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The cathode material Nax FeP O4 of sodium-ion batteries shows phase changes during intercalation. In this work, a phase-field
model for Nax FeP O4 is studied for the first time. The Cahn-Hilliard diffusion equation coupled to finite deformation elasticity
is derived. Two finite deformation elasticity formulations based on elastic Green strain and logarithmic elastic strain, respectively,
are compared. The material parameters for Nax FeP O4 are determined. We implemented the model in COMSOL Multiphysics for
a spherically symmetric problem of sodium insertion into or extraction from a cathodic particle made of Nax FeP O4. The model
captures the important feature of phase segregation into a sodium-poor phase FeP O4 and a sodium-rich phase Na2/3 FeP O4. There
is a visible difference for the concentration and stress between the small deformation theory and the finite deformation theories.
Furthermore, we compare the two cathode materials Nax FeP O4 and Lix FeP O4 of lithium-ion batteries to each other in terms of
phase changes and stresses, and show that although the miscibility gap of Nax FeP O4 is smaller than that of Lix FeP O4, the stresses
in the cathode material Nax FeP O4 are higher in the phase segregated state. As a result, the suppression of phase segregation by the
elastic strain energy is more easily achieved in Nax FeP O4 compared to Lix FeP O4.
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Lithium-ion batteries (LIBs) have attracted intensive attention for
electrochemical energy storage over the past decades. The massive use
of LIBs combined with the limited and unevenly distributed lithium
source will drive up the prices of lithium, and high cost remains a crit-
ical problem for the development of LIBs.1 In contrast to lithium, the
wide availability, abundance and low cost of sodium on earth make
sodium-ion batteries (NIBs) suitable for large scale energy storage
devices in which high energy density becomes less critical.2 For com-
parison, properties of lithium and sodium are summarized in Table
I. Recently, NIBs have been considered as a promising alternative to
LIBs, since sodium and lithium exhibit similar chemical properties so
that sodium chemistry could be applied to a similar battery system,
and the fundamental principles of the NIBs and LIBs are identical.2

Just like LIBs, the electrochemical processes in the electrodes of NIBs
are also coupled to mechanical properties. Insertion of sodium into
the host material leads to strains, and as a consequence, stresses are
induced. The stresses associated with the related volume changes may
lead to fracture of electrode particles. For example, in LIB systems
a volume expansion of more than 300% of silicon particles has been
observed,3 which can cause particle fracture and capacity loss. On the
other hand, for thermodynamical reasons, there is a contribution of
the stresses to the driving force for diffusion in the host material.

Among all cathode materials for NIBs, phosphate based cathode
materials are among the best candidates, due to their thermal stability
and higher voltage.1 Olivine Nax FeP O4 (NaFPO) has the highest the-
oretical specific capacity (154m Ahg−1) compared to the other phos-
phate polyanion cathode materials (NaV P O4 F , Na3V2(P O4)2 F3

and Na2 FeP O4 F , etc.),1 which makes it a promising cathode mate-
rial for NIBs. Similar to olivine Lix FeP O4 (LiFPO), olivine NaFPO
also shows phase changes during sodium insertion or extraction.2,4–7

For the modeling of phase changes, Huttin8 has formulated a phase-
field model employing the Cahn-Hilliard equation considering the
cathode material Lix Mn2 O4 (LMO) of LIBs. Phase-field simulations
based on the Cahn-Hilliard equation for LiFPO particles of LIBs are
also studied in Refs. 9,10. A thermodynamic phase-field model based
on the Cahn-Hilliard equation relies on a continuous order parameter
which is a conserved quantity,11 thus, leading to diffuse interfaces
between adjacent phases with no need for the cumbersome tracking
of the position of a sharp interface. Our recent work12 has discussed
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the nonlocality of the Cahn-Hilliard theory, and demonstrated that
it is weakly nonlocal. In this work, a phase-field model based on the
Cahn-Hilliard equation for NaFPO of NIBs will be studied for the first
time, and the relevant material parameters of NaFPO for the phase-
field model will be determined. As far as we know, no work has been
published for the phase-field modeling of the cathode materials of
NIBs by now.

As for the coupling between diffusion and mechanics, Huttin and
Kamlah13 considered the coupling between the Cahn-Hilliard equa-
tion and small deformation theory (SDT) for spherical particles of
LMO. A general phase-field theory for the coupling of the Cahn-
Hilliard equation and finite deformation elasticity based on the local
dissipation inequality and the so-called local microforce balance has
been presented by Gurtin.14 In this theory, the external microforce
itself remains a quantity free to choose, and by taking it equal to zero,
the classical Cahn-Hilliard equation is obtained. Walk et al.15 have
identified the influence of the external microforce in the chemical
potential for spherical LMO particles.

Anand16 derived a theory for lithium insertion modeled by the
Cahn-Hilliard equation combined with finite deformation elasto-
plasticity based on the multiplicative decomposition of the deforma-
tion gradient, in which the external microforce is identified as related
to the Mandel stress in the chemical potential. To this end, the so-
called macroforce and microforce balances are evaluated by following
the virtual-power approach of Germain17 and Gurtin.18 Subsequently,
Di Leo et al.19 formulated a continuum model which coupled the
Cahn-Hilliard-type phase-field theory with finite deformation elastic-
ity based on logarithmic elastic strain. However, Anand’s model16,19

ignored the fact that logarithmic elastic strain is dependent on the
species concentration in the stress chemical potential, although log-
arithmic elastic strain is also a constitutive variable. As a result, the
extremely complicated and important term induced by the concentra-
tion dependence of the logarithmic elastic strain in the stress chemical
potential is not accounted for. The concentration dependence of the
strain tensor in the chemical potential is also confirmed by Gurtin.14

Interestingly, the external microforce term related to the Mandel stress
in Anand’s model16,19 is just equivalent to the ignored term induced by
the concentration dependence of the logarithmic elastic strain, which
also is verified by Refs. 15 and 20. Walk et al.15 reported that for SDT
the identification of the external microforce in Anand’s model16,19

leads to a doubling of the mechanical coupling term in the chemi-
cal potential. Zhao et al.20 derived a Cahn-Hilliard phase-field model
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Table I. Sodium versus Lithium characteristics.

