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ABSTRACT: [ZrO]2+[CLP]2− (CLP: clindamycinphosphate) inorganic−organic
hybrid nanoparticles (IOH-NPs) represent a novel strategy to treat persisting,
recurrent infections with multiresistant Staphylococcus aureus. [ZrO]2+[CLP]2− is
prepared in water and contains the approved antibiotic with unprecedented high
load (82 wt % CLP per nanoparticle). The IOH-NPs result in 70−150-times higher
antibiotic concentrations at difficult-to-reach infection sites, offering new options for
improved drug delivery for chronic and difficult-to-treat infections.

1. INTRODUCTION

The overuse and inappropriate application of antibiotics is well
known to lead to the emergence of antibiotic resistanceand
even more challengingto an increase of multidrug resistances
(MDR) among several bacterial species.1 MDR Mycobacterium
tuberculosis, or Gram-negative bacteria with extended-spectrum
β-lactamase production (e.g., Klebsiella pneumoniae, Pseudomo-
nas aeruginosa, and Enterobacter species) and among Gram-
positive bacteria, especially Staphylococcus aureus (S. aureus),
have become a major problem for the global healthcare system
by increasing healthcare costs due to high morbidity and
mortality rates and prolonged hospitalization.2,3

A central issue in the development of MDR bacteria is
related to the fact that classical treatment strategies often lead
to insufficient levels of anti-infectives in various niches of the
host such as the intracellular milieu, rendering the treatment
less efficient and increasing the threat that pathogens become
resistant.2−6 S. aureus, for example, is known to establish
intracellular infection reservoirs because of internalization and
persistence in several host cells (e.g., mast cells, dendritic cells,
macrophages, epithelial cells, and osteoblasts).3,7−11 Certain S.
aureus subpopulations (small colony variants) are even well
adapted to persist for long periods in the intracellular
milieu,12−15 and they are associated with chronic, relapsing,
and therapy-refractory infections such as osteomyelitis or cystic
fibrosis.16−19

Promising concepts to conquer these problems and to
restrict antimicrobial resistance relate to the development of

new antimicrobial agents orequally importantthe evolu-
tion of more efficient dosage forms of conventional antibiotics
for obtaining sufficient concentration levels in the intracellular
milieu to guarantee bacterial eradication.2−6 Typically, the
maximum concentration of antibiotics, however, is limited by
solubility/availability (in blood, cells, tissue), penetration
(through membranes), retention time (due to biodegradation
or excretion), as well as by induced side effects. Higher
concentrations within the intracellular milieu could be
achieved via more efficient uptake into infected cells and
tissue. In this regard, several nanoparticle-based concepts were
suggested (e.g., tuberculosis treatment)20,21 that use the
different uptake of nanoparticles (i.e., phagocytosis and
pinocytosis) in comparison to molecular antibiotics in solution
(i.e., via ion channels or passive diffusion through lipid double
layers).22,23

Nanoparticle-based concepts for antibiotic delivery predom-
inately relate to organic polymers and micelles24−27 as well as
inorganic compounds (e.g., SiO2, Fe2O3, Ag, and
Au),20,21,28−34 in which the antibiotic is encapsulated. These
concepts intrinsically have the disadvantage of comparably low
drug contents (typically <10 wt %) in mainly nonactive
matrices as the majority material. In some cases, moreover,
elaborate, multistep synthesis is needed and/or the particle size
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is too large (>150 nm) for what is considered as optimal for
biomedical nanoparticle applications (50−100 nm).20,21,28−34

All in all, nanoparticular antibacterial agents appear to have
great potential to revolutionize the diagnosis and treatment of
bacterial infections.35−40

To address the challenge of intracellular MDR bacteria, we
here suggest saline [ZrO]2+[CLP]2− inorganic−organic hybrid
nanoparticles (IOH-NPs) as a novel nanocontainer concept to
deliver antibiotics with extremely high concentration directly
to S. aureus in intracellular niches. [ZrO]2+[CLP]2− is an
insoluble, saline compound, made in water, which contains an
unprecedented high load of 82 wt % of antibiotic [CLP]2−

(CLP: clindamycinphosphate). CLP is a clinically approved
pro-drug for the active last resort antibiotic clindamycin
(CL).41,42 BothCLP and CLare highly bacteriostatic,
bactericidal (at higher concentration), and widely used to treat
staphylococcal infectionsbut by now only in dissolved, free
form.41,42

