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WEAK MARTINGALE SOLUTIONS FOR THE STOCHASTIC
NONLINEAR SCHRÖDINGER EQUATION DRIVEN BY PURE JUMP

NOISE

ZDZISŁAW BRZEŹNIAK, FABIAN HORNUNG, AND UTPAL MANNA

Abstract. We construct a martingale solution of the stochastic nonlinear Schrödinger
equation with a multiplicative noise of jump type in the Marcus canonical form. The
problem is formulated in a general framework that covers the subcritical focusing and
defocusing stochastic NLS in H1 on compact manifolds and on bounded domains with
various boundary conditions. The proof is based on a variant of the Faedo-Galerkin
method. In the formulation of the approximated equations, finite dimensional operators
derived from the Littlewood-Paley decomposition complement the classical orthogonal
projections to guarantee uniform estimates. Further ingredients of the construction are
tightness criteria in certain spaces of càdlàg functions and Jakubowski’s generalization of
the Skorohod-Theorem to nonmetric spaces.
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1. Introduction

In this paper, we study the stochastic nonlinear Schrödinger equation with pure jump
noise in the Marcus formdu(t) = (−iAu(t)− iF (u(t))) dt− i

N∑
m=1

Bmu(t) � dLm(t) t > 0,

u(0) = u0.

(1.1)

Here, A is a selfadjoint nonnegative operator with a compact resolvent in an L2-space H
and the initial value u0 is chosen from the energy space EA := D(A

1
2 ). Typical examples

for this setting are
• the negative Laplace-Beltrami operator A = −∆g on a compact riemannian mani-
fold (M, g) without boundary, EA = H1(M),
• the negative Laplacian A = −∆ on a bounded domain M ⊂ Rd with Neumann
boundary condition, i.e. EA = H1(M), or Dirichlet boundary conditions, i.e. EA =
H1

0 (M)
• and fractional powers of the first two examples.

Moreover, F : EA → E∗A is a nonlinear map generalizing the two most important examples,
namely

• the defocusing power nonlinearity F+
α (u) := |u|α−1u with subcritical exponents in

the sense that the embedding EA ↪→ Lα+1 is compact
• and the focusing nonlinearity F−α (u) := −|u|α−1u with an additional restriction to
the power α.

The stochastic noise term is given by selfadjoint linear bounded operators Bm for m =
1, . . . , N and an RN− valued Lévy process L(t) := (L1(t), · · · , LN(t)) with pure jump
defined as

L(t) =

∫ t

0

∫
B

l η̃(ds, dl) (1.2)

where B := {|l| 6 1} ⊂ RN . Here, η represents a time homogeneous Poisson random
measure with σ-finite intensity measure ν such that∫

B

|l|2ν(dl) <∞.

Moreover, η̃ := η − Leb⊗ν denotes the corresponding time homogeneous compensated
Poisson random measure (see Appendix A for details). Note that by the choice of L in
(1.2), we restrict ourselves to the case of small jumps. A generalization of the results of
the present article to noise with jumps of arbitrary size will be investigated. Using the
abbreviation

B(l) =
N∑
m=1

lmBm, l ∈ RN ,
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the equation (1.1) including the Marcus product � is understood in the sense of the asso-
ciated integral equation

u(t) = u0 − i

∫ t

0

(Au(s) + F (u(s))) ds+

∫ t

0

∫
B

[
e−iB(l)u(s−)− u(s−)

]
η̃(ds, dl)

+

∫ t

0

∫
B

{
e−iB(l)u(s)− u(s) + iB(l)u(s)

}
ν(dl)ds. (1.3)

Before we describe our approach and state our result in detail, we would like to give a
general overview of the literature on the stochastic NLS. In the two previous decades,
existence and uniqueness results for the stochastic NLS with Gaussian noise have been
treated in many articles, most notably [dBD99], [dBD03],[BRZ14],[BRZ16],[Hor18b] in the
Rd-setting, [BM14] for general 2D compact manifolds and [CM18] for the d-dimensional
torus Td. In these articles, the authors applied Strichartz estimates in a fixed point argu-
ment based on the mild formulation. Typically, this argument was either combined with
a transformation to a random NLS without stochastic integral or with a truncation of the
nonlinearities and suitable estimates of stochastic convolutions.

In their joint papers [BHW17] and [BHW18] together with LutzWeis, the first and second
named author developed a different approach to the stochastic NLS with Gaussian noise.
By complementing the classical Faedo-Galerkin approximation with methods from spectral
theory and particularly, a general version of the Littlewood-Paley decomposition, they were
able to prove the existence of a martingale solution. In contrast to the argument based on
Strichartz estimates, the construction only employs the Hamiltonian structure of the NLS
and certain compact Sobolev embeddings. Therefore, the result could be formulated in a
rather general setting including the stochastic NLS and the stochastic fractional NLS on
compact manifolds and bounded domains. Subsequently, the authors concentrated on the
special case of 2D manifolds with bounded geometry and 3D compact manifolds and proved
pathwise uniqueness using appropriate Strichartz estimates from [BGT04] and [BS14]. For
a slight generalization of the existence result from [BHW17] allowing a certain class of
non-conservative nonlinear noise, we refer to the PhD thesis [Hor18a] of the second author.

In contrast to their Gaussian counterpart, stochastic nonlinear Schrödinger equations
with jump noise as in (1.1) are less well studied in the literature. Models of this type have
been proposed in [VM10] and [VM11] to incorporate amplification of a signal in a fiber
at random isolated locations caused by material inhomogeneities. In [dBH17], de Bouard
and Hausenblas considered a similar problem as (1.1) on the full space Rd and obtained
the existence of a martingale solution. The authors continued their work and in the recent
preprint [dBHO18] with Ondrejat, and proved pathwise uniqueness in the Rd-setting. The
analysis of the noise in our present work is different compared to [dBH17, dBHO18] and is
motivated by the requirement that the noise must preserve the invariance property under
coordinate transformation. This issue is important for the norm-preserving condition,
see (1.6) below. Thus, one needs to find an analogue of the Stratonovich integral in the
case of stochastic integral with respect to compensated Poisson random measure. The
work of Marcus [Mar81], developed later by Applebaum and Kunita, see e.g. Section
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6.10 of Applebaum [App09] and Kunita [Kun04]; see also Chechkin and Pavlyukevich
[CP14]; provides a framework to resolve this technical issue. Surprisingly, the literature
on stochastic partial differential equations driven by Lévy noise in the “Marcus" canonical
form is very limited and such work has recently been initiated by the first and third
named authors in [BM17] for the Landau-Lifshitz-Gilbert equation. The current paper
is motivated by similar question and we believe that the theory developed in this work
may help in understanding analysis of many other constrained PDEs (e.g. harmonic map
flow, nematic liquid crystal model etc.) driven by jump noise or more general Lévy noise.
Also, there are some very recent works, see e.g. Chevyrev and Friz [CF17], where rough
differential equations are studied in the spirit of Marcus canonical stochastic differential
equations by dropping the assumption of continuity prevalent in the rough path literature.
Therefore, we hope that Gubinelli’s [Gub04] approach of Lyons’ theory of integration over
rough paths may be integrated with [CF17] and our approach to gain newer insight into
the analysis of constrained SPDEs.

The goal of the present study is to construct a martingale solution of the stochastic
NLS with pure jump noise in the Marcus canonical form. For that purpose, we transfer
the argument developed in [BHW17] for the NLS with Gaussian noise to the present
setting. Let us present our reasoning in detail. First, we introduce a strictly positive
operator S which commutes with A and also has a compact resolvent. The operator S
is used to present a unified proof for each example and will chosen individually in the
different concrete settings from Section 3. Typical choices are S = A or S = Id +A. By
means of the functional calculus of S which is based on its series representation, we define
operators Pn = pn(S) and Sn = sn(S) for n ∈ N0. The functions pn and sn, n ∈ N0 are
illustrated in Figure 1. For the precise definition, we refer to Section 5 and particularly the
proof of Proposition 5.1. To summarize the most important properties of these operators,
we remark that both Pn and Sn have a finite dimensional range, Pn is an orthogonal
projection and the operators Sn satisfy the uniform estimate supn∈N0

‖Sn‖L(Lα+1) < ∞
since we assume that S satisfies (generalized) Gaussian bounds. Let us remark that a
similar construction has been employed in [Hor18c] to construct a solution of a stochastic
nonlinear Maxwell equation with Gaussian noise. This indicates that using operators like
Sn, n ∈ N0, significantly increases the field of application of the classical Faedo-Galerkin
method for both continuous and jump noise.

λ

pn(λ)

0

1

0 2n 2n+1 λ

sn(λ)

0

1

0 2n 2n+1

Figure 1. Plot of the functions pn and sn



STOCHASTIC NLS DRIVEN BY PURE JUMP NOISE 5

Let us denote Bn(l) =
∑N

m=1 lmSnBmSn for n ∈ N and l ∈ RN and

ũ0,n :=

{
Snu0

‖u0‖H
‖Snu0‖H

, Snu0 6= 0,

0, Snu0 = 0.

for n ∈ N. Then, the finite dimensional approximation

un(t) = Pnu0 − i

∫ t

0

(Aun(s) + PnF (un(s))) ds+

∫ t

0

∫
B

[
e−iBn(l)un(s−)− un(s−)

]
η̃(ds, dl)

+

∫ t

0

∫
B

{
e−iBn(l)un(s)− un(s) + iBn(l)un(s)

}
ν(dl)ds (1.4)

of problem (1.1) has a unique solution. Due to the properties of Pn and Sn and the
Hamiltonian structure of the nonlinear Schrödinger equation combined with the Marcus
structure of the noise, we are able to prove the mass identity

‖un(t)‖L2 = ‖Pnu0‖L2

almost surely for all t ∈ [0, T ] and the uniform estimate

sup
n∈N

E
[

sup
t∈[0,T ]

‖un(t)‖rEA
]
<∞ (1.5)

for all r ∈ [1,∞). Using several compactness Lemmata for spaces of càdlàg functions
inspired by [Mot12] and [BM17], (1.5) leads to tightness of the sequence (un)n∈N in

ZT := D([0, T ], E∗A) ∩ Lα+1(0, T ;Lα+1(M)) ∩ Dw ([0, T ], EA) .

For the precise definition of ZT , we refer to Section 4. Subsequently, a limit argument
based on the Skorohod-Jakubowski Theorem shows the existence of a martingale solution.
Altogether, we prove the following result.

Theorem 1.1. Choose the operator A and the energy space EA according to Assumption
2.1, the nonlinearity F according to Assumptions 2.4 and 2.6 and the noise according
to Assumption 2.7. Then, for any u0 ∈ H, the problem (1.1) has a martingale solution(

Ω̃, F̃ , P̃, η̃, F̃, u
)
which satisfies

u ∈ Lq(Ω̃, L∞(0, T ;EA))

for all q ∈ [1,∞). Moreover, the equality

‖u(t)‖H = ‖u0‖H (1.6)

holds P̄-almost surely for all t ∈ [0, T ].

The article is organized as follows. In the second section, we fix the setting by stating
the general assumptions on the operator A, the nonlinearity F and the noise term. These
assumptions are illustrated in the third section by concrete examples. The proof of the
main Theorem 1.1 is contained in the sections 4, 5 and 6 that deal with compactness
results, the uniform estimates for the Galerkin approximation and the limit procedure. In
the appendix, we collect basic material on Poisson random measures and Marcus noise.
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2. General Framework and Assumptions

In this section, we formulate the abstract framework for the stochastic nonlinear Schrödinger
equation we refer to in Theorem 1.1.

Let (M̃,Σ, µ) be a σ-finite measure space with metric ρ satisfying the doubling property,
i.e. µ(B(x, r)) <∞ for all x ∈ M̃ and r > 0 and

µ(B(x, 2r)) . µ(B(x, r)). (2.1)

Let M ⊂ M̃ be an open subset with finite measure and Lq(M) for q ∈ [1,∞] the space of
equivalence classes of C-valued q−integrable functions. We further abbreviate H := L2(M)
and equip H with the standard complex L2-inner product.

Let A be a non-negative self-adjoint operator on H with domain D(A). We set EA :=

D((Id +A)
1
2 ) and call it energy space. Equipped with the inner product(

x, y
)
EA

=
(
(Id +A)

1
2x, (Id +A)

1
2y
)
L2 ,

EA is a complex Hilbert space. Moreover, we define the extrapolation space H− 1
2
as the

completion of H with respect to the norm

‖x‖− 1
2

:= ‖(Id +A)−
1
2x‖L2 , x ∈ H,

and obtain a Hilbert space with the inner product(
x, y
)
− 1

2

= lim
n,m→∞

(
(Id +A)−

1
2xn, (Id +A)−

1
2ym

)
L2 , x, y ∈ H− 1

2
,

for sequences (xn)n∈N , (ym)m∈N ⊂ H with xn → x and ym → y in H− 1
2
as n,m→∞. Note

that we can identify H− 1
2
with E∗A and the duality is given by

〈x, y〉 1
2
,− 1

2
:= lim

n→∞

(
x, yn

)
L2 , x ∈ EA, y ∈ H− 1

2
,

with (yn)n∈N ⊂ H such that yn → y in H− 1
2
as n → ∞. Often, we shortly write 〈·, ·〉 for

〈·, ·〉 1
2
,− 1

2
and write E∗A instead of H− 1

2
. Note that (EA, H,E

∗
A) is a Gelfand triple, i.e.

EA ↪→ H ∼= H∗ ↪→ E∗A.

We point out that one can also treat H, EA and H− 1
2
as real Hilbert spaces with scalar

products Re
(
·, ·
)
H
, Re

(
·, ·
)
EA

and Re
(
·, ·
)
− 1

2

, respectively. Then, EA and H− 1
2
are dual in

the sense that each real-valued continuous linear functional f on EA has the representation
f = Re〈·, yf〉 1

2
,− 1

2
for some yf ∈ H− 1

2
.

We continue with the main Assumption on the functional analytic setting for the sto-
chastic NLS.

Assumption and Notation 2.1. We assume the following:
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i) There is a strictly positive self-adjoint operator S on H with compact resolvent
commuting with A and D(Sk) ↪→ EA for some k ∈ N. Moreover, we assume that
there exists p0 ∈ [1, 2), such that S has generalized Gaussian (p0, p

′
0)-bounds, i.e.

‖1
B(x,t

1
m )
e−tS1

B(y,t
1
m )
‖L(Lp0 ,Lp

′
0 )
6 Cµ(B(x, t

1
m ))

1
p′0
− 1
p0 exp

{
−c
(
ρ(x, y)m

t

) 1
m−1

}
, (2.2)

for all t > 0 and (x, y) ∈M ×M with constants c, C > 0 and m > 2.
ii) Let α ∈ (1, p′0 − 1) be such that EA is compactly embedded in Lα+1(M). We set

pmax := sup {p ∈ (1,∞] : EA ↪→ Lp(M) is continuous}

and note that pmax ∈ [α + 1,∞]. In the case pmax < ∞, we assume that EA ↪→
Lpmax(M) is continuous, but not necessarily compact.

