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Kurzfassung

In der vorliegenden Arbeit wird die Anwendung von hoch-parallelen Algorithmen zur
Auswertung von 3D-Punktwolken in der Robotik untersucht. Die Zielstellung ist es, es-
sentielle Berechnungen der Kollisionspriifung und Planung so weit zu beschleunigen,
dass Roboter ein reaktives Verhalten erreichen und somit in einer dynamischen, teils
unbekannten Umgebung eingesetzt werden kénnen. Da die prasentierten Losungen di-
rekt auf 3D-Sensordaten der Umgebung arbeiten, reduzieren sie die Abhidngigkeit auf
a priori bekannte geometrische Modelle, was das Einsatzgebiet erweitert. Die untersuch-
ten Aufgabenstellungen decken alle drei Teilbereiche des traditionellen Sense-Plan-Act-
Zyklus ab und reichen von Bewegungspradiktion, inverser Kinematik, tiber Greif- und
Trajektorienplanung bis zur Ausfithrungsiiberwachung.

Aktuelle 3D-Kameras liefern detaillierte geometrische Umweltmodelle in Form von Punkt-
wolken, welche jedoch hohe Anforderungen an den Datendurchsatz der verarbeitenden
Algorithmen stellen. Um hier die benétigte Effizienz zu erreichen, liegt der erste Bei-
trag dieser Arbeit in der Entwicklung unterschiedlicher diskretisierender Datenstruk-
turen auf Voxelbasis, die eine hoch parallele Interpretation der Sensordaten auf Gra-
fikprozessoren ermoglichen. Hervorzuheben ist hierbei der umgesetzte, lastbalancierte
Octree.

Ausgehend von spezialisierten Techniken zur Kollisionspriifung werden weitere Beitra-
ge durch Softwarekomponenten geleistet, die es erlauben, unterschiedliche Planungs-
und Uberwachungsaufgaben zur Ausfiihrungszeit (also wihrend der Bewegung) zu 16-
sen. Ein Kernaspekt dabei ist die Verwendung von dichten Swept-Volumen zur volu-
metrischen Darstellung von Bewegungstrajektorien. Im Gegensatz zur weit verbreiteten
Dreiecksnetzdarstellung sind diese durch eine Voxeldarstellung sehr effizient zu erstellen
und auf Kollisionen zu evaluieren.

Die im Rahmen dieser Arbeit entwickelten Losungen wurden in einer OpenSource Soft-
warebibliothek zusammengefiihrt und sehr ausfiihrlich in unterschiedlichen Szenarien
praktisch evaluiert. Neben den Evaluationsergebnissen sind auch die dafiir vom Autor
entwickelten Robotersysteme Teil dieser Arbeit.
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Glossar

Adero (Advanced Dexterous Robot) ist ein mobiler, zweiarmiger Roboter, der vom Au-
tor zu Testzwecken als Vorgianger von Immp entwickelt wurde.

Anytime Algorithmus ist ein iterativer, approximierender Algorithmus, der nach jedem
Durchlauf valide Ergebnisse bereitstellt, und somit jederzeit abgebrochen werden
kann. Mit zunehmenden Iterationen nihert sich das Ergebnis dem Optimum.

Baum-Invariante beschreibt den eindeutigen, giiltigen Zustand eines gewurzelten Bau-
mes, in dem alle inneren Knoten den ihren Kindknoten entsprechenden, zusam-
mengefassten Zustand besitzen. Siehe [Definition 14

Block ist eine Einheit aus CUDA Threads, die synchron einen Kernel ausfiihrt und sich
einen gemeinsamen Speicher teilt.

CUDA ist eine Programmiertechnik mit einer gleichnamigen Laufzeitumgebung, mit der
Algorithmen fiir GPUs compiliert und auf ihnen ausgefiihrt werden kénnen. CU-
DA wird von Nvidia exklusiv fiir Grafikkarten der eigenen Marke entwickelt.

CUDA-Thread fiihrt einen Kernel auf einer Recheneinheit (Core) der GP-GPU aus. CU-
DA Threads werden in Blocken gestartet, in denen sie synchron ablaufen und einen
gemeinsamen Speicher nutzen.

Device ist die physische und logische Einheit aus |(GP-GPU| ihrem Speicher, und allen
weiteren Komponenten, die auf einer Grafikkarte verbaut sind. Da das Device nicht
eigenstandig nutzbar ist, benotigt es einen Host, also ein Computersystem, in dem
es lauft.

Endeffektor ist das Werkzeug am Ende eines robotischen Armes, mit dem Objekte ge-
griffen oder manipuliert werden.

Erweitertes Kalman Filter ist eine nichtlineare Erweiterung des Kalman Filters, die es
erlaubt, nichtlineare Systemmodelle zu schitzen.

Euklidische Distanz Transformation beschreibt eine Rechenvorschrift und ein Muster
zur Anwendung auf die Elemente einer Datenstruktur. Dient zur Berechnung der
euklidische Distanz zu einem anderen Element der Datenstruktur.

GP-GPU ist ein Grafikprozessor, der fiir generische Berechnungen genutzt werden kann.

GPU-Voxels ist die im Verlauf dieser Dissertation entwickelte Open Source Software"=Bibliothek,
die hoch parallelisierte Algorithmen und Datenstrukturen zur Arbeit mit Voxeln
zur Verfiigung stellt.

Grid besteht aus mehreren CUDA Blocken, die ohne Synchronisierung auf einer GP-
GPU ausgefiihrt werden.
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Glossar

Grid-Stride-Loop sind for-Schleifen in CUDA Kerneln, die Arbeit im Kernel serialisie-
ren, falls zu wenige Threads fiir eine vollstindige Parallelisierung gestartet wurden.

Siche ATgorthmus T

HoLLiE (House of Living Labs intelligent Escort) ist ein mobiler Roboter mit anthropo-
matischem Torso, der vom Autor entwickelt und in dieser Arbeit als Testplattform
verwendet wurde.

Host ist das Computer-System, welches eine GP-GPU beinhaltet, und diese als unterge-
ordnete Einheit (Device) nutzt, um CUDA Berechnungen auszufiihren.

Immp (Industrial mobile manipulation plattform) ist ein mobiler, zweiarmiger Roboter,
der vom Autor entwickelt und in dieser Arbeit als Testplattform verwendet wurde.
Der Roboter verftigt {iber eine leistungsstarke on-board GP-GPU.

Kernel bezeichnet eine in sich abgeschlossenen Funktion, die in einem CUDA-Kontext
auf der GP-GPU zur Ausfiihrung gebracht wird. Die Parallelisierung des Kernels
mit mehreren Threads kann tiber Aufrufparameter gesteuert werden.

Kinematische Konfiguration beschreibt die Anordnung aller beweglichen Achsen ei-
nes Roboters zueinander und somit seine Beweglichkeit. Nicht zu verwechseln mit:
[Roboterkonfiguration|

KinFu ist die OpenSource Implementierung von Kinect Fusion, einem Algorithmus zur
Rekonstruktion von Oberflaichenmodellen aus 3D-Punktwolken, die mit bewegten
Sensoren aufgenommen werden.

Memory Coalescing beschreibt ein Speicher-Zugriffsmuster, bei dem mehrere Threads
aufim Speicher hintereinander liegende Elemente zugreifen und somit den Speicher-
bus / Cache effizient nutzen .

Morton-Code ist die Linearisierung einer n-dimensionalen Adressierung, die bei einem
n-dren Baum indirekt den Weg von der Wurzel zu einem Blatt beschreibt..

Octree ist eine 8-dre Baum-Datenstruktur mit einer einzelnen Wurzel. Jeder Knoten im
Baum weist somit entweder acht direkte Nachfolger oder keine Nachfolger (Blatt-
knoten) auf.

OpenGL ist eine Plattform- und Programmiersprachen-iibergreifende Programmierschnitt-
stelle zur Darstellung von 2D und 3D-Szenen. GPUs bieten eine Hardwarebeschleu-
nigung fiir OpenGL .

Partikelschwarmoptimierung ist eine biologisch motivierte Herangehensweise um nicht-
lineare Optimierungsprobleme zu 16sen. Ahnlich dem Schwarmverhalten in der
Natur wird dabei eine Population von potentiellen Losungen (Partikel) iterativ
durch den Suchraum bewegt und iiber eine Bewertungsfunktion beurteilt.

Prefixsumme ist ein Verarbeitungsprimitiv der Parallelverarbeitung, bei dem {tiber ei-
ne Folge von Eingabedaten iteriert wird und sukzessive ihre Partialsummen (oder
das Ergebnis anderer bindrer Operationen) gebildet werden. Auch Scan genannt. (s.
Anhang).

Provider ist das Haupt-Programm in (GPU-Voxels|, das Berechnungen durchfiihrt, und
dessen Daten durch den angezeigt werden konnen.
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Glossar

Raycasting beschreibt Verfahren zur Abtastung eines simulierten Licht- oder Sichtstrah-
les, um synthetische Bilder zu generieren oder Freirdume zu bestimmen.

Reduktion ist ein Verarbeitungsprimitiv der Parallelverarbeitung, bei dem eine Folge
von Eingabedaten paarweise rekursiv zu einem einzigen Ergebniswert zusammen-
gefasst wird (s. Anhang).

RGBD-Kamera ist eine Kombination aus zwei Sensoren in einem Gehéuse: Durch die
gleichzeitige Auswertung der Daten einer Farbkamera (RGB: Red Green Blue) und
eine Tiefenkamera (D: Depth) konnen eingefarbte 2,5 dimensionale Abbildungen
einer Szene erstellt werden.

Roboterkonfiguration beschreibt den Zustand aller beweglichen Achsen eines Roboters
und somit seine Pose. Nicht zu verwechseln mit: [Kinematische Konfiguration|

Sense-Plan-Act-Zyklus beschreibt den typischen Ablauf von Roboterhandlungen: Sen-
sorielle Wahrnehmung und Analyse der Daten. Basierend darauf eine Planung von
Aktionen und letztendlich die Ausfithrung der Pline. Die Ausfithrung geschieht
somit blind.

Sub-Swept-Volumen-ldentifikator ist ein Bitmuster, das in Voxeln gespeichert wird, um
ihre Zugehorigkeit zu einer oder mehreren Entitdten zu kennzeichnen.

Swept-Volumen entspricht dem aufintegrierte Volumen im Raum, das von einem Ob-
jekt durch seine Bewegung {iberstrichen wird.

Vertex-Buffer Object ist ein Speicherbereich der in OpenGL genutzt wird, um Eckpunk-
te und andere Informationen iiber mehrere Zeichenaufrufe hinweg zu speichern.
VBOs dienen zur Entkopplung der Daten-Bereitstellung und dem eigentlichen Zeich-
nen. Im [GPU-Voxels} Visualizer liegen VBOs im CUDA Shared Memory.

Visual Servoing ist ein Kamera gestiitzter Regelungsprozess, bei dem ein
relativ zu einem detektierten Objekt positioniert wird.

Visualizer ist ein eigenstdndiges Programm zu Visualisierung von Daten in{GPU-Voxels
Es benétigt einen laufenden dessen Daten interpretiert werden.

Voxel bezeichnet ein kubisches Volumen im dreidimensionalen Raum, das die kleinste
Einheit der in dieser Arbeit verwendeten Raumpartitionierung darstellt. Ein Vo-
xel kann unterschiedliche Zustinde annehmen und einer oder mehreren Entititen
zugeordnet werden. Er ist das Pendant des zweidimensionalen Pixel.

Voxel-Bedeutung entspricht der semantischen Interpretation von Voxeldaten. Haupt-
sdchlich als Bitmuster in Bitvektor-Voxeln gespeichert, oder als Wahrscheinlich-
keitsgrenze bei probabilisitischen Voxeln definiert.

Voxeltyp bezeichnet die Art der Implementierung eines Je nach Typ konnen un-
terschiedliche Informationen pro Voxel gespeichert werden.

Voxelumwandlung bezeichnet das Einfligen einer Punktwolke in eine Voxel"=Datenstruktur,
wobei die Belegtheitsinformationen der Voxel, in welchen die Punkte liegen, aktua-
lisiert werden.

Warp bestehend aus 32 Threads. Ist die Menge an Threads, die ein Prozessorkern der
GPU gleichzeitig ausfiihrt.
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Symbolverzeichnis

P bezeichnet eine Punktwolke, die aus den Punkten p; besteht.

[1;:(V') ist der Operator, der einen Voxel V' durch die Operation § aktualisiert.

q beziffert die Anzahl an parallel ablaufenden Threads innerhalb eines Kernels.
lvozer beschreibt die Kantenldnge eines Voxel.

¥ bezeichnet den Zustand eines Voxels, der iiber die voxeltypspezifische Nutzdaten re-
prasentiert wird.

I ist der Operator, der bei einer Aktualisierung auf die Nutzdaten ¥ eines Voxels ange-
wendet wird.

(M, P) ist der Operator, mit dem die Voxel-Datenstruktur M durch die Punktwolke P
aktualisiert wird. Verwendet den [[J; (V)}Operator.

B(V) ist der Operator, der als wahr ausgewertet wird, wenn der Voxel V' als belegt zu
interpretieren ist. Kann weitere, vom Voxeltyp abhdngige Parameter aufweisen.

& ist der Operator, der zwei Voxel mittels auf Belegtheit tiberpriift und der als
wahr ausgewertet wird, wenn beide Eingabevoxel belegt sind. Der Operator ist je
nach Voxel-Datentyp und Semantik unterschiedlich implementiert und parametri-
siert.

|| ist der Operator, der zwei Voxel mittelsauf Belegtheit tiberpriift und der als wahr
ausgewertet wird, wenn einer der Eingabe-Voxel belegt ist. Der Operator ist je nach
Voxel-Datentyp und Semantik unterschiedlich implementiert und parametrisiert.
Im Octree bestimmt er den Status eines Elternknotens aus den Kindknoten.

N ist der Operator, der zwei Voxel-Datenstrukturen iiberlagert und welcher die Menge
der Voxel findet, die nach einem gegebenen Belegtheitskriterium in beiden Daten-
strukturen belegt sind. Dafiir werden paarweise alle Voxel mittels dem [&]-Operator
verglichen.

U ist der Operator, der die Vereinigung zweier Punktwolken oder Voxel-Datenstrukturen
(mittels [ FOperator) bildet. Doppelte Eintrige werden dabei entfernt.

Vo ist die Menge aller Voxel, die von einem Objekt O geschnitten werden.
Atg, ist die Zeitdauer, die einem Sub-Swept-Volumen-Identifikator (SSV-ID) entspricht.

SE(2) ist eine spezielle euklidische Gruppe in der Ebene, die Translationen und Rotatio-
nen enthélt (3 DOF).

SE(3) ist eine spezielle euklidische Gruppe im dreidimensionalen Raum, die Translatio-
nen und Rotationen enthilt (6 DOF).
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1. Einfuhrung

Nicht erst seit der Pragung des Begriffs ,Roboter” durch Capec streben Menschen nach
einer intelligenten und universellen Maschine, die sie in moglichst allen Belangen des Le-
bens unterstiitzen kann. Ein unbdndiger Enthusiasmus und Erfindungsreichtum fiihrten
zu immer gewagteren Vorhersagen, zu was und vor allem wann Roboter dazu in der La-
ge sein sollten. Doch der Durchbruch ist leider auch zu Zeiten des Deep Learnings noch
immer nicht erreicht. Daher soll an dieser Stelle auf Zukunftsprognosen verzichtet und
stattdessen die aktuellen Themen der praktischen Robotik kurz beschrieben werden, die
diese Arbeit motivieren:

Das Einsatzspektrum von Robotern erweitert sich stetig. Wahrend die Politik in einer
Industrie 4.0 |'| die Zukunft der (dann individualisierten) Produktion sieht, in der Ma-
schinen untereinander und mit ihren Produkten in einem Internet der Dinge kommuni-
zieren, spricht die Industrie momentan erst von der Dritten Revolution in der Robo-
tik ﬂ Diese bringt die mobile Manipulation in die Produktionsanlagen und soll so die
nicht gewinnschdpfenden 25% der Produktionszeit, die aktuell fiir Materialfluss benotigt
werden, eklatant verkiirzen, indem eine Bearbeitung im Materialfluss moglich wird (frei
nach Peter Kliiger, KUKA Roboter GmbH, Juli 2015). Dafiir miissen sich die Maschinen in
ihrem Umfeld frei bewegen konnen, was insbesondere eine kollisionsfreie Bewegungs-
planung in mehr oder minder unstrukturierter Umgebung erfordert. In der Forschung
wird daher bereits seit vielen Jahren die vierte Revolution vorbereitet, welche die ko-
gnitiven Fahigkeiten der Roboter auf eine neue Ebene heben soll. Auch hier gilt es, die
Herausforderungen, die bei der Verarbeitung der immensen Datenmengen entstehen, zu
bewaltigen.

Kollisionsfreie Bewegungsplanung und die fiir eine Arbeitsraumiiberwachung erforder-
liche effiziente Datenverarbeitung bilden die Grundlage fiir eine sichere Koexistenz von
Menschen und Robotern und erlaubt deren zaunlosen Betrieb. Doch erst die Kombina-
tion aus Leichtbaurobotik und inherenter bzw. intrinsischer Nachgiebigkeit ermdoglicht
eine sichere Kooperation zwischen Mensch und Maschine.

Die nun angestrebte industrielle und somit auch robotische Revolution zielt jedoch auf
eine echte Kollaboration zwischen Mensch und Roboter, fiir die noch einige essentielle
Technologien fehlen und zu welcher diese Arbeitet einen Beitrag leisten mochte.

'Vorangegangen waren die erste industrielle Revolution mit der Einfiihrung dampfbetriebener, mechani-
scher Produktionsanlagen gegen Ende des 18. Jahrhunderts. Mit der Wende zum 20. Jahrhundert folgte
die zweite industrielle Revolution, die eine Massenproduktion von Giitern mit Hilfe elektrischer Energie
und Arbeitsteilung (Fordismus, Taylorismus) erlaubte. Ab Mitte der 70er Jahre und bis heute andauernd
sorgt der Einsatz von Elektronik und IT in der Automatisierung von Produktionsprozessen fiir die dritte
industrielle Revolution.

’Eine erste Revolution war die eigentlich Einfiihrung der Robotik in der Automatisierungstechnik. Diese
ging mit dem Einsatz von komplexer Sensorik in einer zweiten Revolution in die sichere, sensitive und
adaptive Automatisierung iiber.



1. Einfiihrung

(a) Koexistenz (b) Kooperation (c) Kollaboration

Abb. 1.1.: Stufen der Zusammenarbeit zwischen Mensch und Roboter.

Klassische Sicherheitssysteme wie Lichtgitter, Laserscanner, kapazitive Anndherungssen-
soren, taktile Boden und Kraft- / Momentensensoren beschrianken die Produktivitdt von
Robotern enorm, da sie zum einen sehr grofie Schutzbereiche um die Maschinen erfor-
dern und zum anderen, im Falle einer Verletzung dieser Bereiche, einen Stillstand des
Roboters auslosen. Aus diesem Grund stoppen Roboter in Szenarien der
[poter-Kollaboration (MRK)| meist erst kontaktbasiert. Dies ist moglich, da sich die Ma-
schinen so langsamen bewegen, dass sie bei einem physischen Kontakt mit einer Person
schnell und sicher abgebremst werden kénnen. Ein Kontakt mit dem Roboter ist jedoch
weder angenehm fiir den Menschen noch ist dieser effizient, da er zu einem komplet-
ten Stillstand und Wiederanlauf fithrt. Die Ansédtze und Techniken aus der DIN EN ISO
10218-1 und DIN EN ISO 10218-2, die die Anforderungen fiir inhdrent sichere, kollabo-
rative Industrieroboter festgelegen und die grundlegenden Gefdhrdungen und Risiken
beschreiben, sind im Hinblick auf ihre Effizienz unzureichend.

(a) Optisch (b) Kapazitiv (c) Haptisch

Abb. 1.2.: Aktuelle Kollisionserkennungsverfahren

Um eine hohere Effizienz in der im Bereich der zu erreichen, sollten Kollisionen
nicht nur erkannt, sondern antizipiert werden und so eine sinnvolle Behandlung ermog-
lichen. Fiir eine solche proaktive Kollisionsvermeidung ist eine visuelle Perzeption zur
Planung und Uberwachung von kollisionsfreien Bahnen ein vielversprechender Ansatz.
Daher sind in dieser Arbeit ausschliefslich Kollisionserkennungsverfahren von Interesse,
die mit Daten aus einer visuellen 3D-Perzeption arbeiten. Nur sie erlauben es, Hindernis-
se bereits aus der Distanz detailliert und mit hoher Bildrate zu erkennen, um friihzeitig
auf sie reagieren zu konnen, und somit physische Kollisionen zu verhindern. Dies macht
den Unterschied zwischen einem einfachen Industrieroboter und dem kollaborierenden
Assistenten (CoBot) aus und kann den Wunsch nach sicheren, geteilten Mensch-Roboter-
Arbeitsraumen erfiillen.



1.1. Kurzfassung

Durch reaktive Verhalten, die geplante Bewegungen in dynamischen Umgebungen an-
passen konnen, steigt nicht nur die Effizienz eines Systems, sondern auch das vermittelte
Sicherheitsgefiihl. Die somit geschaffene hohere Akzeptanz erhoht letztendlich die Ergo-
nomie eines geteilten Arbeitsplatzes fiir den Mitarbeiter und sollte ein langfristiges Ziel
der Robotik darstellen.

1.1. Kurzfassung

Um in einer teilweise unbekannten Umgebung eine reaktive Planung auf Basis von 3D-
Sensordaten zu ermdglichen, wird in dieser Arbeit die Softwarebibliothek
entworfen. Sie basiert auf einer Kollisionsdetektion durch die hoch parallele Uberlage-
rung zweier Voxel-Datenstrukturen im [Graphics Processing Unit (GPU)| Speicher. Der
klassische Fall ist in[Abb. 1.3/ zu sehen: Dabei enthilt eine der Datenstrukturen das Um-
weltmodell aus 3D-Sensordaten, wihrend die zweite ein Egomodell des Roboters und
seiner Bewegungen beinhaltet. Eine leere Schnittmenge als Ergebnis der Uberlagerung
bedeutet dabei Kollisionsfreiheit, wohingegen eine nicht leere Menge das in Kollision lie-
gende Volumen reprasentiert. Unterschiedliche Datenstrukturen und darauf abgestimm-
te Methoden zur Bestimmung ihrer Schnittmengen bzw. Befiillung werden untersucht.
Aufbauend auf der GPU-Kollisionsdetektion konnen dann unterschiedliche, spezialisier-
te Algorithmen zur Bewegungsplanung entwickelt werden.

y

(a) Egomodell (b) Umweltmodell (c)=(a) U (b) (d)=(a) N (b)

Abb. 1.3.: Zwei Voxel-Datenstrukturen und das Ergebnis des Vereinigungs- und Schnitt-
Operators zur Kollisionsdetektion.

1.2. Begriffsbildung

Zu besseren Einordnung der vorliegenden Arbeit sollen zunédchst die wichtigsten Begriff-
lichkeiten definiert werden:

Begriffsbildung Kollisionsdetektion: Flexibel einsetzbare Roboter miissen in der La-
ge sein, sich kollisionsfrei in ihrer Umwelt zu bewegen. Um Kollisionen verhindern zu
konnen, miissen diese zunichst auf Basis von simulierten Situationen erkannt werden.
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Hierbei werden Momentaufnahmen einer Szene, bestehend aus Umwelt und Roboter
miteinander iiberlagert. Die Kollisionserkennung findet also auf statischen Daten statt
und kann folglich auch nur Aussagen tiiber einzelne Zeitpunkte bzw. Konstellationen in
der Szene liefern. Dabei konnen auch Umweltdaten aus Sensoren berticksichtigt werden.

Definition 1. Die Kollisionserkennung oder Kollisionsdetektion ermittelt,
ob sich zwei Entititen zur selben Zeit am selben Ort befinden und somit ei-
ne Kollision vorliegt. Kollisionen kdnnen auch Eigenkollisionen einer Entitat
mit sich selbst beinhalten. In dieser Arbeit geschieht die Kollisionserkennung
innerhalb von Simulationen und bezieht sich somit nicht auf die Detektion
physischer Kontakte.

Begriffsbildung Kollisionsvermeidung: Da Roboter ihre auszufithrenden Bewegun-
gen im Voraus exakt kennen, kann die Simulation der Kollisionserkennung auch zukiinf-
tige Zustande des Roboters auf Zusammenstofie mit dem aktuellen Zustand der Umwelt
iiberpriifen. Somit lassen sich bereits vor der Ausfiithrung Probleme mit statischen Hin-
dernissen erkennen und vermeiden, indem der Roboter rechtzeitig gestoppt wird. Neben
der bindren Entscheidung tiber eine Kollision konnen zusétzlich auch Distanzen zu Ob-
jekten oder Kollisionswahrscheinlichkeiten betrachtet werden, die bei der Vermeidung
von Kollisionen helfen.

Definition 2. Bewegt sich ein Roboter in einer verdanderlichen Umgebung oder
ist sein Umweltwissen nicht vollstindig, sollte er tiber Strategien zur Kolli-
sionsvermeidung verfiigen. Sie ermoglichen es, auf Basis eines Modells der
eigenen Bewegungsbahn (Egotrajektorie) noch vor Eintritt einer Kollision Ge-
genmafSnahmen einzuleiten. Zur Kollisionsvermeidung zéhlt auch die Mini-
mierung der Kollisionswahrscheinlichkeit, beispielsweise tiber die Maximie-
rung des Abstandes zu Hindernissen.

Begriffsbildung Bewegungsplanung: Durch die Evaluierung vieler hypothetischer
Zustande oder Bewegungen kann ein Roboter eine Bewegungsabfolge generieren, die
ihn an Hindernissen vorbei und zu einem konkreten Ziel fiihren.

Definition 3. In der Robotik stiitzt sich die Bewegungsplanung auf die Kol-
lisionsdetektion, um simulierte Bewegungen zu evaluieren. Das Ziel ist es,
einen Agenten von einem Start-Zustand in einen Ziel-Zustand zu tiberfiih-
ren, ohne dabei Kollisionen hervorzurufen. Mehr als 90% der Berechnungszeit
tiir die Planung einer Bewegung in realistischen Umgebungen sind dabei der
Kollisionspriifung geschuldet [46]. Bewegungen konnen weiterhin nach un-
terschiedlichen weichen Kriterien optimiert werden, wobei jedoch immer das
harte Kriterium der Kollisionsfreiheit gewdhrleistet sein muss.



1.3. Zielsetzung und Problemstellung

Begriffsbildung Kollisionspradiktion: Da sich Bewegungsplanung und Kollisionser-
kennung zunichst auf statische Momentaufnahmen der Umwelt stiitzen, erweist sich
dieses Vorgehen in dynamischen Szenen jedoch nur bedingt als geeignet, da Kollisionen
erst erkannt werden, wenn sich Hindernisse bereits in der Bewegungsbahn des Roboters
befinden. Verfiigt der Roboter jedoch {iber Informationen zu seiner eigenen Dynamik
und zu derjenigen des Hindernisses, kann er Kollisionen vorhersagen, die mit einer ge-
wissen Wahrscheinlichkeit zu einem spéteren Zeitpunkt auftreten werden und proaktiv
darauf eingehen.

Definition 4. Wurde eine Bewegung eines Hindernisses iiber eine gewisse Zeit
beobachtet, kann eine Kollisionspradiktion stattfinden. Diese detektiert und
verfolgt dynamische Entitdten und nutzt ein Bewegungsmodell, um ihre zu-
kiinftige Trajektorie vorherzusagen. Uberschneidet sich die geplante Egotra-
jektorie mit der vorhergesagten Hindernistrajektorie, kann eine Kollision préa-
diziert werden.

Begriffsbildung reaktives Verhalten: Weiterhin ist es in dynamischen Umgebungen
unabdingbar, schnell zu planen, beziehungsweise Plane dynamisch anzupassen, da die-
se in einem typischen Sense-Plan-Act System sonst korrumpiert sein konnen, bevor sie
iiberhaupt zur Ausfithrung gebracht werden. Rein reaktive Systeme hingegen kénnen
keine global optimierten Losungen liefern und sich in lokalen Minima verfangen. Daher
werden Planer meist mit reaktiven Ansitzen kombiniert. Je weiter dabei die Grenze zwi-
schen deliberativer Planung und reaktiver Ausfiihrung in Richtung einer onlinefihigen
Planung verschoben wird, desto deterministischer fallen die Ergebnisse aus.

Definition 5. Sind die Verfahren der Kollisionserkennung und Kollisionsver-
meidung an die Dynamik der Umgebung angepasst, kann ein Roboter ein re-
aktives Verhalten bei gleichzeitig vollem Determinismus zeigen. Im optima-
len Fall ist seine Planung schnell genug, um mit Verdanderungen in der Umwelt
umzugehen, ohne dafiir seine Bewegung zu stoppen.

1.3. Zielsetzung und Problemstellung

Mit den definierten Begriffen kann nun die Zielsetzung dieser Arbeit beschrieben wer-
den:

Forschungsziele. In der Arbeit sollen Planungsysteme entwickelt werden,
welche es erlauben, einen Roboter in einer dynamischen, teils unbekann-
ten Umgebung einzusetzen. Voraussetzung hierfiir ist eine hoch performante
Kollisionspriifung auf Basis von 3D-Sensordaten, die dem Roboter eine re-
aktive Planung ermoglicht. Dafiir sollen ermittelte Bewegungspldne antizi-
pierend auf Kollision mit dynamischen Hindernissen iiberwacht werden. Bei
Bedarf sind die Pline an wechselnde Umgebungsbedingungen zu adaptieren,
indem kritische Teile umgeplant werden, oder auf alternative Plane ausgewi-
chen wird, ohne dafiir die Ausfithrung zu stoppen.
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Aus diesen Zielen lassen sich mehrere Problemstellungen ableiten: Zundchst wird eine
passende Perzeption benétigt, um die Umwelt wahrzunehmen. Diese muss zwangslaufig
dreidimensionale Daten liefern, da sich Mensch und Roboter im Raum bewegen. Auch
die Rate, mit der diese Informationen aktualisiert werden, muss addquat sein, um Ande-
rungen der Umwelt rechtzeitig erkennen zu kénnen. Eine Sensorik, die diese Anforde-
rungen erfiillt, ist in Form moderner 3D-Kameras vorhanden und kann daher als gegeben
angenommen werden. Die zu verarbeitende Informationsmenge aus der 3D-Perzeption
ist jedoch so umfangreich, dass ihre sequentielle Verarbeitung auf aktueller Hardware an
Durchsatzgrenzen stofit. Daher verwendet diese Arbeit Parallelprozessoren mit einem
sehr hohem Parallelisierungsgrad und beschaftigt sich folglich mit den Fragen:

Forschungsfrage 1. Welche Algorithmen der Verarbeitungskette zur Interpre-
tation von 3D-Daten konnen effizient parallel ablaufen?

Weiterhin miissen die gewonnenen Daten fiir ihre Interpretation in eine Reprasentation
umgewandelt werden, die den Anforderungen unterschiedlicher Kollisionspriifungsver-
fahren gerecht wird, und die einen parallelen Zugriff ermoglicht. Hierfiir hat sich die
Klasse der raumpartitionierenden Reprdsentationen als geeignet erwiesen, deren Vor-
und Nachteile gegeniiber etablierten Modellen auf Basis von Dreiecksnetzen aufgezeigt
werden sollen.

Forschungsfrage 2. Welche Vor- und Nachteile haben raumpartitionierende
Reprasentationen gegeniiber Oberflichenmodellen bei der Verarbeitung von
3D-Daten zur Kollisionserkennung?

Nach der Beantwortung dieser Frage sollen die spezifischen Eigenschaften mehrerer kon-
kreter Datenstrukturen untersucht werden, um Ego- und Umwelt-Modell je nach An-
wendungsszenario passend abbilden zu konnen. Hierbei miissen Speicherverbrauch ge-
gen Berechnungsgeschwindigkeit entsprechend der zu modellierenden Daten aufgewo-
gen werden. Weiterhin muss die Datenstruktur es ermoglichen, 6rtliche, zeitliche und
semantische Informationen zu speichern.

Forschungsfrage 3. Welche Datenstrukturen, die einen parallelen Zugriff er-
lauben, eignen sich zur Speicherung dynamischer raumpartitionierender 3D-
Repréasentationen? Welche Vorteile konnen bei der Kollisionserkennung in un-
terschiedlichen Anwendungszenarien aus ihren spezifischen Eigenschaften
gezogen werden?

Aufbauend auf den Datenstrukturen und dazu passenden Algorithmen sollen schliefslich
Planungsverfahren entwickelt werden:

Forschungsfrage 4. Welche Verfahren zur Bewegungsplanung kénnen von ei-
ner hochparallelen Kollisionserkennung profitieren? Welche Vorteile entste-
hen durch die Verwendung von Swept-Volumen zur Abbildung von Bewe-
gungen?

Am Ende der Arbeit wird die Praxisrelevanz der entwickelten Losungen hinterfragt. Die
Evaluation von |General-purpose Graphics Processing Unit (GP-GPU)s| in der Robotik
wird dabei an zahlreichen Beispielen durchgefiihrt, die in [Abb. 1.4|in einen typischen
[Sense-Plan-Act-Zyklus|eingeordnet sind.
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Forschungsfrage 5. Erlaubt der Einsatz der entwickelten hochparallelen Ver-
fahren die Planung von Roboterbewegungen in dynamischen Umgebungen?
Auf welche anderen typischen Robotik-Probleme lassen sich die Ergebnisse
dieser Arbeit anwenden?

Abb. 1.4.: Einordnung der bearbeiten Themengebiete in den [Sense-Plan-Act-Zyklus|
stellt die Kernalgorithmen, Datenstrukturen und Werkzeuge wie
eine Visualisierung fiir alle Aufgaben bereit.

1.4. Einordnung und Wissenschaftlicher Beitrag

Die Generierung von kollisionsfreien Bewegungen ist in der Robotik seit jeher eine fun-
damentale Herausforderung. Entsprechend grofs ist das Feld verwandter Arbeiten in den
Bereichen Kollisionspriifung, Planung und reaktiver Verfahren, auf die im folgenden Ka-
pitel eingegangen wird. Wahrend die Entwicklung der Planungsverfahren rasante Fort-
schritte durchlaufen hat, ergaben sich bei der Modellierung der Umwelt und den darauf
aufbauenden Verfahren zur Kollisionserkennung wesentlich weniger Anderungen. Der
dominierende Anteil an Kollisionspriifungsverfahren arbeitet auf Dreiecksnetzen und
Hierarchien aus Hiillkorpern, deren Generierung aus Sensor-Punktwolken einen erheb-
lichen Berechnungsaufwand erfordert. Somit werden diese Verfahren bevorzugt im Zu-
sammenhang mit a priori bekannten Modellen eingesetzt, deren Geometrien statisch sind
und die zur Laufzeit lediglich ihre Pose dndern.

Im Gegenzug herrscht ein Defizit bei der Generierung von Bewegungen in Umgebungen,
die erst wihrend der Aktivitit des Roboters sensorisch erfasst werden: Bei der Verarbei-
tung von Punktwolkendaten mit Hilfe von diskretisierenden Datenstrukturen reduzie-
ren viele Verfahren aus dem aktuellen Stand der Technik die Problemstellung auf 2 oder
2,5 Dimensionen, um hochauflosende Sensordaten schritthaltend verarbeiten zu konnen.
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Verfahren, die dagegen dreidimensionale Belegtheitskarten erstellen, miissen die anfal-
lenden Datenmengen entweder in ihrer rdumlichen oder zeitlichen Auflosung beschran-
ken, um echtzeitfdhig zu sein. Daraus leitet sich der direkte Bedarf nach neuen, paralle-
lisierten Herangehensweisen ab, um nicht nur in robotischen Anwendungen performan-
ter mit hochauflésenden Punktwolken zu arbeiten und Kollisionen zwischen ihnen zu
bestimmen. Zwar ist die Verarbeitung von a priori gegebenen Volumendaten auf Paral-
lelprozessoren weit verbreitet, allerdings existieren nur sehr wenige Arbeiten, die spei-
chereffiziente, volumetrische Modelle zur Laufzeit aufbauen, da die bendtigten dynami-
schen Datenstrukturen eine Herausforderung auf solcher Hardware darstellen. Weiterhin
existieren auch nur wenige Arbeiten, die [Swept-Volumen| heranziehen, um die Planung
und Ausfiihrungsiiberwachung zu verbessern, da die Generierung von Sweeps auf Basis
von Dreiecksnetzen sehr rechenintensiv ist, und sich daher nicht fiir Echtzeitverarbeitung
eignet. Ein weiterer Schwachpunkt aktueller Planungsverfahren ist die Nutzung unter-
schiedlicher Modelle fiir die Trajektorienplanung und die Ausfiihrungsiiberwachung.
Um hier fehleranfillige Redundanzen zu vermeiden, sollte nur ein einziges einheitliches
Modell in allen drei Phasen des[Sense-Plan-Act-Zyklus|zum Tragen kommen.

Die vorliegende Arbeit setzt an allen gelisteten Problemen an, indem sie eine Voxelmo-
dellierung auf realisiert, die sowohl fiir die Trajektorienplanung als auch fiir
die Ausfiihrungsiiberwachung nutzbar ist. Weiterhin wandelt sie etablierte Algorithmen
der Robotik, insbesondere Planungsverfahren so ab, dass sie das volle Potential der par-
allelisierten Kollisionspriifung ausschopfen. Alle weiteren abgedeckten Themengebiete
finden sich in
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Abb. 1.5.: Ubersicht {iber die grundlegenden Software-Module, aufgeteilt in GPU (griin)

und Host (blau) Komponenten. Daten, die im GPU-RAM liegen sind hellgriin
dargestellt.

Bei einer Einordnung anhand der NASREM-Architektur [35] bewegt sich die Arbeit auf
der mittleren Ebene: Unterhalb eines Missionsplaners und oberhalb der ausfiihrenden
Schichten. Die Schwerpunkte liegen auf den beiden Sdulen der Sensorik und des Welt-
modells, wie auch in[Abb. 1.5/zu erkennen ist. Symbolische Planung, Regelungsverfahren



1.4. Einordnung und Wissenschaftlicher Beitrag

und verhaltensbasierte Ansitze sind nicht Teil der Arbeit.

Der wissenschaftliche Beitrag stiitzt sich auf die Verkniipfung von Volumenrepra-
sentationen, die bereits seit mehreren Jahrzehnten untersucht werden, mit modernen
Methoden der heterogenen Parallelverarbeitung auf CPUs und GPUs. Ziel ist die schritt-
haltende Kollisionspriifung und Bewegungsplanung, die anhand von drei Teilzielen eva-
luiert wird (vgl. Begriffsbildung):

1. Zunichst ist die Parallelisierbarkeit verschiedener Datenstrukturen und ihre Eig-
nung zur Modellierung unterschiedlicher Entitdten der Bewegungsplanung zu prii-
fen. Hierfiir wird eine Unabhéngigkeit zwischen den einzelnen Zellen der diskre-
tisierenden Modelle angenommen, um diese datenparallel verarbeiten zu konnen.
Aufbauend darauf soll eine Kollisionspriifung von Momentaufnahmen durchge-
fithrt werden. Der Erfolg wird anhand der Laufzeit der Verfahren gemessen und
mit etablierten Algorithmen verglichen. Es soll mindestens eine Verarbeitungsrate
erreicht werden, die der Bildrate aktueller 3D-Sensoren entspricht.

2. In einem zweiten Schritt soll eine Kollisionsvermeidung in Form einer Bewegungs-
planung umgesetzt werden. Ziel ist es, die geplanten Robotertrajektorien wahrend
der Ausfithrung kontinuierlich auf Kollision mit Momentaufnahmen einer dyna-
mischen Umwelt zu priifen. Es soll ein tiberwachter Korridor aus Swept-Volumen
entstehen, in dem sich der Roboter sicher bewegen kann. Untersucht werden daher
Planungsverfahren, die nicht nur einzelne Posen, sondern ganze Bewegungsabladu-
fe nutzen, um aus diesen komplexe, kollisionsfreie Bahnen zu synthetisieren. Zur
Evaluation werden verwandte Arbeiten herangezogen und zahlreiche Experimente
durchgefiihrt.

3. Um die Planung zu einer Kollisionspradiktion zu erweitern, werden schliefilich
nicht nur die Eigenbewegungen, sondern auch die Trajektorien dynamischer Hin-
dernisse als Swept-Volumen modelliert. Dies erlaubt proaktiv auf dynamische Um-
gebungen zu reagieren. Um die Unsicherheiten der Pradiktion abzubilden werden
weiterhin Distanzfelder auf Voxelkarten definiert, iiber die ein variabler Sicher-
heitsabstand um Hindernisse herum gewahrt werden kann. Somit ist neben einer
exakten Kollisionsberechnung auch die Distanzberechnung zwischen zwei Model-
len umgesetzt, die fiir zahlreiche Planungsalgorithmen benétigt wird. Beispielswei-
se konnen Distanzkarten als Potentialfeld interpretiert werden, um entlang dessen
Pfade zu planen. Auch hier dienen vorhandene Arbeiten praktische Versuche zur
Bewertung der erzielten Ergebnisse.

Technisch soll der Einsatz von General Purpose GPUs fiir die Robotik vorangebracht
werden, die eine Echtzeitverarbeitung von umfangreichen Sensordaten erlauben und so-
mit reaktivere Verhalten ermoglichen. Hierfiir wird untersucht, in wieweit sich traditio-
nelle Verfahren der Robotik auf GPUs {ibertragen lassen, da hier der Einsatz einer dyna-
mischen Speicherverwaltung duflerst negative Auswirkungen auf den Datendurchsatz
hat. Ein sehr praktischer Beitrag ist die Zusammenstellung und Veroffentlichung aller
Softwarekomponenten in Form einer Open-Source Bibliothek, die in das sehr stark ver-
breitete Robot Operation System (ROS) integrierbar ist.
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1.5. Aufbau der Arbeit

2 | Kapitel 9:  Fazit und Ausblick
S
)
% Kapitel 8: Evaluation: Anwendungsbeispiele und quantitative Messungen
/\
Kapitel 72 Planungsverfahren: Samplingbasiert und mit Bewegungsprimitiven
L ———— e —————————————
;ag e
& | Kapitel 6:  Kollisionspriifung zwischen den Datenstrukturen
é-'; A
S,
EP Kapitel 5:  Datenstrukturen auf der GPU & Visualisierung
s ]
/M
Kapitel 4: Modellierung von Umwelt und Roboter & Sensorik
g
e | Kapitel 3: Heterogene Parallelverarbeitung & CUDA
=
=1
£ . M-
O | Kapitel 1: Einleitung Kapitel 2: Stand der Technik

Abb. 1.6.: Ubersicht iiber die aufeinander aufbauenden Kapitel.

