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Abstract

Facial image analysis has been an active research area in the past decades,
resulting in a myriad of applications in security, entertainment, human-
computer interaction, efc. Although human-level performance has been
reached or even surpassed by some recent systems on several benchmark
datasets, it can drop dramatically under non-cooperative conditions such
as surveillance scenarios, where the subjects are acquired at a distance with
arbitrary pose, expression and illumination, giving rise to diverse detrimen-
tal effects in the input images, in particular the low spatial resolution.

This thesis proposes to solve the low-resolution (LR) facial analysis problem
with face super-resolution (FSR). In contrast to generic super-resolution
(SR), FSR can leverage prior domain knowledge. The common face configu-
ration can be used to hallucinate high-resolution (HR) output images with
finer details. In order to provide FSR with such semantic guidance, a 3D
representation of the face is adopted, which offers accurate and dense cor-
respondence immune to shape and pose variation of the LR faces. However,
incorporating 3D modeling for FSR is extremely challenging, especially in
light of the ill-posed LR scenario.

To deal with this issue, a workflow coupling automatic localization of 2D
facial feature points and 3D shape reconstruction is developed, leading
to a novel LR fitting pipeline. First of all, the fundamental aspects of the
cascaded shape regression method including the core regression engine, fea-
ture descriptors and fitting strategies are incrementally revisited and evolved
to obtain state-of-the-art landmarking precision and robustness against
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image quality degradation. The following dense shape reconstruction mod-
ule addresses the discrepancy of correspondences between detected 2D
points and annotated 3D vertices on the face model with an adaptive fit-
ting scheme. The nonlinear Levenberg-Marquardt Iterative Closest Point
(LM-ICP) algorithm with Distance Transform (DT) is employed to relax
the unfavorable fixed mapping assumption on the facial contour, which
achieves superior and stable shape recovery across pose.

In order to exploit the obtained 3D shape and pose for FSR, a resolution-
aware approach for registering the training 3D faces with the LR input is
designed to avoid warping the LR face. To facilitate hallucination of the
3D facial texture, the widespread LR image formation process from HR
images is first reformulated for the 3D face mesh using an intuitive and
straightforward interpolation procedure. On the basis of this interpretation,
the classic Lucas-Kanade algorithm is extended to the case of 3D deformable
models to rectify the imperfect landmark-based face modeling on LR images
in a posterior fashion. In this way, the final patch-wise SR stage is able to
produce a HR facial texture robust to intrinsic and extrinsic sources of
variation, and to faithfully synthesize the self-occluded half of the face for
non-frontal poses.

Moreover, a novel Real-FSR dataset, which contains both LR and HR pairs
acquired with a special dual-camera imaging system, is collected to study
the genuine image characteristics related to SR. Further experiments on
other publicly available datasets reveal the capabilities of the presented
3D FSR framework regarding high-quality SR for in-the-wild faces with an
interocular distance (IOD) of as few as five pixels. Finally, the frontalized
HR texture is also verified to help boost the performance of cross-pose face
recognition (FR).

ii



Zusammenfassung

Die Analyse von Gesichtsbildern ist in den vergangenen Jahrzehnten ein
aktives Forschungsgebiet geworden, was zu einer Vielzahl von Anwendun-
gen im Sicherheitsbereich, der Unterhaltung oder der Mensch—-Computer—
Interaktion fiihrt. Obwohl auf manchen Datensétzen die menschliche Leis-
tung von einigen neueren Systemen erreicht oder sogar tibertroffen wird,
kann diese unter nicht kooperativen Bedingungen wie in Uberwachungs-
szenarien deutlich fallen. Die Ursache hierfiir sind Gesichter mit beliebigen
Kopfposen, Gesichtsausdriicken und Lichtbedingungen, welche zudem aus
der Ferne aufgenommen sind. Die daraus resultierenden Storfaktoren in den
Eingangsbildern, insbesondere die geringe Auflosung, wirken sich nachteilig
fiir die vorhandenen Ansitze der Gesichtsanalyse aus.

Diese Arbeit versucht, diese Problematik mittels Gesichtssuperresolution
(GSR) zu losen. Im Gegensatz zur allgemeinen Superresolution (SR) kann die
GSR Vorkenntnisse aufgrund der Einschrankung auf Gesichter nutzen, so
dass hochaufgeldste Gesichter mit feineren Details erzeugt werden kdonnen.
Um der GSR solche semantische Information zur Verfiigung zu stellen, wird
ein 3D-Modell des Gesichts verwendet, das eine dichte Korrespondenz und
Bestiandigkeit gegen Gestalt- und Posenvariation der niedrigaufgelosten
Gesichter bietet. Allerdings ist die Integration von 3D-Modellierung in die
GSR extrem anspruchsvoll, vor allem angesichts der mangelnden Auflésung.

Um diese Schwierigkeit zu bewdltigen, wird eine neuartige Verarbeitungs-
kette bestehend aus einer automatischen Detektion von 2D-Merkmals-
punkten und einer 3D-Modellrekonstruktion speziell fiir niedrigaufgeloste

iii



Zusammenfassung

Gesichter entwickelt. Zunichst werden die grundlegenden Aspekte des kas-
kadierten Regressionsverfahrens zur Landmarkenlokalisierung, d. h. der
Kernalgorithmus fiir die Regression, die Merkmalsdeskriptoren und die
Anpassungsstrategien verbessert, um eine sehr hohe Prézision und Robust-
heit gegentiber geringer Bildqualitdt zu erhalten. Das folgende Modul fiir die
dichte 3D-Modellrekonstruktion adressiert die Abweichung der Korrespon-
denz zwischen detektierten 2D-Punkten und annotierten 3D-Eckknoten
auf dem Gesichtsmodell mit einem adaptiven Anpassungsschema, das
den nichtlinearen Levenberg-Marquardt Iterative Closest Point (LM-ICP)
Algorithmus zusammen mit der Distanztransformation (DT) einsetzt, um
die ungiinstige Annahme der festen Zuordnung auf der Gesichtskontur zu
lockern. Damit werden bessere und stabile Rekonstruktionsergebnisse iiber
verschiedene Kopfposen von bis zu +45° erzielt.