Remark 2.2. a) If p0 = 1, then it is proved in [BK03] that (2.2) is equivalent to the
usual upper Gaussian estimate, i.e. for all t > 0 there is a measurable function
p(t, ·, ·) : M ×M → R with

(e−tSf)(x) =

∫
M

p(t, x, y)f(y)µ(dy), t > 0, a.e. x ∈M

for all f ∈ H and

|p(t, x, y)| 6 C

µ(B(x, t
1
m ))

exp

{
−c
(
ρ(x, y)m

t

) 1
m−1

}
, (2.3)

for all t > 0 and almost all (x, y) ∈M ×M with constants c, C > 0 and m > 2. In
particular, e−tS can be extended to a C0-semigroup on Lp(M) for all p ∈ [1,∞).

b) In fact, in all our examples in the third section, the upper Gaussian estimate (2.3)
holds and therefore, the previous assumption is fulfilled with p0 = 1.

The following Lemma contains some straightforward consequences of 2.1.

Lemma 2.3. a) There is a positive self-adjoint operator Â on E∗A with D(Â) = EA
such that the restriction of Â to D(A) is equal to A. For simplicity of notation,
we will denote the operator Â by A.

b) The embedding EA ↪→ H is compact.
c) There is an orthonormal basis (hn)n∈N and a nondecreasing sequence (λn)n∈N with
λn > 0 and λn →∞ as n→∞ and

Sx =
∞∑
n=1

λn
(
x, hn

)
H
hn, x ∈ D(S) =

{
x ∈ H :

∞∑
n=1

λ2
n|
(
x, hn

)
H
|2 <∞

}
.

Assumption 2.4. Let α ∈ (1, p′0 − 1) be chosen as in Assumption 2.1. Then, we assume
the following:
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i) Let F : Lα+1(M)→ L
α+1
α (M) be a function satisfying the following estimate

‖F (u)‖
L
α+1
α (M)

6 CF,1‖u‖αLα+1(M), u ∈ Lα+1(M). (2.4)

Note that this leads to F : EA → E∗A by Assumption 2.1, because EA ↪→ Lα+1(M)

implies (Lα+1(M))∗ = L
α+1
α (M) ↪→ E∗A. We further assume F (0) = 0 and

Re〈iu, F (u)〉 = 0, u ∈ Lα+1(M). (2.5)

ii) The map F : Lα+1(M)→ L
α+1
α (M) is continuously real Fréchet differentiable with

‖F ′[u]‖
Lα+1→L

α+1
α
6 CF,2‖u‖α−1

Lα+1(M), u ∈ Lα+1(M). (2.6)

iii) The map F has a real antiderivative F̂ , i.e. there exists a Fréchet-differentiable
map F̂ : Lα+1(M)→ R with

F̂ ′[u]h = Re〈F (u), h〉, u, h ∈ Lα+1(M). (2.7)

By Assumption 2.4 ii) and the mean value theorem, we get
‖F (x)− F (y)‖

L
α+1
α (M)

6 sup
t∈[0,1]

‖F ′[tx+ (1− t)y]‖‖x− y‖Lα+1(M)

6 CF,2
(
‖x‖Lα+1(M) + ‖y‖Lα+1(M)

)α−1 ‖x− y‖Lα+1(M) (2.8)

for x, y ∈ Lα+1(M) which means that the nonlinearity is Lipschitz on bounded sets of
Lα+1(M). We will cover the following two standard types of nonlinearities.

Definition 2.5. Let F satisfy Assumption 2.4. Then, F is called
defocusing, if F̂ (u) > 0 for all u ∈ Lα+1(M)
and
focusing, if F̂ (u) 6 0 for all u ∈ Lα+1(M).

Assumption 2.6. We assume that either condition i) or condition i’) holds, where
i) The function F is defocusing and satisfies

1

CF,3
‖u‖α+1

Lα+1(M) 6 F̂ (u) 6 CF,3‖u‖α+1
Lα+1(M), u ∈ Lα+1(M). (2.9)

i’) The function F is focusing and satisfies

−F̂ (u) 6 CF,4‖u‖α+1
Lα+1(M), u ∈ Lα+1(M), (2.10)

and there exists θ ∈ (0, 2
α+1

) such that 1

(H,EA)θ,1 ↪→ Lα+1(M). (2.11)

The model nonlinearities are the defocusing power nonlinearity F+
α (u) := |u|α−1u with

subcritical exponents in the sense that the embedding EA ↪→ Lα+1 is compact and the
focusing nonlinearity F−α (u) := −|u|α−1u with an additional restriction to the power α.

1In below, the symbol (·, ·)θ,1 stands for the real interpolation functor with parameters 1 and ∞, see
for instance [Tri92].
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Assumption 2.7. (a) Assume that
(
Ω,F ,F,P

)
is a filtered probability space, where

F =
(
Ft)t>0 is the filtration, and this probability space satisfies the so called usual

conditions, i.e.
(i) P is complete on (Ω,F),
(ii) for each t > 0, Ft contains all (F ,P)-null sets,
(iii) the filtration F is right-continuous.

(b) Assume that (L(t))t>0 is an RN -valued, (Ft)-adapted Lévy process of pure jump
type defined on the above probability space with drift 0 and the corresponding time
homogenous Poisson random measure η.

(c) Assume that the intensity measure Leb⊗ν is such that supp ν ⊂ B, where B is the
closed unit ball in RN .

d) Let B1, . . . , BM ∈ L(H) be self-adjoint operators on H with Bm|EA ∈ L(EA) and
Bm|Lα+1(M) ∈ L(Lα+1(M)).

We abbreviate

bEA :=
N∑
m=1

‖Bm‖2
L(EA), bLα+1 :=

N∑
m=1

‖Bm‖2
L(Lα+1), bH :=

N∑
m=1

‖Bm‖2
L(H) (2.12)

and for l ∈ RN , we introduce the notation

B(l) =:
N∑
m=1

lmBm.

Remark 2.8. Note that by the Lévy-Khinchine formula, see [PZ07], Theorem 4.23, the
previous assumption yields that the intensity measure ν is a Lévy-measure on RN , i.e.∫

B

|l|2ν(dl) <∞. (2.13)

Moreover, we have the representation

L(t) =

∫ t

0

∫
B

l η̃(ds, dl).

2.1. The Marcus Mapping. Let us define a generalized Marcus mapping

Φ : R+ × RN ×H → H, Φ(t, l, x) := e−itB(l)x,

i.e. for each fixed l ∈ RN , x ∈ H, the function t 7→ Φ(t, l, x) is the continuously differen-
tiable solution of

du

dt
(t) = −i

N∑
m=1

lmBmu(t), t > 0, (2.14)

with u(0) = x ∈ H, and l = (l1, l2, . . . , lN) ∈ RN . Equation (1.1) with notation � is defined
in the integral form as following

u(t) = u0 − i

∫ t

0

(Au(s) + F (u(s))) ds+

∫ t

0

∫
B

[
e−iB(l)u(s−)− u(s−)

]
η̃(ds, dl)
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+

∫ t

0

∫
B

{
e−iB(l)u(s)− u(s) + i

N∑
m=1

lmBmu(s)

}
ν(dl)ds, (2.15)

where η̃ := η − Leb⊗ν denotes the compensated Poisson random measure induced by η.
In the next definition, we define the notion of a solution used in the present article.

Definition 2.9. Let T > 0 and u0 ∈ EA. A martingale solution of the equation (1.1) is a
system

(
Ω̄, F̄ , P̄, η̄, F̄, u

)
with

• a probability space
(
Ω̄, F̄ , P̄

)
;

• a time homogeneous Poisson random measure η̄ on RN over Ω̄ with intensity mea-
sure ν,
• a filtration F̄ =

(
F̄t
)
t∈[0,T ]

with the usual conditions;
• an F̄-adapted, E∗A-valued càdlàg process such that u ∈ L2(Ω× [0, T ], E∗A) and almost
all paths are in Dw([0, T ], EA),

such that the equation (2.15) holds P̄-almost surely in E∗A for all t ∈ [0, T ] with ˜̄η instead
of η̃.

3. Examples

In this section, we collect concrete settings which are covered by the general framework of
Assumptions 2.1, 2.4 and 2.6. We skip the proofs since they already appeared in [BHW17],
where the NLS with Gaussian noise was considered in the same framework.

Corollary 3.1. Suppose that a) or b) or c) is true.
a) Let M be a d-dimensional compact manifold, A = −∆g, EA = H1(M).
b) Let M ⊂ Rd be a bounded domain and A = −∆D be the Dirichlet-Laplacian,

EA = H1
0 (M).

c) Let M ⊂ Rd be a bounded Lipschitz domain and A = −∆N be the Neumann-
Laplacian, EA = H1(M).

Choose the nonlinearity from i) or ii).

i) F (u) = |u|α−1u with α ∈
(

1, 1 + 4
(d−2)+

)
, i.e. F is defocusing,

ii) F (u) = −|u|α−1u with α ∈
(
1, 1 + 4

d

)
, i.e. F is focusing,

Set Bmx = emx for x ∈ H and m = 1, . . . ,M with real-valued functions

em ∈ F :=


H1,d(M) ∩ L∞(M), d > 3,

H1,q(M), d = 2,

H1(M), d = 1,

(3.1)

for some q > 2 in the case d = 2. Then, the problemdu(t) = (−iAu(t)− iF (u(t))) dt− i
N∑
m=1

Bmu(t) � dLm(t),

u(0) = u0 ∈ EA,
(3.2)
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has a martingale solution which satisfies ‖u(t)‖H = ‖u0‖H almost surely for all t ∈ [0, T ]
and

u ∈ Lq(Ω̃, L∞(0, T ;EA))

for all q ∈ [1,∞).

Proof. We refer to [BHW17], Section 3, for the verification of the Assumptions in Theorem
1.1. �

Additionally to the stochastic NLS, we can also cover the fractional NLS with the Lapla-
cians replaced by their fractional powers.

Corollary 3.2. Choose one of the settings a), b) or c) in Corollary. Let β > 0 and suppose
that we have either i) or ii) below.

i) F (u) = |u|α−1u with α ∈
(

1, 1 + 4β
(d−2β)+

)
,

ii) F (u) = −|u|α−1u with α ∈
(
1, 1 + 4β

d

)
,

Let Bm for m = 1, . . . ,M as in Assumption 2.7. Then, the problem
du(t) =

(
−iAβu(t)− iF (u(t))

)
dt− i

N∑
m=1

Bmu(t) � dLm(t),

u(0) = u0 ∈ D(A
β
2 ),

(3.3)

has a martingale solution which satisfies ‖u(t)‖H = ‖u0‖H almost surely for all t ∈ [0, T ]
and

u ∈ Lq(Ω̃, L∞(0, T ;D(A
β
2 )))

for all q ∈ [1,∞).

4. Compactness and Tightness Criteria

This section is devoted to the compactness results which will be used to get a martin-
gale solution of (1.1) by the Faedo-Galerkin method. We begin with a definition of the
càdlàg functions and a generalization of the modulus of continuity to this class. Through-
out the section, (S, d) denotes a complete, separable metric space.

Definition 4.1. a) The space of all càdlàg functions f : [0, T ] → S, i.e. f is right-
continuous with left limit in every t ∈ [0, T ], is called D([0, T ],S).

b) For u ∈ D([0, T ], S) and δ > 0, we define the modulus

wS(u, δ) := inf
Πδ

max
tj∈Q

sup
t,s∈[tj−1,tj)

d(u(t), u(s)),

where Πδ is the set of all partitions Q = {0 = t0 < t1 < · · · < tN = T} of [0, T ] with

tj+1 − tj > δ, j = 0, . . . , N − 1.



12 Z. BRZEŹNIAK, F. HORNUNG, AND U. MANNA

c) We denote the set of increasing homeomorphisms of [0, T ] by Λ and we equip
D([0, T ],S) with the metric defined by

ρ(u, v) := inf
λ∈Λ

[
sup
t∈[0,T ]

d(u(t), v(λ(t))) + sup
t∈[0,T ]

|t− λ(t)|+ sup
s 6=t

∣∣∣∣log
λ(t)− λ(s)

t− s

∣∣∣∣
]

for u, v ∈ D([0, T ],S).

The following Proposition is about the so-called Skohorod-topology on D([0, T ],S).

Proposition 4.2. a) The pair
(
D([0, T ],S), ρ

)
is a complete, separable metric space.

b) A sequence (un)n∈N ∈ D([0, T ],S)N is convergent to u ∈ D([0, T ],S) in the metric ρ
if and only if there exists (λn)n∈N ∈ ΛN with

sup
t∈[0,T ]

|λn(t)− t| → 0, sup
t∈[0,T ]

d(un(λn(t)), u(t))→ 0, n→∞.

Proof. See [Bil99], page 123 and following for a proof. �

Definition 4.3. Let K ∈ {R,C} and let X be a reflexive, separable K-Banach space and
X∗ its dual.

a) Then, we define Dw ([0, T ], X) as the space of all u : [0, T ]→ X such that

[0, T ] 3 t→ 〈u(t), x∗〉 ∈ K is càdlàg for all x∗ ∈ X∗.
We equip Dw ([0, T ], X) with the weakest topology such that the map

Dw ([0, T ], X) 3 u 7→ 〈u(·), x∗〉 ∈ D([0, T ],K)

is continuous for all x∗ ∈ X∗.
b) For r > 0, we consider the ball BrX := {u ∈ X : ‖u‖X 6 r} and define

D([0, T ],BrX) :=

{
u ∈ Dw ([0, T ], X) : sup

t∈[0,T ]

‖u(t)‖X 6 r

}
.

Remark 4.4. By the separability of X, the weak topology on BrX is metrizable and we
choose a corresponding metric q. The notation in Definition 4.3 is justified, i.e.

D([0, T ],BrX) coincides with D([0, T ],S) for (S, d) = (BrX , q). (4.1)

In particular, D([0, T ],BrX) is a complete, separable metric space by Proposition 4.2. To
show (4.1), we note that the right-continuity of 〈u(·), x∗〉 for all x∗ ∈ X∗ is equivalent to
the right-continuity of u in (BrX , q) by the definition of q. It is also easy to see that the
existence of left limits transfers from (BrX , q) to 〈·, x∗〉 for all x∗ ∈ X∗.

For the converse direction, let tn → t− . Then, for each x∗ ∈ X∗, there is γx∗ ∈ K with
〈u(tn), x∗〉 → γx∗ . Since X is reflexive, x∗ 7→ γx∗ is linear and |γx∗ | 6 r‖x∗‖X∗ , there is
v ∈ X such that γx∗ = 〈v, x∗〉. Hence, q(u(tn), v)→ 0.