Nach dieser Einfithrung und der Vorstellung des aktuellen Forschungsstandes in
folgt der weitere Aufbau der Arbeit den logischen Abhédngigkeiten der umgesetzten
Verarbeitungskette. Zu Beginn werden in die Grundlagen der heterogenen Da-
tenverarbeitung eingefiihrt und die Prinzipien der Programmierung in CUDA erldutert.
[Kapitel 4behandelt dann das Thema Sensorik und die unterschiedlichen Modelle die aus
den Sensordaten gewonnen werden konnen. Den Schwerpunkt bilden die verwendeten
Voxelmodelle zur Darstellung der Umwelt und des Roboters, sowie [Swept-Volumen|zur
Représentation von Bewegungen. Auch die Pradiktion von Bewegungen auf Basis der
Sensordaten findet sich in diesem Kapitel. Daran schliefit sich in die Imple-
mentierung von Datenstrukturen an, mit denen die Voxelmodelle auf der GPU effizient
reprasentiert werden konnen. Detailliert wird hierbei auf den GPU-Octree eingegangen,
da dieser wissenschaftlich und praktisch von grofler Bedeutung ist. Aufgrund der imple-
mentierungstechnischen Nahe ist hier auch das Vorgehen zur Visualisierung aller Daten-
strukturen erortert, die iiber einen geteilten Speicher erfolgt.

Nachdem alle nétigen Bestandteile definiert sind, kann der Kern der Arbeit folgen:
setzt sich mit der eigentlichen parallelen Kollisionspriifung zwischen den Daten-
strukturen auseinander, auf denen die restlichen Kapitel aufbauen. Insbesondere
das mehrere Planungsverfahren untersucht, die von den Vorteilen der GPU-basier-
ten Kollisionspriifung profitieren.

Die umfangreiche experimentelle Evaluation in belegt dann die praktische
Einsetzbarkeit der entwickelten Verfahren in unterschiedlichen Szenarien und Anwen-
dungen. Ein abschlieBendes Fazit bzw. einen Ausblick gibt Im Anhang sind
letztendlich mathematische Definitionen und technische Details der Implementierung
zusammengestellt.
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2. Stand der Technik

Wie bereits beschrieben, stellt die Bahnplanung und somit auch die Kollisionspriifung
ein fundamentales Problem der Robotik dar. Aus den anfanglichen Fragestellungen zur
Bestimmung von Trajektorien fiir punktférmige Roboter in zweidimensionalen Umge-
bungen [97] wurden schnell Planungssysteme, die eine Vielzahl von Freiheitsgraden in
Kombination mit einer dreidimensionalen Umgebung handhaben konnten [116]. Dies ist
eine Voraussetzung fiir die mobile Manipulation, also die Kombination eines Manipulati-
onsroboters mit einer mobilen Plattform, die bereits seit beinahe dreiflig Jahren erforscht
wird [170]. Ziel eines mobilen Roboters ist die Erweiterung seines Arbeitsraumes und
eine Steigerung der Flexibilitit, die durch die Mobilitdt gewonnen wird. Diese bringt
jedoch auch neue Schwierigkeiten fiir die Planung mit sich, da der Arbeitsraum eines
mobilen Roboters im Allgemeinen nicht komplett einsehbar ist, weshalb auch Hinder-
nisse oder Probleme eventuell erst wiahrend der Ausfithrung einer Aufgabe erkannt wer-
den konnen. Roboter, die in einer unstrukturierten, dynamischen Umwelt agieren sollen,
miissen somit nicht nur auf bekannten Modellen planen, sondern auch auf Sensordaten
ihrer Umgebung — einerseits, um Kollisionen zu vermeiden, andererseits aber auch, um
physikalische Interaktionen planen zu kénnen.

Erste Systeme zur mobilen Manipulation bearbeiteten die Planung in zwei unabhéngi-
gen Teilaufgaben: Zunichst wurde ein Pfad fiir die mobile Plattform gesucht, um dann
in ndchster Néhe eines Zielobjektes die eigentlich Manipulationsaufgabe des Roboter-
arms zu planen. Folgende Arbeiten versuchten die beiden Teilprobleme immer enger zu
koppeln, bis schliefilich erste Planer leistungsfdahig genug waren, um alle Freiheitsgrade
gleichzeitig zu berticksichtigen und zu planen.

Die Ansétze folgten zundchst dem klassischen deliberativen Sense-Plan-Act-Zyklus|einer
NASREM Architektur [35] und konnten einmal berechnete Plane nur sehr eingeschrankt
an neu gewonnene Umweltinformationen anpassen. Bedingt durch die Planung in einem
hochdimensionalen Zustandsraum mit zahlreichen Randbedingungen und iiber grofie-
re Distanzen hinweg, lagen zwischen dem Eintreffen eines Auftrages und dem Start der
Ausfiihrung durch den Roboter lange Stillstandszeiten. Wurde dann wéahrend der Aus-
fiihrung ein Problem festgestellt, musste der Roboter gestoppt werden und der Planungs-
prozess begann von neuem. Ein Paradigmenwechsel zur reaktiven Robotik l6ste dieses
Problem auf lokaler Ebene in der direkten Umgebung des Roboters. Eine globale Pla-
nung war damit jedoch nicht mehr moglich, was in komplexeren Problemstellungen zu
inkonsistenten Entscheidungen und damit zum Scheitern fiithren konnte. Daher finden
sich in modernen Systemen meist Kombinationen aus globalen Planern mit reaktiven
Komponenten, die bei der Ausfithrung in gewissem MafSe von einer geplanten Trajekto-
rie abweichen konnen, um Hindernissen auszuweichen (Elastic Bands and Strips [165,52]).
Zur Verkiirzung der Berechnungszeiten verflechten neuere Ansitze Planungs- und Aus-
fithrungsvorgange (Interleaved Planning and Execution [153]). Dartiber hinaus existieren
Planer, welche ihre Ziele und Zwischenziele abstrakter und somit variabler definieren
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2. Stand der Technik

(Task-Space-Regions [45]) konnen, was zur Ausfiihrungszeit mehr Spielraum zur Anpas-
sung eines Planes lésst. stellt die wichtigsten Klassen von Planungsalgorith-
men ausfiihrlicher vor. Alle Verfahren profitieren von einer immer weiter gesteigerten
Rechenkapazitit und erlauben somit die Losung komplexer Planungsprobleme zur Aus-
fithrungszeit. Auch die vorliegende Arbeit nutzt moderne parallele Hardware in Form
von und hat sich zum Ziel gesetzt, die Planung global konsistenter Losungen so
weit zu beschleunigen, dass in vielen Szenarien auf eine reaktive Komponente verzichtet
werden kann. Dabei nimmt die Umweltmodellierung und die darauf aufbauende Kolli-
sionspriifung eine Schliisselfunktion ein.

Erste Kollisionspriifungen fiir den 3D-Raum basierten auf einer Diskretisierung des Ar-
beitsraumvolumens in gleichméfiige wiirfelformige Abschnitte, so genannte Voxel. Diese
fanden seit den 80er Jahren einen Einsatz fiir die grafische Darstellung von Volumenob-
jekten, insbesondere fiir Bildgebende Verfahren der Medizin. Vorreiter war hier Kauf-
man und Bakalash [111} [112]. Bereits 1989 konnte eine hardwarebeschleunigte Echtzeit-
Kollisionsdetektion auf Basis von Voxeln durch Duffy et al. [72] umgesetzt werden. Be-
legen in einer Voxelreprasentation mehrere Entititen denselben Voxel, so liegt eine Kol-
lision zwischen ihnen vor [105]. Fiir Planungsaufgaben konnten dariiber hinaus Poten-
tialfelder um belegte Voxel erzeugt werden, die einen Sicherheitsabstand fiir Agenten
definierten. So war Kitamura bereits 1995 in der Lage, eine Trajektorie fiir einen beliebig
geformten Roboter durch eine 3D-Umgebung zu berechnen [120].

Aufkommende Anforderungen nach realistischeren Kollisionstests, die auch die physi-
kalische Interaktion von Modellen simulieren konnten, verdrangten ab 1990 die Voxel-
verfahren. Hierfiir wurde auf eine Oberflichennetz-Modellierung von Objekten mittels
Dreiecken zuriickgegriffen, wie sie aus der Computergrafik bekannt war. Um dabei nicht
jedes einzelne Dreieck berticksichtigen zu miissen, wurden die Modelle zusétzlich in
Hiillkorper-Geometrien eingeschlossen, die als geschlossener mathematischer Ausdruck
darstellbar sind. Somit ldsst sich schnell berechnen, ob sich diese einfachen geometri-
schen Primitive {iberlappen und somit eine potenzielle Kollision vorliegt. Nur in die-
sem Fall sind alle Dreiecke innerhalb des Primitivs detailliert zu tiberpriifen. Werden
mehrere Ebenen dieser Diskretisierung ineinander geschachtelt, spricht man von
iding-Volume-Hierarchies (BVHs), An diesen Techniken dnderte sich tiber mehrere Jah-
re nichts grundlegendes, allerdings konnten sie extrem beschleunigt werden, indem sie
teilweise auf portiert wurde. Durch die Verfiigbarkeit dieser leistungsfihigen
Parallelprozessoren entstanden viele Arbeiten auf dem Gebiet der Kollisionserkennung,
die in [Kapitel 6| detaillierter vorgestellt werden. Die meisten dieser Verfahren sind jedoch
nicht darauf ausgelegt, Punktwolken aus 3D-Kameras zu verarbeiten. Um dennoch mit
Sensordaten arbeiten zu konnen, ist es ein verbreiteter Ansatz, die Messpunkte mit ho-
hem Aufwand zu triangulieren und das entstehende Oberflichennetz genau wie andere,
a priori bekannte, Modelle handzuhaben. Dies schriankt die erreichbare Wiederholungs-
rate der Kollisionspriifung bzw. den Detailgrad ihrer Modelle ein und erfordert starke
Pramissen fiir den Umgang mit Verschattungen und Sichtkanten. Einen probabilistische
Umsetzung, bei der die Durchdringung zweier Punktwolken als Klassifikationsproblem
modelliert wird, verfolgt die FCL Kollisionserkennungsbibliothek [157].

Die Verbindung von Punktwolkendaten mit kubischen Volumen in Form des Voxmap-
Pointshell Algorithmus von McNeely [142] stellt 1999 ein erstes Revival der Voxeltech-
nologien dar. Seine Losung, die zunéchst fiir ein haptisches Rendering von CAD Da-
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ten entwickelt wurde, konnte ab 2007 auch teilweise in die Robotik iibertragen wer-
den [171] 177]. Das Verfahren erlaubt schnelle und vor allem zeitkonstante Kollisions-
priifungsintervalle, womit im Gegensatz zu Dreiecksnetz-Modellen eine Echtzeitfahig-
keit nachweisbar ist.

Auch in der Welt der Spiele wurden Voxel ab 2008 wieder ein populdres Thema, nachdem
id-Software erste Techologiedemonstrationen seiner Voxelengine veroffentlichte [155],
die eine verformbare Umwelt erlaubte. Aufgrund technischer Herausforderungen dau-
erte es jedoch bis 2016, bis das erste erfolgreiche Spiel (DOOM) mit einer Voxel-Engine
(id tech 6) vermarktet wurde.

Um das stark eingeschrdnkte reprdsentierbare Arbeitsvolumen von Voxelkarten zu er-
weitern, folgten viele Arbeiten, die sich auf die Datenstruktur des Octree stiitzten. Wich-
tigster Vertreter einer Octree-basierten Punktwolkenverarbeitung auf der
[cessing Unit (CPU)|ist die OctoMap Bibliothek [104], die jedoch nur zweitrangig fiir eine
Kollisionsdetektion nutzbar ist [103] 95].

Andere aktuelle Arbeiten im Bereich der Robotik, die ebenfalls das Ziel eines reaktiven
Verhaltens auf Basis von Sensordaten verfolgen, sind optimierende Ansétze. Hierbei ma-
ximieren Flacco et al. in [80] oder Kaldestad et al. in die Distanzen dynamischen
Hindernismessungen aus Tiefensensoren (siehe [Abb. 2.1).

Abb. 2.1.: Reaktives Verhalten zur Vermeidung von Kollisionen: Der Roboter weicht dem
Menschen aus. Bild aus [109].

Andererseits gibt es Ansitze, die direkt vergleichbar mit der vorliegenden Arbeit sind
und auf einer schnellen Kollisionsdetektion basieren. So beschreibt Gibson in [87] eine
Voxel-Kollisionsdetektion, die pro Voxelkarte zwei Datenstrukturen nutzt: Zum einen
ein Feld aus Zeigern, die entweder Null sind (freier Raum), oder auf einen Voxel in ei-
nem weiteren Feld aus Voxel-Nutzdaten zeigen. Somit miissen bei einer Kollisionsprii-
fung lediglich Priifungen auf Null durchgefiihrt werden, wahrend Voxel dennoch belie-
big komplizierte Nutzdaten speichern konnen. Diese Implementierung ist auf der GPU
nicht zielfiihrend, da der Nutzdatenspeicher dynamisch verwaltet werden muss.

Grundlegende Ubereinstimmungen bestehen auch mit den Arbeiten von He und Kauf-
mann [98]], die ebenfalls volumetrische Repréisentationen von Umwelt und Roboter in
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2. Stand der Technik

Form von Kugelbaumen nutzen, um dartiiber Distanzfelder zu erzeugen und hierarchi-
sche Kollisionstests durchfiihren. Von besonderem Interesse sind weiterhin Arbeiten, die
GPUs zur parallelen Verarbeitung von Sensordaten nutzen, da diese bei grofieren Einga-
bedaten seriellen Ansdtzen weit iiberlegen sind. Bedkowski et al. haben dies in [47] fiir
typische Aufgaben wie Normalen- oder Histogrammberechnung bereits gezeigt. Abgese-
hen davon existiert umfangreiche theoretische und praktische Arbeit im Bereich hetero-
gener Parallelverarbeitung [58]], die bisher hauptséchlich in den Gebieten der Computer-
grafik und des Machine Learnings eingesetzt wird, jedoch selten in der Robotik verwen-
det wird. Hier schldgt diese Arbeit eine Briicke und verbindet typische Vorgehensweisen
der robotischen Pfadplanung mit moderner Parallelisierung.

Nur sehr wenige der vorgestellten Verfahren befinden sich im kommerziellen Einsatz.
Verfiigbare Losungen sind die interaktive Anzeige von Daten bildgebender Verfahren in
der Medizin, das Rendern fotorealistischer Szenarien in der Computergrafik, die Monta-
geplanung in CAD Programmen oder Computerspiele. Bei allen handelt es sich jedoch
um rein virtuelle Anwendungen. Nach aktuellem Kenntnisstand des Autors existieren
keine industriellen Anwendungen, bei denen Voxel- oder GPU-Techniken mit live 3D-
Daten aus Sensoren verbunden werden. Begriindet wird dies meist mit dem Fehlen von
sicherheitszertifizierten 3D-Kameras, auch wenn diese bereits seit langem auf der Agen-
da vieler Anbieter von Sicherheitstechnik stehen. Roboterhersteller hingegen planen be-
reits, ihre Steuerungen mit GPUs auszustatten, wobei diese eher zur Ausfiihrung und
zum Training neuronaler Netze dienen sollen.

Neben diesem groben Uberblick iiber den Stand der Technik, der sich weitgehend in die
Taxonomie aus gliedern ladsst, gehen auch die einzelnen Kapitel jeweils detail-
lierter auf verwandte Arbeiten ein.
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3. Heterogene Parallelverarbeitung

Memory Contr

Kontrolll | [ ALY || ALY —
Logik |1 ALy || ALU -
Cache Speicher —
Cl
RAM —— RAM
Schema
CPU GPU
Bezeichnung Intel Core i7 Broadwell Nvidia GP104 Pascal
Rechenkerne 4 2560
Max. Threads 8 2048
Rechenleistung ~ 220 GFlops SP: 8,873, DP: 277 GFlops
Takt 2,9GHz 1,607 GHz
L2 Chache 4 x 256 kb 2048 kb
Transistoren ~ 1,8 Mrd. (ohne GPU) 7,2 Mrd.
Die Grofse ~ 123 mm? (ohne GPU) 314 mm?
Strukturgrofse 14nm 16nm
Abwidrme 47 Watt 150 Watt

Tab. 3.1.: Vergleich einiger technischer Daten einer aktuellen CPU und GPUEl

Nachdem {iber Jahrzehnte die Berechnungsleistung von Prozessoren durch hohere Takt-

1Bildquellen: http://hothardware.com und https://www.flickr.com/photos/130561288@

N04/29111683364/,

Technische Daten: https://www.microway.com/, https://en.wikichip.org/, https://de.

wikipedia.org/wiki/Nvidia-Geforce-10-Serie
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3. Heterogene Parallelverarbeitung

frequenzen, Befehlssatzerweiterungen, optimierte Caching-Taktiken und erweiterte Sprung-
vorhersagen verbessert wurde, war 2005 eine weitere Steigerung 6konomisch nicht mehr
vertretbar. Ab diesem Moment hielten Mehrkern-Prozessoren Einzug in Workstations
und PCs, um dem Abwiarmeproblem bei gleichzeitiger Durchsatzsteigerung zu begeg-
nen. Somit war Parallelverarbeitung nicht mehr nur im [High-Performance Computing]
[(HPC)}Bereich anzutreffen, sondern auch in Einzelplatzcomputern.

Bereits seit einigen Jahren zuvor wuchs die Leistungsfahigkeit und der Befehlssatz von
Grafikprozessoren, so dass deren Shader-Einheiten immer mehr Funktionen der
tibernehmen konnten. Ab ca. 2001 wurden dann erstmals auch fiir nicht-grafische
Aufgaben genutzt, die stark parallelisierbar ablaufen konnen (z.B. Matrix-Multiplikatio-
nen). Um den Aufwand der dafiir benotigten Shader-Programmierung in OpenGL zu re-
duzieren, entwickelte Nvidia sein proprietdres CUDA Frameworkﬂ dessen erste Version
im Juni 2007 freigegeben wurde. Im Dezember 2008 folgte dann das von einem Konsorti-
um spezifizierte, offene und freie OpenCLﬂ welches auch auf nicht-Nvidia Grafikkarten
ausfiihrbar ist.

Seit diesem Zeitpunkt steigt die Relevanz der heterogenen Datenverarbeitung kontinuier-
lich, da sie die Vorteile von [CPUs| und [GPUs| kombiniert, die in in Zahlen ge-
fasst sind. Sehr unterschiedliche Anwendungsbereiche (Finanzwesen, Wetter-Vorhersa-
ge [145], geologische Simulationen [34], usw.) profitieren von dieser Entwicklung. Einer
breiten Offentlichkeit ist GPU-fokussierte Datenverarbeitung spétestens seit dem Einsatz
neuronaler Netze bekannt, welche medienwirksam durch GO-Spiele [188] oder Google’s
Deep-Dream [140] vermarktet werden.

Auch die vorliegende Arbeit stiitzt sich auf die Parallelverarbeitung als eine ihrer Kern-
technologie. Dieses Kapitel stellt daher Prinzipien aktueller Hard- und Software vor und
fiihrt grundlegende Begriffe ein, bevor dann Paradigmen der Programmierung von|GPUs|

vorgestellt werden, die auch in ([GPU-Voxels| verfolgt wurden.

3.1. Grundlagen

Parallelisierung geschieht auf zwei Ebenen: Ein Problem muss einerseits so auf Algorith-
men abgebildet werden, dass seine Teilprobleme gleichzeitig bearbeitet und spater zu ei-
ner konsistenten Losung zusammengefiihrt werden konnen. Andererseits muss Hardwa-
re zur Verfiigung stehen, die die Teilaufgaben nicht nur parallel abarbeiten kann, sondern
auch Funktionen zur Kommunikation und Synchronisation der einzelnen Recheneinhei-
ten zur Verfiigung stellt, um die Arbeit zu koordinieren. Zur Bewertung unterschiedli-
cher Hard- und Software-Kombinationen, die im Folgenden betrachtet werden, dienen
folgende Metriken:

3.1.1. Flynn’s Taxonomie

Die Informatik teilt die vielfdltigen Hardwarearchitekturen zur Datenverarbeitung in
Flynn’s Taxonomie [81] ein:

CUDA: https://developer.nvidia.com/about-cuda
*OpenCL: https://www.khronos.org/opencl/
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3.1. Grundlagen

Definition 6. Die Leistung einer Berechnungsarchitektur bestimmt sich tiber
drei Kriterien: Bandbreite (Datenmenge pro Zeit), Durchsatz (Berechnungen
pro Zeit) und Latenz (Zeitdauer vom Start bis zum Ende einer Berechnung).
Die Relevanz der einzelnen Kriterien unterscheidet sich je nach Problemstel-
lung.

Single Instruction, Single Data stream (SISD) Dies beschreibt die klassische Arbeits-
weise von Computern mit einem Einkern-Prozessor, die nach der Von-Neumann-
oder der Harvard-Architektur aufgebaut sind. Um Daten aus einem Vektor der Lan-
ge n zu verarbeiten, muss hierbei sequenziell n mal auf den Speicher zugegriffen
und n Instruktionen miissen geladen werden, um n Berechnungsschritte auszufiih-
ren.

Single Instruction, Multiple Data streams (SIMD) Computer mit Vektorprozessoren sind
in der Lage, dieselbe Instruktion gleichzeitig auf m Daten anzuwenden. Stellt ein
Speicherzugriff m Daten zur Verfiigung, konnen diese also in einem einzelnen Be-
rechnungsschritt abgearbeitet werden. Moderne Desktop-Prozessoren enthalten ne-
ben einer SISD Berechnungseinheit oft weitere SIMD Einheiten um spezielle Ope-
rationen datenparallel und somit effizienter abzuarbeiten.

Multiple Instruction, Single Data stream (MISD) Hierbei werden unterschiedliche Ope-
rationen innerhalb eines Berechnungsschritts auf ein Datum angewendet. In der
Praxis ist dies, aufier bei redundant ausgelegten Pipeline-Computern, selten anzu-
treffen.

Multiple Instruction, Multiple Data streams (MIMD) Es konnen gleichzeitig unterschied-
liche Operationen auf mehrere Datenstrome angewendet werden. Dies wird meist
durch die Kopplung mehrerer Prozessoren oder Prozessorkerne erreicht. Moder-
ne Desktop-Prozessoren fallen in diese Kategorie, da sie simultan mit mehreren
Threads rechnen konnen, wahrend sich die Threads tiber einen geteilten Speicher
synchronisieren und Informationen austauschen.

Die Parallelisierung bei der MIMD Ausfiihrung kann weiter unterschieden werden:

Single Program, Multiple Data (SPMD) Um grofle Datenmengen parallel mit demsel-
ben Algorithmus zu verarbeiten, kann dieser mehrfach auf unterschiedliche Teil-
mengen der Daten angewendet werden. Derselbe Algorithmus lduft dabei (im Ge-
gensatz zu SIMD) auf mehreren autonomen Berechnungseinheiten. Diese Art der
Parallelisierung ist bei der Nutzung von Mehrkernprozessoren sehr stark verbreitet
und stellt bspw. die Grundlage von |Open Multi-Processing Library (OpenMP)|*| dar.

Multiple Program, Multiple Data (MPMD) Hier ist die Kopplung der Recheneinheiten
noch losgeloster, da unterschiedliche Algorithmen auf unterschiedliche Daten an-
gewendet werden. Dies ist der Fall, wenn bei verteiltem Rechnen eine Manage-
ment-Entitit die eigentlichen Berechnungen koordiniert an weitere Prozessoren aus-
lagert und ihre Ergebnisse sammelt.

4OpenMP ist ein lApplication Programming Interface (API)I fur die einfache parallele Programmierung mit-
tels geteiltem Speicher in C / C++ und Fortran: http: //www.openmp.org/
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In Flynn’s Taxonomie wéren m zwischen SIMD und MIMD einzuordnen, da die
Shader-Recheneinheiten zwar zunichst alle dieselben Instruktionen laden (Kernel-Co-
de) und diese nach dem SPDM-Prinzip auf unterschiedliche Daten anwenden. Jedoch
konnen Threads dann zur Laufzeit individuelle Entscheidungen in den Programmver-
zweigungen treffen. Nvidia ordnet daher seine Hardwarearchitektur nicht direkt in die-
ses Schema ein, sondern pragt den Begriff SIMT [154], der wie folgt definiert ist:

Definition 7. Die Hardwarearchitektur einer GPU arbeitet nach dem Sin-
gle Instruction, Multiple Threads (SIMT) Prinzip. Der Name verdeutlicht,
dass einem Programmierer trotz paralleler Logik samtliche Optionen der Pro-
grammverzweigung zur Verfiigung stehen (im Gegensatz zu SIMD). Aller-
dings geschieht im Gegensatz zu MIMD eine pro Thread individuell ablau-
fende Programmausfithrung auf Kosten der Laufzeit (vgl.[Abb. 3.5).

3.1.2. Parallelisierung auf Aufgaben- und Datenbasis

Einer der Griinde fiir die Vielzahl an Klassen in Flynn’s Taxonomie ist der Unterschied
in den Anforderungen, die verschiedene Problemklassen an die Hardware stellen. Hier
kann zwischen Aufgaben- und Datenparallelisierung unterschieden werden. Im einen Fall
sind viele unabhidngige Aufgaben auszufiihren, die somit parallel auf verschiedenen Re-
cheneinheiten ablaufen konnen. Da dabei jede Einheit sequentiell arbeitet, bieten sich
MPMD Architekturen an. Im anderen Fall sind nur wenige Aufgaben auf einer grofsen
Menge an Daten anzuwenden. Die Parallelisierung erstreckt sich somit tiber die Daten
und eine SIMD Architektur ist von Vorteil.

Feststellung 1. eignen sich vorrangig fiir datenparallele Aufgaben.
Ihre Berechnungseinheiten sind im Vergleich zu wesentlich leichtge-
wichtiger aufgebaut, und somit nicht auf die Optimierung von komplexen
Kontrollfliissen (keine Sprungvorhersage) ausgelegt, sondern auf eine hohe
Bandbreite bei einfacher Kontrolllogik. CPUs hingegen unterstiitzen einen
komplexen, unvorhersehbaren aber sequentiellen Kontrollfluss. Sie weisen
kiirzere Latenzen und hoheren Durchsatz auf.

Die Aufteilung der Daten auf parallel laufende Prozesse muss zum Speicherinterface der
Hardware passen und ist somit entscheidend fiir die Bandbreite eines Algorithmus. Un-
terschiedliche Muster und Granularititen der Partitionierung sind in[Abb. 3.1|dargestellt.
Zu sehen sind zyklische Muster (jeder Prozess bearbeitet mehrere, weit verteilte Daten)
und blockweise Muster (jeder Prozess bearbeitet einen zusammenhédngenden Bereich im
Speicher). Weist eine Problemstellung hohe Datenlokalitdt auf, ist es von Vorteil, diese
Daten kompakt im Speicher abzulegen, um ein gutes Caching Verhalten zu erreichen.
Diese Problematik wird in[Unterabschnitt 3.2.3|detailliert beschrieben.

3.1.3. Programmsynchronisation: Daten- und Ressourcenabhangigkeit

Losgelost von der verwendeten Hardware ist die Parallelisierbarkeit eines Problems zu-
néchst durch seine interne Datenabhingigkeit bestimmt. So gibt es in jedem Programm Be-
rechnungen, die von den Ergebnissen vorheriger Schritte abhdngig sind und daher nicht
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Abb. 3.1.: Unterschiedliche Moglichkeiten, ein Datenfeld aus 20 Eintrdgen mit vier Pro-
zessen (farblich gekennzeichnet) zu bearbeiten. Da auf einer GPU die Threads
eines Blocks gleich lang laufen, entsteht bei einigen Aufteilungen ein Leerlauf
einzelner Threads.

parallel zu diesen ausfiihrbar sind (siehe[Abb. 3.2). Auch kleinste Operationen konnen ei-
ne Abhéngigkeit bedeuten: Sollen beispielsweise mehrere Prozesse einen gemeinsamen
Ergebniszadhler inkrementieren, kann dies nicht gleichzeitig geschehen. Solche Punkte in
der Berechnungslogik zu identifizieren ist eine Voraussetzung fiir die Parallelisierung
der unabhingigen Programmteile.

Ahnlich verhilt es sich mit Ressourcenabhingigkeiten zwischen mehreren Prozessen.
Miissen diese mit einer exklusiven Ressource arbeiten, beispielsweise dem Speicherbus,
muss der Zugriff serialisiert geschehen. Auch hier liegt es am Programmierer, das Zu-
griffsmuster moglichst so zu gestalten, dass Wartezeiten minimiert werden.

In beiden Fillen ist eine Synchronisierung unter den Prozessen unabdingbar, um kriti-
sche Wettldufe zu unterbinden und eine deterministische Ausfiihrung zu gewahrleisten.
Ihr konkreter Aufwand hidngt von der Hardwarearchitektur ab, da die Synchronisation
eine bidirektionale Kommunikation beschreibt: Ein Multiprozessor mit gemeinsam ge-
nutztem Speicher bildet die Kommunikation sehr effizient darauf ab, wahrend sich ein
verteiltes System {iber eine externe Verbindung austauschen muss. In beiden Fillen stellt
die Synchronisation jedoch eine, beziiglich der Ausfiihrungszeit, teure Operation dar, die
nur bei Notwendigkeit eingesetzt werden sollte.

3.1.4. Multithreading

Um die Wartezeiten von Threads, die aufgrund von Daten- oder Ressourcenabhingig-
keiten blockiert sind, effizient zu nutzen, greifen und auf Multithreading

zuriick. Dabei werden mehrere Prozesse abwechselnd auf der Hardware ausgefiihrt und
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Abb. 3.2.: Parallelisierung und Datenabhdngigkeit. Blaue Pfeile symbolisieren Datenab-
hiangigkeiten einzelner Programmteile.

Feststellung 2. Das Verhiltnis aus unabhédngigen und abhédngigen Programm-
anteilen entscheidet mafigeblich, ob und wieweit sich die Aufteilung eines
Problems auf mehrere parallele Prozesse rentiert. Das Amdahlsche Gesetz [36]
beschrankt dabei die maximal erreichbare Beschleunigung durch parallele
Ausfiithrung.

so eine weitere virtuelle Parallelisierungsebene oberhalb einer echt-parallelen Ausfiih-
rung geschaffen.

CPU-Threads stellen dabei komplexe Einheiten dar, deren Wechsel aufwendig ist und das
Betriebssystem hochgradig involviert. Der Aufwand zur Konsistenz-Sicherung aller Ca-
che-Hierarchien erfordert dabei einen entsprechend langwierigen Prozess. Im Gegensatz
dazu sind GPU-Threads sehr leichtgewichtig. Durch die schlanken Cache-Hierarchien
auf der GPU ist ein Wechsel sehr schnell und einfach méglich. Daher unterscheiden sich
die Strategien beider Architekturen stark: Wahrend eine auf die Verwaltung von nur
wenigen Threads (2-16) per Hardware ausgelegt ist, kann eine GPU pro Multiprozessor
tiber 1000 Threads vorhalten und bei Bedarf schnell zur Ausfiihrung bringen.

Feststellung 3. Um den Speicherbus optimal auszulasten, sollte die Auslas-
tung (Occupancy) einer GPU mit wartenden Threads wesentlich hoher ausfal-
len, als bei einer Durch schnelle Threadwechsel konnen somit Wartezei-
ten aufgrund von Ressourcenkonflikten effizient tiberdeckt werden. Faktoren,
die Zahl der Threads limitieren, sind unter anderem die begrenzte Anzahl an
Registern und die Grofse des geteilten Speichers.

3.1.5. Zusammenfassung

Bereits mit einem einzigen reguldren Computer haben Entwickler heute die Moglichkeit,
die Vorteile zweier grundlegend verschiedener Hardwarearchitekturen komfortabel zu
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kombinieren: Aktuelle konnen vier bis acht komplexe Programme parallel abar-
beiten, wobei diese untereinander {iber Interprozesskommunikation effizient synchroni-
sierbar sind und auf umfangreiche Speicherhierarchieen zugreifen konnen. Zusétzlich
stehen fiir die datenparallele Verarbeitung bereit, die mit ihrer hohen Zahl an Ver-
arbeitungseinheiten einfache Algorithmen massiv parallel ausfithren konnen. Da
und tiber einen breiten PCI Bus Daten austauschen kénnen, lassen sich die Aufga-
ben je nach ihren Anforderungsprofilen auf beide Architekturen verteilen.

Feststellung 4. Fiir das Design von effizienten Algorithmen ist eine genaue
Kenntnis tiber das Verarbeitungsprinzip der Zielhardware essentiell. Da sich
GPU und CPU in ihrer Art der Parallelisierung grundlegend unterscheiden,
konnen CPU Algorithmen, die auf SPMD Verarbeitung optimiert sind — ab-
hiangig von ihrem Datenmodell — gar nicht, oder nur mit groffem Aufwand,
zu GPU geeigneten SIMT Algorithmen portiert werden.

Auch nutzt heterogene Datenverarbeitung, indem oftmals die eigentlichen
Berechnungen auf der GPU stattfinden, die Ergebnisse jedoch erst auf der zusam-
mengefiihrt und final ausgewertet werden. Fiir die Programmierung solcher kombinier-
ter Anwendungen wird in dieser Arbeit das CUDA Framework genutzt. Dieses wird im
Folgenden in Bezug auf weitere GPU-spezifische Kriterien, die sich auf die Effizienz der
Parallelisierung auswirken, vorgestellt.

3.2. CUDA Praxis

(Compute Unified Device Architecture (CUDA)| stellt eine Reihe von Werkzeugen dar,
die es erlauben, Algorithmen fiir ein heterogenes System aus einer und einer oder
mehreren Nvidia{GP-GPUs|in unterschiedlichen Programmiersprachen zu erstellen und
auszufiihren. Dabei ist es dem Programmierer tiberlassen, welche Teile er fiir die
und welche er fiir die GPU implementiert. Die theoretisch erreichbaren Datenraten aus
und Berechnungsdurchsétze aus [Abb. 3.3| lassen vermuten, dass GPUs in da-
tenintensiven Anwendungen heutige [CPUs| um ein Vielfaches iiberbieten. Auch wenn
Lee et al. zeigen, dass vielfach reklamierte Leistungssteigerungen mehrerer Grofsenord-
nungen nicht realistisch sind, so konnen dennoch Beschleunigungen bis zu einem Faktor
von sieben erreicht werden [133]. Im Folgenden Kapitel sollen nun die Besonderheiten
beschrieben werden, die beim Design von Algorithmen zu beachten sind, um mit
ihrer Vielzahl von Rechenkernen (aktuell bis zu 2688) optimal auszulasten, um so diese
Beschleunigungen zu erreichen.

Die wichtigsten Bestandteile von CUDA sind die[AP]} die Laufzeitumgebung und der nv-
cc Compiler, die in ihrem Zusammenspiel von hardwarespezifischen Eigenschaften der
GPUs abstrahieren und die Erzeugung von portablen Programmen ermdoglichen. Dafiir
generiert der Compiler einen Meta-Code (PTX), der erst durch den Treiber in Bindr-Co-
de umgewandelt und dann ausgefiihrt wird. Ergdnzt werden diese Kernkomponenten
durch anwendungsspezifische Bibliotheken, zum Teil von Drittanbietern (bspw. Thrustﬂ

SThrust: https://thrust.github.io/
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Abb. 3.3.: Vergleich des theoretisch moglichen Durchsatzes [GFLOP/s] von Intel CPUs
und Nvidia GPUs tiber die Jahre 2003 bis 2016. Entnommen aus [154].

ArrayFireﬂ CU]{l NPFEI), die géngige Problemstellungen komfortabel abdecken.

Die Verfiigbarkeit dieser Bibliotheken, die optimale Unterstiitzung der Hardware und
die ausgereiften Optimierungswerkzeuge fiihrten fiir diese Arbeit zur Entscheidung, das
proprietdare CUDA dem offenen OpenCL vorzuziehen.

3.2.1. CUDA-Kernel

Da eine eine nicht autonom lauffihige Komponente in einem Computersystem
darstellt, spricht man von einem Device, das in einem Host-System lauft. Im weiteren Ver-
lauf werden die Begriffe Device und dquivalent verwendet, genauso wie Host
und Um Code auf der ausfiihren zu konnen, muss dieser bei in
Form eines Kernels vorliegen, der vom Host Code aufgerufen wird. Wie im Beispielco-
de in |Algorithmus 1| zu sehen, ist die Syntax eines Kernels identisch zu einer void C-
Funktion, die um das Schliisselwort __global__ bzw. _ device_  erweitert wurde.
Die tibergebenen Funktionsparameter werden beim Methodenaufruf auf die Grafikkarte
kopiert und stehen jedem Thread zur Verfiigung. Beim Aufruf muss tiber gesonderte Pa-
rameter in < ... >>-Schreibweise die Anzahl der Ausfiihrungsblocke und der Threads
pro Block angegeben werden, um durch sie den Parallelisierungsgrad zu bestimmen.
Hierzu mehr im ndchsten Abschnitt. Zudem benotigt ein Kernel Zeiger auf seine Nutz-
und Ausgabe-Datenstrukturen, um mit diesen arbeiten zu kdnnen. Uber die Block- und
Thread-IDs eines jeden Threads konnen einzelne Kernel-Instanzen unterschiedliche Da-

tenpartitionen bearbeiten (vgl.[Abb. 3.1).

(’ArrayFire: https://github.com/arrayfire/arrayfire
"CUB: http://nvlabs.github.io/cub/
SNPP: https://developer.nvidia.com/npp
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Abb. 3.4.: Vergleich der theoretisch moglichen Speicherbandbreite [GB/s] von Intel CPUs
und Nvidia GPUs tiber die Jahre 2003 bis 2016. Entnommen aus .
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Abb. 3.5.: Erhohte Laufzeit durch Divergenz der Threads eines Warps

Bedingt durch das oben beschriebene SIMT-Prinzip der Hardwarearchitektur fiithren alle
(innerhalb eines parallel ablaufenden Instanzen eines Kernels (Threads) ihre Be-
fehle synchron aus. Divergenzen im Programmfluss (siehe [Abb. 3.5), wie zum Beispiel
Threadspezifisch ausgewertete if-else-Verzweigungen, oder verschieden lange for-
Schleifen, fithren zu einer Serialisierung der Codeabschnitte und zu empfindlichen Per-
formance-Einbriichen, da Wartezeiten in den Threads entstehen, die fiir sie irrelevante
Codeabschnitte nicht ausfiihren. Verzweigungen innerhalb des Kernel-Codes sollten al-
so moglichst vermieden werden, bzw. wie durch Han und Abdelrahman in beschrie-
ben, durch iteration delaying oder branch distribution geschickt angeordnet werden.
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Algorithmus 1 Beispielkernel mit|Grid-Stride-Loops|und aufrufender Host-Code.

1 __global_

2 void VecAddition(int n, floatx A, float* B, resx C) {
3 for (int i1 = blockIdx.x * blockDim.x + threadIdx.x;
4 i < n;

5 i += blockDim.x x gridDim.x)

6 {

7 C[i] = A[i] + BI[i];

8 }

9 }

11 int main() |

12 -

13 // Kernelaufruf mit 4 * 512 Threads und 4046 Eingabe-Elementen
14 VecAddition<<<4, 512>>> (4046, A, B, C);

15

16 }

3.2.2. Grids, Blocke, Warps und Threads in CUDA

Die Ausfiihrung eines Kernels erfolgt durch eine Vielzahl an Threads, die gemeinsam
durch den Kernel-Aufruf auf dem Device gestartet werden. Eine besteht aus
mehreren Streaming-Multiprozessoren, die jeweils eine Vielzahl von Warps zu je 32 Threads
simultan mit einem geteilten Steuerwerk bearbeiten konnen. Da im Normalfall deut-
lich mehr als 32 Threads zu starten sind, lassen diese sich zur Arbeitsaufteilung und zu
Schedulingzwecken in Blicken arrangieren. Die Blocke eines Kernels bilden wiederum
ein Grid. Diese in gezeigte Hierarchie bestimmt auch die Synchronisation und
Kommunikation zwischen den Threads, da nicht alle Speicherebenen einer GPU glei-
chermaflen fiir alle Threads sichtbar sind (siehe [Tab. 3.2l und [Abb. 3.8). Jeder Block muss
somit eine unabhédngige Einheit darstellen, die fiir ihre Ausfiihrung keinen Zugriff auf
andere Blocke benétigt. Dies erlaubt die Skalierung der Parallelitdt in CUDA: Je mehr
Multiprozessoren zur Verfiigung stehen, desto mehr Blocke laufen gleichzeitig. Wah-
rend die Threads eines Blocks immer auf demselben GPU-Prozessorkern ausgefiihrt wer-
den, konnen sich die Blocke eines Grids auch tiber mehrere Prozessoren verteilen oder
sequentiell zur Ausfithrung gebracht werden. Je nach Anwendungsfall lassen sich so-
wohl Threads als auch Blocke ein-, zwei-, oder dreidimensional gestalten. So sind aktuell
iiber 30 000 Threads auf einer verwaltbar, wobei jeder Thread seine Block- und
Thread-ID kennt. Das effizienteste Verhiltnis zwischen Threads-pro-Block und Blocken-
pro-Grid ist von zahlreichen Parametern abhidngig und schwer analytisch zu bestimmen.
Daher wird die Auslastung einer GPU meist empirisch mittels konkreter Benchmarks

optimiert, wie in der Evaluation in|Abschnitt 8.1|beschrieben ist.