Anschliefend wird ein auflésungsadaptiver Ansatz fiir die Registrierung der
3D-Trainingsgesichter mit dem Eingangsbild entworfen, um Detailverluste
durch Verzerrungen des niedrigaufgeldsten Gesichts zu vermeiden. Zur SR
der 3D-Gesichtstextur wird das Bildentstehungsmodell niedrigaufgelster
Bilder auf das 3D-Gesichtsmodell mittels einfacher Interpolation ermog-
licht. Der klassische Lucas—Kanade Algorithmus wird dann anhand dieser
Formulierung auf den Fall der 3D-deformierbaren Modelle erweitert und
die grobe landmarkenbasierte 3D-Anpassung ldsst sich dadurch nachtréag-
lich verfeinern. Auf diese Weise kann eine realistische Gesichtstextur, auch
in der abgewandten Gesichtshilfte fiir nicht frontale Posen, in der letzten
3D-GSR Phase synthetisiert werden.

Zur Untersuchung tatsidchlicher SR-Bildeigenschaften entstand dariiber
hinaus im Rahmen dieser Arbeit ein neuer Datensatz, in dem niedrig- und
hochaufgel6ste Bildpaare mit einem Zwei-Kamera-System gleichzeitig auf-
genommen werden. Durch weitere Evaluation auf mehreren 6ffentlichen
Datensitzen ist es klar ersichtlich, dass das vorgestellte 3D-GSR Verfah-
ren hochwertige SR-Ergebnisse fiir Gesichter mit einem Augenabstand ab
finf Pixeln erzeugt. AbschlieBend kann gezeigt werden, dass die synthe-
tisierte Gesichtstextur durch eine Posennormalisierung die Leistung der
poseniibergreifenden Gesichtswiedererkennung steigert.

iv
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1 Introduction

1.1 Motivation

Face data compare favorably to other kinds of biometrics like fingerprint
and iris due to its convenience and non-intrusive nature of collection. Less
than two centuries after the oldest known portrait photograph of Robert
Cornelius was taken by himself (a.k.a. selfie, see Figure 1.1), acquiring
images of oneself or somebody else has never been as simple as it is today
thanks to the rapid development of digital imaging technologies in the past
few decades. As an example, for the case of photo or video selfies alone, a
total of 24 billion of those were uploaded to Google Photos in the first 12
months since its launch in May 2015'. The ubiquitous access to the “Big
Bang” of data has not only benefited our daily life in the “Informatization”?
era, but also greatly pushed forward machine learning research, where suffi-
cient training data is of paramount importance. To this end, a number of
large-scale datasets [Hua08, Kem16, Ng14, Wol11] have been built upon a
tremendous amount of uncontrolled face data on the Internet.

The analysis of such data has attracted broad interest from the computer
vision society ever since the pioneering PhD thesis of Prof. Takeo Kanade
[Kan73]. With the aid of mass data from unconstrained environments,

1 https://blog.google/products/photos/google-photos—one-year-200-
million/
2 https://en.wikipedia.org/wiki/Informatization
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several confounding factors such as pose, expression, occlusion and lighting
are extensively studied, leading to recent advances in many facial analysis
tasks to close the gap to human-level performance, e.g., in face recognition
(FR) [Tail4] and facial landmark detection [Fan16], as well as a dramatic
boost of applications in multimedia [Bdu13], entertainment [Thil6], human-
computer interaction [vAgr08], etc.

Nowadays, analysis of face images acquired by
Closed-Circuit Televisions (CCTVs) has become
ever more prevalent in the context of security
and counter terrorism. Despite the high pub-
lic concern regarding invasion of privacy, a vast
increase of surveillance CCTVs has been esti-
mated. For instance, around five million surveil-
lance cameras had been installed in the United
Kingdom by 2013, or equivalently one for every
11 people?. In the year 2016 alone, more than
800,000 new camera systems were expected to
be put into operation in Germany, with a total of
Figure 1.1: The oldest known 5.2 mijllion by the end of the year®. The deployed
(1;22_:3};701:;?; tpélo Ort;:eltlil:fn ™ CCTVs so far have been shown to be an invalu-

able source of information for law enforcement
agencies, as 95% of Scotland Yard murder cases
used CCTV footage as evidence in 2009°.

On the other hand, where the amount of video footage quickly exceeds the
capacities of the prosecution authorities, automatic video analysis tech-
niques, e.g., FR*, can play a critical role to assist the traditional surveillance
systems with human operators in front of large video walls of monitors.
However, one pitfall that prevents most existing facial analysis algorithms
from successful incorporation into this practical setup is the low quality
and resolution of the captured images. In spite of the deployment of new

—

https://publicdomainreview.org/collections/robert-cornelius-self-
portrait-the-first-ever-selfie-1839/
http://www.telegraph.co.uk/technology/10172298/0ne-surveillance-
camera-for-every-11l-people-in-Britain-says-CCTV-survey.html
http://www.professionalsecurity.co.uk/products/cctv/german-
surveillance-camera-market/

https://www.perpetuallineup.org/
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hardware like Full HD or even 4K cameras, this problem still cannot be
entirely circumvented, because wide-angle lenses are common choices for
surveillance purposes in order for the coverage area to be as large as possible.
As a consequence, the imaged faces often occupy a very small region, e.g.,
with a resolution of under 10 pixels in width from a Full HD camera cover-
ing 20 m wide area [Whell]. Moreover, limited hardware and acquisition
conditions can also give rise to other deteriorations like interlacing, noise,
sensor and motion blur, etc.

To address the negative impacts as a result of the surveillance scenario,
especially the low-resolution (LR) problem, a sizable body of efforts has been
made for individual facial analysis applications, e.g., recognition [Hen08]
and expression analysis [Khal3]. In contrast, this thesis focuses on restoring
the high-resolution (HR) facial information that is lost during the LR imaging
process, with the goal that the existing algorithms can be utilized without
further adaptation. In particular, given a LR face image, the objective is to
generate a HR version with enhanced details of the target person. Typically,
such an image magnification task is realized with super-resolution (SR). In
the special case of faces though, the domain-specific face super-resolution
(FSR) approach is a natural choice compared to generic SR by virtue of the
exploitation of common facial features. Even with as few as a single input
image, learning-based FSR can take advantage of the external training data
to synthesize the non-existing high-frequency information in the LR face,
hence also called face hallucination (FH) in the literature [Bak02]. This
property is sometimes essential in practice, e.g., in a manhunt, as often no
usable frames with well-illuminated, blurring-free and non-occluded face
of the suspect can be extracted from the footage, due to the unconstrained
nature of video surveillance. Thus, FSR gives a sound solution for both
automatic face matching in the database and better human recognizability
for the authority and the public.