Category Lithium Sodium Refs.

Crustal abundance (ppm) 20 23,600 21
Distribution 70% South America Everywhere 22
Cost ($/ton), carbonates 5000 150 23
Cation radius (pm) 76 106 23
Atomic weight (g/mol) 6.9 23 23
Coordination preference Octahedral and tetrahedral Octahedral and prismatic 23

coupled to mechanics based on the Neo-Hookean elasticity without
introduction of the external microforce in the chemical potential, and
show that their model agrees with Anand’s model16,19 which ignored
the concentration dependence of the strain tensor in the chemical po-
tential. As remarked by Gurtin,14 no constitutive relation is specified
for the external force. Rather, specifying the external microforce by
invoking the so-called principle of virtual power may be considered
an option. However, in view of the above discussion we do not find it
appropriate to adopt this here.

In our paper, we will formulate a coupled phase-field theory for
NaFPO modeled by the Cahn-Hilliard theory coupled to finite defor-
mation elasticity formulations, and the concentration dependence of
the strain tensor in the chemical potential will be considered. For the
mechanical part, two different finite deformation elasticity formula-
tions will be introduced and compared.

The paper is organized as follows. In Theory section, we derive the
coupled model of the Cahn-Hilliard diffusion theory and finite defor-
mation elasticity, including two mentioned mechanical theories based
on elastic Green strain and logarithmic elastic strain, respectively.
The governing equations and boundary conditions are summarized.
The resulting set of equations are implemented in COMSOL Multi-
physics for the solution of the initial-boundary-value problem by the
finite element method. We describe the determination of the material
parameters for NaFPO cathode material in Material Parameters sec-
tion. We present and discuss phase changes and stresses in spherical
NaFPO electrode particles, and compare the cathode material NaFPO
of NIBs to LiFPO of LIBs in terms of phase changes and stresses
in Results and discussion section. Finally, we conclude our study in
Conclusions section.

Theory

In this section, we will first motivate the phase-field model for
the pure diffusion problem. Then, the coupling to mechanics will be
summarized. For the mechanical part, we will introduce two different
finite deformation theories including elasticity based on elastic Green
strain and elasticity based on logarithmic elastic strain.

Cahn-Hilliard model for diffusion.—The description of diffusion
and phase changes within an electrode material can be modeled by
the Cahn-Hilliard theory.11 In the phase-field model, we introduce
as an order parameter, depending continuously on space, the species
concentration c, which is measured in mol per unit volume. The free
energy density consisting of two parts is given by

ψ(c̄, grad c̄) = ψmwp(c̄) + ψgd (grad c̄), [1]

where c̄ is the dimensionless concentration, which is normalized with
respect to the maximum species concentration cmax as c̄ = c/cmax .
The homogeneous free energy density ψmwp is a multiwell potential
defining the respective phases. Based on the References 13,24 the ho-
mogeneous free energy density exhibits a double-well structure. The
existence of this zone of concavity indicates that homogeneous species
concentration states do not always ensure the system free energy to
be minimal. In the concavity zone, the system becomes unstable to-
ward phase segregation. The Maxwell construction, which connects
the neighborhoods of the two minima by a common tangent, predicts
that the system splits into a two phase system and the chemical poten-
tials of both the species-poor phase and species-rich phase are equal.

In this sense, the homogeneous free energy density is a multiwell po-
tential where the wells define the respective phases. The second term
on the right hand side of Equation 1 represents the gradient energy
leading to a diffuse interface between two adjacent phases, which is
given by

ψgd (grad c̄) = kB Tre f NAcmax (
1

2
λ|grad c̄|2). [2]

Here kB is the Boltzmann constant, NA is the Avogadro constant and
Tref is the reference temperature. Furthermore, λ is a material constant
with units of length squared controlling the thickness of the diffuse
interface and | · | denotes the norm of a vector.

The system free energy of some domain of volume V is

�(c̄) =
∫

V
(ψmwp(c̄) + ψgd (grad c̄))dV . [3]

According to Cahn and Hilliard,11 the system free energy �(c̄) can
be interpreted physically such that, to the first approximation, the free
energy of a small volume of nonuniform solution can be expressed as
the sum of two terms, one being the free energy that this volume would
have in a homogeneous solution and the other a “gradient energy”.

The homogeneous free energy density for a two phase material can
be expressed as13,24

ψmwp(c̄)

= kB Tre f NAcmax

(
α1c̄+α2

2
c̄2+ T

Tref
(c̄ ln c̄+ (1−c̄) ln (1−c̄))

)
.

[4]

The first two terms on the right hand side of Equation 4 represent the
interaction energy, where positive values of α1 characterize the energy
of inserting a species into the host material, and negative values of
α2 indicate the interaction of neighboring species to be attractive.
Concerning α1, it is hard to relate a physical meaning to non-positive
values of α1. On the other hand, it has to be noted that α1 does
not occur in the Cahn-Hilliard evolution equation for concentration.
According to Huttin,8 there is a critical temperature, namely Tc =
−1/4α2Tref , above which the homogeneous free energy density is
of convex shape, representing an ideal solution. For temperatures T
below the critical temperature, the free energy density exhibits a zone
of concavity where the homogeneous concentration states are not
stable states of the system, and phase segregation becomes possible.
The zone of concavity corresponds to the condition that the second
order derivative of the homogeneous free energy density with respect
to the concentration is negative. This inequality is never fulfilled if
α2 is not negative. Thus, for a system of noninteracting species, i.e.
α2 = 0, or for a system of species that repel each other, i.e. α2 > 0,
the homogeneous free energy density keeps a convex shape for all
T > 0. For an attractively interacting species system, i.e. α2 < 0,
depending on the temperature, the homogeneous free energy density
may exhibit a zone of concavity. Therefore, at T = Tref , the attraction
is strong enough to initiate phase segregation for α2 < −4. The
terms multiplied by absolute temperature T represent the entropy of
mixing, where c̄ ln c̄ represents the entropy of mixing valid at low
concentration, and (1 − c̄) ln (1 − c̄) describes the non-dilute solution
behavior and represents the entropy of mixing responsible for the
saturation effect.20,25



Journal of The Electrochemical Society, 165 (10) A1997-A2007 (2018) A1999

Table II. Basic fields in the kinematics.

