

 Karlsruhe Reports in Informatics 2018,10
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

The CoCoME Platform for
Collaborative Empirical Research on

Information System Evolution

Evolution Scenarios in the Second Founding Period of SPP 1593

Robert Heinrich, Sandro Koch, Ralf Reussner

 2018

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/

The CoCoME Platform for
Collaborative Empirical Research on
Information System Evolution

Evolution Scenarios in the Second Founding Period of SPP 1593

Robert Heinrich, Sandro Koch, Ralf Reussner

August 15, 2018

Contents

1 Introduction 5

2 Evolution Scenarios 6
2.1 Adding a Mobile App Client . 6
2.2 Microservice Architecture . 6
2.3 Container Virtualization . 7

3 Design Details for Evolution Scenarios 8
3.1 Adding a Mobile App Client . 8

3.1.1 Use Cases of the Mobile App . 8
3.1.2 Design of the Mobile App . 11

3.2 Microservice Architecture . 13
3.2.1 Orders . 13
3.2.2 Stores . 15
3.2.3 Reports . 21
3.2.4 Architectural Overview . 22

3.3 Container Virtualization . 24

4 Implementation of Evolution Scenarios 25
4.1 Adding a Mobile App Client . 25
4.2 Microservice Architecture . 27
4.3 Container Virtualization . 27

List of Figures

3.1 Use Case Diagram CoCoME Mobile App . 9
3.2 Component Diagram of the CoCoME Ecosystem After Adding the Mobile App

Client . 11
3.3 Sequence Diagram of Searching an Item in the Mobile App Client 12
3.4 Sequence Diagram of Processing a Sale . 13
3.5 UC 3: Order Products (Part 1) . 14
3.6 UC 3: Order Products (Part 2) . 14
3.7 UC 4: Receiver Ordered Products . 15
3.8 UC 1: Process Sale (Part 1) . 17
3.9 UC 1: Process Sale (Part 2) . 18
3.10 UC 2: Manage Express Mode . 19
3.11 UC 7: Change Price . 19
3.12 UC 8: Product Exchange . 20
3.13 UC 5: Show Stock Report . 21
3.14 UC 6: Show Delivery Report . 22
3.15 Microservice Architecture . 23
3.16 Extended Technology Stack CoCoME . 24

4.1 Primary Classes of the App . 26
4.2 Project Structure Microservices . 27
4.3 Deployment Diagram CoCoME . 28
4.4 Assignment of archive �les to the GlassFish Servers 28
4.5 Deployment Diagram CoCoME Pickup Shop 29
4.6 Assignment of archive �les to the GlassFish Server 29

Acknowledgement

We would like to thank our student assistants Niko Benkler and Tobias Haßberg for contributing
to this Technical Report.
This work was supported by the DFG (German Research Foundation) under the Priority
Programme SPP1593: Design For Future – Managed Software Evolution.

1 Introduction

This technical report describes the evolution scenarios for the community case study Common
Component Modeling Example (CoCoME) [4, 2] in the second funding periode of the DFG
Priority Programme Design For Future – Managed Software Evolution (SPP1593)1. It extends
the technical report on the evolution scenarios in the �rst funding periode of SPP 1593 [3].

Chapter 2 introduces the new evolution scenarios. Design details for the scenarios are
described in Chapter 3 and the implementation is explained in Chapter 4.

1http://www.dfg-spp1593.de

2 Evolution Scenarios

This chapter introduces the evolution scenarios of the second funding period of the DFG Priority
Programme Design For Future – Managed Software Evolution. The evolution scenarios cover
the categories adaptive and perfective evolution. Corrective evolution is not considered in the
scenarios as this merely refers to �xing design or implementation issues. This section introduces
three evolution scenarios for CoCoME . The �rst scenario presents a mobile application which
can be used with CoCoME. A microservice-based variation of CoCoME is introduces in the
second scenario. In the last scenario a container virtualization is introduced. The goal is to
enable a hybrid cloud-based variation of CoCoME.

2.1 Adding a Mobile App Client

After successfully adding a Pick-up Shop , the CoCoME company stays competitive with other
online shop vendors (such as Amazon). However, in the smartphone era customers do not only
want to buy goods exclusively from their homes or local stores. Purchasing goods anywhere
and anytime has become a demanding requirement in order to stay competitive on the market.
This raises the idea to create a third sales channel next to the existing Pick-up Shop and local
stores in the CoCoME system. As a consequence, more customers can be acquired to increase
the companies market share.

The customer can order and pay by using the CoCoME Mobile App. The delivery process
is similar to the Pick-up Shop: The goods are delivered to a pick-up place (e.g., a store) of
the customers choice. By introducing the Mobile App as a multi OS application, the CoCoME
system has to face various quality issues such as privacy, security and reliability. Also the
performance of the whole application can be a�ected if many customers order via the app.

2.2 Microservice Architecture

After a year of economical stagnation, the CoCoME company decides to restructure its in-
frastructure. Global players like Amazon or Net�ix demonstrated that using a microservice
architecture makes them more �exible regarding new functionality. When adding the Pick-up
Shop, the CoCoME company realized that they have to break open the existing system. It is
necessary to modify the WebService::Inventory and the TradingSystem::Inventory component [3].
Furthermore, adding a MobileAppClient demonstrated that the SOAP/WS*-based web services
provided by CoCoME are not compatible with REST-based App development. Inspired by the
�exibility and reusability of microservices, the CoCoME company decided to invest money

CONTAINER VIRTUALIZATION 7

into a restructuring process. The current system is divided into a collection of loosely coupled
services. Each of them covers a speci�c part of the former CoCoME system. The aim is to
preserve the functionality of the current system and solely change its architecture.