In order to leverage learning-based FSR, one needs to couple a number of
submodules, e.g., alignment, subspace mapping and artifact suppression.
While conventional 2D systems concentrate on improvements over variants
of the subtasks, the presented framework attempts to explore a novel 3D
workflow to solve the entire FSR problem, which can not only provide accu-
rate fitting of the complex facial geometry for aligning training and test data,
but also facilitate direct 3D texture SR. The latter allows for 3D frontalization
of the SR faces to compensate for head rotation, which is proved crucial for
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FR across pose [Bla03, Zhul6b]. Therefore, this appealing feature conveys
the ultimate goal of this thesis: generating a 3D face with pose-normalized
HR texture from a single non-frontal LR surveillance image.

1.2 Challenges

SR is an ill-posed inverse procedure to infer missing high-frequency infor-
mation lost in the image degradation process. On the other hand, fitting
3D face models to 2D images is also a very sophisticated optimization prob-
lem [RomO05]. Hence, one can expect that incorporating these two tasks
into a 3D FSR engine would pose an even bigger challenge. Furthermore,
the subject being captured can unintentionally or sometimes intentionally
behave in such a way that the performance of the system may be severely
impaired. In this section, various sources of these factors for the FSR routine
are discussed.

1. Image quality

* Resolution originates from the discrete sampling of the contin-
uous signal of the real-world objects acquired by the camera.
It is a measure of how much spatial information there is avail-
able for digital image processing. Faces of low image resolution
usually lack descriptive facial features, which are critical for the
preprocessing modules of 3D FSR, namely face detection [Hul7],
alignment [Her15] and 3D fitting [Hu12].

e Blurring can have different causes, including low spatial reso-
lution of the optics, out of focus, as well as object motion or
camera shake with long integration time at low illumination lev-
els. Blurring reduces contrast, sharpness and most importantly,
the amount of details in images.

¢ Noise is the undesired random deviation from the real pixel val-
ues produced during image acquisition. Noise is a common phe-
nomenon in surveillance footage taken under low-light indoor
condition with increased camera gain, which also becomes more
prominent in the context of LR images than for HR data.

2. Face variation

¢ Pose is one of the dominant extrinsic factors that can dramati-
cally alter the appearance of a 3D object in 2D images. Variation
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in the camera view angles relative to the subject leads to differ-
ent projections on the 2D image plane, causing the apparent
size and spatial distribution of facial components to vary. In
addition, the visibility of certain parts of the face may change
considerably w.r.t. the pose.

* Expression conveys the internal emotional state or intention in
social interaction, which also has a major impact on the facial
appearance. Depending on the type and intensity of the expres-
sion, facial components may alter shape, move location or even
become invisible, further aggravating the complexity of dense
face alignment for 3D FSR.

e Illumination has a direct bearing on the quality of the captured
images. Blurring and imaging noise are mostly prevalent in low-
light environment. On account of the complicated 3D geometry
of faces, strong directional light can cast shadows or create spec-
ular highlights on the face, resulting in inaccurate registration
and suboptimal texture SR.

* Occlusion occurs when objects are located on the line of projec-
tion in front of the face. Apart from self-occlusion of face parts
at non-frontal poses, accessories, such as glasses or hats, and
external sources may partially occlude the camera view, which
can cause areas of abrupt changes to the faces in images that
cannot be correctly modeled.

e Style is referred to as beard, mustache or makeup that substan-
tially increases the variation of facial appearance. Unlike exter-
nal objects in the case of occlusion, facial style can still be dealt
with by statistical models for face registration [Bla99, Co098],
however, at the expense of robustness.

Besides the main challenging aspects summarized above, image or video
artifacts such as interlacing and ringing or blocking effects in consequence
of image compression [Gon07], aging effects like wrinkles and double chin
owing to overweight [Cas09] may adversely affect the FSR routine as a whole
or in part as well.

Typical samples related to low image quality and large face variation are
illustrated in Figure 1.2, which originate from a collection of several popular
in-the-wild face datasets [Sagl3a]. Although each image is entitled with a
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single specific challenge, a combination of multiple detrimental effects can
be observed in most examples. Figure 1.2a demonstrates a LR face with
approximately 20 pixels in width, which is not yet an extremely LR scenario.
Nevertheless, the eyes are composed of merely a few dark pixels so that,
e.g., the lash, eyelids, and pupils are barely recognizable, which renders
the localization of fiducial facial landmarks and synthesis of plausible and
natural HR texture a tough task, while a similar situation is drawn by the
out-of-focus blur and shadow in the area around the eyes in Figure 1.2b. In
other cases, like the non-frontal head pose, the occluding space helmet and
the thick beard in Figures 1.2d, 1.2g and 1.2h, correspondence ambiguity
on the 3D model remains an open question. In-plane rotation with the
unseen half of the face due to out-of-plane rotation, and the unmodeled
external object in addition to the intrinsic appearance variation give rise to
severe degradation. Thus eventually, these combined factors can make the
images in Figure 1.2 more challenging in contrast to the first portrait photo
in Figure 1.1 taken more than one hundred years ago.

