
J Grid Computing
https://doi.org/10.1007/s10723-018-9453-3

INDIGO-DataCloud: a Platform to Facilitate Seamless
Access to E-Infrastructures

D. Salomoni · I. Campos · L. Gaido · J. Marco de Lucas · P. Solagna ·
J. Gomes · L. Matyska · P. Fuhrman · M. Hardt · G. Donvito · L. Dutka ·
M. Plociennik · R. Barbera · I. Blanquer · A. Ceccanti · E. Cetinic · M. David ·
C. Duma · A. López-Garcı́a · G. Moltó · P. Orviz · Z. Sustr · M. Viljoen ·
F. Aguilar · L. Alves · M. Antonacci · L. A. Antonelli · S. Bagnasco ·
A. M. J. J. Bonvin · R. Bruno · Y. Chen · A. Costa · D. Davidovic · B. Ertl ·
M. Fargetta · S. Fiore · S. Gallozzi · Z. Kurkcuoglu · L. Lloret · J. Martins ·
A. Nuzzo · P. Nassisi · C. Palazzo · J. Pina · E. Sciacca · D. Spiga · M. Tangaro ·
M. Urbaniak · S. Vallero · B. Wegh · V. Zaccolo · F. Zambelli · T. Zok

Received: 25 November 2017 / Accepted: 19 July 2018
© The Author(s) 2018

Abstract This paper describes the achievements of
the H2020 project INDIGO-DataCloud. The project
has provided e-infrastructures with tools, applica-
tions and cloud framework enhancements to man-
age the demanding requirements of scientific com-
munities, either locally or through enhanced inter-
faces. The middleware developed allows to federate
hybrid resources, to easily write, port and run scien-
tific applications to the cloud. In particular, we have
extended existing PaaS (Platform as a Service) solu-
tions, allowing public and private e-infrastructures,
including those provided by EGI, EUDAT, and Helix
Nebula, to integrate their existing services and make
them available through AAI services compliant with

D. Salomoni · A. Ceccanti · C. Duma
INFN - CNAF, Bologna, Italy

I. Campos (�) · J. Marco de Lucas · A. López-Garcı́a ·
P. Orviz · F. Aguilar · L. Lloret
IFCA, Consejo Superior de Investigaciones
Cientificas-CSIC, Santander, Spain
e-mail: isabel.campos@csic.es

L. Gaido · S. Bagnasco · S. Vallero · V. Zaccolo
INFN - Torino, Torino, Italy

G. Donvito · M. Antonacci
INFN - Bari, Bari, Italy

GEANT interfederation policies, thus guaranteeing
transparency and trust in the provisioning of such
services. Our middleware facilitates the execution of
applications using containers on Cloud and Grid based
infrastructures, as well as on HPC clusters. Our devel-
opments are freely downloadable as open source com-
ponents, and are already being integrated into many
scientific applications.

Keywords Cloud computing · Platform as a
service · Containers · Software management ·
Advanced user interfaces · Authorization and
authentication

P. Fuhrman
Deutsches Elektronen Synchrotron (DESY),
Hamburg, Germany

I. Blanquer · G. Moltó
Institute of Instrumentation for Molecular Imaging
- Universitat Politècnica de València, Valencia, Spain

M. Plociennik · M. Urbaniak · T. Zok
PSNC IBCh PAS, Poznań, Poland

M. Hardt · B. Ertl · B. Wegh
Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-018-9453-3&domain=pdf
http://orcid.org/0000-0002-9350-0383
mailto:isabel.campos@csic.es


D. Salomoni et al.

1 Introduction

INDIGO-DataCloud was an European project starting
in April 2015, with the purpose of developing a mod-
ular architecture and software components to improve
how scientific work is supported at the edge of com-
puting services development. Its main goal has been
to deliver a Cloud platform addressing the specific
needs of scientists in a wide spectrum of disciplines,
engaging public institutions and private companies.
It aimed at being as inclusive as possible, develop-
ing open source software exploiting existing solutions,
adopting and enhancing state of the art technolo-
gies, connecting with other initiatives and with leading
commercial providers.

J. Gomes · M. David · L. Alves · J. Martins · J. Pina
Laboratory of Instrumentation and Experimental Particle
Physics (LIP), Lisbon, Portugal

S. Fiore · A. Nuzzo · P. Nassisi · C. Palazzo
Fondazione Centro Euro-Mediterraneo sui Cambiamenti
Climatici, Lecce, Italy

R. Barbera · R. Bruno · M. Fargetta
INFN - Catania, Catania, Italy

D. Spiga
INFN - Perugia, Perugia, Italy

L. Dutka
Cyfronet AGH, Krakow, Poland

P. Solagna · M. Viljoen · Y. Chen
EGI Foundation, Amsterdam, Netherlands

L. Matyska · Z. Sustr
CESNET, Prague, Czech Republic

A. M. J. J. Bonvin · Z. Kurkcuoglu
University of Utrecht, Utrecht, The Netherlands

L. A. Antonelli · A. Costa · S. Gallozzi · E. Sciacca
Istituto Nazionale di Astrofisica, Rome, Italy

E. Cetinic · D. Davidovic
Ruder Boskovic Institute, Zagreb, Croatia

M. Tangaro · F. Zambelli
Consiglio Nazionale delle Ricerche, Istituto di Biomembrane,
Bioenergetica e Biotecnologie Molecolari, Bari, Italy

F. Zambelli
Department of Biosciences, University of Milano, Milan, Italy

R. Barbera
Department of Physics and Astronomy, University of Catania,
Catania, Italy

Since its inception, the project roadmap has been
user community driven. Its main focus was on closing
the existing technology gaps that hindered an opti-
mal exploitation of Cloud technologies by scientific
users. In order to do so, user requirements from several
multidisciplinary scientific communities were col-
lected, and systematized into specific technical
requirements. This process was carried out across the
entire lifetime of the project, which allowed the update
of existing requirements as well as the insertion of new
ones, thus driving the project architecture definition
and the technological developments.

The project also made focus on delivering
production-quality software, thus it defined proce-
dures and quality metrics, which were followed by,
and automatically checked for, all the INDIGO com-
ponents. A comprehensive process to package and
issue the INDIGO software was also defined. As
an outcome of this, INDIGO delivered two main
software releases (the first in August 2016, the sec-
ond in April 2017), each followed by several minor
updates. The latest release consists of about 40 open
modular components, 50 Docker containers, 170 soft-
ware packages, all supporting up-to-date open oper-
ating systems. This result was accomplished reusing
and extending open source software and —whenever
applicable— contributing code to upstream projects.

The paper is structured as follows. Section 2 con-
tains a description on how the user requirements
were collected and consolidated. From there, the
INDIGO architecture is further elaborated from the
lower Infrastructure as a Service layer (Section 3)
moving towards the Platform layer (Section 4) in
order to arrive to the user interfaces (Section 5). The
overall software development process is described in
Section 6. Section 7 contains a summary of some
usage patterns on how to leverage the INDIGO solu-
tions to develop, deploy and support applications in
a Cloud framework. The conclusions are laid out in
Section 8. The list of upstream contributed software
can be found in the Appendix.

1.1 Context and State of the Art

From the collection of user community requests,
and its consolidation into technical requirements (see
Section 2), we identified a number of technology gaps
that today hinder an optimal scientific exploitation of
heterogeneous e-infrastructures.



INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

In this Section we will elaborate more on the gen-
eral strategy to address those requirements, linking our
developments with the previous and existing works.
The specific enhancements and developments will be
further elaborated in the corresponding sections.

Lack of proper federated identity support across
several e-Infrastructures is a key issue for the
researchers perspective. The provision of an effective
distributed authentication and authorization in hetero-
geneous platforms is fundamental to support access to
distributed infrastructures. Several efforts have been
made in this context [1–5] but they were focused
on specific infrastructures and services. However,
although some of these approaches have been used
in production in specific e-Infrastructures [6] they are
difficult to implement in a broader environment.

In parallel to the development of INDIGO-
Datacloud, the Authentication and Authorisation for
Research and Collaboration project (AARC) defined
the AARC Blueprint Architecture [7]. This document
describes a set of interoperable architecture build-
ing blocks for designing and implementing access
management solutions for international research col-
laborations. Following the AARC recommendations
we have developed several key components related
with identity and access management, providing a
framework compliant with the proposed blueprint
architecture, as will be described in Section 3.3.

Facilitating the transparent execution of user appli-
cations across different computing infrastructures is
also a key issue [8]. Advanced users have nowa-
days at their disposal tools to implement applications
in Clouds provisioned in Infrastructure as a Service
(IaaS) mode. Examples of such solutions are vir-
tual appliances and contextualization [9] or container
technologies [10]).

The situation for non-Cloud resources in scientific
facilities is completely different. Here we are referring for
instance to local clusters, Grid infrastructures and HPC
systems. Such infrastructures are tipically shared among
many users with different requirements, therefore it is
managerially and technically impossible offering tai-
lored environments to all of them. As a consequence
scientific users often need to follow a troublesome
process to package and execute their applications.

To address this problem we have applied the tech-
nology of Docker containers [11] to facilitate applica-
tions execution in multiuser environments. As a result
we have provided a flexible user-level solution to give

autonomy to users in shared computing facilities [12].
Section 3.1 contains a thorough discussion on the
strategy and outcomes.

Adoption of true Platform as a Service (PaaS)
Cloud solutions is a common problem for scientific
communities. The roots of this problem are on the
one hand the non-interoperability of the interfaces [13,
14], and second, the lack of true orchestration mecha-
nisms across federated heterogeneous infrastructures.
Both barriers made it difficult for users to adopt Cloud
hybrid solutions.

In Section 4 we describe our approach, and how
we have tackled this problem by leveraging the OCCI
[15–17] and TOSCA [18] open standards. In this regard
we have not only supported those standards at the
corresponding architectural levels [19, 20], but also
we made important contributions to both the standards
specifications and implementations. INDIGO has con-
tributed to the networking parts of the OCCI standard, as
well as to the improvement of the TOSCA support in
the upstream OpenStack components: the Heat Trans-
lator and TOSCA parser [21]. Our solution makes the
execution of dynamic workflows [22–24] possible, in
a more consistent way across hybrid Clouds [25].

In this interoperability context, hybrid Cloud
deployments, although possible [14, 26, 27], were
complicated from a practical point of view and there-
fore user adoption has been hindered. By adopt-
ing INDIGO solutions users can now express their
requirements and deploy them as applications over
those hybrid infrastructures [28].