Descriptions Basic fields

Motion �x = �χ( �X , t)
Displacement vector �u = �x − �X
Deformation gradient F = Grad�χ
Volume ratio J = detF
Multiplicative decomposition
of F

F = FeFs

Eastic deformation gradient Fe, J e = det Fe

Concentration induced
deformation gradient

Fs , J s = det Fs

Eastic right stretch tensor Ue =
√

FeT Fe

Eastic left stretch tensor Ve =
√

FeFeT

Polar decomposition of Fe Fe = ReUe = VeRe

Elastic Green strain tensor Ee = 1
2

(
FeT Fe − I

)
Spectral decomposition of Ue Ue = ∑3

α=1
λe

α
�rα ⊗ �rα

Spectral decomposition of Ve Ve = ∑3
α=1

λe
α (Re�rα) ⊗ (Re�rα)

Logarithmic elastic strain
tensor

Ee
log = ∑3

α=1
lnλe

α�rα ⊗ �rα

Spatial logarithmic elastic
strain tensor

Ee
log,H = ∑3

α=1
lnλe

α (Re�rα) ⊗ (Re�rα)

The driving force for diffusion is expressed as the gradient of the
chemical potential. Based on the local dissipation inequality and the
so-called local microforce balance,14 the chemical potential can be
obtained as

μ = δ�

δc
− γ = ∂ψmwp

∂c
− kB Tre f NAλ div (grad c̄) − γ. [5]

The external microforce γ is a contribution in the so-called lo-
cal microforce balance, which can be chosen arbitrarily.14,15 In our
case, the external microforce is neglected (γ = 0). Gurtin14 also
obtains the constitutive equation for the mass flux as the Onsager
relation

�J = −M · grad μ, [6]

where the mobility tensor M is non-negative definite. The diffusion
equation governing species transport is based on the conservation of
mass, namely

ċ = −div(�J ). [7]

Combining Equations 6 and 7 yields the traditional Cahn-Hilliard
equation

ċ = div (M(c)grad μ) , [8]

where in this special case the isotropic mobility M(c) is a non-negative
function.

Finite deformation elasticity.—Kinematics.—The kinematics de-
veloped here is related to the basic fields shown in Table II.

Consider a motion �x = �χ( �X , t) of a homogeneous isotropic body
B, where �X denotes an arbitrary material point of B in the reference
configuration, and �x is the spatial position of this material point in the
current configuration. The deformation gradient is then defined as

F = Grad�χ, [9]

where Grad is the gradient operator calculated with respect to the
reference configuration. The kinematical basis for the coupling be-
tween finite deformation elasticity and diffusion is the multiplicative
decomposition16

F = FeFs, [10]

as illustrated in Fig. 1. Here Fe is the elastic deformation gradient
that is a mapping from the intermediate configuration onto the current
configuration, and the concentration induced deformation gradient Fs

Figure 1. Multiplicative decomposition of F.

caused by species insertion or extraction is a mapping from the refer-
ence configuration onto the intermediate configuration. Fs is assumed
to be purely volumetric in the form

Fs = 3
√

1 + �(cR − c0)I, [11]

where cR is the species concentration, measured in mol per unit refer-
ence volume, � is the partial molar volume, and I is the second order
unit tensor.

The volume ratio J between a current volume element dVc and an
initial volume element dVi during species insertion or extraction is
defined as

J = dVc

dVi
= detF. [12]

Using Equation 10 yields

J = J e J s, [13]

where J e = detFe and J s = detFs.
The right and left polar decompositions of Fe are expressed by

Fe = ReUe = VeRe, [14]

where Re is a rotation, and Ue and Ve are the symmetric, positive-
definite elastic right and left stretch tensors:

Ue =
√

FeT Fe and Ve =
√

FeFeT . [15]

In addition, the right elastic Cauchy-Green tensor is

Ce = Ue2 = FeT Fe. [16]

The elastic Green strain tensor is then defined as

Ee = 1

2
(Ce − I) = 1

2

(
FeT Fe − I

)
. [17]

Next, the spectral representations of Ue and Ve are

Ue =
3∑

α=1

λe
α
�rα ⊗ �rα and Ve =

3∑
α=1

λe
α (Re�rα) ⊗ (Re�rα) , [18]

respectively where (�r1, �r2, �r3) and (λe
1, λ

e
2, λ

e
3) are the orthonormal

eigenvectors and the positive eigenvalues of Ue respectively. Accord-
ing to Anand,16 the logarithmic elastic strain tensor and the spatial
logarithmic elastic strain tensor can be obtained as

Ee
log = ln Ue =

3∑
α=1

lnλe
α�rα ⊗ �rα, [19]

Ee
log,H = ln Ve =

3∑
α=1

ln λe
α (Re�rα) ⊗ (Re�rα) . [20]
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Elasticity based on elastic Green strain.—According to Gurtin,14

the thermodynamical potential relation for the first Piola-Kirchhoff
stress TR is derived from the local dissipation inequality as

TR = ∂ψR

∂F
. [21]

Here, the first Piola-Kirchhoff stress TR is related to the symmetric
Cauchy stress T in the current configuration by

TR = JTF−T . [22]

The second Piola-Kirchhoff stress T̃e related to intermediate config-
uration is symmetric considering the symmetry of the Cauchy stress
T:

T̃e = J eFe−1TFe−T . [23]

Using Equations 21–23, we can obtain the relation

T̃e = 2

J s

∂ψR

∂Ce
= 1

J s

∂ψR

∂Ee
. [24]

The free energy density of the coupled theory, now per unit reference
volume, includes three parts:

ψR(cR, Grad cR, Ee) = ψ
mwp
R (cR) + ψ

gd
R (Grad cR) + ψ

cp
R (cR, Ee).

