŝjτ−1 +

(
ετ
ε0
τ

)α3

w∗∗τ +

(
ετ
ε0
τ

)α3

v∗∗τ = (1 + r̃τ )ŝ
j
τ−1 + w̃τ + ṽτ .

Consider (4.60) for t = τ + 1:

c̃jτ+1 + s̃jτ+1 =

(
ετ
ε0
τ

)α3α1

να3
τ (cj∗∗τ+1 + sj∗∗τ+1) =

(
ετ
ε0
τ

)α3α1

να3
τ

(
(1 + r∗∗τ+1)sj∗∗τ + w∗∗τ+1 + v∗∗τ+1

)
=

(
ετ
ε0
τ

)α3(α1−1)

να3
τ (1 + r∗∗τ+1)

(
ετ
ε0
τ

)α3

sj∗∗τ +

(
ετ
ε0
τ

)α3α1

να3
τ (w∗∗τ+1 + v∗∗τ+1)

= (1 + r̃τ+1)s̃jτ + w̃τ+1 + ṽτ+1.

The validity of conditions (4.60) for t ≥ τ+2 can be proved similarly. The same arguments
prove (4.61) for t ≥ τ . Notice also that

lim
t→∞

βtj s̃
j
t

c̃jt
= lim

t→∞
βtj

(
ετ
ε0τ

)α3α
t−τ
1

(
ετ
ε0τ

)α3α
t−τ
1

ν
α3(1+α1+...+αt−τ−1

1 )
τ

ν
α3(1+α1+...+αt−τ−1

1 )
τ

sj∗∗t

cj∗∗t
= lim

t→∞

βtjs
j∗∗
t

cj∗∗t
= 0.

This completes the proof of the lemma.

4.10.4. Time τ voting equilibrium

We have characterized a competitive equilibrium and a balanced-growth equilibrium un-
der given sequence of extraction rates. Now we make extraction rates endogenous and
introduce voting into our model.
Suppose that we start at time τ . The economy is in a non-degenerate state Iτ−1 =

{(ŝjτ−1)Lj=1, R̂τ−1}. Suppose further that agents have some expectations about future ex-
traction rates, represented by a non-degenerate sequence {εet}∞t=τ+1, and they vote over
the time τ extraction rate.
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For any ετ ∈ (0, 1), consider the non-degenerate sequence of extraction rates

Eτ (ετ ) = {ετ , εeτ+1, ε
e
τ+2, . . .}.

Let us assume that for any ετ ∈ (0, 1) there is a unique competitive Eτ (ετ )-equilibrium
starting from Iτ−1,

E∗∗τ (ετ ) =
{

(cj∗∗t (ετ ))
L
j=1, (s

j∗∗
t (ετ ))

L
j=1, k

∗∗
t (ετ ), r

∗∗
t (ετ ), w

∗∗
t (ετ ), q

∗∗
t (ετ ), v

∗∗
t (ετ )

}
t=τ,...

.

It is clear that E∗∗τ (ετ ) depends on the expectations and on the parameters of the model
as well. However, here we underline its dependence only on ετ , as it is the value on which
agents vote.
Under the uniqueness assumption, agents’ preferences over the time τ extraction rate

are represented by the following indirect utility functions:

U jτ (ετ ) = ln cj∗∗τ (ετ ) + βj ln cj∗∗τ+1(ετ ) + . . . , j = 1, . . . , L.

Definition. Suppose that for any ετ ∈ (0, 1) there is a unique competitive Eτ (ετ )-
equilibrium starting from Iτ−1, E∗∗τ (ετ ). We call a couple {ε∗∗τ , E∗∗τ } a time τ voting
equilibrium if ε∗∗τ is a Condorcet winner in voting on the time τ extraction rate, and
E∗∗τ = E∗∗τ (ε∗∗τ ).

Since the functions U j(ετ ), j = 1, . . . , L, are strictly concave, the agents’ preferences are
single-peaked. Hence the median voter theorem applies, and at each point in time there
exists a Condorcet winner. Note that the time τ voting equilibrium consists of the time
τ voting equilibrium extraction rate ε∗∗τ and the corresponding competitive equilibrium.
In order to determine a Condorcet winner, let us consider the preferred time τ extraction

rate for agent j. This is the value εjτ such that

U jτ (εjτ ) > U jτ (ετ ) ∀ ετ 6= εjτ .

From Lemma 4.13 we know how the consumption stream of every agent depends on
the time τ extraction rate, which allows us to obtain agents’ preferred values of time τ
extraction rate.

Proposition 4.11. Suppose that for any ετ ∈ (0, 1) there is a unique competitive Eτ (ετ )-
equilibrium starting from Iτ−1. The preferred time τ extraction rate for each agent j is
given by

εjτ = 1− βj. (4.63)
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Proof. Let us take some ε0
τ ∈ (0, 1), and consider the non-degenerate sequence

Eτ (ε0
τ ) = {ε0

τ , ε
e
τ+1, ε

e
τ+2, . . .}.

By assumption, there is a unique competitive Eτ (ε0
τ )-equilibrium

E∗∗τ (ε0
τ ) =

{
(cj∗∗t (ε0

τ ))
L
j=1, (s

j∗∗
t (ε0

τ ))
L
j=1, k

∗∗
t (ε0

τ ), r
∗∗
t (ε0

τ ), w
∗∗
t (ε0

τ ), q
∗∗
t (ε0

τ ), v
∗∗
t (ε0

τ )
}
t=τ,...

starting from Iτ−1. We use this equilibrium as a benchmark.
Further, for any ετ ∈ (0, 1), there is a unique competitive Eτ (ετ )-equilibrium

E∗∗τ (ετ ) =
{

(cj∗∗t (ετ ))
L
j=1, (s

j∗∗
t (ετ ))

L
j=1, k

∗∗
t (ετ ), r

∗∗
t (ετ ), w

∗∗
t (ετ ), q

∗∗
t (ετ ), v

∗∗
t (ετ )

}
t=τ,...

starting from Iτ−1.
From Lemma 4.13 we know that if the time τ extraction rate changes from ε0

τ to ετ ,
the benchmark equilibrium E∗∗τ (ε0

τ ) transforms to the “new” equilibrium E∗∗τ (ετ ) according
to the formulas (4.46)–(4.59). In particular, the consumption stream of agent j is given
by (4.52)–(4.53). Therefore, the indirect utility function of agent j in this equilibrium is
given by:

U jτ (ετ ) = ln cj∗∗τ (ετ ) + βj ln cj∗∗τ+1(ετ ) + . . .

= α3 ln

(
ετ
ε0
τ

)
+ ln cj∗∗τ (ε0

τ ) + βjα3α1 ln

(
ετ
ε0
τ

)
+ βjα3 ln

(
1− ετ
1− ε0

τ

)
+ βj ln cj∗∗τ+1(ε0

τ ) + . . .

= Γj + α3 ln ετ (1 + βjα1 + β2
jα

2
1 + . . .)

+ βjα3 ln(1− ετ )
(
1 + βj(1 + α1) + β2

j (1 + α1 + α2
1) + . . .

)
= Γj +

α3

1− βjα1

ln ετ +
βjα3

1− βj
(1 + βjα1 + β2

jα
2
1 + . . .) ln(1− ετ )

= Γj +
α3

1− βjα1

ln ετ +
α3

1− βjα1

βj
1− βj

ln(1− ετ ),

where

Γj = ln

[(
1

ε0
τ

)α3

cj∗∗τ (ε0
τ )

]
+ βj ln

[(
1

ε0
τ

)α3α1
(

1

1− ε0
τ

)α3

cj∗∗τ+1(ε0
τ )

]
+ . . .

+ βtj ln

[(
1

ε0
τ

)α3αt1
(

1

1− ε0
τ

)α3(1+α1+...+αt−1
1 )

cj∗∗τ+t(ε
0
τ )

]
+ . . . .

is the term that depends on the parameters of the model and on the characteristics of the
benchmark equilibrium E∗∗τ (ε0

τ ) (the extraction rate ε0
τ and the consumption stream), but
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does not depend on ετ , on which agents vote. Since the benchmark equilibrium exists,
−∞ < Γj < +∞, and hence the indirect utility function of each agent is well-defined.
When voting on ετ , agent j maximizes her indirect utility U jτ (ετ ), i.e., solves

∂U jτ (ετ )

∂ετ
= 0.

This equation can be rewritten as

1

ετ
− βj

1− βj
1

1− ετ
= 0.

The solution to this equation is εjτ = 1− βj.

Proposition 4.11 maintains that the preferred time τ extraction rate for every agent is
constant over time and depends only on this agent’s discount factor. In particular, the
preferred time τ extraction rate for agent j is time- and expectations-independent.
Now it is straightforward to see that the Condorcet winner in voting on the time τ

extraction rate is
ε∗∗τ = 1− βmed,

where βmed is the median discount factor. Thus the following theorem takes place.

Theorem 4.3. Suppose that for any ετ ∈ (0, 1) there is a unique competitive Eτ (ετ )-
equilibrium starting from Iτ−1. Then there exists a unique time τ voting equilibrium
{ε∗∗τ , E∗∗τ }. The equilibrium extraction rate is constant over time and given by

ε∗∗τ = ε∗∗ = 1− βmed. (4.64)

4.10.5. Intertemporal voting equilibrium

Suppose we are given an initial state I−1 = {(ŝj−1)Lj=1, R̂−1} and a non-degenerate sequence
of extraction rates E∗∗ = E∗∗0 = {ε∗∗t }∞t=0. Therefore, the volumes of extraction and the
dynamics of the resource stock are also known:

e∗∗t = et(E∗∗), R∗∗t = Rt(E∗∗), t = 0, 1, . . . .

Let
E∗∗0 =

{
(cj∗∗t )Lj=1, (s

j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...

be a competitive E∗∗-equilibrium starting from I−1. Let for τ = 1, 2, . . .

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...
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be the corresponding tail of E∗∗0 , which is a competitive E∗∗τ -equilibrium starting from
I∗∗τ−1 = {(sj∗∗τ−1)Lj=1, R

∗∗
τ−1}.

Definition. We call a couple {E∗∗, E∗∗0 } an intertemporal voting equilibrium starting from
I−1 if for each time τ = 0, 1, . . ., a couple {ε∗∗τ , E∗∗τ } is a time τ voting equilibrium starting
from I∗∗τ−1 under perfect foresight about future extraction rates (εet = ε∗∗t , t = τ + 1, τ +

2, . . .).

The following theorem provides the characterization of the sequence of extraction rates
in every intertemporal voting equilibrium.

Theorem 4.4. In every intertemporal voting equilibrium {E∗∗, E∗∗0 } the sequence of ex-
traction rates E∗∗ is constant over time and given by

E∗∗ = Eε∗∗ = {ε∗∗, ε∗∗, . . .}, (4.65)

where ε∗∗ is defined by (4.64).

Proof. The sequence of extraction rates in every intertemporal voting equilibrium is a
sequence of time τ equilibrium extraction rates. It follows from Theorem 4.3 that every
equilibrium extraction rate is constant and given by (4.64).

The answer to the question about the existence and uniqueness of an intertemporal
voting equilibrium is provided by the following theorem. It states that if the initial
state is such that the whole capital stock belongs to the most patient agents, then an
intertemporal voting equilibrium exists and is unique.

Theorem 4.5. Suppose that the initial state I−1 is such that ŝj−1 = 0 for j /∈ J . Then
there exists a unique intertemporal voting equilibrium {E∗∗, E∗∗0 } starting from I−1. The
equilibrium sequence of extraction rates E∗∗ is constant over time and given by (4.65),
and E∗∗0 is a unique competitive E∗∗-equilibrium starting from I−1, as described in Propo-
sition 4.6.

Proof. It follows from Proposition 4.6 and Theorem 4.4.

4.10.6. Balanced-growth voting equilibrium

Definition. An intertemporal voting equilibrium {E∗∗, E∗∗0 } starting from I−1 is called
a balanced-growth voting equilibrium if E∗∗0 is a balanced-growth Eε∗∗-equilibrium starting
from I−1, where ε∗∗ is given by (4.64).

The following theorem maintains that if at the initial instant the whole capital stock
belongs to the most patient agents, then the intertemporal voting equilibrium converges
to a balanced-growth voting equilibrium.
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Theorem 4.6. Suppose that the initial state I−1 is such that ŝj−1 = 0 for j /∈ J . A unique
intertemporal voting equilibrium starting from I−1 satisfies the following asymptotic prop-
erties:

lim
t→∞

1 + r∗∗t = 1 + r∗∗ =
1 + γ∗∗

β1

, (4.66)

lim
t→∞

k∗∗t+1

k∗∗t
= lim

t→∞

w∗∗t+1

w∗∗t
= lim

t→∞

v∗∗t+1

v∗∗t
= 1 + γ∗∗, (4.67)

lim
t→∞

sj∗∗t+1

sj∗∗t
= 1 + γ∗∗, j ∈ J, (4.68)

lim
t→∞

cj∗∗t+1

cj∗∗t
= 1 + γ∗∗, j = 1, . . . , L, (4.69)

lim
t→∞

q∗∗t+1

q∗∗t
= 1 + π∗∗, (4.70)

where
1 + γ∗∗ = (1 + λ)

1
1−α1 (βmed)

α3
1−α1 , (4.71)

and
1 + π∗∗ =

1 + γ∗∗

βmed
. (4.72)

Proof. It follows from Proposition 4.10 and Theorem 4.5.

4.10.7. Generalized intertemporal voting equilibria

Our definition of an intertemporal voting equilibrium is given under the assumption of
uniqueness of a competitive Eτ (ετ )-equilibrium for any ετ ∈ (0, 1). This assumption
is crucial in the statement of Theorem 4.3 about the constant equilibrium extraction
rate. Moreover, we obtained the existence and uniqueness of an intertemporal voting
equilibrium (Theorem 4.5) only for the case in which the underlying competitive equilibria
are unique. Thus to guarantee the mere existence of an intertemporal voting equilibrium,
we have to prove the uniqueness of a competitive Eτ (ετ )-equilibrium starting from an
arbitrary state Iτ−1 for any ετ ∈ (0, 1), which is not an easy task.
Let us discuss the general case in which the competitive Eτ (ετ )-equilibrium starting from

an arbitrary state Iτ−1 is not necessarily unique. The difficulty here is that we cannot
unambiguously define agents’ indirect utility functions and obtain from them agents’
preferred values of extraction rates. However, if we apply the technique proposed by
Borissov et al. (2014b), we can get around this difficulty. Namely, let us impose an
additional assumption on the beliefs of agents. Assume that agents simply act as if
a competitive Eτ (ετ )-equilibrium is unique, and do not take into account the possible
multiplicity of equilibria.
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Formally, let
E∗∗ = E∗∗0 = {ε∗∗t }∞t=0,

and
e∗∗t = et(E∗∗), R∗∗t = Rt(E∗∗), t = 0, 1, . . . .

Consider a competitive E∗∗0 -equilibrium

E∗∗0 =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...

starting from I−1 =
{

(ŝj−1)Lj=1, R̂−1

}
. Let also for τ = 1, 2, . . .,

E∗∗τ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=τ,τ+1,...

be the corresponding tail of E∗∗0 .
Suppose that the economy has settled on E∗∗0 . At each time τ , when the economy is in

the state I∗∗τ−1 = {(sj∗∗τ−1)Lj=1, R
∗∗
τ−1}, agents are asked to vote over the time τ extraction

rate. To do this, agents’ indirect utility functions should be unambiguously specified.
Originally this was done under the assumption of uniqueness of the competitive E∗∗τ -
equilibrium starting from I∗∗τ−1. Now let us instead assume that when voting on the time
τ extraction rate, all agents believe that if ε∗∗τ is replaced by the other extraction rate ετ ,
then the economy will settle on the path Ẽτ (ετ ), which is linked with the “initial” equilibrium
E∗∗τ in the way described in Lemma 4.13.
Recall that under the uniqueness assumption, the interpretation of Lemma 4.13 is

simple. After changing the time τ extraction rate from ε∗∗τ to ετ , a unique competitive
E∗∗-equilibrium also changes, and becomes a unique competitive Eτ -equilibrium, described
in Lemma 4.13. Here the interpretation is slightly different. After changing the time
τ extraction rate, the competitive E∗∗-equilibrium can change unpredictably, and the
economy can settle on one of multiple Eτ -equilibria. Under our assumption about agents’
beliefs, agents ignore the possible multiplicity of equilibria and believe that after the
change of the time τ extraction rate, the economy settles on the path Ẽτ (ετ ), which is
described in Lemma 4.13.
Under this additional assumption, agents’ indirect utility functions, which represent

their preferences over the time τ extraction rate, can be defined unambiguously as follows:

U jτ (ετ ) = ln c̃jτ (ετ ) + βj ln c̃jτ+1(ετ ) + . . . , j = 1, . . . , L,

where the sequence {c̃jτ (ετ ), c̃
j
τ+1(ετ ), . . .} is constructed according to (4.52)–(4.53).
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Definition. If for each t = 0, 1, . . . there is a Condorcet winner in voting on εt described
above, and it coincides with ε∗∗t , then we call a couple {E∗∗, E∗∗0 } a generalized intertem-
poral voting equilibrium starting from I−1.