This enables the company to tap into new markets with fewer di�culties. Therefore, the
future competitiveness is secured. For example, the CoCoME company wants to extend their
service range by o�ering movie streaming.This requires a vastly di�erent system. Nevertheless,
customer management like login and means of payment are identical to the former CoCoME
system. Those components already exists as a microservice and therefore can be reused.

2.3 Container Virtualization

This scenario aims to facilitate the deployment and operation of the CoCoME system. Thus,
container-based virtualization with Docker is introduced. Docker eases the integration of
CoCoME into build and deployment pipelines. The functionality of CoCoME remains the same
although the technology stack must be extended as visualized in Fig. 3.16.

The CoCoME company identi�ed the IT administration as a signi�cant cost factor. Never-
theless, it is required to continuously improve the entire system in order to stay competitive.
Thus, frequent updates to the enterprise and store software are necessary. As a consequence
of the frequent update process, the IT sta� must update the system components. Updating is
required as soon as a new software version is released.

The old update process is as follows: After the new version of CoCoME is built an operations
team member has to get access to the actual server. The old version must be undeployed and
replaced with the new version. The whole update process is time consuming and expensive as
the updates have to be done manually.

Therefore, Docker is elaborated to simplify the administration process. As soon as a new
release version of CoCoME is ready for delivery, the development team starts the rebuilding
process of the CoCoME Docker Image.. CoCoME is build in the Docker Container. This Docker
Image can be automatically deployed to the destination server according to the principle of
Continuous Deployment (CD) [5].

3 Design Details for Evolution Scenarios

In this chapter we provide the detailed design documentation for each of the evolution scenarios
introduced in the previous section. Sec. 3.1 sketches the design decision for the Mobile App
that provides a second sales channel next to the existing Pick-up Shop. Sec. 3.2 provides a
detailed design documentation of a new architectural version of CoCoME. In contrast, Sec. 3.3
describes the adaptive changes of using a Docker environment to simplify the update process.
They are both based on, or at least use the Hybrid Cloud-based Variant of CoCoME [3]. This
perfective evolution scenario is realized based on the microservice idea.

3.1 Adding a Mobile App Client

Developing the Mobile App Client as an extension of CoCoME requires additional use cases.
They are described in Sec. 3.1.1. Further, Sec. 3.1.2 describes extensions on design level. The
content of this chapter mainly originates from [6].

3.1.1 Use Cases of the Mobile App

UC 14 - ProcessAppSale

Brief Description A Customer selects the product items s/he wants to buy and the payment by
credit card is performed.

Involved Actors AppCustomer, Bank
Precondition The App is ready to process a new sale and the Customer already has an account

registered in the System.
Trigger The Customer opens the app and wants to buy product items.
Postcondition The Customer has paid and the sale is registered in the inventory.
Standard Process

1. The AppCustomer searches products provided by the App.
2. The AppCustomer can see details for each product on a separate site.
3. The AppCustomer adds the product items s/he wants to purchase to the Shopping

Cart. Step 1-3 is repeated until all items are added to the cart.
4. The AppCustomer gets an overview of the items in the cart, their price and the running

total.
5. The AppCustomer proceed to the Checkout
6. The AppCustomer selects the Store where s/he wants to pick up his/her purchased

product items.

ADDING A MOBILE APP CLIENT 9

UC 14: ProcessAppSale

UC 15: CreateAppCustomer

UC 16:
AuthenticateAppUser

UC 9: ProzessOnlineSale

UC 12: CreateCustomer

UC 3: OrderProducts

UC 5: ShowStockReports

UC 1: ProcessSale

UC 11: AuthenticateUser

UC 8: ProductExchange

UC 7: ChangePrice

UC 2:
ManageExpressCheckout

UC 6: ShowDeliveryReports

UC 10: Manage
Productinformation

UC 13: ViewCustomerReport

UC 4:
ReveiveOrderdProducts

AppCustomer

StoreManager

Customer

EnterpriseManager

StockManager

Cashier

<<Include>>

<<Include>>

Figure 3.1: Use Case Diagram CoCoME Mobile App

7. The AppCustomer is presented with a login form and is required to complete the
AuthenticateUser use case.

8. In order to initiate card payment, the customer selects a credit card used for the
purchase.

9. The AppCustomer enters his/her PIN in the designated �eld presented by the System.
10. The System presents the Customer with an overview of the purchase, the AppCustomer

con�rms the purchase and waits for validation. Step 9 is repeated until the validation
is successful or the Customer decides to cancel the purchase.

11. Completed sales are logged by the System and sale information are sent to the Inven-
tory in order to update the stock.

12. A success message is presented to the AppCustomer and the product items are being
prepared to be picked up by the customer.

13. The AppCustomer closes the app.
Alternative or Exceptional Processes

• In step 8: No Card available
1. In order to add a new credit card the Customer clicks the AddCard button.
2. The Customer enters the card number of the new credit card and saves the card.