(e (¢9) ® ()

Figure 1.2: Example face images with different kinds of challenges: (a) resolution, (b) blurring,
(c) noise, (d) pose, (e) expression, (f) illumination, (g) occlusion, (h) facial style [Sagl3a].
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Among the aforementioned challenges, some appear to do more dam-
ages than others, especially resolution and pose in the respective cate-
gories, which are also the primary focus of the presented 3D FSR framework,
whereas the rest is not left unaddressed. For blurring, its mathematical
model—the blurring kernel, is explicitly defined in the standard observation
model of SR [Par03, Yan10a]. Although this means that a known kernel is
a prerequisite for SR [Mic13], class-specific deblurring methods for face
images, e.g., [Anw15], can offer a reliable estimate of it. The remaining chal-
lenges of FSR have likewise a close connection to the uncontrolled settings
as well. Therefore, robust landmark-based 3D fitting [Qu15d] in conjunc-
tion with HR 3D facial texture recovery based on local patches [Qu17] rather
than the conventional holistic procedure [Bla99] as in [Mor09, Sch15] is
exploited, since it tends to struggle with in-the-wild scenarios [Hul5, p. 86].
The proposed FSR work can instead leverage face data with richer variation
[Gro10] within locally independent patch subspaces to cope with extreme
illumination and facial styles. Even artifacts for non-neutral expressions can
thereby be ameliorated to a certain extent. At the same time, noise is also
implicitly mitigated thanks to the averaging effect of neighboring patches
[Mal0]. Note that expression and occlusion are not explicitly handled in
this thesis. Integrating extra expression variation into a bilinear face model
[Caol4a] and employing an occlusion-aware sparse landmarking [Bur13] or
dense fitting [Egg16] scheme usually suffice to bypass these problems.

1.3 Contributions

This thesis aims to design a performant 3D FSR system with a complete pro-
cessing chain consisting of submodules for 2D facial landmark localization,
3D face shape fitting and 3D facial texture SR. The work presented in this
thesis makes the following contributions to the field of LR facial analysis:

* A comprehensive review and critical analysis of the current approaches
that straddle the boundary of general and LR face alignment, model-
ing and SR are conducted.

¢ As opposed to the synthetically generated LR data widely applied so
far in the SR community, a novel FSR dataset with ground truth HR
and LR image pairs is collected with a dual-camera hardware setup in
combination with accurate HR-LR image registration, which is made
publicly accessible to researchers [Qu16].
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¢ The cascaded regression algorithm for sparse facial landmark detec-
tion is revisited and several core components w.r.t. the regression
method, local image feature and fitting strategies are explored, which
achieves top localization accuracy and low failure rate in the presence
of various nuisances as a result of unconstrained LR images [Qul5c].

¢ While analyzing the fundamental issue of inconsistent correspon-
dence of 2D and 3D landmarks caused by head pose for the landmark-
based 3D face shape reconstruction approach, a new problem of local-
ization ambiguity along the facial contour is identified for the first
time, and subsequently addressed jointly by a novel dynamic online
mapping algorithm [Qu14, Qul5d]. This leads to an automatic, effi-
cient, robust and illumination-invariant alternative to the traditional
fitting method.

e The proposed 3D FSR framework is the first ever attempt that inte-
grates the standard LR image formation model into a 3D patch-based
facial texture SR method. With a LR-friendly fitting strategy [Qu15b],
a 3D extension of the Lucas—Kanade registration algorithm combined
with a statistical morphable model is exploited to improve fitting and
FSR onill-posed LR images. Moreover, patch-based FSR carried out
directly on the 3D face mesh is able to handle wide face variation and
filling the self-occluded facial texture because of non-frontal head
pose [Qul7].

¢ Extensive evaluation on several publicly available datasets demon-
strates superior FSR performance in both effectiveness and efficiency
over state-of-the-art approaches and remarkable improvement in FR
as an application of FSR. Furthermore, this is also the first 3D FSR
method capable of processing in-the-wild LR images.

1.4 Thesis Qutline

This thesis is organized as follows:

Chapter 2: Related Work This study begins with an extensive survey
of the existing literature within the scope of this thesis, i.e., methods for
landmark detection, 3D face reconstruction and SR. For the sake of clar-
ity, the chapter is divided into separate sections related to the respective
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components. Current approaches covering one or multiple submodules are
introduced and their advantages and the potential room for enhancement
are reviewed.

Chapter 3: Concept This chapter depicts the design concept and choices
behind the proposed 3D FSR processing chain. Crucial differences to other
systems are discussed to briefly outline the theoretical merits of the pre-
sented workflow.

Chapter 4: Facial Landmark Detection Chapter 4 details the first mod-
ule of this work, which localizes 2D fiducial facial feature points given a face
image. Key improvements on the components of the cascaded regression
algorithm are made incrementally to present the process of building a more
robust landmark detector.

Chapter 5: 3D Face Reconstruction From Sparse Landmarks In this
chapter, the theoretical knowledge of 3D face modeling, which is used
throughout this thesis, and its practical adaptation for landmark-based 3D
face shape reconstruction are described first. Next, after introducing the
crux of the current problem in the facial contour landmarks, a novel adaptive
correspondence algorithm is proposed to alleviate the drifting landmarks.

Chapter 6: 3D Patch-Based Facial Texture Super-Resolution Given
the previously recovered 3D face shape, a resolution-aware 3D-assisted FSR
method across pose is devised first. On the basis of this approach, a pure
3D algorithm for direct facial texture SR on the mesh is detailed, which is
composed of a complete LR imaging model, an extra enhancement stage
to circumvent the ill-posed 3D fitting problem and a local patch-based 3D
texture SR approach.

Chapter 7: Experiments In the first part of Chapter 7, the newly col-
lected FSR dataset containing ground truth HR and LR image pairs and its
hardware and algorithmic implementation are described. Then, qualitative
and quantitative performance is systematically evaluated in the context of
the separate preprocessing submodules as well as the 3D FSR framework.
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Different aspects for the robustness analysis are taken into account and an
example application for LR FR is given.

Chapter 8: Concluding Remarks Finally, outcomes of this work are
summarized with directions for future research.

10
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An overview of the existing work that covers the relevant modules of this
thesis is given in this chapter. The goal is to exploit 3D information for
learning-based FSR. Therefore, the preprocessing stages like alignment and
reconstruction for faces in the presence of various challenging aspects play
as crucial a role as the actual SR engine. In this sense, the chapter is broken
down into three sections, i.e., facial landmark detection in Section 2.1 and
3D face reconstruction in Section 2.2 prior to the main SR part in Section 2.3.
Note that for lack of dedicated algorithms for the LR scenario, the majority of
the preprocessing work introduced here is originally designed for standard
face data, which may most probably suffer a decline in performance when
applied to LR images. This will also be discussed at the end of the sections.

2.1 Facial Landmark Detection

The fiducial facial landmarks convey semantic information of faces. Facial
landmark localization, a.k.a. face alignment, aims to detect these anchor
points usually located at facial features that have descriptive meaning, e.g.,
eyes, nose, mouth and chin. The sharp edges and corners near the feature
points are leveraged to approach the true landmark location.