[25]

Here ψ
mwp
R (c) and ψ

gd
R have been previously discussed as the multiwell

potential and the gradient energy. The additional term ψ
cp
R (Ee, cR)

is the coupling energy in terms of elastic Green strain defining the
coupling between diffusion and mechanics, which is assumed to be
given by

ψ
cp
R (cR, Ee) = 1

2
J sEe : C : Ee. [26]

Here C is the elasticity tensor

C = G
(
δikδ jl + δilδ jk

) + 2Gν

1 − 2ν
δi jδkl , [27]

which is taken to be constant and isotropic. Accordingly, G is the
shear modulus, and ν is the Poisson number. Using Equations 25 and
26, Equation 24 then yields the isotropic elasticity law based on elastic
Green strain as

T̃e = 2GEe +
(

K − 2

3
G

)
(trEe) I. [28]

Elasticity based on logarithmic elastic strain.—In the following,
we will introduce another isotropic elasticity law based on logarithmic
elastic strain. According to Anand,16 the second Piola-Kirchhoff stress
T̃e is derived from the free energy density according to

T̃e = 2

J s

∂ψR

∂Ce
. [29]

Here, Equation 29 agrees with Equation 24 which is derived from the
local dissipation inequality of Gurtin.14 The Mandel stress related to
the intermediate configuration is defined by

Me = CeT̃e. [30]

Using Equations 16 and 19 yields

Ee
log = ln(Ce)

1
2 . [31]

Hence, using Equations 29 and 31, Equation 30 then gives

Me = Ce 2

J s

∂ψR

∂Ce
= 1

J s

∂ψR

∂Ee
log

. [32]

Furthermore, Equations 16, 23 and 30 yields the corresponding
Cauchy stress

T = 1

J e
ReMeReT

. [33]

The free energy density of the coupled theory in this case is

ψR(cR, Grad cR, Ee
log) = ψ

mwp
R (cR) + ψ

gd
R (Grad cR) + ψ

cp
R (cR, Ee

log),

[34]

while the coupling energy in terms of logarithmic elastic strain reads
as

ψ
cp
R (cR, Ee

log) = 1

2
J sEe

log : C : Ee
log. [35]

Using Equations 34 and 35, Equation 32 then yields the isotropic
elasticity law based on logarithmic elastic strain as

Me = 2GEe
log +

(
K − 2

3
G

) (
tr Ee

log

)
I. [36]

The coupled theory.—Using Equation 5, the chemical potential
considering the coupling between diffusion and mechanics is given
by

μR = δψR

δcR
= ∂ψ

mwp
R

∂cR
− λ Div (Grad cR) + μ

cp
R , [37]

where μ
cp
R is the coupling chemical potential. We consider two forms

of it for the two different finite deformation elasticities:

μ
cp
R (cR, Ee)

= ∂ψ
cp
R (cR, Ee)

∂cR
= �(

1

2
Ee : C : Ee) + J sC : Ee :

∂Ee

∂cR
,

[38]

μ
cp
R (cR, Ee

log)

= ∂ψ
cp
R (cR, Ee

log)

∂cR
= �(

1

2
Ee

log : C : Ee
log) + J sC : Ee

log :
∂Ee

log

∂cR
.

[39]

Here, the term multiplied by ∂Ee

∂cR
or

∂Ee
log

∂cR
represents the concentration

dependence of the strain tensor in the chemical potential. It should
be noticed that this term is equivalent to the external microforce term
related to the Mandel stress in Anand’s model.16,19

We choose an isotropic mobility according to

M (cR) = M (cR) I [40]

with the function

M (cR) = D0cR (cmax − cR)

kB T NAcmax
, [41]

which is symmetric in the range between zero and maximum concen-
tration and in which D0 is the diffusion coefficient. Finally, based on
the balances of mass and momentum, respectively, we can obtain the
field equations

∂cR

∂t
= Div (M (cR) Grad μR) , [42]

Div TR = �0. [43]

Combined with the constitutive equations introduced above, the field
equations can be taken as partial differential equations for concen-
tration cR and displacement vector �u, which need to be solved for
given initial and boundary conditions. This is a fourth-order nonlinear
initial-boundary-value problem.

In small deformation theory, the linear strain tensor is εi j =
1/2

(
ui, j + u j,i

)
with ui being the displacement vector, and Hooke’s

law gives for the stress relation T = C : (ε − εs), where εs =
1/3�(c̄ − c̄0)I is the stress-free strain induced by species insertion
or extraction.
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Figure 2. Boundary and symmetry conditions for the spherically symmetric
boundary value problem.

Boundary and initial conditions.—A spherical particle of radius
R0 under spherically symmetric boundary conditions is considered.
Here, spherical coordinates are introduced and all fields are expressed
as a function of the time t and the radial coordinate 0 ≤ R ≤ R0 of
the reference configuration in the form

cR = cR(R, t), [44]

�u = u R(R, t)�eR . [45]

The boundary conditions are sketched in Fig. 2. At the surface, the
particle is assumed to be stress free,

TR(R0, t) · �nR = �0, [46]

where �nR refers to the outgoing unit vector normal to the particle
surface. We choose a spatially independent mass flux at the surface as

�JR(R0, t) · �nR =
{

− Ccmax R0
3600·3 for cR(R0, t) ≤ cmax

0 for cR(R0, t) = cmax
. [47]

Here C is the C-rate, and C = n means that the amount of a species of
a fully charged particle would flow into the particle within 1/n hours.
Once the maximum concentration cmax is reached at the surface, the
mass flux will be stopped.