Linked with the previous statements another out-
standing gap was the lack of advanced scheduling
features in Cloud environments [29]. Common cloud
usage scenarios, being industry driven, do not take into
account the unique requirements of scientific applica-
tions [30], leading to an inefficient utilization of the
resources or to non optimal user experience.

Developments in this area can be found in the lit-
erature [31–34], where it becomes evident that there
are many challenges to be addressed. Within INDIGO
we focused (see Section 3.2) in the efficient shar-
ing of resources among users following fair-share
approaches (limiting the amount of resources that can
be consumed by a user group), proper quota partition-
ing across different computing frameworks (like HPC
and Cloud resources) or new Cloud computing execu-
tion models (like preemptible instances) as these are
aspects that affect both users and resource providers.



D. Salomoni et al.

Regarding storage support, INDIGO has performed
substantial contributions to storage-related entities and
standardization bodies, such as the Research Data
Alliance (RDA), where INDIGO has been highly
involved the Quality of Service, Data Life cycle
and Data Management Plans working group (now
renamed to Storage Service Definitions). Moreover,
INDIGO has also contributed this work to the SNIA
CDMI standard, providing several extensions that
have been included in SNIA reference implementa-
tions and documents.

2 Analysis of Requirements Coming
from Research Communities

In order to guide our developments we performed an
analysis of a number of use cases originating in several

flagship research communities. In particular coming
from the areas of High Energy Physics, Environmental
modelling, Bioinformatics, Astrophysics and Social
sciences. See Table 1 for the full list.

The deployment of customized computing back-
ends, such as batch queues, including automatic
elasticity is among the features more demanded by
researchers. The automation of the deployment of
user-specific software in VMs or containers is also on
the top of their wish list. Such automation is a must
when it is about simplifying the executing applications
in heteregeneous infrastructures. For similar reasons,
highly specialized applications require also support to
hardware accelerators and specialized hardware such
as Infiniband, multicore systems, or GP/GPUs.

Often user communities are asking for termi-
nal access to resources, workflow management and
data handling, in a way that such access is linked

Table 1 Research Communities and use cases analyzed to extract general requirements

Research community Application/Use case

LIFEWATCH (Biodiversity) Monitoring and Modelling Algae Bloom in a Water Reservoir: Support of hydrodynamic and

water quality modelling including data input-output management and visualization.

INSTRUCT (Bioinformatics) Molecular dynamics simulations: Support of Molecular dynamics simulations of

macromolecules that need specific hardware (GP/GPUs) using a pipeline of software that

combines protocols that automate the step for setup and execution of these simulations.

CTA (Astronomical data) Astronomical Data Archives: Data analysis and management using different tools such as data

discovery, comparison, cross matching, data mining and also workflows. The use case could be

described as follows: data production, data reduction, data quality, data handling and workflows,

data publication and data link to articles

Climate modelling Intermodel comparison of data analysis for different climate models using the ENES platform

(European Network for Earth System modelling)

EuroBioImaging (Bioinformatics) Medical Imaging Biobanks: The virtual Biobank integrates medical images from different

sources and formats. This case study includes all the steps needed to manage the images, like

analysis, storage, processing (pre, post). Privacy is a constraint to take into account for user

management

ELIXIR (Bioinformatics) Galaxy as a Cloud service: Deployment of Galaxy instance that should support all the

software/steps needed by the pipeline over, for example, a virtual cluster or cloud instances.

DARIAH (Social sciences) Transparent access to data catalogues and on-demand data management features.

Mastercode (HEP pheno) Complex combination of codes including legacy parts to perform combined analysis of data

coming from particle detectors, astrophysics experiments, and dark matter detectors. Installation

of these codes is in general very complex in multi-user farms. Providing a container based

solution would simplify installation across infrastructures.

Lattice QCD (HEP) Lattice simulations run on large HPC facilities using low latency interconnects, producing large

amounts of output. Accessing such facilities in Cloud mode would require implementing MPI

parallel processing capabilities.



INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

to a common Authorization and Authentication
Infrastructure.

In order to generalize the requirements, we have
extracted two generic usage scenarios, which can sup-
port a wide range of applications in these areas. The
first generic use case is computing oriented, while
the second is data analysis oriented. For full details
regarding user communities description and detailed
usage patterns we refer to the users requirements
deliverable of the project available publicly in [35].

2.1 Computing Portal Service

The first generic user scenario is a computing por-
tal service. In such scenario, computing applications
are stored by the application developers in reposito-
ries as downloadable images (in the form of VMs or
containers). Such images can be accessed by users via
a portal, and require a back-end for execution; in the
most common situation this is typically a batch queue.
Support for parallel processing using containers is a
requirement that comes up as well from the users.

The application consists of two main parts: the por-
tal / Scientific Gateway and the processing working
nodes. The number of nodes available for computing
should increase (scale out) and decrease (scale in),
according to the workload. The system should also be

able to do Cloud-bursting to external infrastructures
when the workload demands it. Furthermore, users
should be able to access and reference data, and also to
provide their local data for the runs. A solution along
these lines is shown in Fig. 1.

A solution along these lines has been requested in
the user scenarios coming from ELIXIR, WeNMR,
INSTRUCT, DARIAH, Climate Change and LIFE-
WATCH.

2.2 Data Analysis Service

A second generic use case is described by scientific
communities that have a coordinated set of data repos-
itories and software services to access, process and
inspect them.

Processing is typically interactive, requiring access
to a console deployed on the data premises. The appli-
cation consists of a console / Scientific Gateway that
interacts with the data. In Fig. 2 we show a schematic
view of such a use case. Examples of such include R,
Python or Ophidia. It can be a complementary sce-
nario to the previous one, and it could also expose
programmatic services.

The communities related to INSTRUCT, CTA, Cli-
mate Change, LIFEWATCH and Lattice QCD have
requested related features.

Fig. 1 User community computing portal service



D. Salomoni et al.

Fig. 2 Data analysis service

3 Developing for the Infrastructure as a Service
(IaaS) Layer

INDIGO-DataCloud has provided e-infrastructures
with tools, applications and cloud framework
enhancements to manage the demanding requirements
of modern scientific communities, either locally or
through enhanced interfaces enabling those infras-
tructures to become part of a federation or to connect
to federated platform layers (PaaS).

In this section we will describe the highlights of
this development work, which was needed to prop-
erly interface with the resource centers. This work has
focussed on virtualizing local compute, storage and
networking resources (IaaS) and on providing those
resources in a standardized, reliable and performing
way to remote customers or to higher level feder-
ated services, building virtualized site independent
platforms.

The IaaS resources are provided by large resource
centers, typically engaged in well-established Euro-
pean e-infrastructures. The e-infrastructure manage-
ment bodies, or the resource centers themselves will
select the components they operate, and INDIGO will
have limited influence on that process.

Therefore, INDIGO has concentrated on a selec-
tion of the most prominent existing components and
has further developed the appropriate interfaces to

high-level services based on standards. We have also
developed new components where we felt a full func-
tionality was completely missing.

The contribution of INDIGO to enhance the flex-
ibility to access resources in Cloud and HPC infras-
tructures will be of paramount importance to enable
transparent execution of applications across systems
promoting the development of the future European
Open Science Cloud (EOSC) ecosystem [36].

As we describe below new components are pro-
vided, or already existing components are improved
in the areas of computing, storage, networking
and Authorization and Authentication Infrastructure
(AAI). For almost all components, we succeeded
in committing modifications to the corresponding
upstream software providers and by that, significantly
contributed to the sustainability model of the software.

3.1 Supporting Linux containers

It is unquestionable that Docker is the most widely
adopted Linux container technology. Therefore, in
order to facilitate application delivery across multi-
ple computational platforms, INDIGO has provided
support for container execution, both interactively and
through batch systems, in cloud and conventional clus-
ters. This was achieved by developing new tools and
extending existing ones.



INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

The key middleware developed for this purpose
is udocker [12].1 The udocker novelty consists in
enabling to pull and execute Docker containers [11]
without using or requiring the installation of the
Docker software. By using udocker it is possible
to encapsulate applications in Docker containers and
execute them in batch or interactive systems where
Docker is unavailable. It provides several different
execution engines based on PRoot [37], runC [38]
and Fakechroot [39]. None of the udocker engines
requires root privileges for installation or execution
being therefore adequate for deployment and use by
end-users without system administrator intervention.
In addition, the PRoot and Fakechroot engines execute
containers via pathname translation and therefore do
not require the use of Linux namespaces.

Since udocker never requires privileges and exe-
cutes as unprivileged user many of the security con-
cerns associated with the Docker software are avoided.
Udocker also supports GPGPU and MPI applications,
making it adequate to execute containers in batch sys-
tems and HPC clusters. The udocker software suite
is meant to be easily deployed by end-users. It only
requires the download and execution of a Python script
to quickly setup udocker within the user home direc-
tory. Udocker empowers end-users to execute Docker
containers regardless of the Linux host environment.

Since its first release in June 2016 udocker
expanded quickly in the open source community. It
has been adopted by a number of projects as a drop-
in replacement for Docker. Among them openmole,
bioconda, common-work language (cwl) or SCAR -
Serverless Container-aware ARchitectures [40].

As an example, udocker is being used with great
success to execute code produced by the MasterCode
collaboration [41]. The MasterCode collaboration is
concerned with the investigation of Supersymmet-
ric models that go beyond the current status of the
Standard Model of particle physics. It involves teams
from CERN, DESY, Fermilab, SLAC, CSIC, INFN,
NIKHEF, Imperial College London, King’s College
London, the Universities of Amsterdam, Antwerpen,
Bristol, Minnesota and ETH Zurich. Examples and
documentation can be found at https://github.com/
indigo-dc/udocker.

1https://github.com/indigo-dc/udocker

INDIGO has also developed bdocker,2 which pro-
vides a front-end to execute the Docker software in
batch systems under restrictions and limits config-
urable by the system administrator (resource con-
sumption, access to host directories, list of con-
tainer images, etc). It has been implemented for
the SoGE (Son of Grid Engine) batch system but
can be extended to other batch systems. This inte-
grates the benefits of application delivery provided
by Docker with the scheduling policies of the batch
system. While udocker can be deployed directly by
the end-user, bdocker is installed and configured by
the system administrator to provide the users with
the ability to run limited execution environments pro-
vided by Docker. Finally, ONEDock3 was developed
to introduce support to the execution of containers as
if they were Virtual Machines in OpenNebula-based
on-premises Clouds, by supporting Docker as a hyper-
visor in this Cloud Management Platform. With this
approach, applications and their execution environ-
ment packaged as Docker images can be instantiated
on-demand through OpenNebula and provide SSH-
based access for multiple users, with the advantage
for the administrators of reduced overhead (such as
low memory footprint) when compared to Virtual
Machines.