Weiterhin muss beim Design eines Kernels auf die im Folgenden beschriebene CUDA
Speicherhierarchie geachtet werden, um effiziente Inter-Thread und Inter-Block Kom-
munikation bzw. Synchronisation zu bewerkstelligen.

3.2.3. Speicherarchitektur

Die Speicherarchitektur einer CUDA Grafikkarte, die in [Abb. 3.8 gezeigt ist, weist, wie
auch das Host-System, eine Hierarchie auf, verfiigt aber lediglich {iber sehr einfache Ca-
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Abb. 3.6.: CUDA Kernels werden durch eine Menge von Threads ausgefiihrt, die in
(mehrdimensionalen) Blocken organisiert sind. Blocke wiederum bilden (mehr-
dimensionalen) Grids. Adaptiert nach [154].

ching-Mechanismen. Einzelne Threads arbeiten auf eigenen Registern, die in der Hard-
ware sehr schnell umschaltbar sind, wenn ein Threadwechsel durchgefiihrt wird. Weiter-
hin verfiigt jeder Thread tiber lokalen Speicher im RAM, der als Heap oder Register-Ausla-
gerung genutzt wird. Die Threads eines Blocks teilen sich einen gemeinsamen Speicher-
bereich (Shared), tiber den sie Daten austauschen konnen.

Shared Memory und Datenzugriffsmuster

Jeder Kern eines GPU-Multiprozessors verfiigt neben Caches fiir Texturen und konstan-
ten Speicher iiber einen Speicherbereich (siehe [Abb. 3.9), der von allen Threads eines
Blocks gelesen und geschrieben werden kann. Neben der Inter-Thread-Kommunikation
kann dieser auch als selbstverwalteter L1 Cache dienen, um Daten aus dem GPU-RAM
performant zu puffern. Dieser geteilte Speicher ist ein bis zu 48 kByte grofier allozierter
Bereich des L1 Caches, der jedoch zwischen allen Blocke aufgeteilt werden muss. Daher
ist bei jedem Kernelaufruf die bendtigte Grofse tiber einen Kernel-Parameter zu spezifi-
zieren. Da sich der Speicher auf 32 Speicherbdnke verteilt, miissen sich alle 32 Threads
eines (nicht eines Blocks) 32 Zugriffswege teilen, die jeweils 1 Wort breit sind.
Ein Wort entspricht 4 Bytes und fasst somit beispielsweise ein f1oat oder einen int 32.
Die zustandige Speicherbank fiir das Lesen eines Bytes B ldsst sich tiber (Addr.g mod 4)
mod 32 bestimmen. Greifen die Threads des[Warps|auf Speicherbereiche in unterschiedli-
chen Béanken zu (egal, in welcher Permutation), geschieht dies voll parallel. Wenn mehre-
re Threads dieselbe Adresse lesen, erzeugt dies einen Broad- oder Multicast und schrankt
die Parallelisierung somit nicht ein. Benotigen jedoch mehrere Threads Speicheradressen
aus derselben Bank, konnen diese nur sequentiell abgerufen werden. In diesem Fall be-
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steht ein Bank-Konflikt, der die Leistung unter Umstdnden einschrankt. Beispiele dazu
finden sich in [Abb. 3.7 Auch wenn die durch Bank-Konflikte verursachten Latenzen in
vielen Féllen durch ein Scheduling anderer Warps abgefangen werden, sollten Konflik-
te durch eine passend gewdhlte Datenanordnung, notfalls durch zuséatzliche Padding-
Bytes, vermieden werden.
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Abb. 3.7.: Zugriffsmuster auf Speicherbanke des geteilten Speichers mit 4 Byte Wortern.
Vinr: a) Linear mit Schrittgrofle 1 (keine Konflikte). b) Linear mit Schrittgro-
e 2 (zweifacher Bank-Konflikt). ¢) Linear mit Schrittgrofie 3 (keine Konflikte).
d) Randomisiert ohne Bank-Konflikte (keine Konflikte). ) Randomisiert mit
teilweisem Broadcast (keine Konflikte). Broadcast von zwei Elementen (keine
Konflikte). Entnommen aus [[154]).

Datenzugriffsmuster auf globalen Speicher

Feststellung 5. Im Vergleich zur Speicherverwaltung des Host-Systems ist ei-
ne GPU um Faktor 30-40 mal langsamer (malloc () vs. cudaMalloc () ). Die-
ser von Boyer et al. in [50] beschriebene Faktor deckt sich mit selbst durch-
gefiihrten Experimenten. Daher eignen sich dynamische Datenstrukturen nur

sehr bedingt fiir eine Portierung auf

Ein Zugriff auf den GPU RAM weist eine Latenz zwischen 200 und 400 Prozessorzyklen
auf, falls die gesuchten Werte noch nicht im Cache vorliegen. Da dies im Vergleich zu
einem Zugriff auf den geteilten Speicher (10 Zyklen Latenz) sehr teuer ist, sollten auch
hier die Zugriffsmuster optimiert werden, um die Bandbreite eines Kernels zu maximie-
ren. Entscheidend ist dafiir eine Kenntnis {iber den Nvidia Speicherbus. Dieser erlaubt
eine lineare Adressierung und tibertrégt Daten ausschliefdlich in 32 oder 128 Byte grofsen
Abschnitten (ohne / mit Caching). Benttigen Threads nur einzelne Bytes aus dem Spei-
cher, und liegen diese verteilt im RAM, so miissen dennoch fiir jeden Zugriff mindestens
32 Bytes transferiert werden, auch wenn ein Grofsteil der Daten nicht verwendet wird.
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3.2. CUDA Praxis

Greifen jedoch mehrere Threads eines auf zusammenhéingende Speicherbereiche
innerhalb eines solchen Abschnittes zu, so muss dieser nur einmal tibertragen werden.
Ein positives Beispiel fiir dieses so genannte [Memory Coalescing]ist in [Abb. 3.10|links zu
sehen. Im zweiten, ungiinstig ausgerichteten Fall rechts tritt ein Mehraufwand von 25%
bzw. 100% auf (ohne / mit Caching).

In der Praxis ist ein sequentielles Zugriffsmuster am einfachsten zu erreichen, indem
Threads mit fortlaufender ID auf aufeinander folgende Speicheradressen zugreifen, die
moglichst eng zusammen liegen und an Wort-Adressen ausgerichtet sind. Dieses Prinzip
wird in der Kernel-Programmierung durch so genannte |Grid-Stride-Loops| durchgesetzt,
deren Schrittgrofie der Anzahl an Threads pro Block entspricht (siehe |Algorithmus 1.
Dabei muss sichergestellt sein, dass bei zu breiter Parallelisierung (mehr Threads als
Daten) keine ungiiltigen Speicherzugriffe geschehen. Werden zusammengesetzte Daten-
strukturen verwendet, sind des weiteren Structures of Arrays vor einem Array of Structures
zu bevorzugen, wie die Codebeispiele in[Abschnitt A.4des Anhangs verdeutlichen.

Device: Grid

Block (0, 0) Block (1, 0)

| |

Thread (0,0)  Thread (1, 0) Thread (0,0)  Thread (1, 0)

AAl AAA AAA AAA

Host

Abb. 3.8.: Blockdiagramm der CUDA-Speicherarchitektur. Entnommen aus [154].

Textur- und konstanter Speicher

Eine GPU bietet zwei weitere Zugriffswege auf ihren RAM an, die in vielen Anwen-
dungsféllen einen hoheren Datendurchsatz und niedrigere Latenzen aufweisen, als der
kanonische Zugriff auf globalen Speicher. Dies ist zum einen ein konstanter Speicher, der
von der Host-Seite aus beschrieben und von Device-Seite lediglich gelesen wird, wo-
durch sich Cache-Inkonsistenzen beim Schreiben zugunsten der Geschwindigkeit eli-
minieren lassen. Gleiches gilt fiir den Textur-Speicher, der im Allgemeinen ebenfalls in
Kerneln nur lesbar gemappt wird. Er bietet weitere Zusatzfunktionen, wie z.B. hardwa-
rebeschleunigte Interpolation und Normalisierung zwischen Eintrdgen. Aufserdem kann
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RAM

RAM

Globaler Speicher

| Texturspeicher

| Konstanter Speicher

[ Lfkalgr Js = «[ Sppicfler | [ Lbkaldr ]« = = Speicffer ] [
o |

Mu|o]

GPU

GP

Multiprozessor Multiprozessor

Konstant Cache Konstant Cache
Textur Cache Textur Cache

Geteilter
Speicher

Abb. 3.9.: Physische Aufteilung des Speichers (grau) auf RAM und Prozessor-Speicher.
Der Datentransfer ist durch Pfeile rechts dargestellt. Es ist ersichtlich, dass der
lokale Speicher zwar Thread-lokal ist, aber im RAM liegt, wahrend nur der ge-
teilte Speicher direkt im GPU-Chip residiert. Caches sind schwarz dargestellt.

ein Zugriff auf Eintrage auflerhalb eines Textur-Arrays wieder in das Array umgeleitet
werden. Beide Zugriffsarten verlaufen gecached, wobei bei konstantem Speicher jeder
Speicherzugriff eines halben Warps eine Transaktion darstellt und somit nur effizient ist,
wenn alle Threads an derselben Adresse lesen. Die Verwendung beider Speicherspezia-
lisierungen erfordert sehr detailliertes Wissen zur Beurteilung der ZweckmafSigkeit und
einen hoheren Programmieraufwand, da ein Zugriff nur mittels Bindings moglich ist.

3.2.4. CUDA Intrinsics

Die CUDA-API stellt dem Programmierer viele Befehle zur Verfiigung, die komplexe
Funktionen hardwarenah umsetzen und dabei wesentlich effizienter ablaufen, als eine
manuelle Implementierung. Dazu zdhlen sowohl Funktionen, die innerhalb eines Warps
Ergebnisse zusammenfiihren (Voting), aber auch mathematische Funktionen (Bitcounting)
oder Synchronisationsbarrieren fiir ganze Threadbltocke. Einige Funktionsbeispiele, die

in|GPU-Voxels|konsequent eingesetzt wurden, finden sich im Anhang in{Abschnitt A.2

3.2.5. Weitere Konzepte der Parallelverarbeitung

Neben den beschriebenen, sehr hardwarenahen Optimierungstechniken, existieren auch
allgemeingiiltigere, abstraktere Programmiermuster zur Effizienzsteigerung von paralle-
len Algorithmen. So sollte es immer das Ziel sein, eine Aufgabe mit geringem Aufwand
in moglichst gleich grofie Teilaufgaben zu zerlegen, die sich in unabhidngigen Paketen
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Addresses: Addresses:
96 96

128 160 192 224 256 288 128 160 192 224 256 288
- T T T T —

AL e

Threads: 0 31 Threads: 0

Memory transactions: Uncached Cached Memory transactions: Uncached Cached
1x 32B at 128 1x 128B at 128 1x 32B at 128 1x 128B at 128
1x 32B at 160 1x 32B at 160 1x 128B at 256
1x 32B at 192 1x 32B at 192
1x 32B at 224 1x 32B at 224
1x 32B at 256
(a) Ausgerichteter Speicherzugriff (b) Nicht ausgerichteter Speicherzugriff
(sequentiell und nicht-sequentiell) (sequentiell und nicht-sequentiell)

Abb. 3.10.: Beispiel fiir den Speicherzugriff eines Warps mit und ohne Memory-Coalescing
und die benétigten Bus-Ubertragungen. Jeder Thread greift auf ein 4 Byte-
Wort zu. Grafik aus [154].

Speicher Latenz Zugriff Sichtbarkeit Lebensdauer
Global 200-400 R/W  Alle Threads + CPU  Programm
Constant 10 R Alle Threads + CPU  Programm
Texture  200-400 R Alle Threads + CPU  Programm
Local 200-400 R/W Thread Thread
Shared 10 R/W Block Block
Register 0 R/W Thread Thread

Tab. 3.2.: Ubersicht der wichtigsten Eigenschaften der unterschiedlichen Speichertypen.
Bei der Latenz von Constant Memory und Shared Memory ist keine zuverlads-
sige Angabe moglich, sondern nur eine pessimistische Abschdtzung. Daten aus
[22].

Feststellung 6. Bedingt durch die parallele Nutzung der lokalen / globa-
len Speicherbusse und die beschrankten Moglichkeiten des CUDA-Compilers
zur Zugriffsoptimierung, ist eine genaue Planung der Speicherzugriffsmuster
durch den Programmierer bei der Implementierung eines GPU-Algorithmus
von wesentlich groflerer Bedeutung, als bei einer CPU-Implementierung.

parallel bearbeiten lassen. Diese Pakete formen dann CUDA-Blocke, in welchen wieder-
um eine feingranulare Parallelisierung auf Thread-Ebene stattfindet. Hier ist dann auf-
grund der SIMT Hardwareeigenschaften eine datenparallele Verarbeitung der Schliissel,
wofiir ein genaues Verstandnis der Datenabhidngigkeiten vorliegen muss. Auf Blockebe-
ne stehen fiir eine effiziente Kommunikation und Synchronisation die genannten Intrin-
sics zur Verfiigung. Abschliefiend sind die Ergebnisse mittels Compaction bzw. Reduktion
wieder zusammenzufiihren, wobei eine Abwadgung zwischen Datentransfer und Berech-
nungsaufwand aufzustellen ist. So kann es bei hoher Komplexitit zielfithrend sein, den
letzten Schritt auf dem Host auszufiihren. Konkrete Code-Beispiele finden sich in

des Anhangs.
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3. Heterogene Parallelverarbeitung

Kontextwechsel und CUDA Streams

Host und Device stellen zwei eigenstdndige Systeme mit eigener Speicherhierarchie dar,
die untereinander ausschliefdlich tiber den PCle Bus gekoppelt sind. Da dieser Bus, vergli-
chen mit den jeweiligen Speicherhierarchien, eine vergleichsweise niedrige Dateniiber-
tragungsrate aufweist [65], empfiehlt es sich, Algorithmen zu entwerfen, die einen mog-
lichst geringen Datenaustausch zwischen[GPUJund [CPUlerfordern. Aus demselben Grund
sollte bei einem Vergleich der Berechnungszeiten unterschiedlicher GPU-Algorithmen,
wie von Gregg et al. in Where is the data? [91] angemahnt, immer angegeben werden, ob
die gemessenen Zeiten die Dateniibertragung beinhalten.

Es hat sich bewdhrt, Verarbeitungsketten zu implementieren, deren Eingabedaten ein-
malig auf das Device kopiert und dort bei ihrer Verarbeitung entsprechend verandert
werden. Lediglich das Endergebnis sollte zuriick auf den Host kopiert werden miissen.
Techniken, wie Unified Memory oder Thrust’s Zuweisungsoperator, verbergen den noti-
gen Speichertransfer vor dem Programmierer und verleiten so zu einem feingranularen
Kopieren von Daten, was jedoch zu Lasten der Laufzeit geht.

Aktuelle[GP-GPU|Generationen erlauben noch eine weitere Stufe der Parallelisierung, in-
dem Operationen auf so genannten CUDA-Streams aufgeteilt werden. Unter bestimmten
Umstdnden sind diese gleichzeitig ausfiihrbar, zum Beispiel wenn ein Stream ausschlief3-
lich Kernel mit Berechnungen auf einem Teil des GPU-Speichers ausfiihrt, wiahrend ein
zweiter Stream Daten in oder aus einem anderen GPU-Speicherbereich von oder auf den
Host kopiert. CUDA-Streams kommen in dieser Arbeit nicht zum Einsatz, stellen aber
eine potentielle Leistungssteigerung dar, wenn unterschiedliche Voxelkarten aus unter-
schiedlichen Datenquellen befiillt werden.

Abgesehen vom Datenaustausch geschieht jedoch auch das Starten eines Kernels auf dem
Device nicht latenzfrei. Daher ist unabhédngig von der Verwendung von Streams bei jeder
Operation abzuwiegen, ob der zusdtzliche Aufwand fiir einen Kontextwechsel gerecht-
fertigt ist, oder ob die Aufgabe nicht in kiirzerer Zeit direkt auf dem Host ausfiihrbar
ist.

Lastbalancierung

Bei einigen Aufgabentypen ist der Berechnungsaufwand einzelner Arbeitspakete im Vor-
feld nicht bestimmbar, wodurch eine gleichméfige Aufteilung auf CUDA nicht
gewdhrleistet werden kann. In solchen Féllen ist es zur Laufzeit wichtig, zyklisch oder
anhand eines Kriteriums zur Auslastungsbestimmung eine Neuverteilung der Aufgaben
durchzufiihren, um brachliegende Rechenkerne zu vermeiden. Dieses Prinzip der Last-
balancierung wurde beispielsweise von Steinberger et al. im Whippletree Load-Balancer
generisch implementiert [190]. Auch die GPU Kollisionspriifung gProximity setzt Lastba-
lancierung ein [130]. Der dort verwendete Ansatz inspirierte die Octree-Implementierung
dieser Arbeit, wurde dabei jedoch um eine probabilistische Komponente erweitert, die
zum Ziel hat, Threads mit dhnlichen Laufzeiten in Blocken zusammenzufassen. Dafiir
nutzt sie eine Bewertungsfunktion, die auf die auszufiihrenden Arbeitselemente ange-
wendet wird. Details dazu finden sich in [Abschnitt 5.5.2 Weitere Arbeiten zum Thema
stammen aus dem High-Performance-Computing Bereich (Chen et al. [57]) und skalieren
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das Prinzip auch tiber mehrere GPUs [169]. Vergleichbar ist auch das Work Stealing von
Cederman et al. aus [55].

3.3. Fazit

Das Kapitel stellte die heterogene Parallelverabeitung mit CUDA auf Basis von [GPUs|
und vor. Verbreitete Konzepte wurden beschrieben und praktisch motiviert. Dabei
wurde deutlich, dass fiir eine effiziente Umsetzung von parallelen Algorithmen sehr ge-
naue Kenntnisse iiber die Datenabhidngigkeiten innerhalb der Problemstellung, als auch
tiber die Zielhardware nétig sind. So wurde die Entscheidung, welche Algorithmen fiir
welche Zielplattform umgesetzt werden, vorrangig anhand der benotigten Dynamik ih-
rer Datenstrukturen getroffen. Planungsverfahren, die zur Laufzeit Graphen aufbauen
und regelmiflig umorganisieren, residieren auf dem Host, wahrend bspw. die Sensorda-
tenvorverarbeitung mit konstanter Nutzdatengrofle auf der GPU stattfindet. Die gesam-
melten Erkenntnisse werden in den folgenden Kapiteln fiir die Implementierung von

GPU-Voxels/herangezogen.
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4. Perzeption und Modellierung

Um sich in einer verdnderlichen Umwelt zurechtzufinden, wird die Fahigkeit zur Wahr-
nehmung des Umfelds benétigt. Der Mensch kombiniert hierfiir unterbewusst und in-
tuitiv seine sechs Sinne. In der Robotik stehen dagegen meist nur wenige und wesent-
lich eingeschridnktere ,Sinne” zur Verfiigung, ebenso ist ihre Fusion (noch) nicht selbst-
verstandlich. Da die entwickelten Techniken zur Kollisionserkennung auf visuellen Da-
ten beruhen, beschrankt sich auch diese Arbeit auf die visuelle Perzeption der Umwelt.
Im Hinblick darauf beleuchtet dieses Kapitel daher zunédchst passende Sensoren, bevor
dann unterschiedliche Umwelt- und Egomodellierungen analysiert werden. Abschlie-
flend wird ein Verfahren zur Bewegungspradiktion sowie eine Simulation zur Generie-
rung von Punktwolkendaten vorgestellt.

4.1. Visuelle Sensorik

1) Microsoft 2) LEAP 3) SR300 Intel 4) PMDTech 5) PMDTech

Kinect 2 LeapMotion RealSense CamBoard CamBoard
Nano Pico XS
PMD Stereo Structured Light PMD PMD
Volume: Volume: Volume: Volume: Volume:
~1100 cm?® ~25.0 cm? ~4.5 cm3 ~27.75 cm? ~2.18 cm3

Abb. 4.1.: Vergleich des Funktionsprinzips und des Bauraumes unterschiedlicher Tiefen-
kameras. Bild veroffentlicht in [8]].

Sensoren dienen im Allgemeinen dazu, eine physikalische Grofle in ein elektrisch mess-
bares und interpretierbares Signal umzuwandeln. Dabei wird zwischen externe und inter-
nen Sensoren unterschieden. Erstere ermoglichen es einem Roboter, seine Umwelt wahr-
zunehmen. Im Gegensatz dazu dienen internen Sensoren zur Erfassung des Roboterzu-
standes, beispielsweise seiner Gelenkwinkel. Sie spielen eine Rolle bei der Aktualisierung
des weiter unten beschriebenen Robotermodells und werden hier nicht ndher betrachtet.
Der Fokus liegt dagegen auf visuellen Sensoren, da diese beriihrungslos messen und ei-
ne grofie Bandbreite und Datenvolumen an Informationen bereitstellen konnen. Anderen
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Messprinzipien, wie z.B. akustische oder taktile Sensoren, eignen sich nur in Sonderfallen
tiir die Kollisionserkennung, da sie entweder eine zu geringe ortliche Auflésung aufwei-
sen oder nicht alle relevanten Hindernisse detektieren kénnen.

Klassische visuelle Sensoren sind Intensititskameras (Graustufen- oder Farbkameras),
deren Daten sich durch vielfiltige Verfahren interpretieren lassen, um beispielsweise
Gegenstinde oder Personen zu klassifizieren. Bedingt durch das Messprinzip, das ei-
ne Projektion auf eine Bildebene erfordert, sind diese Kameras jedoch nicht in der Lage,
Tiefeninformationen der erfassten Szene zu messen. Da sich diese Arbeit jedoch mit der
Kollisionserkennung im 3D-Raum befasst, werden folglich Sensoren benotigt, welche Di-
stanzen messbar machen. Hierbei unterscheidet man zwischen passiven und aktiven Sen-
soren, je nachdem ob zusitzliche Energie emittiert wird oder der Sensor ausschliefslich
mit Umgebungslicht arbeitet.

Eine Klasse von aktiven Tiefensensoren bildet LIDAR (Light Detection And Ranging):
Hier tastet ein einzelner Laserstrahl die Umgebung ab, indem er mittels mechanischer
Vorrichtungen um zwei Achsen rotiert wird. Die Laufzeit, des von den Oberfldchen zu-
riickgeworfenen Lichtes, kann gemessen und somit die Distanz bestimmt werden. Be-
dingt durch die Abtastbewegung vergeht eine gewisse Zeit, bis die Szene vermessen
wurde (je nach Auflosung bis zu mehreren Sekunden). Daher ist LIDAR nur bedingt
fiir dynamische Szenen geeignet.

Relevanter ist hingegen die Klasse der Sensoren, die in einer einzigen Aufnahme ein
ganzes Feld aus Messwerten erzeugen. Gerdte dieser Art waren noch bis vor einigen
Jahren sehr hochpreisig und wiesen ein grofses Bauvolumen auf. Inzwischen sind jedoch
Kameras aller drei folgenden Messprinzipien in kompakter Bauweise (vgl. auch
fiir Privatanwender erschwinglich:

e Stereokameras bestehen aus zwei konventionellen, passiven Intensitdtskameras,
die nach biologischem Vorbild Punkte in der Szene triangulieren. Auch wenn beide
Kameras hochauflosende Bilder liefern, kann die Menge der vermessenen Punkte
in der Szene stark schwanken, da eine Triangulation nur mit kontrastreichen Struk-
turen in den Bildern funktioniert.

e Strukturiertes Licht aus einem Musterprojektor ersetzt hier eine der Stereokameras
und erzeugt kiinstliche Texturen (6rtliche Modulation) auf der Szene, die mit der
Kamera detektierbar sind. Aus dem bekannten Abstand zwischen Projektor und
Sensor kann auf die Distanz der erkannten Muster geschlossen werden.

e PMD Sensoren (Photonic Mixture Devices) arbeiten nach dem Time of Flight Prin-
zip. Sie senden sinusformig moduliertes Licht (zeitliche Modulation) aus und mes-
sen die Phasenverschiebung der Reflexionen. Die Sensoren sind, wie andere Kame-
ras auch, im CMOS Verfahren herstellbar.

Als Messergebnis erzeugen alle drei Kameraklassen zunédchst 10 bis 30 mal pro Sekunde
ein Tiefenbild, also eine 2D-Matrix aus Distanzwerten. Mit Hilfe der intrinsischen Ka-
librierungsparameter der Kameraoptik lassen sich daraus 3D-Punktwolken berechnen.
Anzumerken sei jedoch, dass zwar von 3D-Sensoren gesprochen wird, es sich tatsdchlich
aber um 2,5D Sensoren handelt, da die visuelle Messtechnik nicht hinter oder in Objek-
te blicken kann. Deshalb existiert keine echte bijektive Abbildung der 3D-Szene auf das
Messergebnis, da nicht jeder Punkt im Raum, der im Sichtfeld der Kamera liegt, eine
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Entsprechung in der Aufnahme findet. Somit kann ein einzelnes Tiefenbild nicht dazu
verwendet werden, das Volumen eines Objektes zu bestimmen. Weiterhin kann es durch
Verschattungen zu Diskontinuitdten in den Messdaten kommen. Beides ist in spéteren
Verarbeitungsschritten zu berticksichtigen.

4.1.1. Registrierung von Farb- und Tiefendaten

Da Tiefenbilder an sich keine Farb- oder Intensititsdaten enthalten, basieren viele Ka-
meras, die fiir den Privatgebrauch hergestellt werden, auf der Kombination eines Tiefen-
sensors mit einer konventionellen RGB-Kamera. Sie stellen also so genannte
[Blue, Depth (RGBD)}Kameras dar. Um eine Zuordnung zwischen den Tiefen- und Farb-
werten zu schaffen (siehe[Abb. 4.2), miissen beide Kameras gegeneinander kalibriert wer-
den. Da sich die beiden Sensoren auf derselben horizontalen Achse befinden, stimmen
ihre vertikalen Komponenten {iberein. Die vertikale Zuordnung von Messpunkten kann
nach wie folgt bestimmt werden:

urcs = Krap - dis <§RGB (fIR — CRGB, ERGB)) (4.1)

Hierbei steht urgp fiir die Komponente im Farbbild, die dem Pixel #jgr zugeordnet wird.
Als bekannt vorausgesetzt wird die intrinsische Kalibriermatrix I?RGB der Farbkamera,
die extrinsische Kalibrierung der Farbkamera gegeniiber der IR-Kamera iiber Rggp und
CrcB, und ihre Verzerrungsparameter ERGB. Die optische Entzerrung geschieht iiber die
Funktion dis().

Eine genaue Zuordnung der Farb- und Tiefeninformationen ist in dieser Arbeit fiir Be-

wegungs-Pradiktion aus wichtig.

(a) RGB-Bild (b) Registriertes Tiefenbild  (c) Eingefdrbte Punktwolke

Abb. 4.2.: Beispiel der Komponenten einer RGBD-Aufnahme aus [27]. Die 3D-Struktur
der Flugdrohne ist in der gegebenen Distanz nicht mehr aufzulésen. Schwarz
dargestellte Pixel reprédsentieren Stellen, an denen keine Tiefenwerte vorliegen.
In der gewdhlten Darstellungsperspektive (die nicht der Kamera-Perspektive
entspricht) sind die Abschattungen, welche aufgrund der 2,5D-Datenstruktur
entstehen, deutlich sichtbar.

4.1.2. Untersuchte Tiefenkameras

Im Folgenden sollen konkrete Kameras kurz vorgestellt werden, die in dieser Arbeit un-
tersucht und verwendet wurden. Einige der Sensoren wurden aus dem aktuellen Bedarf

37



4. Perzeption und Modellierung

Bildauflosung: 640 x 480 Tiefenmessbereich: 0,8-4m
Bildwiederholfrequenz:  ~ 30% Pixelgrofie bei 2m: 3,4 x 3,6 mm
Tiefenauflosung bei 2m: 12mm Offnungswinkel: 57° ¢ 43°7

Tab. 4.1.: Hardwarespezifikation des ersten Kinect-Modells aus [37].

heraus entwickelt, Verbraucherelektronik mit integrierter Gestenerkennung auszustat-
ten. Diese Tiefenkameras sind fiir den Nahbereich optimiert und weisen eine sehr kleine
Bauform auf. Somit eignen sie sich fiir den Einbau in oder nahe am was
z.B. in der Greifplanung von Vorteil ist, wie in [Unterabschnitt 7.2.7|beschrieben. Andere
Sensoren entstammen der Spieleindustrie, sowie der Automatisierungstechnik.

Kinect Dieser von Microsoft seit 2010 fiir den Spielemarkt vertriebene Sensor mach-
te die 3D-Datenerhebung in der Robotik zu einem Routineproblem. Es handelt sich um
eine aktive RGBD-Kamera} die mit einem Infrarot-Musterprojektor arbeitet und verhalt-
nisméfiig hoch auflosende Tiefenbilder erzeugt. Die technischen Einschréankungen (siehe
der Kinect sind in den meisten Robotikanwendungen hinnehmbar. So funktio-
niert der Sensor nicht in hellem Sonnenlicht, was ihn fiir den Einsatz im Freien unbrauch-
bar macht. Der Messbereich ist auf 0,8 m bis ca. 4m beschrdankt und bei der Nutzung
mehrerer Sensoren sollten sich deren Sichtfelder nicht tiberlappen, da die projizierten
Muster nicht kameraindividuell sind. Durch einen integrierten Prozessor (zur Weiter-
verarbeitung der Kameradaten zu einem artikulierten Skelettmodell) weist die Kamera
einen grofien Bauraum auf.

Asus Xtion Ein Nachbau der Kinect ist von Asus verfiigbar. Diese Kamera zeichnet sich
durch ihre kleine Bauform (keine komplexe Datenverarbeitung in der Kamera) und ihren
geringeren Stromverbrauch aus (siehe[Abb. 4.1). Allerdings strahlt die Infrarotlichtquelle
weniger intensiv als bei der Kinect, weshalb die maximal messbaren Distanzen nur bis
zu 3 m verlésslich sind.

Intel RealSense Intel nutzt in dieser Kamera eine neue, dem DLP-Prinzip (Digital
Light Processing) dhnliche, Projektionstechnik, bei der ein oszillierender Mikrospiegel ei-
ne Laserlinie ablenkt. Wie auch bei der Kinect wird das damit erzeugte Muster von einer
versetzt angebrachten Infrarot-Kamera aufgenommen und zu einem Tiefenbild umge-
rechnet. Der Sensor ist in zwei Ausfithrungen fiir den Nah- und Fernbereich erhiltlich.
In dieser Arbeit wurde eine RealSense SR300 fiir die Greifplanung (siehe
im Nahbereich verwendet. Der sehr kleine Sensor erzeugt 640 x 480 Bildpunkte und misst
Distanzen zwischen 0,11 und 1,2 m.

PMD Nano und Basler TOF Kamera Beide Kameras basieren auf dem oben beschrie-
benen TOF Prinzip, unterscheiden sich jedoch stark in ihrem Bauvolumen. Wéhrend die
PMD Nano nur wenige Kubikzentimeter grofs ist, misst die Basler TOF ca. 15 x 8 cm.
Bedingt durch die miniaturisierte Lichtquelle reicht der Messbereich der Nano auch nur
bis ca. 2m. Dieser ist bei der Basler TOF Kamera mit 0 m bis 13 m bei einer Auflésung von
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640 x 480 Pixeln und einer Bildrate von 20 FPS wesentlich grofier. Negativ fiel bei Tests
mit beiden Kameras allerdings ihr Signal /Rausch-Verhiltnis und eine Kissenverzerrung
der Distanzwerte auf, weshalb sie hier in Experimenten nicht eingesetzt wurden.

Leap 3D Die kleine Leap 3D-Stereo-Kamera arbeitet mit einer zusétzlichen Infrarot Be-
leuchtung und einer Fischaugen-Stereooptik. Sie wurde entwickelt, um die Finger eines
Benutzers zu detektieren und somit als alternatives Eingabegerit zu fungieren. Versuche,
die Bilder der beiden Kameras manuell zu einem Disparitdtsbild zu fusionieren, um dar-
aus Punktwolken zu berechnen, scheiterten an der intrinsischen Kalibrierung. Da diese
bedingt durch die Fischaugenoptik nicht gelang, war auch dieser Sensor nicht nutzbar.

4.1.3. Sensordatenverarbeitung

Nachdem unterschiedliche, passende Sensoren ermittelt wurden, erldutert dieser Ab-
schnitt die in gezeigte Verarbeitungskette, mit der Kameradaten in Voxel um-
gewandelt werden. Das Ausgangsmaterial, das alle verwendeten 3D-Kameras liefern,
sind Tiefenbilder, also 2D-Felder aus Distanzinformationen. Diese werden auf die GPU
kopiert, da alle weiteren Schritte sehr gut parallel ausfiihrbar sind und alle Ergebnis-
se direkt auf der GPU verbleiben konnen. Zundchst werden die Tiefenbilder als Grau-
stufenbild interpretiert, wodurch sich reguldrer Bildverarbeitungsalgorithmen als erste
Filterschritte anwenden lassen (Min/Max-, Ausreifier-, Rauschfilterung, zur Entfernung
ungiiltiger Messwerte). Die vorverarbeiteten Daten werden dann mit Hilfe der intrinsi-
schen Kameraparameter zu einer Punktwolke im 3D-Raum projiziert und tiber die extrin-
sischen Parameter in das Weltkoordinatensystem transformiert. In einem letzten Schritt
wird die Punktwolke anhand des verwendeten Voxelrasters diskretisiert und je nach ge-
nutzter Datenstruktur anhand ihres[Morton-Codes|sortiert. Zuletzt miissen dann die Vo-
xel, in welche die Messpunkte fallen, entsprechend des Voxeltyps (siehe [Abschnitt 5.T)
angepasst werden. Dieser Prozess der Voxelumwandlung wird in|Abschnitt 4.3/ noch de-
tailliert erlautert.

Die verwendeten 3D-Sensoren konnen lediglich Messpunkte auf sichtbaren Oberflichen
der Umwelt erzeugen. Basierend auf der einfachen Annahme, dass das Volumen im
Sichtkegel, der sich zwischen Sensor und den detektierten Objekten befindet, freier Raum
sein muss (da die Messung sonst nicht in ihrer Form mdoglich gewesen wire), kann den-
noch zwischen unbekanntem und freiem Raum unterschieden werden. Ein Verfahren zur
Berechnung des Freiraumes ist in [Unterabschnitt 4.3.1|dargelegt.

Externer Sensor ‘ Vorverarbeitung und Transformation ‘ ‘ Diskretisierung ‘ Applikation
\ \ [
. . . . Projektion zur N\ Transformationin . Voxel-
Tiefenbild 2D Filterkette y Punktewolke /’ Welt-Koordinaten ‘ ( Voxelgrid Datenstruktur

. Intrinsische Extrinsische
Filter Parameter
Kameraparameter Kameraparameter

Abb. 4.3.: Verarbeitungskette zur Umwandlung von Tiefenbildern in Voxel. Griin darge-
stellte Schritte laufen auf der GPU ab.
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4. Perzeption und Modellierung

4.1.4. Sensormodell

Eine exakte probabilistische Modellierung des Sensormodells der unterschiedlichen ver-
wendeten Tiefenkameras liegt aufierhalb der Moglichkeiten dieser Arbeit. Alternativ wur-
de ein sehr einfaches Sensormodell verwendet, das lediglich die Entfernung der Messun-
gen berticksichtigt. Dieses Modell ist allgemein genug, um fiir alle genutzten Klassen von
Sensoren praktikabel zu sein.

Als Rechtfertigung wurden die Untersuchungen von Khoshelham et al. [117] herange-
zogen, in denen der Kinect bescheinigt wird, dass ihr Messrauschen quadratisch mit der
gemessenen Entfernung zunimmt und bei 5m bereits 4 cm betrdgt. Weiterhin sinkt die
messbare Tiefenauflosung tiber die Distanz, so dass die Kinect am Ende ihres Messberei-
ches nur noch in 7 cm Schritten auflost. Daher wurden bei der Verwendung einer Kinect
alle Messwerte jenseits von 3 m verworfen, womit auch die zu erwartenden Fehler un-
terhalb der gingigen Voxelauflosung von 2—4 cm liegt. Ahnlich wurde bei PMD Kameras
vorgegangen, deren Messbereich noch wesentlich restriktiver eingeschrankt wurde.

Nguyen et al. stellen in [151] fest, dass auch das Messrauschen linear mit der lateralen
Distanz zur Hauptachse des Sensors zunimmt, was in dieser Arbeit jedoch nicht bertick-
sichtigt ist. Messfehler aufgrund des Winkels, unter dem eine Oberfliche vom Sensor
gesehen wird, spielen laut Nguyen erst ab 70° eine Rolle. Da noch steilere Messungen je-
doch meist direkt vom Sensor verworfen werden, wurden auch diese nicht im Sensormo-
dell beachtet. Einen absoluten Versatz der Messungen, der abhédngig von der Temperatur
der Kamera ist, stellen Choo et al. in [60] fest, weshalb sie eine 30-miniitige Aufwéarm-
phase empfehlen, bevor mit relevanten Messungen begonnen wird.

Weitere Fehlerquellen, die bei allen Sensoren beobachtet wurden, sind so genannte Jump-
Edges, die an Kanten von Objekten auftreten, hinter welchen weitere sichtbare Oberfla-
chen liegen. In diesem Fall generieren die Kameras haufig fehlerhafte Messpunkte hinter
der Kante, entlang des Sichtlinie des Sensors. Da in dieser Arbeit jedoch von bewegten
Sensoren ausgegangen wird, treten solche geisterhaften Messpunkte ortlich stark verteilt
auf. Statistisch und praktisch betrachtet, werden sie daher verldsslich von korrekten Mes-
sungen tiberschrieben.

Auch die Anfélligkeit der Sensoren gegen Fremdlicht, insbesondere Sonnenlicht ist pro-
blematisch. Sie wurde in den Versuchen durch angepasste Umgebungsbedingungen ver-
mieden.

Ausgehend von den Messdaten soll nun ein passendes Umweltmodell zu ihrer Aggrega-
tion und Weiterverarbeitung gefunden werden.

4.2. Umweltmodell

Grundlegender Bestandteil eines Robotersystems ist sein Umweltmodell. Dieses erfiillt
sehr unterschiedliche Aufgaben, von der Selbstlokalisierung, tiber die Bewegungspla-
nung, bis zur Verwaltung von detektierten Objekten. Da entsprechend vielféltige Umset-
zungen existieren, soll die folgende Taxonomie aus der Robotikvorlesung von Prof. Dill-
mann einen strukturierten Vergleich ermoglichen. Sie unterscheidet die Kategorien:
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4.2. Umweltmodell

Abstraktionsniveau: Geometrisch, topologisch, semantisch
Umweltbedingung: Statisch, dynamisch, bekannt, unbekannt
Operationsraum: 2D, 2,5D, 3D

Informationsgehalt: Pfade, Freiraum, Objekte
Anwendungsgebiet: Gemischt, strukturiert, unstrukturiert
Art der Modellierung: Exakt, approximierend

Da nicht alle Inhalte sinnvoll in einem Modell vorgehalten werden kdnnen, lassen sich
auch mehrere Modelle kombinieren, was allerdings ein Konsistenzproblem in sich birgt.
Oftmals wird ein Umweltmodell aus Sensordaten mit einem abstrakten Objektmodell aus
bekannten Entitdten und ihren Posen im Raum kombiniert. Diese Arbeit hingegen unter-
scheidet nicht zwischen zwei Modellen, sondern annotiert Objektinformationen direkt
in den zugehorigen Teilen des Umweltmodells und vermeidet so potentielle Inkonsis-
tenzen.

Einige weit verbreitete Arten der Modellierung sollen nun kurz beschrieben und in die
gegebenen Kategorien eingeordnet werden. In direktem Zusammenhang mit dem Mo-
dell stehen auch die moglichen Verfahren zur Kollisionsdetektion, auf die in[Abschnitt 6.1]
eingegangen wird. Da fiir eine Kollisionserkennung immer geometrische Modelle bens-
tigt werden, sind hier keine rein topologischen oder semantischen Ansitze bertiicksich-
tigt, wie beispielsweise Datenbanken aus abstrakten Objektinformationen.

4.2.1. Oberflachen beschreibende Modelle

Die verbreitetste Art der 3D-Modellierung stammt aus dem Bereich der Computergrafik
und beschréankt sich auf die geometrische Beschreibung von Oberfldchen. Liegt exaktes
Wissen iiber die zu modellierenden Geometrien vor, konnen ihre Flichen mittels funktio-
naler Methoden (bspw. Polynome, NURBS) reprasentiert und mit beliebiger Genauigkeit
interpretiert werden. Haufiger anzutreffen sind jedoch approximative Methoden, bei de-
nen beliebige Formen durch Polygon-Netze angendhert werden, wie in zu se-
hen ist. Die kleinsten Einheiten der Netze sind fast immer Dreiecke, da diese planar und
konvex sind, was ihre Berechnung und Darstellung vereinfacht. Ein Vorteil dieser Model-
lierung ist die hohe Speichereffizienz, die durch einen ortlich variablen Detaillierungs-
grad (Dreiecksgrofe) erreicht wird. So lassen sich innerhalb eines Modells einheitliche
Flachen mit wenig Dreiecken darstellen, wiahrend detailreiche Regionen feiner aufgelost
werden konnen. Alternativ lassen sich unterschiedlich fein strukturierte Versionen der-
selben Oberfliche erzeugen (Level of Detail, LOD), um je nach Anforderung dynamisch
zwischen diesen zu wechseln [85].

Weiterhin lassen sich Normalenvektoren bestimmen, anhand derer die Ausrichtung der
Flache definiert wird, um Unterscheidungen wie innerhalb / aufSerhalb zu ermoglichen.
Diese Oberflichennormalen sind auch zur Berechnung physikalischer Interaktion, wie
Kraftiibertragung oder Reibung, notig.