2. RESULTS AND DISCUSSION

2.1. Material Synthesis and Characterization.
[ZrO]2+[CLP]2− was prepared by injecting an aqueous
solution of ZrOCl2 × 8H2O to aqueous solutions of
Na2(CLP) at 55 °C (Figure 1a). The synthesis compares to
our previously presented concept of phosphate-based IOH-
N P s w i t h a g e n e r a l c o m p o s i t i o n
[ZrO]2+[RFunctionOPO3]

2−.43,44 Herein, the inorganic cation
[ZrO]2+ and a functional organic anion [RFunctionOPO3]

2−

together form a saline hybrid material. [ZrO]2+ as the cation
and a phosphate group as part of the organic anion guarantee
for the insolubility of the IOH-NPs in water (Figure 1a). On
the basis of different functional organic anions, a wide range of
IOH-NPs entailing various functionalities such as fluorescence,
magnetism, or drug delivery can be realized so that the IOH-
NPs become suitable for multimodal imaging and/or cancer
treatment (Supporting Information: Figure S1).43,44 Here, we
can expand the material concept to antibiotic nanocarriers for
the first time. To obtain the saline [ZrO]2+[CLP]2− IOH-NPs
and colloidally stable suspensions, particle nucleation and
particle growth have to be performed precisely (Figure 1b;

Supporting Information).45 [ZrO]2+[CLP]2− is insoluble in
water and can be easily suspended in polar solvents such as
water, ethanol, diethylene glycol, or biological buffers (e.g.,
HEPES and aqueous dextran). Slow dissolution of the
[ZrO]2+[CLP]2− IOH-NPs in an active metabolismsimilar
to CLP as conventional pro-drug in solutionresults in the
release of CL as the active drug in the presence of
phosphatases.41,42

On the basis of the good availability of CL as a standard
anti-infective and the low-cost aqueous synthesis,
[ZrO]2+[CLP]2− IOH-NPs can be obtained in large quantities
and concentrated suspensions (up to 20 mg/mL). Scanning
electron microscopy (SEM) (Figure 1c,d) confirms the
presence of spherical nanoparticles with a mean diameter of
44 ± 11 nm (calculated by statistical evaluation of 100
particles). The hydrodynamic diameter (73(14) nm) obtained
via dynamic light scattering is as large as the value obtained by
SEM (Supporting Information: Figure S2), which can be
ascribed to the high polarity of water and the resulting
expanded rigid solvent shell. Moreover, the absence of any
specific surface stabilizer on the as-prepared IOH-NPs needs to
be taken into account, which facilitates the synthesis and which
allows avoiding any eventual toxic effect of a stabilizer. Energy-
dispersive X-ray analysis (EDX), Fourier-transform infrared
spectroscopy (FT-IR), thermogravimetry (TG), and elemental
analysis (EA) validate the chemical composition of
[ZrO]2+[CLP]2− as a new compound. EDX and FT-IR
qualitatively prove the presence of [ZrO]2+ and [CLP]2−

(Figure 1e). Quantification via total organics combustion
(TG) shows a weight loss of 66% fitting well with the
expectation (calcd. 68%) (Supporting Information: Figure S3).
EA data of 33.0 wt % C, 5.6 wt % H, 5.6 wt % N, 4.6 wt % S
also agree with the expectation (calcd C: 35.0, H: 4.6, N: 5.3,
S: 5.3 wt %).

2.2. Biocompatibility and Cell Uptake. Biocompatibility
and cell uptake were verified by feeding [ZrO]2+[CLP]2− IOH-
NPs to murine bone marrow derived macrophages
(BMDMs)a cell type generally showing high uptake rates
of nanoparticles.45 BMDMs were grown in sterile 4-chamber
slides to form confluent cell monolayers and incubated for 6 h
in the presence of [ZrO]2+[CLP]2− IOH-NPs. Within this time

Figure 1. Scheme illustrating the water-based synthesis of [ZrO]2+[CLP]2− IOH-NPs: (a) structure of antibiotic [CLP]2− anion; (b) photograph of
aqueous [ZrO]2+[CLP]2− suspension; (c + d) electron microscopy of nanoparticles; and (e) FT-IR spectra [with Na2(CLP) as reference].