Lemma 4.5. Let K ∈ {R,C} and let X be a reflexive, separable K-Banach space and let
un, u ∈ Dw ([0, T ], X) with un → u in Dw ([0, T ], X) as n→∞. Then, we have

sup
n∈N

sup
t∈[0,T ]

‖un(t)‖X <∞.
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Proof. From un → u in Dw ([0, T ], X) as n → ∞, we infer that for every x∗ ∈ X∗, we
have 〈un, x∗〉 → 〈u, x∗〉 in D([0, T ],K) as n → ∞. Proposition 4.2 therefore implies that
for every x∗ ∈ X∗, there exists (λn) ∈ ΛN with

sup
t∈[0,T ]

|λn(t)− t| → 0, sup
t∈[0,T ]

|〈un(λn(t)), x∗〉 − 〈u(t), x∗〉| → 0, n→∞.

In particular, we obtain

sup
n∈N

sup
t∈[0,T ]

|〈un(t), x∗〉| = sup
n∈N

sup
t∈[0,T ]

|〈un(λn(t)), x∗〉| <∞

for every x∗ ∈ X∗. The uniform boundedness principle yields

sup
n∈N

sup
t∈[0,T ]

‖un(t)‖X = sup
n∈N

sup
t∈[0,T ]

sup
‖x∗‖X∗61

|〈un(t), x∗〉| <∞.

�

We recall that the energy space EA is defined by EA := D((Id +A)
1
2 ). We continue with

a criterion for convergence of a sequence in D([0, T ],BrEA).

Lemma 4.6. Let r > 0 and un : [0, T ]→ EA functions such that
a) supn∈N sups∈[0,T ] ‖un(s)‖EA 6 r,
b) un → u in D([0, T ], E∗A) for n→∞.

Then un, u ∈ D([0, T ],BrEA) for all n ∈ N and un → u in D([0, T ],BrEA) for n→∞.

Proof. See [Mot12], Lemma 3.3. �

We continue with a Lemma stated in Lions [Lio69], p. 58.

Lemma 4.7 (Lions). Let X,X0, X1 be Banach spaces with X0 ↪→ X ↪→ X1 where the first
embedding is compact. Assume furthermore that X0, X1 are reflexive and p ∈ [1,∞). Then,
for each ε > 0 there is Cε > 0 with

‖x‖pX 6 ε‖x‖pX0
+ Cε‖x‖pX1

, x ∈ X0.

Proof. See [Hor18a], Lemma 2.34. �

We define a space ZT by

ZT := D([0, T ], E∗A) ∩ Lα+1(0, T ;Lα+1(M)) ∩ Dw ([0, T ], EA) =: Z1 ∩ Z2 ∩ Z3. (4.2)

We equip ZT with the supremum-topology, i.e. the smallest topology that contains
⋃3
j=1Oj,

where Oj is the trace of the Zj-topology in ZT .
In the next Proposition, we give a criterion for compactness in ZT . This result generalises

Theorem 2 of Section 3 from [Mot12]. For a continuous version of this result see Proposition
4.2 of [BHW17]. Our proof is along the similar lines to Proposition 5.7 of the first and
third named authours [BM17].

Proposition 4.8. Let K be a subset of ZT and r > 0 such that
a) supz∈K supt∈[0,T ] ‖z(t)‖EA 6 r;
b) limδ→0 supz∈K wE∗A(z, δ) = 0.
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Then, K is relatively compact in ZT .

Proof. Let K be a subset of ZT such that the assumptions a) and b) are fullfilled and
(zn)n∈N ⊂ K.

Step 1: The relative compactness of K in D([0, T ], E∗A) is an immediate consequence of
Theorem 3.2 in [Mot12]. Hence, we can take a subsequence again denoted by (zn)n∈N and
z ∈ D([0, T ], E∗A) with zn → z in D([0, T ], E∗A). By Lemma 4.6, we infer that zn → z in
Dw ([0, T ], EA) and supt∈[0,T ] ‖z(t)‖EA 6 r.

Step 2: We fix again ε > 0. By the Lions Lemma 4.7 with X0 = EA, X = Lα+1(M),
X1 = E∗A, p = α + 1 and ε0 = ε

2T (2r)α+1 we get

‖v‖α+1
Lα+1(M) 6 ε0‖v‖α+1

EA
+ Cε0‖v‖α+1

E∗A
(4.3)

for all v ∈ EA. Integration with respect to time yields

‖zn − z‖α+1
Lα+1(0,T ;Lα+1(M)) 6 ε0‖zn − z‖α+1

Lα+1(0,T ;EA) + Cε0‖zn − z‖α+1
Lα+1(0,T ;E∗A);

ε0‖zn − z‖α+1
Lα+1(0,T ;EA) 6 ε0T‖zn − z‖α+1

L∞(0,T ;EA) 6 ε0T (2r)α+1 6
ε

2
.

By [Bil99], p.124, equation (12.14), convergence in D([0, T ], E∗A) implies zn(t) → u(t) in
E∗A for almost all t ∈ [0, T ]. By Assumption a), Lebesgue’s Theorem yields zn → z in
Lα+1(0, T ;E∗A). Hence,

lim sup
n→∞

‖zn − z‖α+1
Lα+1(0,T ;Lα+1(M)) 6

ε

2

for all ε > 0 and thus, the sequence (zn)n∈N is also converges to u in Lα+1(0, T ;Lα+1(M)).
�

In the following, we want to obtain a criterion for tightness in ZT . Therefore, we introduce
the Aldous condition.

Definition 4.9. Let (Xn)n∈N be a sequence of stochastic processes in a Banach space E.
Assume that for every ε > 0 and η > 0 there is δ > 0 such that for every sequence (τn)n∈N
of [0, T ]-valued stopping times one has

sup
n∈N

sup
0<θ6δ

P {‖Xn((τn + θ) ∧ T )−Xn(τn)‖E > η} 6 ε.

In this case, we say that (Xn)n∈N satisfies the Aldous condition [A].

The following Lemma (see [Mot12], Lemma A.7) gives us a useful consequence of the
Aldous condition [A].

Lemma 4.10. Let (Xn)n∈N be a sequence of stochastic processes in a Banach space E,
which satisfies the Aldous condition [A]. Then, for every ε > 0 there exists a measurable
subset Aε ⊂ D([0, T ], E) such that

PXn(Aε) > 1− ε, lim
δ→0

sup
u∈Aε

wE(u, δ) = 0.
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The deterministic compactness result in Proposition 4.8 and the last Lemma can be used
to get the following tightness criterion in ZT .

Proposition 4.11. Let (Xn)n∈N be a sequence of adapted E∗A-valued processes satisfying
the Aldous condition [A] in E∗A and

sup
n∈N

E

[
sup
t∈[0,T ]

‖Xn(t)‖2
EA

]
<∞.

Then, the sequence
(
PXn

)
n∈N is tight in ZT .

Proof. Let ε > 0. With R1 :=
(

2
ε

supn∈N E
[
supt∈[0,T ] ‖Xn(t)‖2

EA

]) 1
2 , we obtain

P

{
sup
t∈[0,T ]

‖Xn(t)‖EA > R1

}
6

1

R2
1

E

[
sup
t∈[0,T ]

‖Xn(t)‖2
EA

]
6
ε

2
.

By Lemma 4.10, one can use the Aldous condition [A] to find a Borel subsetA of D([0, T ], E∗A)
such that

inf
n∈N

PXn (A) > 1− ε

2
, and lim

δ→0
sup
u∈A

wE∗A(u, δ) = 0.

We define K := A ∩B where B :=
{
u ∈ ZT : supt∈[0,T ] ‖Xn(t)‖EA 6 R1

}
. This set K is

compact in ZT by Proposition 4.8 and we can estimate

PXn(K) > PXn (A ∩B) > PXn (A)− PXn (Bc) > 1− ε

2
− ε

2
= 1− ε

for all n ∈ N. �

In metric spaces, one can apply Prokhorov Theorem (see [Par67], Theorem II.6.7) and
Skohorod Theorem (see [Bil99], Theorem 6.7.) to obtain a.s.-convergence from tightness.
Since ZT is not a metric space, we use the following generalization due to Jakubowski [Jak]
and Brzeźniak et al [BHR17] in the variant of Motyl, [Mot12], Corollary 7.3.

Proposition 4.12. Let X1 be a complete separable metric space and X2 a topological space
such that there is a sequence of continuous functions fm : X2 → R that separates points of
X2. Define X := X1×X2 and equip X with the topology induced by the canonical projections
πj : X1 × X2 → Xj. Let (Ω,F ,P) be a probability space and (χn)n∈N be a tight sequence of
random variables in (X ,B(X1)⊗A) , where A is the σ-algebra generated by fm, m ∈ N.
Assume that there is a random variable η in X1 such that Pπ1◦χn = Pη.

Then, there are a subsequence (χnk)k∈N and random variables χ̃k, χ̃ in X for k ∈ N on
a common probability space (Ω̃, F̃ , P̄) with

i) P̄χ̃k = Pχnk for k ∈ N,
ii) χ̃k → χ̃ in X almost surely for k →∞,
iii) π1 ◦ χ̃k = π1 ◦ χ̃ almost surely.
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5. Energy Estimates for the solutions of the Galerkin approximation

In the following section, we formulate an approximation of (1.1) and prove existence and
uniqueness, conservation of the L2-norm as well as uniform bounds of the energy of the
solutions to the approximated equation.

Recall from Lemma 2.3, that S has the representation

Sx =
∞∑
m=1

λm
(
x, hm

)
H
hm, x ∈ D(S) and D(S) =

{
x ∈ H :

∞∑
m=1

λ2
m|
(
x, hm

)
H
|2 <∞

}
,

with an orthonormal basis (hm)m∈N of the complex Hilbert space
(
H,
(
·, ·
)
H

)
, eigenvalues

λm > 0 such that λm →∞ as m→∞. For n ∈ N0, we set

Hn := span
{
hm : m ∈ N, λm < 2n+1

}
and denote the orthogonal projection from H to Hn by Pn, i.e.

Pnx =
∑

λm<2n+1

(
x, hm

)
H
hm, x ∈ H.

Since S and A commute by Assumption 2.1, we deduce that ‖Pn‖L(EA) 6 1 and by density
of H in E∗A, we can extend Pn to an operator Pn : E∗A → Hn with ‖Pn‖E∗A→E∗A 6 1 and

〈v, Pnv〉 ∈ R, 〈v, Pnw〉 =
(
Pnv, w

)
H
, v ∈ E∗A, w ∈ EA. (5.1)

Unfortunately, the operators Pn, n ∈ N0, are, in general, not uniformly bounded from
Lα+1(M) to Lα+1(M). Therefore, we have to use another sequence operators introduced in
[BHW17] to cut off the noise terms.

Proposition 5.1. There exists a sequence (Sn)n∈N0
of self-adjoint operators Sn : H → Hn

for n ∈ N0 with Snψ → ψ in EA for n→∞ and ψ ∈ EA and the uniform norm estimates

sup
n∈N0

‖Sn‖L(H) 6 1, sup
n∈N0

‖Sn‖L(EA) 6 1, sup
n∈N0

‖Sn‖L(Lα+1) <∞. (5.2)

A proof of this result can be in [BHW17], Proposition 5.2. For convenience of the reader,
we present an alternative proof.

Proof. Step 1. We take a function ρ ∈ C∞c (0,∞) with supp ρ ⊂ [1
2
, 2] and

∑
m∈Z ρ(2−mt) =

1 for all t > 0. For the existence of ρ with these properties, we refer to [BL76], Lemma
6.1.7. Then, we fix n ∈ N0 and define

sn : (0,∞)→ C, sn(λ) :=
n∑

m=−∞

ρ(2−mλ).

Let k ∈ Z and λ ∈ [2k−1, 2k). From supp ρ ⊂ [1
2
, 2], we infer

1 =
∞∑

m=−∞

ρ(2−mλ) = ρ(2−(k−1)λ) + ρ(2−kλ) =
k∑

m=−∞

ρ(2−mλ).
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In particular

sn(λ) =


1, λ ∈ (0, 2n),

ρ(2−nλ), λ ∈ [2n, 2n+1),

0, λ > 2n+1.

(5.3)

We define Sn := sn(S) for n ∈ N0. Since sn is real-valued and bounded by 1, the operator Sn
is selfadjoint with ‖Sn‖L(H) 6 1. Furthermore, Sn and A commute due to the assumption
that S and A commute. In particular, this implies ‖Sn‖L(EA) 6 1 and Snψ → ψ for all
ψ ∈ EA by the convergence property of the Borel functional calculus. Moreover, the range
of Sn is contained in Hn since we have the representation

Snx =
∑
λm<2n

(
x, hm

)
H
hm +

∑
λm∈[2n,2n+1)

ρ(2−nλm)
(
x, hm

)
H
hm, x ∈ H,

as a consequence of (5.3).
Step 2. Next, we show the uniform estimate in Lα+1(M) based on a spectral multiplier

theorem by Kunstmann and Uhl, [KU15], for operators with generalized Gaussian bounds.
In view of Theorem 5.3 in [KU15], Lemma 2.19 and Fact 2.20 in [Uhl11], it is sufficient to
show that sn satisfies the Mihlin condition

sup
λ>0
|λks(k)

n (λ)| 6 Ck, k = 0, . . . , γ, (5.4)

for some γ ∈ N uniformly in n ∈ N0. This can be verified by the calculation

sup
λ>0
|λks(k)

n (λ)| = sup
λ∈[2n,2n+1)

|λks(k)
n (λ)| = sup

λ∈[2n,2n+1)

∣∣∣∣λk dk

dλk
ρ(2−nλ)

∣∣∣∣ 6 2k‖ρ(k)‖∞

for all k ∈ N0. �

We set

Bn(l) =
N∑
m=1

lmSnBmSn, n ∈ N, l ∈ RN

and

ũ0,n :=

{
Snu0

‖u0‖H
‖Snu0‖H

, Snu0 6= 0,

0, Snu0 = 0.
(5.5)

From Snu0 → u0 in H, we infer

ũ0,n → u0, n→∞. (5.6)

Moreover, there is C0 > 0 such that we have

1 6
‖u0‖H
‖Snu0‖H

6 C0. (5.7)
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for n > n0(u0) := min{n ∈ N : Snu0 6= 0} ∈ N∪{∞} . For n ∈ N, we consider the Galerkin
equation

un(t) = ũ0,n − i

∫ t

0

(Aun(s) + PnF (un(s))) ds+

∫ t

0

∫
{|l|61}

[
e−iBn(l)un(s−)− un(s−)

]
η̃(ds, dl)

+

∫ t

0

∫
{|l|61}

{
e−iBn(l)un(s)− un(s) + iBn(l)un(s)

}
ν(dl)ds, t ∈ [0, T ]. (5.8)

In order to prove the global wellposedness of (5.8) and estimates for the solution un uni-
formly in n ∈ N, we need some auxiliary Lemmata. We start with properties of the
operators Bn(l).

Lemma 5.2. Let n ∈ N and l ∈ RN . Then, we have

‖Bn(l)‖L(H) 6 |l|b
1
2
H , ‖Bn(l)‖L(EA) 6 |l|b

1
2
EA
, ‖Bn(l)‖L(Lα+1) 6 |l|b

1
2
α+1 sup

n∈N
‖Sn‖2

L(Lα+1).