Reliable landmark detection algorithms are of vital importance for a num-
ber of facial analysis routines. As an example, face alignment is named
after the traditional face recognition pipeline, i.e., face detection, landmark
localization, and eventually, image registration with linear or nonlinear

11
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transforms to obtain normalized faces for recognition [Gao09]. Similarly,
robust landmark detection can benefit a wide spectrum of other researches
and applications within the context of human faces, such as realistic face
swapping for animation [Gar14], deformable face tracking [Chr17], head
pose estimation [Mur09] or facial expression classification [Mar16], to name
a few, all of which require accurate correspondence of the non-rigid facial
structure across different images or video frames. Clearly, it is no exception
for FSR as well [Wan14b].

After decades of active research, automatic facial landmark detection has
developed into one of the spotlight topics in the facial analysis community
and reached recently a high level of maturity. In spite of a plethora of diverse
approaches to the problem so far, the most popular methods can be catego-
rized into a few classes, i.e., deformable appearance models, constrained
shape models and shape regression. Other classification schemes, like the
ones in [Jin16, Wanl4a], are also found in the literature.

2.1.1 Deformable Appearance Models

Faces convey many pieces of intrinsic and extrinsic variations like shape,
skin color, expression, pose, illumination, efc., which are irreversibly blended
into a single bitmap image during the capturing procedure. Deformable
face models try to separate the face image into two simple parametric
representations—shape and appearance. A shape model is typically in the
form of a fixed sequence of the desired facial feature points, while appear-
ance refers to the facial texture in correspondence with the face shape
that helps to infer the appropriate shape w.r.t. the input image. As such,
deformable appearance models can be regarded as a joint optimization
problem in terms of shape and appearance to best fit the learned texture
description to the query face.

According to the modeling principles in pattern recognition, deformable
appearance models can be further grouped into generative and discrimi-
native ones. Generative methods seek to minimize the distance between a
rendered model instance and the face image. The Active Appearance Models
(AAMs) proposed by Cootes et al. [Co098] are undoubtedly the most famous
generative appearance methods. In the data preparation phase of the AAM,
the face images are manually annotated with a fixed set of IV feature points
s=[X1,X3,...,Xxy] " € R?N representing the face shape, where x; = [x;, y;] is

12
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the 2D location of the i landmark. After aligning all shapes and applying
Principal Component Analysis (PCA) to obtain a linear shape subspace with
reduced dimensionality, the shape model, namely the Point Distribution
Model (PDM), is constructed, which can be briefly interpreted as

s(ps) =S+ Sps, 2.1)

where ps denotes the shape coefficients of the eigenface dictionary S, and
§ is the mean shape. The appearance model can be obtained in a similar
fashion. Concretely, the face images need to be transformed onto the frame
of the mean shape s before PCA is conducted, which yields

a(py) =a+Apy, (2.2)

where a and A denote the mean and eigenvectors of the appearance respec-
tively, and p,, is the parameter. Based on the models built offline, the online
fitting process is as described in a generative manner

min |a+Ap.—IWp)|3, 2.3)
where the image I is warped via the warping operator W parametrized by the
shape vector ps. This optimization problem has been extensively studied
since the original linear regression approach coupling shape and appear-
ance parameters by Cootes et al. [Co098], leading to a gradient descent
version [Coo01] and several inverse compositional variants [Gro05, Mat04,
Tzi13] that can precompute Jacobian and Hessian matrices to increase effi-
ciency [Bak03].

Most conventional generative AAMs optimize on the whole facial texture.
However, this holistic approach is criticized for its lack of generalization
power for unseen subjects and image conditions. To overcome the high
dimensionality of the optimization problem, some recent generative AAM
methods [Ant15, Tzi14] choose to operate on the local neighborhoods sur-
rounding the facial landmarks only. Since part-based models are less sensi-
tive to occlusion and lighting, they are shown to outperform holistic AAMs
by a large margin and achieve state-of-the-art performance when trained
on in-the-wild face datasets.

In contrast to the generative AAM family, discriminative AAM fitting lever-
ages the learned correlation between the appearance feature and landmark

13
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displacement from the training data. A nonlinear boosted regression with an
ensemble of weak learners using rectangular Haar-like features is presented
by Saragih and Goecke [Sar07]. Only the shape parameters are updated
with the nonlinear mapping. Liu [Liu09] treats deformable fitting as a clas-
sification problem. Similar to [Sar07], integral features are employed by
weak classifiers to build a strong function to distinguish the correct PDM
parameters from the wrong ones. Following this discriminative approach,
Gao et al. propose a series of improvements exploring alternative features,
like pseudo consensus transform [Gaol1] and random pixel intensity dif-
ferences [Gaol3], as well as learning strategies like ranking and regression
trees [Gaol2], greatly increasing fitting accuracy and robustness given noisy
initialization and data compared to generative AAMs.

2.1.2 Constrained Shape Models

Constrained shape models typically incorporate discriminatively learned
local detectors or regressors with a certain type of shape constraint. This
kind of methods has a long history in face alignment, dating back to the
pioneering Active Shape Model (ASM) by Cootes et al. in 1992 [Co092]. The
ASM, along with a large body of succeeding work, belongs to the popular
Constrained Local Model (CLM) framework. CLMs fit the face shape to the
input image through a cost function jointly optimizing the shape prior and
local response maps. Standard CLMs share the same PDM with AAMs, which
serves as the prior knowledge of landmark configuration p(p;) to constrain
the fitting process. By assuming conditional independence between each
landmark detector, the CLM objective is to maximize the posterior of the
shape parameter [Sar11], which takes the form

HII,aXp(ps | =10 (2.4)

N
=n11)axn(ps)l_[p(li =11x;,D), (2.5)
s i=1

where [; € {1,-1} indicates whether the i facial point is aligned or not.
Figure 2.1 illustrates the CLM optimization w.r.t. its two components, i.e.,
the PDM and the response maps of independent local experts, which can
have different implementations for computing the response of each detector
when convolved with an image patch during the exhaustive search. The

14
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ASM [Co092] defines the 1D distance between the profile normal to the
edges. Linear Support Vector Machine (SVM) is utilized in [Sar11, Wan08]
to classify positive detections and those with large distance to the true
location as negative ones. Subsequently, logistic regression is employed to
obtain a probabilistic output. Within this framework, a range of methods
have been developed to approximate the true response maps to make the
gradient descent tractable, including isotropic Gaussian in the probabilistic
formulation of the original ASM [Co092], anisotropic Gaussian [Wan08],
Gaussian Mixture Models (GMMs) [Gu08] and the nonparametric kernel
density estimation [Sar11].