• In step 10: Card validation fails

10 DESIGN DETAILS FOR EVOLUTION SCENARIOS

1. The Customer tries again and again.
2. Otherwise, the Customer can decide to cancel the purchase.

UC 15 - CreateAppCustomer

Brief Description The app o�ers a possibility to create a new Customer account.
Involved Actors AppCustomer
Precondition The Customer does not have a Customer account yet and the app is started.
Trigger A new AppCustomer wants to create an account.
Postcondition The User is authenticated.
Standard Process

1. The AppCustomer has to �ll out forms, requesting all necessary information to create
a new AppCustomer account.

a) Form for name, email and password
b) Form for address
c) Summery of the information

2. The Customer �lls out the forms, veri�es and submits the information.
3. The app veri�es the given information and creates a new Customer account in the

Inventory.
Alternative or Exceptional Processes

• In step 3 : Provided information is incorrect or not valid.
The Customer is noti�ed of the problem and enters the information again until it passes
the check.

UC 16 - AuthenticateAppUser

Brief Description The app provides the possibility to authenticate a User.
Involved Actors AppCustomer
Precondition The app is started.
Trigger An AppCustomer wants to authenticate his/herself.
Postcondition The AppCustomer is authenticated.
Standard Process

1. The AppCustomer gets displayed a login form. S/he is asked to enter email and
password.

2. The App checks the provided credentials. If correct, the AppCustomer is logged in.
Alternative or Exceptional Processes

• In step 2: Wrong credentials
1. An error message is displayed.
2. The User may try again until the authentication succeeds.

ADDING A MOBILE APP CLIENT 11

3.1.2 Design of the Mobile App

Fig. 3.2 sketches the component diagram of the evolution scenario SC1. When adding the
Mobile App client, the hybrid cloud-based variant of CoCoME did not have to be modi�ed.
We focus on the three web services WebService::Inventory::, WebService::Inventory::Store and
WebService::Inventory::Enterprise of the App Client. The entire component diagram for the
hybrid cloud-based variant is available in the previous Technical Report [3].

The AppShop requires an adapter (i.e., AppShopAdapter) to access the web services provided
by CoCoME. This is because CoCoME uses SOAP/WS*-based web services which are not
compatible with the technology used to implement the AppShop Client. A more detailed
introduction about the technology used to implement the Mobile App Client can be found
in [6].

<<component>>
AppShop

<<component>>
AppShopAdapter

<<component>>
CoCoME

<<web service>>
:LoginManager

<<web service>>
:Enterprise

<<web service>>
:Store

CreditCardControler

EnterpriseController

ItemsController

LoginController

SaleController

ILoginManager IStoreManager IEnterpriseManager

Figure 3.2: Component Diagram of the CoCoME Ecosystem After Adding the Mobile App
Client

The AppShopAdapter consumes the three web services WebService::Inventory::LoginManager,
WebService::Inventory::Store, andWebService::Inventory::Enterprise3 Additionally, theAppShopA-
datper provides a REST Interface which is used by the AppShop. The REST Interface provides

12 DESIGN DETAILS FOR EVOLUTION SCENARIOS

endpoints to retrieve and process Credit Card, Enterprise and StockItem information. To imple-
ment the use cases UC14-16 the REST Interface also provides endpoints for user management
and processing sales.

s d SearchItem

: Navigator: NavigationMenu : SearchPageState : SearchPage : ServiceHolder : ItemService : AppShopAdapter : CoCoME

show results return Items

getItems()

getItemService

return ItemService

return JSON return WSDL

getItems

getItems()

enter Search Item

show Search Page

call Navigator
create

return pagestate

pass pagestate to page

return
return

click on "Search"

Figure 3.3: Sequence Diagram of Searching an Item in the Mobile App Client

Fig. 3.3 shows the process of opening a page to search for an Item. The customer opens the
WebShopClient and triggers the "Search" function to search for an item. To open the page the
NavigatorMenu must call theNavigator which creates a pagestate object and passes the object to
the page. This HTML page is then presented to the customer. To �ll the page with information
(i.e., when searching for a ProductItem) the page uses services provided by the ServiceHolder.
In this case, the ItemService calls the responsible REST-Service of AppShopAdapter which in
turn retrieves the necessary information from the WSDL services provided by CoCoME.

Fig. 3.4 demonstrates how the Mobile App Client processes sales. For the sake of clarity, the
diagram is simpli�ed and only contains the most important calls. First, the customer searches
for items (according to Fig. 3.3). By clicking on the desired item, the according ItemPage is
shown. The ItemPage carries information about the item. Here, the customer decides whether
the item should be added to the shopping cart or not. If the customer wants to add more Items
to the shopping cart, s/he needs to repeat the last steps. This includes searching for an item,
clicking on it and decided whether or not the Item should be added to the shopping cart. If
not logged in the customer gets forwarded to the LoginPage. When successfully logged in
the customer clicks the BuyNow-Button. The sale process is �nished as soon as the backend
(CoCoME) has processed the sale.

MICROSERVICE ARCHITECTURE 13

s d ProcessAppSale

l o o p

: SearchPage : ItemService : SpringBootApp : CoCoME: ItemPage : CartService: CartPage : LoginPage: CheckoutPage : SaleService: LoginService

sale finished

processSale()

doSale()click on Buy Now

loginUser()
authenticateUser()

loginUser()

click on Checkout

addItem()
select Item

show results
return JSON

return WSDL

getItems()

getItems()
queryItems()

enter Search Query

Figure 3.4: Sequence Diagram of Processing a Sale

3.2 Microservice Architecture

In this section we provide a brief design documentation of the use cases that are de�ned in the
hybrid cloud-based variant of CoCoME [4](p.4-10). The following subsections are divided into
the microservices and the corresponding use cases. Sec.3.2.4 describes the general architectural
overview of the microservice variant of CoCoME.

3.2.1 Orders

This section describes the design of the use cases implemented in the Orders microservice. That
service provides main parts of the functionality for UC 3 and UC 4.