We also impose the “natural” or “variational” boundary condi-
tion at the surface for the fourth order Cahn-Hilliard equation.10 Here
neglecting surface wetting, the “natural” boundary condition is ex-
pressed as

Grad cR · �nR = ∂cR

∂ R
(R0, t) = 0. [48]

When the interface between phases meets the particle surface, Equa-
tion 48 enforces that it is perpendicular to the surface.20

In addition, at the particle center, the boundary conditions

u R(0, t) = 0, [49]

∂cR

∂ R
(0, t) = 0, [50]

∂3cR

∂ R3
(0, t) = 0, [51]

are to be satisfied. Here, Equation 49 guarantees the continuity of the
particle at the center, and Equations 49–51 are needed to ensure the
spherical symmetry. What is more, these three boundary conditions
ensure the physical requirement that the flux at the particle center
vanishes.8

Finally, the initial conditions are given by

u R (R, 0) = 0, [52]

cR (R, 0) = 0. [53]

Table III. Lattice parameters of LiFPO and NaFPO.

LiFPO NaFPO

Crystal structure Olivine Olivine

a (
o
A) 10.332 (Ref. 31) 10.4063 (Ref. 28)

b (
o
A) 6.010 (Ref. 31) 6.2187 (Ref. 28)

c (
o
A) 4.692 (Ref. 31) 4.9469 (Ref. 28)

Vcell (
o
A

3
) 291.4 (Ref. 31) 320.13 (Ref. 28)

n 4 4

Material Parameters

As mentioned before, we simulate particles of the cathode ma-
terial sodium iron phosphate NaFPO. We consider a typical active
nanoparticle of size R0 = 150 nm for the particle radius. According
to Nakayama et al.,26 the diffusion coefficient of Na-ions in NaFPO
is an order of magnitude lower than that of Li-ions in LiFPO, which
also can be confirmed by comparison to Zhu et al.4 The diffusion
coefficient of LiFPO is 1 × 10−14 m2/s,10,27 therefore, we use the
value D0 = 1 × 10−15 m2/s as the diffusion coefficient of NaFPO. In
the following, we will specify the values of the other parameters for
NaFPO including cmax , α1, α2, λ̄, partial molar volume � and Young’s
modulus E0.

Determination of cmax .—The maximum concentration cmax with
units of mol/m3 means the maximum content of a certain species the
host material can accept, which can be expressed by8

cmax = 1

V0 NA
, [54]

where V0 is the volume occupied by one species atom. This can be
obtained by

V0 = Vcell

n
, [55]

with n being the number of atoms of the species that the host material
can accept in a unit cell of volume Vcell .

According to Ref. 28, the structures of olivine LiFPO and olivine
NaFPO are the same. Based on the crystal structure of LiFPO as
shown in Ref. 29 and the lattice parameters in Table III, we can
calculate the maximum lithium concentration of LiFPO by Equation
54, which gives 2.29×104 mol/m3, matching the value used by Zeng
and Bazant,10 and Delacourt and Safari.30 Therefore, in the same way,
the maximum sodium concentration of NaFPO can be obtained as
cmax = 2.1 × 104 mol/m3, which is smaller than that of LiFPO due
to the larger unit cell volume for NaFPO.

Determination of α1 and α2.—According to Lu et al.,5 at room
temperature, the phase diagram of olivine NaFPO consists of two re-
gions. For 0 < x < 2/3, phase segregation into a sodium-poor phase
FeP O4 and a sodium-rich phase Na2/3 FeP O4 is found to be favor-
able, which means that this is a two-phase region. (Following common
praxis, we replace in chemical formulas dimensionless concentration
c̄ by x .) Based on the unit cell parameters and volume as functions
of x in NaFPO as shown in Ref. 5, two different values for the unit
cell parameters and volume, respectively, can be identified when x
increases to around 0.08, which is the manifestation of the occurrence
of the phase segregation. Therefore, we can obtain the normalized
sodium concentration for the initiation of phase segregation, which is
around 0.08. In contrast to LiFPO, where transformation from FeP O4

into Li FeP O4 occurs directly, the system of NaFPO goes through
an intermediate state at Na2/3 FeP O4. For 2/3 < x < 1 there is the
solid-solution phase Nax FeP O4 which is a single-phase region.
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Figure 3. Fit of the normalized homogeneous free energy density in the two-
phase region to the experimental data from Ref. 5.

With regard to the homogeneous free energy density in the two-
phase region of NaFPO, we assume

ψmwp(c̄) = kB Tre f NAcmax

(
α1c̄ + α2

2
c̄2 + T

Tref

(
c̄ ln c̄ +

(
2

3
− c̄

)

ln

(
2

3
− c̄

)))
. [56]

This is the classical homogeneous free energy density function for a
two phase material,8,24 which we have formulated such that it is limited
to the range 0 < x < 2/3. Consequently, we fit the homogeneous free
energy density (56) to the above experimental data5 with respect to
the parameters α1 and α2, as shown in Fig. 3. The best fit was achieved
with α1 = 5 and α2 = −15 at room temperature.

Fig. 3 shows the fitting result with the normalized homogeneous
free energy density in the two-phase region ψ̄mwp plotted versus nor-
malized concentration c̄. It can be seen that ψ̄mwp exhibits a doublewell
structure, such that two different relative minima A and B occur, char-
acterizing two phases of different equilibrium values for the sodium
concentration. The two minima A and B correspond to the two phases
FeP O4 and Na2/3 FeP O4, respectively. The two zones AC and BD
are the ”nucleation zones”, and phase segregation occurs upon suf-
ficient disturbance of the system’s equilibrium. In the inner zone of
concavity between the two points of inflection C and D, which is
denoted the ”spinodal decomposition zone”, homogeneous sodium
concentration states are unstable and phase segregation is initiated in
any case. The Maxwell construction represents the volume fractions
of a phase segregated system. The inflection points correspond to the
second order derivative of ψmwp with repect to c̄, as shown in Fig. 4,
and the inflection point C matches the experimental data from Ref. 5.

Determination of λ.—The so-called reference value λ0 for λ can
be estimated as8

λ0 =
−α2

(
1

NAcmax

) 2
3

3
, [57]

and the relation between λ0 and λ is

λ = αλ0, [58]

where α is constant.
Using Equation 57, we obtain λ0 = 9.1 × 10−19 m2 for NaFPO.