3.2 Development of Advanced Scheduling
Technologies

The end goal of this activity in INDIGO is improving
the performance of the cloud management platforms
by designing and implementing novel scheduling
mechanisms and policies at the IaaS level. Enabling
advanced scheduling policies to optimize the usage of
the data center will clearly improve the response to the
users.

To this end cloud schedulers need to include sup-
port for postponing low priority workloads (by killing,
preempting or stopping running containers or VMs) in
order to allocate higher priority requests.

3.2.1 Preemptible Instances

INDIGO pushed the state of the art in scheduling tech-
nologies by implementing preemptible instances on

2https://github.com/indigo-dc/bdocker
3https://github.com/indigo-dc/onedock

https://github.com/indigo-dc/udocker
https://github.com/indigo-dc/udocker
https://github.com/indigo-dc/udocker
https://github.com/indigo-dc/bdocker
https://github.com/indigo-dc/onedock


D. Salomoni et al.

top of the OpenStack[42] cloud management frame-
work, opie.4 Openstack preemptible instances is the
materialisation of the preemptible instances extension,
serving as a reference implementation.

Preemptible instances differ from regular ones in
that they are subject to be terminated by a incoming
request for provision of a normal instance. If bidding
is in place, this special type of instance could also
be stopped by a higher priority preemptible instance
(higher bid). Not all the applications are suitable for
preemptible execution, only fault-tolerant ones can
withstand this type of execution. On the other side they
are highly affordable VMs that allow providers to opti-
mize the usage of their available computing resources
(i.e. backfilling).

The opie package provides a set of pluggable exten-
sions for OpenStack Compute (nova) making possible
to execute preemptible instances using a modified fil-
ter scheduler. This solution has gained great interest
from the scientific community and commercial part-
ners, and is under discussions to be introduced in the
upstream OpenStack scheduler.

3.2.2 Implementing Advanced Scheduling
in OpenStack and OpenNebula

In IaaS private clouds the computing and storage
resources are statically partitioned among projects. A
user typically is member of one project, and each
project has its own fixed quota of resources defined
by the cloud administrator. A user request is rejected
if the project quota has already been reached, even if
unused resources allocated to other projects would be
available.

This rigid resource allocation model strongly lim-
its the global efficiency of the data centres, which aim
to fully utilize their resources for optimizing costs. In
the traditional computing clusters the utilization effi-
ciency is maximized through the use of a batch system
with sophisticated scheduling algorithms plugged in.
However this feature is missing in the most popular
cloud middlewares. In the course of INDIGO we have
developed support for advanced scheduling policies
such as intelligent job allocation based on fair-share
algorithms for both OpenStack and OpenNebula cloud
frameworks.

4https://github.com/indigo-dc/opie

• Synergy5 is an advanced service interoperable
with the OpenStack components, which imple-
ments a new resource provisioning model based
on pluggable scheduling algorithms. It allows
to maximize the resource usage, at the same
time guaranteeing a fair distribution of resources
among users and groups.

The service also provides a persistent queu-
ing mechanism for handling those user requests
exceeding the current overall resource capacity.
These requests are processed according to a prior-
ity defined by the scheduling algorithm, when the
required resources become available.

• The scheduling capabilities of OpenNebula have
been enhanced with the development of one-FaSS
(FairShare Scheduler for OpenNebula).6 In Open-
Nebula the scheduler is first-in-first-out (FIFO).
One-FaSS grants fair access to dynamic resources
priorizing tasks assigned according to an initial
weight and to the historical resource usage.

The project has also developed tools to facilitate
the management of hybrid data centers, this is, where
both batch system based and cloud based services are
provided. Physical computing resources can play both
roles in a mutual exclusive way. The Partition Direc-
tor7 takes care of commuting the role of one or more
physical machines from Worker Node (member of the
batch system cluster) to Compute Node (member of a
cloud instance) and vice versa.

The current release only works with the IBM plat-
form LSF Batch system (version 7.0x or higher) and
Openstack Cloud manager instances (Kilo or newer).
The main functionalities are switch role of selected
physical machines from the LSF cluster to the Open-
stack one and viceversa, and manage intermediate
transition status to ensure consistency.

3.3 Development of Authorization
and Authentication Infrastructures

INDIGO has provided the necessary components to
offer a commonly agreed Authentication and Autho-
rization Infrastructure (AAI). The INDIGO IAM8

5https://github.com/indigo-dc/synergy-service
6https://github.com/indigo-dc/one-fass
7https://github.com/indigo-dc/dynpart
8https://github.com/indigo-dc/iam

https://github.com/indigo-dc/opie
https://github.com/indigo-dc/synergy-service
https://github.com/indigo-dc/one-fass
https://github.com/indigo-dc/dynpart
https://github.com/indigo-dc/iam


INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

(Identity and Access Management service) provides
user identity and policy information to services so
that consistent authorization decisions can be enforced
across distributed services.

IAM has a big impact on the end-user experience.
It provides a layer where identities, enrollment, group
membership and other attributes and authorization
policies on distributed resources can be managed in a
homogeneous way, supporting the federated authenti-
cation mechanisms supported by the INDIGO AAI.

The INDIGO AAI solution pioneers the usage
of OpenID Connect (OIDC) on the SP-IdP proxy.
INDIGO has made contributions to the upstream com-
ponents whenever needed to enable OpenID Con-
nect (namely in OpenStack Keystone and Apache
Libcloud).

INDIGO-Datacloud provides a flexible Authenti-
cation and Authorization Infrastructure (AAI) whose
main components are depicted in Fig. 3.

In order to do authentication and authorization in
a consistent way, services rely on the information
provided by the central IAM service.

The Login Service component implements bro-
kered authentication: users can authenticate with any

of the supported mechanisms (SAML, OpenID Con-
nect, X.509 certificates, local username/password).
Identity and authorization information is then exposed
to services via standard OAuth/OpenID Connect pro-
tocols. This approach simplifies integration with off-
the-shelf components and does not overload all ser-
vices in the infrastructure with the complexity of
handling multiple credential types. This approach has
a big impact on end-user experience, as it allows users
to centralize the management of their credentials and
provide a consistent login experience to all services in
the system.

The Group Membership Service component pro-
vides the tools to manage registration and enrollment
flows for the collaboration, organize users into groups
and manage user account life cycle.

The Authorization Service component, based on
the Argus Authorization Service [43], provides the
ability to define fine-grained policies for the collab-
oration leveraging the flexibility of a XACML policy
engine [44]. This component also provides a pol-
icy composition and distribution mechanism that is
used to ensure consistent authorization across the
distributed infrastructure.

Fig. 3 Architecture of the INDIGO identity and access management service



D. Salomoni et al.

The Provisioning Service component exposes an
SCIM API [45] to provision information about the
collaboration users to relying services. This mecha-
nism is useful, for instance, to manage the lifecycle of
resources at a site (e.g., local UNIX accounts) depend-
ing on the lifecycle of IAM user account information.
As an example, accounts could be provisioned auto-
matically across the infrastructure and configured with
user SSH public keys as registered in the central IAM
at user registration time, and disabled when the user
membership at the IAM expires or is suspended due to
a security incident.

Finally, to integrate services that do not speak
OpenID Connect natively, IAM integrates with
WaTTS, the INDIGO Token Translation Service.9

WaTTS can translate identity and authorization infor-
mation about a user provided as OpenID Connect
tokens to various credential types. This allows the
provision of services that do not normally support
federated identities to federated users.

IAM is used internally to the PaaS layer in order
to deal with the authorization of each user to the ser-
vices, but also in handling group membership and role
management for each user. Users may present them-
selves with any of the three supported token types
(X.509, OpenID Connect, SAML) and are able to
access resources that support any of them.

3.4 Virtual Networks

The INDIGO PaaS layer has been developed to
exploit a wide range of cloud management frame-
works (e.g. OpenStack, OpenNebula, Google Com-
pute Engine, Microsoft Azure, Amazon EC2) and
combine resources provided by these frameworks to
enable the deployment of complex distributed applica-
tions. Each cloud management framework may exhibit
a different native API and often these APIs can
be configured in different ways. This heterogeneity
constitutes a challenge when transparent instantia-
tion of cloud resources across multiple frameworks is
required. The INDIGO PaaS layer supports both com-
mon native APIs as well as the Open Cloud Comput-
ing Interface10 (OCCI). The OCCI specification is a
standard from the Open Grid Forum11 that provides

9https://github.com/indigo-dc/tts
10http://occi-wg.org/
11https://www.ogf.org

a flexible and extensible API to access and manage
cloud resources. Although OCCI provides a conve-
nient uniform API, its support to manage the network
environment is limited in what concerns the setup of
public/private network accessibility. Depending on the
actual cloud management framework being used the
target cloud may need manual network configuration
prior to the use of OCCI. To address these problems
INDIGO has defined and implemented an OCCI net-
work extension that allows the network environment
to be properly setup via the OCCI API regardless of
the underlying cloud management framework.

For OpenNebula[46] sites the solution consists in
a Network Orchestrator Wrapper (NOW)12 and a
corresponding backend in the rOCCI-server.13 NOW
enforces site-wide policy and network configuration
by making sure that only LANs designated by site
administrators are made available to users, and that
users cannot reuse LANs assigned to others while
they remain reserved. NOW has been released with
INDIGO, and the backend has been provided as a
contribution to upstream rOCCI-server distribution.

For OpenStack, the OpenStack OCCI Interface
(OOI) has been extended with support for advanced
networking functions provided by OpenStack’s Neu-
tron component such as router, network and subnet
setup. The contribution was accepted upstream and is
distributed with the OOI implementation.

The networking features of the OCCI gateway for
the Amazon’s EC2 API were adjusted making sure
that the model of setting up and using local virtual
networks is in accordance with the model used in the
other cloud management frameworks.

In addition a Virtual Router was implemented
allowing networks to span across cloud sites, poten-
tially geographically distant, so that a custom net-
working environment can be setup even if the
resources are allocated in different cloud sites. The
virtual router is a virtual machine that can be started
via OCCI and makes use of OpenVPN14 to imple-
ment network tunnels. The Virtual Routers can be
instantiated by the PaaS layer to orchestrate the inter-
connection of virtual machines across cloud providers.