Behavioral View on UC 3 - Order Products

For a better understanding, UC 3 is divided in two steps. The �rst part is described in Fig. 3.5:
A user chooses the product items and amount to order. Each ProductOrder is stored in the
ProductOrderRepository as a OrderEntry. In the second part (Fig. 3.6), the OrderEntries are
wrapped in a single ProductOrder element. Additionally, the ProductOrder element contains
information about the store and the date of the order. When the user presses the button Order,
the OrderManagement iterates over the collection of OrderEntries and sets a reference to the

14 DESIGN DETAILS FOR EVOLUTION SCENARIOS

actual ProductOrder.

s d UC3_Order_Products_1_OrderEntryCreate

Frontent : OrderEntryManager

oEntry : OrderEntry

: OrderEntryRepository

return: Id

return: Id

create(oEntry)

createOrderEntry

create()

Figure 3.5: UC 3: Order Products (Part 1)

s d UC3_Order_Products_2_ProductOrderCreate

l o o p

[orderEntry : orderedProducts]

Frontend : OrderManagement

pOrder : ProductOrder

: ProductOrderRepository : OrderEntry : ProductOrderRepository

update(pOrder)

pOrder

setOrderEntries(orderedProducts)

update(orderEntry)

r e t u r n

r e t u r n

setOrder(pOrder)

create(pOrder)

setOrderingDate()

create

createProductOrder(Collection
<OrderEntry> orderedProducts)

Figure 3.6: UC 3: Order Products (Part 2)

MICROSERVICE ARCHITECTURE 15

Behavioral View on UC 4 - Receive Ordered Products

Fig. 3.7 shows the ProductOrder element. It is refreshed and the delivery date is set to the passed
date. The ProductOrder element handles the order regarding the containing Id. After this, it
performs for each OrderEntry a rest call to the store microservice. With that REST call the
number of StockItems is increased by the amount of delivered products. StockItems representing
a concrete product within the system.

s d UC4_Receive_Ordered_Products

[OrderEntry oEntry : pOrder.getOrderEntries]

l o o p

a l t

[store.stockItem.getProduktId() == oEntry.getProductId()]

: Frontend : IOrderManager : StoreResource : StoreRepository: ProductOrderRepository

pOrder :
ProductOrder

: StockItemRepository

update(pOrder)

restCall()
update(StockItem)

updateStockItem.amount()

setDeliveryDate()

return: pOrder

find(orderId)

return: store.getStockItem()

return: store

find(storeId)
findStockItem()

restCall()
executeOrder()

Figure 3.7: UC 4: Receiver Ordered Products

3.2.2 Stores

This section describes the design of the use cases implemented in the Store microservice that
provides main parts of the functionality for UC 1, UC 2, UC 7 and UC 8.

Behavioral View on UC 1 - Process Sale

Again, UC 1 is divided in two parts (Fig. 3.8 and Fig. 3.9). The �rst part describes how a user
can add products to the sale process. When the startSale action is executed, the sale mode is
activated and the CashDesk is resetted from a previous, probably canceled sale processes. To
add products to the sale process, the user can either enter the barcode manually using the

16 DESIGN DETAILS FOR EVOLUTION SCENARIOS

keyboard or scan the barcode using a Scanner. Further, the user can choose how many products
s/he wants to purchase. This process is depicted in the inner loop.

Several checks are executed when successfully entering the barcode: The scanned item must
exist in the system. If an item with the same barcode was already added to the sale, then the
total inventoryAmount is increased by the second purchase amount. If no item with the same
barcode is present, the scanned item is added to the sale. In both cases, the availability and the
amount of the item in the stock is checked and reduced. If one of the conditions is violated, the
attempt of adding a product with the provided barcode and amount is aborted. Subsequently,
the display is updated and the product information is added to the printer output.

The second part of this use case, shown in Fig. 3.9, handles the end of the sale process.
The �nishSale routine is called when the FinishSale button is pressed. Thus, the display gets
updated. Now, the user needs to choose between paying by card or cash and the CashDesk is
set to the corresponding paying mode. In case the user wants to pay by credit card, s/he needs
to enter the credit card details. In the other case, the cash amount is entered. In both cases, the
information is checked for accuracy. After successfully ending the payment, the printer and
display are updated and the CashDesk ends the sale process.

Behavioral View on UC 2 - Manage Express Checkout

Changing the express mode is triggered on two occasions (externalCall). First, when �nishing
a sale and if, as descibed in [4], some customizable terms regarding previous sales are ful�lled,
the CashDesk switches into express mode automatically.
These conditions can for example be an average of 4 goods per selling process during the past
ten selling processes.
Second, the Cashier switches manually back to normal mode. In both cases, the updateEx-
pressLight routine checks the current ExpressLight state and performs an update in accordance
with the kind of call.

Behavioral View on UC 7 - Change Price

The StoreManager is able to change a price for StockItems that are available in his/her store. As
depicted in Fig. 3.11, the StoreAdminManager selects the right Store, based on the StoreManager
that is logged in. To �nd the correct StockItem, the available items are �ltered by a given product
id. When the correct StockItem is found, the sale price can be simply updated by entering the
new price. Finally, the StockItem in the database is updated.