Clearly, any intertemporal voting equilibrium is a generalized intertemporal voting
equilibrium. Moreover, any generalized intertemporal voting equilibrium starting from
an initial state where the whole capital stock belongs to the most patient agents is an
intertemporal voting equilibrium. Under the additional assumption about agents’ be-
liefs, there always exists a generalized intertemporal voting equilibrium starting from an
arbitrary initial state.

Theorem 4.7. For any non-degenerate initial state there exists a generalized intertem-
poral voting equilibrium {E∗∗, E∗∗0 } starting from this state. The equilibrium sequence of
extraction rates is constant over time and given by (4.65).

Proof. It is sufficient to repeat the argument used in the proof of Theorem 4.4, and refer
to Theorem 4.2.

Furthermore, every generalized intertemporal voting equilibrium converges to a balanced-
growth voting equilibrium.

Theorem 4.8. Every generalized intertemporal voting equilibrium starting from an ar-
bitrary initial state satisfies asymptotic properties (4.66)–(4.70), where γ∗∗ and π∗∗ are
given by (4.71) and (4.72) respectively.

Proof. It follows from Proposition 4.10 and Theorem 4.7.

4.11. Proofs. Private property regime with capital
taxation

Consider a competitive equilibrium in the private property regime, and assume in addition
that capital income paid by competitive firms to the capital holders is taxed at some
constant rate θ and the revenue is lump-sum redistributed among all agents.
The definition of competitive equilibrium with a capital income tax,

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

,

repeats the definition of competitive equilibrium in Subsection 4.9.1, except for the fol-
lowing changes:
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1′. For each j = 1, . . . , L, the sequence {cj∗t , s
j∗
t }∞t=0 is a solution to the following utility

maximization problem:

max
∞∑
t=0

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + rt) (1− θ) sjt−1 + wt + θ (1 + rt) kt t = 0, 1, . . . ,

sjt ≥ 0, t = 0, 1, . . .

at rt = r∗t , wt = w∗t , kt = k∗t , and s
j
−1 =

q∗0
(1+r∗0)(1−θ)R̂

j
−1 + k̂j0;

5′. The Hotelling rule takes the form

q∗t+1 = (1 + r∗t+1)(1− θ)q∗t , t = 0, 1, . . . ;

7′. Aggregate savings are equal to investment into physical capital and natural resources:

L∑
j=1

sj∗t =
q∗t+1

(1 + r∗t+1)(1− θ)
R∗t + Lk∗t+1, t = 0, 1, . . . .

Taking into account the new form of the Hotelling rule, we can define a balanced-growth
equilibrium with capital taxation along the lines of the definition of a balanced-growth
equilibrium in Subsection 4.9.2. Slightly modifying the arguments from the proof of
Propositions 4.3 and 4.4, we can provide a characterization of a balanced-growth equilib-
rium with capital taxation.

Proposition 4.12. For every balanced-growth equilibrium with capital taxation,

1 + γ∗ = (1 + λ)
1

1−α1 β
α3

1−α1
1 , (4.73)

(1 + r∗)(1− θ) =
1 + γ∗

β1

, (4.74)

ε∗ = 1− β1. (4.75)

Proof. A balanced-growth equilibrium with capital taxation

E∗ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

is a competitive equilibrium with capital taxation in which real variables grow at a con-
stant rate γ∗, while the interest rate r∗ and extraction rate ε∗ are constant over time.
In a competitive equilibria with capital taxation the post-tax interest rate received by
agents is equal to the pre-tax gross interest rate (1 + r∗) multiplied by (1− θ). Repeating

149



4. Economic Growth and Property Rights on Natural Resources

the argument by Becker (1980, 2006), we obtain that a balanced-growth equilibrium with
capital taxation is characterized as follows:

sj∗t−1 = 0, j /∈ J, t = 0, 1, . . . ,

1 + γ∗ = β1(1 + r∗)(1− θ). (4.76)

Moreover, since in a balanced-growth equilibrium with capital taxation the extraction
rate is constant,

1 =
1 + r∗t+1

1 + r∗t
=
At+1

At

(
k∗t+1

k∗t

)α1−1(e∗t+1

e∗t

)α3

= (1 + λ) (1 + γ∗)α1−1 (1− ε∗)α3 ,

and we get
(1 + γ∗)1−α1 = (1 + λ) (1− ε∗)α3 . (4.77)

We also have

(1 + r∗)(1− θ) =
q∗t+1

q∗t
=
At+1

At

(
k∗t+1

k∗t

)α1
(
e∗t+1

e∗t

)α3−1

= (1 + λ) (1 + γ∗)α1 (1− ε∗)α3−1 ,

and it follows that
(1 + r∗)(1− θ) =

1 + γ∗

1− ε∗
. (4.78)

Comparing (4.76) and (4.78), we immediately obtain (4.75). Now (4.74) follows from
(4.75) and (4.78), while (4.73) follows from (4.75) and (4.77).

It follows that the long-run growth rate, the post-tax interest rate and the extraction
rate in the model with a capital income tax are the same as in the model without capital
tax.
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A. Existence of a competitive equilibrium in the
private property regime

The existence of a competitive equilibrium in the general equilibrium Ramsey-type model
with private property over exhaustible natural resources is established in the following
theorem.

Theorem A.1. For any initial state I0 there exists a competitive equilibrium starting
from I0.

Theorem A.1 is proved below following the ideas presented in Borissov and Dubey
(2015). The existence of equilibrium in the considered Ramsey-type model can be also
proved along the lines of Becker et al. (1991). See also Becker et al. (2015a) and Le Van
and Pham (2016) for similar proofs of the existence of equilibria in Ramsey-type models
with heterogeneous agents and borrowing constraints.

Proof. We divide the proof of the theorem into two steps. First we show the existence
of a competitive equilibrium in the finite horizon model. We prove that for any T > 0

there exists a finite T -period competitive equilibrium. Second, we construct a candidate
for a competitive equilibrium in the infinite horizon model by applying some kind of
diagonalization procedure to the sequence of finite T -period equilibrium paths, and then
prove that this candidate is indeed a competitive equilibrium in the infinite horizon model.

Step I. Competitive equilibrium in the finite horizon model.
Let us define a finite T -period competitive equilibrium along the lines of the above

definition.

Definition A.1. A finite T -period competitive equilibrium starting from the initial state
I0 is a sequence

E∗T =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...,T

such that
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1. For each j = 1, . . . , L, the sequence {cj∗t , s
j∗
t }Tt=0 is a solution to the following utility

maximization problem:

max
T∑
t=0

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + rt) s
j
t−1 + wt, t = 0, 1, . . . , T,

sjt ≥ 0, t = 0, 1, . . . , T,

(A.1)

at rt = r∗t , wt = w∗t , and

sj−1 =
q∗0

1 + r∗0
R̂j
−1 + k̂j0;

2. Capital is paid its marginal product:

1 + r∗t = α1At(k
∗
t )
α1−1(e∗t )

α3 , t = 0, 1, . . . , T,

where k∗0 = 1
L

∑L
j=1 k̂

j
0;

3. Labor is paid its marginal product:

w∗t = α2At(k
∗
t )
α1(e∗t )

α3 , t = 0, 1, . . . , T ;

4. The price of natural resources is equal to the marginal product:

q∗t = α3At(k
∗
t )
α1(e∗t )

α3−1, t = 0, 1, . . . , T ;

5. The Hotelling rule holds:

q∗t+1 = (1 + r∗t+1)q∗t , t = 0, 1, . . . , T − 1;

6. The natural balance of exhaustible resources is fulfilled:

R∗t = R∗t−1 − Le∗t , t = 0, 1, . . . T,

where R∗−1 =
∑L

j=1 R̂
j
−1, and Rt ≥ 0, et ≥ 0, for all t = 0, 1, . . . , T ;

7. Total agents’ savings are equal to the investment into physical capital and natural
resources:

L∑
j=1

sj∗t =
q∗t+1

1 + r∗t+1

R∗t + Lk∗t+1, t = 0, 1, . . . , T − 1.
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It is clear that {cj∗t , s
j∗
t }Tt=0 is a solution to (A.1) if and only if it satisfies the following

conditions:

cj∗t + sj∗t = (1 + rt)s
j∗
t−1 + w∗t , t = 0, 1, . . . , T, (A.2)

cj∗t+1 ≥ βj(1 + r∗t+1)cj∗t (= if sj∗t > 0), t = 0, 1, . . . , T − 1, (A.3)

sj∗T = 0.

Let ε∗t be the extraction rate at time t:

ε∗t =
Le∗t
R∗t−1

.

The existence of a competitive equilibrium in the finite horizon model is shown via
the following steps. First we present some preliminary definitions and results that will
be useful in what follows. Second, we reduce our finite horizon model to a game, and
show that there exists a Nash equilibrium in this game. Third, we prove that a Nash
equilibrium in the game that represents our model determines a competitive equilibrium
in the finite horizon model.

Step I.1. Preliminaries
We use the notation

e = e(ε, R) :=
εR

L
,

for the volume of extraction as depending on the extraction rate ε and resource stock R,
and the notation

f(k, e, A) := Akα1eα3 ,

1 + r(k, e, A) := α1Ak
α1−1eα3 ,

w(k, e, A) := α2Ak
α1eα3 ,

q(k, e, A) := α3Ak
α1eα3−1,

for the output (production function), interest rate, wage rate, and resource price as de-
pending on the capital stock k, the volume of extraction e and total factor productivity
A. It is clear that for all k, e, A,

(1 + r(k, e, A))k + w(k, e, A) + q(k, e, A)e = f(k, e, A), (A.4)

f(k, e, A) =
(1 + r(k, e, A))k

α1

=
w(k, e, A)

α2

=
q(k, e, A)e

α3

. (A.5)
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In particular,
q(k, e, A)

1 + r(k, e, A)
=
α3

α1

k

e
=
α3

α1

k

ε

L

R
. (A.6)

Denote

ε̃ :=
α3(1− β1)

1− (α1 + α2)(1− β1)
,

ε̄ :=
1

1 + βL(1− β1)2
.

Let
R̃−1 := R̂−1,

R̃t := (1− ε̄)R̃t−1, t = 0, 1, . . . ,

ẽt :=
ε̃R̃t−1

L
, t = 0, 1, . . . ,

ē :=
R̂−1

L
.

(A.7)

Denote

1 + ḡ = max

{
(1 + λ)

1
1−α1 , (1 + λ)

1
1−α1

(
ε̄(1− ε̃)

ε̃

) α3
1−α1

}
,

where λ is the growth rate of the total factor productivity:

At = (1 + λ)At−1 = (1 + λ)tA0. (A.8)

Let also

1 + g̃ = min

{
(1 + λ)

1
1−α1

(
ε̃(1− ε̄)

ε̄

) α3
1−α1

,
A0(ẽ0)α3

(k̂0)1−α1

}
,

and
1 + g = βLα1(1 + g̃).

It is clear that
1 + ḡ ≥ (1 + λ)

1
1−α1 ,

1 + ḡ ≥ (1 + λ)
1

1−α1

(
ε̄(1−ε̃)
ε̃

) α3
1−α1 ,

(A.9)

1 + g̃ ≤ A0(ẽ0)α3

(k̂0)1−α1

,

1 + g̃ ≤ (1 + λ)
1

1−α1

(
ε̃(1−ε̄)
ε̄

) α3
1−α1 ,

(A.10)

and
1 + ḡ > 1 + g̃ > 1 + g. (A.11)
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Suppose that κ̄ > 0 is given by

(1 + g̃)κ̄ = (κ̄)α1 , (A.12)

Let the sequence {k̄t} be given by

k̄t+1 = (1 + ḡ)k̄t,

where
k̄0 = κ̄(A0ē

α3)
1

1−α1 .

We show that
κ̄(At(ē)

α3)
1

1−α1 ≤ k̄t. (A.13)

Due to (A.8), (A.9), and the choice of k̄0, we get

κ̄(At(ē)
α3)

1
1−α1 = κ̄

(
(1 + λ)tA0(ē)α3

) 1
1−α1 ≤ κ̄ (A0(ē)α3)

1
1−α1 (1 + ḡ)t = (1 + ḡ)tk̄0 = k̄t.

Moreover,
f(k̄t, ē, At) < k̄t+1, t = 0, 1, . . . . (A.14)

Indeed, using (A.13), (A.12) and (A.11), we get

f(k̄t, ē, At)− k̄t+1 = (k̄t)
α1At(ē)

α3 − (1 + ḡ)k̄t

= k̄t

(
At(ē)

α3

(k̄t)1−α1
− (1 + ḡ)

)
≤ k̄t

(
At(ē)

α3

(κ̄)1−α1At(ē)α3
− (1 + ḡ)

)
= k̄t

(
κ̄α1

κ̄
− (1 + ḡ)

)
= k̄t ((1 + g̃)− (1 + ḡ)) < 0.

Denote
c̄t := Lk̄t+1. (A.15)

Clearly,
c̄t+1 = (1 + ḡ)c̄t. (A.16)

Let the sequence {k̃t}∞t=0 be defined recursively as follows. We take k̃0 such that 0 <

k̃0 < k̂0. Suppose we are given k̃t > 0. Consider the following equation in k:(
1 +

α3

α1

1

ε̃

)
k +

c̄t+1

βL(1 + r(k, ẽt+1, At+1))
= f(k̃t, ẽt, At).
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The left-hand side of the above equation is increasing in k, and equals to 0 when k = 0.
Thus there is a unique positive solution to this equation. We take k̃t+1 > 0 as this solution.
Clearly, the sequence {k̃t}∞t=0 satisfies the following equation:(

1 +
α3

α1

1

ε̃

)
k̃t+1 +

c̄t+1

βL(1 + r(k̃t+1, ẽt+1, At+1))
= f(k̃t, ẽt, At), t = 0, 1, . . . . (A.17)

Step I.2. A game.
We reduce our finite horizon model to a game Γ = (Xk, Gk)k∈I . Recall that to specify a

game, we need to describe a set of players, I, and for each player k ∈ I define the strategy
set Xk and the loss function

Gk :
∏
i∈I

Xi → R.

Elements of
∏

i∈I Xi are called multistrategies. The equilibrium of the game Γ is defined
as follows.

Definition. A multistrategy
(
x∗1, . . . , x

∗
|I|

)
is called a Nash equilibrium of the game Γ if

for each k ∈ I, x∗k is a solution to

min
xk

Gk

(
x∗1, . . . , x

∗
k−1, xk, x

∗
k+1, . . . , x

∗
|I|
)
,

s. t. xk ∈ Xk.

The sufficient conditions for the existence of a Nash equilibrium of this game are well-
known (see, e.g., Ichiishi, 2014): for each k ∈ I the set Xk is a convex and compact subset
of a finite dimensional space, and the function Gk(x1, . . . , xk, . . . , x|I|) is continuous in all
variables and quasi-convex in xk.
Consider the following game ΓT with 3T + (2T + 1)L players where

1. for each agent j = 1, . . . , L,

a) T players determine sjt , t = 0, 1, . . . , T − 1, by solving

min
s
s
(
cjt+1 − βj(1 + r(kt+1, e(εt+1, Rt), At+1))cjt

)
,

s. t. 0 ≤ s ≤ Lk̄t+1

ε̃
.

(A.18)

b) T + 1 players determine cjt , t = 0, 1, . . . , T , by solving

min
c

∣∣c− ((1 + r(kt, e(εt, Rt−1), At))s
j
t−1 + w(kt, e(εt, Rt−1), At)− sjt

)∣∣ ,
s. t. 0 ≤ c ≤ c̄t

ε̃
,

(A.19)
where sjT = 0 and R−1 = R̂−1.
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2. T players determine kt, t = 1, 2, . . . , T , by solving

min
k

∣∣∣∣∣k − 1

L

L∑
j=1

sjt−1

α1εt
α3 + α1εt

∣∣∣∣∣ ,
s. t. k̃t ≤ k ≤ k̄t+1

ε̃

(A.20)

3. T players determine Rt, t = 0, 1, . . . , T − 1, by solving

min
R
|R− (1− εt)Rt−1| ,

s. t. R̃t ≤ R ≤ R̂−1,
(A.21)

where R−1 = R̂−1.