12https://github.com/indigo-dc/now
13https://github.com/the-rocci-project/rOCCI-server
14https://openvpn.net

https://github.com/indigo-dc/tts
http://occi-wg.org/
https://www.ogf.org
https://github.com/indigo-dc/now
https://github.com/the-rocci-project/rOCCI-server
https://openvpn.net


INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

4 Architecture of the Platform as a Service

Generally speaking, a Platform as a Service (PaaS)
is a software suite, which is able to receive program-
matic resource requests from end users, and execute
these requests provisioning the resources on some e-
infrastructures. We can see already many examples in
the industrial sector, in which open source PaaS solu-
tions (eg. OpenShift [47] or Cloud Foundry [48]) are
being deployed to support the work of companies in
different sectors.

The case of supporting scientific users is more com-
plex in general than supporting commercial activities,
because of the heterogeneous nature of the infrastruc-
tures at the IaaS level (i.e. the resource centers) and of
the inherent complexity of the scientific work require-
ments. The key point is to find the right agreement to
unify interfaces between the PaaS and IaaS levels.

The Infrastructure Manager [49] (IM) has been
used to address the IaaS level. The IM is able to
deploy complex and customized virtual infrastructures
on IaaS Cloud deployment(such as AWS, OpenStack,
etc.). It automates the deployment, configuration, soft-
ware installation, monitoring and update of the virtual
infrastructure on multiple Cloud back-ends.

In the framework of INDIGO the IM has extended
its capabilities. In particular, in the PaaS it is used by
the Orchestrator (see below) in order to provision and
configure the virtual infrastructure required to support
the scientific applications involved in the project.15

In order to better adapt to the wide range of use
cases provided by the users communities we decided
to take a different approach from many of the more
used PaaS: our solution is based on the concept of
orchestrating complex clusters of services and on the
possibility to automatize the actions needed to imple-
ment the use cases. This approach was really success-
ful as it gave the possibility to implement also legacy
applications and did not depended on the language in
which the application is built.

In Figure 4 we show the general interaction
between the IaaS and PaaS layers. The Orchestrator
provides the entry point to the PaaS layer with its
ability to decide the most appropriate site on which
to deploy a certain application architecture described
in TOSCA Templates. INDIGO-DataCloud fosters
local-site orchestration and, therefore, depending on

15https://github.com/indigo-dc/im

the underlying Cloud Management Framework of the
Cloud site, the TOSCA Template is translated into the
specific orchestration component of OpenStack (Heat)
or it is delegated on the Infrastructure Manager (IM) to
execute on OpenNebula-based Cloud sites. Since both
Virtual Machines and containers can be provisioned
on the underlying Cloud site, Virtual Machine Images
available in each are registered in the Information Sys-
tem and container images are pre-staged to the Cloud
sites to reduce deployment times.

INDIGO has provided a working PaaS Layer
orchestrating heterogeneous computing and storage
resources. Using the PaaS Orchestrator together with
the IM and TOSCA Templates, the end users are able
to exploit computational resources without knowledge
about the IaaS details. In the following we describe the
main technologies employed to build the PaaS.

4.1 PaaS Layer and Microservices Architecture

The Paas layer should be able to hide complexity
and federate resources for both Computing and Stor-
age. For that we have applied the current technologies
based on lightweight containers and related virtualiza-
tion developments using microservices.

Kubernetes [50], an open source platform to
orchestrate and manage Docker containers, is used
to coordinate the microservices in the PaaS layer.
Kubernetes is extremely useful for the monitoring
and scaling of services, and to ensure their reliability.
The PaaS manages the needed micro-services using
Kubernetes, in order, for example, to select the right
end-point for the deployment of applications or ser-
vices. The Kubernetes solution is used in the PaaS
layer as is provided by the community.

The microservices that compose the PaaS layer are
very heterogeneous in terms of development: some
of them are developed ad hoc, some others were
already available and used as they are, few others have
been significantly modified in order to implement new
features within INDIGO.

The language in which the INDIGO PaaS receives
end user requests is TOSCA [18]. TOSCA stands
for Topology and Orchestration Specification for
Cloud Applications. It is an OASIS specification
for the interoperable description of applications
and infrastructure cloud services, the relationships
between parts of these services, and their operational
behaviour.

https://github.com/indigo-dc/im


D. Salomoni et al.

Fig. 4 Interaction between the IaaS and PaaS layers

TOSCA has been selected as the language for
describing applications, due to the wide range of adop-
tion of this standard, and since it can be used as the
orchestration language for both OpenNebula (through
the IM) and OpenStack (through Heat).

The released INDIGO PaaS layer (see Fig. 5) is
able to provide automatic distribution of the applica-
tions and/or services over a hybrid and heterogeneous
set of IaaS infrastructures, on both private and public
clouds.

The PaaS layer is able to accept a description of
a complex set, or cluster, of services/applications by
mean of TOSCA templates, and is able to provide
the needed brokering features in order to find the
best fitting resources. During this process, the PaaS
layer is also able to evaluate data distribution, so that
the resources requested by the users are chosen by
the closeness to the storage services hosting the data
requested by those specific applications/services.

4.1.1 The Orchestrator Engine

The INDIGO PaaS Orchestrator16 is a core compo-
nent of the PaaS layer: it orchestrates the provisioning
of virtualized compute and storage resources on Cloud
Management Frameworks (like OpenStack and Open-
Nebula) and on Mesos clusters.

It receives the deployment requests, expressed
through templates written in TOSCA, and deploys
them on the best available cloud site. In order to select
the best site, the Orchestrator implements a com-
plex workflow: it gathers information about the SLAs
signed by the providers and monitoring data about
the availability of the compute and storage resources.
Finally the Orchestrator asks the Cloud Provider
Ranker17 to provide a ranked list of best cloud

16https://github.com/indigo-dc/orchestrator
17https://github.com/indigo-dc/cloudproviderranker

https://github.com/indigo-dc/orchestrator
https://github.com/indigo-dc/cloudproviderranker


INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

Fig. 5 Architecture of the INDIGO platform as a service layer

providers according an algorithm described below.
Therefore the Orchestrator mission is to coordinate
the deployment process over the IaaS platforms. See
Fig. 6 for an overview of the Orchestrator architecture.

The Orchestrator is based on developments already
done in other publicly funded projects, such as the
Italian PONs PRISMA [51], and Open City Platform
[52]. During the INDIGO project, this component
has been extended and enhanced to support the spe-
cific microservices building the INDIGO PaaS Layer.
It delegates the actual deployment of resources to
IM, OpenStack Heat or Mesos frameworks based on
TOSCA templates and the ranked list of sites.

A very innovative component is the Cloud Provider
Ranker. This is a standalone REST web service, which
ranks cloud providers on the basis of rules defined
per user/group/use case, with the aim of fully decou-
pling the ranking logic from the business logic of the
Orchestrator.

It allows the consumers of the service (one or
more orchestrators) to specify preferences on cloud
providers. If some preferences have been specified

for some providers, then they have absolute priority
over any other provider information (like monitoring
data). On the other hand, when preferences are not
specified, for each provider the rank is calculated, by
default, as the sum of SLA ranks and a combina-
tion of monitoring data, conveniently normalized with
weights specified in the Ranker configuration file.
Moreover, the ranking algorithm can be customized to
the specific needs.

This is a completely new service, fully imple-
mented within the INDIGO project; it is based on
an open source tool, Drools,18 in order to reduce
the needed development effort, and to simplify the
long-term support.

As a summary, one of the main achievements
of INDIGO in this respect is the implementation
of TOSCA Templates on IaaS that do not support
natively TOSCA, like Standard OpenStack, OpenNeb-
ula, or Public clouds (like Microsoft Azure, AWS,
OTC,...) using the Infrastructure Manager.

18https://www.drools.org

https://www.drools.org


D. Salomoni et al.

Fig. 6 Architecture of the orchestrator within the PaaS layer

In particular, using the PaaS Orchestrator and the
TOSCA templates, the end user can exploit compu-
tational resources without knowledge about the IaaS
details: indeed the TOSCA standard language ensures
that the same template can be used to describe a virtual
cluster on different cloud sites; then the Infrastructure
Manager implements the TOSCA runtime for con-
tacting the different cloud sites through their native
APIs. The provisioning and configuration of the IaaS
resources is therefore accomplished in a completely
transparent way for the end user. The same approach
is used also for submitting dockerized applications
and services to a Mesos cluster (and its frameworks
Marathon and Chronos): the user can describe his
request in a TOSCA template and the Orchestrator
provides the TOSCA runtime for contacting the Mesos
master node, submitting the request and monitoring
its status on behalf of the user as detailed in the next
section.

4.1.2 High-Level Geographical Applications/Service
Deployment

INDIGO has developed the tools and services to
provide a solution for orchestrating Docker contain-
ers for both applications (job-like execution) and

long running services. Mesos/Marathon/Chronos19

is used to manage the deployment of services and
applications (MSA service).

From a resource perspective Mesos is a cluster
management tool: it pools several resource centers to
be centrally managed as single unit; from an applica-
tion perspective, Mesos is a scheduler: it dispatches
workloads to consume pooled resources, scaling up to
thousands of nodes.

Mesos is fault tolerant, as it is possible to repli-
cate the master process. The INDIGO PaaS uses also
Marathon and Chronos. Marathon is used to deploy,
monitor and scale Long-running services, ensuring
that they are always up and running. Chronos is used
to run user applications (jobs) taking care of fetch-
ing input data, handling dependencies among jobs or
rescheduling failed jobs.

Therefore the submission of jobs uses an approach
very similar to a batch system, exploiting resources
where they are, without even knowing about the
details. This includes deployment on multiple IaaS,
both private and public, hiding to the end users the
complexity of the distributed resources.

19https://github.com/indigo-dc/mesos-cluster

https://github.com/indigo-dc/mesos-cluster


INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

It is also possible using the CLUES20 (Cluster
Energy Saving) service to auto-scale (up & down)
depending on the load, on several types of clusters:
Mesos, SLURM, PBS, HTCondor, etc. CLUES is
an elasticity manager system for HPC clusters and
Cloud infrastructures that features the ability to power
on/deploy working nodes as needed (depending on the
job workload of the cluster) and to power off/terminate
them when they are no longer needed.

The sustainability of our PaaS layer relies heavily
on the fact that we have used Open Source frameworks
when already available.