Behavioral View on UC 8 - Product Exchange

In case a Store is going to run out of a certain StockItem, products from a di�erent Store within
the same Enterprise can be exchanged. The process is triggered at the end of a sale. It is
shown in Fig. 3.12. The microservice Store checks if the stock amount of the sold items have
passed the minimal stock amount. If the minimal stock amount is passed, the system calls the
shiftItem routine. First, all Stores within the same Enterprise of the Store that is running out of

MICROSERVICE ARCHITECTURE 17

stock are collected. For each Store, the system checks if the desired StockItem is available. The
�ndOptimum routine decides whether the transportation is meaningful. Therefore, heuristics
are used. After a successful query, the StockItem is shipped from one Store to another, decreasing
the amount at the �rst Store and increasing it at the second.

s d UC1_Process_Sale_1_StartSaleAndProductChoosing

[digit in Barcode]

l o o p

[Products to Sale]

a l t

a l t

[e l s e]

[Store contains StockItem with Id && enough in Stock]

[Product still in Inventory && enough in Stock]

l o o p

Frontend : ICashDeskCommunicator : ICashDesk : ICashBox : IScanner : IStoreOrganizer

product : StockItem

: IDisplay : IPrinter

r e t u r n

resetPrinterOutput()

return: line(String)

resetDisplayLine()

addPrinterOutput(line)

getDisplayOutput()

addDisplayLine(String)

addToDisplay(Char)

return

reduceStockAmount(Products)

addToSalesProducts(product)

return : product

getStockItem(productId)

return

updateRunningTotal()

reduceStockAmount(Products)

increaseInventoryAmount()

barcodeScanned(long Id)

submitBarcode(String)
submitBarcode(String)

submitBarcode(String)

barcodeScanned(long Id)

submitBarcode()
submitBarcode()

addToDigit(Char)
addDigitToBarcode(Char)

submitBarcode()

addDigitToBarcode(Char)

resetSale()

startSale()

startSale()

Figure 3.8: UC 1: Process Sale (Part 1)

18 DESIGN DETAILS FOR EVOLUTION SCENARIOS

s d UC1_Process_Sale_2_FinishSaleAndPayment

a l t

[Sale by Cash]

[Sale by Card]

Frontend : ICashDeskCommunicator : ICashDesk : ICashBox : IDisplay : IPrinter

getPrinterOutput()getPrinterOutput()

getPrinterOutput()

endSaleProcess()

validateBankInformation()

enterBankInformation()

enterBankInformation()

addPrinterOutputLine()

checkRightAmount()
enterCashPaymentAmount()

enterCashPaymentAmount()

setCashPaymentButtonPressed()

setCardPaymentButtonPressed()

selectCardPayment()
setCardPayment()

setCardPayment()

selectCardPayment()
setCardPayment()

setCardPayment()

addDisplayLine()

finishSleButtonPressed()

pressFinishSaleButton()

finishSale()

finshSale()

Figure 3.9: UC 1: Process Sale (Part 2)

MICROSERVICE ARCHITECTURE 19

s d UC2_Manage_Express_Checkout

: CashDesk : ExpressLight

externalCall

updateExpressLight()

checkNewExpressLightState()

updateExpressLight()

Figure 3.10: UC 2: Manage Express Mode

s d UC7_Change_Price

l o o p

[stockItem : store.StockItems]

a l t

[stockItem.productId = productId]

Frontend : StoreAdminManager : storeDBRepository

store : Store

stockItem : StockItem

: StockItemDBRepository

update(stockItem)

setSalePrice

getStockItems()

return: store

find(store)

changePrice

Figure 3.11: UC 7: Change Price

20 DESIGN DETAILS FOR EVOLUTION SCENARIOS

s d UC8_Product_Exchange

[StockItem product : products]

[StockItem item: SalesProducts]

l o o p

a l t

[item.amount == item.MinStock]

a l t

a l t

l o o p

[Store store : Stores]

l o o p

a l t

[Product.Id == productId && Product.Amount > Product.MinStock]

[StockItem item : Products]

l o o p

[product.Id = productId]

l o o p

[!rememberedStores.isEmpty]

[Stockitem product : products]

a l t

[product.Id = productId]

: CashDesk : StoreAdminManager : EnterpriseManager : EnterpriseDBRepository

OptStore : Store

currentStore : Store

product : StockItem

enterprise : Enterprise

store : Store

product : StockItem

return: Collection<Store> Stores

getStores()

increaseAmount()

return: Collection<StockItem> Products

getProducts()

reduceAmount()

findOptimum(rememberedStores):Store optStore

rememberStore(store)

return: Collection<StockItem> Products

getProducts()

return: enterprise

find(enterpriseId)

findStores(productId)

shiftItem(productId)

runningOutOfItem(item.productId)

Figure 3.12: UC 8: Product Exchange

MICROSERVICE ARCHITECTURE 21

3.2.3 Reports

This section describes the design of the Reports microservice, which provides the functionality
of the UC 5 and 6.

Behavioral View on UC 5 and UC 6 - Show Stock Report and Show Delivery Report
The StoreManager can request a full StockReport that includes all available stock items in the
store. This process is described in the use case UC 5 in 3.13. The StoreManager enters the store
identi�er and the StoreCommunicator within the Reports microservice requests the desired
information via a REST call.