In absence of any further information, we pick α = 20 as the value
for NaFPO which is the one digit number in the order of magnitude
of the values for LiFPO and LMO, see Table IV. Therefore, we get

Figure 4. Second order derivative of ψmwp with repect to c̄.

Table IV. Gradient energy coefficients of three cathode materials.

λ0 α λ

LMO 3 × 10−19 (m2) 23 7 × 10−18 (m2) (Ref. 8)
LiFPO 5.2 × 10−19 (m2) 17 8.8 × 10−18 (m2) (Ref. 9)
NaFPO 9.1 × 10−19 (m2) 20 1.8 × 10−17 (m2)

λ = 1.8 × 10−17 m2 for NaFPO. The values of λ for three cathode
materials are shown in Table IV, as well.

Determination of �.—The partial molar volume � plays a role
analogous to a thermal expansion coefficient, meaning we can calcu-
late � by the relation εs = 1/3�(c̄ − c̄0)I. Thus, based on Table V,
the partial molar volume of LiFPO is obtained as

� = 0.022 × 3

(1 − 0) cmax
= 2.9 × 10−6 m3/mol, [59]

which matches the value used by Song et al.25 Therefore, in the same
way, the partial molar volume of NaFPO can be calculated as

� = 0.041 × 3(
2
3 − 0

)
cmax

= 8.8 × 10−6 m3/mol. [60]

This value of � is larger than that of LiFPO, which is consistent with
the fact that sodium has a larger cation radius than lithium as shown
in Table I. It should be noticed that we do not consider the possibility
of a concentration dependence of �.

Determination of E0.—Young’s modulus of the host material
FeP O4 is 125 G Pa, Young’s modulus of Li FeP O4 is 123.9 G Pa,
and Young’s modulus of the cathode material LiFPO is 124.5 G Pa,
which is the average of the values for FeP O4 and Li FeP O4.32 Based
on the above data, due to the larger ionic radius of Na-ion compared to
that of Li-ion, we regard the two digit estimate 120 G Pa as Young’s
modulus of NaFPO.

The material parameters for the two cathode materials LiFPO and
NaFPO are summarized in Table VI. The resulting set of equations

Table V. Volume change of LiFPO and NaFPO.

Lix FeP O4 Nax FeP O4

x 0 < x < 1 0 < x < 2/3
volume expansion 6.8% (Ref. 5) 12.8% (Ref. 5)
strain 0.022 0.041
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Table VI. The material parameters for the cathode materials
LiFPO and NaFPO.

Parameter LiFPO NaFPO

α1 4.5 (Ref. 9) 5
α2 −9 (Ref. 9) −15
λ 8.8 × 10−18 (m2) 1.8 × 10−17 (m2)
D0 1 × 10−14 (m2/s) 1 × 10−15 (m2/s)
cmax 2.29 × 104 (mol/m3) 2.1 × 104 (mol/m3)
� 2.9 × 10−6 (m3/mol) 8.8 × 10−6 (m3/mol)
E0 124.5 (G Pa) 120 (G Pa)
ν 0.25 (Ref. 32) 0.25(Ref. 32)

has been implemented in COMSOL Multiphysics for solution by the
finite element method.

Results and Discussion

In this section, we will consider the quasistatic insertion and ex-
traction of sodium for a particle of NaFPO at C = 0.001. In our
simulations, we exclusively focus on the two-phase region of NaFPO
(0 < x < 2/3). In the figures, c, cR and TH , TH R denote concentra-
tion and hydrostatic stress of small and finite deformation elasticity,
respectively, where TH = 1/3Tii is the hydrostatic stress in terms of
the Cauchy stress. We define the normalized quantity

ψ̄ = ψ

kB Tre f NAcmax
. [61]

The average concentration cavg , also called “state of charge” (SOC) is
cavg = ∫

c̄dV/V .

Cahn-Hilliard model without mechanics.—In Fig. 5, the markers
represent values of the normalized average system free energy

�̄avg = 1

V

∫
V

(ψ̄mwp + ψ̄gd (grad c̄))dV [62]

during insertion and extraction, respectively, as function of cavg . For
demonstration purposes, the plot of the homogeneous free energy den-
sity vs. dimensionless concentration is entered, as well. Markers on the
homogeneous free energy density curve correspond to homogeneous
states whereas markers nearby the path of the Maxwell construction
correspond to phase segregated states, as they are illustrated in Figs.
6 and 7.

Figure 5. Normalized average system free energy �̄avg and normalized ho-
mogeneous free energy density ψ̄mwp as function of cavg and c̄, respectively.

Figure 6. Normalized sodium concentration c̄ versus normalized radial coor-
dinate r/R0 for different time instants during sodium insertion.

Fig. 6 shows the normalized sodium concentration along the ra-
dial coordinate at different time instants during sodium insertion. We
find that at the beginning of sodium insertion the concentration is
homogeneous. Once cavg gets close to 0.08, which corresponds to the
inflection point C in Fig. 3, phase segregation is initiated. Two differ-
ent phases can be recognized in the particle, namely the sodium-poor
phase FeP O4 in the center corresponding to the first minimum A and
the sodium-rich phase Na2/3 FeP O4 at the outside corresponding to
the second minimum B. A smooth but very narrow interface with con-
centration changing rapidly but continuously separates them. When
cavg grows up to 2/3, the intermediate phase Na2/3 FeP O4 occupies
all of the particle.