Image and Search Windows Optimization Point Distribution Model

Figure 2.1: Illustration of the components of the CLM optimization: the response maps and
the PDM [Sarl1].

Apart from the mainstream CLMs, new attempts explore the possibilities
to ditch the classic routine with PDM plus classifiers. Cootes et al. [Coo12]
replace the SVM experts with regression using random forest [Bre01] to
directly predict the shape update for each evaluated patch. Accumulated
votes then generate the response maps, boosting both runtime and accu-
racy. Asthana et al. [Ast13] also regress the PDM parameter update from
the low-dimensional projection of the response maps, and further adopt
the Histogram of Oriented Gradients (HOG) feature [Dal05] to outperform
raw pixel intensity on unconstrained face images. Finally, Belhumeur et
al. present a novel nonparametric exemplar-based approach in [Bell1] to
remedy the limitation of the PDM. On the basis of the rich patch represen-
tation using Scale-Invariant Feature Transform (SIFT) [Low04], the global
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shape is regularized by one of the closest transformed training exemplars
sampled with a Random Sample Consensus (RANSAC)-like strategy [Fis81].
Thanks to this flexible shape model, fitting performance is comparable
to that of human labeling on one of the first in-the-wild face alignment
datasets [Bell1], however, at the expense of a high computational burden.

2.1.3 Shape Regression

Despite the massive attention received in the past decades and considerable
progress achieved for deformable appearance and shape models, explicitly
optimizing the face shape is proved to be ineffective when dealing with
unconstrained face images. In particular, statistical shape models like the
PDM may struggle with novel faces. Furthermore, it is usually tricky to
balance the local and global constraints as well. To this end, a new group of
regression-based algorithms have emerged recently, which directly map the
image appearance features to the target shape

R:®D)—s, (2.6)

where R denotes the mapping of shape regressors based on the features
extracted from the image I by ®. Unlike independent part detectors [Din08,
Vuk05], shape regression can implicitly learn to regularize the whole shape
to eliminate invalid point constellations through the training images.

The algorithm of Valstar et al. [Vall0] is among the first attempts in this
case. By training the local regressors with Support Vector Regression (SVR),
direction and distance to the landmarks provide an initial prediction. The
pairwise relation of the nodes are then encoded to ensure invariance to in-
plane rotation, isotropic scaling and translation. The Markov Random Field
(MRF) optimization, although not an absolutely optimal solution, refines
the landmarking accuracy iteratively. But the ambiguity of local appearance
models as in CLMs remains unsolved.

In [Danl2], Dantone et al. extend the regression forest to condition on
the head pose to overcome the tendency of fitting the mean face due to
the averaging effect of the random forest [Bre01]. The fitting stage first
estimates the pose and then determines the tree distribution to be selected
in the separate forests trained on different poses. Subsequently, Yang and
Patras [Yan13d] propose to sieve regression voting with two levels of criteria,
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i.e., the distance to the center of the whole face and each accumulated map,
forcing the votes to be more reliable than in [Dan12].

Unarguably, the latest surge and explosive progress made in facial point
localization can boil down to the success of cascaded regression-based
approaches. Inspired by the novel cascaded pose regression by Dollér et
al. [Dol10], a series of regressors can be successively stacked to fit the land-
marks progressively, which circumvents the difficulty of regressing the face
shape in a single attempt. The core methodology of cascaded shape regres-
sion is illustrated in Algorithm 1. In each stage t, the shape-indexed feature'
¢~V that depends on the previous shape estimate is extracted. Applying
the learned regressor R straightforwardly produces an update As, which
is added to the current shape. After T iterations, the face shape is fitted in a
coarse-to-fine manner.

Algorithm 1: Face alignment with cascaded shape regression

Input: Image I and initial shape s
Output: Fitted shape s
1 fort=1to T do

2 ¢V =o(s"Y) > Extract shape-indexed feature
(p(t—l)

3 As =R (¢71) > Apply regressor R

4 sV =s=D 4 As > Update shape s

5 end

The breakthrough two-level boosted regression algorithm is devised by
Cao et al. in [Caol2]. Each of the first-level regressors R is composed
of a second-level cascade of random ferns [Ozu10] with pixel-difference
features extracted from the whole image. A correlation-based random fea-
ture selection strategy is further adopted for real-time capability. Moti-
vated by the state-of-the-art performance of the two-level cascaded regres-
sion, Burgos-Artizzu et al. [Bur13] make several extensions of [Cao12]. The

1 Note that the shape-indexed feature in this thesis has a general meaning, which is not
restricted to the pixel-difference feature first proposed in [Cao12].
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pixel-difference features are computed using linear interpolation of two
landmarks rather than a fixed offset w.r.t. one landmark in [Cao12]. Their
regressors also involve an extra occlusion property in addition to the land-
mark update for robust reasoning of invisible facial parts. In [Kaz14], Kazemi
and Sullivan replace the random fern regressor [Ozu10] with an ensemble
of regression trees [Has09], achieving top and stable results with perturbed
initialization [Yan15b] in the millisecond range.

In comparison with the two-level cascades, Xiong and De la Torre [Xio13]
give a concise and elegant formulation to the cascaded shape regression,
which regards the problem as a sequence of supervised gradient descent
steps. The handcrafted SIFT features [Low04] extracted around the facial
landmarks are fed into linear least squares and the descent direction is
learned to guide the current shape estimate towards the desired location.
Starting from the derivation of the nonlinear Newton optimization for
the AAM [Co098], they show the advantages of such supervised Newton
update. Like other shape regression methods, though nonparametric in
both shape and appearance, the implicit shape constraint still holds since
each shape increment lies on the manifold of the training data, provid-
ing better generalization to novel faces. Inspired by the project-out AAM
[Mat04], Tzimiropoulos [TZzi15] learns the descent directions of PDM param-
eters in a subspace orthogonal to the facial appearance variation coined
Project-Out Cascaded Regression (PO-CR), which greatly propels robust-
ness under extreme conditions. Ren ef al. [Ren14] argue the drawbacks
of both handcrafted features in [Xio13] and globally extracted features in
[Cao12], and design the local binary features. It bears some similarity to
[Kaz14] by using random forest [Bre01] to train local features as input to the
linear regressor cascade, resulting in even faster fitting than [Kaz14]. Zhu et
al. [Zhul5a] propose a cascaded shape search framework in a coarse-to-fine
fashion with various feature descriptors [Cal10, Low04] to compromise over
precision and speed, which accounts for large pose and local optima due
to poor initialization. In other work, solutions for incremental and parallel
training of different cascade stages [Ast14] and ranking of multiple shape
hypotheses [Yan13a] are studied as well.