Mesh-basierte Reprasentationen sind sehr gut fiir die Darstellung von strukturierten,
a priori bekannten Modellen geeignet. Es existieren zahllose Programme zur Erzeugung
und Animierung von Oberflichen-Geometrien und fiir deren Darstellung. Sind die Mo-
delle jedoch zur Laufzeit aus Sensordaten zu rekonstruieren, miissen die Punktwolken
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4. Perzeption und Modellierung

mittels Triangulierungsverfahren wie z.b. Poisson-Meshing oder Marching-Cubes in Drei-
ecksnetze umgewandelt werden. Diese Tesselierung weist einen hohen Rechenaufwand
auf, der mit jeder Sensoraufnahme anfillt und kubisch (O(n?)) mit der Anzahl an Mess-
punkten skaliert [61]. Daher konnen selbst parallelisierte Verfahren, die auf[GP-GPUs|ab-
laufen, aktuell nur ca. 10 Mio. Punkte pro Sekunde [163] verarbeiten, was gerade der Da-
tenrate einer einzelnen Kinect-Kamera entspricht (307 200 Punkte mit 25 Hz). Da die ge-
nannten Algorithmen eine szenenabhingige Parametrierung benotigen, um Annahmen
zur Sichtbarkeit und Zusammengehorigkeit von Messungen zu treffen, kann es zu Fehl-
interpretationen kommen, die die Dreiecksnetze fiir eine Kollisionspriifung unbrauchbar
machen konnen. Weiterhin ist die Reprédsentation von Pfaden oder Bewegungen mittels
Swept-Volumen| aus Dreiecksnetzen sehr rechenaufwendig, wie in gezeigt

wird.

Der grofste Nachteil von Oberflichenmodellen liegt jedoch darin, dass Freirdume oder
unbekannte Regionen nicht oder nur sehr umstandlich darstellbar sind.

’e," Ias o

(b) Voxel- und Octree-Modell

Abb. 4.4.: Stanford Bunny in unterschiedlichen Modellierungen [185].

4.2.2. Zusammengesetzte Primitive und generative Beschreibungen

Eine andere Klasse der Modellierung nutzt parametrisierte Primitive und aus ihnen er-
zeugte Vereinigungen, um Objekte zu beschreiben. Weit verbreitet im CAD-Umfeld ist
das Constructive Solid Geometry (CSG)-Verfahren, das mittels Kugeln, Quadern oder Zy-
lindern und Operatoren wie Schnitt, Vereinigung oder Differenz auch komplexe Geome-
triene darstellen kann. Die formelbasierte Beschreibung garantiert korrekte Modelle, die
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4.2. Umweltmodell

Abb. 4.5.: Unterschiedliche 2,5D Représentationen: Vl.n.r.: Eingabedaten als 3D-Punkt-
wolke, Hohenkarte, Multi-Level-Hohenkarte. Adaptiert aus [203].

als Baumstruktur speicherbar sind. In der Robotik bietet sich CSG an, um Greifaufga-
ben zu planen. Wurden fiir alle Grundkorper passende Griffe vorberechnet, muss zur
Laufzeit lediglich eine Approximation des zu greifenden Objektes aus den bekannten
Koérpern gefunden werden, um einen Griff auszuwéhlen [74].

Einen Spezialfall stellen so genannte Superquadriken dar. Diese geometrischen Korper
werden tiber Formeln beschrieben, deren Parametrisierung die Gestalt grundlegend, aber
stetig verdndert. So kann eine einzelne Superquadrik sowohl Zylinder, Kugeln oder Qua-
der approximieren. Auch dies wird zur Greifplanung genutzt, indem Griffe definiert
werden, die sich adaptiv mit den Superquadrik Parametern verhalten. Auch hier ist zur
Laufzeit lediglich die beste Approximation des Zielobjektes durch einen Superquadrik-
Parametersatz zu finden [63].

Eine weitere Art der generativen Modellierung ist die Erzeugung von Rotationsflichen
oder Sweeps, um komplexe Oberfldchen zu beschreiben. Dafiir werden Kurven oder Vo-
lumen rotiert bzw. entlang einer weiteren Kurve verschoben, um das entstehende Inte-
gral zu generieren. Die in dieser Arbeit mehrfach eingesetzten [Swept-Volumen| folgen

einer dhnlichen Vorgehensweise. Sie sind in|{Abschnitt 4.5 erldutert.

Keines dieser Verfahren eignet sich jedoch zur Représentation von Sensordaten. Hierfiir
ware mit jeder neuen Punktwolke ein komplexes Optimierungsproblem zu lésen, das
bestimmt, welches Primitiv in welcher Parametrierung die Anordnung der Messpunkte
am besten beschreibt.

4.2.3. Raumpartitionierende Modelle

Sollen nicht nur Oberfldchen, sondern Volumendaten reprasentiert werden, bietet sich
die Nutzung von raumpartitionierenden Modellen an.

Definition 8. Eine raumpartionierende Reprisentation teilt den darzustellen-
den Raum in adressierbare, disjunkte Zellen auf, die als Container fiir sortierte
Daten dienen, oder denen Eigenschaften wie belegt / frei zugesprochen wer-
den. Die Partitionierung kann in einem gleichféormigen Schema oder flexibel
erfolgen.
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Klassische Beispiele fiir eine flexible Partitionierung im R? sind Voronoi-Diagramme, der
Binary Space Partitioning Tree [84] oder Octalbiume (Octrees) [143]. Werden die umschlie-
lenden Geometrien rekursiv zur Unterteilung genutzt, entstehen|Bounding-Volume-Hierarchies
[62]], auf welche im Zusammenhang mit der Kollisionspriifung in [Kapitel 6lnoch
genauer eingegangen wird. Weiterhin lassen sich BVHs mit Oberflichennetzen in einer
hybrider Darstellungen kombinieren, bei der Oberflichenmodelle zusatzlich in grobe
Hillkorper unterteilt werden [85].

Im Gegensatz zu einer Abtastung eines darzustellenden Volumens an diskreten Punkten,
bei der der Raum zwischen den abgetasteten Koordinaten undefiniert ist, reprasentiert
eine einzelne Zelle eines raumpartinionierenden Modells die Menge an Information in-
nerhalb des abgedeckten Teilvolumens. Entweder indem alle Daten, die in die Zelle fal-
len, in ihr gespeichert werden, oder indem alle Datenpunkte iiber ein probabilistisches
Modell miteinander verrechnet werden.

Definition 9. Ein Spezialfall der Partitionierung ist die gleichférmige Unter-
teilung eines Volumens in kubische Einheiten, so genannten Voxel (das drei-
dimensionale Pendant eines Pixels). Eine Menge aus adressierbaren Voxeln,
die ein zusammenhéngendes, quaderformiges Volumen bilden, wird in dieser
Arbeit als Voxel-Datenstruktur bezeichnet.

Diese Modellierung ist geometrischer Natur, da Voxel die Lage und Dimension von Ob-
jekten im dreidimensionalen Operationsraum beschreiben kénnen. Semantisch kann im
einfachen Fall zwischen unbekanntem, freiem und belegtem Volumen unterschieden wer-
den, im Falle von annotierten Voxeln lassen sich Volumen auch unterschiedlichen Entita-
ten zuordnen. Die Voxelmodellierung eignet sich ebenso fiir strukturierte Anwendungs-
gebiete mit Umweltinformationen, die z.B. aus geometrischen Modellen gewonnen wer-
den, als auch zur Reprasentation von Sensordaten eines unstrukturierten Gebietes, wie
bspw. der freien Natur. Weiterhin sind alle anfangs gelisteten Umweltbedingungen ab-
gedeckt, da durch annotierte Voxel auch unvollstindiges Wissen explizit modellierbar ist
und die Verarbeitungsgeschwindigkeit dynamischen Situationen des untersuchten An-
wendungsgebietes gerecht wird. Die Generierung einer Voxel-Datenstruktur aus einer
Punktwolke erfolgt sehr effizient in O(n) anhand einer Diskretisierung der einzelnen
Punktkoordinaten und der Zusammenfassung aller Messungen innerhalb einer Zelle.
Spezifische Verfahren hierzu werden in vorgestellt. Gleiches gilt auch fiir die
mehrfache Umwandlung einer bewegten Punktwolke, was zur einfachen Generierung
von [Swept-Volumen| genutzt werden kann. Der Informationsgehalt umfasst also neben
Objekten und Freiraum auch Pfade dynamischer Objekte.

Problematisch ist jedoch der Speicherverbrauch einer kanonischen Voxel-Datenstruktur,
da sie nicht nur belegte, sondern auch freie Volumen explizit reprasentiert. Daher existie-
ren zahlreiche Ansitze, die auf Kosten der Laufzeit eine Kompression der Daten durch-
fiihren. Moglich ist das Zusammenfassen gleichférmiger Volumen mittels Octrees (siehe
[Abschnitt 5.5), oder das Verwerfen von nicht relevanten Voxeln (siehe Voxellisten in

schnitt 5.4).

Eine andere verbreitete Moglichkeit ist eine Dimensionsreduktion, wie sie in zu
sehen ist. Hier werden in einer 2D-Datenstruktur lediglich eine oder mehrere Hohen-
informationen gespeichert, um die Eingabedaten bestmoglich abzubilden. Semantische
oder probabilistische Informationen sind dabei jedoch nicht sinnvoll reprasentierbar.
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4.2.4. Truncated Signed Distance Functions (TSDFs)

Das Kinect-Fusion Verfahren [150] zur 3D-Modellierung von unstrukturierten Umge-
bungen aus Tiefenaufnahmen nutzt eine weitere Art der geometrischen Modellierung;:
Oberflachen werden hier mittels [Truncated Signed Distance Functions (TSDFs)| reprasen-
tiert. Die grundlegende Datenstruktur ist auch hier eine Voxelkarte, deren Voxel jedoch
keine Belegtheit, sondern den Abstand zu der ihnen am néachsten liegenden Oberflache
speichern. Voxel, die den Wert Null enthalten, reprasentieren also eine Oberfldche. Durch
die Verwendung der bewegen sich die Distanzwerte im negativen Bereich, wenn
sie hinter einer Fldche liegen, bzw. im positiven Bereich, wenn sie vor einer der Flachen
liegen, und erreichen bereits ab einer geringen euklidischen Distanz einen Betrag von
Eins. Die Vorteile dieser Modellierung liegen in der effizienten Integration aufeinander-
folgender Sensoraufnahmen von statischen Szenen, bei gleichzeitiger Minimierung des
Messrauschens. Problematisch ist der hohe Berechnungsaufwand, der mit dem darstell-
baren Volumen wichst: Die kontinuierliche Generierung eines Modells aus den Daten
einer Kinect-Kamera lastet eine moderne [GPU] bereits aus, auch wenn das Volumen auf
512% Voxel beschrénkt wird. Daher wurden|[TSDFslfiir die Kollisionserkennung nicht wei-
ter in Betracht gezogen. Eine spétere Unterstiitzung wére jedoch einfach moglich.

4.2.5. Auswahl der geeignetsten Modellierung

Eine Modellierung von Sensordaten durch Primitive, generative Beschreibungen oder
scheidet aus den genannten Griinden aus. Bei den verbleibenden Techniken de-
cken diskretisierende Modelle alle fiir eine Bewegungsplanung relevanten Punkte aus
der Taxonomie ab. Weiterhin ergeben sich durch ihre Verwendung mehrere Vorteile ge-
geniiber einer Modellierung mittels Dreiecksnetzen:

o Punktwolken lassen sich wesentlich effizienter auf Voxel-Datenstrukturen abbilden
(O(n)), als auf Oberflichennetze (O(n?)).

e Eine Datenfusion iiber die Zeit oder aus mehreren Datenquellen ist inhédrent inner-
halb der Voxel moglich.

e Freiraum und unbekannter Raum kann explizit modelliert werden, was fiir eine
Bewegungsplanung sehr vorteilhaft ist.

e Swept-Volumen kénnen ohne zusatzlichen Reduktionsaufwand generiert und di-
rekt gespeichert werden.

e Durch die Annahme einer statistischen Unabhéngigkeit zwischen einzelnen Voxeln
konnen diese einfach parallel bearbeitet werden.

Die Einschrankungen, die sich bei Voxelmodellen durch nicht vorhandene Oberflachen-
normalen ergeben, sind in der Bewegungsplanung nicht relevant. Prinzipbedingte Dis-
kretisierungsfehler lassen sich aufSerdem zur Ausfiihrungszeit beispielsweise durch eine
Regelung des Systems (bspw. Impedanzregelung) ausgleichen. Somit ist|Forschungsfra-|
beantwortet und es kann, auch im Hinblick auf die Evaluierung in[Abschnitt 8.4} die

Feststellung 7| getroffen werden:
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Feststellung 7. Zusammenfassend eignet sich die Voxelmodellierung am bes-
ten fiir die in dieser Arbeit verfolgten Ziele einer Kollisionsdetektion auf Basis
von 3D-Punktwolken, weshalb sie als Grundlage in [GPU-Voxels|gew&hlt wur-
de.

4.3. Voxelumwandlung

Das Aktualisieren von Voxel-Datenstrukturen durch Punktwolken ist ein grundlegender
Arbeitsschritt, der hier formalisiert werden soll.

Definition 10. Als Voxelumwandlung wird das Eintragen einer Punktwolke
P in eine Voxel-Datenstruktur M bezeichnet, das mit dem Operator H(M, P)
beschrieben wird. Hierfiir sind die Voxel, in welche die Punkte fallen, entspre-
chend zu aktualisieren. Um sie zu bestimmen, miissen die Koordinaten der
Punkte mit dem Raster der Datenstruktur, das der Voxelkantenldnge [ ;¢ ent-
spricht, diskretisiert werden. Je nach Dichte der Punktwolke kdonnen bei der
Diskretisierung Voxel iibersprungen werden, was zu Lochern im belegten Vo-
lumen fiihrt. Um auch unter einer beliebigen Rotation der Punktwolke solche
Abtastfehler zu vermeiden, muss fiir den maximalen Abstand A, zwischen
einzelnen Messpunkten p € P gelten: A < % Der maximale Diskretisie-

rungsfehler durch die Voxelumwandlung liegt bei %\/gl

*Kantenlidnge des minimalen Wiirfels, dessen Ecken aufserhalb eines Voxels liegen

Gegeben sei: Eine Voxel-Datenstruktur M und eine Punktwolke P. Dabei sei ein Voxel
V = (a,b,c,¥) das Tupel seiner Koordinaten a, b, ¢ € Z und seinem Zustand ¥ (¥ kann je
nach|Voxeltyp|unterschiedliche Wertebereiche aufweisen). Ein Punkt p € P : p = (z,y, 2)
sei das Tupel seiner Koordinaten z,y, z € RR.

Weiterhin existiere ein Operator [J;(V'), der den Zustand ¥ eines gegebenen Voxels V

entsprechend einer vom abhingigen Funktion { dndert.

Mit diesen Voraussetzungen ldsst sich der Operator H(M, P) definieren, der den Zustand
einer Voxel-Datenstruktur M aktualisiert, wenn eine Punktwolke P in diese eingetragen
wird:

B(M,P) = JO;(V;) ;Vp; € Pund V; € M

£$]/l VowelJ ’ (42)
wobei ‘/J = ( \_yj/lVoxelJ 7Q7j> mit (xj7yj7zj) =Py
sz/l VomelJ

Unter der Annahme einer konstanten Laufzeit fiir [1;(V') ist der Aufwand der Voxel-
umwandlung direkt durch die Parallelisierbarkeit der Zieldatenstruktur bestimmt, da
zwischen den Eingabedaten keine Abhdngigkeiten bestehen.
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4.3.1. Freiraumbestimmung

Aufgrund der genutzten visuellen Messprinzipien konnen die verwendeten 3D-Senso-
ren nur Messpunkte auf den sichtbaren Oberfldchen der Umwelt erzeugen. Um dennoch
eine Unterscheidung zwischen unbekanntem und freiem Raum zu ermdoglichen, kann
die vereinfachte Annahme getroffen werden, dass das Volumen im Sichtkegel zwischen
dem Sensor und den detektierten Objekten freier Raum sein muss, da die Messung sonst
so in ihrer Form nicht moglich gewesen wire. Basierend auf dieser Annahme kénnen
die freien Voxel mittels einem Verfahren bestimmt werden, welches seinen
Ursprung in der Computergrafik hat. Dort wird es verwendet, um den Schnittpunkt der
Sichtstrahlen einer Kamera mit virtuellen Objekten zu bestimmen. Ganz dhnlich wird in
dieser Arbeit eine Abwandlung des Bresenham Algorithmus [51] eingesetzt, um die Men-
ge I der Voxel zu berechnen, die in einer Voxel-Datenstruktur auf der Strecke zwischen
dem Sensorursprung und einem Messpunkt liegen (vgl. [Abb. 4.6a). Dabei sind jedoch
zwei Beobachtungen zu berticksichtigen, die sich aus dem pyramidenférmigen Sichtfeld
des Sensors ergeben: 1) Die Menge F' enthilt viele Voxel mehrfach, da die Voxel, die na-
he am Sensor liegen, von den Strahlen vieler weiter entfernter Messpunkte geschnitten
werden (das Verhiltnis steigt quadratisch mit der Distanz ~» zum Sensor). 2) Die Anzahl
|F'| der freien Voxel tibersteigt die Anzahl der belegten Voxel |O| bei einer Objektdistanz
h von 300 cm und einer Voxelkantenldnge von 1cm bereits um zwei GrofSenordnungen
(da |F| = h/3 -]0]). Bei 0,3 Mio. Messpunkten der Kinect waren dies 30 Mio. Freiraum-
voxel.

Um die grofie Menge an Voxeln, die sich aus Beobachtung 2) ergeben, effizient zu ermit-
teln, lauft das Raycasting parallel fiir alle Messstrahlen. Beobachtung 1) zeigt jedoch, dass
dabei mehrere Threads gleichzeitig auf dieselben Voxel zugreifen konnen. Aus Effizienz-
griinden wurde dennoch auf eine Serialisierung mittels atomarer Operationen verzich-
tet, auch wenn im Falle von probabilistischen Voxeln das mehrfache Dekrementieren der
Belegtheitswahrscheinlichkeit das korrekte Verhalten wére. Um Fehler zu minimieren,
wurde die Strahlenverfolgung invertiert und lauft ausgehend vom Messpunkt in Rich-
tung Kamera, wodurch die Strahlen unterschiedlich lang sind, und die Threads somit
die kameranahen Voxel asynchron traversieren. Weiterhin stellt die Speicher-Koherenz
sicher, dass jeder betroffene Voxel mindestens einmal als frei markiert wird. Praktische
Tests haben letztendlich bestétigt, dass die verbleibenden Fehler so selten auftreten, dass
sie vernachlassigbar sind.

Um ein nachtrégliches Uberschreiben von belegten Voxeln durch das Raycasting zu ver-
meiden (vgl. , werden zunéichst alle Freiraumvoxel markiert, und erst danach
die Hindernisse eingetragen. Abtastfehler, wie sie in dargestellt sind, konnen
zwar nicht ausgeschlossen werden, sie stellen jedoch auch kein Problem dar, da sie nur
in einem sehr kleinen Randbereich des Sichtkegels auftreten.

Die letztendliche Implementierung des Raycastings unterscheidet sich zwischen Voxel-
karte und Octree: Wahrend bei einer Voxelkarte die Markierung direkt ausgefiihrt wird
(setzen der Voxeleigenschaften im Falle einer bindren Voxelkarte, bzw. aktualisieren der
Belegtheitswahrscheinlichkeiten im Falle von probabilistischen Voxeln), wird beim Oc-
tree noch ein Zwischenschritt eingefiihrt. Auch dort dienen Voxelkarten aufgrund ihres
effizienteren wahlfreien Zugriffes als Datenstruktur fiir das Raycasting. Ist dieses abge-
schlossen, lassen sich bereits auf Basis der Voxelkarten zusammenhéngede Freirdume
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(a) Positivbeispiel (b) Falschdeklaration (c) Abtastfehler

Abb. 4.6.: Freiraumberechnung vereinfacht fiir den zweidimensionalen Fall. Legende: 1)
Sensor, 2) Strecke | Sensor-Messpunkt |, 3) Hindernis, 4) Belegte Zelle, 5) Freies
Feld, 6) Sichtkegel, 7) Fehlerhafte Markierung

zusammenfassen, bevor die Ergebnisse in den Octree iibertragen werden. Weiterhin ist
es damit moglich, den Freiraum in einer groberen Aufldsung zu bearbeiten und somit
Berechnungsaufwand einzusparen, ohne die Auflosung der Hindernisvoxel zu beein-

trachtigen (siehe [Abb. 4.7).

Ein Beispiel fiir das Raycasting ist in gezeigt. Hierbei wird das Umweltmodell
aufgebaut, wihrend die Kamera ein Objekt umkreist.

4.4. Roboter-Modell

Ebenso wie das Umweltmodell dient auch das Egomodell eines Roboters vielen unter-
schiedlichen Zwecken, wie beispielsweise der Zustands- oder Fehlerdiagnose. Fiir die
Kollisionsdetektion ist jedoch ausschliefilich ein animiertes geometrisches Modell rele-
vant. Um dieses effizient verarbeiten zu konnen, soll es ebenso wie die Umwelt tiber eine
diskretisierende Voxel-Datenstruktur reprasentiert werden. Die folgenden Abschnitte be-
schreiben die Generierung und Aktualisierung eines Voxel-Egomodells.

4.4.1. Artikulierte Robotermodelle

Das Modell eines beweglichen Roboters muss die Geometrie und die [kinematische Kon-|
eines Mehrkorpersystems aus rigiden Teilen beschreiben kénnen, um die re-
lativen Bewegungen der einzelnen Roboterglieder im eindeutig abzubilden [125].
Dafiir wird meist auf so genannte Szenengraphen zuriickgegriffen. Diese stellen baumar-
tige Strukturen mit verketteten geometrischen Transformationen dar, die ausgehend von
einem Welt-Koordinatensystem bis zu den einzelnen Elementen des Roboters reichen.
Jede Stelle im Baum repréasentiert ein Koordinatensystem, mit dem ein geometrisches
Modell verkniipft werden kann. Zur Laufzeit lassen sich die Transformationen durch
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(a) Eigabeszene aus Sicht der Kamera (ca. (b) Freiraum aus entgegengesetzter Richtung (ca.
200 kVoxel) 5 MVoxel)

Abb. 4.7.: Beispiel der Freiraumberechnung mittels Raycasting. Der Freiraum wird im
Octree zu grofieren Voxeln zusammengefasst.
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Abb. 4.8.: Aufbau des Umweltmodells aus zusammengefiihrten Punktwolken: Wahrend
der Sensor (griiner Wiirfel) um das Objekt wandert (gelber Zylinder auf Bo-
denebene) berechnet ein Raycasting Algorithmus den tatsdchlichen Freiraum
(graue Pyramiden). Alle nicht einsehbaren / verschatteten Regionen verblei-
ben als unbekannt modelliert.

u:

t=1

Gelenkwinkel oder andere Sensormessungen anpassen, womit sich auch die Modelle im
Raum bewegen. Zwei verbreitete Konventionen, um diese Transformationsketten mathe-

matisch zu definieren, sind in (GPU-Voxelsjlumgesetzt worden:

Denavit Hartenberg (DH) Konvention: Unter Nutzung der DH-Konvention [68] kann
fiir jedes Robotergelenk n aus den vier geometrischen Parametern 6,,, d,,, a, und «, ei-
ne homogene Matrix 7' bestimmt werden, die die Anordnung des n-ten Rotations- oder
Schubgelenks gegentiber seiner Basis n — 1 beschreibt.
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=l = Rot(zp—1,60p) - Trans(z,—1, dy,) - Trans(x,, a,,) - Rot(zy,, ay)

cosf, —sinb,cosa, sinf,sina, aycosb, 4.3)
__ | sin6, cosB,cosa, —cost,sina, apsind,
a 0 sin o, COS iy, dy,
0 0 0 1

Durch die Multiplikation aller n Matrizen entsteht eine Kette, die die Transformationen
von der Roboterbasis bis hin zum [Endeffektor]beschreibt. Kiirzere Teilketten kénnen ver-
wendet werden, um die Pose der Roboterglieder zu berechnen. Durch die Anderung von
0, bei Rotationsgelenken bzw. o, bei Schubgelenken kann die Kinematik und somit die
Geometrie des Roboters bewegt werden.

Unified Robot Description Format (URDF): Eine redundantere, aber intuitivere Mog-
lichkeit ist es, die Transformationsmatrizen direkt tiber die Art, die Verschiebung und die
Rotation der Glieder zueinander zu bestimmen [124]]. Dieses Format der kinematischen
Beschreibung findet sich in der [Unified Robot Description Format (URDF)| Modellie-
rung, die im[Robot Operating System (ROS)|verwendet wird. Auch hier wird letztendlich
eine Transformationskette aufgebaut, tiber welche die Lage der einzelnen Glieder je nach
Roboterpose bestimmt werden kann.

4.4.2. Voxelmodelle

Ist die Transformationskette bekannt, kann damit jeder rigide Roboterbestandteil an seine
Pose bewegt werden. Wihrend bei einer Modellierung mittels Oberflachen jedes Dreieck
nach seiner Transformation direkt auf Kollision priifbar ist, muss bei einer Voxelmodel-
lierung ein Zwischenschritt stattfinden, da hier nicht die Modelle selber, sondern zwei
Voxel-Datenstrukturen miteinander tiberlagert werden.

Um ein Voxelmodell eines Roboters zu erhalten, sind zunichst vorhandene CAD Ober-
flaichenmodelle der einzelnen Glieder des Roboters in dichte 3D-Punktwolken umzu-
wandeln (vgl. [Abb. 4.9). Dieser Prozess entspricht einer Abtastung der Oberflichenmo-
delle mit einem dreidimensionalen Gitter aus Messpunkten, wobei alle Punkte gespei-
chert werden, die auf oder innerhalb des Oberflichenmodells liegen. Hierbei muss die
Auflosung der Abtastung so hoch gewiahlt werden, dass bei der |Voxelumwandlung|der
Punktwolke in beliebiger Rotation keine Locher im Modell entstehen. Dieser Diskreti-

sierungsfehler wird vermieden, wenn gemaf3 fiir die Abtastdistanz A gilt:
A < Voxel-Seitenldnge

. In dieser Arbeit wurde fiir die Abtastung das Werkzeug binvo

eingesetzt [152]. Weiterhin muss der Ursprung des Koordinatensystems der Punktwolke
im Rotationspunkt des Gelenkes liegen, welches das betrachtete Korperglied bewegt.

Die Punktwolken aller Korperteile werden einmalig untransformiert in den konstan-
ten Speicher der GPU geladen und verbleiben dort schreibgeschiitzt. Verandert sich zur

'URDF: http://wiki.ros.org/urdf
binvox: http://www.patrickmin.com/binvox/
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Abb. 4.9.: Voxelumwandlung eines einzelnen Roboter-Gliedes am Beispiel des Oberar-
mes.

Laufzeit die Position des Roboters oder seine Gelenkwinkel, muss eine Kopie jeder Punkt-
wolke gemdfs der kinematischen Kette transformiert, und in eine Voxel-Datenstruktur
eingetragen werden. Wird der Roboter nur achsparallel verschoben, kann auf das re-
chenintensive Transformieren der einzelnen Punktwolken verzichtet werden und statt
dessen auf das Verfahren zur Translation mittels Basisversatz aus [Unterabschnitt 5.3.1
zuriickgegriffen werden.

4.4.3. Selbstausblendung und Eigenkollisionen

Soll der Arbeitsraum eines Roboters visuell auf Kollisionen hin tiberwacht werden, so
kann nicht vermieden werden, dass neben der Umwelt auch der Roboter von den Sen-
soren erfasst wird. Um hierbei nicht falschlicherweise Eigenkollisionen zu detektieren,
miissen die Messpunkte, die den Roboter reprasentieren, aus den Aufnahmen entfernt
werden. Hierfiir wurden zwei unterschiedliche Verfahren genutzt, die eine exakte Kali-
brierung zwischen Kamera und Roboter voraussetzen:

In existiert hierfiir das Realtime URDF Filter-Pakef’] Wie der Name vermuten lisst,
filtert dieses aus dem Datenstrom einer 3D-Kamera basierend auf einem [URDE-Modell
des Roboters die problematischen Punkte heraus. Dafiir rendert ein OpenGL-Programm
live das geometrische Modell des Roboters aus der Perspektive der Tiefenkamera und
vergleicht die Tiefendaten der Sensorwerte mit den Z-Puffer-Ergebnissen des Rende-
rings. Messpunkte, die dhnliche Entfernungswerte wie der Z-Puffer aufweisen, werden
entfernt. Das Resultat ist der Datenstrom aus Tiefeninformationen, die um den Roboter
bereinigt wurden. Der URDF Filter wurde erfolgreich fiir die Evaluation der Bewegungs-

pradiktion aus|Abschnitt 4.6{genutzt.

Wird der original Datenstrom aus der Kamera nicht benotigt, da es ausreicht, Roboter-
Voxel auszufiltern, kann der Aufwand des OpenGL-Renderings vermieden werden. Da-
zu wurde ein Verfahren umgesetzt, das rein auf und dem darin vorhandenen

Realtime URDF Filter: http://wiki.ros.org/realtime_urdf_filter
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Robotermodell basiert. Als Voraussetzung miissen die Modell- und Sensordaten in unter-
schiedlichen Datenstrukturen gehalten werden: Die in Voxel umgewandelten Sensorda-
ten liegen in einer Umweltkarte vor, wiahrend sich das Robotermodell in einer weiteren
Datenstruktur befindet. Somit kann das animierte Robotermodell von den Sensorvoxeln
subtrahiert werden. Die verbleibenden Daten konnen dann herangezogen werden, um
sie gegen eine dritte Datenstruktur auf Kollisionen zu priifen, bspw. um darin Bewegun-
gen zu planen.

Echte Eigenkollisionen werden separat wiahrend des Eintragens einer Roboterpose in die
Voxel-Datenstruktur behandelt. Da die Elemente der Kinematik hierbei sequentiell abge-
arbeitet werden, kann vor dem Eintragen eines Modellpunktes gepriift werden, ob der
Zielvoxel bereits belegt ist. In diesem Fall liegt eine Eigenkollision vor. Aufgrund von
Diskretisierungsfehlern tritt dieser Fall jedoch an fast jedem Robotergelenk auf, da die
Geometrien hier sehr eng aneinander liegen (siehe [Abb. 4.10). Somit ist es notwendig,
Paare von Entitdten im Voraus durch Expertenwissen von einer Kollisionspriifung aus-
zuschlieflen, wenn diese rein kinematisch nicht kollidieren konnen. Eine Identifizierbar-
keit einzelner Entititen kann iiber Bitvektor-Voxel gewéhrleistet werden, die in[Unterab-|

vorgestellt werden.

q

(a) Gabelung im Fufi ei- (b) Eng aneinander liegende Geometrien
nes Industrie-Roboters-
Gelenks

Abb. 4.10.: Beispiele fiir potentielle Falschdetektion von Eigenkollisionen, die durch ma-
nuell modellierte Kollisionspaare auszuschlieflen sind.

4.5. Swept-Volumen

Da sowohl bei der Bewegungsplanung, als auch bei der Uberwachung von Bewegungen,
meist nicht nur einzelne, unabhingige Posen auf Kollisionen gepriift werden miissen,
sondern Abfolgen von zusammenhidngenden Bewegungen, ist es von Vorteil, diese effi-
zient reprasentieren und evaluieren zu konnen. Ein Beispiel einer solchen Reprasentation

ist in[Abb. 4.11]zu sehen.

In der Praxis wird zur Berechnung die Bewegung des Objektes an diskreten Zeitpunkten
t; abgetastet, woraus sich ein Approximationsfehler ergibt. Wird die zeitliche Auflosung
Ay zu grob gewdhlt, konnen im entstehenden [Swept-Volumen| Liicken wie in |[Abb. 4.12
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4.5. Swept-Volumen

(a) Grob abgetastete Bewegung des Ober- (b) Fein abgetastetes Voxel Swept-Volumen
flachenmodells

Abb. 4.11.: Swept-Volumen einer Ganzkorperbewegung des Roboters HoLLiE

Definition 11. Ein [Swept-Volumen| beschreibt das aufintegrierte Volumen
Vswept im Raum, das von einem Objekt mit Volumen Vo durch seine Bewe-
gung s im Zeitraum ¢; — ¢, tiberstrichen wird.

Vowept = fttol Vo - s(t) dt.

entstehen, die bei einer Kollisionspriifung zu einer Nichtdetektion von Kollisionen fiih-
ren konnen. Wird hingegen die Abtastfrequenz zu hoch angesetzt, fithrt dies zu einem
hohen Ressourcenverbrauch bei der Erstellung des Volumens.

- N
\\\ ‘||.7 / \TLT/

Abb. 4.12.: Unterabtastung (links) und ausreichende Abtastung (rechts) bei der Generie-
rung eines [Swept-Volumen|zur Kollisionspriifung mit rotem Objekt. Aus [38].

Bei einer Oberfldchennetzbasierten Darstellung des Sweeps werden entweder Instanzen
des Objektes an den Abtastzeitpunkten erstellt und einzeln verarbeitet, oder die Mo-
mentaufnahmen werden mittels Boolscher Operationen miteinander verschmolzen und
als ein einzelnes Modell gesehen. Im ersten Fall bleiben bei einer Kollisionspriifung die
Bestandteile und somit die Zeitschritte identifizierbar, jedoch steigt der Speicher- und
Rechenaufwand linear mit der Anzahl der Abtastschritte. Im zweiten Fall miissen im
Inneren liegende Oberflachen aufwendig entfernt werden [33]]. Algorithmen fiir die Ver-
schmelzung basieren meist auf Marching Intersections und weisen bei n Dreiecken eine
Laufzeit von O(n?) auf 85]]. In beiden Fillen wird dennoch lediglich die Ober-
flache und nicht das Volumen des Sweeps betrachtet.

Bei einer voxelbasierten Reprasentation entfallen diese Probleme, da hier das durch die
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Voxel diskretisierte Volumen erzeugt wird. Uberlappen sich die Momentaufnahmen, stellt
das mehrfache kennzeichnen belegter Voxel keinen besonderen Aufwand dar und beno-
tigt auch keinen zusatzlichen Speicher. Durch eine besondere Reprasentation der Voxel
(siehe Bitvektor-Voxel in|Unterabschnitt 5.1.4), die die[Swept-Volumen-Implementierung
in dieser Arbeit nutzt, ist es moglich, Segmente innerhalb des Gesamtvolumens identi-
tizierbar zu halten, und somit eine Zuordnung zum Abtastzeitpunkt zu speichern. So-
mit ldsst sich die Generierung des Volumens als Abfolge von Operationen zur Voxelum-
wandlung H(M, P(t;)) beschreiben, wobei die Punktwolke P(¢;) animiert ist und die Ak-
tualisierungsfunktion [J;, (V') einen Operator {; aufweist, der vom Abtastzeitpunk ¢; ab-
héngt. Da der Speicher pro Bitvektor-Voxel stark beschriankt ist, konnen in der aktuellen
Implementierung lediglich i < 250 Zeitintervalle unterschieden werden. Somit bestimmt
sich das minimale, identifizierbare Zeitintervall A;, direkt aus dem abzubildenden Zeit-
raum: A¢y = Tgesamt/250. Dieses Intervall ist unabhéngig von der Abtastdichte A, was
bedeutet, dass bis zu b Abtastschritte dieselbe ID aufweisen konnen: b = A, /A;.

Der zeitliche Verlauf einer Armbewegung ist in durch die Farben von Griin
(¢ = 0) bis Magenta dargestellt. Da die Gelenkwinkeldnderung des Armes in der linken
Bildhilfte grofer ist, als auf der rechten Seite, und somit eine lingere Bewegungsdauer
aufweist, werden hier intensivere Magenta-T¢ne erreicht.
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Abb. 4.13.:Swept-Volumen|einer Roboterbewegung. Aufsteigende |Sub-Swept-Volumen-|
dentifikatoren (SSV-IDs)) sind durch den Farbverlauf von Griin nach Magen-
ta visualisiert.

Fine alternative Abtaststrategie wére es, den Moment der Abtastung iiber die zurtick-
gelegte Distanz A, und nicht {iber feste Zeitintervalle A; zu definieren. Somit konnten
Liicken im [Swept-Volumen| optimal vermieden werden. Da A, jedoch sowohl Gelenk-
winkel als auch kartesische Distanzen ausdriicken miisste, wire die Zuordnung des Ab-
tastzeitpunktes zu Voxeleigenschaften unverhéltnisméafiig komplex. Daher wurde dieser
Ansatz hier nicht verfolgt.

4.6. Bewegungspradiktion

Um einem Roboter ein vorausschauendes Verhalten (siehe |Definition 4) zu ermoglichen,
muss dieser die Bewegung in einer Szene zunichst erkennen und korrekt interpretie-
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Bewegungs- Segmentierung Tracking Swept-Volumen Kollisionspriifung
Extraktion
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Abb. 4.14.: Schritte der Bewegungssegmentierung und Prédiktiorﬂ
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ren, um dann Vorhersagen treffen zu konnen. Die Pradiktion kann dann in Voxelmodelle
umgewandelt werden, um sie in der Kollisionsdetektion und der Bewegungsplanung zu
berticksichtigen (vgl. [Abb. 4.14). Der Fokus dieser Arbeit liegt auf der weiterfithrenden
Nutzung der Bewegungsschdtzungen zur Kollisionspradiktion, weswegen die Pradikti-
onskette nicht erschopfend untersucht und implementiert wurde.

In diesem Abschnitt wird eine vierstufige Verarbeitungskette beschrieben, die die ge-
nannten Aufgaben 16st und die in der Masterarbeit von Felix Mauch [27] evaluiert wur-
de:

1. Erkennung und Segmentierung aller Objekte (gegeniiber ihrer Umgebung), deren
Bewegung geschitzt werden soll. Bei der Segmentierung von RGBD}Daten kann
hierfiir neben den Farbinformationen die Tiefenkomponente verwendet werden,
um ein Objekt gegentiber einem Hintergrund freizustellen.

2. Verfolgung der Objekte iiber einen gewissen Zeitraum, um ihren Bewegungsver-
lauf zu bestimmen.

3. Schidtzung von Bewegungshypothesen fiir einen bestimmten Zeithorizont mit Hilfe
eines a priori Bewegungsmodells.

4. Voxel-Rendering der Bewegung aus dem segmentierten Objekt entlang seiner Be-
wegungshypothese.

Die ersten drei Schritte werden unter dem Begriff Tracking zusammengefasst. Klassische
Verfahren, die heute bereits beispielsweise im Automotive-Umfeld [82] zum Tracking
von Verkehrsteilnehmern genutzt werden, sind auf die Vorhersage einzelner starrer Ob-
jekte ausgelegt. Hierbei gentigt es, den Mittelpunkt oder den Schwerpunkt eines zusam-
menhdngenden Bereiches in den Sensordaten zu verfolgen und dessen Bahn vorherzu-
sagen. In anderen Fillen werden geometrische Modelle fiir die Segmentierung genutzt
[39,59], um die Ergebnisse der Detektion robuster und die Vorhersagen genauer zu ma-
chen. Da hierfiir Objektmodelle nétig sind, konnen die Verfahren nicht auf unbekannte
Objekte angewendet werden. Fiir diese Anwendung existieren modellfreie Ansétze, die
mit wenigen, dafiir aber markanteren Merkmalspunkten pro Objekt arbeiten [197], wobei
die Herausforderung dann in der Bestimmung und der Extraktion geeigneter Merkmale
besteht.

Solche modellfreien Verfahren bilden auch die Grundlage zur Verfolgung artikulierter
oder deformierbarer Objekte, wie beispielsweise den menschlichen Korper. Hierbei er-
folgt das Tracking, bzw. die Vorhersage per Pixel oder im 3D-Fall per Voxel und die Seg-
mentierung bildet erst den zweiten Schritt der Verarbeitungskette.

llustration der Laufbewegung von Charles Leon
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Ein verbreiteter Ansatz dieser Kategorie zur Analyse von Bewegungen in Videoaufnah-
men ist der so genannte Bildfluss oder optische Fluss, der einzelne Pixel tiber eine Bild-
sequenz hinweg verfolgt, und ihnen somit einen zweidimensionalen Bewegungsvektor
zuordnen kann [86]. Wird das Verfahren um die dritte Dimension erweitert, spricht man
von Szenenfluss. Dieser wurde erstmals in eingefiihrt und in mehreren Arbeiten auf
unterschiedliche Weisen berechnet:

e Statistische Optimierungsverfahren: RGBD-Flow 202]], Dense Semi-Rigid Scene
Flow [166]

e Partikelfilter: Scene Particles

e Bewertungsfunktionen mit Hin- und Riicktransformation: Sphere Flow [101]

e Expectation Maximization Algorithmen: Dense Ridgid-Body Motion Segmentation and

Estimation [[192]

Eine Visualisierung von Ergebnissen der ersten drei Kategorien ist in[Abb. 4.15|zu sehen.
Aus der vierten Kategorie war zum Zeitpunkt der Untersuchung noch keine Implemen-
tierung verfiigbar.

(a) RGB-Bild ¢ (b) RGB-Bild t; =t5+ 1 (c) Farblegende des Be-
wegungsvektors

e

e

(d) SphereFlow (e) RGBD-Flow (f) DSR Scene Flow  (g) Scene Particles

Abb. 4.15.: Visualisierung der Ergebnisse der untersuchten Szenenfluss-Algorithmen fiir
das Bildpaar a) und b). Sphere Flow mit aussagekréftigstem Szenenfluss, inho-
mogene aber korrekte Ergebnisse aus RGBD-Flow und Dense Semi-Rigid Sce-
ne Flow. Fehldetektion im Hintergrund aus Scene Particles. Gegeniiberstellung
entnommen aus [101].