Moreover,
(
e−itBn(l)

)
t∈R is a group of unitary operators on H with

‖e−itBn(l)‖L(EA) 6 e
|t||l|b

1
2
EA , ‖e−itBn(l)‖L(Lα+1) 6 e

|t||l|b
1
2
α+1 supn∈N ‖Sn‖2L(Lα+1) , t ∈ R.

Proof. By the boundedness of (Sn)n∈N ∈ L(Lα+1)
N
, we deduce that

‖Bn(l)‖L(Lα+1) 6
N∑
m=1

|lm|‖SnBmSn‖L(Lα+1) 6 |l|

(
N∑
m=1

‖Bm‖2
L(Lα+1)

) 1
2

sup
n∈N
‖Sn‖2

L(Lα+1)

= |l|b
1
2
α+1 sup

n∈N
‖Sn‖2

L(Lα+1). (5.9)

The estimates of Bn(l) in spaces H and EA can be shown analogously using ‖Sn‖L(H) = 1
and ‖Sn‖L(EA) = 1. Since Sn and Bm are self-adjoint on H for n ∈ N and m ∈ {1, . . . ,M} ,
the Stone Theorem yields that

(
e−itBn(l)

)
t∈R is a unitary group on H. Moreover,

‖e−itBn(l)x‖EA 6 e|t|‖Bn(l)‖L(EA)‖x‖EA 6 e
|t||l|b

1
2
EA‖x‖EA , x ∈ EA, t ∈ R,

‖e−itBn(l)x‖Lα+1 6 e|t|‖Bn(l)‖L(Lα+1)‖x‖Lα+1

6 e
|t||l|b

1
2
α+1 supn∈N ‖Sn‖2L(Lα+1)‖x‖Lα+1 , x ∈ Lα+1(M), t ∈ R.

�

In the next Lemma inspired by Lemma 2.2 in [BM17] , we show how to control the
differences in (5.8) in the H-norm.

Lemma 5.3. For every n ∈ N, l ∈ B and x ∈ H, the following inequalities hold:

‖e−iBn(l)x− x‖H 6 b
1
2
H |l|‖x‖H ,
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‖e−iBn(l)x− x+ iBn(l)x‖H 6
1

2
bH |l|2‖x‖H .

Proof. The identities

e−iBn(l)x− x =

∫ 1

0

d

dt
e−itBn(l)xdt = −iBn(l)

∫ 1

0

e−itBn(l)xdt

and

e−iBn(l)x− x+ iBn(l)x =

∫ 1

0

∫ s

0

d2

dt2
e−itBn(l)xdtds = −Bn(l)2

∫ 1

0

∫ s

0

e−itBn(l)xdtds

and Lemma 5.2 lead to

‖e−iBn(l)x− x‖H 6 ‖Bn(l)‖L(H)

∫ 1

0

‖e−itBn(l)x‖Hdt 6 b
1
2
H |l|‖x‖H ,

‖e−iBn(l)x− x+ iBn(l)x‖H 6 ‖Bn(l)‖2
L(H)

∫ 1

0

∫ s

0

‖e−itBn(l)x‖Hdtds 6
1

2
bH |l|2‖x‖H .

�

Next, we prove the well-posedness of the Galerkin equation. Moreover, we show that
the Marcus noise and the approximation do not destroy the mass conservation which is
well-known for the deterministic nonlinear Schrödinger equation.

Proposition 5.4. For each n ∈ N, there is a unique global strong solution un ∈ D([0, T ], Hn)
of (5.8) and we have the equality

‖un(t)‖H = ‖ũ0,n‖H = ‖u0‖H (5.10)

almost surely for all t ∈ [0, T ].

Proof. Step 1. We fix n ∈ N. To obtain a global solution, we regard Hn as a finite
dimensional real Hilbert space equipped with the scalar product

(
u, v
)
Hn

:= Re
(
u, v
)
H

and check the assumptions of [ABW10], Theorem 3.1 for the coefficients defined by

ξ = ũ0,n, σ(u) = 0,

b(u) = −iAu− iPnF (u) +

∫
{|l|61}

{
e−iBn(l)u− u+ iBn(l)u

}
ν(dl),

g(u, l) =
[
e−iBn(l)u− u

]
for u ∈ Hn and l ∈ B. Let R > 0. We take u, v ∈ Hn such that ‖u‖H , ‖v‖H 6 R and
estimate

‖b(u)− b(v)‖H 6‖A|Hn‖L(H)‖u− v‖H + ‖F (u)− F (v)‖H

+

∫
{|l|61}

‖e−iBn(l)(u− v)− (u− v) + iBn(l)(u− v)‖H ν(dl). (5.11)



20 Z. BRZEŹNIAK, F. HORNUNG, AND U. MANNA

By Lemma 5.3 and (2.13)∫
{|l|61}

‖e−iBn(l)(u− v)− (u− v) + iBn(l)(u− v)‖H ν(dl) 6
1

2
bH

∫
{|l|61}

|l|2ν(dl)‖u− v‖H

. ‖u− v‖H . (5.12)

To estimate the nonlinearity, we use the equivalence of all norms in Hn and (2.8) to get

‖PnF (u)− PnF (v)‖H .n ‖PnF (u)− PnF (v)‖E∗A . ‖F (u)− F (v)‖
L
α+1
α

.
(
‖u‖Lα+1(M) + ‖v‖Lα+1(M)

)α−1 ‖u− v‖Lα+1(M)

. (‖u‖H + ‖v‖H)α−1 ‖u− v‖H .R ‖u− v‖H . (5.13)

We insert (5.13) and (5.12) in (5.11) to get a constant C = C(R) such that

‖b(u)− b(v)‖H 6 C‖u− v‖H . (5.14)

Moreover, we have∫
{|l|61}

‖g(u, l)− g(v, l)‖2
Hν(dl) 6 bH

∫
{|l|61}

|l|2ν(dl)‖u− v‖2
H . ‖u− v‖2

H (5.15)

where we used Lemma 5.3 and (2.13). To check the one-sided linear growth condition, we
use (2.5) and (5.12) for v = 0 and obtain a constant K1 > 0 with

2
(
u, b(u)

)
Hn

+

∫
{|l|61}

‖g(u, l)‖2
Hν(dl) 62‖A|Hn‖L(H)‖u‖2

H + 2 Re
(
u,−iF (u)

)
H

+ 2‖u‖H
∫
{|l|61}

‖e−iBn(l)u− u+ iBn(l)u‖H ν(dl)

6K1‖u‖2
H . (5.16)

In view of (5.14), (5.15) and (5.16), we can apply Theorem 3.1 of [ABW10] and get a
unique global strong solution of (5.8) for each n ∈ N.

Step 2. It remains to show (5.10). The functionM : Hn → R defined byM(v) := ‖v‖2
H

for v ∈ Hn is continuously Fréchet-differentiable with

M′[v]h1 = 2 Re
(
v, h1

)
L2 ,

for v, h1, h2 ∈ Hn. By the Itô formula and (2.15), we get almost surely, for all t ∈ [0, T ],

‖un(t)‖2
H =‖ũ0,n‖2

H + 2

∫ t

0

Re
(
un(s),−iAun(s)− iPnF (un(s))

)
L2ds

+

∫ t

0

∫
{|l|61}

[
‖e−iBn(l)un(s−)‖2

H − ‖un(s−)‖2
H

]
η̃(dl, ds)

+

∫ t

0

∫
{|l|61}

[
‖e−iBn(l)un(s)‖2

H − ‖un(s)‖2
H

]
ν(dl)ds
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− 2

∫ t

0

∫
{|l|61}

Re
(
un(s),−i

N∑
m=1

lmSnBmSnun(s)
)
L2ν(dl)ds.

By

Re
(
v,−iAv

)
L2 = Re

[
i‖A

1
2v‖2

H

]
= 0, Re

(
v,−iPnF (v)

)
L2 = 0, Re

(
v, iBmv

)
L2 = 0

for v ∈ Hn and the fact that SnB(l)Sn is self-adjoint and hence, e−iBn(l) unitary, this
simplifies to

‖un(t)‖2
H =‖ũ0,n‖2

H = ‖u0‖2
H

almost surely for all t ∈ [0, T ]. �

Recall that by Assumption 2.4, the nonlinearity F has a real antiderivative denoted by
F̂ . The second ingredient for uniform estimates in EA is to control the energy associated
to the NLS.

Definition 5.5. We define the energy E function by

E(u) :=
1

2
‖A

1
2u‖2

H + F̂ (u), u ∈ EA.

Note that E(u) is well defined for every u ∈ EA by the continuity of the embedding
EA ↪→ Lα+1(M). The compactness of this embedding formulated in Assumption 2.1 is not
needed here. Before we estimate the energy of the solutions un of (5.8), we need some
preparations.

Lemma 5.6. a) There is a constant C = C(bEA , bα+1, α, F ) > 0 such that for every n ∈ N,
we have

|E(e−iBn(l)x)− E(x)| 6C|l|
(
‖x‖2

EA
+ ‖x‖α+1

Lα+1

)
for all x ∈ Hn, and l ∈ RN with |l| 6 1.
b) There is a constant C = C(bEA , bα+1, q, α, F ) > 0 such that for every n ∈ N, we have

|E(e−iBn(l)x)− E(x) + E ′[x](iBn(l)x)| 6C|l|2
(
‖x‖2

EA
+ ‖x‖α+1

Lα+1

)
for all x ∈ Hn, and l ∈ RN with |l| 6 1.

Proof. ad a): The map E is twice continuously Fréchet-differentiable with

E ′[v]h = Re〈Av + F (v), h〉,

E ′′[v](h1, h2) = Re
(
A

1
2h1, A

1
2h2

)
L2 + Re〈F ′[v]h1, h2〉

for v, h1, h2 ∈ Hn. Let us fix x ∈ Hn and l ∈ B. Then, we get

E(e−iBn(l)x)− E(x) =

∫ 1

0

d

dt
E(e−itBn(l)x)dt =

∫ 1

0

E ′[e−itBn(l)x]
(
−iBn(l)e−itBn(l)x

)
dt

=

∫ 1

0

Re
〈
Ae−itBn(l)x+ F (e−itBn(l)x),−iBn(l)e−itBn(l)x

〉
dt. (5.17)
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We define f : [0, 1]× RN → [0,∞) by

f(t, l) := max

{
1, e

2t|l|b
1
2
EA + e

(α+1)t|l|b
1
2
α+1 supn∈N ‖Sn‖2L(Lα+1)

}
, t ∈ [0, 1], l ∈ RN ,

and by the properties of Bn(l) from Lemma 5.2, we estimate the integrand of (5.17):

|
(
Ae−itBn(l)x,−iBn(l)e−itBn(l)x

)
L2| 6 ‖A

1
2 e−itBn(l)x‖L2‖A

1
2Bn(l)e−itBn(l)x‖L2

6 e
t|l|b

1
2
EA‖x‖EA|l|b

1
2
EA
‖e−itBn(l)x‖EA

6 e
2t|l|b

1
2
EA |l|b

1
2
EA
‖x‖2

EA
(5.18)

and ∣∣∣〈F (e−itBn(l)x),−iBn(l)e−itBn(l)x
〉∣∣∣ 6 ‖F (e−itBn(l)x)‖

L
α+1
α
‖Bn(l)e−itBn(l)x‖Lα+1

6 CF,1‖Bn(l)‖L(Lα+1)‖e−itBn(l)x‖α+1
Lα+1

6 CF,1|l|b
1
2
α+1 sup

n∈N
‖Sn‖2

L(Lα+1)‖x‖α+1
Lα+1

e
(α+1)t|l|b

1
2
α+1 supn∈N ‖Sn‖2L(Lα+1) . (5.19)

We obtain

|E(e−iBn(l)x)− E(x)|

6 |l|max

{
b

1
2
EA
, CF,1b

1
2
α+1 sup

n∈N
‖Sn‖2

L(Lα+1)

}(
‖x‖2

EA
+ ‖x‖α+1

Lα+1

) ∫ 1

0

f(t, l)dt

and the assertion follows from∫ 1

0

f(t, l)dt =

∫ 1

0

max

{
1, e

2t|l|b
1
2
EA + e

(α+1)t|l|b
1
2
α+1 supn∈N ‖Sn‖2L(Lα+1)

}
dt

6 max

{
1, e

2b
1
2
EA + e

(α+1)b
1
2
α+1 supn∈N ‖Sn‖2L(Lα+1)

}
<∞, |l| 6 1. (5.20)

ad b): Let us fix x ∈ Hn and l ∈ B. We start with the identity

E(e−iBn(l)x)− E(x) + E ′[x](iBn(l))x =

∫ 1

0

(
d

ds
E(e−isBn(l)x)− d

ds
E(e−isBn(l)x)

∣∣∣∣
s=0

)
ds

=

∫ 1

0

∫ s

0

d2

dt2
E(e−itBn(l)x)dtds

=

∫ 1

0

∫ s

0

E ′[e−itBn(l)x]
(
−Bn(l)2e−itBn(l)x

)
dtds

+

∫ 1

0

∫ s

0

E ′′[e−itBn(l)x]
(
−iBn(l)e−itBn(l)x,−iBn(l)e−itBn(l)x

)
dtds

=: I1 + I2.
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As above

|I1| 6|l|2 max

{
bEA , CF,1bα+1 sup

n∈N
‖Sn‖4

L(Lα+1)

}(
‖x‖2

EA
+ ‖x‖α+1

Lα+1

) ∫ 1

0

f(t, l)dt.

We further decompose I2 = I2,1 + I2,2 with

I2,1 =

∫ 1

0

∫ s

0

‖A
1
2Bn(l)e−itBn(l)x‖2

L2dtds,

I2,2 =

∫ 1

0

∫ s

0

Re
〈
F ′[e−itBn(l)x]Bn(l)e−itBn(l)x,Bn(l)e−itBn(l)x

〉
dtds.

By Lemma 5.2,

|I2,1| 6
∫ 1

0

∫ s

0

|l|2bEA‖e−itBn(l)x‖2
EA

dtds 6 ‖x‖2
EA
|l|2bEA

∫ 1

0

f(t, l)dt.

Moreover, the estimate∣∣∣〈F ′[e−itBn(l)x]Bn(l)e−itBn(l)x,Bn(l)e−itBn(l)x
〉∣∣∣

6 ‖F ′[e−itBn(l)x]Bn(l)e−itBn(l)x‖
L
α+1
α
‖Bn(l)e−itBn(l)x‖Lα+1

6 CF,2‖Bn(l)‖2
L(Lα+1)‖e−itBn(l)x‖α+1

Lα+1

6 CF,2|l|2bα+1 sup
n∈N
‖Sn‖4

L(Lα+1)f(t, l)‖x‖α+1
Lα+1

yields

|I2,2| 6
∫ 1

0

∫ s

0

∣∣〈F ′[e−itBn(l)x]Bn(l)e−itBn(l)x,Bn(l)e−itBn(l)x
〉∣∣ dtds

6CF,2|l|2bα+1 sup
n∈N
‖Sn‖4

L(Lα+1)‖x‖α+1
Lα+1

∫ 1

0

f(t, l)dt

and finally, we find a constant C = C(bα+1, bEA , supn∈N ‖Sn‖L(Lα+1), F ) such that∣∣E(e−iBn(l)x)− E(x) + E ′[x](iBn(l)x)
∣∣ 6 C|l|2

(
‖x‖2

EA
+ ‖x‖α+1

Lα+1

) ∫ 1

0

f(t, l)dt

and the second assertion also follows from (5.20). �

The next observation will be useful to simplify the following arguments based on the
Gronwall Lemma to estimate of the energy. It has already appeared in [BHW17], Lemma
5.6, but we need it in a slightly more general form.