Finally, amid the hot trend of unconstrained face alignment, two chal-
lenges for static images [Sag16, Sagl3a] and one challenge for video tracking
[Shel5] have been organized within a short time span, leading to valuable
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datasets, algorithms and discussions, which will surely spur more research
interest in the future.

2.1.4 Discussion

The facial landmark detection research has traveled a long journey from
the person-specific AAMs [Co098] to the state-of-the-art cascaded shape
regression and Deep Neural Networks (DNNs) [Sun13, Tril6, Zhal5, Zhal4a,
Zhal4b, Zhal6, Zhol3] in uncontrolled environment. This justifies the
design choice of first localizing 2D facial points in this thesis for 3D face
SR, since some of the challenges discussed in Section 1.2 have already been
addressed, whereas it is obviously not the case for the common statistical 3D
face modeling algorithms [Hul5, Mor09]. Nevertheless, despite the broad
interest, face alignment for LR faces remains a largely unattended apart
from very few exceptions. Liu et al. [Liu06] build a pyramid of AAMs to
adapt to a variety of image resolutions. Dedeoglu et al. [Ded06] point out
that the traditional AAM procedure causes information loss when warping
the LR image onto the model coordinate frame. Instead, they devise an
inverse fitting algorithm that takes the LR image formation process into
consideration. With both approaches employing the aged generative AAM
engine [Co098], the eligibility of newer methods for the LR condition must
be verified in the first place.

2.2 3D Face Reconstruction

The merit of a pose, expression and illumination invariant description of 3D
faces has attracted considerable attention and research effort over the past
decades. Hindered by the high cost and practical difficulties, 3D cameras
[Dril3] and structured light techniques [Zha10] are still limited from being
deployed outside of the lab. Hence, in this section, a compact review of
image-based 3D face reconstruction is given.

2.2.1 Statistical Morphable Model

The seminal work of the 3D Morphable Model (3DMM) by Blanz and Vetter
[Bla99] establishes the fundamental idea of describing human faces as linear
shape and texture subspaces obtained with aligned 3D scans. Particularly,
a collection of 3D face scans is first captured with a 3D scanner, where
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each scan consists of both geometry and albedo of the enrolled subject. To
enforce the same ordering and dense correspondence of each vertex across
all scans, an iterative registration process, e.g., [Amb07] in [Pay09], is applied
on the triangulated mesh, which in addition also fills the missing data (see
Figure 2.2a). An example of the cleaned result after registration is depicted
in Figure 2.2b. As such, the 3D shape and texture of human faces as shown
in Figure 2.2c can be written as

T
§= [xlyyl»zl)---vvayPrZP] (2.7)

t= [rlrglrbly---;rpng,bP]T (2.8)

respectively, where P is the number of vertices of the registered faces. Apply-
ing PCA to the shape and texture data individually yields

s=8+Sa (2.9)
t=t+Tp, (2.10)

where § and t are the mean vectors. § € R3”*% and T € R37*@r denote the
respective principal modes of variation rescaled by their standard devia-
tion. In this way, the 3SDMM is representable as {5,S,t, T} and the normally
distributed coefficients & € R and p € R? with unit variance suffice to
describe any valid face within the PCA subspaces [Pay09]. It is worth noting
that other shape models like local wavelet PCA is beyond the scope of this
thesis. The reader is referred to [Brul4] for a comparative study.

(a) (b) (©)

Figure 2.2: 3D registration for building a 3DMM: (a) a raw 3D scan, (b) the registered scan with
filled holes, (c) vectorized face representation in shape and texture [Pay09].
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Fitting a 3DMM to a 2D image is treated as an analysis-by-synthesis problem
by Blanz and Vetter in [Bla99] akin to the AAM [C0098], in which the model
is used to render an image and the error between the synthesized and the
input image is minimized to optimize the sought parameters. By explic-
itly modeling the Phong reflection y [Hugl3], the analysis-by-synthesis
objective is then

min_||Tinput — Imodel (&.8,7.7) |5, 2.11)
a,py.T

where T denotes the camera parameters.

In their original work [Bla99], Blanz and Vetter simultaneously update all
parameters using stochastic optimization based on a random selection
of pixels, which is extended in [Bla03] with an additional term of several
manually annotated anchor points. Romdhani et al. [Rom03] introduce the
inverse compositional algorithm of 2D AAMs [Mat04] (see Section 2.1.1) into
the 3DMM for acceleration. Later, they propose the Multi-Features Fitting
(MFF) strategy to leverage auxiliary features like edge and specular high-
lights to diminish the risk of falling into local minima [Rom05]. Alternatively,
the joint fitting process can be decomposed into geometric and photometric
parts [Ald13, Rom02, ZhaO6a]. However, compromises on the camera and
lighting models must be made to simplify the separate optimization tasks.

(@ (b) (© (d) (e

Figure 2.3: Face reconstruction from a single image using the 3DMM: (a) an input image, (b) the
annotated feature points, (c) fitted initial shape using the features, (d) estimated illumination,
(e) final optimization result w.r.t. shape, texture, transformation and illumination [Bla03].

A sample workflow of fitting a 3DMM to a single image is demonstrated in
Figure 2.3. From the manually labeled features and shape initialization to
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the recovered illumination and the final textured face model, the analysis-
by-synthesis framework can generate highly detailed and photo-realistic
shape and texture. Nevertheless, drawbacks such as the low fitting speed
and the demand for high-quality images as input impede these 3D statistical
deformable models from broader application.