Um den am besten fiir die Integration in[GPU-Voxels|geeigneten Algorithmus zu finden,
wurden in der Masterarbeit von Mauch alle genannten Verfahren untersucht und
diejenigen praktisch evaluiert, von denen eine Implementierung zur Verfiigung stand.
Das Fazit der Arbeit stellt sich wie folgt dar: Sphere Flow musste wegen seiner hohen
Laufzeit von der Verwendung ausgeschlossen werden, da die gesamte Verarbeitungsket-
te mehrere Bilder pro Sekunde verarbeiten sollte. Das Scene-Particles-Verfahren litt un-
ter hohen Fehlerraten, da es nicht vorhandene Bewegungen in Bildregionen detektierte,
welche kurz zuvor durch das eigentlich bewegte Objekt noch verdeckt waren. Bei den
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verbleibenden, zueinander dhnlichen Verfahren RGBD-Flow und Dense Semi-Rigid Scene
Flow unterschieden sich die quantitativen und qualitativen Ergebnisse nur wenig. Da-
her wurde letztendlich der RGBD-Flow-Ansatz weiter verfolgt, da von diesem bereits ei-
ne GPU-optimierten Implementierung vorlag. Im Folgenden soll dessen implementierte,
optimierte Version beschrieben werden.

4.6.1. Vorverarbeitung

In einem ersten Filterschritt gilt es, die Messpunkte, die den Roboter darstellen, aus den
Aufnahmen zu entfernen. Da neben den Tiefendaten auch die Farbwerte relevant sind,
wird daftir der Realtime URDF Filter aus|Unterabschnitt 4.4.3|eingesetzt. Der zweite Filter-
schritt besteht dann aus einer zeitlichen Glattung iiber mehrere Bilder, um das Grundrau-
schen des verwendeten Kinect Sensors zu kompensieren (vgl. [Unterabschnitt 4.1.4). Fiir
die betrachteten Anwendungsfélle wurde dafiir empirisch eine geeignete Fenstergrofie
von fiinf aufeinander folgenden Aufnahmen ermittelt. Die Filterung ist unproblematisch,
da die Framerate der Kamera weitaus hoher ist, als die der folgenden Verarbeitungsket-
te. Auch Unschérfeeffekte sind nicht zu erwarten, da die Kamera statisch positioniert ist,
und die betrachteten Objektbewegungen von geringer Geschwindigkeit sind. In einem
letzten Vorverarbeitungsschritt kann die Kameraauflosung von 640 x 480 auf 160 x 120
beschriankt werden, da alle Objekte eine gewisse Minimalgrofie aufweisen und so auch
bei niedriger Auflosung gut erkennbar sind. Diese Datenreduktion ist notwendig, um die
Laufzeiten aller nachfolgenden Berechnungen echtzeitfdhig zu halten.

4.6.2. RGBD-Flow

(a) Vektorfeld des 3D-Szenen-  (b) Objektsegmentierung
flusses

Abb. 4.16.: Mittels RGBD-Flow berechneter Szenenfluss der durch den Roboterarm ver-
ursachten Objektbewegungen. Die unterschiedlichen Bewegungsrichtungen
werden zur Objektsegmentierung genutzt. Verfahren und Grafiken aus [99].

Das RGBD-Flow-Verfahren aus [99] basiert auf der Optimierung der Energiefunktion aus

Gleichung 4.4} die tiber alle Pixel ¥ = (x, y) des Bildes I gebildet wird:

B(a@) = [ (Ec(@(@) + Bz (1)) + aBs (@) +1Ep ({@)d7 (44)

rel
(%) € R3 beschreibt hier den 3D-Szenenfluss im Pixel 7.
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4. Perzeption und Modellierung

Die beiden ersten Komponenten, aus denen sich die Funktion zusammensetzt, maximie-
ren die Konsistenz im Farbbild Ec (i(Z)) und die Konsistenz im Tiefenbild Ez (4(Z)), da da-
von ausgegangen wird, dass ein Pixel seine Farbe wahrend einer Bewegung nicht veran-
dert bzw. die Position im Raum sich nur entsprechend der Schitzung bewegt. Es (4(Z))
dient der Regqularisierung, indem hohe Gradienten im Fluss-Vektorfeld unterdriickt wer-
den, um somit Mehrdeutigkeiten im Farbbild-Fluss zu vermeiden. E (u(Z)) ist ein Balan-
cierungsterm, der entsprechend der Entfernung des Messpunktes mit Hilfe der Kamera-
brennweite die Einheiten Meter und Pixel aneinander angleicht. Somit konnen E¢ (4(Z))
und Ey (i(¥)) verrechnet werden.

Um Losungen fiir dieses nichtlineare Gleichungssystem zu finden, wird das Fixpunktver-
fahren eingesetzt. Dabei wird das System schrittweise linear approximiert und dann das
Gleichungssystem jedes Schrittes mittels Successive Over-Relaxation-Verfahren (SOR) op-
timiert. Weiterhin lauft das Losungsverfahren auf einer Bildpyramide mit ansteigender
Bildauflosung ab, so dass die Losung der Fixpunktiteration einer niedrigen Auflosung
als Startwert der Berechnung fiir die ndchsthohere Auflosung dienen kann.

Die Parameter und Abbruchkriterien dieses Losungsverfahrens wurden in der Abschluss-
arbeit von Mauch [27] so weit optimiert, dass die Laufzeit des Algorithmus eine schritt-
haltende Verarbeitung der Kameradaten mit ca. 10[Frames per Second (FPS)|ermoglicht.

4.6.3. Segmentierung bewegter Objekte

Abb. 4.17.: Korpersegmentierung anhand der Bewegungen.

Zur einfacheren weiteren Verarbeitung wird das Ergebnis-Vektorfeld des RGBD-Flow-
Verfahrens in eine konsistent metrische Darstellung umgewandelt. Ahnlich zum Balan-
cierungsterm Ep aus miissen hierfiir Bewegungsangaben in Pixeln mit
Hilfe des Kameramodells in Meter umgerechnet werden. Im Ergebnis liegt zu jedem 3D-
Punkt der Punktwolke ein Farbwert und ein 3D-Bewegungsvektor vor. Dieser muss le-
diglich durch die Differenz der Aufnahmezeitpunkte dividiert werden, um seine Bewe-
gungsgeschwindigkeit zu erhalten. Uber eine Filterung anhand einer Minimalgeschwin-
digkeit werden nun alle Punkte entfernt, die sich nicht, oder nur sehr langsam bewe-
gen.
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4.6. Bewegungspréddiktion

Um letztendlich die Objekte in der verbleibenden Punktwolke zu segmentieren, wird im
Gegensatz zum Originalverfahren aus [99] kein [Random sample consensus (RANSAC)-
Ansatz angewandt, sondern ein performanteres Region-Growing. Dessen Ahnlichkeits-
metrik berticksichtigt neben den Bewegungsgeschwindigkeiten auch rdaumliche Distan-
zen, um ausgehend von einem Startpunkt benachbarte Punkte zu clustern.

Jedes gefundene Cluster repréasentiert somit ein Objekt, dessen Bewegung aus den Ei-
genschaften aller seiner 3D-Punkte zu ermitteln ist. Um ohne weitere Vorkenntnisse oder
Annahmen eine Objektposition festlegen zu konnen, wird diese als Schwerpunkt aller
Messungen definiert. Diese Definition ist jedoch stark von der Betrachtungsperspektive
und Verdeckungen abhingig. Daraus entstehende Spriinge oder Schwankungen miissen
in der weiteren Verarbeitung berticksichtigt werden.

Fiir die Bestimmung einer Objektbewegung wird die Bewegungsrichtung als Mittelwert
aller Punkte definiert. Fiir die Bewegungsgeschwindigkeit ist eine Mittelung jedoch nicht
ohne weiteres moglich, da verfahrensbedingt die Geschwindigkeiten nur am Rand ei-
nes Objektes korrekt berechnet werden und zum Inneren des Clusters abfallen (in
[chung 4.4 praferiert Es niedrige Gradienten im Szenenfluss, wihrend fehlende Kontras-
te innerhalb eines Objektes Ec und Ez ansteigen lassen, weshalb kleinere Bewegungen
bevorzugt werden). Daher wird die Geschwindigkeit bei weiteren Berechnungen nicht
direkt verwendet, sondern wie im nichsten Abschnitt beschrieben, tiber ein
IKalman Filter (EKF) geschitzt.

4.6.4. Tracking

Zur Verfolgung der Detektionen tiber die Zeit wird pro Objekt ein instantiiert. Da-
bei entscheidet ein Ahnlichkeitsmafd (aus Position und Richtung) dartiber, ob fiir eine
Detektion bereits ein Filter existiert, welcher aktualisiert werden muss, oder ob ein neuer
Filter anzulegen ist. Instanzen, die zu lange keine Aktualisierung erfahren, werden
geloscht.

In der Implementierung fiir diese Arbeit wurde ausschliefslich ein lineares Bewegungs-
modell angenommen. Das Zustandsraummodell der Filter weist dabei folgende sieben
Dimensionen auf: Position und Richtung der Bewegung im 3D-Raum und eine skalare
Geschwindigkeit. Diese getrennte Betrachtung von Geschwindigkeit und Bewegungs-
richtung erlaubt die Beriicksichtigung der unterschiedlichen Verladsslichkeit der Messun-
gen.

Der Kalman-Pradiktionsschritt, der mit jeder Aktualisierung des Filters ausgefiihrt wird,
lasst sich direkt aus dem einfachen Bewegungsmodell ableiten. Eine Besonderheit liegt
lediglich in der Nichtbetrachtung des Messwertes der Geschwindigkeit, da dieser we-
nig zuverldssig ist. Zustandsraum, Prozess- und Messmodell werden sonst als fehlerlos
modelliert. Fiir das Mess- und Modellrauschen wird die Unabhéngigkeit der einzelnen
Dimensionen von Position und Richtung angenommen, ihre Genauigkeit bzw. Unsicher-
heit soll in allen drei Dimensionen identisch sein.
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4. Perzeption und Modellierung

T e i)

(a) RGB Anteil der Einga-  (b) Segmentierungsergeb-  (c) Swept-Volumen der Pradik-
bedaten nis tion

Abb. 4.18.: Beispiel des Trackings und der Pradiktion von zwei Personen.

4.6.5. Pradiktion in Form eines Swept-Volumens

Die Pradiktion jedes Filters liefert letztendlich eine geschitzte Bewegungsrichtung und
Geschwindigkeit fiir jede Objektpunktewolke. Ausgehend von einer bekannten Kame-
raperspektive kann daraus jedes Cluster entlang seines Bewegungsvektors schrittweise
transformiert werden. Die Schrittldnge ergibt sich aus der geschatzten Geschwindigkeit
und einem festen Zeitraster. Wird die transformierte Punktwolke in jedem Schritt in eine
Voxelliste (vgl. eingetragen, entsteht somit ein [Swept-Volumen| der anzu-
nehmenden Bewegung. Listen werden hier einer Voxelkarte vorgezogen, da eine Karte
nur sehr diinn besetzt ware. Weiterhin wird das [Swept-Volumen| in jeder Iteration ge-
16scht und neu aufgebaut, wofiir der geringe Speicherbedarf der Liste von Vorteil ist.

Die Liste wiederum besteht aus Bitvektor-Voxeln (siehe [Unterabschnitt 5.1.4), um jeden
Zeitschritt mit einer inkrementierten kennzeichnen zu koénnen. Somit ist bei ei-
ner Kollisionspriifung nachvollziehbar, zu welchem Zeitpunkt diese auftreten wiirde.
Um Bitvektor-Voxel zur Reprasentation von zeitabhdngiger Belegtheit im Raum nutzen
zu konnen, wurde eine Codierung gewdhlt, in der jedes Bit einer konstanten Zeitdauer
entspricht. Somit kénnen Zeitpunkte (relativ zu einer bekannten Startzeit) direkt auf[SSV-|
IDs|abgebildet werden, um so die rdumliche Ausdehnung einer Bewegung zu diskreten
Zeitschritten darzustellen.

4.6.6. Unscharfe Kollisionsprifung

Um den geschétzten Bewegungsschlauch auf Kollisionen mit dem [Swept-Volumen| der
Robotertrajektorie zu priifen, muss neben der ortlichen auch die zeitliche Uberschnei-
dung beriicksichtigt werden. Um hierbei leichte Fehler in der pradizierten Geschwin-
digkeit ausgleichen zu konnen, kommt ein besonderes Verfahren zum Einsatz, das nicht
eine exakte zeitliche Ubereinstimmung priift, sondern ein Zeitfenster aus mehreren
IDs| Zusétzlich muss die Zeitdifferenz zwischen Roboter- und Hindernisreprasentation
kontinuierlich auf alle Voxel des Roboter{Swept-Volumens| addiert werden, bevor eine
korrekte Kollisionspriifung moglich ist. Die Addition einer Zeitspanne ¢ entspricht dem
bitweisen Verschieben der[SSV-IDs|um ¢ [Atg,]|Bits. Fiir den nétigen <-Operator ergeben
sich durch die Grofse des Bitvektors dieselben Herausforderungen wie bei der zeitlich ge-
fensterten Kollisionspriifung (siehe [Abschnitt 6.2.1), weshalb die Implementierung den-
selben Code nutzt.
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Sicherheits
Stop

Umgebungs Karte I Parallele Ausfiihrung in drei synchronisierten Threads ]
Punktewolken Flow Berechnung Bewegungs Hindernis-
RGBD . -
Sensoren Transformation & Tracking & Swept-Volumen

& Raycasting Bewegungs-Clustering Pradiktion Rendering Vol
oxe S
. Zeit bis

Roboter Lokalisierung » Kollisions- . Verlangsamen\
Kollision

erkennung

Ego-
Swept-Volumen
Rendering

Punktewolken- Transformation Datenbank aus
modell des mittels direkter Bewegungs-
Roboters Kinematik primitiven

Roboter Planungs-Karte

Bewegungs-
planer

Ruckmeldung zur Neu-Planung

Abb. 4.19.: Der Programmablauf ldsst sich in zwei Strange einteilen: Die Verarbeitung
der Umweltinformationen und die Planung mit dem Robotermodell. Blau ge-
farbte Abschnitte werden auf dem Host ausgefiihrt, griine auf der GP-GPU.
Nach der Detektion einer Kollision ergeben sich je nach verbleibender Zeit
drei Moglichkeiten: Not-Stop, Neuplanung, Verlangsamung.

4.6.7. Implementierung

Das Gesamtprogramm ist auf [Host}Seite in vier asynchron laufende Threads aufgeteilt.
Wiéhrend ein Thread die Kameradaten vorverarbeitet und glattet, arbeitet die Szenen-
flussberechnung parallel dazu auf dem letzten Kameraframe. Hierbei wird zunéchst der
[CUDA}Code zur Flussberechnung aufgerufen, das berechnete Vektorfeld segmentiert
und die ermittelten Objekthypothesen getrackt. Auf diese Ergebnisse wartet ein drit-
ter Thread, der das Rendern der [Swept-Volu-men|auf der tibernimmt. Ein Haupt-
Thread verwaltet die beschrieben Arbeiten, 16st die Kollisionspriifung aus, und entschei-
det je nach Ergebnis iiber die Reaktion. Optional kann zusétzlich ein fiinfter Thread der

Visualisierung (siehe [Abschnitt 5.7) die Pradiktionen und Sensorwerte fiir

den Nutzer darstellen.

4.6.8. Kamerabewegung

Die bisher aufgezeigte Verarbeitungskette setzt eine statische Kamerapose voraus. Ist je-
doch, wie bei einem mobilen System tiblich, die Kamera auf dem Roboter montiert, so
muss die Eigenbewegung in der Berechnung beriicksichtigt werden. Wiirde man aus-
schliefllich das Kamerabild auswerten, wére bei der Detektion einer Bewegung unklar,
ob diese durch ein dynamisches Objekt oder durch die Anderung der Kameraperspekti-
ve verursacht wurde.

Um die Eigenbewegung zu neutralisieren, muss nach der Berechnung des Szeneflusses
von den Bewegungsvektoren jedes Clusters ein Kompensationsvektor subtrahiert wer-
den. Rotiert der Roboter bzw. die Kamera, muss dabei pro Cluster (anhand dessen Lage
beziiglich des Roboterkoordinatensystems) bestimmt werden, wie sich eine Rotation auf

die Abbildung der Cluster auswirkt (siehe |Abb. 4.20)).

Das Ergebnis der Kompensation ist direkt abhdngig von der Qualitdt der Daten zur Fi-
genbewegung und deren zeitlichen Synchronisierung gegentiber den Sensordaten. Ist
kein externes Trackingsystem zur Uberwachung der Kamerapose vorhanden, muss sich
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4. Perzeption und Modellierung

Abb. 4.20.: Eine Rotation des Roboters um 6 wirkt sich je nach Distanz unterschiedlich
auf wahrgenommene Objekte aus.

das Verfahren auf die interne Sensorik des Roboters stiitzen. Da insbesondere bei rotato-
rischen Bewegungen jedoch bereits kleinste Abweichungen zu einer Uber- oder Unter-
kompensation fithren, wurde fiir die Evaluierung kein bewegter Sensor verwendet. In
den Versuchen kam statt dessen ein statischer RGBD-Sensor zum Einsatz. Als Losung
fiir weiterfiithrende Arbeiten wird der Einsatz von visueller Odometrie vorgeschlagen,
da hierbei derselbe Sensor genutzt wird und somit keine Synchronisation zur Eigenbe-
wegungsmessung bendtigt wird.

4.6.9. Zusammenfassung

In diesem Abschnitt wurden Verfahren vorgestellt, die aus einer zeitlichen Abfolge von
RGBD-Daten zusammenhéngende Volumen bestimmen konnen, die sich gemeinsam be-
wegen. Durch eine Schidtzung ihrer Bewegungsvektoren konnen kurzzeitige Vorhersa-
gen erstellt und in die Zukunft projiziert werden, um daraus den zukiinftig belegten
Raum in Form von [Swept-Volumen| zu generieren. Mit Hilfe dieser pradizierten Bewe-
gungsschlduche ist eine Kollisionsdetektion in der Lage, nicht nur auf Momentaufnah-
men der Umwelt, sondern auf der zu erwarteten Situation wahrscheinlich auftretende
Kollisionen zu bestimmen. Die Annahme eines linearen Bewegungsmodells mit konstan-
ten Geschwindigkeiten schriankt die Genauigkeit der Pradiktionen stark ein. Dies kann
jedoch in weiterfithrenden Arbeiten durch die Verwendung komplexerer Modelle ver-
bessert werden.

Anwendungen, die die Pradiktion zur Vermeidung von Zusammenstofsen nutzen, wer-
den in[Abschnitt 8.8l ausfiihrlich evaluiert.
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4.7. Simulierte Umgebung

Viele Szenarien und Algorithmen kénnen anhand von aufgezeichneten Tiefendaten ge-
testet werden. Sollen jedoch reaktive Verhalten oder dynamische Planungsalgorithmen
untersucht werden, ist eine Simulation von sich mit dem Roboter bewegenden 3D-Kame-
ras unabdingbar. Nur so kann ein dynamischer Informationshorizont geschaffen werden.
Daher wurde unabhingig von ein rudimentdrer Simulator implementiert,
der fiir mehrere virtuelle Sensoren Punktwolken innerhalb deren begrenzten Sichtfeldes
und Reichweite generiert. Auf Basis von zwei Hohenkarten (Graustufenbildern) erlaubt
es der Simulator, 2,5D Hindernisse von Boden und Decke ausgehend zu generieren und
so auch Uberhénge zu simulieren. Eingesetzt wird dafiir ein das Schichtweise
die Hohenprofile abtastet und an Hindernissen Messpunkte generiert. Diese Erzeugung
von Punktwolken stellt zwar eine sehr gut parallelisierbare Aufgabe dar, dennoch wurde
die Software explizit nur fiir die umgesetzt, um nicht in Konkurenz zu|[GPU-Voxels|
auf der ausgefiihrt zu werden. Eine Parallelisierung mit Hilfe von OpenMP|erlaubt
aber auch auf der die gleichzeitige Simulation von bis zu vier Kinect-Aufnahmen
mit realistischen Wiederholraten von 20 Hz.

Die Erzeugung kiinstlicher Punktwolken kam zur ersten Evaluation von allen in
beschriebenen Szenarien zum Einsatz. Beispiele simulierter Umgebungen finden

sich in[Abschnitt 5.7} [Abb. 5.23 oder [Abschnitt 8.9 [Abb. 8.35

4.8. Fazit

Das Kapitel schafft die Voraussetzung fiir den Umgang mit Messdaten der Umwelt. Da-
fiir wurden zunéchst passende Datenquellen untersucht und ein addquates Sensormo-
dell begriindet. Im Anschluss wurden mogliche Modellierungen der Umwelt verglichen,
um die Vorteile einer Voxelreprasentation herauszustellen und [Forschungsfrage 2| zu be-
antworten. Ebenso konnte ein animiertes Egomodell iiber Voxel umgesetzt werden, in
dessen Rahmen auch der Begriff der [Swept-Volumen|definiert wurde.

Im Verlauf des Kapitels konnten mehrere Verarbeitungsschritte identifiziert werden, die
sich sehr gut fiir eine Parallelisierung auf der eignen: Bereits die Vorfilterung und
Projektion von Distanzbildern zu Punktwolken ist effizient parallelisierbar. Ebenso die ei-
gentliche Voxelumwandlung — sowohl von Umweltinformationen (inklusive der simul-
tan ablaufende Freiraumbestimmung mittels Raycasting), als auch von animierten Ro-
botermodellen. Dariiber hinaus wurde eine Bewegungspradiktion fiir dynamische Hin-
dernisse entwickelt, die eine komplexe Verarbeitungskette aus mehreren Algorithmen
auf der GPU berechnet. Zusammenfassend konnte somit|Forschungsfrage Ijumfangreich
und positiv beantwortet werden, was zu fithrt. Dieses Aussage wird auch

Feststellung 8. Alle fiir die Kollisionspriifung relevanten Teilgebiete der Sens-
ordatenverarbeitung und Modellierung lassen sich effizient datenparallel be-
arbeiten.

durch die praktischen Versuche in [Kapitel 8| unterstrichen.
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5. Voxel-Datenstrukturen auf der GPU

Im Rahmen dieser Dissertation wurde seit Mitte 2012 an einer Softwarebibliothek gear-
beitet, welche das Ziel hat, moglichst vielfédltige Robotikanwendungen, die in den vor-
ausgehende Kapiteln beleuchtet wurden, durch den Einsatz von GPU-Technologie zu
verbessern oder sogar erst zu ermoglichen. Wie in [Kapitel 4 dargelegt, ist der Grundge-
danke der Bibliothek die Vermeidung von Dreiecksnetzen zur Reprasentation von Um-
welt und Roboter, wie es im aktuellen Stand der Forschung {iblich ist, da diese nur tiber
Umwege aus Punktwolkendaten erstellbar sind. Statt dessen wurden mehrere diskreti-
sierende Datenstrukturen mit unterschiedlichen Eigenschaften und Vorziigen implemen-
tiert, um die 3D-Daten aufzunehmen, welche bei Kollisionstests und zur Bewegungs-
planung bendétigt werden. Diese Datenstrukturen speichern wiederum unterschiedliche
die die eigentlichen anfallenden Nutzdaten ¥ beinhalten. Zusétzlich zu den
Datenstrukturen wurden Algorithmen entwickelt, die den Operator zur Voxelumwand-
lung H(M, P) aus individuell fiir jede Datenstruktur umsetzen, um die-
se mit Daten zu befiillen. Die Architektur der Datentypen und Algorithmen wurde auf
bestmogliche Parallelisierbarkeit ausgelegt, indem ihre Implementierung den Paradig-

men aus folgt. Die Parallelisierung in[CUDA|erfolgt, wenn nicht explizit anders
erwahnt, grundsétzlich datenparallel auf Voxel- bzw. Punkte-Ebene.

Im Folgenden sollen zunédchst die Voxeltypen, die Datenstrukturen und ihre Eigenschaf-
ten und darauf aufbauend die Algorithmen zur Auswertung erldutert werden. Das spéa-
tere Kapitel zur Kollisionserkennung stiitzt sich wiederum auf diese Auswertungen.

5.1. Voxeltypen

Je nach Anwendungszenario gilt es, den 3D-Raum mit unterschiedlich umfangreichen
Daten zu annotieren. Daher wurden vier implementiert, um unterschiedli-
che Informationen repréasentieren zu konnen. Mit Ausnahme des einfachsten Typs wur-
de die Speichergrofie der Voxel dabei passend zur Cache-Architektur der verwendeten
Hardware gewdhlt.

Definition 12. Die verfiigbaren Voxeltypen unterscheiden sich durch die in
ihnen speicherbaren Nutzdaten ¥. Dies konnen Belegtheitswahrscheinlichkei-
ten, Distanzen oder Zugehorigkeiten sein. Jeder Voxeltyp weist unterschied-
liche Aktualisierungsoperatoren [J;(V') auf, die seinen Zustand entsprechend
neuer Fingabedaten dndern. Weiterhin existieren l-Operatoren, die die spe-
zifischen Informationen im Zuge einer Kollisionsdetektion interpretieren, um
eine Aussage zu treffen, ob ein Voxel belegt ist. Nicht zu verwechseln sind
Voxeltypen mit der [Voxel-Bedeutung] der Bitvektor-Voxel (siehe [Definition 13).

Diese vier Typen werden nun detailliert beschrieben.
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5.1.1. Deterministische Voxel

Diese Art der Voxel weisen den kleinsten Speicherverbrauch auf, da sie nur drei Zustande
kennen und daher mit 2 Bit codiert werden kénnen: frei, belegt und unbekannt. Sie sind zu
bevorzugen, wenn eindeutige Belegtheitsinformationen abzubilden sind, beispielsweise
zur Reprasentation des Roboter-Egomodells. Fiir die Aktualisierung deterministischer
Voxel stehen genau zwei Operatoren zur Verfiigung, die einen Voxel V' durch eine Mes-
sung zum Zeitpunkt ¢ entweder als belegt oder frei markieren:

[y (V) =

: = belegt VW, € [unbekannt, frei, belegt] (5.1)
H_(V):

vy
v, frei  YW,_; € [unbekannt, frei, belegt| (5.2)

Ein einmal aktualisierter Voxel kann folglich seinen Zustand nicht mehr in unbekannt
dndern, sondern nur noch seine Belegtheit wechseln.

Der Belegtheitsoperator B ist offensichtlich definiert als:

BV):=

{1 : Uy = belegt (53)

0 :sonst

5.1.2. Probabilistische Voxel

Um gegentiber Sensorrauschen bzw. kurzzeitigen Ereignissen robuster zu sein, speichern
probabilistische Voxel eine Belegtheitswahrscheinlichkeit. Arbeiten aus dem Bereich der
robotischen Kartierung verfolgen fiir die Aktualisierung [ (V') meist einen Weg, der auf
eine langfristige Stabilitdt des Zustandes ¥ ausgelegt ist. Moravec und Elfes [146] nutzen
dafiir zwei Zahlvariablen € Z pro Zelle und ermitteln die Belegtheitswahrscheinlichkeit
p(belegt) als Quotienten aus der Anzahl von Messungen, die ein Hindernis in der Zelle
anzeigen und der Anzahl, mit der die Zelle als frei gesehen wurde, also sie von einem
Messstrahl passiert wurde:

_ [E4 (V) L
pv (belegt) = ENGEENG] und entsprechend  py (frei) = 1 — py (belegt) (5.4)

Da hierbei kein Sensormodell berticksichtigt wird, wurde in dieser Arbeit der probabi-
listische Ansatz verfolgt, den unter anderem Thrun et al. in [196] vorstellen und der mit
einer Variablen pro Voxel auskommt. Hierbei ist die Belegung einer Zelle als Schitzung
eines bindren Zustandes formuliert und durch einen binédren Bayes-Filter berechnet. Die-
ser kann eingesetzt werden, wenn aus einer Folge von Sensormessungen auf eine bindre
Zustandsvariable geschlossen werden soll. Als Log-Odd dargestellt (Definition siehe
im Anhang), ergibt sich die folgende einfache Formel zur Aktualisierung der
Belegtheitswahrscheinlichkeit ¥ einer Zelle, gegeben einer Messung z; aus einem inver-
sen Sensormodell:
p(belegt|z) p(belegt)

Di (‘/, Zt) = g/t = Wt,1 + ZOQW — loyTbelegt) (55)
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Die Verldsslichkeit einer Messung ergibt sich aus der probabilistischen Modellierung des
eingesetzten Sensors (siehe|Unterabschnitt 4.1.4) Sensormodelle).

Fiir die betrachteten Szenarien ist es wichtig, Voxel als Hindernis anzusehen, auch wenn
sie nur sehr kurzzeitig als belegt gemessen wurden. Dabei geniigt es, lediglich einen
kurzen Zeithorizont auszuwerten, so dass die Belegtheitswahrscheinlichkeit p pro Voxel
speichereffizient in Form eines ganzzahlingen Wertes aus Z € [—128,127] in ¥ gespei-
chert werden kann. Dem Wert —128 kommt die besondere Bedeutung der Unbekanntheit
zu, mit dem zunichst alle Voxel initialisiert werden. Volumen dieses Wertes wurden also
nie von einem Sensor erfasst und identifizieren Verschattungen, oder nicht explorierte
Bereiche. Andere negative Werte stellen eine Wahrscheinlichkeit der Nicht-Belegtheit dar,
positive Werte die Wahrscheinlichkeit der Belegtheit. Bei einem Voxel mit ¥ = 0 ist die
Wahrscheinlichkeit der Belegtheit pyeeqt(V) = 0,5. Da der Log-Odd aus
einen Wertebereich von +oo aufweist, muss dieser zunichst beschnitten, skaliert und
dann diskretisiert werden, um ihn auf den Wertebereich von ¥ abzubilden. Das relevan-
te Intervall ldsst sich aus der Reaktionszeit A; (ab der die Belegtheitswahrscheinlichkeit
sich um 0,5 gedndert hat), der Frequenz f, mit der Sensordaten verarbeitet werden und
der maximalen Anderung des Log-Odds pro Berechnungsschritt A, aus dem Sensormo-
dell ermitteln.

gpmaa: = A10 : f : At (56)

So ergibt sich unter der Annahme reprasentativer Daten ein Wertebereich von +14, 31
(f = 25 Ay = 0,58, A} = log% ~ (,954. Skaliert man dies auf den verfiigbaren
Wertebereich von +127, ergibt sich eine Auflosung von 0,113 fiir ¥, womit sich Wahr-
scheinlichkeitsinkremente von 0, 565 darstellen lassen. Dies ist fiir den angestrebten Zeit-
horizont von wenigen Sekunden und dem angenommenen einfachen Sensormodell mehr

als ausreichend.

Der Belegtheitsoperator B fiir probabilistische Voxel wird iiber einen Grenzwert ¢ pa-
rametriert, der bestimmt, ab welcher Wahrscheinlichkeit ein Voxel als belegt angesehen
wird:

1 ¥y >¢

B(V,e) = { (5.7)

0 :sonst

5.1.3. Distanz-Voxel

Distanz-Voxel werden zur Berechnung und Darstellung von Distanzfeldern (vgl.
schnitt 5.0) eingesetzt. Sie speichern in ¥ die Voxeladresse des ihnen am néchsten lie-
genden, belegten Voxels. Die Distanz zu diesem Hindernis kann entweder zur Laufzeit
aus der eigenen und der Hindernisvoxelposition abgeleitet werden, oder zugunsten der
Rechenzeit, zusitzlich im Voxel gespeichert werden. Durch die Speicherung des Hinder-
nisses - und nicht alleine dessen Entfernung - ist es einigen, der in vorge-
stellten Algorithmen moglich, propagierte Distanzen exakt zu berechnen, wohingegen
anderenfalls nur eine Abschitzung moglich wire.

Zwei Datentypen stehen zur Verfiigung:
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5. Voxel-Datenstrukturen auf der GPU

e 32 Bit Voxel: Speichert lediglich die Position seines ndchstgelegenen Hindernisses
in Form von drei 10 Bit Integer Werten. Erlaubt sind somit Distanzfelder von maxi-
mal 1023 x 1023 x 1023 Voxeln (3 x 1 Bit sind reserviert fiir uninitialisierte Voxelko-
ordinaten).

e 128 Bit Voxel: Speichert Hinderniskoordinaten in 3 x 32 Bit. Zusétzlich ist die Di-
stanz zum Hindernis in den verbleibenden 32 Bit gespeichert, so dass diese nicht
wiederholt aus den Koordinaten berechnet werden muss.

Wird im Voxel nicht der Distanzwert (¢ R) sondern sein Quadrat (¢ Z) gespeichert,
so kommt die eigentliche Distanzberechnung fast ohne FlieSkomma-Wurzeloperationen
aus [134]. Da die Algorithmen dann hauptsachlich durch die Speicherbandbreite limi-
tiert sind, wirkt sich die Verwendung des 32 Bit Voxels dennoch wesentlich drastischer
zu Gunsten der Laufzeiten aus, als das Zwischenspeichern der Distanzwerte in 128 Bit
Voxeln.

Der Aktualisierungsoperator 14 (V') entspricht in seiner ersten Stufe dem Operator der
deterministischen Voxel. Sinnvoll kann er jedoch nur in Kombination mit H(M, P) an-
gewendet werden, da nach jedem Einfiigen einer neuen Punktwolke die Distanzberech-
nungen durchzufiihren sind.

Der Belegtheitsoperator B erlaubt die Berticksichtigung eines Kollisionsradius. Liegt in-
nerhalb dessen ein Voxel, gilt der angefragte Voxel als belegt:

1 ¥y <r

V) = { (5.8)

0 :sonst

5.1.4. Bitvektor-Voxel

Bitvektor-Voxel erlauben die Codierung diskreter Zustdande oder Zugehorigkeiten. Dafiir
besteht ¥ aus einem Bitvektor, dessen Bits die Bedeutungen aus zugeordnet
sind.

Definition 13. Das im Bitvektor gespeicherte Muster beschreibt die [Voxel|
des Bitvektor-Voxels. Uber sie kénnen Zeitpunkte (Voxel ist zum
Zeitschritt n belegt) oder Zugehorigkeiten zu Entitdten (bspw. Roboter, stati-
sches / dynamisches Hindernis, Bewegungsplan n, ...) reprdsentiert werden.

Nicht zu verwechseln mit[Voxeltypen| (siehe [Definition 12).

Die Lange des Bitvektors kann zur Ubersetzungszeit definiert werden und geht direkt
in den Speicherverbrauch pro Voxel ein. In allen Experimenten in dieser Arbeit wurde
eine Bitvektorldnge von 32 Byte pro Voxel gewdhlt, so dass ein Voxel bis zu 256 identi-
tizierbare Zustdnde gleichzeitig annehmen kann. Sechs der Bits sind allgemeiner Natur,
die verbleibenden 250 Bits stehen fiir oder identifizierbare Entititen zur Verfii-

gung.
Um die Bits der Voxel zu setzen, wurden mehrere Aktualisierungsoperationen [1;(V, @)

implementiert, die ¥ iiber einen bindren Operator { mit dem zuséitzlichen Bitvektor &
verkniipfen. Als Operator { stehen AND, OR, NOT und NOR zur Verfiigung:
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Gy (V,6) = W, = U § & (59)

Somit kann [ (V, @) mittels [or (V, @) umgesetzt werden, wobei in ¢ das Bit 1 gesetzt
sein muss und optional ein oder mehrere Bits > 4.

Auch der Belegtheitsoperator B benétigt einen zweiten Bitvektor @, der angibt, welcher
Zustand relevant ist. Ist eines oder mehrere der Bits aus ¢ und die gleichwertigen Bit in
v gesetzt, ist der Voxel belegt:

254
BV, 9):=\/ Wy, A, (5.10)

n=4

Spielt die Voxelbedeutung keine Rolle, geniigt es, das Belegtheitsbit 1 abzupriifen:

(V) =0y, (5.11)
0 = Frei
ByteO [7[6[5[4]3]2]1]0] 1 = Belegt
2 = In Kollision
Bytel [15[w1[13[12]11][10]9]s] 3 = Unbekannt
4 = Erste SSV-ID
Byte 31 [ 255254253252 251[250]249] 248 | 254 = Letzte SSV-ID

255 = Nicht definiert

Abb. 5.1.: Aufbau eines Bitvektors in [GPU-Voxels; 32 Bytes in einem Array ergeben eine
Bit-Maske mit 256 Eintrdgen, von denen die ersten vier und das letzte Bit eine
besondere Bedeutung besitzen.

5.2. Anforderungsanalyse Datenstrukturen

In der Informatik existieren eine Vielzahl von potentiellen Datenstrukturen, in welchen
die vorgestellten arrangiert werden kénnten. Von diesen, in der imperativen
Programmierung typischen Strukturen sind in dieser Arbeit jedoch lediglich drei rele-
vant: Felder fester Grof3e, Felder variabler Grose und Baume. Auf die Umsetzung von
anderen Datenstrukturen mit variabler Grofle (Verkettete Listen, Halden) wurde auf-
grund der Einschrankungen der CUDA Speicherverwaltung verzichtet. Da neben der
Position im Raum keine andere Ordnung auf Voxeln benétigt wurde, sind auch Hashta-
bellen oder Vorrang-Warteschlangen nicht von Bedeutung, ebenso Graphen mit bi- oder
multidirektionalen Verkniipfungen.

Um eine fundierte Zuordnung zwischen diesen Strukturen und vier typischen Anwen-
dungsféllen zu schaffen, wurden anhand von sechs charakteristischen Eigenschaften Pro-
file der genutzten Datenquellen aufgestellt. Dafiir wurden in[Abb. 5.2|die folgenden Kri-
terien qualitativ bewertet:
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Wabhlfreie Schreibzugriffe

Sparliche Datendichte

Hoher Anteil von unbekannten / freien Voxeln
Selektives Loschen vorgehaltener Daten

Hochfrequente Kollisionspriifung (sequentielles Lesen)
Héufige abschnittsweise Aktualisierung

Im Fazit des Kapitels werden diese Profile mit den Leistungsmerkmalen der im Folgen-
den vorgestellten Datenstrukutren verglichen: Voxelkarten (Felder fester Grofie), Voxel-
listen (Felder variabler Grofie) und Voxel-Octrees (Baumstrukturen).

Random Minimal Update
Writes Overhead

Memory Col. Dect.
Efficiency Throughput
Clearing Sparse Coverage

Efficiency Efficiency
(a) Umgebungskarte
Random Minimal Update
Writes Overhead
Memory Col. Dect.
Efficiency Throughput
Clearing Sparse Coverage
Efficiency Efficiency

(c) Swept-Volumen

Random Minimal Update
Writes Overhead

Memory Col. Dect.
Efficiency Throughput
Clearing Sparse Coverage

Efficiency Efficiency

(b) Roboter oder dynamisches Hindernis

Random Minimal Update
Writes Overhead

Memory Col. Dect.
Efficiency Throughput
Clearing Sparse Coverage

Efficiency Efficiency

(d) Bewegungsprimitive

Abb. 5.2.: Anforderungen unterschiedlicher Datenquellen bei der Planung

5.3. Voxelkarten

Eine Voxelkarte stellt eine bijektive Abbildung des diskretisierten dreidimensionalen Raum-
es IN3 auf ein konstantes eindimensionales Feld an Adresse B im Speicher der GPU dar.
Unter der Annahme einer statistischen Unabhidngigkeit zwischen den Voxeln erlaubt die
Datenstruktur das parallele Schreiben und Lesen beliebig vieler Voxel. Eine datenpa-
rallele Verarbeitung des Speicherinhaltes ist somit iiber |Grid-Stride-Loops| sehr effizient
moglich (vgl. [Kapitel 3). Weiterhin ist ein wahlfreier Zugriff auf beliebige Voxel in O(1)
moglich. Besitzt der abgebildete Raum die Dimensionen (dim, dim,,, dim.)T besteht das
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5.3. Voxelkarten

Feld aus n = dim, - dim,, - dim, Voxeln, deren Speicher einmalig und zusammenhéangend
zu allozieren ist. Daher ist der Speicherverbrauch konstant, da er direkt tiber die Dimen-
sionen der Voxelkarte und der Speichergrofie pro Voxel Mem y,ze; bestimmt ist und nicht
vom Grad der Belegtheit abhdngt (ein belegter Voxel verbraucht dieselbe Speichermenge,
wie ein freier oder unbekannter Voxel). Um die Menge der belegten oder freien Voxel zu
bestimmen, muss die gesamte Karte mit linearem Aufwand durchlaufen werden. Sind
dafiir ¢ Threads verfiigbar, liegt der Aufwand fiir den Schnittoperator N und den Verei-
nigungsopertator U bei O(n/q).

Fiir die Voxelumwandlung B von Datenpunkten mit FlieBkommakoordinaten p = (z,y, 2)7, z,y,z €
R werden diese in jeder Dimension mit der Voxelseitenldnge I y,,.; diskretisiert und zeilen-
/ ebenenweise nach dem Schema

addr(z,y,2) = B+ (| -

| - dimy - dimy, + |

| - dimg) + |

J ) - Mem Vozel

(5.12)

auf die Adresse addr im Speicher abgebildet (vgl. zur Voxelumwand-
lung).

l Vozxel l Vozxel l Vozxel

Entsprechend kann die geometrische Mitte des Voxels mit der Adresse addr bestimmt
werden:

addr — B
IL,=|———
Ldimm - dim,
I — Laddr — B — (dimg - dim,, - IZ)J (5.13)
v dimg
I, = addr — B — (dimy - dimy - I,) — (dimg - 1))
x I, 1 lVoacel
Ci = Yy = Iy + - lVoxel (514)
2
z Iz lVoxel

5.3.1. Translation mittels Basisversatz

Weist die Punktwolke eines mobilen Objektes eine rein translatorische Bewegung auf, so
muss sie nicht mehrfach in Voxel umgewandelt werden. In diesem Fall ist es ausreichend,
die Punkte einmalig in eine Voxelkarte oder Voxelliste einzutragen, und die Translation
tiber einen Versatz der Basisadresse, wie in |Gleichung 5.12} abzubilden. So kann der Ver-
satz in der Implementierung des N- oder U-Operators auf die Basisadresse B der ortsfes-
ten Voxelkarte addiert werden, um so die Voxel gegeniiber der zweiten Datenstruktur des
mobilen Objektes virtuell zu verschieben, bevor die & bzw. || Operationen angewendet

werden (vgl.|Abb. 5.3).