Besides, the Reports microservice provides the functionality to calculate the mean time a
delivery takes from each supplier to a considered enterprise (UC 6). The process is described in
Fig. 3.14. The EnterpriseManager enters the order Id and the OrderCommunicator requests the
information as a delivery report via REST call. The report is displayed to the EnterpriseManager.

s d UC5_Show_Stock_Report

: ReporterFrontend : StoreCommunicator : StoreResource : StoreRepository

prettify()
return : reportText

return : reportText
return : reportText

return : reportText

f i n d

find(stroreId)
restCall

getStoreReport(storeId)

getStoreReport(storeId)

Figure 3.13: UC 5: Show Stock Report

22 DESIGN DETAILS FOR EVOLUTION SCENARIOS

s d UC6_Show_Delivery_Reports

: ReporterFrontend : OrderCommunicator : ProductOrderResource : ProductOrderRepository

prettify()

return : reportText

find(orderId)

find(orderId)

return : reportText

restCall

return : reportText

getOrderReport(orderId)
getOrderReport(orderId)

return : reportText

Figure 3.14: UC 6: Show Delivery Report

3.2.4 Architectural Overview

This section describes the architectural design of the microservices. CoCoME is divided into
four di�erent microservices: Orders, Reports, Stores and Products (Fig. 3.15). Each microservice
provides its own graphical user interface. The graphical user interface can be loaded dynami-
cally. Further, each service provides its core functionality that sometimes requires a connection
to other microservices via REST. Each service apart from Reports, has its own Database.

The Store service provides functionality for Store- and Enterprise Managers. They can create
stores, change sale prices for goods or order products. For the last two functionalities, the
Order and Products service is needed. Further, the Store service handles the sale process.

MICROSERVICE ARCHITECTURE 23

O
rd
e
rs

<
<
co
m
p
o
n
e
n
t>

>
O

rd
er

sM
ic

ro
se

rv
ic

eF
ro

nt
en

d

<
<
co
m
p
o
n
e
n
t>

>
O

rd
er

M
ic

ro
se

rv
ic

e

<
<
co
m
p
o
n
e
n
t>

>
O

rd
er

sR
ep

os
ito

ry

Pr
o
d
u
ct
s

<
<
co
m
p
o
n
e
n
t>

>
Pr

od
uc

ts
M

ic
or

se
rv

ic
eF

ro
nt

en
d

<
<
co
m
p
o
n
e
n
t>

>
Pr

od
uc

ts
M

ic
ro

se
rv

ic
e

<
<
co
m
p
o
n
e
n
t>

>
Pr

od
uc

ts
Re

po
si

to
ry

R
e
p
o
rt
s

<
<
co
m
p
o
n
e
n
t>

>
Re

po
rts

M
ic

ro
se

rv
ic

eF
ro

nt
en

d

<
<
co
m
p
o
n
e
n
t>

>
Re

po
rts

M
ic

ro
se

rv
ic

e

S
to
re
s

<
<
co
m
p
o
n
e
n
t>

>
St

or
es

M
ic

ro
se

rv
ic

eF
ro

nt
en

d

<
<
co
m
p
o
n
e
n
t>

>
St

or
es

M
ic

ro
se

rv
ic

e

<
<
co
m
p
o
n
e
n
t>

>
Ca

sh
De

sk

<
<
co
m
p
o
n
e
n
t>

>
St

or
es

Re
po

si
to

ry

<
<
co
m
p
o
n
e
n
t>

>
Fr

on
te

nd

O
rd

er
En

tr
yM

an
ag

em
en

t
O

rd
er

M
an

ag
m

en
t

O
rd

er
En

tr
yR

ep
os

ito
ry

Pr
od

uc
tO

rd
er

Re
po

si
to

ry

Su
pp

lie
rM

an
ag

em
en

t
Pr

od
uc

tM
an

ag
em

en
t

Pr
od

uc
tR

ep
os

ito
ry

Su
pp

lie
rR

ep
os

ito
ry

IR
ep

or
ts

IC
as

hD
es

kF
un

ct
io

na
lit

y
IE

nt
er

pr
is

eO
rg

an
iz

er
IS

to
re

M
an

ag
em

en
t

IC
as

hD
es

k

St
oc

kI
te

m
R

ep
os

ito
ry

Tr
ad

in
gE

nt
er

pr
is

eR
ep

os
ito

ry
St

or
eR

ep
os

ito
ry

<
<
u
se
>
>

<
<
u
se
>
>

<
<
u
se
>
>

<
<
u
se
>
>

Fi
gu

re
3.1

5:
M

ic
ro

se
rv

ic
e

A
rc

hi
te

ct
ur

e

24 DESIGN DETAILS FOR EVOLUTION SCENARIOS

3.3 Container Virtualization

As shown in Fig. 3.16, using a Docker Environment a�ects the technology stack by adding
additional layers. The CoCoME stack consists of GlassFish, Java Virtual Machine (JVM) and
Maven. More detailed, the given CoCoME stack is moved into a Docker Container which runs
a Linux distribution. The original parts of the stack, like GlassFish and the , JVM are still
functioning as before.

Infrastructure

Host Operating System

Docker

CONTAINER

CoCoME

GlassFish

JVM Maven

Infrastructure

Operating System

CoCoME

GlassFish

JVM Maven

Figure 3.16: Extended Technology Stack CoCoME

The Docker�le de�nes an environment based on the latest version of the Linux distribution
Ubuntu. Maven, Git and Java are also installed using the standard Ubuntu package manager.
Git serves two purposes: On the one hand it is used to download the most recent version of
the CoCoME source code or a precompiled CoCoME version. On the other hand, it is used
to download a prefabricated version of GlassFish that is already tailored to the needs of the
CoCoME application. Java is required by GlassFish and CoCoME as they need the JVM. Maven
is needed to build and deploy the latest version of CoCoME onto the provided GlassFish servers.

During the development phase we decided to implement and provide two di�erent versions
of the CoCoME Docker Container. The �rst version always pulls the most recent CoCoME
source code from GitHub, downloads the entire dependencies with Maven, compiles and builds
the project and �nally deploys CoCoME on the GlassFish servers. As a consequence, creating
and starting the Docker Container for CoCoME takes about one hour.