2.2.2 Shape from X

Instead of adopting the model-driven approaches, 3D shape of the face can
be recovered by traditional computer vision techniques as well.

Structure from Motion (SFM) can reconstruct a 3D scene with a sequence of
monocular images taken from different viewpoints, which resembles the
ability of human beings that perceive 3D information by moving around
objects. Many SFM algorithms begin with a track of sparse feature land-
marks and then infer their depth. Lee et al. [Leel1] construct a shape con-
version matrix to mitigate displacement of the self-occluded points in the
cheek area caused by head rotation while converting 2D landmarks to 3D,
and employ Thin-Plate Spline (TPS) [Boo89] for the dense mean model
adaptation. Roy-Chowdhury and Chellappa [Roy03] make use of optical
flow for SFM [Sri00] and regularize the output mesh with a generic head
template. In general, SFM-based approaches still require a reference face
model to densify the tracked sparse features. Yet the fidelity is limited and
single-frame reconstruction is not possible. Therefore, landmark-based
methods (see Section 2.2.3) that rely on statistical deformable shape models
have gained popularity over SFM.

Shape from Shading (SFS) can recover the surface normals using shad-
ing information from a single image [Hor70], which is a special case of
Photometric Stereo (PS), where multiple images under different lighting
conditions are used [Woo080]. Generally speaking, SFS has an ill-posed
setup with a large number of unknowns. Some authors integrate the sym-
metry of faces [Dov04, Zha01] as prior to reduce the ambiguity. In other
cases, it is more common to exploit a 3D reference model. In the work of
[Kem11la], Kemelmacher-Shlizerman and Basri “mold” the generic model to
the single input face image and solve for the unknown lighting, boundary
conditions and albedo. For personal or Internet image collections, PS is
applied to the near-frontal faces with normalized expression to obtain more
consistent normals locally [Kem11b] than the single-view reconstruction
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[Kem11a]. Motivated by the promising result, Roth et al. extend [Kem11b]
with a generic [Rot15] or personalized template [Rot16] to facilitate profile
poses to enhance the depth of 3D faces. In light of these applications, SFS
and PS are regarded as a complementary instrument to alleviate model
dominance of the statistical 3DMM, which can produce outstanding facial
details [Pat12].

2.2.3 Landmark-Based Shape Reconstruction

2D landmarks have long served as a plausible way to initialize the 3SDMM fit-
ting [Bla03]. Despite the impressive achievements, the analysis-by-synthesis
framework is often criticized for its extremely time-consuming and challeng-
ing non-convex optimization w.r.t. the enormous parameter space for shape,
texture, camera calibration, lighting, efc. Fortunately, thanks to the latest
breakthrough of face alignment in the wild, by leveraging the fiducial feature
points, it is viable to dramatically reduce the dimensionality by leaving out
the entire motion, albedo and illumination parameters, as only the 3DMM
shape coefficients need to be reconstructed. Moreover, the shrinkage from
tens of thousands of dense vertices to merely dozens of sparse ones can also
contribute to a huge speedup.

Besides the well-known analysis-by-synthesis 3DMM fitting [Bla99], Blanz et
al. [Bla04] first show that landmarks alone are sufficient for obtaining useful
shape estimates in their own rights. With the aid of less than 20 manually
labeled anchor points, the complete 3D shape can be approximated via the
shape coefficients within the span of the underlying 3DMM

min| (sRi 2, 5+ Si) +0) -1]l3, (2.12)

where the subscript / denotes the corresponding vertices of the F « P facial
landmarks1e R%F on the 3DMM. In order to have a closed-form formulation,
the weak perspective camera parameters including scale s, 2D projection
of the rotation matrix Ry;.»;) and translation o are linearized and solved
along with & using least squares. As such, 3D reconstruction is significantly
simplified and the prior knowledge from the 3DMM helps to overcome the
otherwise ill-posed problem using incomplete sparse features.

As an extension of [Bla04], Faggian et al. [Fag06] first involve facial land-
mark detection with the help of a person-specific AAM [Mat04] towards
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2 Related Work

fully automatic shape reconstruction. By considering multiple images, an
extension of [Fag06] is devised to enhance robustness across frames [Fag08].
Jiang et al. [Jia05] also use a similar least squares approach to build an initial
personalized 3D face model from a single frontal image, which is interpo-
lated [O1i90] to better adapt to the 2D landmarks. Later, Zhao et al. [Zha06b]
propose to add a second profile shape model to improve the depth estimate.

Aldrian and Smith [Ald10a, Ald10b] loose the assumption in [Bla04] that
observations of all landmarks are subject to uncorrelated Gaussian noise
with a uniform variance, as they learn the individual generalization errors
by projecting out-of-sample data onto the 3DMM subspace. Without the
need for a 3DMM, Rara et al. [Rar11] exploit 3D faces directly with Principal
Component Regression (PCR) to model the 3D shape as a linear combina-
tion of the samples instead of 3DMM eigenfaces as in previous work. A
nearly identical evaluation result is reported. Following this idea, Dou et al.
[Doul4] learn a regression subspace for 2D and 3D sparse landmarks, and a
second dictionary for 3D sparse and dense shapes. By forcing them to share
the same weights in a coupled representation, their underlying relationship
is encoded. In this way, the 3D shape is reconstructed with the transfered
coefficients, whereas the pose is also implicitly recovered.

Self-Occlusion

In the previous efforts that try to connect automatic facial point localization
and 3D shape inference, a crucial difference between 2D face alignment algo-
rithms and 3D face models has been ignored while empirically assuming a
fixed mapping between 2D and 3D features. Since the contour landmarks of
2D AAMs are originally defined as the jawline that becomes easily occluded
even with small head poses, the points on the face boundary in the image
plane are detected instead, which have a considerable distance to their true
locations. This phenomenon is depicted in Figure 2.4. If the fixed anno-
tations in blue rather than the actual correct contour vertices in red are
utilized for shape reconstruction, bad distortion is likely to happen.

To mitigate the negative impact of the erroneous observation, Lee et al.
[Leel2] propose to discard these self-occluded landmarks while reconstruct-
ing non-frontal faces. Experimental results show that this straightforward
idea appears to be helpful. Asthana et al. [Ast11] are also aware of this
issue when normalizing poses for face recognition. They manually label
the 2D-3D correspo