Da lediglich ganzzahlige Additionen ausgefiihrt werden miissen, ist eine empfindliche
Perfomance-Steigerung gegentiber einer matrixbasierten, geometrischen Transformation
der Punktwolke mit 28 Fliefkommaoperationen pro Datenpunkt und dem erneuten Ein-
tragen in die Datenstruktur gegeben.

Diese Technik wird in den Anwendungsfillen der Pfadplanung mit Rotations{Swept-Vo-
lu-men|(Unterabschnitt 7.2.2)), der Planung mit Bewegungsprimitiven (Unterabschnitt 7.2.3)
und der Greifplanung (Unterabschnitt 7.2.7) eingesetzt.
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5. Voxel-Datenstrukturen auf der GPU

Voxeladressen
to Offset t1
16 91
17 92
26 101
27 102
28 103
36 111
g7 T 112
38 113
39 114
47 122
48 123
140) 149 49 124
(a) Addressierungsschema der Voxelliste (b) Voxelliste vor und nach Translation

Abb. 5.3.: Translation der Voxelliste einer umgewandelten Punktwolke zwischen ¢, und
t1. Alle Voxeladressen der Liste werden um den Versatz inkrementiert. Dies
erspart die geometrische Transformation der Punktwolke.

5.3.2. Voxelkarten mit mehrstufiger Auflésung

Ahnlich einer Bildpyramide in der 2D-Datenverarbeitung kann auch bei Voxelkarten ei-
ne bedarfsgesteuerte, schrittweise Verfeinerung der Verarbeitung realisiert werden, wih-
rend die Vorteile des effizienten Datenzugriffs nutzbar sind. Dafiir miissen mehrere Kopi-
en der maximal auflosenden Ausgangs-Voxelkarte Mjqzres angelegt werden, die schritt-
weise grober diskretisieren. Der Speicheraufwand einer Voxelkarte ist zwar, im Vergleich
mit den anderen Datenstrukturen, prinzipbedingt grofs, jedoch reduziert er sich mit jeder
Halbierung der Auflosung um den Faktor acht. So kann der Speicherbedarf Mem pryitires
einer N-stufigen Kartenpyramide mit folgender Formel berechnet werden:

Mem yryitires =

N-1
I Mazres
Z #:VO% - Mem voger (515)

n=0

An einem Beispiel mit realistischen Werten sieht man, dass der zusétzlich benétigte Spei-
cher fiir eine Pyramide mit /N = 4 Ebenen im Vergleich mit der original Karte sehr gering
ist: Die Karte Mj/qzres von der ausgegangen wird, soll 5,12m x 5,12m X 2,56 m mit 1 cm?
Voxeln abdecken. Bendtigt ein Voxel dabei 1 B Speicher, ergibt sich ein Speicherbedarf

von 512B x 512B x 256 B = 64 MiB fiir die erste Etage, und lediglich ®4X1B 648% +

64§§,HB = 9,125 MiB fiir die weiteren drei Etagen der Pyramide, bzw. Mem pyitires = 73,125 MiB

fiir die gesamte Pyramide. Ahnlich wie der Speicherverbrauch sinkt auch die Zeit fiir
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Kollisionspriifungen mit der Voxelanzahl. Daher ist auch hier der entstehende Zusatz-
aufwand fiir mehrfache Priifungen, verglichen mit der erzielbaren Beschleunigung, ver-
nachldssigbar. Das hierarchische Verfahren, das in skizziert ist, ldsst sich auch
mit Voxellisten umsetzen. Zeitmessungen dazu finden sich in

In der praktischen Umsetzung werden die Zwischenstufen der Pyramide nicht genutzt
und nur auf einer maximalen und minimalen Diskretisierung gearbeitet, da dies in der
Evaluation zum hochsten Zeitgewinn fiihrte.

Rotations- Rotations- Rotations- =
5 5 (<]
Roboter- primitiv KOPIEI:en & primitiv Kopler'en & primitiv "5
Pose in voller Reduzileren in halber Reduz.leren in viertel Q2
Auflosung (offline) Auflosung (offline) Auflosung ;:2

Kollision ~  Xoll- Kollision ~  Kolli- Kollision Kolli-

sions- A— sions- — sions-

: Kollisionsfreiz N check £ Kollisionsfrei é check KollisionsfreW

+—
Karte Karte Karte o)
3D . Kopieren & . Kopieren & o z
Punktwolken in voller Reduzieren in halber Reduzieren in viertel =
Auflésung Auflosung Auflésung o}

Abb. 5.4.: Hierarchische, bedarfsgesteuerte Kollisionspriifung. Das Roboter-Modell wird
offline in der Auflosung reduziert, wihrend die Umweltdaten kontinuierlich
komprimiert werden. Griine Komponenten sind in CUDA implementiert.

5.4. Voxelliste

Auch eine Voxelliste ist prinzipiell ein eindimensionales Feld im GPU-Speicher. Jedoch
werden in ihr nur Voxel eines bestimmten Typs vorgehalten. Somit ldsst sich beispiels-
weise gezielt nur der belegte Raum speichern, womit der Speicherverbrauch fiir diinn be-
setzte Umgebungen gegeniiber einer Voxelkarte drastisch reduziert wird. Effizienter als
bei einer Voxelkarte ist dadurch auch das lineare Durchlaufen der Datenstruktur, da hier-
bei nicht tiber irrelevante Voxel iteriert werden muss, was die Laufzeit des U-Operators
fiir Kollisionspriifungen entsprechend beschleunigt. Ein Zugriff auf einzelne Voxel tiber
geometrische Koordinaten ist hingegen nur mit Hilfe einer Suche moglich. Um den Such-
aufwand zu minimieren, sind die Eintrdge der Liste anhand ihrer Voxeladresse sortiert
und dedupliziert. Diese beiden Eigenschaften miissen bei der Verschmelzung zweier Lis-
ten durch den N-Operator oder bei der Voxelumwandlung einer dichten Punktwolke mit
dem H-Operator aufrechterhalten werden.

Um eventuelle Duplikate aus der Liste zu entfernen, miissen alle Eintrdge mittels ei-
nes Radix Sort nach ihrer Voxeladresse aufsteigend geordnet werden. In der Folge lie-
gen mehrfach existierende Voxel benachbart im Speicher. Anschlieffend lduft eine Pre-
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fix-Summe riickwirts iiber die Nutzdaten und wendet dabei einen [Voxeltypppezifischen
Vereinigungsoperator auf Voxel an, die dieselbe Adresse aufweisen. Durch die riickwiérts
ablaufende Bearbeitung enthdlt somit der erste von mehreren ortsgleichen Voxeln die
kombinierten Nutzdaten (Bitvektoren oder Belegtheitswahrscheinlichkeiten) der Dublet-
ten. Daraufhin kann erneut vorwarts tiber die Liste gelaufen werden, um alle Duplikate
zu 16schen. Voxellisten weisen entsprechend einen hohen Aufwand bei ihrem Aufbau
auf, der lineare Zugriff ist hingegen sehr effizient.

Je nachdem ob eine Voxelliste in Kombination mit einem Octree oder einer Voxelkarte
einsetzt werden soll, handelt es sich bei den gespeicherten Voxeladressen um virtuelle
Adressen in der zugehorigen Voxelkarte (nach |Gleichung 5.12), oder um Morton-Codes
im entsprechenden Octree. Die Adressierung ist um eine Basisadresse der Datenstruktur
bereinigt und beginnt somit bei Null.

Neben den Adressen speichert die Voxelliste auch die geometrischen Koordinaten und
die Nutzdaten der Voxel. Da die Implementierung in Thrust umgesetzt ist, werden al-
le Daten, entsprechend des Structure-of-Arrays-Prinzips, in drei gleich langen Listen
gespeichert. Die Eintrdge am selben Listenplatz reprasentieren zusammen einen Voxel,
weshalb in Thurst so genannte Zip-Iteratoren den Zugriff auf zusammengesetzte Ele-
mente erleichtern. Andert sich die Anzahl der Voxel in der Liste, so muss der Speicher
aller drei Listen neu alloziert werden. Auch ein Umsortieren der Voxel muss auf allen
Listen gleichermafien angewendet werden. Die redundante Speicherung von Voxeladres-
sen und geometrischen Koordinaten wurde aus Performancegriinden gewéhlt. Da bei
typischen Anwendungsszenarien die Listen kurz sind, fallt der zusatzliche Speicherver-
brauch gering aus.

Der H-Operator zur Voxelumwandlung entspricht dem einer Voxelkarte. Er generiert zu-
néchst fiir jeden Punkt einen eigenen Voxel. Fallen durch die Diskretisierung mehrere
Punkte in denselben Voxel, so werden die mehrfachen Eintrdge bei der Sortierung zu-
sammengefasst. Aufgrund dieses Aufwandes sollte H nicht fiir hochfrequente Aktuali-
sierungen eingesetzt werden.

5.5. Octree

Bei der geometrischen Modellierung von Volumendaten mittels Voxelkarten stellt der
Speicher schnell eine Grenze fiir die mogliche Auflésung, oder das abzubildende Vo-
lumen dar, unabhingig davon, zu welchem Grad dieses Volumen belegt ist. Daher ist
eine Reprdsentation mit variabler Auflosung erstrebenswert, in der sich gleichférmige
Bereiche (bspw. der Freiraum) speichereffizient zusammenfassen lassen. Eine weit ver-
breitete Datenstruktur, die diese Anforderung umsetzt, ist der Octree (eine baumformige
Struktur, deren Knoten je acht Verzweigungen aufweisen, siehe[Abb. 5.5b). Bei einer geo-
metrischen Interpretation (siehe reprasentiert der Wurzelknoten auf der hochs-
ten Ebene einen Kubus, der alle abzubildenden Daten enthilt. Er wird rekursiv in acht
gleich grofie Kuben unterteilt, bis jeder Kubus nur noch gleichartige Daten enthdlt, oder
eine vorgegebene Maximaltiefe erreicht ist, die bis zu n Eintrdge aufweist. Diese Baum-
struktur und die auf ihr definierte Ordnung erlaubt eine schnelle Suche nach Elementen
in O(logn).
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Wihrend der Aufbau eines Octrees aus Datenpunkten in einer seriellen Implementie-
rung durch eine Rekursion gut 16sbar ist, bestehen fiir eine GPU-Implementierung durch
den a priori unbekannten Speicher- und Laufzeitaufwand zwei Herausforderungen: Zu-
néchst ist das bedarfsgesteuerte, inkrementelle Allozieren von Speicher wahrend der Re-
kursion nach [Feststellung 5|ineffizient. Weiterhin ist der Arbeitsaufwand von der Vertei-
lung der Eingabedaten abhédngig und somit nicht direkt parallelisierbar. Die folgenden
Abschnitte beschreiben eine Herangehensweise, die eine effiziente heterogene Paralleli-
sierung dennoch ermoglicht.

5.5.1. Stand der Technik

Die ersten Arbeiten zur Implementierung von Octrees wurden bereits 1980 von Meagher
in [143] und Jackins [105] veroffentlicht. Wahrend der Fokus dieser ersten Arbeiten noch
auf der effizienten Manipulation und Darstellung der Datenstrukturen lag, folgten be-
reits 1984 erste Veroffentlichungen zur kollisionsfreien Bahnplanung fiir einen Manipu-
lator [79] auf Octree-Basis, die dann 1986 von Herman um Rotations{Swept-Volumen|
erweitert [100] wurden. Auch gab es Versuche, Distanzinformationen in Baumen zu spei-
chern, um Kollisionsanfragen noch schneller zu beantworten [107]. In den 1990er Jahren
wurden dann jedoch vermehrt Dreiecksnetzmodelle zur Darstellung und zur Planung
mit 3D-Modellen verwendet und die Fortschritte der Octrees stagnierten.

Klassische Octree-Implementierungen speichern pro internem Knoten acht Zeiger auf
Kindknoten, was bei kleinen Nutzdaten einen grofien Zusatzaufwand an Speicher be-
deutet. Eine Alternative dazu sind mittels Hashfunktion linear gespeicherte Baume. Hier
werden ausschliefslich belegte Knoten vorgehalten, wobei jeder Knoten den Morton-Co-
de seiner Position zusammen mit einem Bitvektor speichert, der angibt, welche seiner
Kindknoten existieren. Uber diese Informationen lassen sich Eltern- und Kindknoten
adressieren. Auch die Tiefe im Baum und daraus die Grofse des abgedeckten Volumens ist
implizit reprédsentiert. Die eigentliche Speicheradresse muss letztendlich iiber eine Hash-
funktion aus dem Morton-Code abgeleitet werden. Diese Art der Biume tauschen Spei-
chereffizienz gegen Laufzeitaufwand ein und kommen daher fiir diese Arbeit nicht in
Frage.

Eine relevante, modere CPU-Implementierung ist der duferst speichereffiziente Octree
von Borrman et al. [49], der je acht Kindknoten mit nur einem einzigen Zeiger adressiert.
Die Implementierung ist jedoch nicht fiir dynamische Szenen ausgelegt und differenziert
nicht zwischen freiem und unbekanntem Raum. Dies ist hingegen bei Octomap moglich,
einer weit verbeitete CPU-Bibliothek, die Octrees mit beliebigen Nutzdaten erlaubt [104].
Die Implementierung ist jedoch weder speichereffizient noch besonders performant, was
somit auch fiir das darauf aufbauende ROS Collider Paket gilt, das Kollisionspriifungen
mit dem Octree ermoglicht [95].

Die einzigen relevanten GPU-Octrees stammen aus der Spielewelt [155] oder der Com-
putergrafik [185]. Bei ihnen handelt es sich jedoch um statische Datenstrukturen, die zur
Laufzeit partiell geladen und wieder freigegeben werden (Out-of-core Aufbau), womit
sie sich nicht fiir die bearbeiteten Problemstellungen eignen. Eine Arbeit, die hingegen
den Aufbau eines Octrees auf der GPU durchfiihrt, stammt von Karras [110]. Dieser ver-
zichtet dabei jedoch auf die Propagierung von Knotenzustidnden entlang des Baumes in
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5. Voxel-Datenstrukturen auf der GPU

Richtung Wurzel, womit ein effizienter Abstieg im Baum, der fiir die Kollisionspriifung
unabdingbar ist, nicht gegeben ist. Eine weitere Arbeit, die sich mit der parallelen Ma-
nipulation von dynamischen Baumstrukturen auseinandersetzt, stammt von Chaudhary
[56]. Hier liegt der Fokus auf der effizienten Umsetzung von boolschen Operationen, je-
doch wird eine Hardware vorausgesetzt, die eine dynamische Allokation von Rechenein-
heiten erlaubt. Da dies ist bei GPUs nur mit hohen Latenzen moglich ist, ist der Ansatz
hier nicht nutzbar. Somit ist keine vergleichbare Arbeit bekannt, die einen effizienten,
parallelen Aufbau und eine parallelisierte Traversierung unterstiitzt, wie sie der im fol-
genden beschriebene dynamische GPU-Octree umsetzt.

Ebene 3 O

Ebene 2 @@@ @5@\ @\©@

.

Ebene 1 @@ @ @/@ @ ©\® +
s \\

Ebene 0

O Innerer Knoten <> Blattknoten

(a) Uberlagerung eines Oberfla-  (b) Baumstruktur der rekursiven Unterteilung des Wur-
chenmodells mit einer Octree- zelknotens auf Ebene 3 bis zu Blattknoten auf Ebene
Partitionierung [162]. 0.

Abb. 5.5.: Beispiele zur Verdeutlichung des Octree-Prinzips.

Definition 14. Die Baum-Invariante beschreibt den eindeutigen, giiltigen Zu-
stand eines gewurzelten Baumes, in dem alle inneren Knoten den ihren Kind-
knoten entsprechenden, zusammengefassten Zustand besitzen (frei, belegt, teil-
weise belegt, unbekannt). Die Invariante muss nach jeder Anderung am Baum
gepriift und bei Bedarf wiederhergestellt werden. Ein parallelisiertes Verfah-
ren dazu wird in[Abschnitt 5.5.2| vorgestellt.

5.5.2. Umsetzung

In den folgenden Abschnitten werden Vorgehen beschrieben, die in der Octree-Imple-
mentierung von Florian Drews im Rahmen seiner Masterarbeit [22] umgesetzt wurden.
Dafiir sollen zunéchst einige Begriffe und Grundlagen definiert werden. In dieser Arbeit
wéchst der Baum von oben nach unten. Seine Wurzel liegt somit auf der hochsten Ebe-
ne und die Blattknoten (Knoten ohne weitere Kindknoten) auf Ebene 0. Die Blattknoten
weisen das kleinste adressierbare Volumen auf und bestimmen somit die rdumliche Auf-
16sung des Octrees. Zwischen Wurzel und Blattknoten liegen innere Knoten. Sie konnen
jedoch, im Gegensatz zur tiblichen Definition, auch ohne Kindknoten existieren. Alle Oc-
tree-Knoten, deren Grofse sich tiber ihre Ebene im Baum definiert, werden auch als Voxel
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5.5. Octree

bezeichnet. Die Kindknoten eines inneren Voxels sind eindeutig von 0 bis 3 nummeriert
und tiber 40 Bit-Zeiger erreichbar (erlaubt 1 TB grofse Baume). Die Implementierung ist
auf Datensparsamkeit ausgelegt, weshalb implizite Daten, wie der Morton-Code eines
Voxels, nicht in den Nutzdaten gespeichert sind. Auch die Zeiger auf die Kindknoten
sind auf einen einzigen reduziert, da die Kinder in einem Array angeordnet sind und
ihre Adressen somit durch Zeigerarithmetik bestimmbar sind (siehe [Abb. 5.6). Dies ist
durch eine, spéter beschriebene, konservative Speicherallokation moglich und verbes-
sert den Zugriff bei der Parallelverarbeitung durch Memory Coalescing] Ein weiteres
8 Bit grofies Statuswort pro Voxel enthdlt Verwaltungsinformationen, beispielsweise ob
sein Subbaum zu aktualisieren ist.

data m_child
InnerNode I:E

Y
T e e e Te T

LeafNodes I i R I

Abb. 5.6.: Speicherlayout von inneren Knoten und Blattknoten. Grafik aus [22].

Blattknoten konnen als deterministische oder probabilistische Voxel implementiert sein
(siehe[Abb. A.6|in[Anhang A). Eine Umsetzung mit Bitvektor-Voxeln ist moglich, wurde
bisher aber nicht benotigt. Im determinsistischen Fall miissen innere Knoten alle Zustan-
de (belegt, frei und unbekannt auch gleichzeitig aufweisen kénnen, um ihre Unterbdume
korrekt zu représentieren. Der Speicherbedarf stellt sich wie in [Tab. 5.1|dar.

T Deterministisch Probabilistisch
yp LeafNode InnerNode LeafNodeProb InnerNodeProb

Grofse [Byte] 1 8 2 8

Tab. 5.1.: Speicherbedarf der verschiedenen Knotentypen des Octrees

Speicherverwaltung

Ein Octree stellt eine dynamische Datenstruktur dar, da bei seinem sukzessiven Auf-
bau aus Sensordaten im Vorfeld nicht bekannt ist, wie viele Knoten benétigt werden. Thr
Speicher ist fortlaufend anzulegen, oder beim Zusammenfassen von Kindknoten zu ver-
werfen. Daher sind Strategien zu entwickeln, die diesen Widerspruch der dynamischen

Speicherallokation aus moglichst auflosen.

Naheliegend ist zundchst die Zusammenfassung vieler kleiner Speicherreservierungen
einzelner Knoten zu grofleren Einheiten, die auf einmal angefordert werden. Neben der
Zeitersparnis wiirde dies auch zu zusammenhéngenden Speicherbereichen fiithren, was
parallele Berechnungen durch[Memory Coalescing|beschleunigt. Allerdings konnten so-
mit auch Speicherfreigaben nicht mehr auf Knotenbasis, sondern nur in denselben grofsen
Einheiten erfolgen, was ohne eine Octree-spezifische Speicherverwaltung zu Fragmentie-
rung fithrt. Da die Umsetzung einer eigenen Verwaltung aufgrund des hohen Aufwan-
des und der durch sie eingefiihrten zusatzlichen Latenzen nicht zielfiihrend ist, wird eine
andere Strategie verfolgt:
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5. Voxel-Datenstrukturen auf der GPU

Ein regelméfiiger Neuaufbau des Octrees erlaubt es, zundchst zu viel Speicher zu reser-
vieren und eine Fragmentierung wihrend der Konstruktion des Baumes in Kauf zu neh-
men. Nachdem der tatséchliche Speicheraufwand ermittelt ist, kann der komplette Baum
zusammenhédngend kopiert werden, um den fragmentierten Speicher freizugeben. Die-
ser Kompromiss zur Umsetzung einer dynamischen Datenstruktur ist in[Abb. 5.7|gezeigt.
Ausgeldst wird der Neuaufbau durch das Uberschreiten von Grenzwerten des Speicher-
verbrauchs.

Aufbau Anderungen Neubau

Abb. 5.7.: Zyklischer Neuaufbau des Octrees als Kompromiss zur Umsetzung einer dy-
namischen Datenstruktur auf der GPU.

Die finale Umsetzung des Octrees reserviert Speicher jedoch nicht auf Knotenebene, son-
dern vorausschauend in Blocken von acht Voxeln, was der hohen Wahrscheinlichkeit
geschuldet ist, dass Knoten meist mehr als einen Kindknoten aufweisen. Somit besitzt
ein innerer Knoten in dieser Implementierung entweder keinen oder gleich acht Kind-
knoten, die dann im Speicher direkt nebeneinander liegen (mit den bereits beschrieben
Vorteilen desMemory Coalescings).

Adressierung uber Morton-Codes

C————

(a) 2x2x2 Unterteilungen (b) 4x4x4 Unterteilungen (c) 8x8x8 Unterteilungen

Abb. 5.8.: Z-Kurve der 3D-Morton-Adressierung in drei Rekursionsschritten. Illustration
von Asger Hoedtﬂ

Um ausgehend von 3D-Koordinaten in einem Octree den zugehorigen Knoten zu finden,
muss ein Abstieg im Baum erfolgen, der in jedem Knoten die Abstiegsrichtung durch drei
Grofser-/Kleiner-Vergleiche mit den Koordinaten bestimmt. Eine andere Art der Adres-
sierung ist die Verwendung von Morton-Codes, wie sie in dargestellt sind. Thre
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genaue Definition, sowie weitere Beispiele finden sich in[Abschnitt A.3] Diese Codes las-
sen sich aus den Koordinaten ableiten und beschreiben implizit den Pfad von der Wurzel
bis zum gesuchten Voxel in Form der zu verfolgenden Kindknoten. Durch diese Eigen-
schaft kann weiterhin sehr effizient der kleinste gemeinsame Elternknoten zweier Vo-
xel bestimmt werden, was bei der parallelisierten Traversierung des Octrees hilfreich ist.
Aufierdem kénnen Morton-Codes genutzt werden, um zu ermitteln, ob ein Voxel in den
durch zwei 3D-Punkte aufgespannten Quader fallt und somit die Kollisionsdetektion be-
schleunigen. Diese Funktionen werden im Folgenden noch aufgegriffen.

Umgesetzt wurden in dieser Arbeit Morton-Codes mit 60 Bit Breite, womit pro Koordina-
te 220 Bit (also =1 048 576 Voxel) adressierbar sind. Dies entspricht bei 1cm? Voxelgrofe
einem abgedeckten Raum von ~1153 km?3,

Aufbau

Beim Aufbau eines Octrees muss zwischen unterschiedlichen Voraussetzungen der Aus-
gangsdaten unterschieden werden. Diese konnen geometrisch sortiert oder unsortiert
vorliegen. Weiterhin konnten die Ausgangsdaten unverarbeitet den verfiigbaren Spei-
cher tiberschreiten, was eine schrittweise Verarbeitung erzwingt (Out-of-core Aufbau).
Hier soll von unsortierten Punktwolken aus einem oder mehreren 3D-Sensoren ausge-
gangen werden, deren Grofse einen In-core Aufbau erlaubt.

Mortoncode Punkte Ebenenweise Bauminvariante
berechnen sortieren Knoten erstellen herstellen
Speicherbedarf Knoten Kindzeiger
ermitteln initialisieren setzen

Abb. 5.9.: Octree Aufbau aus einer unsortierten Punktwolke in vier Schritten.

Die Erstellung des Octrees erfolgt nach den vier, in|Abb. 5.9|gezeigten, Schritten:

1. Zunichst sind die Morton-Codes aller Eingabedaten zu berechnen. Dabei findet
automatisch eine Diskretisierung mit der maximal unterstiitzten Auflosung statt.
Dieser Schritt kann problemlos parallelisiert erfolgen, da keine Abhédngigkeiten im
Prozess oder in den Daten vorliegen.

2. Liegen die Codes vor, werden sie fiir eine effizientere parallele Verarbeitung sor-
tiert. Dies geschieht mittels parallelisiertem Radix-Sort (siehe[Unterabschnitt A.5.3).

3. Der wichtigste Schritt ist dann der ebenenweise Aufbau des Baumes, ausgehend
von den Blattern in Richtung der Wurzel. Hierfiir sind drei Teilschritte auszufiih-
ren:

lBlog von Asger Hoedt: |http://asgerhoedt.dk/?p=276
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a) Um die benotigte Anzahl an Elternknoten fiir alle belegten Kinder zu ermit-
teln, werden die Prifixe aller Kinder-Morton-Codes auf Gleichheit untersucht
und ungleiche Prifixe gezidhlt. Da die Codes sortiert sind, ist es ausreichend,
benachbarte Eintrdge zu vergleichen und das binédre Ergebnis in einem Array
zu speichern. Das Array kann dann {iber eine parallele Reduktion (siehe
[terabschnitt A.5.2) mit einem Zahloperator zusammengefasst werden.

b) Mit der nun bekannten Anzahl an benétigten Elternknoten wird der Speicher
fiir alle ihre Kindknoten reserviert, in dem dann Knoten mit Initialwerten an-
gelegt werden. Wie bereits beschrieben, sind grundsétzlich alle acht Kindkno-
ten zu reservieren, auch wenn sie nicht alle benotigt werden.

¢) Der letzte Schritt unterscheidet sich zwischen Blattebene und inneren Ebenen.
Im Falle der Blattebene miissen die Knoten, die tatsdchlich belegt sind (also
Daten mit ihrem Morton-Code vorhanden sind), entsprechend markiert wer-
den. Im Falle einer inneren Ebene ist der Zeiger auf den ersten der acht Kind-
knoten zu setzen. Dieser Zeiger wurde bereits im vorhergehenden Zahlschritt
aus einer Prafix-Summenberechnung (siehe [Unterabschnitt A.5.1) abgeleitet.

4. Im letzten Schritt sind die Zustdnde der inneren Knoten in Abhingigkeit ihrer Kin-
der zu setzen, um die [Baum-Invariante| herzustellen. Details hierzu folgen in

Da aus Griinden der Speichereffizienz die Morton-Codes der Knoten nicht explizit vor-
gehalten werden, miissen diese wahrend dem Aufbau des Baumes temporér gespeichert
werden, um im ndchsten Durchgang als Berechnungsgrundlage der ndchsten Schicht be-
reitzustehen.

Die folgenden Formeln werden beim Aufbau des Octrees genutzt, um die Knotenposi-
tionen und die Zeiger auf Kindknoten zu berechnen:

1, fallsk=0
= 1, falls prefiz!(m![k — 1)) # prefiz'(m![k]) (5.16)
0, sonst
offselhrens(i) = Y ¢, —1 (5.17)
k=0
offset! g (i) = 8- Oﬁsetéamm(i) + child (m![i]) (5.18)
offsetlya(i) == 8-i (5.19)

Als Eingabedaten dienen n temporar gespeicherte Morton-Codes m' der Blatter (I = 0)
bzw. der vorher bearbeiteten Knotenebene /. Ausgehend vom i-ten Morton-Code m'[i]
kann die Position des zu ihm gehorenden Knotens im Feld aus Knoten N! der Ebene
mittels offset. ;. (i) berechnet werden. Somit steht sein erster Kindknoten an der Posi-
tion offsetl, .,;(i) des Feldes N'~! der Ebene l — 1. Dabei ist 0 < child'(m![k]) < 8 die
Nummer des Kindknotens. ¢, indiziert, ob Morton-Code m![k] der kleinste Kindknoten
unter den Knoten mit gleichem Elternknoten darstellt. Ist dies der Fall (also wenn fiir

Morton-Code m![i] gilt: ¢ = 1), dann wird dieser Knoten fiir die Erstellung der nachsten
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Start

Stacks initialisieren

Parallele Tiefensuche

—#Untétige Threads
Nein > Grenzwert ?

Ja

Lastausgleich

Elemente
Ja auf Stack?

Nein

Ende

Abb. 5.10.: llustration der |Gleichung 5.16 zur Be- Abb. 5.11.: Paralleles traversieren
rechnung von Knotenpositionen (gestri- des Baumes mit heuris-
chelte Linien) und Zeigern auf Kindkno- tischem Lastausgleich.
ten (durchgezogene Linien).

Ebene benétigt, und daher in das temporaren Feld m!*! der Grofle oﬁsetéarent(n -1)+1
an Stelle offset! (1) kopiert.

parent

In{Abb. 5.10|sind die Zusammenhénge anhand eines Beispiels skizziert. Grau hervorge-
hoben sind Blocke von Knoten, die den gleichen Elternknoten besitzen.

Propagieren von Statusinformationen: Baum-Invariante herstellen

Zur Herstellung der Baum-Invariante] wird der Baum komplett traversiert, um dabei
Informationen durch alle Ebenen zu propagieren. Knoten, die dabei einen ungiiltigen
oder nicht initialisierten Zustand aufweisen, erben den Zustand ihres ndchsten giiltigen
Elternknotens. Da bei der Erstellung des Baumes alle Knoten, die nicht explizit als be-
legt markiert wurden, zundchst nicht initialisiert sind, entscheidet letztendlich der Wur-
zelknoten tiber ihren Zustand. In einer sensoriell erfassten Umgebung sollte daher die
Baumwurzel als unbekannt markiert sein, wohingegen sie in einer vollstindig bekann-
ten Umwelt (z.B. durch ein geometrisches a priori Modell) mit dem Zustand frei starten
kann. In einem zweiten Durchlauf (von unten nach oben) wird der Wurzelzustand dann
auf seinen wahren Wert aktualisiert.

Dieser Mechanismus kann auch dazu verwendet werden, grofiere kubische Volumen im
Baum effizient zu verdndern. Dazu muss lediglich der Elternknoten des Teilbaumes vor
der Herstellung der Invariante angepasst werden, um alle Kindknoten automatisch zu
verdndern.
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Hochparalleles Traversieren des Baumes mit Lastausgleich

Nicht nur zur Durchsetzung der [Baum-Invariante} sondern auch fiir viele weitere, im
Folgenden vorgestellten Operationen, ist das Traversieren des Octrees eine grundlegen-
de Funktion. Die dafiir verwendete Tiefen- oder Breitensuche ist in einer sequentiellen
Implementierung problemlos umzusetzen, wahrend die Datenabhingigkeit beider Such-
verfahren eine geradlinige Parallelisierung jedoch verhindert: Der Arbeitsaufwand fiir
das Ablaufen eines diinn besetzten Baumes ldsst sich ohne genaue Kenntnis der Baum-
struktur nicht in gleiche Arbeitspakete aufteilen. Eine Tiefensuche, die parallel auf unter-
schiedlichen Teilbaumen ablduft, hat abhdngig von der Baumstruktur sehr unterschied-
liche Laufzeiten, da manche Teilbdume friither enden, als andere. Eine Breitensuche da-
gegen, die einzelne Ebenen parallel abarbeiten konnte, benttigt neben einer grofieren
Menge an Speicher (zum Zwischenspeichern aller Voxel der Ebene) auch eine Synchro-
nisation aller Threads vor jeder neuen Ebene, was eine hohe Latenz einfiihrt.

Um diese wichtige Funktion dennoch gewinnbringend zu parallelisieren, wurde eine
Tiefensuche umgesetzt, die mit Hilfe eines bedarfsgesteuerten Lastausgleichs fiir eine
gleichmafiige Umverteilung der Arbeitspakete sorgt. Das Verfahren orientiert sich an der
Arbeit von Lauterbach et al. [130] zur Traversierung der dort verwendeten wur-
de aber um eine Heuristik zur Aufwandsabschidtzung erweitert. Der Lastausgleich wird
ausgelost, wenn die Anzahl untétiger Threads einen Grenzwert iiberschreitet. Das Fluss-

diagramm in skizziert den Algorithmus.

Ein unausgeglichener Lastzustand, wie er in links gezeigt ist, definiert sich
tiber unterschiedlich gefiillte Arbeitsstapel der laufenden Threads. Ziel des Lastausglei-
ches ist es, den Aufwand der Elemente aller Arbeitsstapel gleichmafSig auf die Threads
umzuverteilen.

Stack 0 Stack 1 Stack 2 Stack 3 Stack 0 Stack 1 Stack 2 Stack 3
LO L1
LO

E?&?FEH?.Q!?.‘EE» L1 (1| [Lo| |LoO

s HEEE
I}

Abb. 5.12.: Lastausgleich unter Bertiicksichtigung des geschétzten Arbeitsaufwandes.

Da jedes Element den Wurzelknoten unterschiedlich tiefer Teilbdume reprasentieren kann,
ware eine Aufteilung anhand der Anzahl der Elemente nicht ausreichend. Daher bewer-
tet die implementierte Lastverteilung die Arbeitselemente tiber eine Heuristik, und ord-
net Elemente mit dhnlichem Aufwand auf gleicher Hohe im Arbeitsstapel an. Das Er-
gebnis ist in rechts zu sehen. Die Heuristik basiert auf der Annahme, dass
Teilbaum-Wurzelknoten, die auf einer hoheren Ebene im Gesamtbaum liegen, potentiell
weiter absteigen miissen und daher mehr Arbeitsaufwand (mazArbeit) verursachen:

Knoten n,m | Ebene(n) > Ebene(m) = mazArbeit(n) > mazArbeit(m) (5.20)
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Das Resultat erfordert durchschnittlich weniger Lastausgleichsschritte und sorgt fiir einen
hoheren Parallelisierungsgrad. Voraussetzung ist jedoch, dass die Ebene jedes Arbeitsele-
ments bekannt ist, und jeder Arbeitsstapel die dartiber definierte Arbeitsstapel-Invariante
erfiillt:

S[n], Vi€ [1,n) | Ebene(S[i — 1]) > Ebene(S]i]) (5.21)

Ist diese Gleichung erfiillt, konnen tiber Pra- und Postfixsummen sehr effizient die Posi-
tionen der sortierten Elemente in den Arbeitsstapeln berechnet werden. Einzelne CUDA
Blocke sind dabei jeweils fiir die Analyse eines Arbeitsstapels zustandig, wobei die Eta-
gen des Stapels iiber die Threads pro Block parallel bearbeitet werden. Nach der Zahl-
und Sortierphase konnen die Elemente parallel an ihre neuen Positionen geschrieben
werden und erfiillen dann noch immer die Arbeitsstapel-Invariante. Der Pseudocode
dieses parallelisierten Lastausgleiches findet sich in|Abschnitt A.7} |Algorithmus 5| Uber
kleine, problemspezifische Anpassungen kann die balancierte Tiefensuche fiir viele un-
terschiedliche Aufgaben im Octree eingesetzt werden.

Erweiterung eines bestehenden Octrees

Nach der Vorstellung der parallelen Traversierung sollen nun Techniken zur Erweite-
rung eines bestehenden Octrees beleuchtet werden, da diese iiber die Leistung der Da-
tenstruktur in dynamischen Umgebungen entscheidet. Die Erweiterung ist die komple-
mentdre Erganzung zum bereits beschriebenen zyklischen Neuaufbau (siehe [Abb. 5.7):
Einerseits benotigt sie weniger Rechenzeit und weitaus weniger temporaren Speicher, je-
doch steigt durch sie die Speicherfragmentierung, da es bei der Erweiterung nicht mog-
lich ist, Speicherbereiche wiederzuverwenden oder freizugeben, auch wenn Knoten zu-
sammengefasst werden. Vorausgesetzt wird, dass die Menge der einzufiigenden Voxel
alle von derselben Grofie bzw. Ebene sind, diese nach ihrem Morton-Code sortiert vor-
liegen und keine Voxel denselben Morton-Code aufweisen. Das Einfiigen neuer Daten
geschieht in zwei Schritten: Zundchst werden neue Knoten erstellt und tiber Kindzeiger
in den bestehenden Baum eingehéngt. Daraufhin muss die Baum-Invariante| wiederher-
gestellt werden, wobei auch Knoten gleichen Zustands verschmolzen werden.

Der erste Schritt zur Erweiterung der Baumstruktur gliedert sich in dieselben Teilschrit-
te wie der Aufbau eines neuen Octrees, der bereits in |[Abschnitt 5.5.2| dargelegt wurde,
wobei jedoch die bestehende Baumstruktur zu berticksichtigen ist:

1. Speicherbedarf ermitteln: Fiir jeden neu hinzuzufiigenden Blattknoten ist der Baum
zu traversieren, um zu bestimmen, ob fehlende innere Knoten einzufiigen sind. Da
unterschiedliche Voxel dieselben Elternknoten aufweisen konnen, muss bei einer
Parallelisierung des Zahlens ein doppeltes Traversieren von inneren Voxeln ver-
hindert werden. Um die ineffiziente, naive Verwendung von atomaren Mutexes pro
Knoten zu vermeiden, wurde dafiir ein Verfahren umgesetzt, welches die Seriali-
sierung tiber die Sortierung der Voxel nach ihren Morton-Codes 16st. Durch diese
ist sichergestellt, dass Voxel mit demselben Elternknoten nebeneinander liegen und
jeder Voxel durch Priifung seines Nachbarn feststellen kann, ob er der Kindknoten
mit der kleinsten ID ist. Wenn nun jeweils ausschliefilich die Knoten mit den kleins-
ten IDs bei der Traversierung fortschreiten und dabei das Zadhlen tibernehmen, kon-
nen keine Doppelungen auftreten. Die Zihlung der benétigten Knoten (und somit
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auch die Priifung auf die kleinste Kind-ID) geschieht pro Ebene tiber eine Prafix-
summe. Bei ihrer Ausfiihrung wird gleichzeitig der als letztes erreichte, bereits im
Baum existierende Knoten und dessen Ebene gespeichert. Diese Information wird
fiir das Setzen der Kindzeiger im dritten Schritt benétigt und miisste anderenfalls
durch ein zusétzliches Traversieren des Baumes erneut bestimmt werden.

2. Speicher reservieren und Knoten initialisieren: Nachdem die Anzahl der inne-
ren Knoten sowie der Blattknoten bekannt ist, kann deren benotigter Speicher auf
einmal reserviert werden. Alle neuen Knoten werden zunédchst als undefiniert mar-
kiert.

3. Knotenzustand und Kindzeiger setzen: Im letzten Schritt miissen die neuen Kno-
ten in den bestehenden Baum gehédngt und dieser stellenweise aktualisiert werden.
Auch hier wird die Sortierung der Voxel genutzt, um jeweils nur den Knoten mit
der kleinsten Kind-ID beim Setzen der Kindzeiger zu verfolgen, da diese sonst auch
mehrfach tiberschrieben wiirden. Die Knoten im bestehenden Baum, die durch die
Erweiterung erstmals Kindknoten erhalten, sind bereits aus der Traversierung im
ersten Schritt bekannt: Sie waren die letzten erreichten Knoten beim Abstieg in
Richtung eines neu erzeugten Blattknotens. Ihr Zustand lasst sich mit dem Zustand
der neuen Kindknoten verrechnen und entsprechend aktualisieren.

Nach der Ausfithrung dieser drei Teilschritte sind alle neuen Knoten in den Baum ein-
gefiigt. Es ist jedoch sehr wahrscheinlich, dass es durch die neuen Kindknoten zu einer
Verletzung der [Baum-Invariante| gekommen ist, weshalb diese nachtraglich wiederher-
gestellt werden muss. Verfahren dazu werden im ndchsten Abschnitt aufgezeigt.

Baum-Invariante durchsetzen

Zum besseren Verstdndnis soll zunédchst ein naiver, sequentieller Ansatz dargelegt wer-
den. Dieser Algorithmus iteriert iiber die, als bekannt vorausgesetzte, Menge der gedn-
derten Voxel. Fiir jeden wird der Baum in Richtung Wurzel abgelaufen, um dabei jeden
inneren Knoten in den Zustand zu versetzen, der sich aus der [ } Verkniipfung seiner acht
Kindknoten ergibt. Die Kosten C' des nétigen Berechnungsaufwandes miissen iiber die
Baumtiefe d und der Menge der gednderten Knoten m auf C' ~ m - d - 8 abgeschétzt wer-
den, da keinerlei Synergien genutzt werden und das Verfahren wegen dem gleichzeitigen
Zugriff auf innere Knoten nicht gut parallelisierbar ist.