Lemma 5.7. Let r ∈ [1,∞), q ∈ (1,∞), ε > 0, T > 0 and X ∈ Lr(Ω, L∞(0, T )). Then,

‖X‖Lr(Ω,Lq(0,t)) 6 ε‖X‖Lr(Ω,L∞(0,t)) + ε1−q 1

q

(
1− 1

q

)q−1 ∫ t

0

‖X‖Lr(Ω,L∞(0,s))ds, t ∈ [0, T ].
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Proof. As a consequence of Young’s inequality, we obtain

a1− 1
q b

1
q 6 εa+ ε1−q 1

q

(
1− 1

q

)q−1

b, a, b > 0, ε > 0. (5.21)

Then, interpolation of Lq(0, t) between L∞(0, t) and L1(0, t) and (5.21) yield

‖X‖Lq(0,t) 6 ‖X‖
1− 1

q

L∞(0,t)‖X‖
1
q

L1(0,t) 6 ε‖X‖L∞(0,t) + ε1−q 1

q

(
1− 1

q

)q−1

‖X‖L1(0,t).

Now, we take the Lr(Ω)-norm and apply Minkowski’s inequality to get

‖X‖Lr(Ω,Lq(0,t)) 6 ε‖X‖Lr(Ω,L∞(0,t)) + ε1−q 1

q

(
1− 1

q

)q−1 ∫ t

0

‖X(s)‖Lr(Ω)ds

6 ε‖X‖Lr(Ω,L∞(0,t)) + ε1−q 1

q

(
1− 1

q

)q−1 ∫ t

0

‖X‖Lr(Ω,L∞(0,s))ds.

�

Now, we are ready prove that the solutions of (5.8) have uniform energy estimates and
satisfy the Aldous condition.

Proposition 5.8. Let us assume Assumption 2.6 i). Then, the following assertions hold:
a) For all q ∈ [1,∞) there exists C = C(E(u0), T, bEA , bα+1, q, α, F ) > 0 such that

sup
n∈N

E
[

sup
t∈[0,T ]

[
‖un(t)‖2

H + E(un(t))
]q ]
6 C.

b) The sequence (un)n∈N satisfies the Aldous condition [A] in E∗A.
c) The sequence (Pun)n∈N is tight in ZT .

Proof. Ad c): Follows from the two other parts by applying Proposition 4.11.
Ad a): Since ũ0,n = 0 already implies un ≡ 0, we may assume ũ0,n 6= 0 without loss of
generality. Furthermore, we only prove the assertion for q > 2. The case q ∈ [1, 2] is a
simple consequence of the Hölder inequality. Recall that the energy E is twice Frechet
differentiable. In particular, the function E ′ is Hölder continuous. Hence, we can use
Proposition 5.4 and the Itô formula B.2 to deduce

1

2
‖un(s)‖2

H+E (un(s)) =
1

2
‖ũ0,n‖2

H + E (ũ0,n)

+

∫ s

0

Re〈Aun(r) + F (un(r)),−iAun(r)− iPnF (un(r))〉dr

+

∫ s

0

∫
{|l|61}

[
E(e−iBn(l)un(r−))− E(un(r−))

]
η̃(dl, dr)

+

∫ s

0

∫
{|l|61}

[
E(e−iBn(l)un(r))− E(un(r)) + E ′[un(r)] (iBn(l)un(r))

]
ν(dl)dr

=:
1

2
‖ũ0,n‖2

H + E (ũ0,n) + I1(s) + I2(s) + I3(s) (5.22)
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almost surely for all s ∈ [0, T ]. The first integral I1(s) cancels due to the following three
identities which hold for all for all v ∈ Hn:

Re〈F (v),−iPnF (v)〉 = Re [i〈F (v), PnF (v)〉] = 0;

Re [〈Av,−iPnF (v)〉+ 〈F (v),−iAv〉] = Re
[
−〈Av, iF (v)〉+ 〈Av, iF (v)〉

]
= 0;

Re
(
Av,−iAv

)
L2 = Re

[
i‖Av‖2

H

]
= 0

By the maximal inequality for the Poisson stochastic integral, see Theorem 4.5 in
[DMN13], and Lemma 5.6, we obtain(

E

[
sup
s∈[0,t]

|I2(s)|q
]) 1

q

.

(
E
(∫ t

0

∫
{|l|61}

∣∣E(e−iBn(l)un(s))− E(un(s))
∣∣2 ν(dl)ds

) q
2

) 1
q

+

(
E
∫ t

0

∫
{|l|61}

∣∣E(e−iBn(l)un(s))− E(un(s))
∣∣q ν(dl)ds

) 1
q

.

(
E
(∫ t

0

∫
{|l|61}

|l|2
(
‖un(s)‖2

EA
+ ‖un(s)‖α+1

Lα+1

)2
ν(dl)ds

) q
2

) 1
q

+

(
E
∫ t

0

∫
{|l|61}

|l|q
(
‖un(s)‖2

EA
+ ‖un(s)‖α+1

Lα+1

)q
ν(dl)ds

) 1
q

.

(5.23)

We introduce the abbreviation

Xn :=
1

2
‖un‖2

L2 + E(un)

and observe

‖un‖2
EA

+ ‖un‖α+1
Lα+1 . Xn. (5.24)

Moreover, we have ∫
{|l|61}

|l|q ν(dl) 6
∫
{|l|61}

|l|2 ν(dl) <∞, q > 2. (5.25)

Thus, we can conclude(
E

[
sup
s∈[0,t]

|I2(s)|q
]) 1

q

.

(
E
(∫ t

0

Xn(s)2ds

) q
2

) 1
q

+

(
E
∫ t

0

Xn(s)qds

) 1
q

= ‖Xn‖Lq(Ω,L2(0,t)) + ‖Xn‖Lq(Ω,Lq(0,t)), t ∈ [0, T ]. (5.26)
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By Lemma 5.6 b), (5.24) and the Minkowski inequality(
E
[

sup
s∈[0,t]

|I3(s)|q
]) 1

q

.
∫
{|l|61}

|l|2ν(dl)

(
E
(∫ t

0

(
‖un(r)‖2

EA
+ ‖un(r)‖α+1

Lα+1

)
dr

)q) 1
q

.
∫
{|l|61}

|l|2ν(dl)

∫ t

0

‖Xn(r)‖Lq(Ω) dr .
∫ t

0

‖Xn‖Lq(Ω,L∞(0,r)) dr, t ∈ [0, T ].

Therefore, from (5.22) and the previous estimates we get

‖Xn‖Lq(Ω,L∞(0,t)) 6
1

2
‖ũ0,n‖2

H + E(ũ0,n) +

(
E
[

sup
s∈[0,t]

|I2(s)|q
]) 1

q

+

(
E
[

sup
s∈[0,t]

|I3(s)|q
]) 1

q

.
1

2
‖u0‖2

H + E(ũ0,n) + ‖Xn‖Lq(Ω,L2(0,t)) + ‖Xn‖Lq(Ω,Lq(0,t))

+

∫ t

0

‖Xn‖Lq(Ω,L∞(0,s))ds, t ∈ [0, T ]. (5.27)

Using Lemma 5.7 with ε > 0 to estimate ‖Xn‖Lq(Ω,L2(0,t)) and ‖Xn‖Lq(Ω,Lq(0,t)), we get for
t ∈ [0, T ],

‖Xn‖Lq(Ω,L∞(0,t)) .
1

2
‖u0‖2

H + E(ũ0,n) + ε‖Xn‖Lq(Ω,L∞(0,t)) +

∫ t

0

‖Xn‖Lq(Ω,L∞(0,s))ds.

Taking ε sufficiently small we end up with

‖Xn‖Lq(Ω,L∞(0,t)) .
1

2
‖u0‖2

H + E(ũ0,n) +

∫ t

0

‖Xn‖Lq(Ω,L∞(0,s))ds, t ∈ [0, T ].

Finally, the Gronwall Lemma yields

‖Xn‖Lq(Ω,L∞(0,t)) 6 C

(
1

2
‖u0‖2

H + E(ũ0,n)

)
eCt, t ∈ [0, T ],

where the constant C = C(bEA , bα+1, q, α, F ) > 0 is uniform in n ∈ N. As a consequence of
(5.7) and Proposition 5.1, we obtain

E(ũ0,n) .
‖u0‖2

H

‖Snu0‖2
H

‖A
1
2Snu0‖2

H +
‖u0‖α+1

H

‖Snu0‖α+1
H

‖Snu0‖α+1
Lα+1

. ‖A
1
2u0‖2

H + ‖u0‖α+1
Lα+1 . E(u0) (5.28)

for n > n0 and E(ũ0,n) = 0 for n < n0. This completes the proof of Proposition 5.8 a).

Ad b): Now, we continue with the proof of the Aldous condition. Let us fix n ∈ N. We
have for all t ∈ [0, T ], almost surely

un(t)− ũ0,n =− i

∫ t

0

Aun(s)ds− i

∫ t

0

PnF (un(s))ds
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+

∫ t

0

∫
{|l|61}

[
e−iBn(l)un(s−)− un(s−)

]
η̃(ds, dl)

+

∫ t

0

∫
{|l|61}

{
e−iBn(l)u(s)− u(s) + iBn(l)u(s)

}
ν(dl)ds

= : J1(t) + J2(t) + J3(t) + J4(t)

in Hn. Let us next fix a sequence (τn)n∈N of stopping times and θ > 0. By the above we
infer that

‖un((τn + θ) ∧ T )− un(τn)‖E∗A 6
4∑

k=1

‖Jk((τn + θ) ∧ T )− Jk(τn)‖E∗A .

Hence, for a fixed η > 0, we get

P
{
‖un((τn + θ) ∧ T )− un(τn)‖E∗A > η

}
6

4∑
k=1

P
{
‖Jk((τn + θ) ∧ .T )− Jk(τn)‖E∗A >

η

4

}
(5.29)

We aim to apply the Chebyshev inequality and estimate the expected value of each term
in the sum on the RHS of (5.29). We use part a) for

E‖J1((τn + θ) ∧ T )− J1(τn)‖E∗A 6 E
∫ (τn+θ)∧T

τn

‖Aun(s)‖E∗Ads 6 E
∫ (τn+θ)∧T

τn

‖A
1
2un(s)‖Hds

. θE
[

sup
s∈[0,T ]

‖un(s)‖EA
]
6 θE

[
sup
s∈[0,T ]

‖un(s)‖2
EA

] 1
2 6 θC1;

the embedding L
α+1
α (M) ↪→ E∗A and the nonlinear estimates (2.4) and (2.9) for

E‖J2((τn + θ) ∧ T )− J2(τn)‖E∗A 6 E
∫ (τn+θ)∧T

τn

‖PnF (un(s))‖E∗Ads

6 E
∫ (τn+θ)∧T

τn

‖F (un(s))‖E∗Ads . E
∫ (τn+θ)∧T

τn

‖F (un(s))‖
L
α+1
α (M)

ds

. E
∫ (τn+θ)∧T

τn

‖un(s)‖αLα+1(M)ds . θE
[

sup
s∈[0,T ]

‖un(s)‖αEA
]
6 θC2

By the Levy-Itô-isometry, Lemma 5.3, (2.13) and Proposition 5.4 we get

E‖J3((τn + θ) ∧ T )− J3(τn)‖2
E∗A
. E

∥∥∥∥∥
∫ (τn+θ)∧T

τn

∫
{|l|61}

[
e−iBn(l)un(s−)− un(s−)

]
η̃(ds, dl)

∥∥∥∥∥
2

H

= E
∫ (τn+θ)∧T

τn

∫
{|l|61}

‖e−iBn(l)un(s)− un(s)‖2
H ν(dl)ds

6 bH

∫
{|l|61}

|l|2ν(dl)E
∫ (τn+θ)∧T

τn

‖un(s)‖2
Hds . θ‖u0‖2

H
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and

E‖J4((τn + θ) ∧ T )−J4(τn)‖E∗A

= E

∥∥∥∥∥
∫ (τn+θ)∧T

τn

∫
{|l|61}

{
e−iBn(l)un(s)− un(s) + iBn(l)un(s)

}
ν(dl)ds

∥∥∥∥∥
E∗A

. E
∫ (τn+θ)∧T

τn

∫
{|l|61}

∥∥e−iBn(l)un(s)− un(s) + iBn(l)un(s)
∥∥
H
ν(dl)ds

6
1

2
bH

∫
{|l|61}

|l|2ν(dl)E
∫ (τn+θ)∧T

τn

‖un(s)‖Hds . θ‖u0‖H .

By the Chebyshev inequality, we obtain for a given η > 0

P
{
‖Jk((τn + θ) ∧ T )− Jk(τn)‖E∗A >

η

4

}
6

4

η
E‖Jk((τn + θ) ∧ T )− Jk(τn)‖E∗A 6

4Ckθ

η
(5.30)

for k ∈ {1, 2, 4} and

P
{
‖J3((τn + θ) ∧ T )− J3(τn)‖E∗A >

η

4

}
6

16

η2
E‖J3((τn + θ) ∧ T )− J3(τn)‖2

E∗A
6

16C4θ

η2
.

(5.31)

Let us fix ε > 0. Due to estimates (5.30) and (5.31) we can choose δ1, . . . , δ4 > 0 such that

P
{
‖Jk((τn + θ) ∧ T )− Jk(τn)‖E∗A >

η

4

}
6
ε

4

for 0 < θ 6 δk and k = 1, . . . , 4. With δ := min {δ1, . . . , δ4} , using (5.29) we get

P
{
‖Jk((τn + θ) ∧ T )− Jk(τn)‖E∗A > η

}
6 ε

for all n ∈ N and 0 < θ 6 δ and therefore, the Aldous condition [A] holds in E∗A. �

We continue with the a priori estimate for solutions of (5.8) with a focusing nonlinearity.
Note that this case is harder since the expression

1

2
‖v‖2

H + E(v) =
1

2
‖v‖2

EA
+ F̂ (v), v ∈ Hn,

does not dominate ‖v‖2
EA
, because F̂ is negative. Nevertheless, we will see that the EA-

norm is still the dominating part under the additional Assumption 2.6 i’), which leads to
a restriction to the maximal degree of the nonlinearity F. In particular, uniform estimates
in EA are still possible.