4. T players determine εt, t = 0, 1, . . . , T − 1, by solving

min
ε

∣∣∣∣∣(e(ε, Rt−1))1−α3

Atk
α1
t

− α1
e(εt+1, Rt)

kt+1

∣∣∣∣∣ ,
s. t. ε̃ ≤ ε ≤ ε̄,

(A.22)

where R−1 = R̂−1, and εT = 1.

Lemma. There exists a Nash equilibrium in the game ΓT with 3T + (2T + 1)L players
having the strategy sets and loss functions described by (A.18)–(A.22).

Proof. All the strategy sets are closed intervals, and for each player the loss function is
continuous in all variables and quasi-convex in the player’s own strategy variable.

Step I.3. Nash equilibrium vs. competitive equilibrium.
The following lemma maintains that the Nash equilibrium of the game ΓT determines

a finite T -period competitive E0-equilibrium.

Lemma A.1. Let{
(cj∗t )j=1,...,L

t=0,1,...,T , (s
j∗
t )j=1,...,L

t=0,1,...,T−1, (k
∗
t )t=1,2,...,T , (R

∗
t )t=0,1,...,T−1, (ε

∗
t )t=0,1,...,T−1

}
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be a Nash equilibrium of the game ΓT . Let k∗0 = k̂0, R∗−1 = R̂−1, R∗T = 0, ε∗T = 1, and
sj∗T = 0 for all j. Let also

e∗t = e(ε∗t , R
∗
t−1), t = 0, 1, . . . , T,

1 + r∗t = 1 + r(k∗t , e
∗
t , At), t = 0, 1, . . . , T,

w∗t = w(k∗t , e
∗
t , At), t = 0, 1, . . . , T,

q∗t = q(k∗t , e
∗
t , At), t = 0, 1, . . . , T.

Then {
(cj∗t )Lj=1, (s

j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...,T

is a finite T -period competitive equilibrium starting from the initial state I0.

Proof. First, observe that

• if cjt+1 > βj(1 + r(kt+1, e(εt+1, Rt), At+1))cjt , then the only solution to the problem
(A.18) is s = 0;

• if cjt+1 = βj(1 + r(kt+1, et+1, At+1))cjt , then any s from the interval [0, Lk̄t+1

ε̃
] is a

solution to the problem (A.18);

• if cjt+1 < βj(1 + r(kt+1, et+1, At+1))cjt , then the only solution to the problem (A.18)
is s = Lk̄t+1

ε̃
.

Second, notice that minimization problems (A.19)–(A.21) are of the form

min
x
|x− x̂|,

s. t. a1 ≤ x ≤ a2.

The unique solution to this problem, x∗, is given by

x∗ =


a1, if x̂ < a1;

a2, if x̂ > a2;

x̂, if a1 ≤ x̂ ≤ a2.

Remark A.1. When x̂ ≥ a1, we have x̂ ≥ x∗.

Remark A.2. When x̂ ≤ a2, we have x̂ ≤ x∗.

Third, note that minimization problems (A.22) are of the form

min
x
|g(x)− x̂|,

s. t. a1 ≤ x ≤ a2,
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where the function g(x) is increasing in x. The unique solution to this problem, x∗, is
given by

x∗ =


a1, if x̂ < g(a1);

a2, if x̂ > g(a2);

g−1(x̂), if g(a2) ≤ x̂ ≤ g(a1).

Let {
(cj∗t )j=1,...,L

t=0,1,...,T , (s
j∗
t )j=1,...,L

t=−1,0,...,T−1, (k
∗
t )t=1,2,...,T , (R

∗
t )t=0,1,...,T−1, (ε

∗
t )t=0,1,...,T−1

}
be a Nash equilibrium of the game ΓT . Denote sj∗−1 =

q∗0
1+r∗0

R̂j
−1 + k̂j0. Notice that that for

all t = 0, 1, . . . , T , k∗t ≥ k̃t > 0, and

0 < ε̃ ≤ ε∗t ≤ ε̄ < 1. (A.23)

Therefore, for all t = 0, 1, . . . , T , e∗t > 0, w∗t > 0, 0 < 1 + r∗t <∞, and 0 < q∗t <∞.
The proof of Lemma A.1 is divided into several claims.

Claim A.1. For each j = 1, . . . , L,

0 < cj∗t ≤ (1 + r∗t )s
j∗
t−1 + w∗t − s

j∗
t , t = 0, 1, . . . , T, (A.24)

and hence
cj∗t + sj∗t ≤ (1 + r∗t )s

j∗
t−1 + w∗t , t = 0, 1, . . . , T, (A.25)

Proof. Assume the converse. Then, by the structure of the problem (A.19), there are j
and 0 ≤ τ ≤ T such that

0 < cj∗t ≤ (1 + r∗t )s
j∗
t−1 + w∗t − s

j∗
t , t = 0, 1, . . . , τ − 1,

and
0 = cj∗τ ≥ (1 + r∗τ )s

j∗
τ−1 + w∗τ − sj∗τ . (A.26)

Consider two cases. First, let τ ≤ T − 1. By (A.26),

sj∗τ ≥ (1 + r∗τ )s
j∗
τ−1 + w∗τ ≥ w∗τ > 0.

Then, by the structure of the problem (A.18),

cj∗τ+1 ≤ βj(1 + r∗τ+1)cj∗τ = 0,
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because otherwise we would have sj∗τ = 0. Therefore, using Remark A.1, we conclude that

0 = cj∗τ+1 ≥ (1 + r∗τ+1)sj∗τ + w∗τ+1 − s
j∗
τ+1.

Repeating the argument, and using the structure of the problem (A.18), we obtain for
t = τ, τ + 1, . . . , T − 1,

sj∗t > 0,

cj∗t+1 = 0.

However, cj∗T = 0 is impossible, because sj∗T = 0, and by the structure of the problem
(A.19) we have

0 = cj∗T = cj∗T + sj∗T ≥ (1 + r∗T )sj∗T−1 + w∗T > 0,

a contradiction.
Second, let τ = T . Since cj∗T−1 > 0, and cj∗T = 0, we have

cj∗T − βj(1 + r∗T )cj∗T−1 = −βj(1 + r∗T )cj∗T−1 < 0,

and, by the structure of the problem (A.18), sj∗T−1 = Lk̄T
ε̃
. Using the fact that sj∗T = 0, by

the structure of the problem (A.19) we have

0 = cj∗T + sj∗T ≥ (1 + r∗T )sj∗T−1 + w∗T > 0,

a contradiction.

Claim A.2. For each j = 1, . . . , L,

(1 + r∗t )s
j∗
t−1 + w∗t <

Lk̄t+1

ε̃
, t = 0, 1, . . . , T, (A.27)

1

L

L∑
j=1

sj∗t−1

α1ε
∗
t

α3 + α1ε∗t
<
k̄t
ε̃
, t = 0, 1, . . . , T, (A.28)

and
1

L

L∑
j=1

sj∗t−1 ≤ k∗t +
q∗t

1 + r∗t

R∗t−1

L
, t = 0, 1, . . . , T. (A.29)

Proof. Using the definition of sj∗−1, we obtain

1

L

L∑
j=1

sj∗−1 =
q∗0

1 + r∗0

1

L

L∑
j=1

R̂j
−1 +

1

L

L∑
j=1

k̂j0 =
q∗0

1 + r∗0

R∗−1

L
+ k∗0. (A.30)
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Therefore, by (A.30), (A.23), and (A.14)

(1 + r∗0)sj∗−1 + w∗0 ≤
L∑
j=1

(
(1 + r∗0)sj∗−1 + w∗0

)
= (1 + r∗0)

q∗0
1 + r∗0

R∗−1 + L(1 + r∗0)k∗0 + Lw∗0 = L(1 + r∗0)k∗0 + Lw∗0 + q∗0R
∗
−1

= α1Lf(k∗0, e
∗
0, A0) + α2Lf(k∗0, e

∗
0, A0) + α3f(k∗0, e

∗
0, A0)

R∗−1

e∗0

= (α1 + α2)Lf(k∗0, e
∗
0, A0) + α3Lf(k∗0, e

∗
0, A0)

1

ε∗0

= Lf(k∗0, e
∗
0, A0) + α3Lf(k∗0, e

∗
0, A0)

1− ε∗0
ε∗0

≤ Lf(k̄0, ē, A0) + α3Lf(k̄0, ē, A0)
1− ε̃
ε̃

< Lk̄1 + Lk̄1
1− ε̃
ε̃

=
Lk̄1

ε̃
,

which proves (A.27) for t = 0.
Moreover, by (A.25),

1

L

L∑
j=1

sj∗0 ≤
1

L

L∑
j=1

(
cj∗0 + sj∗0

)
<

1

L

L∑
j=1

(
(1 + r∗0)sj∗−1 + w∗0

)
≤ k̄1

ε̃
.

Since ε∗1 > 0,
α1ε

∗
1

α3 + α1ε∗1
< 1,

and therefore
1

L

L∑
j=1

sj∗0
α1ε

∗
1

α3 + α1ε∗1
<
k̄1

ε̃
,

which proves (A.28) for t = 0.
It follows from Remark A.2 that

1

L

L∑
j=1

sj∗0
α1ε

∗
1

α3 + α1ε∗1
≤ k∗1.

Using (A.6),
1

L

L∑
j=1

sj∗0 ≤ k∗1 +
α3

α1

k∗1
ε∗1

= k∗1 +
q∗1

1 + r∗1

R∗0
L
.

Thus, (A.29) holds for t = 0.
To obtain inequalities (A.27)–(A.29) for all t ≤ T , it is sufficient to repeat the argument.
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Claim A.3. For each agent j = 1, . . . , L,

cj∗t + sj∗t = (1 + r∗t )s
j∗
t−1 + w∗t , t = 0, 1, . . . , T. (A.31)

Proof. Using (A.27), (A.15) and the fact that sj∗t ≥ 0 for all t = 0, 1, . . . , T , we get

(1 + r∗t )s
j∗
t−1 + w∗t − s

j∗
t <

Lk̄t+1

ε̃
=
c̄t
ε̃
.

Therefore, by the structure of the problem (A.19), for each j = 1, . . . , L,

cj∗t ≥ (1 + r∗t )s
j∗
t−1 + w∗t − s

j∗
t , t = 0, 1, . . . , T.

Combining this inequality with (A.24), we obtain (A.31).

Claim A.4. For each j = 1, . . . , L,

cj∗t+1 ≥ βj(1 + r∗t+1)cj∗t (= if sj∗t > 0), t = 0, 1, . . . , T. (A.32)

Proof. Assume that for some j and t < T ,

cj∗t+1 < βj(1 + r∗t+1)cj∗t .

Then, by the structure of the problem (A.18), sj∗t = Lk̄t+1

ε̃
. By (A.27),

(1 + r∗t )s
j∗
t−1 + w∗t <

Lk̄t+1

ε̃
= sj∗t ,

and hence
(1 + r∗t )s

j∗
t−1 + w∗t − s

j∗
t < 0,

which contradicts (A.24). Thus we have proved that

cj∗t+1 ≥ βj(1 + r∗t+1)cj∗t .

Moreover, if
cj∗t+1 > βj(1 + r∗t+1)cj∗t ,

then by the structure of the problem (A.18), sj∗t = 0.

Claim A.5. For t = 0, 1, . . . , T − 1,

R∗t = (1− ε∗t )R∗t−1. (A.33)
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Proof. Due to the (A.7), (A.23) and the bounds for R in (A.21), for all t = 0, 1, . . . , T −1,
we have

R̃t = (1− ε̄)R̃t−1 ≤ (1− ε∗t )R∗t−1 ≤ (1− ε∗t )R̂−1 < R̂−1.

Now (A.33) follows from the structure of the problem (A.21).

It follows from (A.7), (A.23), the bounds for R in (A.21) and the definition of e∗t that

ẽt ≤ e∗t ≤ ē, t = 0, 1, . . . , T. (A.34)

Claim A.6. For all t = 0, 1, . . . , T ,
k∗t > k̃t, (A.35)

and
1

L

L∑
j=1

sj∗t−1 =
q∗t

1 + r∗t

R∗t−1

L
+ k∗t . (A.36)

Proof. Note that by the choice of k̃0,

k∗0 > k̃0,

and it follows from (A.30) that (A.36) holds for t = 0.
Assume that for some t = 1, 2, . . . T ,

1

L

L∑
j=1

sj∗t−2

α1ε
∗
t−1

α3 + α1ε∗t−1

=

(
q∗t−1

1 + r∗t−1

R∗t−2 + k∗t−1

)
α1ε

∗
t−1

α3 + α1ε∗t−1

= k∗t−1 > k̃t−1,

and
1

L

L∑
j=1

sj∗t−1

α1ε
∗
t

α3 + α1ε∗t
≤
(

q∗t
1 + r∗t

R∗t−1 + k∗t

)
α1ε

∗
t

α3 + α1ε∗t
= k∗t = k̃t.

By (A.31), (A.23), (A.5) and (A.34),

1

L

L∑
j=1

(
cj∗t−1 + sj∗t−1

)
=

1

L

L∑
j=1

(
(1 + r∗t−1)sj∗t−2 + w∗t−1

)
= (1 + r∗t−1)k∗t−1 + q∗t−1

R∗t−2

L
+ w∗t−1 = (1 + r∗t−1)k∗t−1 + w∗t−1 + q∗t−1e

∗
t−1

1

ε∗t−1

> (1 + r∗t−1)k∗t−1 + w∗t−1 + q∗t−1e
∗
t−1 = f(k∗t−1, e

∗
t−1, At−1) > f(k̃t−1, ẽt−1, At−1).
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Hence, due to (A.23),

1

L

L∑
j=1

cj∗t−1 > f(k̃t−1, ẽt−1, At−1)− 1

L

L∑
j=1

sj∗t−1

≥ f(k̃t−1, ẽt−1, At−1)− k̃t −
α3

α1

k̃t
ε∗t
≥ f(k̃t−1, ẽt−1, At−1)− k̃t

(
1 +

α3

α1

1

ε̃

)
.

Therefore, there is j such that

cj∗t−1 > f(k̃t−1, ẽt−1, At−1)− k̃t
(

1 +
α3

α1

1

ε̃

)
> 0. (A.37)

Using (A.17), the bounds for c in (A.19), and taking into account that k̃t = k∗t , we get

cj∗t−1 > f(k̃t−1, ẽt−1, At−1)− k̃t
(

1 +
α3

α1

1

ε̃

)
=

c̄t

βL(1 + r(k̃t, ẽt, At))
≥ c̄t

βj(1 + r(k̃t, e∗t , At))
≥ cj∗t
βj(1 + r∗t )

,

and hence
cj∗t < βj(1 + r∗t )c

j∗
t−1.

It follows from the structure of the problem (A.18) that

sj∗t−1 =
Lk̄t
ε̃
.

By (A.31) and (A.27), we have

cj∗t−1 = (1 + r∗t−1)sj∗t−2 + w∗t−1 − s
j∗
t−1 <

Lk̄t
ε̃
− Lk̄t

ε̃
= 0,

a contradiction of (A.37). This proves (A.35).
Now it follows from (A.28) and (A.35) that

k̃t <
1

L

L∑
j=1

sj∗t−1

α1ε
∗
t

α3 + α1ε∗t
<
k̄t
ε̃
, t = 0, 1, . . . , T.

By the structure of the problem (A.20),

1

L

L∑
j=1

sj∗t−1

α1ε
∗
t

α3 + α1ε∗t
= k∗t , t = 0, 1, . . . , T.
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Therefore, using (A.6), for all t = 0, 1, . . . , T , we obtain

1

L

L∑
j=1

sj∗t−1 = k∗t +
α3

α1

k∗t
ε∗t

= k∗t +
q∗t

1 + r∗t

R∗t−1

L
.

Claim A.7. For all t = 0, 1, . . . , T and for all j = 1, 2, . . . , L,

cj∗t ≥ (1− β1)
(
(1 + r∗t )s

j∗
t−1 + w∗t

)
. (A.38)

Proof. Let us prove (A.38) for t = 0. It is clear that there is 0 ≤ τ ≤ T such that st > 0

for all t < τ and sτ = 0. If τ = 0, then it is sufficient to note that

cj∗0 = (1 + r∗0)sj∗−1 + w∗0 ≥ (1− β1)
(
(1 + r∗0)sj∗−1 + w∗0

)
.

If τ > 0, then, by (A.32),

cj∗1 = βj(1 + r∗1)cj∗0 , . . . , cj∗τ = βτj (1 + r∗1) · · · (1 + r∗τ )c
j∗
0 ,

and, by (A.31),

cj∗0 +
1

1 + r∗1
cj∗1 + . . .+

1

(1 + r∗1) · · · (1 + r∗τ )
cj∗τ

= (1 + r∗0)sj∗−1 + w∗0 +
1

1 + r∗1
w∗1 + . . .+

1

(1 + r∗1) · · · (1 + r∗τ )
w∗τ .