In contrast, the second version of the CoCoME Docker Containerpulls a prefabricated version
of CoCoME from GitHub. Therefore, pulling the source code to build the CoCoME project
is skipped. Maven does not have to be included in the technology stack. Solely, deploying
CoCoME on the GlassFish server is necessary. This reduces the deployment time to a few
minutes. Nevertheless, the prefabricated version of the GlassFish Servers and CoCoME has to
be updated manually. Thus, it is sometimes not the most recent version. By providing both, a
fast deploying version and a current version, the user can choose what suits best for his/her
needs.

4 Implementation of Evolution Scenarios

This chapter describes the implementation of the Mobile App Client for the existing hybrid cloud-
based variant of CoCoME in Sec. 4.1. The implementation of the Microservice Architecture is
described in Sec. 4.2 and the implementation details of the Container Virtualization is described
in Sec. 4.3.

4.1 Adding a Mobile App Client

Adding a Mobile App Client addeddoes not require a modi�cation within the hybrid cloud-
based variant of CoCoME. The implementation was done using the Cordova framework and
OnsenUI to provide a multi OS compatible Backend and UI [6]. The App itself is written in
Typescript/Javascript. Fig. 4.1 shows the primary classes and their relationships.

The Navigator is the primary class that manages the pages. The pages consist of two
components: The Page itself and its PageState. The PageState is used to store and transfer the
current status of a page. There are currently six di�erent pages available: IndexPage, SearchPage,
ItemPage, CheckoutPage, CartPage and LoginPage. For the sake of clarity, they are subsumed
under the generic terms ConcretePage and ConcretePageState.

Pages use components. Such components are for instance the Navbar or the Searchbar.
These components are abstract descriptions of UI elements that are connected to the actual
HTML-elements via Knockout.js. By using Knockout.js, changing values of a component results
in an immediate change of the UI. Besides, the App Client retrieves information of the CoCoME
system. As mentioned in 3.1.2, the Client is not able to access the CoCoME system directly.
Therefore, the pages use Services provided by a ServiceHolder to call the AppController’s REST-
API. The AppController is written in Java using the SpringBoot framework and converts the
REST-requests of the App Client to SOAP-Requests in order to match the CoCoME-API.

26 IMPLEMENTATION OF EVOLUTION SCENARIOS

+
u

p
d

a
te

()

N
 a v i g a t o r+

u
p

d
a
te

Pa
g

e
(Pa

g
e
S

t...

<
<

In
te

rfa
ce

>
>

P a g e
<

<
a
b

stra
ct>

>
P

 a
 g

 e
 S

 t a
 t e

+
fi

e
ld

1
+

fi
e
ld

2

C
oncretePage

+
u

p
d
a
te

Pa
g

e
(Pa

g
e
S

t...

C
oncretePage

<
<

a
b

stra
ct>

>
C

o
m

p
o

n
e
n

t

+
se

tTitle
(title

)

N
 a v b a r

Searchbar

+
g

e
tS

e
rvice

()

ServiceHolder
+

g
e
tPro

d
u
ct():jso

n
O

b
je

ct

ProductService

+
g

e
tC

u
sto

m
e
r(): jso

n
O

b
je

ct

C
ustom

erService

+
g

e
tC

a
rt() : jso

n
O

b
je

ct

C
artService

<
<

a
b

stra
ct>

>
S

e
rv

ic
e

<
<

e
x
te

n
d

s>
>

<
<

e
x
te

n
d

s>
>

<
<

e
x
te

n
d

s>
>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

u
se

>
>

<
<

e
x
te

n
d

s>
>

<
<

e
x
te

n
d

s>
>

<
<

im
p
le

m
e
n

ts>
>

1

1

<
<

e
x
te

n
d

s>
>

<
<

u
se

>
>

<
<

u
se

>
>

Figure
4.1:Prim

ary
Classesofthe

A
pp

MICROSERVICE ARCHITECTURE 27

4.2 Microservice Architecture

The Microservice evolution scenario of CoCoME transfers the functionality of the hybrid
cloud-based variant of CoCoME into a Microservice architecture. The service is using REST
communication between the di�erent services. The implementation is done using Java EE as
programming language and GlassFish as deployment server. The Java Persistence API is used
to store elements in a relational DB. The Java API for RESTful Web Services (JAX-RS) is used
to standardize the REST-communication between the di�erent microservices. To serialize and
deserialize Java-classes to XML- or JSON-�les, the Java Architecture for XML Binding (JAXB)
is used.

Fig. 4.2 demonstrates the project structure of the Store microservice. The other services have
the same structure. Therefore, they are not shown explicitly. Each service project contains
three sub-projects, namely name-service-ejb, name-service-rest and name-service-ear. The �rst
sub-project contains the core logic as well as the persistence functionality. The second one
provides the RESTful webservice. The last one is used for packaging the projects to ear �les.