Proposition 5.9. Under Assumption 2.6 i’), the following assertions hold:
a) For all r ∈ [1,∞), there is a constant

C = C(‖u0‖H , ‖A
1
2u0‖H , ‖u0‖Lα+1 , γ, α, T, F, bEA , bα+1, r) > 0
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with

sup
n∈N

E
[

sup
t∈[0,T ]

‖un(t)‖rEA
]
6 C;

b) The sequence (un)n∈N satisfies the Aldous condition [A] in E∗A.
In particular, the sequence (Pun)n∈N is tight in ZT by Proposition 4.11.

Proof. ad a): Let ε > 0. Assumption 2.6 i’) and Young’s inequality imply that there are
γ > 0 and Cε > 0 such that

‖u‖α+1
Lα+1(M) . ε‖u‖2

EA
+ Cε‖u‖γH , u ∈ EA, (5.32)

and therefore by Proposition 5.4, we infer that

−F̂ (un(s)) . ‖un(s)‖α+1
Lα+1(M) . ε‖un(s)‖2

EA
+ Cε‖un(s)‖γH

. ε‖A
1
2un(s)‖2

H + ε‖u0‖2
H + Cε‖u0‖γH , s ∈ [0, T ]. (5.33)

By analogous calculations as in the proof of Proposition 5.8 we get

1

2
‖A

1
2un(s)‖2

H =− F̂ (un(s)) + E (un(s))

=− F̂ (un(s)) + E (ũ0,n)

+

∫ s

0

∫
{|l|61}

[
E(e−iBn(l)un(r−))− E(un(r−))

]
η̃(dl, dr)

+

∫ s

0

∫
{|l|61}

[
E(e−iBn(l)un(r))− E(un(r)) + E ′[un(r)] (iBn(l)un(s))

]
ν(dl)dr

=:− F̂ (un(s)) + E (ũ0,n) + I1(s) + I2(s) (5.34)

almost surely for all t ∈ [0, T ]. We abbreviate

Yn(s) := ‖u0‖2
L2 + ‖A

1
2un(s)‖2

L2 + ‖un(s)‖α+1
Lα+1 , s ∈ [0, T ].

Let q > 2 and recall (5.25) as well as the mass conservation from Proposition 5.4. As in
the proof of Proposition 5.8, we estimate

|E(ũ0,n)| . ‖A
1
2u0‖2

H + ‖u0‖α+1
Lα+1 , (5.35)

(
E

[
sup
s∈[0,t]

|I1(s)|q
]) 1

q

.

(∫
{|l|61}

|l|2ν(dl)

) 1
2

(
E
(∫ t

0

(
‖un(s)‖2

EA
+ ‖un(s)‖α+1

Lα+1

)2
ds

) q
2

) 1
q

+

(∫
{|l|61}

|l|qν(dl)

) 1
q
(
E
∫ t

0

(
‖un(s)‖2

EA
+ ‖un(s)‖α+1

Lα+1

)q
ds

) 1
q

. ‖Yn‖Lq(Ω,L2(0,t)) + ‖Yn‖Lq(Ω,Lq(0,t)); (5.36)
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E
[

sup
s∈[0,t]

|I2(s)|q
]) 1

q

.
∫
{|l|61}

|l|2ν(dl)

∫ t

0

∥∥‖un‖2
EA

+ ‖un‖α+1
Lα+1

∥∥
Lq(Ω,L∞(0,r))

dr

.
∫ t

0

‖Yn‖Lq(Ω,L∞(0,r))dr. (5.37)

Using (5.33), (5.35), (5.36) and (5.37) in (5.34), we obtain∥∥∥‖A 1
2un‖2

L2

∥∥∥
Lq(Ω,L∞(0,t))

.
∥∥∥‖A 1

2un‖2
L2

∥∥∥
Lq(Ω,L∞(0,t))

ε+ ε‖u0‖2
L2 + Cε‖u0‖γL2

+ ‖A
1
2u0‖2

L2 + ‖u0‖α+1
Lα+1 + ‖Yn‖Lq(Ω,L2(0,t))

+ ‖Yn‖Lq(Ω,Lq(0,t)) +

∫ t

0

‖Yn‖Lq(Ω,L∞(0,r))dr.

If we employ Lemma 5.7 to estimate ‖Yn‖Lq(Ω,L2(0,t)) and ‖Yn‖Lq(Ω,Lq(0,t)), we get∥∥∥‖A 1
2un‖2

L2

∥∥∥
Lq(Ω,L∞(0,t))

.
∥∥∥‖A 1

2un‖2
L2

∥∥∥
Lq(Ω,L∞(0,t))

ε+ ε‖u0‖2
L2 + Cε‖u0‖γL2

+ ‖A
1
2u0‖2

L2 + ‖u0‖α+1
Lα+1 + ε‖Yn‖Lq(Ω,L∞(0,t))

+

∫ t

0

‖Yn‖Lq(Ω,L∞(0,r))dr. (5.38)

In order to estimate the terms with Yn by the LHS of (5.38), we exploit (5.33) to get

‖Yn‖Lq(Ω,L∞(0,t)) 6 ‖u0‖2
H +

∥∥∥‖A 1
2un‖2

H

∥∥∥
Lq(Ω,L∞(0,t))

+
∥∥‖un‖α+1

Lα+1

∥∥
Lq(Ω,L∞(0,t))

6 (1 + ε)
∥∥∥‖A 1

2un‖2
H

∥∥∥
Lq(Ω,L∞(0,t))

+ C(ε, ‖u0‖H).

Now, we choose ε > 0 sufficiently small and end up with∥∥∥‖A 1
2un‖2

L2

∥∥∥
Lq(Ω,L∞(0,t))

6 C

(
1 +

∫ t

0

∥∥∥‖A 1
2un‖2

L2

∥∥∥
Lq(Ω,L∞(0,r))

dr

)
for some C = C(‖u0‖L2 , ‖A 1

2u0‖H , ‖u0‖Lα+1 , γ, α, T, F, bEA , bα+1, q) independent of n. From
the Gronwall Lemma, we infer∥∥∥‖A 1

2un‖2
L2

∥∥∥
Lq(Ω,L∞(0,t))

6 CeCt, t ∈ [0, T ]. (5.39)

In view of Proposition 5.4, we have proved the assertion for r = 2q > 4. The case
r ∈ [1, 4] is an easy consequence of the Hölder inequality.

ad b). The proof of the Aldous condition is similar to the defocusing case, see Proposition
5.8 b). �

Corollary 5.10. Under Assumption 2.6, the sequence (un)n∈N of Galerkin solutions is
tight on ZT .

Proof. Immediate consequence of Propositions 4.11, 5.8 and 5.9. �
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6. Construction of a martingale solution

In this section, we will use the compactness results and the uniform estimates from the
previous sections to complete the proof of Theorem 1.1. Let us recall

ZT := D([0, T ], E∗A) ∩ Lα+1(0, T ;Lα+1(M)) ∩ Dw ([0, T ], EA) .

The first step is to prove that Proposition 4.12 can be applied with

X1 := Mν
N̄([0, T ]× RM), X2 := ZT .

Here, Mν
N̄([0, T ] × RM) denotes the set of all N̄-valued Borel measures ξ on [0, T ] × RN

with ξ(Sn) < ∞ for all n ∈ N, for some sequence Sn ⊂ [0, T ] × RN of Borel sets with
Sn ↑ [0, T ]×RN and Leb⊗ν(Sn) <∞ for all n ∈ N. It is well known, see e.g. Lemma 2.53
in the second authors dissertation [Hor18a] or Section 1 in [BDM+11], thatMν

N̄([0, T ]×RM)
is a complete separable metric space.

Moreover, we determine the σ-algebra A. Of course, it would be natural to equip ZT
with the Borel σ-algebra B(ZT ), but it turns out that A is strictly contained in B(ZT ).
Given real-valued functions fm on a topological space Z, we will frequently use the notation
f = (f1, f2, . . . ) and the fact that σ(fm : m ∈ N) = f−1(B(R∞)), where R∞ is equipped
with the locally convex topology induced by the seminorms pk(x) := |xk|.

Lemma 6.1. Let X be a set and fm : X → R, m ∈ N. Let OX be the coarsest topology
such fm is continuous for all m ∈ N. Then, we have

B(X) := σ(OX) = σ(fm : m ∈ N).

Proof. The direction ” ⊃ ” is obvious by the continuity of fm for m ∈ N. In view of the
good set principle, it is sufficient for the other inclusion to show that each O ∈ OX is
contained in the f−1(B(R∞)). Since each O ∈ OX is of the form

O =
⋃
i∈I

K⋂
k=1

f−1
3 (Oi,k), Oi,k open in R∞,

see [Fol99], Proposition 4.4, we can write represent O as the inverse image of the open set⋃
i∈I
⋂K
k=1 Oi,k under the continuous function f, which verifies the assertion. �

Lemma 6.2. There is a countable family F of real-valued continuous functions on ZT that
separates points of ZT and generates the σ-algebra

A = σ (B(Z1 ∩ Z2)|ZT ∪ σ(F3)) , (6.1)

where F3 consists of real-valued continuous functions on Z3 separating points of Z3.

Proof. Step 1. For each Zi, we give a sequence (fm,i)m∈N of continuous functions fm,i :
Zi → R separating points and determine the generated σ-algebras.

Let {ϕk : k ∈ N} be a sequence with ‖ϕk‖EA 6 1 and ‖x‖E∗A = supk∈N |Re〈x, ϕk〉| for all
x ∈ E∗A and {tl : l ∈ N} be dense in [0, T ]. We set

fk,l,1(u) := Re〈u(tl), ϕk〉, u ∈ Z1, k, l ∈ N
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and for n ∈ N, we denote

πt1,...,tn : Z1 → (E∗A)n, u 7→ (u(t1), . . . , u(tn)) .

From [Jak], Corollary 2.4, we know that

B(Z1) = σ(πt1,...,tn : n ∈ N).

But since πt1,...,tn is strongly measurable in (E∗A)n if and only if

Z1 3 u 7→ Re〈πt1,...,tn(u), (ϕk1 , . . . , ϕkn)〉(E∗A)n,(EA)n =
n∑
j=1

fkj ,j,1(u)

for all k1, . . . , kn ∈ N, we obtain B(Z1) = σ(fk,l : k ∈ N, l ∈ N). By right-continuity and the
choice of ϕk, k ∈ N, the fk,l separate points in Z1 and they are continuous since convergence
in Z1 implies pointwise convergence.

The existence of (fm,2)m∈N is a consequence of the Hahn-Banach-Theorem in Z2. For
the details, we refer to [Hor18a], Lemma 2.28. Let {hk : k ∈ N} and {tl : l ∈ N} be dense
subsets of E∗A and [0, T ], respectively. We set

fk,l,3(u) := Re〈u(tl), hk〉, u ∈ Z3, k, l ∈ N.

and denote the enumeration of (fk,l,3)k,l∈N by (fm,3)m∈N . By the definition of the topology in
Z3 and the fact that convergence in D([0, T ]) implies pointwise convergence, we obtain that
fm,3 is continuous. Suppose that fm,3(u1) = fm,3(u2) for all u1, u2 ∈ Z3. From the right-
continuity of [0, T ] 3 t 7→ Re〈uj(t), hk〉 and the density of (tl)l (hk)k, we infer u1(t) = u2(t)
for all t ∈ N, i.e. (fm,3)m∈N separates points in Z3.

Step 2. We define Fj := {fm,j|ZT : m ∈ N} and set A := σ(F ), where F := F1 ∪F2 ∪F3.
We would like to prove (6.1). Above, we obtained σ(fm,j : m ∈ N) = B(Zj) for j = 1, 2.
Since we have

σ (fm,j|Z1∩Z2 : m ∈ N) = σ(fm,j : m ∈ N)|Z1∩Z2

and

B(Z1 ∩ Z2) = σ

( ⋃
j=1,2

B(Zj)|Z1∩Z2

)
,

we conclude

B(Z1 ∩ Z2) = σ

( ⋃
j=1,2

σ (fm,j|Z1∩Z2 : m ∈ N)

)
and thus,

B(Z1 ∩ Z2)|ZT = σ (fm,1|ZT , fm,2|ZT : m ∈ N) = σ(F1 ∪ F2).

Similarly, we obtain A = σ (B(Z1 ∩ Z2)|ZT ∪ σ(F3)) .
�
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Remark 6.3. By Lemma 6.1, we have σ (fm,3 : m ∈ N) = σ(ÕZ3), where ÕZ3 is the coarsest
topology such that fm,3 is continuous for all m ∈ N. In particular, we have

σ (fm,3 : m ∈ N) ( B(Z3),

since convergence in D([0, T ]) implies pointwise convergence, but not vice versa. In partic-
ular, we would get A = B(Z̃T ) where Z̃T is the topological space arising when we replace
the topology on Z3 by ÕZ3 .

By the previous Lemma and the uniform estimates from Propositions 5.8 and 5.9, we
can apply Proposition 4.12 to the sequence (un)n∈N of Galerkin solutions. As a result, we
obtain a candidate v for the martingale solution.

Corollary 6.4. Let (un)n∈N be the sequence of solutions to the Galerkin equation (5.8) on
(Ω,F ,P) and A be the σ-algebra on ZT defined in (6.1).

a) There are a probability space (Ω̄, F̄ , P̄), a subsequence (unk)k∈N and random variables
v, vk : Ω̄→ ZT and η̄k, η̄ : Ω̄→Mν

N̄([0, T ]× RM) with
i) P̄(η̄k,vk) = P(η,unk ) for k ∈ N,
ii) (η̄k, vk)→ (η̄, v) in Mν

N̄([0, T ]× RM)× ZT almost surely for k →∞,
iii) η̄k = η̄ almost surely.
Moreover, η̄k, η̄ are time-homogeneous Poisson random measures on [0, T ] × RN

with intensity measure Leb⊗ν. w.r.t to the filtration F̄ defined by the augmentation
of

F̄t := σ (η̄k(s), vm(s), v(s) : k ∈ N,m ∈ N, s ∈ [0, t]) ,

where by the notation η̄k(s) we mean all random variables of the form η̄k((0, s]×B1),
where B1 is a measurable set in B.

b) We have vk ∈ D ([0, T ], Hk) P̄-a.s. and for all r ∈ [1,∞), there is C = C(T, ‖u0‖EA , r) >
0 with

sup
k∈N

Ē
[
‖vk‖rL∞(0,T ;EA)

]
6 C.

c) For all r ∈ [1,∞), we have

Ē
[
‖v‖rL∞(0,T ;EA)

]
6 C

with the same constant C > 0 as in b).

Remark 6.5. The fact that for each n ∈ N, un is an (ZT ,A)-valued random variable is true
since D([0, T ], Hn) ⊂ Zj for each n ∈ N and each j = 1, 2, 3, see (4.2) for the definition of
the spaces Zj, with continuity of the canonical embedding. In particular

{B ∩ D([0, T ], Hn) : B ∈ B(ZT )} = σ ({B ∩ D([0, T ], Hn) : B closed in ZT})

⊂ σ(
{
B̃ : B̃ closed in D([0, T ], Hn)

}
) = B(D([0, T ], Hn)).