Therefore,

1

1− β1

cj∗0 > cj∗0 + βjc
j∗
0 + . . .+ βτj c

j∗
0

= cj∗0 +
1

1 + r∗1
cj∗1 + . . .+

1

(1 + r∗1) · · · (1 + r∗τ )
cj∗τ

= (1 + r∗0)sj∗−1 + w∗0 +
1

1 + r∗1
w∗1 + . . .+

1

(1 + r∗1) · · · (1 + r∗τ )
w∗τ ≥ (1 + r∗0)sj∗−1 + w∗0,

which proves (A.38) for t = 0. To prove it for t > 0 it is sufficient to repeat the argument.

Claim A.8.

k∗t+1 > α1βL(1− β1)2f(k∗t , e
∗
t , At), t = 0, 1, . . . , T − 1. (A.39)

165



A Existence of a competitive equilibrium in the private property regime

Proof. Note that

α1 + α2 +
α3

ε̃
= α1 + α2 +

1− (α1 + α2)(1− β1)

1− β1

=
1

1− β1

. (A.40)

Due to (A.31), (A.30), (A.4), (A.23), and (A.40), we get for t = 0, 1, . . . , T − 1,

1

L

L∑
j=1

cj∗t ≤

(
(1 + r∗t )

1

L

L∑
j=1

sj∗t−1 + w∗t

)

=

(
q∗t
R∗t−1

L
+ (1 + r∗t )k

∗
t + w∗t

)
=

(
α3

ε∗t
+ α1 + α2

)
f(k∗t , e

∗
t , At)

≤
(α3

ε̃
+ α1 + α2

)
f(k∗t , e

∗
t , At) =

f(k∗t , e
∗
t , At)

1− β1

,

or

f(k∗t , e
∗
t , At) ≥ (1− β1)

1

L

L∑
j=1

cj∗t . (A.41)

By (A.38), (A.30), (A.4), (A.5), and (A.23), we get

1

L

L∑
j=1

cj∗0 ≥ (1−β1)

(
(1 + r∗0)

1

L

L∑
j=1

sj∗−1 + w∗0

)
= (1−β1)

(
q∗0
R∗−1

L
+ (1 + r∗0)k∗0 + w∗0

)
=

(1− β1)

(
α3

ε∗0
+ α1 + α2

)
f(k∗0, e

∗
0, A0) > (1− β1)f(k∗0, e

∗
0, A0),

and therefore, taking into account (A.41) and (A.32),

f(k∗1, e
∗
1, A1) ≥ (1− β1)

1

L

L∑
j=1

cj∗1 ≥ (1− β1)
1

L

L∑
j=1

βj(1 + r∗1)cj∗0

≥ (1− β1)βL(1 + r∗1)
1

L

L∑
j=1

cj∗0 > βL(1− β1)2(1 + r∗1)f(k∗0, e
∗
0, A0).

Repeating the argument, we obtain for t = 0, 1, . . . , T − 1,

f(k∗t+1, e
∗
t+1, At+1) > βL(1− β1)2(1 + r∗t+1)f(k∗t , e

∗
t , At). (A.42)

It follows from (A.5) and (A.42) that

(1 + r∗t+1)k∗t+1

α1

= f(k∗t+1, e
∗
t+1, At+1) > βL(1− β1)2(1 + r∗t+1)f(k∗t , e

∗
t , At),

and hence (A.39) holds.
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Claim A.9. For t = 0, 1, . . . , T − 1,(
e(ε∗t , R

∗
t−1)
)1−α3

At(k∗t )
α1

= α1

e(ε∗t+1, R
∗
t )

k∗t+1

, (A.43)

or, equivalently,
1

q(k∗t , e
∗
t , At)

=
1 + r(k∗t+1, e

∗
t+1, At+1)

q(k∗t+1, e
∗
t+1, At+1)

. (A.44)

Proof. Using (A.6) and the definition of q∗t , it is easily seen that (A.43) is equivalent to
(A.44).
Suppose that for some t = 0, 1, . . . , T − 1 equality (A.43) does not hold. Then either(

e(ε∗t , R
∗
t−1)
)1−α3

At(k∗t )
α1

> α1

e(ε∗t+1, R
∗
t )

k∗t+1

, (A.45)

or (
e(ε∗t , R

∗
t−1)
)1−α3

At(k∗t )
α1

< α1

e(ε∗t+1, R
∗
t )

k∗t+1

. (A.46)

Consider the first case. It follows from the structure of the problem (A.22) that

ε∗t = ε̃ =
α3(1− β1)

1− (α1 + α2)(1− β1)
.

By (A.31),

1

L

L∑
j=1

(
cj∗t + sj∗t

)
= (1 + r∗t )

1

L

L∑
j=1

sj∗t−1 + w∗t , t = 0, 1, . . . , T − 1,

and, using (A.36) and (A.33), we get for t = 0, 1, . . . , T − 1,

1

L

L∑
j=1

cj∗t + k∗t+1 = q∗t
R∗t−1

L
−

q∗t+1

1 + r∗t+1

R∗t
L

+ (1 + r∗t )k
∗
t + w∗t

= (1 + r∗t )k
∗
t + w∗t + q∗t e

∗
t + q∗t

R∗t
L
−

q∗t+1

1 + r∗t+1

R∗t
L

= f(k∗t , e
∗
t , At) +

R∗t
L

(
q∗t −

q∗t+1

1 + r∗t+1

)
.

(A.47)

Using (A.44), it is easily seen that (A.45) is equivalent to

q∗t+1

1 + r∗t+1

> q∗t ,
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and thus from (A.47) we get

f(k∗t , e
∗
t , At) >

1

L

L∑
j=1

cj∗t , t = 0, 1, . . . , T − 1. (A.48)

By (A.48), (A.38), (A.30), (A.4), (A.5), and (A.40), we get

f(k∗t , e
∗
t , At) >

1

L

L∑
j=1

cj∗t ≥ (1− β1)

(
(1 + r∗t )

1

L

L∑
j=1

sj∗t−1 + w∗t

)

= (1− β1)

(
q∗t
R∗t−1

L
+ (1 + r∗t )k

∗
t + w∗t

)
= (1− β1)

(
α3

ε∗t
+ α1 + α2

)
f(k∗t , e

∗
t , At)

= (1− β1)
(α3

ε̃
+ α1 + α2

)
f(k∗t , e

∗
t , At) = (1− β1)

1

1− β1

f(k∗t , e
∗
t , At) = f(k∗t , e

∗
t , At),

a contradiction.
Consider the second case. It follows from the structure of the problem (A.22) that

ε∗t = ε̄. By (A.23),

ε∗t = ε̄ =
1

1 + βL(1− β1)2
≥

ε∗t+1

ε∗t+1 + βL(1− β1)2
,

or
ε∗t+1(1− ε∗t ) ≤ βL(1− β1)2ε∗t .

By (A.33) and the definition of e∗t ,

e∗t+1 ≤ βL(1− β1)2e∗t .

At the same time, it follows from (A.46) that

e∗t+1

e∗t
>

k∗t+1

α1f(k∗t , e
∗
t , At)

.

Hence, by (A.39),
e∗t+1 > βL(1− β1)2e∗t ,

a contradiction.
Thus equality (A.43) holds for all t = 0, 1, . . . , T − 1.

Claims A.3 and A.4 show that condition 1 of Definition A.1 holds. Due to the choice
of e∗t , r∗t , q∗t and w∗t , conditions 2–4 of Definition A.1 are satisfied. Claims A.9, A.5 and
A.6 show that conditions 5, 6 and 7 of Definition A.1 are valid. Thus the proof of Lemma
A.1 is complete.
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Step II. Competitive equilibrium in the infinite horizon model.

Step II.1. A candidate equilibrium path.
Let for T = 1, 2, . . .,

E∗T =
{

(cj∗t (T ))Lj=1, (s
j∗
t (T ))Lj=1, k

∗
t (T ), r∗t (T ), w∗t (T ), q∗t (T ), e∗t (T ), R∗t (T )

}
t=0,1,...,T

be a finite T -period equilibrium path. Let us apply the following procedure to the sequence
{E∗T}T=1,2,....
At the first step of the process we take a cluster point of the sequence

{
(cj∗0 (T ))Lj=1, (s

j∗
0 (T ))Lj=1, k

∗
0(T ), r∗0(T ), w∗0(T ), q∗0(T ), e∗0(T ), R∗0(T )

}
T=1,2,...

,

denote it as {
(cj∗0 )Lj=1, (s

j∗
0 )Lj=1, k

∗
0, r
∗
0, w

∗
0, q
∗
0, e
∗
0, R

∗
0

}
,

and extract a subsequence {T0n}∞n=1 from {T}T=1,2,... such that

{
(cj∗0 (T0n))Lj=1, (s

j∗
0 (T0n))Lj=1, k

∗
0(T0n), r∗0(T0n), w∗0(T0n), q∗0(T0n), e∗0(T0n), R∗0(T0n)

}∞
n=1

converges to
{

(cj∗0 )Lj=1, (s
j∗
0 )Lj=1, k

∗
0, r
∗
0, w

∗
0, q
∗
0, e
∗
0, R

∗
0

}
.

At the second step we take a cluster point of the sequence

{
(cj∗1 (T0n))Lj=1, (s

j∗
1 (T0n))Lj=1, k

∗
1(T0n), r∗1(T0n), w∗1(T0n), q∗1(T0n), e∗1(T0n), R∗1(T0n)

}∞
n=1

,

denote it as {
(cj∗1 )Lj=1, (s

j∗
1 )Lj=1, k

∗
1, r
∗
1, w

∗
1, q
∗
1, e
∗
1, R

∗
1

}
,

and extract a subsequence {T1n}∞n=1 from the sequence {T0n}∞n=1 such that T11 > 1 and

{
(cj∗1 (T1n))Lj=1, (s

j∗
1 (T1n))Lj=1, k

∗
1(T1n), r∗1(T1n), w∗1(T1n), q∗1(T1n), e∗1(T1n), R∗1(T1n)

}∞
n=1

converges to
{

(cj∗1 )Lj=1, (s
j∗
1 )Lj=1, k

∗
1, r
∗
1, w

∗
1, q
∗
1, e
∗
1, R

∗
1

}
. This procedure continues ad infini-

tum.
As a result, we obtain an infinite sequence

E∗∞ =
{

(cj∗t )Lj=1, (s
j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...

. (A.49)

This sequence is a natural candidate to be a competitive equilibrium in our model.

Step II.2. Bounds of the T -period equilibrium capital sequence.
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It follows from Lemma A.1 that in any T -period finite equilibrium ε∗t =
Le∗t
R∗t−1

satisfies
(A.23), and e∗t satisfies (A.34). Moreover, by condition 6 of Definition A.1,

e∗t+1

e∗t
=
ε∗t+1R

∗
t

L

L

ε∗tR
∗
t−1

=
ε∗t+1(1− ε∗t )

ε∗t
,

and hence, for t = 0, 1, . . .,

ε̃(1− ε̄)
ε̄

<
e∗t+1

e∗t
<
ε̄(1− ε̃)

ε̃
. (A.50)

We also know that k∗t , is bounded from below by k̃t. However, we need to establish a
more precise lower bound of the capital sequence in a T -period finite equilibrium.
Let the value 1 + r′ be such that

βL(1 + r′) > 2(1 + ḡ), (A.51)

and k′ be given by
α1A0(ẽ0)α3(k′)α1−1 = 1 + r′. (A.52)

Let further the sequence {k′t} be given by

k′t+1 = (1 + g)k′t, (A.53)

where
0 < k′0 < min{k̂0, k

′}.

Claim A.10. For all t,

(1 + g) <
f(k′t+1, e

∗
t+1, At+1)

f(k′t, e
∗
t , At)

< (1 + ḡ). (A.54)

Proof. By (A.53), (A.8), (A.50), (A.10), and (A.11),

f(k′t+1, e
∗
t+1, At+1)

f(k′t, e
∗
t , At)

=
(k′t+1)α1

(k′t)
α1

At+1

At

(e∗t+1)α3

(e∗t )
α3

>
(
1 + g

)α1 (1 + λ)

(
ε̃(1− ε̄)

ε̄

)α3

≥
(
1 + g

)α1 (1 + g̃)1−α1 > (1 + g).
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Analogously, using (A.53), (A.8), (A.50), (A.9), and (A.11), we have

f(k′t+1, e
∗
t+1, At+1)

f(k′t, e
∗
t , At)

=
(k′t+1)α1

(k′t)
α1

At+1

At

(e∗t+1)α3

(e∗t )
α3

<
(
1 + g

)α1 (1 + λ)

(
ε̄(1− ε̃)

ε̃

)α3

≤ (1 + ḡ)α1 (1 + ḡ)1−α1 = (1 + ḡ).

Claim A.11. For all t = 0, 1, . . . , T ,

1 + r(k′t, e
∗
t , At) > 1 + r′. (A.55)

Proof. It follows from (A.5), (A.53), and (A.54) that

1 + r(k′t, e
∗
t , At) = α1

f(k′t, e
∗
t , At)

k′t
> α1

f(k′t−1, e
∗
t−1, At−1)

k′t−1

= 1 + r(k′t−1, e
∗
t−1, At−1).

Repeating the argument, and using (A.34) along with (A.52), we get

1 + r(k′t, e
∗
t , At) > 1 + r(k′t, e

∗
0, At) ≥ 1 + r(k′0, ẽ0, A0)

> 1 + r(k′, ẽ0, A0) = α1A0(ẽ0)α3(k′)α1−1 = 1 + r′.

Let
w′t+1 = (1 + g)w′t, t = 0, 1, . . . ,

where
w′0 = α2A0(k′0)α1(ẽ0)α3 > 0.

Claim A.12. In any finite T -period competitive equilibrium

{
(cj∗t )Lj=1, (s

j∗
t )Lj=1, k

∗
t , r
∗
t , w

∗
t , q
∗
t , e
∗
t , R

∗
t

}
t=0,1,...,T

,

for t ≤ T − 1,
k∗t > k′t > 0, (A.56)

and
w∗t > w′t > 0.
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Proof. First let us prove (A.56). Assume the converse. Then there is τ > 0 such that
k∗τ > k′τ , and k∗τ+1 ≤ k′τ+1. It follows from (A.3), (A.34), and (A.55), that for all j,

cj∗τ+1 ≥ βj(1 + r∗τ+1)cj∗τ ≥ βL(1 + r∗τ+1)cj∗τ = βL(1 + r(k∗τ+1, e
∗
τ+1, Aτ+1))cj∗τ

≥ βL(1 + r(k′τ+1, e
∗
τ+1, Aτ+1))cj∗τ > βL(1 + r′)cj∗τ .

By (A.51),
cj∗τ+1 > 2(1 + ḡ)cj∗τ . (A.57)

Adding together the budget constraints of all agents at time t in (A.2), and using
conditions 5–7 of Definition A.1, we get

1

L

L∑
j=1

cj∗t + k∗t+1 = (1 + r∗t ) k
∗
t + w∗t = f(k∗t , e

∗
t , At), t = 0, 1, . . . , T. (A.58)

Applying (A.58) for t = τ + 1 and t = τ , and using (A.57), we have

f(k∗τ+1, e
∗
τ+1, Aτ+1)− k∗τ+2 =

1

L

L∑
j=1

cj∗τ+1

> 2(1 + ḡ)
1

L

L∑
j=1

cj∗τ = 2(1 + ḡ)
(
f(k∗τ , e

∗
τ , Aτ )− k∗τ+1

)
.

Hence, by the choice of τ and (A.34),

k∗τ+2 < 2(1 + ḡ)k∗τ+1 + f(k∗τ+1, e
∗
τ+1, Aτ+1)− 2(1 + ḡ)f(k∗τ , e

∗
τ , Aτ )

≤ (1 + ḡ)
(
2k′τ+1 − f(k′τ , e

∗
τ , Aτ )

)
+ f(k′τ+1, e

∗
τ+1, Aτ+1)− (1 + ḡ)f(k′τ , e

∗
τ , Aτ ).