Figure 4.2: Project Structure Microservices

4.3 Container Virtualization

As shown in Fig. 4.3, the Docker Container contains �ve di�erent GlassFish servers. In
particular they are called WEB, ENTERPRISE, STORE, REGISTRY and ADAPTER. By default,
GlassFish provides a Derby Database. The Derby Database is connected to the Service Adapter
using the Java Database Connectivity (JDBS) interface. The deployment assignment within
the Docker environment is identical to the one speci�ed in CoCoME deployment guide. This
means the maven generated archive �les cloud-web-frontend, enterprise-logic-ear, store-logic-
ear, cloud-registry-sevice, and service-adapter-ear are deployed on the servers by using the
following assignment:

28 IMPLEMENTATION OF EVOLUTION SCENARIOS

<<execution Environment>>
:Docker Container

<<execution Environment>>
GlassFish server WEB

<<execution Environment>>
GlassFish server REGISTRY

<<execution Environment>>
GlassFish server STORE

<<execution Environment>>
GlassFish server

ENTERPRISE

<<execution Environment>>
GlassFish Server ADAPTER

<<component>>
cloud-web-frontend

<<component>>
enterprise-logic-ear

<<component>>
cloud-registry-service

<<component>>
store-logic-ear

<<component>>
service-adapter-ear

<<component>>
GlassFish database

JDBC

Figure 4.3: Deployment Diagram CoCoME

Server Deployment �le
WEB cloud-web-frontend
ENTERPRISE enterprise-logic-ear
STORE store-logic-ear
REGISTRY cloud-registry-service
ADAPTER service-adapter-ear

Figure 4.4: Assignment of archive �les to the GlassFish Servers

As mentioned earlier, there are two versions of this Docker project. The fast version can be
extended by the Pick-Up shop1. This Pick-Up shop runs inside a separate Docker container

CONTAINER VIRTUALIZATION 29

<<execution Environment>>
:Docker Container

<<execution Environment>>
GlassFish server PICKUP_SHOP

<<component>>
cocome-pickup-war

Figure 4.5: Deployment Diagram CoCoME Pickup Shop

which is shown in Fig. 4.5. As shown in Fig. 4.5, this container provides one GlassFish server.

Server Deployment �le
PICKUP_SHOP cocome-pickup-war

Figure 4.6: Assignment of archive �les to the GlassFish Server

To control the start of both containers, precisely the CoCoME and the Pick-Up Shop, another
�le is needed: the Docker Compose �le. It ensures that the CoCoME Container is active, before
the Pick-Up Shop container starts. This is necessary as the Pickup Shop requires a running
instance of CoCoME to register itself.
Whereas CoCoME does not require the Pick-Up Shop, the Pick-Up Shop requires CoCoME. Both
containers need to communicate with each other. By default, Docker prohibits any outgoing
and ingoing communication from and in a container. This is solved by opening speci�c ports
through which the communication is possible. Which ports the containers can use is speci�ed
in the Docker Compose �le as well.

1https://github.com/cocome-community-case-study/cocome-cloud-jee-web-shop

https://github.com/cocome-community-case-study/cocome-cloud-jee-web-shop

Bibliography

[1] U. Goltz, R. H. Reussner, M. Goedicke, W. Hasselbring, L. Märtin, and B. Vogel-Heuser. De-
sign for future: managed software evolution. Computer Science - Research and Development,
30(3):321–331, Aug 2015.

[2] R. Heinrich, S. Gärtner, T.-M. Hesse, T. Ruhroth, R. Reussner, K. Schneider, B. Paech,
and J. Jürjens. A platform for empirical research on information system evolution. In
27th International Conference on Software Engineering and Knowledge Engineering, pages
415–420, 2015.

[3] R. Heinrich, K. Rostami, and R. Reussner. The cocome platform for collaborative empirical
research on information system evolution. Technical Report 2, 2016.

[4] S. Herold et al. CoCoME – the common component modeling example. In The Common
Component Modeling Example, pages 16–53. Springer, 2008.

[5] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the" stairway to heaven"–a mulitiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In Software Engineering and Advanced Applications (SEAA), 2012
38th EUROMICRO Conference on, pages 392–399. IEEE, 2012.

[6] J. Schnabel. Mobile application client for a cloud based software system –
practical course report, Karlsruhe Institute of Technology, WS16/17. https:

//github.com/cocome-community-case-study/cocome-cloud-jee-app-shop/blob/

master/doc/SQEE1617_MobileApp_Schnabel.pdf.

[7] N. Sommer. Erweiterung und wartung einer cloud-basierten jee-architektur – prac-
tical course report, Karlsruhe Institute of Technology, SoSe17. https://github.com/

cocome-community-case-study/cocome-cloud-jee-microservices-rest/blob/master/

doc/report.pdf.

https://github.com/cocome-community-case-study/cocome-cloud-jee-app-shop/blob/master/doc/SQEE1617_MobileApp_Schnabel.pdf
https://github.com/cocome-community-case-study/cocome-cloud-jee-app-shop/blob/master/doc/SQEE1617_MobileApp_Schnabel.pdf
https://github.com/cocome-community-case-study/cocome-cloud-jee-app-shop/blob/master/doc/SQEE1617_MobileApp_Schnabel.pdf
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest/blob/master/doc/report.pdf
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest/blob/master/doc/report.pdf
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest/blob/master/doc/report.pdf

	2018,10_Titelbl.pdf
	2018-10.pdf
	1 Introduction
	2 Evolution Scenarios
	2.1 Adding a Mobile App Client
	2.2 Microservice Architecture
	2.3 Container Virtualization

	3 Design Details for Evolution Scenarios
	3.1 Adding a Mobile App Client
	3.1.1 Use Cases of the Mobile App
	3.1.2 Design of the Mobile App

	3.2 Microservice Architecture
	3.2.1 Orders
	3.2.2 Stores
	3.2.3 Reports
	3.2.4 Architectural Overview

	3.3 Container Virtualization

	4 Implementation of Evolution Scenarios
	4.1 Adding a Mobile App Client
	4.2 Microservice Architecture
	4.3 Container Virtualization