4.1.3 Data Management Services

The goal of the data management developments in
INDIGO has been pushing forward the state of the
art concerning unified data access over heterogeneous
infrastructures. Among the features demanded by the
use cases there are High-performance data access,
migration and replica management. Supporting such
features requires at the user level a flexible security
framework based on tokens and Access Control Lists
(ACLs).

Data management services developed in INDIGO
are based on three open source components: Onedata
[53], DynaFed [54] and FTS3 [55].

INDIGO has invested a substantial effort in the
development of Onedata,21 which is a global data
management system aiming to provide easy access to
distributed storage resources. The main goal is sup-
porting a wide range of use cases from personal data
management to data-intensive scientific computations.

Support for federation in Onedata can be achieved
by the possibility of establishing a distributed provider
registry, where various infrastructures can setup their
own provider registry and build trust relationships
between these instances, allowing users from various
platforms to share their data transparently.

Onedata provides an easy to use Graphical User
Interface for managing storage Spaces, with customiz-
able access control rights on entire data sets or single
files to particular users or groups.

The INDIGO PaaS Orchestrator integrates a plu-
gin for interacting with the Onedata services providing

20https://github.com/indigo-dc/clues-indigo
21https://github.com/indigo-dc/onedata

advanced capabilities of data location aware schedul-
ing. Combining the information about the distribu-
tion of the compute resources and the data providers
with the data requirements specified by the user, the
Orchestrator is able to schedule the processing jobs
to the computing center nearest to the data. A pro-
totype based on Onedata has been implemented and
demonstrated for some use-cases, e.g. the LifeWatch
AlgaeBloom (See Table 1).

Using Onedata is possible to integrate already
available storage services in the INDIGO Platform
exploiting the data stored in external infrastructures.
This is the case of the data stored in WLCG by
the CMS experiment from LHC. In this case the
INDIGO PaaS provided the services needed in order
to deal with authentication and autorization (Token
Translation)

5 Interfacing with the Users

Users typically do not access the PaaS core com-
ponents directly. Instead, they often Graphical User
Interfaces or simpler APIs. A user authenticated on the
INDIGO Platform can access and customize a rich set
of TOSCA-compliant templates through a GUI-based
portlet.

The INDIGO repository provides a catalogue of
pre-configured TOSCA templates to be used for the
deployment of a wide range of applications and ser-
vices, customizable with different requirements of
scalability, reliability and performance. In these tem-
plates a user can choose between two different exam-
ples of generic scenarios:

1. Deploy a customized virtual infrastructure start-
ing from a TOSCA template that has been
imported, or built from scratch: the user will be
able to access the deployed customized virtual
infrastructure and run, administer and manage
applications running on it.

2. Deploy a service/application whose lifecycle will
be directly managed by the PaaS platform: in
this case the user will be returned with list of
endpoints to access the deployed services.

APIs for accessing the INDIGO PaaS layer are
available, they allow for an easy integration of the
PaaS features inside Portals, Desktop Applications

https://github.com/indigo-dc/clues-indigo
https://github.com/indigo-dc/onedata


D. Salomoni et al.

and Mobile Apps. The final release of INDIGO-
DataCloud software includes a large set of com-
ponents to facilitate the development of Science
Gateways and desktop/mobile applications, big data
analytics and scientific workflows. The components
directly related to the end-user interfaces are inte-
grated in the INDIGO Future Gateway (FG) frame-
work. The FG can be used to build powerful, cus-
tomized, easy to use science gateways environments
and front-ends, on top of the INDIGO-DataCloud
PaaS layer and integrated with data management ser-
vices. The FG provides capabilities including:

• The FG API server, used to integrate third-party
science gateways; the FG Liferay Portal, contain-
ing base portlets for the authentication, authoriza-
tion and administration of running applications
and deployments;

• Customizable Application Portlets, for user-
friendly specification of the parameters used by
TOSCA templates;

• A workflows monitoring portlet, used for mon-
itoring task execution via integrated workflow
systems, described below.

• An Open Mobile Toolkit as well as application
templates for Android and iOS, simplifying the
creation of mobile apps making use of the FG API
Server.

• Support for scientific workflows, where the
INDIGO components:

– Provide dynamic scalable services in a
Workflows as a Service model;

– Implement modules and components
enabling the usage of the PaaS layer
(via FG API Server) for the main scien-
tific workflow engines deployed by user
communities (such as Kepler, Ophidia,
Taverna,Pegasus);

– Support a two-level (coarse and fine
grained) workflow orchestration, essen-
tial for complex, distributed experiments
involving (among others) parallel data
analysis tasks on large volumes of scien-
tific data.

• Key extensions to the Ophidia big data analyt-
ics framework (allowing to process, transform
and manipulate array-based data in scientific
contexts), providing many new functionalities,

including a set of new operators related to data
import regarding heterogeneous data formats (e.g.
SAC, FITS), a new OpenIDConnect interface and
new workflow interface extensions.

• Enhancements of the jSAGA library through
a ”Resource Management API”, complementing
the standard Job/Data Management API. This
allows to acquire and manage resources (com-
pute, storage, network) and enables the wrapping
of underlying technologies (cloud, pilot jobs, grid,
etc.) by means of a single API, supporting asyn-
chronous mode (task), timeout management, noti-
fication (metrics) and security context forwarding.

• Command-line clients for the PaaS layer to pro-
vide an easy way for users to interact with the
Orchestrator or with WATTS:

– Orchent22: a command-line applica-
tion to manage deployments and their
resources on the INDIGO-DataCloud
Orchestrator;

– Wattson23: a command-line client for
the INDIGO Token Translation Service.

INDIGO has provided the tools for a simple and
effective end user experience, both for software devel-
opers and for researchers running the applications. In
Fig. 7 we show how to launch an application using
a mobile platform developed in the project for the
climate change application ENES.

The ENES end-user starts the app and needs to
authenticate and authorize using IAM service. The
apps request to have an access to id, e-mail and offline
access, which will be required to refresh the existing
tokens during the mobile app lifecycle. After the user
gives the permissions and logs in, the user will see the
list with scheduled analysis if available.

The mobile app is a handy interface for scheduling
new tasks as well. The submitting form requires that
the user selects model, scenario, frequency, percentile
and nodes to run the analysis. After the user provides
the necessary inputs, the app sends the request to the
FutureGateway server using its API. The user is then
able to monitor the status of the analysis. If the task
is done, the user is able to see and download results
as PNG files illustrates predicted climate changes on

22https://github.com/indigo-dc/orchent
23https://github.com/indigo-dc/wattson

https://github.com/indigo-dc/orchent
https://github.com/indigo-dc/wattson


INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

Fig. 7 Task submission and visualization of results on the mobile platform for ENES

Earth. Finally the user can remove useless or aborted
tasks.

6 Software Lifecycle Management

The software lifecycle process in INDIGO has been
supported by a continuous improvement process that
encompassed the software quality assurance (SQA),
the software release and maintenance, the deploy-
ment of pilot infrastructures for software integration
and testing, and, lastly, the exploitation activities and
support services. In Fig. 8 we depict the interde-
pendencies between the different processes, together
with the services involved at each stage. Appendix B
describes the tools and services that were required
for the implementation of the software lifecycle
process.

The quality requirements [56], that drive the soft-
ware lifecycle process, define the minimum set of
criteria that the software developed in INDIGO has
to comply with. The requirements are met for each
change in the codebase, thus the production version of

a given software component is permanently in a work-
able status, protected from incoming changes that do
not adhere to the SQA criteria. The continuous evalua-
tion of the SQA requirements is only possible through
the aid of automation, achieved in INDIGO through
the progressive adoption of DevOps practices.

In the next sections we will describe the DevOps
approaches being adopted and the upstream contribu-
tions included in the official distributions of external
open source projects.

6.1 DevOps Approach in INDIGO

Progressive levels of automation were being adopted
throughout the different phases of the INDIGO-
DataCloud project software development and delivery
processes. This evolution was intentionally marked by
the commitment to DevOps principles [57]. Starting
with a continuous integration (CI) approach, achieved
already in the early stages of the project, the second
part of the project was devoted to the establishment
of the next natural step in the DevOps practices: the
continuous delivery (CD).



D. Salomoni et al.

Fig. 8 Software lifecycle, release, maintenance and exploitation interdependencies

6.1.1 Services for Continuous Integration and SQA

The INDIGO-DataCloud CI process is schematically
shown in Fig. 9 is explained below. The process,
in its different steps, reflects some of the main and
important achievements of the software integration
team.

• New features are developed independently from
the production version in feature branches. In

order to test and review the new change, a pull
request (PR) is created in GitHub. The PR cre-
ation marks the start of the automated validation
process through the execution of the SQA jobs in
the CI infrastructure (Jenkins).

• The SQA jobs perform the adherence of the code
to a style standard and calculate unit and func-
tional test coverage. Other checks are executed at
this stage for security static analysis and metrics
gathering.

Fig. 9 Continuous Integration workflow followed by new feature additions in the production codebase



INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

• The results of the several SQA jobs automatically
executed in Jenkins are notified back to GitHub,
updating the PR with the exit status and the links
to the output logs.

• On successful completion of the SQA tests, the
code review is the last step before the source code
is merged in the production version. The GitHub
PR provides a place for discussion, open to col-
laboration, where the developers and/or external
experts analyze the results of the SQA jobs and
discuss any relevant aspect of the change (inter-
nal to the code or in terms of the goals or
applicability).

• Once peer-reviewed, the change is merged and
becomes ready for integration and later release.

6.1.2 Continuous Delivery

Continuous delivery adds, on top of the CI approach
described above, a seamless manufacturing of soft-
ware packages ready to be deployed into production.

In the INDIGO-DataCloud scenario, the continu-
ous delivery adoption translates into the definition of
pipelines. A pipeline is a serial execution of tasks that
encompasses in the first place the SQA jobs (CI phase)
and adds as the second part (CD phase) the building
and deployment testing of the software packages cre-
ated. The pipeline only succeeds if each task is run to
completion, otherwise the process is stopped and set
as a build failure.

6.1.3 DevOps Adoption from User Communities

The experience gathered throughout the project with
regards to the adoption of different DevOps prac-
tices is not only useful and suitable for the software
related to the core services in the INDIGO-DataCloud
solution, but also applicable to the development and
distribution of the applications coming from the user
communities.