(A.59)

It follows from (A.54) that

f(k′τ+1, e
∗
τ+1, Aτ+1) < (1 + ḡ)f(k′τ , e

∗
τ , Aτ ). (A.60)

Moreover, using (A.55) and (A.51), we get

f(k′τ , e
∗
τ , Aτ )

k′τ
=

1 + r(k′τ , e
∗
τ , Aτ )

α1

>
1 + r′

α1

>
2(1 + ḡ)

α1βL
> 2(1 + ḡ),

and hence, by (A.53) and (A.11), we get

2k′τ+1 = 2(1 + g)k′τ < 2(1 + ḡ)k′τ < f(k′τ , e
∗
τ , Aτ ). (A.61)
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Combining (A.60) and (A.61), we have

(1 + ḡ)
(
2k′τ+1 − f(k′τ , e

∗
τ , Aτ )

)
+ f(k′τ+1, e

∗
τ+1, Aτ+1)− (1 + ḡ)f(k′τ , e

∗
τ , Aτ ) < 0.

Now it follows from (A.59) that k∗τ+2 < 0, which is impossible. Hence τ + 2 > T , and
therefore the inequality (A.56) holds for t ≤ T − 1.
Using (A.56), (A.34), (A.53), (A.8), (A.50), (A.10) and (A.11), we obtain for all t =

0, 1, . . . , T − 1,

w∗t = α2At(k
∗
t )
α1(e∗t )

α3 > α2At(k
′
t)
α1(e∗t )

α3

= α2(1 + λ)tA0(1 + g)tα1(k′0)α1

(
e∗t
e∗0

)α3

(e∗0)α3

> (1 + g)tα1(1 + λ)t
(
ε̃(1− ε̄)

ε̄

)tα3

α2A0(k′0)α1(ẽ0)α3

≥ (1 + g)tα1(1 + g̃)t(1−α1)w′0 > (1 + g)tw′0 = w′t.

Step II.3. Existence of an equilibrium.
Now we are ready to prove the following lemma which maintains that the sequence E∗∞

defined by (A.49) is a competitive equilibrium under given extraction rates in our model.

Lemma A.2. The sequence E∗∞ defined by (A.49) is a competitive equilibrium starting
from I0.

Proof. It is clear that by construction E∗∞ satisfies conditions 2–7 for the competitive
equilibrium in the private property regime. Thus to prove that E∗∞ is a competitive
equilibrium it is sufficient to show that {(cj∗t )Lj=1, (s

j∗
t )Lj=1}∞t=0 is a solution to the problem

(4.8) at rt = r∗t , wt = w∗t , and s
j
−1 =

q∗0
1+r∗0

R̂j
−1 + k̂j0.

Let c′t be such that

c′t =
w′t
2
, t = 0, 1, . . . . (A.62)

It is clear that
c′t+1 = (1 + g)c′t,

and hence

∞∑
t=0

βt ln c′t =
ln c′0
1− β

+ ln(1 + g)
∞∑
t=0

tβt =
ln c′0
1− β

+
β

(1− β)2
ln(1 + g).
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Consider the instantaneous utility function

ut(c) = ln c− ln c′t.

Clearly, the solution to the problem (4.8) will not change if we replace the instantaneous
utility function ln c with the function ut(c). It is also clear that ut(c′t) = 0.
Note that for all t,

c̄t > Lf(k̄t, ē, At) > Lf(k′t, ẽt, At) > c′t,

and hence ut(c̄t) > 0. Moreover, it follows from (A.16) that

∞∑
t=0

βtut(c̄t) =
ln c̄0

1− β
+

β

(1− β)2
ln(1 + ḡ)− ln c′0

1− β
+

β

(1− β)2
ln(1 + g)

=
1

1− β
ln

(
c̄0

c′0

)
+

β

(1− β)2
ln

(
1 + ḡ

1 + g

)
.

Now assume that {(cj∗t )Lj=1, (s
j∗
t )Lj=1}∞t=0 is not a solution to the problem (4.8). Then for

some j (we fix this j and omit it in the remaining part of the proof for the simplicity of
notation) there is a feasible sequence {ĉt, ŝt}∞t=0 such that

Û > U∗, where Û =
∞∑
t=0

βtut(ĉt), and U∗ =
∞∑
t=0

βtut(c
∗
t ).

Let 0 < ∆ < Û − U∗, and let Θ be such that

∞∑
t=Θ+1

βtut(c̄t) < min

{
∆

2
, ln 2

}
.

Further, let

U∗Θ =
Θ∑
t=0

βtut(c
∗
t ), ÛΘ =

Θ∑
t=0

βtut(ĉt),

and

U∗(T ) =
T∑
t=0

βtut(c
∗
t (T )), U∗Θ(T ) =

Θ∑
t=0

βtut(c
∗
t (T )),

for T = Θ + 1,Θ + 2, . . ..

Claim A.13. There is a sequence {TΘn}∞n=1 such that

U∗Θ(TΘn) −−−→
n→∞

U∗Θ.
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Proof. It is sufficient to note that since E∗∞ is obtained as a result of the application of the
process described at Step II.1 to the sequence {E∗T}T=1,2,..., there is a sequence {TΘn}∞n=1

such that for t = 0, 1, . . . ,Θ:

lim
n→∞

k∗t (TΘn) = k∗t , lim
n→∞

r∗t (TΘn) = r∗t , lim
n→∞

w∗t (TΘn) = w∗t ,

lim
n→∞

q∗t (TΘn) = q∗t , lim
n→∞

e∗t (TΘn) = e∗t , lim
n→∞

R∗t (TΘn) = R∗t ,

lim
n→∞

c∗t (TΘn) = c∗t , lim
n→∞

s∗t (TΘn) = s∗t .

Let us formulate a claim that will be useful in what follows.

Statement 1. Suppose that Fr(x, y), r = 1, . . . , R, are continuous and concave in y func-
tions defined on X ×Y , where X and Y are convex compact subsets of finite dimensional
spaces. If there exists ŷ ∈ Y such that Fr(x, ŷ) > 0 for all x ∈ X, r = 1, . . . , R, then the
correspondence

x→
R⋂
r=1

{y ∈ Y | Fr(x, y) ≥ 0}

is upper and lower semi-continuous, and all sets

R⋂
r=1

{y ∈ Y | Fr(x, y) ≥ 0}

are non-empty, convex and closed.

Proof. It is trivial.

Let W ∗Θ be the maximum value of utility in the problem

max
Θ∑
t=0

βtut(ct),

s. t. ct + st ≤ (1 + r∗t ) st−1 + w∗t ,

st ≥ 0, t = 0, 1, . . . ,Θ,

and W ∗Θ(T ) be the maximum value of utility in the problem

max
Θ∑
t=0

βtut(ct),

s. t. ct + st ≤ (1 + r∗t (T )) st−1 + w∗t (T ),

st ≥ 0, t = 0, 1, . . . ,Θ,

(A.63)
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for T = Θ + 1,Θ + 2, . . ..

Claim A.14.
W ∗Θ(TΘn) −−−→

n→∞
W ∗Θ.

Proof. Consider the correspondence that takes to each

{(1 + r0, w0), . . . , (1 + rΘ, wΘ)}

∈
Θ∏
t=0

(
[1 + r(k̄t, ẽt, At), 1 + r(k̃t, ēt, At)]× [w(k̃t, ẽt, At), w(k̄t, ēt, At)]

)
the set

{(c0, s0), . . . , (cΘ, sΘ} ∈ R2(Θ+1)

which is such that, with s−1 = ŝ−1 being given,

ct + st ≤ (1 + r∗t (T )) st−1 + w∗t (T ), and st ≥ 0,

hold for all t = 0, 1, . . . ,Θ.
By Statement 1, this correspondence is lower- and upper-semicontinuous, and it is

sufficient to apply the Maximum Theorem.

Claim A.15.
U∗(T ) ≥ W ∗Θ(T ).

Proof. Let for some T > Θ + 1, the sequence {(c̆0, s̆0), . . . , (c̆Θ, s̆Θ)} be a solution to
(A.63). Let further for t = Θ + 1, . . . , T , {(c̆t, s̆t)} be defined recursively by

c̆t = c′t, s̆t = (1 + r∗t (T )) s̆t−1 + w∗t (T )− c̆t. (A.64)

We show that given s−1 = ŝ−1, the sequence

{(c̆0, s̆0), . . . , (c̆Θ, s̆Θ), (c̆Θ+1, s̆Θ+1), . . . , (c̆T , s̆T )} (A.65)

is feasible for the problem

max
T∑
t=0

βtut(ct),

s. t. ct + st ≤ (1 + r∗t (T )) st−1 + w∗t (T ),

st ≥ 0, t = 0, 1, . . . , T.

(A.66)
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It is sufficient to check that s̆t ≥ 0 for t = Θ + 1, . . . , T . By Claim A.12, we have for
Θ + 1 ≤ t ≤ T − 1,

c̆t = c′t =
w′t
2
< w∗t (T ).

We prove that s̆t > 0 for t = Θ + 1, . . . , T − 1 recursively. Clearly, s̆Θ = 0. Suppose that
s̆t−1 ≥ 0 for Θ + 1 ≤ t < T − 2. Then

s̆t = (1 + r∗t (T )) s̆t−1 + w∗t (T )− c̆t ≥ w∗t (T )− c′t > 0.

In particular, s̆T−2 > 0. For t = T − 1 we have

s̆T−1 =
(
1 + r∗T−1(T )

)
s̆T−2 + w∗T−1(T )− c̆T−1

≥ w∗T−1(T )− c′T−1 > 2c′T−1 − c′T−1 = c′T−1.

For t = T we know from Claim A.12 that either

w∗T (T ) > c′T ,

or
1 + r∗T ≥ 1 + r′.

In the first case, we can apply the same reasoning as before:

s̆T = (1 + r∗T (T )) s̆T−1 + w∗T (T )− c̆T ≥ w∗T (T )− c′T > 0.

In the second case, using (A.51) and (A.11), we have

s̆T = (1 + r∗T (T )) s̆T−1 + w∗T (T )− c̆T > (1 + r′)c′T−1 − c′T

>
2

βL
(1 + ḡ)c′T−1 − c′T > (1 + ḡ)c′T−1 − c′T > (1 + g)c′T−1 − c′T = 0.

Thus we have proved that the sequence (A.65) is feasible for the problem (A.66). Since
the sequence

{(c∗0(T ), s∗0(T )), . . . , (c∗T (T ), s∗T (T ))}

is the solution to this problem, we have

U∗(T ) =
T∑
t=0

βtut(c
∗
t (T )) ≥

Θ∑
t=0

βtut(c̆t) +
T∑

t=Θ+1

βtut(c
′
t) =

Θ∑
t=0

βtut(c̆t) = W ∗Θ(T ).
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Let us prove another useful claim.

Claim A.16. For all t = 0, 1, . . . , T ,

k∗t (T ) ≤ κ̄(At(e
∗
t (T ))α3)

1
1−α1 . (A.67)

Proof. It is sufficient to show that

κ∗t ≤ κ̄, t = 0, 1, . . . , T, (A.68)

where
κ∗t :=

k∗t (T )

(At(e∗t (T ))α3)
1

1−α1

.

By (A.12), (A.10), and (A.34),

κ̄ =
1

(1 + g̃)
1

1−α1

≥ k̂0

(A0ẽ0)α3)
1

1−α1

≥ k̂0

(A0(e∗0(T ))α3)
1

1−α1

= κ∗0,

which proves (A.68) for t = 0. We prove it for t = 1, . . . , T recursively. Suppose that
κ∗t ≤ κ̄. If follows from (A.58) that for all t,

k∗t+1(T ) ≤ f(k∗t (T ), e∗t (T ), At) = (k∗t (T ))α1

(
(At(e

∗
t (T ))α3)

1
1−α1

)1−α1

,

and hence, due to (A.8), (A.50), and (A.10),

(κ∗t )
α1 ≥

k∗t+1(T )

(At(e∗t (T ))α3)
1

1−α1

= κ∗t+1

(At+1(e∗t+1(T ))α3)
1

1−α1

(At(e∗t (T ))α3)
1

1−α1

= κ∗t+1

(
(1 + λ)

(
e∗t+1(T )

e∗t (T )

)α3
) 1

1−α1
> κ∗t+1(1 + λ)

1
1−α1

(
ε̃(1− ε̄)

ε̄

) α3
1−α1
≥ (1 + g̃)κ∗t+1.

Therefore, by (A.12),

κ∗t+1 ≤
(κ∗t )

α1

1 + g̃
≤ (κ̄)α1

1 + g̃
= κ̄.

Thus (A.68) holds for all t = 0, 1, . . . , T .

Denote
1 + r̄ = α1

1

(κ̄)1−α1
.

By (A.12) and the choice of 1 + g,

βL(1 + r̄) = βLα1
(κ̄)α1

κ̄
= βLα1(1 + g̃) = (1 + g), (A.69)
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and hence, by (A.67), for all t = 0, 1, . . . , T , we have

1 + r∗t (T ) = α1
At(e

∗
t (T ))α3

(k∗t (T ))1−α1
≥ α1

At(e
∗
t (T ))α3

(κ̄)1−α1At(e∗t (T ))α3
= α1

1

(κ̄)1−α1
= 1 + r̄. (A.70)

Claim A.17.
U∗ ≥ U∗Θ.

Proof. Let us prove that for any T > Θ + 1,

c∗Θ(T ) ≥ c′Θ. (A.71)

Assume that c∗Θ(T ) < c′Θ. We show that this inequality implies c∗t (T ) < c′t for all t ≤ Θ.
Indeed, if c∗t (T ) < c′t for some t < Θ, then it follows from (A.3), (A.70) and (A.69) that

c∗t (T ) ≥ βj(1 + r∗t (T ))c∗t−1(T ) ≥ βL(1 + r̄)c∗t−1(T ) = (1 + g)c∗t−1(T ), (A.72)

and thus
c∗t−1(T ) ≤ c∗t (T )

1 + g
<

c′t
1 + g

= c′t−1.

Hence
Θ∑
t=0

βtut(c
∗
t (T )) =

Θ∑
t=0

βt (ln c∗t (T )− ln c′t) < 0.

At the same time, by the choice of Θ, we have

T∑
t=Θ+1

βtut(c
∗
t (T )) ≤

T∑
t=Θ+1

βtut(c̄t) ≤
∞∑

t=Θ+1

βtut(c̄t) < ln 2.

Therefore
T∑
t=0

βtut(c
∗
t (T )) =

Θ∑
t=0

βtut(c
∗
t (T )) +

T∑
t=Θ+1

βtut(c
∗
t (T )) < ln 2. (A.73)

Consider the sequence
{(c̆0, s̆0), . . . , (c̆T , s̆T )}, (A.74)

defined as follows: for t ≤ Θ

c̆t = w∗t (T ), s̆t = 0,

and for t = Θ + 1, . . . , T , {(c̆t, s̆t)} is given by (A.64). It follows from Claim A.12 that for
t ≤ Θ,

c̆t = w∗t (T ) > w′t > c′t. (A.75)
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Repeating the argument from the proof of Claim A.15, we obtain that the sequence
(A.74) is feasible for the problem (A.66). At the same time, the sequence

{(c∗0(T ), s∗0(T )), . . . , (c∗T (T ), s∗T (T ))}

is the solution to this problem. Hence, using (A.75), we get

T∑
t=0

βtut(c
∗
t (T )) ≥

T∑
t=0

βtut(c̆t) =
Θ∑
t=0

βtut(w
∗
t (T )) +

T∑
t=Θ+1

βtut(c
′
t)

= u0(w∗0(T )) +
Θ∑
t=1

βtut(c̆t) > u0(w∗0(T )) = lnw∗0(T )− ln c′0

> lnw′0 − ln c′0 = ln

(
w′0
c′0

)
= ln 2,

a contradiction of (A.73).
Thus (A.71) holds, and using the fact that c∗Θ is a limit of the sequence {c∗Θ(TΘn)}∞n=1,

we have
c∗Θ ≥ c′Θ.

It immediately follows from (A.72) that for all Θ + 1 ≤ t ≤ T ,

c∗t (T ) ≥ c′t.

Since every c∗t is a cluster point of the sequence {c∗t (T )}T=1,2,..., we get

c∗t ≥ c′t, t = Θ + 1,Θ + 2, . . . .

It follows that

U∗ − U∗Θ =
∞∑

t=Θ+1

βtut(c
∗
t ) =

∞∑
t=Θ+1

βt (ln c∗t − ln c′t) ≥ 0,

which completes the proof.

Claim A.18.

U∗Θ(T ) > U∗(T )− ∆

2
, T = Θ + 1,Θ + 2, . . . ; (A.76)

W ∗Θ > Û − ∆

2
. (A.77)
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Proof. Clearly, c̄t > c∗t (T ) and c̄t > ĉt for all t. It follows from the choice of Θ that

U∗(T )− U∗Θ(T ) =
T∑
t=0

βtut(c
∗
t (T ))−

Θ∑
t=0

βtut(c
∗
t (T )) =

T∑
t=Θ+1

βtut(c
∗
t (T ))

<

T∑
t=Θ+1

βtut(c̄t) ≤
∞∑

t=Θ+1

βtut(c̄t) <
∆

2
,

which proves (A.76).
Due to the definition of W ∗Θ, we have W ∗Θ ≥ ÛΘ. Now it is easily seen that

W ∗Θ ≥ ÛΘ =
Θ∑
t=0

βtut(ĉt) = Û −
∞∑

t=Θ+1

βtut(ĉt) ≥ Û −
∞∑

t=Θ+1

βtut(c̄t) > Û − ∆

2
,

which proves (A.77).