ACS Omega Article

DOI: 10.1021/acsomega.8b00637
ACS Omega 2018, 3, 8589−8594

8590

http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00637/suppl_file/ao8b00637_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00637/suppl_file/ao8b00637_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00637/suppl_file/ao8b00637_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b00637/suppl_file/ao8b00637_si_001.pdf
http://dx.doi.org/10.1021/acsomega.8b00637


period, numerous [ZrO]2+[CLP]2− IOH-NPs were phagocy-
tosed and appear within primary lysosomes (pLs) either
individually or as electron dense clusters (Figure 2a,b: red

circles, red arrowheads). S. aureus cells are characteristically
dispersed within the cytoplasm of infected BMDMs and
actively grow within the state of binary fission (Figure 2c). To
study the impact of [ZrO]2+[CLP]2− on the viability of
intracellular S. aureus, infected BMDMs were incubated for 4 h
(Figure 2d), 6 h (Figure 2e), and 12 h (Figure 2f,g) with
[ZrO]2+[CLP]2− IOH-NPs and examined by electron
microscopy. Within BMDMs, individual bacterial cells (BCs)
appear surrounded by clusters of [ZrO]2+[CLP]2− within in
close distances <500 nm (Figure 2d,g: red stars). After 12 h of
incubation with [ZrO]2+[CLP]2− IOH-NPs, the BC shows
electron transparencies produced by alterations within the cell
wall/subcell wall regions and the plane of binary fission that is

associated with an “en-gros” change in cell morphology (Figure
2g). Such cellular defects (CD: black arrows) indicate
antibiotic activity and death of the BC.
To validate the presence of [ZrO]2+[CLP]2− IOH-NPs

within lysosomes, parallel electron energy-loss spectroscopy
and electron spectroscopic imaging (ESI) were performed on
unstained 40 nm ultrathin sections of uninfected and S. aureus-
infected BMDMs incubated with [ZrO]2+[CLP]2− IOH-NPs
(Figure 3a,b; Supporting Information: Figure S4). This allows

discriminating [ZrO]2+[CLP]2− IOH-NPs from other electron
dense nanostructures such as ferritins or Fe2O3 particles that
can be present in BMDMs. Accordingly, Zr-M45 elemental
maps show distinct Zr-M45 intensities, congruent with
[ZrO]2+[CLP]2− clusters of pLs for uninfected (Figure 3a)
and S. aureus-infected macrophages (Figure 3b), indicating the
presence and high load of internalized [ZrO]2+[CLP]2− IOH-
NPs. To validate efficient uptake and to ensure the intracellular
localization of the IOH-NPs, immunofluorescence microscopy
w a s p e r f o r m e d u s i n g fl u o r e s c e n c e - m a r k e d
[ZrO]2+[(CLP)0.995(DUT)0.005]

2− (DUT: dyomics-647 uridine
triphosphate; Supporting Information: Figure S1) and gfp-
expressing S. aureus bacteria (gfp: green fluorescence protein).
Similar to the results of EELS and ESI, the macrophages are
highly loaded with fluorescent IOH-NPs, which are found in
close proximity to the intracellular bacteria (Figure 3c,d). The
data indicate a potential localization of IOH-NPs within
primary lysosomal compartments. However, further co-local-
ization studies (e.g., using lysotracker) are needed to gain
deeper insights in the molecular and cellular uptake
mechanisms of IOH-NPs into the host cells.

Figure 2. Electron microscopy of murine macrophages, infected with
S. aureus SH1000 and treated with [ZrO]2+[CLP]2− IOH-NPs: (a)
survey of “en face”-sectioned, unstained macrophages, treated with
[ZrO]2+[CLP]2− for 6 h (red arrowheads indicate IOH-NP clusters).
(b) Detailed view of IOH-NP clusters (red arrowheads) and
individual IOH-NPs (red circles) within the pL. (c) Macrophage
infected for 12 h with S. aureus without IOH-NPs (infection control).
(d−g) Macrophages treated with [ZrO]2+[CLP]2− 12 h before
infection with S. aureus and after 4, 6, and 12 h of incubation (IOH-
NP clusters indicated by red stars). Indicators: pL: primary lysosome,
N: nucleus, BC: bacterial cell, CD: cellular defects, bR: bacterial
remnant.