The novelty introduced, showcased in Appendix C,
is the validation of the user application by comparing
the execution results with a set of reference outputs.
Thus this pipeline implementation goes a step for-
ward, with respect to the former DevOps approaches,
as the application execution is tested before the new
version is released.

6.2 INDIGO Upstream Software Contributions

The INDIGO software solution encompasses not only
products implemented from scratch within the project
but also external services adopted from open source
initiatives. These latter set of products were actively
developed to enhance their functionality to match
the INDIGO project’s objectives, but at the same
time, aiming to be considered as upstream contri-
butions. Thus, multiple contributions developed by
INDIGO have been pushed and accepted in the offi-
cial distributions of major open source projects such
as OpenStack, OpenNebula and OpenID Connect.
Appendix A lists the software projects and products
being contributed by INDIGO-DataCloud.

7 Examples of Implementation Towards Research
Communities

In what follows we try to provide some basic infor-
mation that may be useful for promoting the use
of INDIGO solutions towards the Research Commu-
nities. Based on the described architecture we will
introduce the basic ideas on how to develop, deploy
and support applications in the Cloud framework,
exploiting the different service layers, and introduc-
ing generic examples that may make easier the use of
INDIGO solutions.

7.1 Understanding the Services of the Cloud
Computing Framework

Figure 10 provides the description of how an applica-
tion can be built using a service oriented architecture
in the Cloud, using INDIGO solutions.

This layered scheme includes different elements,
that are managed by different actors, that must be min-
imally understood in order to design, develop, test,
deploy and put in production an application.

The lowest layer, Infrastructure as a Service, pro-
vides a way to access to the basic resources that the
application will use: computing, storage, network, etc.
These resources are physically in a site, typically a
computing center, either in a research centre, or in
a cloud provider (for example commercial cloud ser-
vices), and are handled by the system managers at



D. Salomoni et al.

Fig. 10 Service composition in the Service Oriented Architecture

those sites, that install a IaaS solution compatible with
the INDIGO software stack (e.g. OpenStack, Open-
Nebula, Google Compute Engine, Microsoft Azure,
Amazon EC2).

By accessing through a web interface such as Hori-
zon for OpenStack, a user that is granted access to
a pool of resources at a site can launch a virtual
machine, for example a server with 2 cores, 4GB
RAM, 100GB of storage and with a certain Linux
flavour installed.

The user can then get access in console mode
this machine, using for instance ssh protocol. Once
logged in, the user can execute a simple script, or can
install a web server, etc. When the work is finished
the machine can be stopped by the user, liberating so
the resources. This is a very basic mode of access-
ing Cloud services, which shares analogies with the
usual access to classical computing services, like for
example any remote server or a cluster.

A different way to interact with IaaS services is to
use the existing APIs to manage the resources using
the web services protocol. Such invocation of services
can be made from any program or application, for
example from a python script, and even through a web
interface.

Many applications require the setup, launching
and interconnection of several (IaaS) services imple-
mented in different virtual machines, and managed

under a single control, as a Platform. The Platform as a
Service (PaaS) layer enables this orchestration of IaaS
services, and in the case of a Federated Cloud they
might even be located in different sites.

For example, an Apache Web Server may be
launched in site 1, with the purpose of display-
ing the output of a simulation running in a clus-
ter launched on demand in site 2. The Apache
Web server may be better supported with a pool of
resources using another cloud-oriented solution such
as Marathon/Mesos. Launching an application in this
context requires identifying the available resources
and launching them via the IaaS services. INDIGO
is supporting the TOSCA standard to prepare a tem-
plate that can be used to automatize this selection and
orchestration of services.

7.2 Building and Executing Applications Using
INDIGO Solutions

In what follows we present below several simple
examples of basic, but generic, applications exploiting
INDIGO solutions.

7.2.1 Executing Containers on HPC Systems

The first generic example is how to build an applica-
tion encapsulated as a container and how to executed



INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

it in an HPC system. This basic example of using
INDIGO solutions is shown in Fig. 11. A user can cre-
ate a container using a conventional Dockerfile which
describes the steps required to create the Docker
image. The process can be fully automatized using
GitHub and Docker Hub in such a way that a change
in the Dockerfile, immediately triggers a rebuilt of the
application container.

INDIGO provides the udocker tool to enable exe-
cution of application containers in batch systems. The
end-user can download the udocker Python script from
GitHub or can send it with the batch job. Once exe-
cuted for the first time it setups itself in the user home
directory. udocker provides a Docker like command
line interface with which the user can pull, import or
load Docker containers and then execute them using
a chroot-like environment. The software within the
container must not require privileges during execu-
tion as it will be executed under the user that invokes
udocker.

This is also a good solution for research communi-
ties that want to migrate towards a cloud-based frame-
work using containers, but keep exploiting resources
like grid-enabled clusters or even supercomputers.

udocker is used by the Case Studies on Struc-
tural Biology (Powerfit and Disvis) exploiting grid
resources, on Phenomenology in Particle Physics, and
recently for Lattice QCD on supercomputers. Also,
the TRUFA genomic pipeline exploits this solution,
and it is being extended to similar applications in the
area that require the integration of legacy libraries.

7.2.2 Executing Containers on the Cloud

The second example is how to build an application
encapsulated as a container and launch it in the Cloud,
from a web interface, using the INDIGO solutions
FutureGateway and PaaS Orchestrator

This second example, compared to the first one,
shows the evolution required to move an application to
the Cloud arena: the application must be encapsulated
into a container, as before, but to launch this container
the cloud resources must be allocated, the user must
authenticate and get the access granted. If different
services are required, they must be orchestrated.

The way to express these requirements, using an
open standard, is a TOSCA template. FutureGateway
offers a user-friendly web-based interface to cus-
tomize the TOSCA template, authenticate the user,
select the container to be executed, interact with the
Orchestrator to allocate the required cloud resources
and launch the application. As in the first example the
container can be created using a dockerfile. Automa-
tion in this step can be achieved using GitHub and
DockerHub.

Using the Future Gateway portal or the command
line tool Orchent, the user can submit a TOSCA tem-
plate to the Orchestrator, which in turn will request
and allocate the resources at the IaaS level by asking
the Infrastructure Manager to do so.

The user may wish to connect to the container that
has been launched via the orchestrator using the ssh
command. Once in the container it is posible to mount

Fig. 11 Basic execution of containers using INDIGO solutions



D. Salomoni et al.

remote data repositories or stage the output data using
Onedata, available at the IaaS layer.

7.3 Building Advanced Applications Using INDIGO
Solutions

In this section we present several simplified schemes
corresponding to different applications already imple-
mented, with the idea that they can be more easily used
as a guide to configure new applications.

The key, as stated before, is the composition of
the template, written using the TOSCA language. The
template should specify the image of the application
to be used, as a container, using docker technol-
ogy. We also need to specify the resources (CPUs,
storage, memory, network ports) required to support
the execution. The parameters required to configure
INDIGO services used like, for example, Onedata,
Mesos/Marathon or other additional cloud services
need to be specified as well.

Examples of TOSCA templates can be found at
https://github.com/indigo-dc/tosca-templates. Future-
Gateway offers a friendly way to handle the TOSCA
templates to launch the applications.

7.3.1 Deployment of a Digital Repository

A first example is the deployment, as a SaaS solu-
tion, of a digital repository. The scheme is presented
in the Fig. 12 below. The specific template for this
application is available for reuse in the github reposi-
tory of the project.

The repository manager, controlling the applica-
tion, uses the FutureGateway to configure the appli-
cation, based on the ZENODO software, that can be
automatically scaled up and ensure its high availabil-
ity using Cloud resources as needed, and also enabling
the authentication and authorization mechanism for
their research community, DARIAH, based on the
INDIGO solution IAM.

All these details are transparent to the final user,
who accesses the repository directly through its web
interface, and benefits of the enhanced scalability and
availability.

7.3.2 Launching a Virtual Elastic Cluster for Data
Intensive Applications

A second example is the launch of a Virtual Elastic
Cluster to support a data intensive system.The scheme
is presented in Fig. 13 below.

The specific template for this advanced application
is available for reuse in the github repository of the
project.

Galaxy is an open source, web-based platform for
data intensive biomedical research. This application
deploys a Galaxy instance provider platform, allow-
ing to fully customize each virtual instance through a
user-friendly web interface, ready to be used by life
scientists and bioinformaticians.

The front-end that will be in charge of manag-
ing the cluster elasticity can use a specified LRMS
(selected among torque, sge, slurm and condor)
workload.

Fig. 12 Deployment of a digital repository using INDIGO solutions

https://github.com/indigo-dc/tosca-templates


INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

Fig. 13 Launching of a Virtual Elastic Cluster using INDIGO solutions

All these details are transparent to the final user, the
researcher, who accesses the Galaxy instance directly
through its web interface, and benefits of the enhanced
scalability and availability.

This complex template includes the configuration
of the distributed storage based in Onedata, the use of
the encrypted files via LUKS, the deployment of elas-
tic clusters using another INDIGO solution, CLUES,
and the integration of the Authentication and Autho-
rization mechanism, very relevant for this application
area, using IAM.

8 Conclusions

Thanks to the new common solutions developed by
the INDIGO project, teams of first-line researchers in
Europe are using public and private Cloud resources
to get new results in Physics, Biology, Astronomy,
Medicine, Humanities and other disciplines.

INDIGO-developed solutions that have for instance
enabled new advances in understanding how the
basic blocks of matter (quarks) interact, using
supercomputers, how new molecules involved in life
work, using GPUs, or how complex new reposito-
ries to preserve and consult digital heritage can be
easily built. The variety of the requirements coming

from these so diverse user communities proves that
the modular INDIGO platform, consisting of several
state-of-the-art, production-level services, is flexible
and general enough to be applied to all of them with
the same ease of use and efficiency.

These services allow to federate hybrid resources,
to easily write, port and run scientific applications to
the cloud. They are all freely downloadable as open
source components, and are already being integrated
into many scientific applications, namely:

• High-energy physics: the creation of complex
clusters deployed on several Cloud infrastructures
is automated, in order to perform simulation and
analysis of physics data for large experiments.

• Lifewatch: parameters from a water quality model
in a reservoir are calibrated, using automated
multiple simulations.

• Digital libraries: multiple libraries can easily
access a cloud environment under central coor-
dination but uploading and managing their own
collections of digital objects. This allows them to
consistently keep control of their collections and
to certify their quality.

• Elixir: Galaxy, a tool often used in many life
science research environments, is automatically
configured, deployed on the Cloud and used to
process data through a user-friendly interface.