Since un is random variable in D([0, T ], Hn), we infer that

{un ∈ B} = {un ∈ B ∩ D([0, T ], Hn)} ∈ F
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for all B ∈ A.

Proof. ad a). We apply Proposition 4.12 with

X1 := Mν
N̄([0, T ]× RM), X2 := ZT

and χn = (η, un) , n ∈ N. The tightness of χn is guaranteed by Corollary 5.10 and the fact
that random variables on metric spaces are tight, see [Par67], Theorem 3.2. In Lemma 6.2,
we have checked that ZT fulfills the assumptions of Proposition 4.12 with the σ-algebra A
from above. For the proof of the last assertion, we refer to [BHR17], Section 8, Step III.

ad b). Since D ([0, T ], Hk) is contained in Zj for j = 1, . . . , 4, the definition of A yields
that D ([0, T ], Hk) ∈ A. Hence, we obtain vk ∈ D ([0, T ], Hk) P̄-a.s. as an immediate
consequence of the identity of the laws of vk and unk .

The uniform estimate follows from the respective estimates for (unk)k∈N , see Propositions
5.8 and 5.9, via the identity of laws, since D ([0, T ], Hk) 3 w 7→ supt∈[0,T ] ‖w(t)‖EA is a
measurable function.

ad c). We can follow the lines of the proof of Proposition 6.1 c) in [BHW17]. �

Corollary 6.6. In the framework of Corollary 6.4, we have P̄-almost surely, for each
k ∈ N,

‖vk(t)‖H = ‖u0‖H for all t ∈ [0, T ].

Proof. Let us fix k ∈ N. Then, the set

S =
{
u ∈ D([0, T ], Hnk) : ‖u(t)‖H = ‖u0‖H for all t ∈ [0, T ]

}
is closed in D([0, T ], Hnk) by Corollary C.2. Therefore, S is a Borel set in ZT . By Corollary
6.4, the laws of vk and unk are equal. Since by Proposition 5.4 the law of unk is concentrated
on S, so is the law of vk. The proof is thus complete. �

It remains to show that
(
Ω̄, F̄ , P̄, η̄, F̄, u

)
is indeed martingale solution. The compensated

Poisson random measure induced by η̄ is denoted by ˜̄η := η̄−Leb⊗ν.We need the following
convergence results.

Lemma 6.7. Let ψ ∈ EA. Then, we have the following convergences in L2(Ω̄ × [0, T ]) as
n→∞ :

Re
(
vn − ũ0,n, ψ

)
H
→ Re

(
v − u0, ψ

)
H

(6.2)∫ ·
0

Re
(
Avn(s) + PnF (vn(s)), ψ

)
H

ds→
∫ ·

0

Re〈Av(s) + F (v(s)), ψ〉ds; (6.3)

∫ ·
0

∫
{|l|61}

Re
(
e−iBn(l)vn(s−)− vn(s−), ψ

)
H

˜̄η(ds, dl)

→
∫ ·

0

∫
{|l|61}

Re
(
e−iB(l)v(s−)− v(s−), ψ

)
H

˜̄η(ds, dl); (6.4)
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0

∫
{|l|61}

Re
(
e−iBn(l)vn(s)− vn(s) + iBn(l)vn(s), ψ

)
H
ν(dl)ds

→
∫ ·

0

∫
{|l|61}

Re
(
e−iB(l)v(s)− v(s) + iB(l)v(s), ψ

)
H
ν(dl)ds.

(6.5)

Proof. ad (6.2). We get (6.2) pointwise in Ω̄× [0, T ] from (5.6) and vn → v in L2(0, T ;H).
In view of

Ē
∫ T

0

|Re
(
vn(t)− ũ0,n, ψ

)
H
|rdt 6 ‖ψ‖rHĒ

∫ T

0

(‖vn(t)‖H + ‖u0‖H)r dt 6 ‖ψ‖rHT2r‖u0‖rH <∞

for r > 2, Vitali’s convergence Theorem yields the assertion.

ad (6.3). Let us fix ω ∈ Ω̄ and t ∈ [0, T ]. Then,∫ t

0

Re
(
PnF (vn(s)), ψ

)
H

ds→
∫ t

0

Re〈F (v(s)), ψ〉ds

follows from vn → v in Lα+1(0, T ;Lα+1(M)), see [BHW17], Lemma 6.2, step 3. Moreover,

Re〈A(vn(s)− v(s)), ψ〉 = Re〈vn(s)− v(s), Aψ〉 → 0

for all s ∈ [0, T ] by vn → v in Dw([0, T ], EA). Via

Ē
∫ T

0

∫ t

0

|Re〈Avn(s), ψ〉|rdsdt 6 ‖ψ‖rEAT
2Ē
[

sup
s∈[0,T ]

‖vn(s)‖rEA
]
<∞,

Ē
∫ T

0

∣∣∣∣∫ t

0

Re
(
PnF (vn(s)), ψ

)
H

ds

∣∣∣∣r dt 6 T 1+r‖ψ‖rEAĒ
[

sup
s∈[0,T ]

‖F (vn(s))‖rE∗A
]

. T 1+r‖ψ‖rEAĒ
[

sup
s∈[0,T ]

‖vn(s)‖rαEA
]
<∞

for r > 2, Vitali yields (6.3) in L2(Ω̄× [0, T ]).

ad (6.4). In view of the Itô isometry, it is equivalent to prove∫ ·
0

∫
{|l|61}

|Re
(
e−iBn(l)vn(s)− vn(s)−

[
e−iB(l)v(s)− v(s)

]
, ψ
)
H
|2ν(dl)ds→ 0, n→∞,

(6.6)

in L1(Ω̄× [0, T ]). For x ∈ H, Lebesgue yields

‖e−iBn(l)x− e−iB(l)x‖H =

∥∥∥∥∫ 1

0

d

ds

[
e−isBn(l)e−i(1−s)B(l)x

]
ds

∥∥∥∥
H

6
∫ 1

0

‖ (Bn(l)− B(l)) e−isBn(l)e−i(1−s)B(l)x‖Hds→ 0, n→∞.
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From vn → v almost surely in L2(0, T ;H) and again Lebesgue, we infer∫ t

0

|Re
(
e−iBn(l)vn − vn −

[
e−iB(l)v − v

]
, ψ
)
H
|2ds (6.7)

6 2

∫ t

0

(
‖e−iBn(l) (v − vn) ‖2

H + ‖vn − v‖2
H + ‖

[
e−iBn(l) − e−iB(l)

]
v‖H

)
‖ψ‖2

Hds→ 0

(6.8)

as n→∞ almost surely for all t ∈ [0, T ] and l ∈ B(0, 1). Since we have∫ t

0

|Re
(
e−iBn(l)vn − vn −

[
e−iB(l)v − v

]
, ψ
)
H
|2ds

6 2‖ψ‖2
HbH |l|2

(
‖vn‖2

L2(0,t;H) + ‖v‖2
L2(0,t;H)

)
. |l|2 ∈ L1(B(0, 1); ν), (6.9)

by Lemma 5.3 and Remark 2.8, we get∫
{|l|61}

∫ t

0

|Re
(
e−iBn(l)vn − vn −

[
e−iB(l)v − v

]
, ψ
)
H
|2dsν(dl)→ 0

as n → ∞ almost surely for all t ∈ [0, T ]. For r > 1, we employ similar estimates as in
(6.9) for

Ē
∫ T

0

(∫
{|l|61}

∫ t

0

|Re
(
e−iBn(l)vn − vn −

[
e−iB(l)v − v

]
, ψ
)
H
|2dsν(dl)

)r
dr

. ‖ψ‖2r
H Ē
∫ T

0

(
‖vn‖2

L2(0,t;H) + ‖v‖2
L2(0,t;H)

)r
dr

. ‖ψ‖2r
HT

1+rĒ

[
sup
s∈[0,T ]

(
‖vn‖2

H + ‖v‖2
H

)r]
<∞,

and thus, we get (6.4) by Vitali’s Theorem.

ad (6.5). From (6.7),∫ t

0

|Re
(
iBn(l)vn − iB(l)v, ψ

)
H
|ds

6 ‖ψ‖H
(
‖Bn(l)(vn − v)‖L1(0,t;H) + ‖ [Bn(l)− B(l)] v‖L1(0,t;H)

)
6 ‖ψ‖Ht

1
2

(
‖B(l)‖L(H)‖vn − v‖L2(0,t;H) + ‖ [Bn(l)− B(l)] v‖L2(0,t;H)

)
→ 0

and the bound∫ t

0

|Re
(
e−iBn(l)vn(s)− vn(s) + iBn(l)vn(s), ψ

)
H
|ds 6 1

2
bH‖ψ‖H |l|2‖vn‖2

L2(0,t;H)

.ω,t |l|2 ∈ L1(B(0, 1); ν)



STOCHASTIC NLS DRIVEN BY PURE JUMP NOISE 37

by Lemma 5.3, we infer (6.5) pointwise in Ω̄× [0, T ]. The L2(Ω̄× [0, T ])-convergence follows
similarly as in the previous step by the Vitali type argument based on the uniform bounds
on vn, n ∈ N. �

Finally, we are ready to summarize our results and obtain the existence of a martingale
solution.

Proof of Theorem 1.1. Step 1. Let us define the maps

Mn,ψ(w, t) =ũ0,n − i

∫ t

0

Re〈Aw(s) + PnF (w(s)), ψ〉ds

+

∫ t

0

∫
{|l|61}

Re
(
e−iBn(l)w(s−)− w(s−), ψ

)
H

˜̄η(ds, dl)

+

∫ t

0

∫
{|l|61}

Re
(
e−iBn(l)w(s)− w(s) + iBn(l)w(s), ψ

)
H
ν(dl)ds;

Mψ(w, t) =u0 − i

∫ t

0

Re〈Aw(s) + F (w(s)), ψ〉ds

+

∫ t

0

∫
{|l|61}

Re
(
e−iB(l)w(s−)− w(s−), ψ

)
H

˜̄η(ds, dl)

+

∫ t

0

∫
{|l|61}

Re
(
e−iB(l)w(s)− w(s) + iB(l)w(s), ψ

)
H
ν(dl)ds.

The results of Lemma 6.7 can be summarized as

Re
(
vn, ψ

)
H
−Mn,ψ(vn, ·)→ Re

(
v, ψ

)
H
−Mψ(v, ·), n→∞,

in L2(Ω̄ × [0, T ]) for all ψ ∈ EA and from the definition of un via the Galerkin equation,
we infer Re

(
un(t), ψ

)
H

= Mn,ψ(un, t) almost surely for all t ∈ [0, T ]. Due to the identity
Leb[0,T ]⊗Pun = Leb[0,T ]⊗P̄vn , we obtain

Ē
∫ T

0

|Re
(
v(t), ψ

)
H
−Mψ(v, t)|2dt = lim

n→∞
Ē
∫ T

0

|Re
(
vn(t), ψ

)
H
−Mn,ψ(vn, t)|2dt

= lim
n→∞

E
∫ T

0

|Re
(
un(t), ψ

)
H
−Mn,ψ(un, t)|2dt = 0

and thus,

P̄
{

Re
(
v(t), ψ

)
H

= Mψ(v, t) f.a.a. t ∈ [0, T ]
}

= 1.

Since both Re
(
v, ψ

)
H

and Mψ(v, ·) are almost surely in D([0, T ]), we obtain

P̄
{

Re
(
v(t), ψ

)
H

= Mψ(v, t) ∀t ∈ [0, T ]
}

= 1,

which means that
(
Ω̄, F̄ , P̄, η̄, F̄, u

)
is a martingale solution to (2.15).
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Step 2. In order to conclude the proof, we need to show that the process v satisfies the
mass preservation condition (1.6). Let us first fix ω ∈ Ω̄ such that

vk(·, ω)→ v(·, ω) in ZT , (6.10)

as k → ∞. By part (a)(ii) of Corollary 6.4, the set of such elements is a full set in
Ω̄. Together with Lemma 4.5, (6.10) implies that there exists r = r(ω) > 0 such that
supt∈[0,T ] ‖vk(t, ω)‖ 6 r for every k ∈ N. From (6.10) and Proposition 4.2, we infer that
there is a sequence (λk)n∈N = (λk(ω))n∈N ∈ ΛN, such that

sup
t∈[0,T ]

‖vk(λk(t), ω)− v(t, ω)‖E∗A → 0, k →∞.

Hence, we get
sup
t∈[0,T ]

‖vk(λk(t), ω)− v(t, ω)‖H

. sup
t∈[0,T ]

[
‖vk(λk(t), ω)− v(t, ω)‖

1
2
E∗A
‖vk(λk(t), ω)− v(t, ω)‖

1
2
EA

]
6 (2r)

1
2 sup
t∈[0,T ]

‖vk(λk(t), ω)− v(t, ω)‖
1
2
E∗A
→ 0, k →∞.

In view of Proposition 4.2, this implies vk(·, ω) → v(·, ω) in D([0, T ], H) as k → ∞. Since
the norm function ‖ · ‖H : H → R is Lipschitz continuous we deduce that

‖vk(·, ω)‖H → ‖v(·, ω)‖H in D([0, T ],R).

On the other hand, by Corollary 6.6, we infer that
‖vk(t, ω)‖H = ‖u0‖H for all t ∈ [0, T ].

Applying finally Lemma C.1 we infer that
‖v(t, ω)‖H = ‖u0‖H for all t ∈ [0, T ].

�
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Appendix A. Time Homogeneous Poisson Random Measure

Let N̄ denote the set of extended natural numbers, i.e., N̄ := N∪{∞} and R+ := [0,∞).
Let (S,S ) be a measurable space and MN̄(S) be the set of all N̄-valued measures on the
measurable space (S,S ). On the set MN̄(S) we consider the σ-field MN̄(S) defined as the
smallest σ-field such that for all C ∈ S : the map

iC : MN̄(S) 3 µ→ µ(C) ∈ N̄

is measurable.

Definition A.1. Let (Y,B(Y )) be a measurable space. A time homogeneous Poisson
random measure η on (Y,B(Y )) over (Ω,F ,F,P) is a measurable function

η : (Ω,F)→ (MN̄(R+ × Y ),MN̄(R+ × Y ))

such that
(a) for each C ∈ B(R+)⊗B(Y ), η(C) := iC ◦ η : Ω→ N̄ is a Poisson random variable

with parameter E[η(C)];
(b) η is independently scattered, i.e., if the sets C1, C2, . . . , Cn ∈ B(R+) ⊗B(Y ) are

disjoint, then the random variables η(C1), η(C2), . . . , η(Cn) are mutually indepen-
dent;

(c) for all U ∈ B(Y ) the N̄−valued process (N(t, U))t>0 defined by

N(t, U) := η((0, t]× U), t > 0

is Ft-adapted and its increments are independent of the past, i.e., if t > s > 0, then
N(t, U)−N(s, U) = η((s, t]× U) is independent of Fs.