Figure 3. Localization of [ZrO]2+[CLP]2− in BMDM cells: (a) Zr
elemental map (Zr-M45 in red) of macrophage treated for 3 h with
[ZrO]2+[CLP]2− IOH-NPs and (b) after infection for 12 h with S.
aureus and treated for 3 h with [ZrO]2+[CLP]2− IOH-NPs
(indicators: BC: bacterial cell, N: nucleus). (c,d) Fluorescence
microscopy with [ZrO]2+[(CLP)0.995(DUT)0.005]

2− IOH-NPs (pur-
ple), S. aureus (turquoise), and cellular nuclei (blue, stained with
DAPI). Macrophages infected with gfp-expressing S. aureus strain
SH1000 at an MOI of 10:1 for 1 h followed by co-cultivation with
[ZrO]2+[(CLP)0.995(DUT)0.005]

2− for 6 h. Enlargement (d) shows co-
localization of gfp-expressing S. aureus (turquoise) and
[ZrO]2+[(CLP)0.995(DUT)0.005]

2− IOH-NPs (purple).
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2.3. Antibiotic Effect. Having demonstrated that the
[ZrO]2+[CLP]2− IOH-NPs were efficiently internalized by
BMDMs, their potential toxic effect on cell viability was
assessed by measuring the lactate dehydrogenase (LDH)
released into the supernatant by [ZrO]2+[CLP]2−-treated
BMDMs. Generally, the release of the cytoplasmic enzyme
LDH into the culture medium is an indication of plasma
membrane disruption and cell damage. However, no significant
levels of LDH were observed in the supernatant of
[ZrO]2+[CLP]2−-treated and untreated BMDMs (Supporting
Information: Figure S5). These results clearly indicate a lack of
toxicity of [ZrO]2+[CLP]2− IOH-NPs for BMDMs after 24 h
of incubation.
To verify if [ZrO]2+[CLP]2− IOH-NPs (in suspension) have

an advantage over free CLP (in solution) to kill intracellular S.
aureus, professional phagocyte BMDMs and nonprofessional
phagocytic human epithelial Hep2 cells were infected with the
S. aureus strain SH1000 at a multiplicity of infection of 10
bacteria per 1 eukaryotic cell for 1 h. The infection was
followed by treatment for 2 h with either [ZrO]2+[CLP]2−

(suspension) or dissolved CLP [i.e., solution of Na2(CLP)].
Untreated infected cells were used for comparison. Cells were
harvested 4 h (nonhatched bars) and 24 h (hatched bars) after
infection, washed twice with sterile phosphate-buffered saline,
and lysed with ddH2O for 5 min to release intracellular
bacteria. Thereafter, the number of viable intracellular bacteria
was counted after platting serial dilutions on blood agar plates.
As a result, the number of viable intracellular bacteria is
significantly lower in macrophages (Figure 4a) as well as in

Hep2 cells (Figure 4b) after treatment with [ZrO]2+[CLP]2−

(suspension) compared to untreated cells and cells treated
with dissolved CLP (solution). Most remarkably, solutions of
free CLP do not show any effect on BMDMs 4 h after infection
(Figure 4a), whereas the IOH-NPs significantly reduce the
survival rate of intracellular S. aureus. In non-phagocytic Hep2
cells, a significant difference between [ZrO]2+[CLP]2−

(suspension) and dissolved CLP was also obtained 24 h after
infection (Figure 4b), clearly indicating the advantage of the
IOH-NP drug delivery concept for cells with low bacterial
killing ability. All in all, this clearly demonstrates that CL is
significantly more efficient at targeting intracellular S. aureus
when delivered as [ZrO]2+[CLP]2− IOH-NPs than in the
dissolved free form.
To determine if the superior bactericidal efficiency of CL-

loaded [ZrO]2+[CLP]2− IOH-NPs over dissolved, free CL is
provoked by a more efficient antibiotic penetration and
retention in the intracellular milieu, the loading kinetics of

either [ZrO]2+[CLP]2− IOH-NPs (suspension) or free CL
(solution) into eukaryotic cells was analyzed in BMDMs.
Hence, BMDMs were incubated with [ZrO]2+[CLP]2− IOH-
NPs, dissolved CLP (Figure 5) and dissolved CL hydro-

chloride (CL, Supporting Information: Figure S6) for 1, 2, and
4 h. The amount of intracellular CL was determined in BMDM
lysates by high-performance liquid chromatography (HPLC)−
mass spectrometry (MS)/MS (Supporting Information) to
determine the intracellular CL levels (Figure 5; Supporting
Information: Figure S6).
As a result, the internalized CL concentration in macro-

phages turned out to be 70-times higher after 1 h of incubation
when treated with [ZrO]2+[CLP]2− suspensions in comparison
to CLP and CL in solution (Figure 5b; Supporting
Information: Figure S6, Tables S1, and S2). After 4 h, the
internalized CL concentration increases even further and is
about 150-times higher after treatment with [ZrO]2+[CLP]2−