D. Salomoni et al.

• Theoretical HEP physics: the MasterCode soft-
ware, used in theoretical physics, adopts INDIGO
tools to run applications on Grids, Clouds and
on HPC systems with an efficient, simple-to-use,
consistent interface.

• In DARIAH, a pan-european social and technical
infrastructure for arts and humanities, the deploy-
ment of a self-managed, auto-scalable Zenodo-
based repository in the cloud is automated.

• Climate change: distributed, parallel data analysis
in the context of the Earth System Grid Federation
(ESGF) infrastructure is performed through soft-
ware deployed on HPC and cloud environments in
Europe and in the US.

• Image analysis: in the context of EuroBioImag-
ing, a distributed infrastructure for microscopy,
molecular and medical imaging, INDIGO compo-
nents are used to perform automatic and scalable
analysis of bone density.

• Astronomical data archives: big data consisting of
images collected by telescopes are automatically
distributed and accessed via INDIGO tools.

The same solutions are also being explored by
industry, to provide innovative services to EU com-
panies: for example, modelling water reservoirs inte-
grating satellite information, improving security in
cyberspace, or assisting doctors in diagnostics through
medical images. INDIGO solutions are also being
intensively tested in other projects, such as HelixNeb-
ula ScienceCloud.

INDIGO services are fundamental for the imple-
mentation of the EOSC. In particular, many INDIGO
components are included in the unified service cat-
alogue provided by the project EOSC-hub [58], that
will put in place the basic layout for the Euro-
pean Open Science Cloud. Two additional Horizon
2020 projects were also approved (DEEP Hybrid
DataCloud and eXtreme DataCloud), that
will continue to develop and enhance INDIGO
components.

The outcomes of INDIGO-DataCloud will persist,
and also be extended, after the end of the project in
the framework of the INDIGO Software Collabora-
tion agreement. This Collaboration shall be continued
without financial support from the European Union. It
is open to new initiatives and partners willing to con-
tribute, extend or maintain the INDIGO-DataCloud
software components.

Acknowledgments INDIGO-Datacloud has been funded by
the European Commision H2020 research and innovation pro-
gram under grant agreement RIA 653549.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Appendix A: Contribution to Open Source
Software Projects

Here follows the list of software developed in the
framework of INDIGO-Datacloud that has been con-
tributed upstream to the Open Source community.

• OpenStack (https://www.openstack.org)

– Changes/contribution done already merged
upstream

* Nova Docker
* Heat Translator (INDIGO-Data

Cloud is 3rd overall contributor
and core developer)

* TOSCA parser (INDIGO-Data
Cloud is 2nd overall contribu-
tor and core developer)

* OpenID Connect CLI support
* OOI: OCCI implementation for

OpenStack

– Changes/contribution under discussion
to be merged upstream OpenStack Pre-
emptible Instances support (extensions)

• OpenNebula

– Changes/contribution done already merged
upstream

* ONEDock

• Changes/contribution done already merged
upstream for:

– Infrastructure Manager (http://www.
grycap.upv.es/im/index.php)

– CLUES (http://www.grycap.upv.es/clues/
eng/index.php)

– Onedata (https://onedata.org)
– Apache Libcloud (https://github.com/

apache/libcloud)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.openstack.org
http://www.grycap.upv.es/im/index.php
http://www.grycap.upv.es/im/index.php
http://www.grycap.upv.es/clues/eng/index.php
http://www.grycap.upv.es/clues/eng/index.php
https://onedata.org
https://github.com/apache/libcloud
https://github.com/apache/libcloud


INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

– Kepler Workflow Manager (https://
kepler-project.org/)

– TOSCA adaptor for JSAGA (http://
software.in2p3.fr/jsaga/dev/)

– CDMI and QoS extensions for dCache
(https://www.dcache.org)

– Workflow interface extensions for
Ophidia (http://ophidia.cmcc.it)

– OpenID Connect Java implementation
for dCache (https://www.dcache.org)

– MitreID (https://mitreid.org/) and
OpenID Connect (http://openid.net/
connect/) libraries

– FutureGateway (https://www.catania-
science-gateways.it/)

Appendix B: Tools and Services Involved
in the Software Lifecycle

Figure 14 showcases the tools and services used for
the development and distribution of the INDIGO-
DataCloud software:

• Project management service using openpro-
ject.org: It provides tools such as an issue tracker,
wiki, a placeholder for documents and a project
management timeline.

• Source code is publicly available, housed exter-
nally in GitHub repositories, increasing so the

visibility and simplifying the path to exploita-
tion beyond the project lifetime. The INDIGO-
DataCloud software is released under the Apache
2.0 software license [59].

• Continuous Integration service using Jenkins:
Service to automate the building, testing and
packaging, where applicable. Testing includes
the style compliance and estimation of the unit
and functional test coverage of the software
components.

• Artifact repositories for RedHat and Debian pack-
ages [60] and virtual – Docker – images [61].

• Code review service using GitHub: Source code
review is one integral part of the SQA as it
appears as the last step in the change verification
process. This service facilitates the code review
process, recording the comments and allowing the
reviewer to verify the candidate change before
being merged into the production version.

• Issue tracking using GitHub Issues: Service to
track issues, new features and bugs of INDIGO-
DataCloud software components.

• Release notes, installation and configuration
guides, user and development manuals are made
available on GitBook [62].

• Code metrics services using Grimoire: To collect
and visualize several metrics about the software
components.

Fig. 14 Tools and services used to support the software lifecycle process

https://kepler-project.org/
https://kepler-project.org/
http://software.in2p3.fr/jsaga/dev/
http://software.in2p3.fr/jsaga/dev/
https://www.dcache.org
http://ophidia.cmcc.it
https://www.dcache.org
https://mitreid.org/
http://openid.net/connect/
http://openid.net/connect/
https://www.catania-science-gateways.it/
https://www.catania-science-gateways.it/


D. Salomoni et al.

• Integration infrastructure: this infrastructure is
composed of computing resources to support
directly the CI service.

• Testing infrastructure: this infrastructure aims to
provide a stable environment for users where they
can preview the software and services developed
by INDIGO-DataCloud, prior to its public release.

• Preview infrastructure: where the released arti-
facts are deployed and made available for testing
and validation by the use-cases.

Appendix C: DevOps Adoption from User
Communities

DisVis [63] and PowerFit [64] applications were inte-
grated into a CI/CD pipeline described above. As

it can be seen in the Fig. 15, with this pipeline
in place the application developers were provided
with both a means to validate the source code
before merging and the creation of a new ver-
sioned Docker image, automatically available in the
INDIGO-DataClouds catalogue for applications i.e.
DockerHub???s indigodatacloudapps reposi-
tory.

Once the application is deployed as a
Docker container, and subsequently uploaded to
indigodatacloudapps repository, it is instan-
tiated in a new container to be validated. The
application is then executed and the results compared
with a set of reference outputs. Thus this pipeline
implementation goes a step forward by testing the
application execution for the last available Docker
image in the catalogue.

Fig. 15 DisVis development workflow using a CI/CD approach



INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures

References

1. Garcı́a, A.L., Castillo, E.F.-d., Puel, M.: Identity federation
with VOMS in cloud infrastructures. In: 2013 IEEE 5Th
International Conference on Cloud Computing Technology
and Science, pp 42–48 (2013)

2. Chadwick, D.W., Siu, K., Lee, C., Fouillat, Y., Germonville,
D.: Adding federated identity management to OpenStack.
Journal of Grid Computing 12(1), 3–27 (2014)

3. Craig, A.L.: A design space review for general federation
management using keystone. In: Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and
Cloud Computing, pp 720–725. IEEE Computer Society
(2014)

4. Pustchi, N., Krishnan, R., Sandhu, R.: Authorization fed-
eration in iaas multi cloud. In: Proceedings of the 3rd
International Workshop on Security in Cloud Computing,
pp 63–71. ACM (2015)

5. Lee, C.A., Desai, N., Brethorst, A.: A Keystone-Based
Virtual Organization Management System. In: 2014 IEEE
6Th International Conference On Cloud Computing Tech-
nology and Science (Cloudcom), pp 727–730. IEEE
(2014)

6. Castillo, E.F.-d., Scardaci, D., Garcı́a, A.L.: The EGI Fed-
erated Cloud e-Infrastructure. Procedia Computer Science
68, 196–205 (2015)

7. AARC project: AARC Blueprint Architecture, see https://
aarc-project.eu/architecture. Technical report (2016)

8. Oesterle, F., Ostermann, S., Prodan, R., Mayr, G.J.: Experi-
ences with distributed computing for meteorological appli-
cations: grid computing and cloud computing. Geosci.
Model Dev. 8(7), 2067–2078 (2015)

9. Plasencia, I.C., Castillo, E.F.-d., Heinemeyer, S., Garcı́a,
A.L., Pahlen, F., Borges, G.: Phenomenology tools on cloud
infrastructures using OpenStack. The European Physical
Journal C 73(4), 2375 (2013)

10. Boettiger, C.: An introduction to docker for reproducible
research. ACM SIGOPS Operating Systems Review 49(1),
71–79 (2015)

11. Docker: http://www.docker.com (2013)
12. Gomes, J., Campos, I., Bagnaschi, E., David, M., Alves,

L., Martins, J., Pina, J., Alvaro, L.-G., Orviz, P.: Enabling
rootless linux containers in multi-user environments:
the udocker tool. Computing Physics Communications.
https://doi.org/10.1016/j.cpc.2018.05.021 (2018)

13. Zhang, Z., Chuan, W., Cheung, D.W.L.: A survey on cloud
interoperability taxonomies, standards, and practice. SIG-
METRICS perform. Eval. Rev. 40(4), 13–22 (2013)

14. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A
Review of Auto-scaling Techniques for Elastic Applica-
tions in Cloud Environments. Journal of Grid Computing
12(4), 559–592 (2014)

15. Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open
Cloud Computing Interface–Core. Technical report, Open
Grid Forum (2010)

16. Metsch, T., Edmonds, A.: Open Cloud Computing Interface-
Infrastructure. Technical report, Open Grid Forum (2010)

17. Metsch, T., Edmonds, A.: Open Cloud Computing
Interface-RESTful HTTP Rendering. Technical report,
Open Grid Forum (2011)

18. (Ca Technologies) Lipton, P., (Ibm) Moser, S., (Vnomic)
Palma, D., (Ibm) Spatzier, T.: Topology and Orchestra-
tion Specification for Cloud Applications. Technical report,
OASIS Standard (2013)