Now, combining Claims A.13–A.15 and A.17–A.18, we obtain

U∗ ≥ U∗Θ = lim
n→∞

U∗Θ(TΘn) ≥ lim
n→∞

U∗(TΘn)− ∆

2

≥ lim
n→∞

W ∗Θ(TΘn)− ∆

2
= W ∗Θ − ∆

2
> Û −∆,

which contradicts the choice of ∆. This contradiction completes the proof of the lemma.

Thus the proof of Theorem A.1 is finally complete, and there exists a competitive
equilibrium.
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B. Existence of a competitive equilibrium in the public
property regime

The existence of a competitive equilibrium in the general equilibrium Ramsey-type model
with public property over exhaustible natural resources under given non-degenerate ex-
traction rates is established in the following theorem.

Theorem B.1. For any non-degenerate state Iτ−1 there exists a competitive Eτ -equilibrium
starting from Iτ−1.

The proof of Theorem B.1 also follows the ideas presented in Borissov and Dubey (2015)
and is in many respects similar to the proof of Theorem A.1 in Appendix 4.9 However,
for the sake of completeness, we provide below a full proof for Theorem B.1.

Proof. Without loss of generality, let us consider the case τ = 0 and prove the existence
of a competitive E0-equilibrium starting from I−1 = {(ŝj−1)Lj=1, R̂−1}.
The proof is divided into two steps. First we show the existence of a competitive

equilibrium in the finite horizon model. We prove that for any T > 0 there exists a finite
T -period competitive equilibrium under given extraction rates. Second, we construct a
candidate for a competitive equilibrium in the infinite horizon model by applying some
kind of diagonalization procedure to the sequence of finite T -period equilibrium paths,
and then prove that this candidate is indeed a competitive equilibrium in the infinite
horizon model.

Step I. Competitive equilibrium under given extraction rates in the finite
horizon model.
Let us define a finite T -period competitive equilibrium under given extraction rates

along the lines of the above definition. Suppose that I−1 = {(ŝj−1)Lj=1, R̂−1} is a non-
degenerate initial state, E0 = {εt}∞t=0 is a non-degenerate sequence of extraction rates,
and recall that et = et(E0), t = 0, 1, . . . , T .

Definition B.1. A sequence

{
(cj∗∗t )Lj=1, (s

j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...,T

is a finite T -period competitive E0-equilibrium starting from I−1 if
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1. For each j = 1, . . . , L, the sequence {cj∗∗t , sj∗∗t }Tt=0 is a solution to the following utility
maximization problem:

max
T∑
t=0

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + rt) s
j
t−1 + wt + vt, t = 0, 1, . . . , T,

sjt ≥ 0, t = 0, 1, . . . , T,

(B.1)

at rt = r∗∗t , wt = w∗∗t , vt = v∗∗t , and sj−1 = ŝj−1;

2. Aggregate savings are equal to the capital stock:

L∑
j=1

sj∗∗t−1 = Lk∗∗t , t = 0, 1, . . . , T ;

3. Capital is paid its marginal product:

1 + r∗∗t = α1At(k
∗∗
t )α1−1(et)

α3 , t = 0, 1, . . . , T ;

4. Labor is paid its marginal product:

w∗∗t = α2At(k
∗∗
t )α1(et)

α3 , t = 0, 1, . . . , T ;

5. The price of natural resources is equal to the marginal product:

q∗∗t = α3At(k
∗∗
t )α1(et)

α3−1, t = 0, 1, . . . , T ;

6. The resource income is given by:

v∗∗t = q∗∗t et, t = 0, 1, . . . , T.

Clearly, the solution to the problem (B.1), {cj∗∗t , sj∗∗t }Tt=0, satisfies the following condi-
tions:

cj∗∗t + sj∗∗t = (1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t , t = 0, 1, . . . , T, (B.2)

cj∗∗t+1 ≥ βj(1 + r∗∗t+1)cj∗∗t (= if sj∗∗t > 0), t = 0, 1, . . . , T − 1, (B.3)

sj∗∗T = 0,

where sj∗∗−1 = ŝj−1.
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The existence of a competitive equilibrium under given extraction rates in the finite
horizon model is shown via the following steps. First we present some preliminary defini-
tions and results that will be useful in what follows. Second, we reduce our finite horizon
model to a game, and show that there exists a Nash equilibrium in this game. Third,
we prove that a Nash equilibrium in the game that represents our model determines a
competitive equilibrium under given extraction rates in the finite horizon model.

Step I.1. Preliminaries.
We use the notation

f(k, e, A) := Akα1eα3 ,

1 + r(k, e, A) := α1Ak
α1−1eα3 ,

w(k, e, A) := α2Ak
α1eα3 ,

q(k, e, A) := α3Ak
α1eα3−1,

v(k, e, A) := α3Ak
α1eα3 ,

for the output (production function), interest rate, wage rate, resource price and the
resource income as depending on the capital stock k, the volume of extraction e and total
factor productivity A. Clearly,

(1 + r(k, e, A))k + w(k, e, A) + v(k, e, A) = f(k, e, A). (B.4)

Denote

ē =
R̂−1

L
.

Claim B.1. For all t,
ēδt+1 ≤ et ≤ ē, (B.5)

and
δ2

1− δ
<
et+1

et
<

(1− δ)2

δ
. (B.6)

Proof. It follows from (4.41) that for all t > 0,

et =
εtRt−1

L
=
εt(1− εt−1)Rt−2

L
= . . . =

R̂−1

L
εt(1− εt−1) · · · (1− ε0).

Since we require a sequence of extraction rates to be non-degenerate, i.e., δ ≤ εt ≤ 1−δ,
it follows that for all t ≥ 0,

εt ≥ δ, 1− εt ≥ δ. (B.7)
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Hence
et = ēεt(1− εt−1) · · · (1− ε0) ≥ ēδt+1 > 0.

It is also clear that
et ≤ ē,

which proves (B.5).
Moreover, for all t,

et+1

et
=
ēεt+1(1− εt)(1− εt−1) · · · (1− ε0)

ēεt(1− εt−1) · · · (1− ε0)
=
εt+1(1− εt)

εt
.

Using (B.7), we obtain (B.6).

Denote

1 + ḡ = (1 + λ)
1

1−α1

(
(1− δ)2

δ

) α3
1−α1

,

where λ is the growth rate of the total factor productivity:

At = (1 + λ)At−1 = (1 + λ)tA0. (B.8)

Let also

1 + g̃ = min

{
(1 + λ)

1
1−α1

(
δ2

1− δ

) α3
1−α1

,
A0(δē)α3

(k̂0)1−α1

}
,

and
1 + g = βLα1(1 + g̃).

It is clear that

1 + g̃ ≤ (1 + λ)
1

1−α1

(
δ2

1− δ

) α3
1−α1

, (B.9)

and
1 + ḡ > 1 + g̃ > 1 + g. (B.10)

Suppose that κ̄ > 0 is given by

(1 + g̃)κ̄ = (κ̄)α1 , (B.11)

Let the sequence {k̄t} be given by

k̄t+1 = (1 + ḡ)k̄t,

where
k̄0 = κ̄(A0ē

α3)
1

1−α1 .
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We show that
κ̄(Ate

α3
t )

1
1−α1 ≤ k̄t. (B.12)

It follows from (B.8), (B.6), and the choice of k̄0 that

κ̄(Ate
α3
t )

1
1−α1 = κ̄

(
(1 + λ)tA0

(
et
e0

)α3

eα3
0

) 1
1−α1

≤ κ̄

(
(1 + λ)t

(
(1− δ)2

δ

)tα3

A0ē
α3

) 1
1−α1

= κ̄ (A0ē
α3)

1
1−α1 (1 + λ)

t
1−α1

(
(1− δ)2

δ

) tα3
1−α1

= (1 + ḡ)tk̄0 = k̄t.

Furthermore,
f(k̄t, et, At) < k̄t+1. (B.13)

Indeed, by (B.12), (B.11) and (B.10),

f(k̄t, et, At)− k̄t+1 = (k̄t)
α1Ate

α3
t − (1 + ḡ)k̄t

= k̄t

(
Ate

α3
t

(k̄t)1−α1
− (1 + ḡ)

)
≤ k̄t

(
Ate

α3
t

(κ̄)1−α1Ate
α3
t

− (1 + ḡ)

)
= k̄t

(
κ̄α1

κ̄
− (1 + ḡ)

)
= k̄t ((1 + g̃)− (1 + ḡ)) < 0.

Denote
c̄t := Lk̄t+1. (B.14)

Clearly,
c̄t+1 = (1 + ḡ)c̄t. (B.15)

Let the sequence {k̃t}∞t=0 be defined recursively as follows. We take k̃0 such that 0 <

k̃0 < k̂0. Suppose we are given k̃t > 0. Consider the following equation in k:

k +
c̄t+1

βL(1 + r(k, et+1, At+1))
= f(k̃t, et, At).

The left-hand side of the above equation is increasing in k, and equals to 0 when k = 0.
Thus there is a unique positive solution to this equation. We take k̃t+1 > 0 as this solution.
Clearly, the sequence {k̃t}∞t=0 satisfies the following equation:

k̃t+1 +
c̄t+1

βL(1 + r(k̃t+1, et+1, At+1))
= f(k̃t, et, At), t = 0, 1, . . . . (B.16)
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Step I.2. A game.
We reduce our finite horizon model to a game Γ = (Xk, Gk)k∈I . To specify a game, we

need to describe a set of players, I, and for each player k ∈ I, define the strategy set Xk

and the loss function
Gk :

∏
i∈I

Xi → R.

Elements of
∏

i∈I Xi are called multistrategies. The equilibrium of the game Γ is defined
as follows.

Definition. A multistrategy
(
x∗1, . . . , x

∗
|I|

)
is called a Nash equilibrium of the game Γ if

for each k ∈ I, x∗k is a solution to

min
xk

Gk

(
x∗1, . . . , x

∗
k−1, xk, x

∗
k+1, . . . , x

∗
|I|
)
,

s. t. xk ∈ Xk.

The sufficient conditions for the existence of a Nash equilibrium of this game are well-
known (see, e.g., Ichiishi, 2014): for each k ∈ I the set Xk is a convex and compact subset
of a finite dimensional space, and the function Gk(x1, . . . , xk, . . . , x|I|) is continuous in all
variables and quasi-convex in xk.
Let us specify the game ΓT that represents our model. There are T +(2T +1)L players,

and

1. for each j = 1, . . . , L,

a) T players determine sjt , t = 0, 1, . . . , T − 1, by solving

min
s
s
(
cjt+1 − βj(1 + r(kt+1, et+1, At+1))cjt

)
,

s. t. 0 ≤ s ≤ Lk̄t+1.
(B.17)

b) T + 1 players determine cjt , t = 0, 1, . . . , T , by solving

min
c

∣∣c− ((1 + r(kt, et, At))s
j
t−1 + w(kt, et, At) + v(kt, et, At)− sjt

)∣∣ ,
s. t. 0 ≤ c ≤ c̄t,

(B.18)

where sj−1 = ŝj−1, and s
j
T = 0.

2. T players determine kt, t = 1, 2, . . . , T , by solving

min
k

∣∣∣∣∣k − 1

L

L∑
j=1

sjt−1

∣∣∣∣∣ ,
s. t. k̃t ≤ k ≤ k̄t.

(B.19)
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Lemma. There exists a Nash equilibrium in the game ΓT with T + (2T + 1)L players
having the strategy sets and loss functions described by (B.17)–(B.19).

Proof. All strategy sets are closed intervals, and for each player the loss function is con-
tinuous in all variables and quasi-convex in the player’s own strategy variable. Hence
the sufficient conditions for the existence of a Nash equilibrium in the game ΓT are satis-
fied.

Step I.3. Nash equilibrium and competitive equilibrium.
The following lemma maintains that a Nash equilibrium of the game ΓT determines a

finite T -period competitive E0-equilibrium.

Lemma B.1. Let

{
(cj∗∗t )j=1,...,L;t=0,1,...,T , (s

j∗∗
t )j=1,...,L;t=0,1,...,T−1, (k

∗∗
t )t=1,2,...,T

}
be a Nash equilibrium of the game ΓT . Let k∗∗0 = k̂0, and sj∗∗−1 = ŝj−1, s

j∗∗
T = 0 for all j.

Let also

1 + r∗∗t = 1 + r(k∗∗t , et, At), t = 0, 1, . . . , T,

w∗∗t = w(k∗∗t , et, At), t = 0, 1, . . . , T,

q∗∗t = q(k∗∗t , et, At), t = 0, 1, . . . , T,

v∗∗t = v(k∗∗t , et, At), t = 0, 1, . . . , T.

Then {
(cj∗∗t )Lj=1, (s

j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...,T

is a finite T -period competitive E0-equilibrium starting from I−1.

Proof. First, observe that

• if cjt+1 > βj(1 + r(kt+1, et+1, At+1))cjt , then the only solution to the problem (B.17)
is s = 0;

• if cjt+1 = βj(1 + r(kt+1, et+1, At+1))cjt , then any s from the interval [0, Lk̄t+1] is a
solution to the problem (B.17);

• if cjt+1 < βj(1 + r(kt+1, et+1, At+1))cjt , then the only solution to the problem (B.17)
is s = Lk̄t+1.
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Second, notice that minimization problems (B.18) and (B.19) are of the form

min
x
|x− x̂|,

s. t. a1 ≤ x ≤ a2.

The unique solution to this problem, x∗, is given by

x∗ =


a1, if x̂ < a1;

a2, if x̂ > a2;

x̂, if a1 ≤ x̂ ≤ a2.

Remark B.1. When x̂ ≥ a1, we have x̂ ≥ x∗.

Remark B.2. When x̂ ≤ a2, we have x̂ ≤ x∗.

Let
{

(cj∗∗t )j=1,...,L;t=0,1,...,T , (s
j∗∗
t )j=1,...,L;t=0,1,...,T−1, (k

∗∗
t )t=1,2,...,T

}
be a Nash equilibrium

of the game ΓT . Note that for all t = 0, 1, . . . , T , k∗∗t ≥ k̃t > 0. It follows that for all
t = 0, 1, . . . , T , w∗∗t > 0, v∗∗t > 0, and 0 < 1 + r∗∗t <∞.
We divide the proof of Lemma B.1 into several claims.

Claim B.2. For each j = 1, . . . , L,

0 < cj∗∗t ≤ (1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t − s
j∗∗
t , t = 0, 1, . . . , T, (B.20)

and hence

0 < cj∗∗t + sj∗∗t ≤ (1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t , t = 0, 1, . . . , T, (B.21)

Proof. Assume the converse. Then, by the structure of the problem (B.18), there are j
and 0 ≤ τ ≤ T such that (B.20) holds for t < τ , and

0 = cj∗∗τ ≥ (1 + r∗∗τ )sj∗∗τ−1 + w∗∗τ + v∗∗τ − sj∗∗τ . (B.22)

Consider two cases. First, let τ ≤ T − 1. By (B.22),

sj∗∗τ ≥ (1 + r∗∗τ )sj∗∗τ−1 + w∗∗τ + v∗∗τ > 0.

Hence, by the structure of the problem (B.17),

cj∗∗τ+1 ≤ βj(1 + r∗∗τ+1)cj∗∗τ = 0,
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because otherwise we would have sj∗∗τ = 0. Therefore, using Remark B.1, we conclude
that

0 = cj∗∗τ+1 ≥ (1 + r∗∗τ+1)sj∗∗τ + w∗∗τ+1 + v∗∗τ+1 − s
j∗∗
τ+1.

Repeating the argument, and using the structure of the problem (B.17), we have

sj∗∗t > 0, t = τ, τ + 1, . . . , T − 1,

cj∗∗t+1 = 0, t = τ, τ + 1, . . . , T − 1.