If η is a time homogeneous Poisson random measure then the formula

ν(A) := E[η((0, 1]× A)], A ∈ B(Y )

defines a measure on (Y,B(Y )) called the intensity measure of η. We assume that ν is
σ-finite. Moreover, for all T < ∞ and all A ∈ B(Y ) such that E[η((0, T ] × A)] < ∞, the
R−valued process {Ñ(t, A)}t∈[0,T ] defined by

Ñ(t, A) := η((0, t]× A)− t ν(A), t ∈ (0, T ],

is an integrable martingale on (Ω,F ,F,P). The random measure m ⊗ ν on B(R+) ⊗
B(Y ), where m stands for the Lebesgue measure (often denoted also as Leb), is called a
compensator of η and the difference between a time homogeneous Poisson random measure
η and its compensator, i.e.,

η̃ := η −m⊗ ν,
is called a compensated time homogeneous Poisson random measure.

We follow the notion of Ikeda and Watanabe [IW81], Peszat and Zabczyk [PZ07], to
list some of the basic properties of the stochastic integral with respect to η̃. Let E be
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a separable Hilbert space and let P be a predictable σ-field on [0, T ] × Ω. Let L2
ν,T (P ⊗

B(Y ),m⊗P⊗ ν;E) be a space of all E-valued, P ⊗B(Y )-measurable processes such that

E
[ ∫ T

0

∫
Y

‖ξ(s, ·, y)‖2
E dν(y) ds

]
<∞.

If ξ ∈ L2
ν,T (P ⊗B(Y ),m ⊗ P ⊗ ν;E) then the integral process

∫ T
0

∫
Y
ξ(s, ·, y)η̃(ds, dy),

t ∈ [0, T ], is a càdlàg square-integrable E-valued martingale. Moreover, we have the
following isometry formula

E
[∥∥∥∥ ∫ T

0

∫
Y

ξ(s, ·, y) η̃(ds, dy)

∥∥∥∥2

E

]
= E

[ ∫ T

0

∫
Y

‖ξ(s, ·, y)‖2
E dν(y) ds

]
, t ∈ [0, T ]. (A.1)

Appendix B. Marcus Canonical SDEs

Let (Ω,F ,F,P) be a probability space equipped with a filtration F := {Ft, t > 0} that
satisfies the usual hypothesis (i.e., F0 contains all P-null sets and F is right continuous).
Let v0,v1, . . . ,vN : Rd → Rd be complete C1-vector fields. Define v : Rd → L(RN ,Rd)

such that v(y)(h) :=
∑N

j=1 vj(y)hj, h ∈ RN , y ∈ Rd.
Let L(t) := (L1(t), · · · , LN(t)) be a RN− valued Lévy process with pure jump,

L(t) =

∫ t

0

∫
B

l η̃(ds, dl) +

∫ t

0

∫
Bc
l η(ds, dl)

where B := B(0, 1) ⊂ RN , l = (l1, . . . , lN) ∈ RN ; η, η̃ represent homogeneous Poisson
random measure and the compensated one with the compensator m⊗ ν respectively. We
always assume that η is independent of F0.

Consider the following “Marcus" stochastic differential equation:

dY (t) = v0(Y (t)) dt+ v(Y (t−)) � dL(t)

= v0(Y (t)) dt+
N∑
j=1

vj(Y (t−)) � dLj(t), (B.1)

which is defined in the integral form as follows

Y (t) = Y0 +

∫ t

0

v0(Y (s)) ds+

∫ t

0

∫
B

[
Φ
(
1, l, Y (s−)

)
− Y (s−)

]
η̃(ds, dl)

+

∫ t

0

∫
Bc

[
Φ
(
1, l, Y (s−)

)
− Y (s−)

]
η(ds, dl)

+

∫ t

0

∫
B

[
Φ
(
1, l, Y (s)

)
− Y (s)−

N∑
j=1

ljvj(Y (s))
]
ν(dl)ds, (B.2)

where y(t) := Φ(t, l, y0) solves

dy

dt
=

N∑
j=1

ljvj(y), with initial condition y(0) = y0. (B.3)



STOCHASTIC NLS DRIVEN BY PURE JUMP NOISE 41

Theorem B.1 (Itô’s formula 1). Let ϕ : Rd → Rk is a C1-class function. If Y is an
Rd-valued process a solution to (B.1), then

ϕ(Y (t))− ϕ(Y0)

=

∫ t

0

ϕ′(Y (s))(v0(Y (s))) ds+

∫ t

0

∫
Bc

[
ϕ
(
Φ
(
1, l, Y (s−)

))
− ϕ(Y (s−))

]
η(ds, dl)

+

∫ t

0

∫
B

[
ϕ
(
Φ
(
1, l, Y (s−)

))
− ϕ(Y (s−))

]
η̃(ds, dl)

+

∫ t

0

∫
B

[
ϕ
(
Φ
(
1, l, Y (s)

))
− ϕ(Y (s))−

N∑
j=1

ljϕ
′(Y (s))(vj(Y (s)))

]
ν(dl)ds. (B.4)

Moreover, when k = d and ϕ : Rd → Rd is a C1-diffeomorphism, we define for each
j = 0, 1, . . . , N , the “Push-forward" of the vector fields vj by ϕ′ as v̂j : Rd → Rd such that

z 7→ (d
ϕ−1(z)

ϕ)
(
vj(ϕ

−1(z))
)

:= ϕ′(ϕ−1(z))
(
vj(ϕ

−1(z))
)
.

Let v̂ : Rd → L(RN ,Rd) be as before.
Then Y is a solution to (B.1) iff

Z(t) := ϕ(Y (t))

is a solution to
dZ = v̂0(Z(t)) dt+ v̂(Z(t)) � dL(t), Z0 = ϕ(Y0). (B.5)

We will now present an infinite dimensional version of the above result, which has been
used in this work.
As before let (Ω,F ,F,P) be a complete probability space. Let E be a separable Hilbert
space. Let v0,v1, . . . ,vN : E → E be complete C1-vector fields. Define v : E → L(RN , E)

such that v(y)(h) :=
∑N

j=1 vj(y)hj, h ∈ RN , y ∈ E. Define the Lévy process L(t) as before.
Define the Marcus mapping

Φ : R+ × RN × E → E

such that for each fixed l ∈ RN , y0 ∈ E, the function

t 7→ Φ(t, l, u0)

is the continuously differentiable solution of the ordinary differential equation

dy

dt
=

N∑
j=1

ljvj(y), t > 0,

with y(0) = y0 ∈ E, and l = (l1, l2, . . . , lN) ∈ B, i.e.,

Φ(t, l, y0) = Φ(0, l, y0) +

∫ t

0

N∑
j=1

ljvj(Φ(s, l, y0)) ds, t > 0.

With the above setting, let us consider the E-valued process Y given by (B.2). Then we
have the following result.
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Theorem B.2 (Itô’s formula 2). Let G be a separable Hilbert space and ϕ : E → G
be a C1-class function such that the first derivative ϕ′ : E → L(E,G) is (p − 1)-Hölder
continuous. If Y is an E-valued process given by (B.2), then for every t > 0, we have
¶-a.s.

ϕ(Y (t))− ϕ(Y0)

=

∫ t

0

ϕ′(Y (s))(v0(Y (s))) ds+

∫ t

0

∫
Bc

[
ϕ
(
Φ
(
1, l, Y (s−)

))
− ϕ(Y (s−))

]
η(ds, dl)

+

∫ t

0

∫
B

[
ϕ
(
Φ
(
1, l, Y (s−)

))
− ϕ(Y (s−))

]
η̃(ds, dl)

+

∫ t

0

∫
B

[
ϕ
(
Φ
(
1, l, Y (s)

))
− ϕ(Y (s))−

N∑
j=1

ljϕ
′(Y (s))(vj(Y (s)))

]
ν(dl)ds. (B.6)

Moreover, when ϕ : E → E is a C1-diffeomorphism, we define for each j = 0, 1, . . . , N ,
the “Push-forward" of the vector fields vj by ϕ′ as v̂j : E → E such that

z 7→ (d
ϕ−1(z)

ϕ)
(
vj(ϕ

−1(z))
)

:= ϕ′(ϕ−1(z))
(
vj(ϕ

−1(z))
)
.

Let v̂ : E → L(RN , E) be as before.
Then Y is a solution to (B.1) iff

Z(t) := ϕ(Y (t))

is a solution to
dZ = v̂0(Z(t)) dt+ v̂(Z(t)) � dL(t), Z0 = ϕ(Y0). (B.7)

Proof. Let us assume, for the sake of simplicity, η = 0 on Bc. For y ∈ E, define
f(y, l) := Φ

(
1, l, y

)
− y for all l ∈ B (B.8)

a(y) := v0(y) +

∫
B

[
Φ
(
1, l, y

)
− y −

N∑
j=1

ljvj(y)
]
ν(dl)

= v0(y) +

∫
B

[
f(y, l)−

N∑
j=1

ljvj(y)
]
ν(dl). (B.9)

Then the E-valued process Y given in (B.2) takes the form

Y (t) = Y0 +

∫ t

0

a(Y (s)) ds+

∫ t

0

∫
B

f(Y (s−), l)η̃(ds, dl). (B.10)

Then by the Itô’s formula (see Theorem B.1 in Brzeźniak et al. [BHZ13]), for every t > 0,
we have P-a.s.

ϕ(Y (t)) = ϕ(Y0) +

∫ t

0

ϕ′(Y (s))(a(Y (s))) ds+

∫ t

0

∫
B

ϕ′(Y (s−))(f(Y (s−), l))η̃(ds, dl)

+

∫ t

0

∫
B

[
ϕ
(
Y (s−) + f(Y (s−), l)

)
− ϕ(Y (s−))− ϕ′(Y (s−))(f(Y (s−), l))

]
η(ds, dl)
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= ϕ(Y0) +
3∑
i=1

Ii. (B.11)

Note that by the definition of a in (B.9)

I1 :=

∫ t

0

ϕ′(Y (s))(a(Y (s))) ds

=

∫ t

0

ϕ′(Y (s))(v0(Y (s))) ds+

∫ t

0

∫
B

ϕ′(Y (s))(f(Y (s), l)) ν(dl) ds

−
∫ t

0

∫
B

[ N∑
j=1

ljϕ
′(Y (s))(vj(Y (s)))

]
ν(dl) ds. (B.12)

Using the definitions of f in (B.8) and that of compensated Poisson random measure
η̃ := η −m⊗ ν, we have

I3 :=

∫ t

0

∫
B

[
ϕ
(
Y (s−) + f(Y (s−), l)

)
− ϕ(Y (s−))− ϕ′(Y (s−))(f(Y (s−), l))

]
η(ds, dl)

=

∫ t

0

∫
B

[
ϕ
(
Φ(1, l, Y (s−))

)
− ϕ(Y (s−))− ϕ′(Y (s−))(f(Y (s−), l))

]
η(ds, dl)

=

∫ t

0

∫
B

[
ϕ
(
Φ(1, l, Y (s−))

)
− ϕ(Y (s−))

]
η̃(ds, dl)−

∫ t

0

∫
B

ϕ′(Y (s−))(f(Y (s−), l))η̃(ds, dl)

+

∫ t

0

∫
B

[
ϕ
(
Φ(1, l, Y (s))

)
− ϕ(Y (s))

]
ν(dl) ds−

∫ t

0

∫
B

ϕ′(Y (s))(f(Y (s), l)) ν(dl) ds.

(B.13)

Note that, while adding up I1, I2 and I3, the second term of (B.12) and the last term of
(B.13) cancel each other. Also note the 2nd term on the right hand of (B.13) is −I2, and
thus it gets cancelled with I2. Hence using (B.12) and (B.13) in (B.11), and grouping the
similar integrals we have the desired result (B.6).
To prove the second part of the Theorem, let us define a map

Φ̂ : R+ × RN × E → E

such that for all l ∈ RN , z ∈ E, the function t 7→ Φ̂(t, l, z) solves

dz

dt
=

N∑
j=1

ljv̂j(z), t > 0, z(0) = z.

Let us assume that ϕ : E → E is a C1-diffeomorphism. Then one can show that for all
l ∈ RN and t > 0

Φ̂(t, l, z) = ϕ
(
Φ(t, l, y)

)
where z = ϕ(y), y ∈ E. (B.14)
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Then from the Itô’s formula (B.6), we deduce

Z(t) = Z0 +

∫ t

0

v̂0(Z(s)) ds+

∫ t

0

∫
Bc

[
Φ̂
(
1, l, Z(s−)

)
− Z(s−)

]
η(ds, dl)

+

∫ t

0

∫
B

[
Φ̂
(
1, l, Z(s−)

)
− Z(s−)

]
η̃(ds, dl)

+

∫ t

0

∫
B

[
Φ̂
(
1, l, Z(s)

)
− Z(s)−

N∑
j=1

ljv̂j(Z(s))
]
ν(dl)ds.

This proves Z(t) = ϕ(Y (t)) is an E-valued process satisfying

dZ = v̂0(Z(t)) dt+ v̂(Z(t)) � dL(t), Z0 = ϕ(Y0).

Converse part can similarly be proven. �

Appendix C. A simple convergence result

Lemma C.1. Suppose that for each n ∈ N, a function fn ∈ D([0, T ],R) is constant and
that for some f ∈ D([0, T ],R), fn → f in D([0, T ],R) as n→∞. Then f is also a constant
function and fn → f in C([0, T ],R) as n→∞.

Proof. Let us denote, for each n ∈ N, the value of the function fn by cn, for some cn ∈ R.
By part (b) of Proposition 4.2 there exists a sequence (λn) ∈ ΛN such that

sup
t∈[0,T ]

|λn(t)− t| → 0 (C.1)

and

sup
t∈[0,T ]

|fn(λn(t))− f(t)| → 0, n→∞. (C.2)

This yields

sup
t∈[0,T ]

|fn(t)− f(t)| = sup
t∈[0,T ]

|cn − f(t)| = sup
t∈[0,T ]

|fn(λn(t))− f(t)| → 0, n→∞.

Moreover, (C.2) implies

|f(t)− f(s)| 6|f(t)− cn|+ |cn − f(s)| = |f(t)− fn(λn(t))|+ |fn(λn(s))− f(s)| → 0

as n→∞ for s, t ∈ [0, T ]. Hence, f is a constant function as claimed. �

We conclude this section with the following result.

Corollary C.2. Let n ∈ N0 and c > 0. Then, the set

S =
{
u ∈ D([0, T ], Hn) : ‖u(t)‖H = c for all t ∈ [0, T ]

}
is closed in D([0, T ], Hn).
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Proof. Take an S-valued sequence (uk) such that uk → u in D([0, T ], Hn) for some u ∈
D([0, T ], Hn). For t ∈ [0, T ] and k ∈ N, we define fk(t) = ‖uk(t)‖H and f(t) = ‖u(t)‖H .
Since the H-norm function is Lipschitz on Hn, we infer that fk → f in D([0, T ],R). In
view of Lemma C.1 we obtain f(t) = c for all t ∈ [0, T ] which implies u ∈ S.

�
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