19. Teckelmann, R., Reich, C., Sulistio, A.: Mapping of cloud
standards to the taxonomy of interoperability in IaaS. In:
Proceedings - 2011 3rd IEEE International Conference
on Cloud Computing Technology and Science, CloudCom
2011, pp. 522–526 (2011)

20. Garcı́a, A.L., Castillo, E.F.-d., Fernández, P.O.: Standards
for enabling heterogeneous IaaS cloud federations. Com-
puter Standards & Interfaces 47, 19–23 (2016)

21. Caballer, M., Zala, S., Garcı́a, A.L., Montó, G., Fernández,
P.O., Velten, M.: Orchestrating complex application archi-
tectures in heterogeneous clouds. Journal of Grid Comput-
ing 16(1), 3–18 (2018)

22. Hardt, M., Jejkal, T., Plasencia, I.C., Castillo, E.F.-d., Jack-
son, A., Weiland, M., Palak, B., Plociennik, M., Niels-
son, D.: Transparent Access to Scientific and Commercial
Clouds from the Kepler Workflow Engine. Computing and
Informatics 31(1), 119 (2012)

23. Fakhfakh, F., Kacem, H.H., Kacem, A.H.: Workflow
Scheduling in Cloud Computing a Survey. In: IEEE 18Th
International Enterprise Distributed Object Computing
Conference Workshops and Demonstrations (EDOCW),
2014, Vol. 71, pp. 372–378. Springer, New York (2014)

24. Stockton, D.B., Santamaria, F.: Automating NEURON sim-
ulation deployment in cloud resources. Neuroinformatics
15(1), 51–70 (2017)

25. Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Far-
getta, M., Barbera, R., Bruno, R., Giorgio, E., Williams,
D.N., Aloisio, G.: Two-level Dynamic Workflow Orches-
tration in the INDIGO DataCloud for Large-scale, Climate
Change Data Analytics Experiments. Procedia Computer
Science 80, 722–733 (2016)

26. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.:
Multicloud deployment of computing clusters for loosely
coupled mtc applications. IEEE transactions on parallel and
distributed systems 22(6), 924–930 (2011)

27. Katsaros, G., Menzel, M., Lenk, A.: Cloud Service Orches-
tration with TOSCA, Chef and Openstack. In: Ic2e (2014)

28. Garcia, A.L., Zangrando, L., Sgaravatto, M., Llorens, V.,
Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Dal Pra,
S., Salomoni, D., Donvito, G.: Improved Cloud resource
allocation: how INDIGO-DataCloud is overcoming the cur-
rent limitations in Cloud schedulers. J. Phys. Conf. Ser.
898(9), 92010 (2017)

29. Singh, S., Chana, I.: A survey on resource scheduling in
cloud computing issues and challenges. Journal of Grid
Computing, pp. 1–48 (2016)

30. Garcı́a, A.L., Castillo, E.F.-d., Fernández, P.O., Plasen-
cia, I.C., de Lucas, J.M.: Resource provisioning in Science
Clouds: Requirements and challenges. Software: Practice
and Experience 48(3), 486–498 (2018)

https://aarc-project.eu/architecture
https://aarc-project.eu/architecture
http://www.docker.com
https://doi.org/10.1016/j.cpc.2018.05.021


D. Salomoni et al.

31. Chauhan, M.A., Babar, M.A., Benatallah, B.: Architecting
cloud-enabled systems: a systematic survey of challenges
and solutions. Software - Practice and Experience 47(4),
599–644 (2017)

32. Somasundaram, T.S., Govindarajan, K.: CLOUDRB
A Framework for scheduling and managing High-
Performance Computing (HPC) applications in science
cloud. Futur. Gener. Comput. Syst. 34, 47–65 (2014)

33. Sotomayor, B., Keahey, K., Foster, I.: Overhead Matters: A
Model for Virtual Resource Management. In: Proceedings
of the 2nd International Workshop on Virtualization Tech-
nology in Distributed Computing SE - VTDC ’06, p. 5.
IEEE Computer Society, Washington (2006)

34. SS, S.S., Shyam, G.K., Shyam, G.K.: Resource manage-
ment for Infrastructure as a Service (IaaS) in cloud com-
puting SS Manvi A survey. J. Netw. Comput. Appl. 41,
424–440 (2014)

35. INDIGO-DataCloud consortium: Initial requirements from
research communities - d2.1, see https://www.indigo-data
cloud.eu/documents/initial-requirements-research-commu
nities-d21. Technical report (2015)

36. Europen open science cloud: https://ec.europa.eu/research/
openscience (2015)

37. Proot: https://proot-me.github.io/ (2014)
38. Runc: https://github.com/opencontainers/runc (2016)
39. Fakechroot: https://github.com/dex4er/fakechroot (2015)
40. Pérez, A., Moltó, G., Caballer, M., Calatrava, A.: Server-

less computing for container-based architectures Future
Generation Computer Systems (2018)

41. de Vries, K.J.: Global fits of supersymmetric models after
LHC run 1. Phd thesis Imperial College London (2015)

42. Openstack: https://www.openstack.org/ (2015)
43. See http://argus-documentation.readthedocs.io/en/stable/

argus introduction.html (2017)
44. See https://en.wikipedia.org/wiki/xacml (2013)
45. See http://www.simplecloud.info (2014)
46. Opennebula: http://opennebula.org/ (2018)

47. Redhat openshift: http://www.opencityplatform.eu (2011)
48. The cloud foundry foundation: https://www.cloudfoundry.

org/ (2015)
49. Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.:

Dynamic management of virtual infrastructures. Journal of
Grid Computing 13(1), 53–70 (2015)

50. See http://www.infoq.com/articles/scaling-docker-with-
kubernetes (2014)

51. Prisma project: http://www.ponsmartcities-prisma.it/ (2010)
52. Opencitiy platform: http://www.opencityplatform.eu (2014)
53. Onedata: https://onedata.org/ (2018)
54. Dynafed: http://lcgdm.web.cern.ch/dynafed-dynamic-

federation-project (2011)
55. Fts3: https://svnweb.cern.ch/trac/fts3 (2011)
56. Fernández, P.O., Garcı́a, A.L., Duma, D.C., Donvito, G.,

David, M., Gomes, J.: A set of common software quality
assurance baseline criteria for research projects, see http://
hdl.handle.net/10261/160086. Technical report

57. Httermann, M.: Devops for developers Apress (2012)
58. EOSC-Hub: ”Integrating and managing services for the

European Open Science Cloud” Funded by H2020 research
and innovation pr ogramme under grant agreement No.
777536. See http://eosc-hub.eu (2018)

59. Apache License: author = https://www.apache.org/licenses/
LICENSE-2.0 (2004)

60. INDIGO Package Repo: http://repo.indigo-datacloud.eu/
(2017)

61. INDIGO DockerHub: https://hub.docker.com/u/indigodata
cloud/ (2015)

62. Indigo gitbook: https://indigo-dc.gitbooks.io/indigo-data
cloud-releases (2017)

63. Van Zundert, G.C., Bonvin, A.M.: Disvis: quantifying and
visualizing the accessible interaction space of distance
restrained biomolecular complexes. Bioinformatics 31(19),
3222–3224 (2015)

64. Van Zundert, G.C., Bonvin, A.M.: Fast and sensitive rigid–
body fitting into cryo–em density maps with powerfit.
AIMS Biophys. 2(0273), 73–87 (2015)

https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21
https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21
https://www.indigo-datacloud.eu/documents/initial-requirements-research-communities-d21
https://ec.europa.eu/research/openscience
https://ec.europa.eu/research/openscience
https://proot-me.github.io/
https://github.com/opencontainers/runc
https://github.com/dex4er/fakechroot
https://www.openstack.org/
http://argus-documentation.readthedocs.io/en/stable/argus_introduction.html
http://argus-documentation.readthedocs.io/en/stable/argus_introduction.html
https://en.wikipedia.org/wiki/xacml
http://www.simplecloud.info
http://opennebula.org/
http://www.opencityplatform.eu
https://www.cloudfoundry.org/
https://www.cloudfoundry.org/
http://www.infoq.com/articles/scaling-docker-with-kubernetes
http://www.infoq.com/articles/scaling-docker-with-kubernetes
http://www.ponsmartcities-prisma.it/
http://www.opencityplatform.eu
https://onedata.org/
http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project
http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project
https://svnweb.cern.ch/trac/fts3
http://hdl.handle.net/10261/160086
http://hdl.handle.net/10261/160086
http://eosc-hub.eu
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://repo.indigo-datacloud.eu/
https://hub.docker.com/u/indigodatacloud/
https://hub.docker.com/u/indigodatacloud/
https://indigo-dc.gitbooks.io/indigo-datacloud-releases
https://indigo-dc.gitbooks.io/indigo-datacloud-releases

	INDIGO-DataCloud: a Platform to Facilitate Seamless Access to E-Infrastructures
	Abstract
	Introduction
	Context and State of the Art

	Analysis of Requirements Coming from Research Communities
	Computing Portal Service
	Data Analysis Service

	Developing for the Infrastructure as a Service (IaaS) Layer
	Supporting Linux containers
	Development of Advanced Scheduling Technologies
	Preemptible Instances
	Implementing Advanced Scheduling in OpenStack and OpenNebula

	Development of Authorization and Authentication Infrastructures
	Virtual Networks

	Architecture of the Platform as a Service
	PaaS Layer and Microservices Architecture
	The Orchestrator Engine
	High-Level Geographical Applications/Service Deployment
	Data Management Services


	Interfacing with the Users
	Software Lifecycle Management
	DevOps Approach in INDIGO
	Services for Continuous Integration and SQA
	Continuous Delivery
	DevOps Adoption from User Communities

	INDIGO Upstream Software Contributions

	Examples of Implementation Towards Research Communities
	Understanding the Services of the Cloud Computing Framework
	Building and Executing Applications Using INDIGO Solutions
	Executing Containers on HPC Systems
	Executing Containers on the Cloud

	Building Advanced Applications Using INDIGO Solutions
	Deployment of a Digital Repository
	Launching a Virtual Elastic Cluster for Data Intensive Applications


	Conclusions
	Acknowledgments
	Open Access
	Appendix A: Contribution to Open Source Software Projects
	Appendix B: Tools and Services Involved in the Software Lifecycle
	Appendix C: DevOps Adoption from User Communities
	References