However, cj∗∗T = 0 is impossible, because sj∗∗T = 0, and by the structure of the problem
(B.18) we have

0 = cj∗∗T = cj∗∗T + sj∗∗T ≥ (1 + r∗∗T )sj∗∗T−1 + w∗∗T + v∗∗T > 0,

a contradiction.
Second, let τ = T . Since cj∗∗T−1 > 0, and cj∗∗T = 0, we have

cj∗∗T − βj(1 + r∗∗T )cj∗∗T−1 = −βj(1 + r∗∗T )cj∗∗T−1 < 0,

and, by the structure of the problem (B.17), sj∗∗T−1 = Lk̄T . Using the fact that sj∗∗T = 0,
by the structure of the problem (B.18) we obtain

0 = cj∗∗T + sj∗∗T ≥ (1 + r∗∗T )sj∗∗T−1 + w∗∗T + v∗∗T > 0,

a contradiction.

Claim B.3. For each j = 1, . . . , L,

(1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t ≤ Lf(k∗∗t , et, At), t = 0, 1, . . . , T, (B.23)

and
1

L

L∑
j=1

sj∗∗t−1 ≤ k∗∗t , t = 0, 1, . . . , T. (B.24)

Proof. Using (B.21), (B.4), the bounds for k in (B.19), and (B.13), for each j = 1, . . . , L,
we obtain

cj∗∗0 + sj∗∗0 ≤ (1 + r∗∗0 )sj∗∗−1 + w∗∗0 + v∗∗0

≤
L∑
j=1

(
(1 + r∗∗0 )sj∗∗−1 + w∗∗0 + v∗∗0

)
≤ L(1 + r∗∗0 )k∗∗0 + Lw∗∗0 + Lv∗∗0

= Lf(k∗∗0 , e0, A0) ≤ Lf(k̄0, e0, A0) < Lk̄1.
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Hence
1

L

L∑
j=1

sj∗∗0 ≤ 1

L

L∑
j=1

(
cj∗∗0 + sj∗∗0

)
< k̄1,

and, by Remark B.2,
1

L

L∑
j=1

sj∗∗0 ≤ k∗∗1 .

Thus, inequalities (B.23) and (B.24) hold for t = 0. To obtain these inequalities for all
t ≤ T , it is sufficient to repeat the argument.

Claim B.4. For each j = 1, . . . , L,

cj∗∗t + sj∗∗t = (1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t , t = 0, 1, . . . , T. (B.25)

Proof. It follows from the constraints in (B.17) that sj∗∗t ≥ 0 for all t = 0, 1, . . . , T . By
(B.23) and (B.14),

(1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t − s
j∗∗
t < Lk̄t+1 = c̄t.

Therefore, by the structure of the problem (B.18), for each j = 1, . . . , L,

cj∗∗t ≥ (1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t − s
j∗∗
t , t = 0, 1, . . . , T.

Combining this inequality with (B.20), we obtain (B.25).

Claim B.5. For each j = 1, . . . , L,

cj∗∗t+1 ≥ βj(1 + r∗∗t+1)cj∗∗t (= if sj∗∗t > 0), t = 0, 1, . . . , T.

Proof. Assume that for some j and t < T ,

cj∗∗t+1 < βj(1 + r∗∗t+1)cj∗∗t .

Then, by the structure of the problem (B.17), sj∗∗t = Lk̄t+1. It follows from (B.23), the
bounds for k in (B.19), and (B.13) that

(1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t ≤ Lf(k∗∗t , et, At) ≤ Lf(k̄t, et, At) < Lk̄t+1 = sj∗∗t ,

and thus
(1 + r∗∗t )sj∗∗t−1 + w∗∗t + v∗∗t − s

j∗∗
t ≤ 0,

192



B Existence of a competitive equilibrium in the public property regime

which contradicts (B.20). Thus we have proved that

cj∗∗t+1 ≥ βj(1 + r∗∗t+1)cj∗∗t .

It remains to note that if
cj∗∗t+1 > βj(1 + r∗∗t+1)cj∗∗t ,

then by the structure of the problem (B.17), sj∗∗t = 0.

Claim B.6. For all t = 0, 1, . . . , T ,

k∗∗t > k̃t, (B.26)

and
1

L

L∑
j=1

sj∗∗t−1 = k∗∗t . (B.27)

Proof. By the choice of k̃0,
1

L

L∑
j=1

sj∗∗−1 = k∗∗0 > k̃0.

Assume that for some t = 1, 2, . . . T ,

1

L

L∑
j=1

sj∗∗t−2 = k∗∗t−1 > k̃t−1, and
1

L

L∑
j=1

sj∗∗t−1 ≤ k∗∗t = k̃t.

By (B.25),

1

L

L∑
j=1

(
cj∗∗t−1 + sj∗∗t−1

)
=

1

L

L∑
j=1

(
(1 + r∗∗t−1)sj∗∗t−2 + w∗∗t−1 + v∗∗t−1

)
= (1 + r∗∗t−1)k∗∗t−1 + w∗∗t−1 + v∗∗t−1 = f(k∗∗t−1, et−1, At−1) > f(k̃t−1, et−1, At−1).

Hence

1

L

L∑
j=1

cj∗∗t−1 > f(k̃t−1, et−1, At−1)− 1

L

L∑
j=1

sj∗∗t−1 ≥ f(k̃t−1, et−1, At−1)− k̃t.

Therefore, there is j such that

cj∗∗t−1 > f(k̃t−1, et−1, At−1)− k̃t > 0. (B.28)
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Using (B.16), the bounds for c in (B.18), and taking into account that k̃t = k∗∗t , we get

cj∗∗t−1 > f(k̃t−1, et−1, At−1)− k̃t

=
c̄t

βL(1 + r(k̃t, et, At))
≥ c̄t

βj(1 + r(k̃t, et, At))
≥ cj∗∗t
βj(1 + r∗∗t )

,

and hence
cj∗∗t ≤ βj(1 + r∗∗t )cj∗∗t−1.

It follows from the structure of the problem (B.17) that for this j we have sj∗∗t−1 = Lk̄t.
By (B.25), (B.23), the bounds for k in (B.19), and (B.13), we have

cj∗∗t−1 = (1 + r∗∗t−1)sj∗∗t−2 + w∗∗t−1 + v∗∗t−1 − s
j∗∗
t−1

≤ Lf(k∗∗t−1, et−1, At−1)− sj∗∗t−1 ≤ Lf(k̄t−1, et−1, At−1)− Lk̄t < 0,

a contradiction of (B.28). This proves (B.26).
Now (B.27) follows from (B.24), (B.26), and the structure of the problem (B.19).

Claims B.2–B.6 complete the proof of Lemma B.1.

Step II. Competitive equilibrium under given extraction rates in the infinite
horizon model.

Step II.1. A candidate for an equilibrium path.
Let for T = 1, 2, . . .,

E∗∗0,T =
{

(cj∗∗t (T ))Lj=1, (s
j∗∗
t (T ))Lj=1, k

∗∗
t (T ), r∗∗t (T ), w∗∗t (T ), q∗∗t (T ), v∗∗t (T )

}
t=0,1,...,T

be a finite T -period equilibrium path. Let us apply the following procedure to the sequence
{E∗∗0,T}T=1,2,....
At the first step of the process we take a cluster point of the sequence

{
(cj∗∗0 (T ))Lj=1, (s

j∗∗
0 (T ))Lj=1, k

∗∗
0 (T ), r∗∗0 (T ), w∗∗0 (T ), q∗∗0 (T ), v∗∗0 (T )

}
T=1,2,...

,

denote it as {
(cj∗∗0 )Lj=1, (s

j∗∗
0 )Lj=1, k

∗∗
0 , r

∗∗
0 , w

∗∗
0 , q

∗∗
0 , v

∗∗
0

}
,

and extract a subsequence {T0n}∞n=1 from {T}T=1,2,... such that

{
(cj∗∗0 (T0n))Lj=1, (s

j∗∗
0 (T0n))Lj=1, k

∗∗
0 (T0n), r∗∗0 (T0n), w∗∗0 (T0n), q∗∗0 (T0n), v∗∗0 (T0n)

}∞
n=1
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converges to
{

(cj∗∗0 )Lj=1, (s
j∗∗
0 )Lj=1, k

∗∗
0 , r

∗∗
0 , w

∗∗
0 , q

∗∗
0 , v

∗∗
0

}
.

At the second step we take a cluster point of the sequence

{
(cj∗∗1 (T0n))Lj=1, (s

j∗∗
1 (T0n))Lj=1, k

∗∗
1 (T0n), r∗∗1 (T0n), w∗∗1 (T0n), q∗∗1 (T0n), v∗∗1 (T0n)

}∞
n=1

,

denote it as {
(cj∗∗1 )Lj=1, (s

j∗∗
1 )Lj=1, k

∗∗
1 , r

∗∗
1 , w

∗∗
1 , q

∗∗
1 , v

∗∗
1

}
,

and extract a subsequence {T1n}∞n=1 from the sequence {T0n}∞n=1 such that T11 > 1, and

{
(cj∗∗1 (T1n))Lj=1, (s

j∗∗
1 (T1n))Lj=1, k

∗∗
1 (T0n), r∗∗1 (T1n), w∗∗1 (T1n), q∗∗1 (T1n), v∗∗1 (T1n)

}∞
n=1

converges to
{

(cj∗∗1 )Lj=1, (s
j∗∗
1 )Lj=1, k

∗∗
1 , r

∗∗
1 , w

∗∗
1 , q

∗∗
1 , v

∗∗
1

}
. This procedure continues ad in-

finitum.
As a result, we obtain an infinite sequence

E∗∗0,∞ =
{

(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...

. (B.29)

This sequence is a natural candidate for a competitive equilibrium under given extraction
rates in our model.

Step II.2. Bounds of the T -period equilibrium capital sequence.
We already know that every element of the capital sequence for any T -period finite

equilibrium, k∗∗t , is bounded from below by k̃t. However, we need to establish a more pre-
cise estimate for the lower bound of the capital sequence of a T -period finite equilibrium.
Again, we begin with some preliminary definitions.
Let the value 1 + r′ be such that

βL(1 + r′) > 2(1 + ḡ), (B.30)

and k′ be given by
α1(δē)α3A0(k′)α1−1 = 1 + r′. (B.31)

Let further the sequence {k′t} be given by

k′t+1 = (1 + g)k′t, (B.32)

where
0 < k′0 < min{k̂0, k

′}.
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Claim B.7. For all t,

(1 + g) <
f(k′t+1, et+1, At+1)

f(k′t, et, At)
< (1 + ḡ). (B.33)

Proof. By (B.32), (B.8), (B.6), (B.9) and (B.10),

f(k′t+1, et+1, At+1)

f(k′t, et, At)
=

(k′t+1)α1

(k′t)
α1

At+1

At

eα3
t+1

eα3
t

=
(
1 + g

)α1 (1 + λ)
eα3
t+1

eα3
t

>
(
1 + g

)α1 (1 + λ)

(
δ2

1− δ

)α3

≥
(
1 + g

)α1 (1 + g̃)1−α1 > (1 + g).

Analogously, using (B.32), (B.8), (B.10) and (B.6), we have

f(k′t+1, et+1, At+1)

f(k′t, et, At)
=

(k′t+1)α1

(k′t)
α1

At+1

At

eα3
t+1

eα3
t

=
(
1 + g

)α1 (1 + λ)
eα3
t+1

eα3
t

< (1 + ḡ)α1 (1 + λ)
eα3
t+1

eα3
t

< (1 + ḡ)α1 (1 + λ)

(
(1− δ)2

δ

)α3

= (1 + ḡ).

Claim B.8. For all t = 0, 1, . . . , T ,

1 + r(k′t, et, At) > 1 + r′. (B.34)

Proof. It follows from (B.32) and (B.33) that

1 + r(k′t, et, At) = α1Ate
α3
t (k′t)

α1−1

= α1
f(k′t, et, At)

k′t
> α1

f(k′t−1, et−1, At−1)

k′t−1

= 1 + r(k′t−1, et−1, At−1).

Repeating the argument, and using (B.31), we get

1 + r(k′t, et, At) > 1 + r(k′0, e0, A0) > 1 + r(k′, e0, A0)

= α1A0e
α3
0 (k′)α1−1 > α1A0(δē)α3(k′)α1−1 = 1 + r′.

Let

w′t+1 = (1 + g)w′t, t = 0, 1, . . . ,

v′t+1 = (1 + g)v′t, t = 0, 1, . . . ,
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where

w′0 = α2A0(k′0)α1(δē)α3 > 0,

v′0 = α3A0(k′0)α1(δē)α3 > 0.

Claim B.9. In any finite T -period competitive E0-equilibrium{
(cj∗∗t )Lj=1, (s

j∗∗
t )Lj=1, k

∗∗
t , r

∗∗
t , w

∗∗
t , q

∗∗
t , v

∗∗
t

}
t=0,1,...,T

,

for t ≤ T − 1,
k∗∗t > k′t > 0, (B.35)

and

w∗∗t > w′t > 0,

v∗∗t > v′t > 0.

Proof. First let us prove (B.35). Assume the converse. Then there is τ > 0 such that
k∗∗τ > k′τ , and k∗∗τ+1 ≤ k′τ+1. It follows from (B.3) and (B.34), that for all j,

cj∗∗τ+1 ≥ βj(1 + r∗∗τ+1)cj∗∗τ ≥ βL(1 + r∗∗τ+1)cj∗∗τ

= βL(1 + r(k∗∗τ+1, eτ+1, Aτ+1))cj∗∗τ ≥ βL(1 + r(k′τ+1, eτ+1, Aτ+1))cj∗∗τ

> βL(1 + r′)cj∗∗τ .

By (B.30),
cj∗∗τ+1 > 2(1 + ḡ)cj∗∗τ . (B.36)

Adding together the budget constraints of all agents at time t in (B.2), and using
condition 2 in Definition B.1, we get

1

L

L∑
j=1

cj∗∗t + k∗∗t+1 = (1 + r∗∗t ) k∗∗t + w∗∗t + v∗∗t = f(k∗∗t , et, At), t = 0, 1, . . . , T. (B.37)

Applying (B.37) for t = τ + 1 and t = τ , and using (B.36), we have

f(k∗∗τ+1, eτ+1, Aτ+1)− k∗∗τ+2 =
1

L

L∑
j=1

cj∗∗τ+1

> 2(1 + ḡ)
1

L

L∑
j=1

cj∗∗τ = 2(1 + ḡ)
(
f(k∗∗τ , eτ , Aτ )− k∗∗τ+1

)
.
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Hence, by the choice of τ ,

k∗∗τ+2 < 2(1 + ḡ)k∗∗τ+1 + f(k∗∗τ+1, eτ+1, Aτ+1)− 2(1 + ḡ)f(k∗∗τ , eτ , Aτ )

≤ (1 + ḡ)
(
2k′τ+1 − f(k′τ , eτ , Aτ )

)
+ f(k′τ+1, eτ+1, Aτ+1)− (1 + ḡ)f(k′τ , eτ , Aτ ).

(B.38)

It follows from (B.33) that

f(k′τ+1, eτ+1, Aτ+1) < (1 + ḡ)f(k′τ , eτ , Aτ ). (B.39)

Moreover, using (B.34) and (B.30), we get

f(k′τ , eτ , Aτ )

k′τ
=

1 + r(k′τ , eτ , Aτ )

α1

>
1 + r′

α1

>
2(1 + ḡ)

α1βL
> 2(1 + ḡ),

and hence, by (B.32) and (B.10), we get

2k′τ+1 = 2(1 + g)k′τ < 2(1 + ḡ)k′τ < f(k′τ , eτ , Aτ ). (B.40)

Combining (B.39) and (B.40), we have

(1 + ḡ)
(
2k′τ+1 − f(k′τ , eτ , Aτ )

)
+ f(k′τ+1, eτ+1, Aτ+1)− (1 + ḡ)f(k′τ , eτ , Aτ ) < 0.

Now it follows from (B.38) that k∗∗τ+2 < 0, which is impossible. Hence τ + 2 > T , and
therefore the inequality (B.35) holds for t ≤ T − 1.
Using (B.35), (B.8), (B.6), (B.9) and (B.10), we obtain that for all t = 0, 1, . . . , T − 1,

w∗∗t = α2At(k
∗∗
t )α1(et)

α3 > α2At(k
′
t)
α1

(
et
e0

)α3

eα3
0

> α2(1 + λ)tA0(1 + g)tα1(k′0)α1

(
δ2

1− δ

)tα3

(δē)α3

= (1 + g)tα1(1 + λ)t
(

δ2

1− δ

)tα3

α2A0(k′0)α1(δē)α3

≥ (1 + g)tα1(1 + g̃)t(1−α1)w′0 > (1 + g)tw′0 = w′t.

Applying the same argument, it can be easily seen that for t ≤ T − 1,

v∗∗t > v′t > 0.

Step II.3. Existence of an equilibrium.

198



B Existence of a competitive equilibrium in the public property regime

Now we are ready to prove the following lemma which maintains that the sequence E∗∗0,∞

defined by (B.29) is a competitive equilibrium under given extraction rates in our model.