suspensions (Figure 5b; Supporting Information: Figure S6,
Tables S1, and S2). The intracellular levels of CLP reached
1.027 μg per mL in macrophages incubated up to 4 h with the
IOH-NPs (suspension). This concentration exceeds the
minimal inhibitory concentration of CLP, which was
determined as <0.625 μg per mL (Supporting Information:
Figure S7). In contrast to the IOH-NP suspensions, the
concentration of intracellular CLP after co-cultivation of cells
with dissolved CLP remained in the subinhibitory range <0.02
μg per mL. The significantly higher CLP levels reached via the
IOH-NP treatment, therefore, is highly promising to address
and eventually to solve the challenges related to MDR
formation.
The remarkable increase of CLP uptake using IOH-NPs can

be attributed to a more efficient uptake of the IOH-NPs by
cellular processes such as phago-/pinocytosis and the active
acquisition of the IOH-NPs as a phosphate source.43,44,46,47

These findings coincide with the efficient uptake and the
intracellular localization of the [ZrO]2+[CLP]2− IOH-NPs as
shown by EELS, ESI (Figure 3a,b), and immunofluorescence
microscopy (Figure 3c,d). The uptake of [ZrO]2+[CLP]2−

IOH-NPs in BMDMs, finally, shows clear time and
concentration dependency (Supporting Information: Figures
S8 and S9). The extremely high uptake of [ZrO]2+[CLP]2− by
BMDMs can become even more interesting because macro-
phages can abandon the blood system to attack S. aureus at
difficult-to-reach niches of the host.48

Figure 4. Intracellular survival of S. aureus within macrophages
(BMDMs) (a) and epithelial Hep2 cells (b) 4 h (nonhatched bars)
and 24 h (hatched bars) after infection (cells infected for 1 h with an
MOI of 10:1; level of intracellular bacteria 1 h after infection referred
to as 100%). Data with mean ± SD of three experiments (***p <
0.0005, **p < 0.005, *p < 0.05).

Figure 5. Intracellular CL levels within macrophages 1, 2, and 4 h
after co-cultivation with [ZrO]2+[CLP]2− IOH-NPs and dissolved
CLP at identical concentrations (50 μg CLP/mL): (a) illustration of
uptake and cell treatment; (b) internalized CL after treatment with
dissolved CLP (white bars), [ZrO]2+[CLP]2− (red bars), lysates of
untreated cells (negative control, gray bars). Data measured by
HPLC−MS/MS; mean ± SD of triplicate samples (***p < 0.001).
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3. CONCLUSIONS
In sum, [ZrO]2+[CLP]2− IOH-NPs represent a novel nano-
particle-based strategy to treat persisting and recurrent S.
aureus-caused infections. [ZrO]2+[CLP]2− contains an un-
precedented high amount (82 wt %) of clinically approved
CLP and shows high uptake at low toxicity. Most interestingly,
the IOH-NP suspensions allow 70−150-times higher drug
concentration (after 1−4 h of incubation) than the free drug in
solution at difficult-to-reach intracellular infection sites. This
offers unique options for improved drug delivery to eradicate
intracellular bacterial reservoirs during chronic and difficult-to-
treat infections. Because macrophages are not limited to the
blood system, they canafter loading with [ZrO]2+[CLP]2−

IOH-NPsalso attack multiresistant bacteria in various
difficult-to-reach niches of the host with the anti-infective in
very high concentrations. In principle, the material concept and
delivery strategy can be also transferred to other antibiotics as
well as to treat other multiresistant bacteria including the
relevant species of Klebsiella, Pseudomonas, or Enterobacter.

4. EXPERIMENTAL SECTION
4.1. Synthesis of [ZrO]2+[CLP]2− IOH-NPs. Na2(CLP)

(25 mg, Aldrich, 95.7%) was dissolved in water (50 mL). The
pH of this solution was adjusted to 7.0 upon the addition of
diluted NaOH (140 μL, 0.5 M). Thereafter, an aqueous
solution (5 mL) of ZrOCl2 × 8H2O (4.25 mg, Aldrich, 99%)
was injected. After 2 min of intense stirring, the nanoparticles
were separated via centrifugation (25 000 rpm, 15 min). To
remove all remaining salts, the colorless [ZrO]2+[CLP]2− was
resuspended in and centrifuged from H2O three times.
Subsequent to redispersion, highly stable colloidal suspension
in water can be obtained (Figure 1b).
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