Next, we consider the sodium extraction case shown in Fig. 7.
At the beginning the system is in a homogeneous state and the cor-
responding concentration is 2/3. Once cavg is reduced to around 0.6,
which corresponds to the inflection point D in Fig. 3, phase segregation
is initiated during sodium extraction. In contrast to the insertion case,
the sodium-poor phase FeP O4 is at the outside while the sodium-rich
phase Na2/3 FeP O4 is in the center. At the end of sodium extraction,
the sodium-rich phase Na2/3 FeP O4 vanishes. It should be noticed
that although to the particle surface a mass flux is applied, the concen-
tration on the particle surface nearly stays at a constant value. This is
due to the fact that because of the extremely low C-rate of C = 0.001

Figure 7. Normalized sodium concentration c̄ versus normalized radial coor-
dinate r/R0 for different time instants during sodium extraction.
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Figure 8. Normalized sodium concentration c̄ versus normalized radial co-
ordinate r/R0 at cavg = 0.5 based on SDT for different Ē during sodium
insertion.

for quasistatic insertion and extraction of sodium, the system moves
along a path of relaxed quasiequilibrium states.

Cahn-Hilliard model with mechanics.—Concerning mechanics,
we first study the coupling between the Cahn-Hilliard theory and
small deformation theory (SDT), and then compare the different small
and finite deformation theories. In order to study the coupling effect
through the coupling energy on sodium diffusion and stress in the
particle, we introduce a normalized Young’s modulus as

Ē = E

E0
, [63]

where E0 is the value of Young’s modulus shown in Table VI.

Cahn-Hilliard model with SDT.—Figs. 8 and 9 show normalized
sodium concentration and hydrostatic stress along the radial coordi-
nate at a stage of average concentration of cavg = 0.5 during sodium
insertion based on SDT for different Ē . We find that the difference
in concentration between the two phases is reduced as Ē increases,
which means that the solid solution limits of FeP O4 and Nax FeP O4

are gradually extended into the range of phase segregated states. In
other words the coupling effect reduces the miscibility gap. Corre-
spondingly, the hydrostatic stress magnitudes increase as Ē increases.
The hydrostatic stress is constant and tensile in the low concentration

Figure 9. Hydrostatic stress TH versus normalized radial coordinate r/R0 at
cavg = 0.5 based on SDT for different Ē during sodium insertion.

Figure 10. Normalized system coupling energy �̄cp versus average concen-
tration cavg based on SDT for different Ē during sodium insertion. Here
�̄cp = ∫

V ψ̄cpdV .

phase, and it drops rapidly across the interface to become compressive
and constant in the high concentration phase. This change of sign is
a result of mechanical equilibrium between the inner core and the
outer shell of the particle. Note that on the other side for Ē = 1,
the system is homogeneous and stress-free. Even though the average
concentration value lies in the spinodal decomposition zone of ψ̄mwp ,
phase segregation does not occur. As illustrated in Fig. 10, for a high
value of normalized Young’s modulus, the cost of the coupling system
energy �̄cp at a phase segregated state would be too high so that as
a result of the competition between the different contributions to the
system free energy the system stays in the homogeneous state in order
to minimize the total system free energy. Therefore, the presence of a
coupling energy in the total system free energy can lead to suppression
of phase segregation.

Comparison of different mechanics theories.—Figs. 11 and 12
show the comparison of normalized sodium concentration and hy-
drostatic stress at a stage of average concentration of cavg = 0.5
during sodium insertion for different mechanics theories with a value

Figure 11. Normalized sodium concentration versus normalized radial co-
ordinate at cavg = 0.5 with Ē = 0.3 during sodium insertion for different
mechanics theories. The normalized radial coordinates r/R0 and R/R0 repre-
sent SDT and finite deformation theory, respectively. The dashed horizontal
lines represent the experimental results from Ref. 7.
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Figure 12. Hydrostatic stress versus normalized radial coordinate at cavg =
0.5 with Ē = 0.3 during sodium insertion for different mechanics theories.

of Ē = 0.3: SDT, elasticity based on elastic Green strain and elastic-
ity based on logarithmic elastic strain. According to the experimental
work of Xiang et al.,7 driven by the coupling energy, the sodium-rich
phase decreases its sodium content to about Na0.6 FeP O4, while the
sodium-poor phase increases sodium content to about Na0.08 FeP O4.
These experimental results7 are shown as dash horizontal lines in
Fig. 11. It can be recognized that there is a visible difference for the
sodium concentration plots of SDT and the finite deformation elas-
ticity formulations, with the difference between the two phases being
less pronounced for SDT, while the sodium concentration plots of
two finite deformation theories are almost the same. Compared to the
experimental result,7 we can find that the sodium concentration in the
high concentration phase obtained from two finite deformation theo-
ries matches the experimental value for Na0.6 FeP O4 but there is a
clear deviation from the result by SDT. On the other hand, the sodium
concentration in the low concentration phase obtained from all three
mechanics theories is always slightly below the experimental value
for Na0.08 FeP O4. In Fig. 12, the hydrostatic stress plots are clearly
different for SDT on the one side and the two finite deformation theo-
ries on the other. There are higher stresses in the two phases for SDT.
This is attributed to the fact that SDT does not account for the volume
swelling of the particle during sodium insertion. Comparing the two

Figure 13. Normalized sodium concentration versus normalized radial coor-
dinate for various Ē during sodium insertion based on different mechanics
theories.

Figure 14. Normalized concentration c̄R versus normalized radial coordinate
R/R0 with Ē = 0.3 for various R0 at cavg = 0.5 during insertion for two
cathode materials based on different finite deformation elasticity formulations.

finite deformation theories to each other, it is found that there is a
negligible difference in stress between them.

As mentioned before, the contribution of the coupling energy to the
total system free energy can lead to suppression of phase segregation.
Here, we discuss the critical value of normalized Young’s modulus Ēc

of NaFPO above which phase segregation cannot arise in the particle.
Fig. 13 shows the normalized sodium concentration along the radial
coordinate for various values of Ē during sodium insertion based
on different mechanics theories. For SDT, it can be seen that phase
segregation can arise at a stage of average concentration of cavg = 0.33
when Ē = 0.385 but sodium concentration is homogeneous over the
particle when Ē = 0.386, so Ēc is 0.385 for SDT. In the same way, we
find Ēc = 0.409 for the two finite deformation elasticity formulations,
which is a little larger than that for SDT.