Lemma B.2. The sequence E∗∗0,∞ defined by (B.29) is a competitive E0-equilibrium starting
from I−1.

Proof. It is clear that by construction E∗∗0,∞ satisfies conditions 2–6 for the competitive
equilibrium under given extraction rates in the public property regime. Thus to prove that
E∗∗0,∞ is a competitive E0-equilibrium it is sufficient to show that {(cj∗∗t )Lj=1, (s

j∗∗
t )Lj=1}∞t=0

is a solution to the problem

max
∞∑
t=0

βtj ln cjt ,

s. t. cjt + sjt ≤ (1 + r∗∗t ) sjt−1 + w∗∗t + v∗∗t , t = 0, 1, . . . ,

sjt ≥ 0, t = 0, 1, . . . .

(B.41)

Let c′t be such that

c′t =
1

2
(w′t + v′t), t = 0, 1, . . . . (B.42)

It is clear that
c′t+1 = (1 + g)c′t,

and hence

∞∑
t=0

βt ln c′t =
ln c′0
1− β

+ ln(1 + g)
∞∑
t=0

tβt =
ln c′0
1− β

+
β

(1− β)2
ln(1 + g).

Consider the instantaneous utility function

ut(c) = ln c− ln c′t.

Clearly, the solution to the problem (B.41) will not change if we replace the instantaneous
utility function ln c with the function ut(c). It is also clear that ut(c′t) = 0.
Note that for all t,

c̄t > Lf(k̄t, et, At) > Lf(k′t, et, At) > c′t,
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and hence ut(c̄t) > 0. Moreover, it follows from (B.15) that

∞∑
t=0

βtut(c̄t) =
ln c̄0

1− β
+

β

(1− β)2
ln(1 + ḡ)− ln c′0

1− β
+

β

(1− β)2
ln(1 + g)

=
1

1− β
ln

(
c̄0

c′0

)
+

β

(1− β)2
ln

(
1 + ḡ

1 + g

)
.

Now assume that {(cj∗∗t )Lj=1, (s
j∗∗
t )Lj=1}∞t=0 is not a solution to the problem (B.41). Then

for some j (we fix this j and omit it in the remaining part of the proof for the simplicity
of notation) there is a feasible sequence {ĉt, ŝt}∞t=0 such that

Û > U∗, where Û =
∞∑
t=0

βtut(ĉt), and U∗ =
∞∑
t=0

βtut(c
∗∗
t ).

Let 0 < ∆ < Û − U∗, and let Θ be such that

∞∑
t=Θ+1

βtut(c̄t) < min

{
∆

2
, ln 2

}
.

Further, let

U∗Θ =
Θ∑
t=0

βtut(c
∗∗
t ), ÛΘ =

Θ∑
t=0

βtut(ĉt),

and

U∗(T ) =
T∑
t=0

βtut(c
∗∗
t (T )), U∗Θ(T ) =

Θ∑
t=0

βtut(c
∗∗
t (T )),

for T = Θ + 1,Θ + 2, . . ..

Claim B.10. There is a sequence {TΘn}∞n=1 such that

U∗Θ(TΘn) −−−→
n→∞

U∗Θ.

Proof. It is sufficient to note that since E∗∗0,∞ is obtained as a result of the application
of the process described at Step II.1 to the sequence {E∗∗0,T}T=1,2,..., there is a sequence
{TΘn}∞n=1 such that for t = 0, 1, . . . ,Θ:

lim
n→∞

k∗∗t (TΘn) = k∗∗t , lim
n→∞

w∗∗t (TΘn) = w∗∗t , lim
n→∞

v∗∗t (TΘn) = v∗∗t ,

lim
n→∞

r∗∗t (TΘn) = r∗∗t , lim
n→∞

c∗∗t (TΘn) = c∗∗t , lim
n→∞

s∗∗t (TΘn) = s∗∗t .
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Let W ∗Θ be the maximum value of utility in the problem

max
Θ∑
t=0

βtut(ct),

s. t. ct + st ≤ (1 + r∗∗t ) st−1 + w∗∗t + v∗∗t , t = 0, 1, . . . ,Θ,

st ≥ 0, t = 0, 1, . . . ,Θ,

and W ∗Θ(T ) be the maximum value of utility in the problem

max
Θ∑
t=0

βtut(ct),

s. t. ct + st ≤ (1 + r∗∗t (T )) st−1 + w∗∗t (T ) + v∗∗t (T ),

st ≥ 0, t = 0, 1, . . . ,Θ,

(B.43)

for T = Θ + 1,Θ + 2, . . ..

Claim B.11.
W ∗Θ(TΘn) −−−→

n→∞
W ∗Θ.

Proof. Consider the correspondence that takes to each

{(1 + r0, w0, v0), . . . , (1 + rΘ, wΘ, vΘ)} ∈
Θ∏
t=0

(
[1 + r(k̄t, et, At), 1 + r(k̃t, et, At)]

×[w(k̃t, et, At), w(k̄t, et, At)]× [v(k̃t, et, At), v(k̄t, et, At)]
)

the set
{(c0, s0), . . . , (cΘ, sΘ} ∈ R2(Θ+1)

which is such that, with s−1 = ŝ−1 being given,

ct + st ≤ (1 + r∗∗t (T )) st−1 + w∗∗t (T ) + v∗∗t (T ), and st ≥ 0,

hold for all t = 0, 1, . . . ,Θ.
By Statement 1, this correspondence is lower- and upper-semicontinuous, and it is

sufficient to apply the Maximum Theorem.

Claim B.12.
U∗(T ) ≥ W ∗Θ(T ).
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Proof. Let for some T > Θ + 1, the sequence {(c̆0, s̆0), . . . , (c̆Θ, s̆Θ)} be a solution to
(B.43). Let further for t = Θ + 1, . . . , T , {(c̆t, s̆t)} be defined recursively by

c̆t = c′t, s̆t = (1 + r∗∗t (T )) s̆t−1 + w∗∗t (T ) + v∗∗t (T )− c̆t. (B.44)

We show that given s−1 = ŝ−1, the sequence

{(c̆0, s̆0), . . . , (c̆Θ, s̆Θ), (c̆Θ+1, s̆Θ+1), . . . , (c̆T , s̆T )} (B.45)

is feasible for the problem

max
T∑
t=0

βtut(ct),

s. t. ct + st ≤ (1 + r∗∗t (T )) st−1 + w∗∗t (T ) + v∗∗t (T ),

st ≥ 0, t = 0, 1, . . . , T.

(B.46)

It is sufficient to check that s̆t ≥ 0 for t = Θ + 1, . . . , T . By Claim B.9, we have for
Θ + 1 ≤ t ≤ T − 1,

c̆t = c′t =
1

2
(w′t + v′t) < w∗∗t (T ) + v∗∗t (T ).

We prove that s̆t > 0 for t = Θ + 1, . . . , T − 1 recursively. Clearly, s̆Θ = 0. Suppose that
s̆t−1 ≥ 0 for Θ + 1 ≤ t < T − 2. Then

s̆t = (1 + r∗∗t (T )) s̆t−1 + w∗∗t (T ) + v∗∗t (T )− c̆t ≥ w∗∗t (T ) + v∗∗t (T )− c′t > 0.

In particular, s̆T−2 > 0. For t = T − 1 we have

s̆T−1 =
(
1 + r∗∗T−1(T )

)
s̆T−2 + w∗∗T−1(T ) + v∗∗T−1(T )− c̆T−1

≥ w∗∗T−1(T ) + v∗∗T−1(T )− c′T−1 > 2c′T−1 − c′T−1 = c′T−1.

For t = T we know from Claim B.9 that either

w∗∗T (T ) + v∗∗T (T ) > c′T ,

or
1 + r∗∗T ≥ 1 + r′.

In the first case, we can apply the same reasoning as before:

s̆T = (1 + r∗∗T (T )) s̆T−1 + w∗∗T (T ) + v∗∗T (T )− c̆T ≥ w∗∗T (T ) + v∗∗T (T )− c′T > 0.
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In the second case, using (B.30) and (B.10), we have

s̆T = (1 + r∗∗T (T )) s̆T−1 + w∗∗T (T ) + v∗∗T (T )− c̆T > (1 + r′)c′T−1 − c′T

>
2

βL
(1 + ḡ)c′T−1 − c′T > (1 + ḡ)c′T−1 − c′T > (1 + g)c′T−1 − c′T = 0.

Thus we have proved that the sequence (B.45) is feasible for the problem (B.46). Since
the sequence

{(c∗∗0 (T ), s∗∗0 (T )), . . . , (c∗∗T (T ), s∗∗T (T ))}

is the solution to this problem, we have

U∗(T ) =
T∑
t=0

βtut(c
∗∗
t (T )) ≥

Θ∑
t=0

βtut(c̆t) +
T∑

t=Θ+1

βtut(c
′
t) =

Θ∑
t=0

βtut(c̆t) = W ∗Θ(T ).

Let us prove another useful claim.

Claim B.13. For all t = 0, 1, . . . , T ,

k∗∗t (T ) ≤ κ̄(Ate
α3
t )

1
1−α1 . (B.47)

Proof. It is sufficient to show that

κ∗∗t ≤ κ̄, t = 0, 1, . . . , T, (B.48)

where
κ∗∗t :=

k∗∗t (T )

(Ate
α3
t )

1
1−α1

.

By (B.11), the choice of 1 + g̃, and (B.5),

κ̄ =
1

(1 + g̃)
1

1−α1

≥ k̂0

(A0(δē)α3)
1

1−α1

≥ k̂0

(A0e
α3
0 )

1
1−α1

= κ∗∗0 ,

which proves (B.48) for t = 0. We prove it for t = 1, . . . , T recursively. Suppose that
κ∗∗t ≤ κ̄. If follows from (B.37) that for all t,

k∗∗t+1(T ) ≤ f(k∗∗t (T ), et, At) = (k∗∗t (T ))α1

(
(Ate

α3
t )

1
1−α1

)1−α1

,
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and hence, due to (B.8), (B.6) and (B.9),

(κ∗∗t )α1 ≥
k∗∗t+1(T )

(Ate
α3
t )

1
1−α1

= κ∗∗t+1

(At+1e
α3
t+1)

1
1−α1

(Ate
α3
t )

1
1−α1

= κ∗∗t+1

(
(1 + λ)

(
et+1

et

)α3
) 1

1−α1

> κ∗∗t+1(1 + λ)
1

1−α1

(
δ2

1− δ

) α3
1−α1
≥ (1 + g̃)κ∗∗t+1.

Therefore, by (B.11),

κ∗∗t+1 ≤
(κ∗∗t )α1

1 + g̃
≤ (κ̄)α1

1 + g̃
= κ̄.

Thus (B.48) holds for all t = 0, 1, . . . , T .

Denote
1 + r̄ = α1

1

(κ̄)1−α1
.

By (B.11) and the choice of 1 + g,

βL(1 + r̄) = βLα1
(κ̄)α1

κ̄
= βLα1(1 + g̃) = (1 + g), (B.49)

and hence, by (B.47), for all t = 0, 1, . . . , T , we have

1 + r∗∗t (T ) = α1
Ate

α3
t

(k∗∗t (T ))1−α1
≥ α1

Ate
α3
t

(κ̄)1−α1Ate
α3
t

= α1
1

(κ̄)1−α1
= 1 + r̄. (B.50)

Claim B.14.
U∗ ≥ U∗Θ.

Proof. Let us prove that for any T > Θ + 1,

c∗∗Θ (T ) ≥ c′Θ. (B.51)

Assume that c∗∗Θ (T ) < c′Θ. We show that this inequality implies c∗∗t (T ) < c′t for all
t ≤ Θ. Indeed, if c∗∗t (T ) < c′t for some t < Θ, then it follows from (B.3), (B.50) and
(B.49) that

c∗∗t (T ) ≥ βj(1 + r∗∗t (T ))c∗∗t−1(T ) ≥ βL(1 + r̄)c∗∗t−1(T ) = (1 + g)c∗∗t−1(T ), (B.52)

and thus
c∗∗t−1(T ) ≤ c∗∗t (T )

1 + g
<

c′t
1 + g

= c′t−1.
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Hence
Θ∑
t=0

βtut(c
∗∗
t (T )) =

Θ∑
t=0

βt (ln c∗∗t (T )− ln c′t) < 0.

At the same time, by the choice of Θ, we have

T∑
t=Θ+1

βtut(c
∗∗
t (T )) ≤

T∑
t=Θ+1

βtut(c̄t) ≤
∞∑

t=Θ+1

βtut(c̄t) < ln 2.

Therefore

T∑
t=0

βtut(c
∗∗
t (T )) =

Θ∑
t=0

βtut(c
∗∗
t (T )) +

T∑
t=Θ+1

βtut(c
∗∗
t (T )) < ln 2. (B.53)

Consider the sequence
{(c̆0, s̆0), . . . , (c̆T , s̆T )}, (B.54)

defined as follows: for t ≤ Θ

c̆t = w∗∗t (T ) + v∗∗t (T ), s̆t = 0,

and for t = Θ + 1, . . . , T , {(c̆t, s̆t)} is given by (B.44). It follows from Claim B.9 that for
t ≤ Θ,

w∗∗t (T ) + v∗∗t (T ) > w′t + v′t > c′t. (B.55)

Repeating the argument from the proof of Claim B.12, we obtain that the sequence
(B.54) is feasible for the problem (B.46). At the same time, the sequence

{(c∗∗0 (T ), s∗∗0 (T )), . . . , (c∗∗T (T ), s∗∗T (T ))}

is the solution to this problem. Hence, using (B.55), we get

T∑
t=0

βtut(c
∗∗
t (T )) ≥

T∑
t=0

βtut(c̆t) =
Θ∑
t=0

βtut(w
∗∗
t (T ) + v∗∗t (T )) +

T∑
t=Θ+1

βtut(c
′
t)

= u0(w∗∗0 (T ) + v∗∗0 (T )) +
Θ∑
t=1

βtut(c̆t) > u0(w∗∗0 (T ) + v∗∗0 (T ))

= ln(w∗∗0 (T ) + v∗∗0 (T ))− ln c′0 > ln(w′0 + v′0)− ln c′0 = ln

(
w′0 + v′0
c′0

)
= ln 2,

a contradiction of (B.53).
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Thus (B.51) holds, and using the fact that c∗∗Θ is a limit of the sequence {c∗∗Θ (TΘn)}∞n=1,
we have

c∗∗Θ ≥ c′Θ.

It immediately follows from (B.52) that for all Θ + 1 ≤ t ≤ T ,

c∗∗t (T ) ≥ c′t.

Since every c∗∗t is a cluster point of the sequence {c∗∗t (T )}T=1,2,..., we get

c∗∗t ≥ c′t, t = Θ + 1,Θ + 2, . . . .

It follows that

U∗ − U∗Θ =
∞∑

t=Θ+1

βtut(c
∗∗
t ) =

∞∑
t=Θ+1

βt (ln(c∗∗t )− ln c′t) ≥ 0,

which completes the proof.

Claim B.15.

U∗Θ(T ) > U∗(T )− ∆

2
, T = Θ + 1,Θ + 2, . . . ; (B.56)

W ∗Θ > Û − ∆

2
. (B.57)

Proof. Clearly, c̄t > c∗∗t (T ) and c̄t > ĉt for all t. It follows from the choice of Θ that

U∗(T )− U∗Θ(T ) =
T∑
t=0

βtut(c
∗∗
t (T ))−

Θ∑
t=0

βtut(c
∗∗
t (T )) =

T∑
t=Θ+1

βtut(c
∗∗
t (T ))

≤
T∑

t=Θ+1

βtut(c̄t) ≤
∞∑

t=Θ+1

βtut(c̄t) <
∆

2
,

which proves (B.56).
Due to the definition of W ∗Θ, we have W ∗Θ ≥ ÛΘ. Now it is easily seen that

W ∗Θ ≥ ÛΘ =
Θ∑
t=0

βtut(ĉt) = Û −
∞∑

t=Θ+1

βtut(ĉt) ≥ Û −
∞∑

t=Θ+1

βtut(c̄t) > Û − ∆

2
,

which proves (B.57).
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Now, combining Claims B.10–B.12 and B.14–B.15, we obtain

U∗ ≥ U∗Θ = lim
n→∞

U∗Θ(TΘn) ≥ lim
n→∞

U∗(TΘn)− ∆

2

≥ lim
n→∞

W ∗Θ(TΘn)− ∆

2
= W ∗Θ − ∆

2
> Û −∆,

which contradicts the choice of ∆. This contradiction completes the proof of the lemma.

Thus the proof of Theorem B.1 is finally complete, and there exists a competitive
equilibrium under given extraction rates.
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