Gewtinscht wire es hingegen, den gemeinsamen Pfad mehrerer Knoten nur einmalig ab-
zulaufen, womit sich die Kosten auf C' ~ 8/7-m+8- (d —logg(m)) (vgl.[Gleichung 6.8 zur
Aufwandsabschitzung der Kollisionspriifung) reduzieren liefsen. Hierbei entsteht jedoch
offensichtlich eine Datenabhdngigkeit, da vorausgesetzt wird, dass alle auszuwertenden
Kindknoten bereits aktualisiert wurden, bevor hohere innere Knoten bearbeitet werden
konnen. Um damit umgehen zu konnen, wurde die bereits definierte Tiefensuche mit
Arbeitsstapel zu einer eingeschrinkten Zwei-Phasen-Tiefensuche mit Lastausgleich (Load-Ba-
lancing Propagate) erweitert, die den Baum parallelisiert einmal von oben nach unten und
danach von unten nach oben traversiert. Auf dem Weg in Richtung Blattknoten wer-
den noch nicht initialisierte Knoten auf den Zustand ihrer Elternknoten gesetzt (Abstieg),
wahrend auf dem Riickweg von den Blidttern zur Wurzel die Kindknoten zusammenge-
fasst und der Status ihres Elternknotens aktualisiert wird (Aufstieg). Wie bereits erklart,
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konnen einzelne Threads bei der Traversierung ungleiche Arbeitslast erzeugen, insbe-
sondere durch die Expansion von Knoten, die vorher voll belegt oder komplett frei wa-
ren, und daher keine Kindknoten aufwiesen. Das Ausstatten mit Kindknoten stellt ge-
geniiber der Aktualisierung vorhandener Knoten bei der Traversierung einen deutlichen
Mehraufwand dar. Daher ist die Lastbalancierung ein sehr wichtiger Bestandteil. Ortlich
eingeschrénkt ist das Verfahren insofern, dass es gezielt nur die Regionen des Baumes
ablduft, die von einer Aktualisierung betroffen sein konnen. Somit wird eine hohe Daten-
lokalitdt erreicht und gegeniiber dem Ablaufen des kompletten Baumes viel Zeit gespart.
Die relevanten Regionen ergeben sich aus dem maximalen Sichtfeld der auszuwertenden
Sensoren. Die Elemente der Zwei-Phasen-Tiefensuche, die auf dem Arbeitsstapel liegen,
sind so gewdhlt, dass sie klein sind und gleichzeitig dasMemory Coalescing|optimieren.
Fiir die parallele Abarbeitung fiihrt jeder CUDA Block eine Tiefensuche mit eigenem Ar-
beitsstapel aus. Da die Verteilung des Arbeitsaufwands aber nicht a priori bekannt ist,
miissen die Elemente der Stapel zur Laufzeit zwischen den Threads aufgeteilt werden.
Hier kommt die Technik zur dynamischen Lastverteilung, die in[Abschnitt 5.5.2|bzw.
[gorithmus 5im Anhang bereits fiir die Kollisionspriifung entwickelt wurde, zum Einsatz.
Der komplette Ablauf kann in [Abschnitt A.7|in |[Algorithmus 7| nachvollzogen werden.
Eine Besonderheit der Lastbalancierung hierbei ist eine potentielle Blockade des paral-
lelen Algorithmus, der durch Abhingigkeiten zwischen Aufstiegs-Arbeitselementen auf
den Stapeln entstehen kann: Sind die Stapel zu grofs zur simultanen Abarbeitung aller
Elemente und sind genau die Elemente inaktiv, auf welche die aktiven Threads warten,
fiihrt dies zum Stillstand. Daher verfiigen die Arbeitselemente iiber eine Boolsche Varia-
ble, die anzeigt, ob der zugehorige Thread Berechnungsfortschritte erzielen kann. Uber
die Variable kann bei der Balancierung entschieden werden, ob alle Threads auf Ressour-
cen warten und in diesem Fall der Algorithmus neu zu starten ist.

Extrahieren von Voxeldaten

Sollen die Daten des Octrees ohne Kenntnis der Baum-Datenstruktur extern weiterverar-
beitet werden, bietet es sich an, diese in Form einer Liste aus Voxeln zu exportieren. Jeder
Voxel speichert dabei seine kartesische Position und Kantenldnge. Dafiir wird der Baum
mit der bereits vorgestellten lastbalancierten Tiefensuche abgelaufen und jeder Blattkno-
ten bzw. jeder innere Knoten, der keine Kinder aufweist, kopiert, wobei sein Morton-
Code in kartesische Koordinaten umgerechnet wird. Da die Octree-Knoten ihren Mor-
ton-Code nicht explizit speichern, wird dieser beim Abstieg im Baum sukzessive aus
dem Code seines Elternknotens generiert (siehe [Gleichung A.4/im Anhang). Soll nicht
der komplette Baum kopiert werden, ldsst sich die Suche anhand ortlicher Grenzen, der
maximalen Detailstufe (Abstiegstiefe) oder dem Knotenzustand beschranken. Diese Ein-
schrinkungen werden beispielsweise fiir die Visualisierung aus genutzt,
um nur den Ausschnitt des Octrees in der bendtigten Auflosung zu extrahieren, der sich
im Sichtfeld der virtuellen Kamera befindet.

Da vor der Traversierung des Baumes nicht bekannt ist, wie viele Knoten zu kopieren
sind, kann der Speicher fiir die Voxelliste nicht im Voraus reserviert werden. Daher ste-
hen zwei Strategien zur Verfiigung: Entweder kann der benétigte Speicherplatz grofszii-
gig abgeschitzt und iterativ erweitert werden, falls die Extraktion mehr Platz benétigt,
oder der Baum muss zweimal traversiert werden, um zunéchst die bendtigten Voxel zu
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zdhlen, bevor diese extrahiert werden. Fiir die Visualisierung wurde das erste Verfah-
ren gewdhlt, da hier eine unvollstdndige Extraktion keine sicherheitsrelevanten Probleme
verursacht (vgl.|[Abschnitt 5.7.1| zum Thema Visualisierung).

Zusammenfassung

Die vorgestellte, sehr speichereffiziente Implementierung eines Octrees nutzt unterschied-
liche Strategien, um die dynamische Natur dieser Datenstruktur so weit zu kaschieren,
dass eine Parallelisierung des Aufbaus und der Traversierung des Baumes auf der GPU
moglich werden. Dafiir wurden zwei grundlegende Techniken realisiert: Zum einen ei-
ne hochgradig an die Zielhardware angepasste Technik des probabilistischen Lastaus-
gleichs zur Arbeitsverteilung zwischen CUDA-Blocken. Zum anderen eine praventive
Uberallokation von Speicher in Kombination mit einem bedarfsgesteuerten Neuaufbau
der Datenstruktur zur Vermeidung von Speicherfragmentierung. Die Unterstiitzung von
deterministischen und probabilistischen Voxeln im Baum deckt sowohl die Roboter- als
auch die Umweltmodellierung ab, wéahrend in beiden Fillen zwischen belegten, freien
und unbekannten Volumen unterschieden werden kann. Quantitative Details zur Leis-
tungsfihigkeit finden sich in der Evaluation in[Abschnitt 8.3]

5.6. Distanzkarten

=

(c) Voronoi-Regionen in Bodenebene (d) Voronoi-Regionen in 2 m Hohe

Abb. 5.13.: Teilweise angeschnittenes Distanzfeld einer Laborumgebung. Kombination
mehrerer Schnitte durch den Raum.
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Neben den Planungsansitzen aus existiert in der Robotik der weit verbreitete
Ansatz zur Navigation anhand von Distanzkarten mit so genannten Potentialfeld-Pla-
nern. Hierbei wird in einer diskretisierten Datenstruktur in jeder Zelle die Distanz zum
nichstgelegenen Hindernis gespeichert (siehe[Abb. 5.13). Diese Distanzen kénnen inver-
tiert und als abstofsende Potentiale interpretiert werden, die den Roboter von Hinder-
nissen fernhalten. Ubt das Ziel gleichzeitig eine anziehende Kraft auf den Roboter aus,
kann dieser sich, wie in gezeigt, entlang des Gradienten im kombinierten Vek-
torfeld sicher ins Ziel bewegen. Da zusatzlich zur Kollisionserkennung auch beliebige
Anndherungen detektierbar sind, reicht das Anwendungsgebiet von Distanzkarten tiber
die reine kollisionsfreie Bewegungsplanung hinaus, bis hin zur Freiraumoptimierung.

Unterschiedliche Verfahren zur Berechnung von Distanzfeldern werden im folgenden
untersucht.

Motion Planning for single Robat with Two Obstacles
T T T T

40
20+

35

y position

-5 0 5 10 15 20
X position

Abb. 5.14.: Beispiel eines Pfades entlang des Gradienten in einem kombinierten Potenti-
alfeld aus abstofienden Kréften der Hindernisse und einer anziehenden Kraft
des Zieles (Grafik aus [132]).

5.6.1. Zielstellung

Aufgrund von begrenzter Rechenkapazitit wurden Distanzkarten, deren Berechnungs-
aufwand sehr hoch ist, in vorhergehenden Arbeiten meist nur zweidimensional erstellt
und ausgewertet [172]. In diesem Kapitel soll, basierend auf einer Parallelisierung und
dem damit einhergehenden Performancegewinn, die Berechnung hochauflosender, drei-
dimensionaler Distanzfelder mit einer hohen Aktualisierungsrate ermoglicht werden.
Dies erlaubt die Umsetzung von online-fahigen Potentialfeldplanern auf Basis von live
Punktwolken einer dynamischen Umgebung. Weiterhin wird untersucht, ob es zielfiih-
rend ist, bei Anderungen in der Umwelt nur betroffene Ausschnitte der Distanzkarte neu
zu berechnen, oder die gesamte Karte neu zu erstellen.
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Vorausgesetzt wird eine exakte Lokalisierung des Sensors bzw. des Roboters bspw. durch
iSimultaneous Localization and Mapping (SLAM)l Wére dieses nicht gegeben, miissten
zeitlich aufeinander folgende Aufnahmen mittels [Iterative Closest Point (ICP) 0.4. zu-
nichst aneinander ausgerichtet werden. Als Vorverarbeitungsschritt zur Filterung und
Ausdiinnung der Sensordaten werden die aufgenommenen Punktwolken zunéchst in
einer probabilistischen Voxelkarte aggregiert, um dann mit ihren belegten Voxeln die Di-
stanzberechnung durchzufiihren.

5.6.2. Verwandte Arbeiten

Bei der Berechnung von Distanzkarten konnen unterschiedliche Metriken eingesetzt wer-
den. Fiir die Robotik ist lediglich die euklidische Distanz von Bedeutung, weshalb in die-
ser Arbeit ausschlieflich [Euklidische Distanz Transformationen (EDTs)| betrachtet wer-
den. Diese lassen sich wiederum in approximierende und exakte Verfahren aufteilen.
Speichern die Algorithmen in jedem Eintrag ihrer Datenstruktur nicht nur die Distanz
des nédchstgelegen Hindernisses, sondern auch dessen Position, dann entsprechen die
generierten Karten einem Voronoi-Diagramm.

Die Arbeiten von Jones [106] und Fabbri [77] geben eine Ubersicht iiber 2D- und 3D-
Distanztransformationen, von denen die meisten sequentiell angelegt sind. Sie verwen-
den entweder Wellenfronten, die sich von Hindernissen aus kreisformig ausbreitende
oder mehrere lineare Abtastungen der kompletten Datenstruktur, um eine anzu-
wenden.

Neben diesen sequentiellen Ansitzen existieren jedoch auch solche, die eine Paralleli-
sierung auf erlauben und daher hier von Interesse sind. Hierzu gehoren der
Jump Flooding Algorithm (JFA) [173, [174], der Parallel-Banding-Algorithm (PBA) [54], der
Schneider, Kraus und Westermann Algorithm (SKW) [182] und der Fast Hierarchical Algo-
rithm (FHA) [66]. Aufgrund ihrer Vorteile wurden von diesen vier Ansdtzen PBA und JFA
weitergehend untersucht: PBA als schnellster Kandidat fiir grofse Eingabedaten (SKW
wurde in [54] langsamer als PBA getestet) und JFA fiir kleinere Karten (da er eine einfa-
che Struktur und weniger Verwaltungsaufwand aufweist [54]). Weiterhin setzt PBA als
einziger der vier Algorithmen eine exakte Berechnung der um, wihrend FHA und
JFA Approximationsfehler aufweisen, die in [66] verglichen werden. Die opti-
mierte Variante des SKW aus [182] basiert auf der Vektor Distanz Transformation von
Danielsson [179] und weist daher wie diese eine obere Fehlerschranke der berechneten
Distanzen von 0.091 Voxeln auf.

Alle gelisteten Ansétze erfordern eine Neuberechnung des kompletten Distanzfeldes, so-
bald Anderungen in den Ausgangsdaten auftreten. Somit erscheint ihre Anwendung zu-
ndchst bevorzugt in statischen Fillen sinnvoll. Im Gegensatz dazu ist bspw. der Brush-
fire Algorithmus aus [127] in der Lage, in dynamischen Szenen gezielt nur die Bereiche
des Distanzfeldes zu aktualisieren, in denen sich Anderungen auch auswirken. Dennoch
ermoglicht die hochparallele Berechnung von ,statischen” Ansétzen eine vielfach effi-
zientere Datenverarbeitung, weshalb sie in den, in dieser Arbeit betrachteten Anwen-
dungsfallen, die ,dynamischen” Ansitze auch in bewegten Szenen ausstechen. Letztere
eignen sich aufgrund von inhdrenten Datenabhéngigkeiten nicht fiir eine parallelisier-
te Implementierung auf der Weiterhin bestehen ihre Eingabedaten aus der Menge
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der gednderten Voxel, welche in vielen Féllen nur mit dem zusitzlichem Aufwand einer
Differenzberechnung zu ermitteln sind.

Die letzte betrachtete Kategorie von beschreibt Octrees, welche mit Distanzinfor-
mationen angereichert sind. Hierzu gehort die Arbeit von Jung [107, [108]], die sich auf
statische Szenen konzentriert und den Aufbau der Datenstrukturen als einen Offline-
Prozess mit beliebiger Laufzeit interpretiert. Die eigentliche Online-Kollisionspriifung
auf Octree Distance Maps ldsst sich so auf um bis zu 40% beschleunigen, wahrend
sie im Verglich zu reguldren Octrees nur ca. 25% mehr Speicher benétigen. In dynami-
schen Szenen kann die zeitliche Einsparung den Aufwand fiir den zyklischen Aufbau der
Datenstrukturen jedoch nicht aufwiegen, weshalb der Ansatz hier nicht verfolgt wird.

5.6.3. Umsetzung

Unterschiedliche Ansétze zur parallelisierten Berechnung von Distanzfeldern wurden in
der Masterarbeit von Christian Jiilg [24] realisiert und verglichen. Dieser Abschnitt sttitzt
sich auf seine Ergebnisse.

Kanonische, exakte Euklidische Distanz Transformation

Die einfachste Herangehensweise zur Berechnung der Distanzen in einer Menge Voxel V
zu einer Menge an belegten Hindernisvoxeln O ist durch die folgende Minimumssuche
beschrieben:

Yo €V :argmin ||v—o || (5.22)
0€0

Dieser naive Ansatz ist in seiner Berechnungskomplexitit O(n - m) linear abhéngig von
der Anzahl der Voxel n = |V| und der Anzahl der Hindernisse m = |O|, weshalb er le-
diglich zur Uberpriifung anderer Algorithmen herangezogen wurde. Bei einer Szene aus
16 Mio. Voxeln, von welchen 67 625 belegt waren, lag der erreichte Berechnungsdurchsatz
auf der GPU bei 877 000 Voxel/s.

Brushfire

Hier wird die Ausbreitung von Wellenfronten imitiert, die von neu entdeckten Hinder-
nissen ausgehen. Jeder Voxel, durch den die Welle lduft, wird mit Distanzinformationen
beschrieben. Da dies pro Voxel nur einmal geschieht, ist der Algorithmus beziiglich sei-
ner Schreiboperationen optimal. Um Approximationsfehler dhnlich derer der CDT zu
vermeiden, kann beim Schreiben auch der Ursprung der Welle in jedem Voxel gespei-
chert werden, um daraus bei Bedarf die exakte Distanz berechnen zu kénnen. Der Algo-
rithmus nutzt eine Min-Heap-Datenstruktur, um die Kandidaten, durch welche die Welle
lauft, in der Reihenfolge entsprechend ihrer Hindernisdistanz abzuarbeiten. Die Berech-
nungskomplexitit liegt bei O(n  logn), wobei n = |V'| die Menge der Voxel beschreibt.
Der logarithmische Anteil rithrt von der Suche im Min-Heap und liegt normalerweise
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weit unter logn, da die Anzahl der Hindernisse weitaus kleiner ist, als die Anzahl der
Voxel in der Karte.
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Abb. 5.15.: 2D-Distanzfelder vor (A) und nach einem Update (D). Das neu hinzugekom-
mene, blau umrandete Hindernis 10st eine Welle aus, die die Distanzwerte
der umliegenden Voxel verringert, wahrend die Welle um das verschwunde-
ne, rot umrandete Hindernis zunichst Distanzen 10scht, bevor diese von den
umliegenden Feldern neu beschrieben werden. Grafik aus [127].

Da die Welle in Voxeln verebbt, die bereits kleinere Distanzen enthalten, muss der Al-
gorithmus beim Einfiigen neuer Hindernisse nicht die komplette Karte ablaufen (siehe

Abb. 5.15).

Die Berechnungen zur Ausbreitung der Wellen sind in CUDA nur schlecht parallelisier-
bar, da in jedem Voxel Entscheidungen getroffen werden, die direkt von umliegenden
Voxeln abhingig sind, was eine Vielzahl an Synchronisationen zwischen den Threads
erfordert. Weiterhin ist der Kontrollfluss einzelner Threads von der Position ihrer be-
arbeiteten Voxel abhidngig, was Laufzeitdivergenzen verursacht und einen kohdrenten
Speicherzugriff verhindert (vgl. [Kapitel 3).

Eine serialisierte Implementierung des Brushfire Algorithmus von Lau und Sprunk ist als
Erweiterung des[ROSPaketes OctoMap [104] verfiigbar. Hier werden kontinuierlich 3D-
Sensordaten in eine Octree-Datenstruktur eingefiigt und die Differenzen zwischen zwei
Momentaufnahmen des Octrees als Startpunkte der Wellenausbreitung genutzt [128].

Fast Marching Method

In diesem sehr generischer Ansatz der Wellenausbreitung wird die Ausbreitungsgeschwin-
digkeit ' der Wellen als konstant angenommen, weshalb die Ankunftszeit der Welle in
einem Voxel direkt in die Distanz zum Wellenursprung umgerechnet werden kann [106,
186]. Vergleichbar mit Brushfire kann auch hier mit einer Menge von Startpunkten ge-
arbeitet werden. Allerdings tragen die Wellen keine Information tiber die Koordinaten
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ihres Ursprungs mit sich, wodurch die berechneten Distanzen Rundungsfehler enthal-
ten und lediglich eine Anndherung der euklidischen Distanz darstellen. Erweiterungen
wie FMMHA reduzieren diese Fehler, konnen ihn aber prinzipbedingt nicht vermei-
den [106].

Auch wenn sich eine Parallelisierung aus den im vorherigen Abschnitt genannten Griin-
den schwierig gestaltet, konnten mehrere Arbeiten einen hohen Performancegewinn durch
die Ausfiihrung auf verteilten Supercomputer-Systemen erzielen [122,206]. So dauert die
Berechnung eines Distanzfeldes aus 1024® Voxeln auf 65536 Rechenknoten lediglich 0,5
Sekunden (= 2 GVoxel/s) bzw. 10 Sekunden auf 256 Rechenknoten (= 100 MVoxel/s).

Jump Flood Algorithmus

Dieser Algorithmus zeichnet sich durch seine niedrige Berechnungskomplexitdt von

O(Nlogn) fiir N = n® = |V| Voxel aus [174]. Diese wird erreicht, da die dreidimensionale
Datenstruktur nur log n mal abgetastet werden muss, wie in zu sehen ist. Bei
jeder Abtastung gibt ein Voxel seine Hindernisinformationen an bis zu 26 Nachbarvoxel
in der Schrittweite k£ weiter. Da dabei sowohl der Kontrollfluss, als auch die Speicherzu-
griffsmuster nicht von der Anzahl oder Verteilung der Hindernisse abhdangen, eignet sich

JEA sehr gut fiir eine parallele Implementierung.

Allerdings liefert der Algorithmus lediglich eine Anndherung an die exakten euklidi-
schen Hindernisabstdnde und in besonderen Féllen konnen Hindernisse in sehr spitzen
Voronoi-Regionen iibersehen werden, da diese durch Diskretisierungsfehler ihren Zu-
sammenhang verlieren [173]. Diese Fehler konnen durch zusédtzliche Abtastschritte mi-
nimiert werden. In der JFA Basisversion ladsst sich pro Voxel nur die Information eines
Hindernisses weitergeben, was zwangsldufig zu einem Informationsverlust fiithrt, wenn
mehrere Hindernisse gleichzeitig in der Datenstruktur propagiert werden. Ein nahelie-
gender Kompromiss ist es daher, pro Voxel mehr als nur eine Hindernisinformation zu
speichern.

Die JFA Implementierung in dieser Arbeit nutzt Double-Buffering, so dass neue Hinder-
nisdaten geschrieben werden konnen, wihrend die Distanzberechnung auf den vorher-
gehenden Daten ablauft.

Parallel Banding Algorithmus

Als einer der wenigen parallelen Algorithmen liefert PBA nicht nur Anndherungen, son-
dern exakte euklidische Distanzinformationen fiir jeden Voxel. Alle drei Phasen dieses
Algorithmus wurden explizit fiir eine Ausfithrung auf entworfen und folgen
demselben Grundprinzip: Reduktion der Problemdimensionalitidt zu Gunsten der Par-
allelisierbarkeit [54]. Hierfiir werden die Eingabedaten in so genannte Bander aufgeteilt,
die in Phase 1 und 2 zunéchst unabhéngig voneinander bearbeitet werden kénnen, bevor
sie in Phase 3 zusammengefasst werden. Der Programmfluss, in dem sich Phase 2 und 3
im dreidimensionalen Fall einmal wiederholen, ist in[Abb. 5.17] zu sehen.

Phase 1 verbreitet Hindernisinformationen entlang der Z-Achse, der erste Durchlauf von
Phase 2 entlang der Y-Achse. Da die Inhalte der Voxelkarte im Speicher nach ihrer X-
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Abb. 5.16.: Vergleich von Strategien zur Informationsverbreitung (aus [174]).

Phase1:  Ausbreitung der Hindernisinformationen entlang der Z-Achse.
Erzeugt ein 1D-Voronoi-Diagramm.

Phase 2:  Durchfiihren der Maurer-Elemination entlang der Y-Achse.

Phase3:  Aktualisierung der Informationen iiber das nichstgelegene Hindernis
auf der Y-Achse fiir alle Voxel. Erzeugt ein 2D-Voronoi Diagramm.

Phase 2: Durchfiihren der Maurer-Elemination entlang der X-Achse.

Phase 3:  Aktualisierung der Informationen iiber das niachstgelegene Hindernis
auf der X-Achse fiir alle Voxel. Erzeugt ein 3D-Voronoi Diagramm.

Abb. 5.17.: Vereinfachter Ablauf des Parallel-Banding-Algorithmus.

Koordinate abgelegt sind, werden die Threads eines Warps den Bandern zugeordnet, die
Nachbarn beziiglich der X-Achse sind. Somit greifen Threads und Warps auf fortlaufen-
den Speicher zu, was durch [Memory Coalescing|fiir einen optimalen Speicherdurchsatz
sorgt. Um diesen Vorteil auch in der zweiten Runde von Phase 2 und 3 nutzen zu kon-
nen, die entlang anderer Achsen ausgerichtet sind, findet zunéchst eine XY-Transforma-
tion mittels schnellem geteiltem Speicher statt. Die Maurer-Elimination der zweiten Phase
beschreibt den Algorithmus zur exakten euklidischen Distanztransformation in linearer
Laufzeit aus [141]]. Sie wird genutzt, um zu entscheiden, welche Punkte Einfluss auf ein
Band haben. Drei Parameter m;, mg und mgs bestimmen den Parallelisierungsgrad von
PBA. Wihrend m; und mo die Anzahl Biander in Phase 1 und 2 beschreiben, steht m3 fiir
die Anzahl der gleichzeitig auf Voronoi-Zugehorigkeit gepriiften Voxel in Phase 3. Der
Einfluss der Parameter wird in[Abschnitt 8.9 [Abb. 8.33|bewertet.
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Die Berechnungskomplexitit des gesamten Ablaufes ist lediglich linear abhdngig von der
Anzahl der betrachteten Voxel (O(n)), da PBA die Eigenschaft eindimensionaler Voro-
noi-Diagramme ausnutzt, die besagt, dass jeder Punkt nur durch einen einzigen anderen
Punkt auf derselben Achse beeinflusst wird. Der Ablauf zum Aufbau eines 2D Voronoi
Diagramms mittels PBA ist in einem Vide(ﬂ zur Publikation von Cao et al. gut nach-
vollziehbar.

(a) Eingabedaten (b) Voxel bis zu Distanz 3 (c) Voxel bis zu Distanz 5

Abb. 5.18.: Spérlich abgetastete Punktwolke einer Wand mit Tiir. Die Distanzberechnung
funktioniert robust und schlief3t Liicken.

Die PBA Implementierung dieser Arbeit folgt in der Programmlogik der Referenzimple-
mentierung von Cao et al. [54]. Inhaltliche Anderungen bereinigen zum einen Program-
mierfehler, die die Ergebnisse der Phase 2 bei Bandern mit mehr als einem Pixel Breite
zerstoren konnten. Zum anderen greift die Implementierung dieser Arbeit nicht auf Tex-
turspeicher, sondern auf generellen CUDA Speicher zuriick. Dariiber hinaus wurde der
Code zum besseren Verstandnis restrukturiert. Ein technisch interessantes Detail der Um-
setzung ist die doppelte Verwendung der Voxel-Datenstruktur: Zunédchst werden in ihr
alle belegten Hindernisvoxel eingetragen, wahrend am Ende jeder Voxel die Koordinaten
seines ndchstgelegenen Hindernisses enthélt. Zur Laufzeit von PBA kénnen Voxel jedoch
tempordr auch die Zeiger einer doppelt-verlinkten Liste auf ndchstgelegene Hindernisse
aufnehmen, da PBA die Kartendimensionen sequentiell bearbeitet. In den bereits aus-
gewerteten Koordinatenkomponenten (X-Koordinate) eines Voxels kann dann der Index
(Y-Koordinate) eines Hindernisvoxels abgelegt werden. Da PBA zeilen- und spaltenwei-
se vorgeht, miissen beide Voxel dieselbe X-Koordinate aufweisen, womit die Position des
verlinkten Hindernisvoxels eindeutig bestimmt ist. Sind X- und Y-Komponenten ausge-
wertet, gilt dieses Vorgehen auch fiir die Z-Komponente.

5.6.4. Zusammenfassung und Vergleich

Es wurden unterschiedliche Verfahren zur Berechnung euklidischer Distanztransforma-
tionen untersucht, umgesetzt und evaluiert. Als erfolgreichster Ansatz ist daraus der Par-
allel Banding Algorithmus hervorgegangen, mit dem auf modernen auch fiir
grofle 3D-Karten mit hoher Wiederholungsrate die Distanzen zu allen in der Karte vor-
handen Hindernissen berechnet werden konnen. Wie in zu sehen, liegt der dabei

http://www.comp.nus.edu.sg/~tants/pba_files/pba.mov
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Durchsatz
Verfahren Aufwand [MVoxel/sek]
Kanonisch O(n-m) 0,9
Brushfire O(n -logn) 163,5
FMM O(n -logn) 2000,0
JEA O(n -logn) 75,0
PBA (original) O(n) 2093,0
PBA (GPU-Voxels) O(n) 1325,0

Tab. 5.2.: Vergleich unterschiedlicher Verfahren zur Berechnung von Distanzfeldern.

erreichte Datendurchsatz bei bis zu 1,3 GVoxel pro Sekunde und lasst CPU-basierte Ver-
fahren somit weit hinter sich, auch wenn diese gezielt nur die Kartenteile analysieren, in
denen sich geédnderte Hindernisse befinden.

Wie in |[Abschnitt 5.6.3|erwéhnt, erreicht das CPU-basierte dynamische Brushfire-Verfah-
ren auf 3D-Karten aus 12 MVoxel einen Datendurchsatz, der 163,5 MVoxel/s bei einem
,statischen” Verfahren entspricht. Dabei werden jedoch nur Distanzen bis zu einer Ent-
fernung von 10 Voxeln berechnet. Dagegen erreicht der in implementierte
PBA bis zu 1,3 GVoxel/s auf wesentlich grofleren Karten, mit mehr Hindernissen und bei
unbeschrdnkter Entfernung. Die Geschwindigkeitsvorteile von PBA steigen sogar noch
weiter, wenn Brushfire grofiere Distanzen berechnen miisste.

Gregg und Hazelwood hinterfragen in [91] bei Vergleichen von [CPUF und [GPULauf-
zeiten den zusétzlichen Aufwand der Datentibertragung zwischen |Host{und |Device| Im
Falle von PBA verbleibt die Distanzkarte auf der GPU, so dass lediglich eine Menge von
Hindernisdaten zu iibertragen ist. Da deren Datenmenge um mehrere Groflenordnungen
kleiner als die eigentliche Karte ausfillt, ist der Aufwand vernachldssigbar. So betragt die
Zeit der Dateniibertragung von 67 625 Hindernissen inklusive der Initialisierung einer
2563 Voxel grofien Karte ca. 1,8 ms.

Aufbauend auf diesen Ergebnissen wurden zwei sehr unterschiedliche Robotikanwen-

dungen implementiert, die in|Abschnitt 8.9|evaluiert werden.

5.7. Visualisierung

Sowohl bei der Entwicklung und Validierung von Algorithmen, als auch wéhrend der
Ausfiihrung derselben ist es sehr hilfreich, {iber eine Visualisierung der Ein- und Ausga-
bedaten zu verfiigen. Im Bezug auf [GPU-Voxels| bedeutet dies, dass ein Nutzer sowohl
die Punktwolken der Sensoren, als auch die Voxel (und ihre Eigenschaften) aus mehreren
Voxel-Datenstrukturen betrachten kann. Da es sich hierbei um rdumliche Daten handelt,
ist eine dreidimensionale Darstellung unerldsslich, welche hier wegen der guten Inter-
operabilitit mit[CUDA]tiber Open Graphics Library (OpenGL) realisiert wird. Weiterhin
ist es wichtig, dem Benutzer eine Kontrolle iiber die Menge und Art der dargestellten
Daten zu erlauben, so dass dieser zu Gunsten der Ubersichtlichkeit eine aufgabenspezi-
fische Darstellung umsetzen kann.
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Host RAM

Visualizer

Shared Memory

Provider

Host RAM
[ B

| Provider

Visualizer -
[ |

Visualizer Visualizer

(a) Ubertragung der Ergebnisse auf (b) Aufbereitung der Ergebnisse inner-
den Host und zuriick zur GPU halb des GPU-Speichers.

Abb. 5.19.: Prinzipieller Datenfluss zur Visualisierung von Ergebnissen aus GP-GPU-Be-
rechnungen. Die Dicke der Pfeile symbolisiert die {ibertragene Datenmenge.

Da Voxel eine sehr einfache Wiirfelgeometrie aufweisen und ihre Eigenschaften, bezie-
hungsweise Zugehorigkeiten, {iber Farben darstellbar sind, besteht die Herausforderung
nicht in der Art der Darstellung, sondern in der Menge der darzustellenden Voxel und
somit in der geforderten Effizienz. Im Gegensatz zu weit verbreiteten Grafik- und Spiele-
Engines, wie OGREEl oder Cryengineﬁ benotigt die Visualisierung fiir Voxel keinen kom-
plexen Szenengraphen mit aufwendigen Licht- oder Textureffekten. Erforderlich ist viel-
mehr der schnelle Umgang mit grofien Mengen an dynamischen Daten, die die Voxelsze-
nen ausmachen.

Eine erste Implementierung einer Visualisierung basierte darauf, Kopien aller darzustel-
lenden Informationen, die auf demnach einer Voxelberechnung vorlagen, auf den
zu kopieren, dort in [OpenGI] Strukturen umzuwandeln und diese dann erneut auf
die[GPU|zu transferieren, um sie anzuzeigen (sieche[Abb. 5.19a). Wie in[Abschnitt 3.2.5)be-

schrieben, stellt dieses mehrfache Kopieren offenkundig ein Performanceproblem dar.

Daher wurde eine Losung entwickelt, bei der die Daten auf derverbleiben und dort
fiir ihre Visualisierung aufbereitet werden (siehe[Abb. 5.19b). Da|[CUDA|und [OpenGL]da-
fiir einen gemeinsam genutzten Speicher auf dem |Device| verwenden, spricht man von
einem Shared Memory-Ansatz. Die Nutzdaten werden somit zwischen dem [Provider} also
dem eigentlichen Programm und dem geteilt. Eine Synchronisation geschieht
mittels Interprozesskommunikation tiber den Dieser Ansatz wurde in der Bache-
lorarbeit [32] von Matthias Wagner erfolgreich umgesetzt und tiber die Dauer der Disser-
tation stindig weiterentwickelt. Ein Klassendiagramm der Implementierung findet sich
in |Abschnitt A.8|in [Abb. A.9 Alle Voxelgrafiken in diesem Dokument, mit Ausnahme
derer in|[Unterabschnitt 7.2.2) wurden mit dieser Visualisierung erstellt.

*http://www.ogre3d.org/
‘http://cryengine.com/
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Funktionsumfang

Hier sollen zundchst die wichtigsten Funktionen aufgelistet werden, die umgesetzt wur-
den: Die Visualisierung ist als eigenstdndiges Programm lauffihig. Sie kann somit un-
abhingig von einem gestartet und beendet werden, um keine GPU-Ressourcen
zu belegen, wenn keine Visualisierung benotigt wird. Aktualisierungen der Datenstruk-
turen werden gezielt iiber Nachrichten des ausgelost, um unnotige Speicher-
zugriffe einzusparen. Zusétzlich kann der maximale Speicherverbrauch beschrankt wer-
den, um dem Provider stets eine definierte Laufzeitumgebung zu gewéahren.

Alle in [GPU-Voxels| verfiigbaren Datenstrukturen sind (auch mehrfach) darstellbar, wo-
bei verschiedene [Voxeltypen| bzw. [SSV-IDs| beliebig wihlbare Farben erhalten. Zur Ver-
besserung der Darstellung kann sich die Farbe einer Datenstruktur entlang einer Achse
des Koordinatensystems dndern, um beispielsweise die Hohe eines Voxels tiber dem Bo-
den besser einzuschédtzen. Zur Verbesserung der Tiefenwahrnehmung wird die Szene
zusédtzlich zu ambientem Licht aus Richtung der Kamera beleuchtet, deren Perspekti-
ve per Maus und Tastatur in mehreren Modi anpassbar ist. Neben den Voxeln sind 3D-
Punktemengen und geometrische Hilfsobjekte (Kugel, Quader) darstellbar.

Zu Gunsten der Bildwiederholrate und des Speicherverbrauchs lassen sich Voxel zu Su-
pervoxeln zusammenfassen. Dies reduziert die sichtbare Auflosung und somit die An-
zahl der zu zeichnenden Dreiecke. Weiterhin kann der Nutzer das zu zeichnende Volu-
men einschranken, was es auch ermdglicht, Schnittflichen zu visualisieren. Wird ein Vo-
xel angeklickt, erhdlt der Benutzer Informationen zum diesem (zugehorige Datenstruk-
tur, Position, Ausdehnung, Status). Zur Verbesserung des Uberblicks sind alle dargestell-
ten Informationen separat an und abschaltbar. Alle Einstellungen lassen sich in Konfigu-
rationsdateien speichern.

5.7.1. Geometriegenerierung aus Voxeldaten

Die Darstellung von Geometrien in [OpenGI]erfolgt tiber Dreicksnetze, deren Eckpunk-
te in einem |Vertex-Butfer Object (VBO)|im GPU-Speicher abgelegt sein miissen. Fiir ihre
Erzeugung wurden Geometrie-Kernel in CUDA implementiert, die fiir jeden darzustel-
lenden Voxel 36 Eckpunkte (6 Flachen aus je 2 Dreiecken) aus den 3D-Koordinaten der
Voxel generieren und im speichern (siehe [Abb. 5.21)). Zur Steigerung der Effizienz
werden alle Voxel derselben Farbe auf einmal gezeichnet und miissen daher aufeinan-
derfolgend im Speicher abgelegt sein. Da jede Voxel-Datenstruktur im Normalfall nur
zu einem gewissen Grad belegt ist, variiert die Grofle des bendtigten geteilten Speichers.
Weiterhin variieren die Anteile der unterschiedlichen [Voxel-Bedeutungen| (bekannt, un-
bekannt, usw.), die in einzelne Abschnitte des [VBOs|zu kopieren sind. Im Fol-
genden wird ein Ansatz entwickelt, der die Voxeldaten effizient in den VBO tibertragt.

Speicherabschatzung und Hysterese

Um alle potentiell moglichen, anteiligen Zusammensetzungen von [Voxel-Bedeutungen|
naiv und ohne Vorberechnungen direkt in den VBO kopieren zu konnen, miisste fiir jede
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(c) Supervoxel-Kantenldnge 4 (d) Supervoxel-Kantenldnge 8

Abb. 5.20.: Benchmarkszene dargestellt mit unterschiedlicher Supervoxelgrofie. Bildra-
ten siehe [Abb. 8.11] Die Punktwolke wurde mit einem rotierendem Lasers-
canner aufgenommen.

P Geometrie Kernel ﬁ
— |

( SSV-ID  |SSV-ID| SSV-ID |SSV-ID
\ 4 5 6 7

C4 Cs C6 C7

I\

J

Voxel Datenstruktur CUDA RAM OpenGL VBO

\ J

Abb. 5.21.: CUDA Kernel zum Erzeugen von Geometrie-Daten aus Voxeln und anschlie-
flender sortierter Ablage im OpenGL Vertex-Buffer Object.

Voxel-Bedeutung der Speicher einer kompletten Datenstruktur vorgehalten werden. Um
diese eklatante Uberallokation von Speicher zu vermeiden, liegt es nahe, die Voxel-Da-
tenstruktur zundchst zu traversieren, um den Belegtheitsgrad pro Voxel-Bedeutung zu
ermitteln. Anschlieffend ldsst sich ein passend dimensionierter inklusive Zeigern
auf die Einzelabschnitte anlegen. Wahrend sich der Zahlschritt problemlos parallelisie-
ren ldsst, benotigt das eigentliche Kopieren der Daten in den Puffer eine Synchronisati-
on zwischen parallel arbeitenden Threads. Diese miissen {iber geteilte Zahlvariablen die
Schreibzeiger im Puffer inkrementieren, sobald sie einen belegten Voxel geschrieben ha-
ben. Als Alternative zum Engpass einer Synchronisation werden in dieser Arbeit Préfix-
summen fiir jeden Datentyp generiert (siehe [Unterabschnitt A.5.1), um die Zieladressen
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der Kopieroperationen jedes Threads zu bestimmen.

Um weiterhin das doppelte Traversieren der Datenstruktur (zdhlen, kopieren) fiir jedes
zu zeichnende Bild zu vermeiden, wurde eine dynamische Speicherverwaltung umge-
setzt, die jeweils um ein Bild versetzt auf gednderte Speicheranforderungen reagieren
kann. Hierfiir wird der initial mit einer gewissen Grofie angelegt und gleichma-
Big unter allen Voxel-Bedeutungen aufgeteilt. Vor jedem Zeichnen wird er dann, ent-
sprechend der Prefixsummen, mit Voxeldaten befiillt und dabei festgestellt, ob das Fas-
sungsvermogen der Abschnitte den zu zeichnenden Voxelmengen entspricht. Falls nicht,
werden die Abschnitte fiir das nédchste Bild um einen definierten prozentualen Anteil
vergrofiert oder verkleinert, so dass es zu einer moglichst stabilen Hysterese kommt.

Octree

Im Gegensatz zu einer Voxelliste oder Voxelkarte stellt ein Octree eine Datenstruktur mit
fragmentiertem Speichermanagement dar. Somit ist es bei einem Octree nicht moglich,
dem Kernel zur Geometriegenerierung lediglich die Speicheradresse des Wurzelknotens
zu libergeben, da die Visualisierung den Baum dann selbststindig traversieren miiss-
te, um die zu zeichnenden Blattknoten zu finden. Diese Arbeit geschieht daher auf der
Seite des Providers, wo eine zusammenhangende Liste aus Wiirfeln (definiert tiber kar-
tesische Koordinaten und Seitenldngen) erstellt wird, die dann von der Visualisierung
genau wie eine Voxelkarte abgearbeitet wird. Die Datenextraktion ist in [Abschnitt 5.5.2|
beschrieben.

Reduktion der darzustellenden Daten

Um auch bei umfangreichen Szenen eine hohe Bildrate zu erreichen, wurden zwei Ansét-
ze zur Datenminimierung verfolgt: Zum einen wurde eine Abwandlung des in
verwendeten Viewport-Cullings (Filterung der zu zeichnenden Geometrie durch das Sicht-
feld der Kamera) durchgefiihrt und zum anderen lassen sich Voxelkarten bei Bedarf in
einer groberen Auflosung visualisieren.

Beim sichtfeldabhingigen Kopieren wird der Blickwinkel der[OpenGI}Kamera beriick-
sichtigt, um nicht die komplette Voxel-Datenstruktur zu bearbeiten, sondern nur den ge-
rade sichtbaren Teil. Aus Praktikabilitdtsgriinden wird hierfiir im Gegensatz zum View-
port-Culling kein Kegelstumpf zur Reprasentation des sichtbaren Volumens genutzt, son-
dern eine Uberabschitzung in Form eines Quaders. Zusitzlich kann der darzustellende
Ausschnitt kiinstlich verkleinert werden, um beispielsweise bei der Darstellung geschlos-
sener Raume die Decke zu entfernen, oder bei Distanzkarten einen Schnitt durch die Sze-
ne zu ermoglichen.[Abb. 5.22) zeigt ein Beispiel, bei dem die Szene in der Tiefe beschnitten
wurde.