Comparison of different cathode materials.—We now compare
the two cathode materials NaFPO and LiFPO in terms of phase
changes and hydrostatic stress. Figs. 14 and 15 show normalized con-
centration and hydrostatic stress along the radial coordinate for vari-
ous particle radii R0 at a stage of average concentration of cavg = 0.5
for the two cathode materials during insertion based on different fi-
nite deformation theories. In Fig. 14, we recognize that there is an
obviously reduced miscibility gap for a NaFPO particle compared to

Figure 15. Hydrostatic stress TH R versus normalized radial coordinate R/R0
with Ē = 0.3 for various R0 at cavg = 0.5 during insertion for two cathode
materials based on different finite deformation elasticity formulations.
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Figure 16. Volume ratio J at the particle surface versus cavg with Ē = 0.3
for various R0 during insertion for two cathode materials based on different
finite deformation elasticity formulations.

a LiFPO particle. This is consistent with the experimental fact that
NaFPO has a two-phase region in the range 0 < x < 2/3 while phase
segregation for LiFPO occurs in the range 0 < x < 1.5 Additionally,
the interface location in a NaFPO particle is more close to the particle
center, and, furthermore, the concentration in the two phases is the
same for different particle radii.

Although the miscibility gap of NaFPO is much smaller than that
of LiFPO, the stresses in a NaFPO particle shown in Fig. 15 are
larger compared to those in a LiFPO particle. This can be due to a
larger expansion during phase changes for NaFPO as shown in Fig.
16 describing the plots of volume ratio J at the particle surface.
Here, it should be mentioned again that our simulations only con-
sider the two-phase region of NaFPO (0 < x < 2/3). We can find
that the volume expansion from FeP O4 to Na2/3 FeP O4 is quite
large, namely about 12.8%, which is nearly 2 times that for LiFPO
changing from FeP O4 to Li FeP O4. This is consistent with the
reports.5–7 Correspondingly, as shown in Fig. 17, the maximum hy-
drostatic stress magnitude in a NaFPO particle during phase changes
is always larger than that in a LiFPO particle. The larger stresses in
a NaFPO particle may explain the existence of a wide range of solid
solution Nax FeP O4 (2/3 < x < 1) to avoid even higher stresses

Figure 17. Maximum hydrostatic stress magnitude |TH,max | versus cavg with
Ē = 0.3 for various R0 during insertion for two cathode materials based on
different finite deformation elasticity formulations.

in the NaFPO particle. Casas-Cabanas et al.6 conclude that the larger
stresses in a NaFPO particle can be the explanation for the existence of
an intermediate phase. Indeed, the formation of an intermediate phase
acts as a buffer between FeP O4 and NaFeP O4 providing elasticity
to the structure. On the other hand, the critical value of normalized
Young’s modulus Ēc of LiFPO for surpression of phase segregation
is equal to 1 (we do not show this result here), which is larger than
that of NaFPO, as shown before. Therefore, it is easier for NaFPO
to reach the massive coupling energy to suppress phase segregation
compared to LiFPO due to the existence of larger stresses in a NaFPO
particle.

As can be seen in Fig. 17, the LiFPO particle surface expands
more seriously around cavg = 0.15. This is due to phase segregation
being already initiated for LiFPO but not yet for NaFPO which is
still in the homogeneous state. As a result, the maximum hydrostatic
stress magnitude in a LiFPO particle is far greater than that in a
NaFPO particle at this insertion state. At cavg = 2/3, the maximum
hydrostatic stress magnitude in a NaFPO particle is close to zero while
the LiFPO particle still displays high stresses. This is attributed to the
intermediate phase Na2/3 FeP O4 occupying then the whole particle
while LiFPO is still in a phase segregated state.

Conclusions

A phase-field model for the cathode material NaFPO of NIBs is
studied for the first time. A coupled phase-field model for Cahn-
Hilliard theory and elasticity has been derived. For the mechanical
part, besides small deformation theory (SDT) two different finite de-
formation elasticity formulations are introduced and compared. We
have taken into account the concentration dependence of the strain
tensor in the chemical potential which seems to have been ignored
by other researchers. As a major novelty, the material parameters for
NaFPO are determined. For example, α1, α2 and λ, all of which are the
key parameters in the phase-field model, are determined. The deter-
mination of these key parameters provides a significant input for the
future phase-field work for NaFPO. We implemented the fourth-order
nonlinear initial-boundary-value problem of the model in COMSOL
Multiphysics to solve by the finite element method the spherically
symmetric problem of sodium insertion into or extraction from a
NaFPO particle of NIBs.

Our model captures the important feature that distinguishes NaFPO
from LiFPO, i.e, phase segregation into a sodium-poor phase FeP O4

and a sodium-rich phase Na2/3 FeP O4. The difference for the con-
centration and stress plots between SDT and the finite deformation
theories cannot be neglected for NaFPO. In particular, the stresses in
the two phases are higher for SDT. The above difference suggests that
the finite deformation elasticity is preferred for the cathode material
NaFPO. This is different from that the small deformation theory has a
sufficient capacity to represent the deformation of LiFPO. Although
the results from the two finite deformation theories are almost the
same, according to our experience, elasticity based on logarithmic
elastic strain is numerically more efficient than elasticity based on
elastic Green strain. On the other hand, we find that the miscibility
gap of NaFPO is smaller than that of LiFPO, but the stresses in a
NaFPO particle during phase segregation are larger, which may ex-
plain the existence of a wide range of solid solution Nax FeP O4 for
2/3 < x < 1 to avoid even higher stresses in the NaFPO particle.
In addition, the suppression of phase segregation by the elastic strain
energy is more pronounced in NaFPO compared to LiFPO.

In this work, we just focus on phase changes in the two-phase
region of NaFPO (0 < x < 2/3), ignoring the single-phase region
(2/3 < x < 1). We will extend the current model into the whole region
(0 < x < 1) in our future work. As both the partial molar volume
and Young’s modulus are regarded as constants here, another major
subject of future study is the effect of the concentration dependence
of these two quantities for NaFPO.
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