Bei der Supervoxel-Methode werden Voxel zusammengefasst und als grofsere Wiirfel ge-
zeichnet (vgl. [Abb. 5.20), was die Anzahl der darzustellenden Dreiecke stark reduziert.
Dies ist bei der Visualisierung eines Octrees nativ moglich, indem nicht die Blattkno-
ten, sondern die (teilweise) belegten inneren Knoten gezeichnet werden. Bei Voxelkarten
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(a) Einschrankung des Sichtbereiches (b) Keine Einschrankung des Sichtbereiches

Abb. 5.22.: Testszene mit und ohne Einschrankung des Sichtbereiches (sichtbar im Hin-
tergrund der linken Bildhalfte).

oder Voxellisten muss die Zusammenfassung beim Iterieren tiber die Datenstruktur ge-
schehen. Dafiir lduft ein Kernel die Daten in einer Schrittweite ab, die der Supervoxel-
grofie entspricht und priift dabei die in den Supervoxel fallenden Voxel. Mit dem ersten
Fund wird der zugehorige Supervoxel in den[VBOJkopiert und die Iteration abgebrochen.
Auch hierbei stellen sich die anfangs genannten Herausforderungen des a priori unbe-
kannten Speicherverbrauchs und es kann wieder mit oder ohne exakte Vorberechnung
gearbeitet werden. Ab einer gewissen Supervoxelgrofse bietet es sich an, das Verfahren in
zwei Schritte aufzuteilen und die gefundenen Supervoxel nicht direkt in den VBO, son-
dern in einen Zwischenspeicher zu schreiben. Dieser Puffer kann in seiner maximalen
Grofe angelegt werden, da er um das 85upervoxelrofie_fache kleiner ist, als die Ausgangs-
karte. Somit miissen auch keine Schreibzeiger synchronisiert werden. In einem zweiten
Schritt durchlduft der Geometrie-Kernel den Zwischenspeicher und tibertragt belegte Su-

pervoxel wie gehabt in den

5.7.2. Umsetzung

Die folgenden Abschnitte beschreiben relevante Details und Besonderheiten der Imple-

mentierung der Visualisierung aus |GPU-Voxels

Provider-Visualizer Kommunikation

Die lose Kopplung zwischen der Visualisierung und dem Provider, die es erlaubt, die
Darstellung jederzeit starten und stoppen zu konnen, wurde tiber eine Interprozesskom-
munikation mittels eines geteilten Speichersegments im Host-System umgesetzt (Host
Shared Memory). Darin speichert das Provider-Programm Metadaten {iber die verfiigba-
ren Voxelkarten, unter anderem die Adressen der Voxeldaten im GPU-Speicher und die
Kartengrofien. Die Visualisierung wertet diese Informationen aus und kann gleichzeitig
ihre gewiinschte Supervoxelauflosungen anfordern oder Semaphoren auf Karten setzen,
um eine doppelt gepufferte Synchronisation sicherzustellen. Die Ubertragungszeitpunk-
te der Metadaten unterscheiden sich je nach Datenstruktur: Wahrend eine Voxelkarte
statische Ausmafse besitzt und somit immer gleich viele Voxel von der Visualisierung zu
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durchlaufen sind, weisen Octree und Voxelliste dynamische Grofsen auf. Daher miissen
ihre Metadaten periodisch aktualisiert werden.

Interaktion

Durch anklicken eines Voxels kann sich der Nutzer detaillierte Information tiber die-
sen anzeigen lassen. Hierfiir muss zundchst ermittelt werden, welcher Voxel unterhalb
der 2D Position des Mauszeigers liegt. Um dabei den Aufwand eines 3D{Raycastings|in
der Szenengeometrie zu vermeiden, wird auf ein Verfahren zuriickgegriffen, bei dem die
Szene in unsichtbaren Fehlfarben dargestellt wird, in denen jeder Voxel individuell ein-
gefdrbt ist. Ein besonderer OpenGL-Shader bildet dazu nacheinander die X-, Y- und Z-
Komponenten aller Voxelkoordinaten auf die 256° Farbschattierungen des RGB-Raumes
ab und zeichnet die Szene in einen nicht dargestellte Framebuffer. Da die Dreiecke der
Szene bereits im vorliegen, ist der zusitzliche Aufwand hierfiir minimal. Durch
Auslesen der Farbwerte aus drei aufeinander folgenden Bildern (benétigt ca. 100 ms)
an der Mausposition konnen somit direkt die Koordinaten des angeklickten Voxels be-
stimmt und seine Metainformationen abgerufen werden. Da die Berechnungen nur auf
Anforderung ausgefiihrt werden, beeintrachtigt das Verfahren nicht die allgemeine Per-
formance der Visualisierung.

Farbgebung

Fiir die Darstellung der Szenen wurde auf ein Lamerbertsches Beleuchtungsmodell mit
ambientem Lichtanteil und einer einzelnen punktférmigen Beleuchtungsquelle, die sich
mit der Kamera bewegt, zuriickgegriffen [187]. Dieses einfache Modell erzeugt bereits
einen guten raumlichen Eindruck, der dem Benutzer die Orientierung in einer 3D-Szene
erleichtert. Weiterhin lassen sich die Kanten der Voxel einblenden, was bei homogenen
Oberflachen eine zusétzliche Struktur und somit eine bessere Interpretierbarkeit ergibt.
Um den Eindruck von Hohe oder Tiefe weiter zu verbessern, konnen innerhalb einer Da-
tenstruktur Farbverldufe entlang einer Achse des globalen Koordinatensystems genutzt

werden. Beispiele finden sich in|[Abb. 5.23

5.7.3. Zusammenfassung

Es wurde eine leichtgewichtige Visualisierung mit umfangreichen Konfigurationsmog-
lichkeiten entwickelt, die sich an bereits laufende Programme anhéngen kann. Uber das
Prinzip eines geteilten Speichers werden die darzustellenden Daten ausgelesen, als[OpenGL]
Dreiecksnetze aufbereitet und schlieSlich gerendert. Die umgesetzte Technik vermeidet
damit einen Datentransfer zwischen |Device| und |Host| nahezu vollstindig und kann bis
zu 3 Mio. Voxel fliissig und vor allem nahezu latenzfrei anzeigen. Detaillierte Tests zur

Bewertung der Leistungsfahigkeit finden sich in|{Abschnitt 8.5
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L
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(a) Einfarbiges Modell, am- (b) Einfarbiges Modell, am- (c) Einfarbiges Modell, am-
bientes Licht bientes Licht, Punktlicht bientes Licht, Kanten

(d) Farbverlauf entlang Z- (e) Farbverlauf, ambientes (f) Farbverlauf, ambientes
Achse, ambientes Licht Licht, Punktlicht Licht, Punktlicht, Kanten

Abb. 5.23.: Gebdudekarte in unterschiedlichen Darstellungsmodi

5.8. Fazit

Dieses Kapitel untersuchte sehr unterschiedliche Datenstrukturen, die auf einen paralle-
lisierten Zugriff via GPU ausgelegt sind. Vergleicht man die individuellen Anforderun-
gen einzelner Modelle, die in den Diagrammen aus definiert wurden, mit den
Diagrammen in[Abb. 5.24} so bestitigt sich, dass Losungen fiir eine Kollisionspriifung in
unterschiedlichen Robotikszenarien zur Verfiigung stehen. Die Diagramme zeigen, dass
Umgebungsinformationen mit hohem Raumvolumen, aber sparlicher Belegtheit sehr gut
durch Octrees reprasentierbar sind. Bewegungsprimitive, die eine hohe Datendichte bei
gleichzeitiger Lokalitat und geringer Anderungsfrequenz aufweisen, entsprechen den Fi-
genschaften von Voxellisten. Bei der Speicherung von Roboter- und Hindernismodellen
bzw. deren |[Swept-Volumen|entscheidet das abzubildende Volumen ob Voxelkarten oder
Octrees einzusetzen sind. Somit ist[Forschungsfrage 3| zur Eignung von Voxeldatenstruk-
turen zunéchst positiv beantwortet. Details folgen in zur Kollisionsdetektion

sowie in der praktischen Evaluation in

Neben den reinen Datenstrukturen wurden weiterhin onlinefihige Verfahren zur Berech-
nung von Distanzfeldern vorgestellt und fiir die GPU optimiert. Auflerdem konnte eine
leistungsfiahige, latenzfreie 3D-Visualisierung entwickelt werden, die es ohne Umwege
tiber den Host erlaubt, alle relevanten Daten der Kollisionserkennung intuitiv und inter-
aktiv darzustellen.
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(c) Swept-Volumen (d) Bewegungsprimitive

Abb. 5.24.: Vergleich der Anforderungen zur Verarbeitung von vier unterschiedlichen
Datenquellen bei der Planung (schwarz gepunktete Linien) mit den Eigen-
schaften der implementierten Datenstrukturen: Voxelkarte (rot), Octree (griin)
und Voxelliste (blau).

Octree Voxelkarte Voxelliste
Unterstiitzt Swept-Volumen nein ja ja
Speicherverbrauch O(nlogn)  O(dimg -dim,-dim;) O(n)
Abbildbare geometr. Grofle  unbegrenzt begrenzt unbegrenzt
Belegte Voxel iterieren O(nlogn)  O(dimg -dim,-dim;) O(n)
Wahlfreier Zugriff O(logn) O(1) O(n)
Einfiigen neuer Daten O(nlogn)  O(1) O(n)

Tab. 5.3.: Vergleich der implementierten Datenstrukturen in GPU-Voxels.
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Dieses Kapitel stellt die zentralen Algorithmen der GPU-Voxels Bibliothek zu Kollisions-
detektion vor. Wie in [Definition T|beschrieben, ermittelt diese, ob sich zwei Entititen zur
selben Zeit am selben Ort befinden und somit eine Kollision vorliegt. Dafiir werden zu-
nédchst die wichtigsten Kategorien von Verfahren zur Kollisionsdetektion vorgestellt und
verglichen, bevor dann die implementierten voxelbasierten Ansitze beschrieben wer-
den.

Da die Moglichkeiten der Kollisionsdetektion aber iiber die rein bindre Frage hinaus-
gehen, muss bei der Auswahl eines Verfahrens zunichst entschieden werden, welche
Informationen als Resultate erwartet werden und welche Eingabedaten vorliegen: Sind
lediglich Paare von Entititen gegeneinander zu priifen (Narrow Phase) oder liegen Men-
gen von Entitdten (Broad Phase) vor? Ist die generelle bindre Information Kollision / keine
Kollision ausreichend oder muss ermittelt werden, welche Entitit mit welcher anderen
Entitdt in Kollision liegt? Sollen Kontakte, Durchdringung oder vollstindige Umschlie-
Bung identifizierbar sein? Handelt es sich um dynamische oder statische Szenen? Kann
von einem vollstandigen Umweltwissen ausgegangen werden? Ist bei Kollisionsfreiheit
die minimale Distanz zwischen Entitdten von Bedeutung?

Diese Fragen bestimmen zunéchst die verwendbare Reprasentation von Entitdten und
somit das Ego- und Umweltmodell. Aufbauend auf den bereits vorgestellten, diskreti-
sierenden Datenstrukturen sollen in diesem Kapitel unterschiedliche Algorithmen zur
Kollisionsdetektion und -vermeidung entworfen werden. Dabei liegt der Fokus darauf,
die individuellen Eigenschaften der Strukturen gewinnbringend zu nutzen und die Par-
allelisierbarkeit bzw. den Datendurchsatz auf der [GP-GPUl zu maximieren.

Im Folgenden wird vom dreidimensionalen Fall ausgegangen, da mobile Manipulations-
roboter, wie sie in[Abb. 6.1 zu sehen sind, aufgrund ihrer Arme bzw. zusétzlicher Korper-
achsen eine variabel ausladende, geometrische Struktur aufweisen. Zahlreiche bestehen-
de, performante Ansitze projizieren hingegen Hindernisse und Roboter auf eine oder
mehrere Ebenen, um die Kollisionspriifung auf ein zweidimensionales / 2,5D Problem
zu reduzieren [102]. Solche Verfahren sollen hier genau so wenig betrachtet werden, wie
Ansitze zur Auswertung von nicht-rigiden Objekten.

6.1. Taxonomie Kollisionserkennungsverfahren

Um unterschiedliche Technologien besser beurteilen zu kénnen, stellt die folgende Taxo-
nomie vier etablierte Verfahren zur Kollisionsdetektion vor. Dabei lehnt sie sich an die
Taxonomie unterschiedlicher Umweltmodelle aus an und beantwortet die
eingangs gestellten Fragen.
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. iRob
omniRopy o

(a) Roboter IMMP und HoLLiE (b) Valeri Roboter

Abb. 6.1.: Roboter mit groffem Arbeitsraum und variabler Geometrie durch ausladende
Kinematik.

Schnitt von Oberflaichennetzen Verfahren dieser Kategorie weisen die weiteste Ver-
breitung auf, da sie auf Dreiecksnetzen arbeiten, die auch in der Computergrafik
genutzt werden. Die Dreiecke zweier Netze konnen mit einfachen Gleichungssys-
temen auf Uberschneidungen gepriift werden [156], was sich sehr gut auf
parallelisieren und beschleunigen ldsst. Die Repradsentation erlaubt es, auch mehre-
re Entitaten zu identifizieren, auf Kollisionen zu iiberwachen, oder Distanzen zwi-
schen ihnen zu bestimmen. Allerdings skaliert die Laufzeit dieser Verfahren direkt
mit der Anzahl der Dreiecke und ist somit von der Objektanzahl, der Approximati-
onsgiite und der Komplexitdt der Objektgeometrien abhdngig. Da keine Volumen,

sondern Oberflachen betrachtet werden, konnen komplette Durchdringungen nicht
ohne zusétzlichen Aufwand bestimmt werden.

Da die Modellierung der Oberflachen mit beliebiger Genauigkeit umsetzbar ist, las-
sen sich bei der Kollisionspriifung auch Kontaktflachen bestimmenn, weshalb diese
Verfahren in der Physiksimulation bevorzugt sind. Hier kommen bspw. parametri-
sierte CAD-Modelle aus NURBS (Non-Uniform Rational B-Splines) in Frage, die
jedoch nur sehr aufwendig berechnet und auf Kollisionen gepriift werden konnen.

Hierarchien aus Hullkérpern / Bounding Volume Hierachies (BVH) Um nichtinjedem
Kollisionsberechnungsschritt alle Entitdten (bspw. Dreiecke eines Netzes) gegen-
einander tiberpriifen zu miissen, aber auch um bei komplexen Modellierungen
nicht alle Details in Betracht ziehen zu miissen, kénnen die Entitéten in ein-
geschlossen werden. Wie bereits in [Unterabschnitt 4.2.3| beschrieben, werden Mo-
delle und ihre Bestandteile hierbei rekursiv in einfach zu berechnende Hiillkdrper
(Geometrische Primitive oder einfache konvexe Formen) eingeschlossen. So bildet
sich ein Baum, an dessen Wurzel ein Hiillkorper liegt, der alle Entitdten beinhaltet.
In Richtung seiner Blitter schlieffen die Hiillkorper dann immer kleinere Subvolu-
men ein. Arbeitet der Kollisionsalgorithmus entlang dieser Baumstruktur, kénnen
bei der Kollisionspriifung sehr effizient Entitdten oder Teile von ihnen von einer
genaueren Betrachtung ausgeschlossen werden, falls ihre Hiillkérper nicht in Kol-
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6.1. Taxonomie Kollisionserkennungsverfahren

lision liegen [178]. Bei guter Unterteilbarkeit ldsst sich so der durchschnittliche Auf-
wand der Kollisionspriifung eines Objektes gegen n andere Objekten von O(n) auf
O(log n) Priifungen reduzieren [76]]. Neben der Kollision ldsst sich auch die Distanz
analytisch effizient berechnen und auf der parallelisieren, wie in gProxi-
mity gezeigt [130].

Auch bei besteht die Herausforderung nicht in der Kollisionspriifung, son-
dern in der automatischen Aufteilung der Modelle in geometrische Primitive oder
Hillkorper. Diese stellt einen initialen Aufwand dar, weshalb diese Verfahren be-
vorzugt mit vorausberechneten Modellen und nicht auf Livedaten eingesetzt wer-
den.

Diskretisierende Modellierung Bereits frithe Ansdtze zur Kollisionsdetektion nutzten
eine diskretisierende Datenstruktur, die sowohl die Umwelt, als auch das Egomo-
dell des Roboters enthielt [87]. War eine Zelle (Voxel) der Datenstruktur gleich-
zeitig von zwei Entitdten belegt, lag eine Kollision zwischen diesen vor. Ein hoch
optimiertes Beispiel dieser Verfahrensklasse ist der Voxmap Pointshell Algorith-
mus aus [177], der urspriinglich fiir haptisches Rendering entwickelt wurde [142].
Auch in der Robotik wird die sequentielle CPU-Implementierung des ROS Colli-
der Paketes [95] haufig genutzt, die in [Kapitel §|fiir Vergleiche herangezogen wird.
Ausschlaggebend fiir den Berechnungsdurchsatz und den Speicherverbrauch dis-
kretisierender Verfahren sind die genutzten Datenstrukturen, weshalb diese im vor-
hergehenden Kapitel vorgestellt wurden. Einige der umgesetzten Verfahren besit-
zen eine konstante Laufzeit, die unabhédngig vom Belegtheitsgrad der Eingabeda-
ten sind. Ausschlaggebend fiir den Speicherbedarf und die Berechnungsdauer der
meisten Algorithmen ist dagegen die Anzahl der verwendeten Zellen. Da sie vom
Raumvolumen und der Zellgréfie bestimmt wird, sollte beides addquat zum Pro-
blem gewédhlt werden. Je grofier jedoch das Volumen einer Zelle ist, desto grofler
fallt die Uberabschitzung von Hindernissen aus, da auch ein kleines Hindernis
mindestens eine komplette Zelle als belegt markieren. Bei der Bestimmung von Tra-
versierbarkeit muss somit die Kantenldnge kleiner als der halbe Durchmesser der
kleinsten noch zu passierenden Offnung sein. Anderenfalls kénnten Durchginge
durch Diskretisierungsfehler als verschlossen erscheinen.

Da die Zellen diskretisierender Modelle auch eine Belegtheitswahrscheinlichkeit
speichern konnen, lassen sich je nach Anwendungsszenario nicht nur binére, son-
dern probabilistische Entscheidungen treffen, wenn teilweise belegte Zellen be-
trachtet werden. Somit sind konservative / pessimistische bzw. opportunistische /
optimistische Entscheidungen bei der Kollisionspriifung und Planung umsetzbar.

Ein Nachteil der Diskretisierung sind fehlende Objektoberflichen und damit auch
fehlende Normalen. Somit konnen keine exakten Kontaktflichen und deren physi-
kalische Interaktion berechnet werden.

Punktwolken Klassifikation / Probabilistische Verfahren Letztendlich existieren auch
Verfahren, die direkt auf Punktwolken arbeiten. Hierfiir kann die Punktwolke in ei-
nem kd-Baum reprasentiert werden, womit die Kollisionspriifung zu einem Such-
problem wird [181]. Eine weitere Alternative bieten probabilistische Verfahren oder
Ansdtze aus dem Bereich des maschinellen Lernens, bei der die Verschrankung
zweier Punktemengen als Klassifikationsproblem betrachtet wird [157]. In beiden
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Fillen ist eine semantische Annotation zur Identifikation von einzelnen Entititen
nur schwer moglich.

Fiir eine detailliertere Ubersicht iiber weitere Verfahren (vor allem aus dem Gebiet der
interaktiven Computergrafik) sei auf das umfangreiche Nachschlagewerk Real-time colli-
sion detection von Ericson verwiesen [76].

Auswahl des geeignetsten Verfahrens

Im Hinblick auf das Ziel dieser Arbeit, eine hochparallele Kollisionspriifung von detail-
lierten Egomodellen mit Punktwolken einer nur teilweise bekannten Umwelt zu erlau-
ben, konnen die eingangs gestellten Fragen wie folgt beantwortet werden: Da die Um-
weltdaten nur in Ausnahmen segmentiert vorliegen, miissen alle bekannten Entitdten bei
der Kollisionspriifung berticksichtigt werden (Broad Phase), wobei fiir eine zielgerichtete
Planung dennoch erwiinscht ist, festzustellen, welche Entitdten des Egomodells kollidie-
ren. Irrelevant ist dagegen, ob es sich um Kontakte, Durchdringung oder vollstandige
UmschlieSung handelt. Fiir viele Planungsalgorithmen sind jedoch Informationen tiber
die schwere der Kollision (also die Uberschneidungstiefe) bzw. die minimale Distanz
zwischen nicht kollidierenden Entitaten eine hilfreiche Information, die die Kollisionser-
kennung zur Verfiigung stellen sollte. Wie im spéteren Kapitel zur Bewegungsplanung
ersichtlich wird, werden meist nicht nur einzelne Posen eines Roboters auf Kollisionen
hin tiberpriift, sondern ganze Bewegungsablaufe. Hierfiir bieten sich die in[Abschnitt 4.5]
eingefiihrten [Swept-Volu-men|an, die folglich von der Kollisionsdetektion effizient ver-
arbeitet werden miissen. Diese Antworten fiithren zu folgender Aussage:

Feststellung 9. Die Anforderungen einer Kollisionspriifung von Punktwol-
kenreprasentationen werden von Verfahren, die auf einer diskretisierenden
Modellierung arbeiten, am besten erfiillt. Zuséatzlich bieten sie optimale Vor-
aussetzungen fiir eine parallelisierte Implementierung, wie die folgenden Ab-
schnitte beschreiben.

Die aktuell relevantesten Arbeiten zur Kollisionsdetektion zwischen Punktwolken, mit
denen sich vergleichen kann, sind ein CPU-basierter kd-Tree-Ansatz von
Schauer et at. [181] und ein GPU-basierter Voxelansatz von Bedkowski et al. [47]. Ein
Benchmark von Schauer et al. [180] liefert einen Verglich zwischen diesen. In dessen
Bewertung werden die beiden Verfahren als dhnlich performant eingestuft, wobei spe-
zifische Vorteile hauptsédchlich von unterschiedlichen Punktedichten der Eingabedaten
abhéngen. Eine detaillierte Gegentiiberstellung zu dieser Arbeit findet sich in [Kapitel §

6.2. Voxelbasierte Kollisionsdetektion

aus der Einleitung visualisiert die Schnittmengenbildung zwischen Umwelt-
und Egomodell und bringt damit das relevanteste Ziel der voxelbasierten Kollisionsprii-
fung auf den Punkt. Es gilt, die Paare von Voxeln aus zwei Datenstrukturen zu finden,
die am selben Ort liegen und eine gewisse Belegtheitseigenschaft aufweisen. Fiir diese
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6.2. Voxelbasierte Kollisionsdetektion

Schnittmengenbildung N zwischen den Datenstrukturen M, und M, muss im Allgemei-
nen iiber eine der Strukturen iteriert werden, und fiir jeden belegten Voxel V,, der Voxel
Vi an derselben Position in der zweiten Struktur M, nachgeschlagen werden. Ist auch
der Voxel der zweiten Karte belegt, wird er zur Menge der kollidierenden Voxel hinzu-
gefligt:

1o (m(Vo) =1) A (E(V,) = 1)

6.1
0 :sonst 61)

Va&‘/},::{

My 0 My :=\/Va | (coord(V,) = coord(Vy)) A (VobeVy = 1), YV, € My, VYV € M,
(6.2)

0 :M, N M=
coll(M,, My) = {1 ot v =10 (6.3)

Um diese Arbeit parallel ausfithren zu konnen, geschieht die Iteration sowie die Interpre-
tation der besuchten Voxel im Code eines CUDA-Kernels. Da als Datenstruktur fiir die
beiden zu priifenden Modelle alle drei Implementierungen (Voxelkarte, Voxelliste und
Octree) aus dem vorherigen Kapitel in Frage kommen, miissen dementsprechend mehre-
re N-Operatoren in Form von Kerneln vorhanden sein. Diese Kernel bilden den Kern der
[GPU-Voxels| Bibliothek, weshalb sie darauf ausgerichtet sind, die Eigenheiten der Daten-
strukturen berticksichtigen, um den bestmdoglichen Datendurchsatz zu erreichen. Da wei-
terhin verschiedene [Voxeltypen| Verwendung finden, muss der [&]}-Operator die Belegtheit
mittels individuell interpretieren. Um in der Software nicht das Kreuzprodukt aller
Karten- und als Programmcode umsetzen zu miissen, wird jedem Kollisions-
Kernel ein vorkonfiguriertes Col1ider-Objekt mit tibergeben, welches den [&}Operator
entsprechend der eingesetzten Typen implementiert. Neben den, als Templateparame-
ter iibergebenen, beteiligten erhilt der Collider weitere Parameter (bspw.
Schwellwerte oder Bitvektoren), um der [M(V)}Operator voll zu definieren und um kolli-
dierende Voxel in einer der beiden Datenstrukturen zu kennzeichnen. Der Kernel selbst
muss somit zwar spezifisch fiir die Iteration tiber die zu priifenden Datenstrukturen sein,
bleibt jedoch agnostisch, da er mit jedem potentiell kollidierenden Voxelpaar
den Collider aufruft.

Die Besonderheiten der Kollisions-Kernel bei allen moglichen Kombinationen der Da-
tenstrukturen werden im folgenden beschrieben. Voraussetzung fiir alle Algorithmen ist,
dass beide Datenstrukturen achsparallel ausgerichtet sind und sich tiberlappen.

6.2.1. Semantik der Kollisionsprifung

Durch die Uberlagerung zweier Voxel-Datenstrukturen kénnen je nach verwendetem
unterschiedliche semantische Informationen abgeleitet werden:
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Kollisionspriufung mit probabilistischen und deterministischen Voxeln

Bestehen beide Strukturen aus probabilistischen und / oder deterministischen Voxeln,
so kann entweder lediglich die bindre Aussage Kollision / keine Kollision getroffen werden,
oder aber durch das Zihlen der in Kollision liegenden Voxel der Grad der Uberschnei-
dung und somit die Schwere der Kollision bestimmt werden. Im ersten Fall konnen die
Berechnungen mit der Detektion der ersten Kollision abgebrochen werden (Lazy Evalua-
tion), was zu groflen Zeitersparnissen fithren kann. Im zweiten Fall miissen alle Voxel
erschopfend bearbeitet werden und zuséitzlicher Aufwand zur Zusammenfassung der
parallel ermittelten Kollisionen erbracht werden. Da diese Zusammenfassung von der
Implementierung der verwendeten Datenstruktur abhéngig ist, wird in den folgenden
Abschnitten detaillierter auf sie eingegangen.

Kollisionsprifung mit Bitvector-Voxeln

Ist eine Datenstruktur aus Bitvektor-Voxeln an der Kollisionspriifung beteiligt, miissen
hierfiir, je nach Semantik der Karteninformationen, unterschiedliche Verfahren eingesetzt
werden.

Abb. 6.2.: Dynamsche Beispielszene zur Verdeutlichung von Die Subvolumen
des geplanten Roboterpfades sind in blau dargestellt, der grau markierte Be-
reich wurde bereits abgefahren. In rot ist die Bewegung eines Hindernisses
quer zur Fahrtrichtung des Roboters gezeichnet. Darin ist ein Teilvolumen in
griin hervorgehoben, welches zu drei Zeitschritten (3, 4, 5) belegt ist. Es bildet
die Grundlage fiir das Beispiel aus Roboter und Hindernis befinden
sich anfangs in 0.

Stellen die[SSV-IDs|unterschiedliche Entititen dar, bspw. die einzelnen beweglichen Seg-
mente eines Roboters, so ist es fiir die Detektion einer Kollision irrelevant, welches Seg-
ment in Kollision liegt. Dennoch kann es hilfreich sein, Informationen iiber die betroffe-
nen Segmente zu erhalten, um gezielter zu reagieren. In diesem Fall ist es nicht ausrei-
chend, den|[M(V)|Operator zu nutzen. Vielmehr ist das Belegt-Bit der Voxel auszuwerten,
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und bei einer Kollision alle anderen [SSV-ID}Bits in einem Ergebnis-Bitvektor zu vero-
dern:

Vi & Vo i= Wy, 1 AWy, 1 6.4)
Ergebnis-Bitvektor := Wy, ; V ¥y, ;, 4 < i < 254 '
Reprisentieren die [SSV-IDs|jedoch Zeitstempel der Belegtheit, so miissen dieselben Bits
in beiden Voxeln gesetzt sein, um die Voraussetzungen fiir eine Kollision zu erfiillen
(selber Ort und selber Zeitpunkt).

254
1% &Z‘@ = \/ d“ﬁﬂzﬁ\dkbm
n=4
Ergebnis-Bitvektor := ¥y, A ¥y,

(6.5)

Ein Beispiel ist in gezeigt. Der Ausschnitt aus den Bitvektoren von Roboter und
Hindernis zeigt eine Uberschneidung in den Bits 18, 19 und 20. Das Ergebnis einer Kolli-
sionspriifung mittels[&}Operator ist im Ergebnis-Bitvektor UND eingetragen.

Wie im Falle der Kollisionspréadiktion aus gezeigt, kann es notig sein, das
Kollisionskriterium aufzuweichen, um ein Zeitfenster aus mehreren angrenzenden Bits
zu tberpriifen, damit so Unsicherheiten ausgeglichen werden konnen. Das Ergebnis ei-
ner [&}Operation mit einer Fensterbreite von k = 5 Bits ist in in Zeile UND_5
gezeigt. Hierbei werden auch die Zeitpunkte O,,_j bis O, 4, kurz vor bzw. nach dem
eigentlich untersuchten Moment R,, berticksichtigt und somit eine grofiere Toleranz er-
reicht. Nach einer weiteren[&]Operation mit dem Bitvektor des Roboter{Swept-Volumens|
steht dann das Ergebnis bereit. Um die Bitvektoren zweiter Voxel A und B mit diesem
zusétzlichen Sicherheitsfenster auf gemeinsame gesetzte zu priifen, muss einer
der beiden Vektoren in 1-Bit Schritten positiv wie negativ um die Fensterbreite verscho-
ben werden. Dabei stellt sich das Problem, dass in zwar ein Bitshifting-Operator
zur Verfligung steht, der grofite verfiigbare Datentyp jedoch nur 64 Bit aufweist. Somit
ist es nicht moglich, einen kompletten Bitvektor aus 256 Bits auf einmal zu shiften. Die
Implementierung bedient sich daher der Konzepte des std: :bitset aus der
C++-Standardbibliothek und arbeitet intern mit einem 64 Bit breiten Puffer, der Wort-
weise zusammengesetzt wird. Folglich ist in Abschnitten von je einem Byte aus Vektor B
vorzugehen, die innerhalb eines 8 Byte Puffers verschoben werden. Hieraus ergibt sich
eine maximale Fensterbreite von 21 Bit. Weiterhin ist darauf zu achten, die niederwertigs-
ten vier Bits und das hochwertigste Bit der Eingabedaten auszublenden, da diese keine
[SSV-IDs|darstellen. Das Ergebnis der Bitweisen &-Operation jedes Abschnitts muss letzt-
endlich an der korrekten Position mit den Bits des Ausgabevektors verodert werden. Der
Pseudocode des implementierten ist in [Algorithmus § gelistet. Die Parallelisie-
rung erfolgt auf Voxelebene.

Eine weitere Funktion des Colliders ist es, durch die Definition einer Bitmaske ge-
zielt Kollisionen zwischen definierten zu ignorieren. Diese werden dann weder
gezdhlt, noch fithren sie zu einer Kollision im Gesamtresultat. Dies ist bspw. bei der Aus-
blendung von Eigenkollisionen niitzlich (vgl.[Unterabschnitt 4.4.3).

"https://gcc.gnu.org/|bzw. www.cplusplus.com/reference/bitset/bitset/
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' 15|o|o|o|o|o|$|f Aosle oo

SSV-ID5  SSV-IDO Belegt

Abb. 6.3.: Die ersten beiden Bytes aus dem Bitvektors eines Voxels, der zu drei Zeitschrit-
ten belegt ist (vgl. griines Volumen aus [Abb. 6.2). Alle nicht dargestellten Bits
des Vektors sind nicht gesetzt.

24 23 16 10
Roboter ]0|0 o[o[o[o]o]o] |o]o]o[a]x[a]z]a] [z]a]z]x]2]2]o]o] -

[o[o]o]

Hindemnis -~ [0[o[o]o[o]o[1]t] [1[t[1]1]1[t]o]o] o[o[o[o]o[o]o]o] -

UND - |o]o[o[o[o]o]o]o] [o[o[o[t]1]1fo[o] o]o]o]o[o[o]o]o] - -
[o]
o]

UND_5 --- |0o]oo]o[o]a]1] [a]t]a]z]a]z]a]z] [2]1]z]o]o]o]o]o]- -

Ergebnis - [o[o[o[o[o[o[o[o] [fo[o RSN EEIo[[o[o[o] -

Abb. 6.4.: Beispiel der Kollisionserkennung zwischen dem [Swept-Volumen| Bitvektor ei-
nes Roboters und eines Hindernisses aus [27]]. Die Bitvektoren von Roboter und
Hindernis sind in griin dargestellt, das Ergebnis der Kollisionspriifung in rot.

Letztendlich konnen alle Kernel die Kollisionsinformationen in eine der beiden Daten-
strukturen zurtickschreiben. Zur Kennzeichnung kollidierender Voxel steht im Bitvektor
explizit das Bit 2 zur Verfiigung, welches wiederum von der Visualisierung ausgewertet
wird. Da hierfiir jedoch ein schreibender Speicherzugriff notig ist, sollte diese Moglich-
keit zugunsten der Laufzeit nur bei Bedarf aktiviert werden.

6.2.2. Kollisionsprifung Voxelkarte N Voxelkarte

Nachdem die Kollisionspriifung auf Voxelebene definiert wurde, soll sie nun auf der
Ebene der Datenstrukturen erldutert werden. Der geradlinigste Fall ist dabei die Itera-
tion tiber zwei Voxelkarten mit denselben Dimensionen. Hierbei kann in einer einzigen
\Grid-Stride-Loop|und bei maximaler Parallelisierung mit ¢ verfiigbaren Threads iiber die
Anzahl s der Voxel pro Karte iteriert werden. Der Laufindex wird zu den Basis-Speicher-
adressen der beiden Karten addiert, um jeweils auf Voxel an denselben Koordinaten zu-
zugreifen, und diese dem Col1lider zuzufiihren. Da der Zugriffsoperator eine konstante
Laufzeit von O(1) aufweist, gilt fiir den Aufwand Avoyelkarte dieser Kollisionspriifung:

AVoxelkarte(S) =2 (S/p) (66)

Der Aufwand ist also insbesondere nicht vom Belegtheitsgrad der Karten abhédngig, wo-
mit harte Laufzeitgarantien gegeben werden kénnen. Da die Daten beider Karten linear
im globalen Speicher abgelegt sind, werden pro Warp zwar durchschnittlich zwei Spei-
cherzugriffe benotigt, diese profitieren jedoch maximal von[Memory Coalescing]
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Nicht nur bei der Verwendung von Karten unterschiedlicher Grofse kann es jedoch notig
sein, Voxelkarten vor der Kollisionspriifung gegeneinander zu verschieben (keine Ver-
drehung). Dies ist durch die Addition eines Versatzes auf eine der Basisadressen, wie in
[Unterabschnitt 5.3.1| beschrieben, einfach moglich. Somit konnen bspw. unterschiedliche
Platzierungen eines Roboters in der Umwelt sehr effizient realisiert werden.

Fiir das Zahlen der Kollisionen wihrend einer Iteration verfiigt jeder Thread eines Blocks
iiber eine eigene Zihlvariable, die er mit jedem Treffer inkrementiert. Somit sind Ressour-
cenkonflikte ausgeschlossen. Da diese Zihler in einem Feld im geteilten Speicher liegen,
konnen sie am Ende der Laufzeit per zu einer blockweiten Summe aufad-
diert werden. Weiterhin liegt im globalen Speicher ein Feld aus Zahlvariablen pro Block
vor, in die ein einzelner Thread des Blocks das Ergebnis der Reduktion schreibt. Die-
ses Feld wird nach der Ausfithrung des Kernels auf den Host kopiert. Dort lassen sich
in einer kurzen Schleife die Zahler aller Blocke aufaddieren, womit das Gesamtergebnis
feststeht.

Dasselbe Reduktionsschema wird auch verwendet, um im Falle von Bitvektor-Voxeln
kollidierende [SSV-IDs| zu bestimmen. Statt der Addition kommt dabei der [[ }Operator
fiir die Reduktion zum Einsatz und es werden Bitfelder anstatt Zahlvariablen genutzt.

6.2.3. Kollisionspriifung Voxelliste N Voxelliste

Voxellisten richten sich in ihrem Adressierungsschema nach einer virtuellen Voxelkarte
bzw. einem Octree. Daher ist die Voraussetzung fiir die Kollisionspriifung zwischen zwei
Listen, dass ihre entsprechenden virtuellen Karten dieselben Dimensionen bzw. die selbe
Maximaltiefe aufweisen. Ist dies sichergestellt, kann eine einfache Kollisionspriifung, bei
der lediglich die Voxel zu zdhlen sind, die in beiden Listen vorhanden sind, durch eine
Suche in den Zeigerlisten realisiert werden.

Soll dagegen jedoch ein Collider genutzt werden, ist zunédchst die Menge der kollidie-
renden Elemente zu bestimmen. Unter der Voraussetzung, dass die Listen sortiert vorlie-
gen und keine doppelten Voxel aufweisen, konnen dafiir folgende Thurst-Operationen
eingesetzt werden: Die eigentliche Kollisionspriifung besteht aus einer Suche der Ein-
trage der kiirzeren Eingabeliste innerhalb der langeren Liste. Jeder Fund einer Kollision
wird in tempordren bindren Masken eingetragen, mit deren Hilfe die betroffenen Ein-
trige beider Eingabelisten in Ergebnislisten kopiert werden. Uber diese kann dann im
letzten Schritt sehr effizient iteriert werden, um entweder die Menge der Kollisionen zu
zdhlen, oder den Collider anzuwenden um ein gewiinschtes Resultat zu bestimmen.
Da alle Teilalgorithmen aus linear ablaufenden Primitiven der Parallelverarbeitung auf-
gebaut sind, ist Thrust in der Lage, auf Basis der zu verarbeitenden Datengrofien eine
optimale GPU-Auslastung zu erreichen.

Fiir die Umsetzung der Greifplanung aus [Unterabschnitt 7.2.7|wurde fiir die Listen noch
eine besondere Auswertung implementiert, die die Anzahl an Kollisionen getrennt pro
ermittelt. Da fiir die GPU-seitige Umsetzung dieser Funktion eine umfangrei-
che Datenreduktion der 250 geteilten Zahlvariablen bendttigt wiirde, ist es in diesem Fall
performanter, die Ergebnislisten auf den zu kopieren und dort sequentiell auszu-
werten. Dies ist ein gutes Beispiel fiir die heterogene Parallelverarbeitung mittels GPU
und CPU.
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6. Kollisionsdetektion

6.2.4. Kollisionsprifung Voxelliste N Voxelkarte

Wie bei der Priifung zwischen zwei Listen, ist auch hier die Voraussetzung, dass die
virtuelle Voxelkarte der Liste dieselben Dimensionen wie die zu priifende Datenstruk-
tur aufweist. Somit kann in einer |Grid-Stride-Loop| {iber die in der Liste gespeicherten
Voxeladressen iteriert werden. Durch die Addition der Karten-Basisadresse konnen die
entsprechenden Voxel direkt in der Karte abgerufen werden, um mit dem Collider
evaluiert zu werden. Weiterhin kann auch hier ein Versatz eingebracht werden, um eine
virtuelle Translation der Liste zu erzeugen. Diese Kombination aus Datenstrukturen ist
sehr effizient, da das durchlaufen einer Voxelliste den linearem Aufwand O(n) erzeugt,
wiahrend der Zugriff auf einzelne Voxel in einer Voxelkarte mit O(1) moglich ist. Somit
bestimmt sich der Gesamtaufwand rein tiber die Lange der Liste, die in vielen Anwen-
dungen gering gehalten werden kann.

Eine Kommutation der Datenstrukturen (also das Iterieren iiber die Voxelkarte und das
Priifen der entsprechenden Voxel in der Liste) ist in keinem Falle sinnvoll, da Voxellisten
nicht tiber einen Operator zum wahlfreien Zugriff verfiigen und daher bei jedem Lesen
eine Suche nétig wire.

6.2.5. Kollisionspriifung Octree N Octree

Voraussetzung fiir den Schnitt von zwei Baumen ist, dass diese dasselbe Raumvolumen
beschreiben und eine gleiche maximale Tiefe aufweisen. Ist dies gegeben, konnen die Oc-
trees simultan traversiert werden, um diejenigen Knoten zu finden, die in beiden belegt
sind. Hierfiir bietet sich die Nutzung des bereits vorgestellten Lastausgleiches an, wobei
die Arbeitselemente nun nicht mehr nur Knoten aus einem Baum, sondern aus beiden
Baumen enthalten. Zusitzlich verfiigen sie {iber zwei Boolsche Variablen, die angeben,
ob die Tiefensuche die Blattknoten eines Baumes erreicht hat. Wie im urspriinglichen Al-
gorithmus wird wieder die Ebene der zu bearbeitenden Knoten benétigt und alle Arbeits-
stapel miissen die Invariante aus|Gleichung 5.21|erfiillen. Der um die Kollisionspriifung
erweiterte |Algorithmus 6| findet sich in{Anhang Al Er bearbeitet die Elemente eines Sta-
pels pro Thread in einer Schleife und verteilt diese neu, wenn eine Lastungleichheit vor-
liegt. Dafiir werden zundchst Knotenpaare fiir jeden Thread aus dem globalen Speicher
in den schnellen, geteilten Speicher kopiert und auf Kollision iiberpriift. Hierbei kann
eine maximale Abstiegstiefe berticksichtigt werden, die die Granularitdt der Kollisions-
bestimmung erhdht und ihre Berechnungszeit verringert. Wurde auf der vorgegebenen
Maximaltiefe ein kollidierender Knoten gefunden, steigt der Algorithmus noch eine Ebe-
ne weiter ab, um die Zuverldssigkeit der Kollisionsaussage zu verbessern. Bestétigt sich
die Kollision, werden bei der Aufsummierung der sich schneidenden Voxel alle Blatt-
knoten als kollidierend angenommen, also die Anzahl der kleinsten Kindvoxel gezahlt.
Ihre Menge muss jedoch nicht berechnet werden, sondern kann in einer Tabelle im sehr
schnellen konstanten Speicher nachgeschlagen werden. Ein Beispiel dazu ist in|Abb. 6.5
zu sehen.

Eine konservative Abschitzung des Rechenaufwands des vorgestellten Verfahrens zeigt,
dass dieser im schlechtmoglichsten Fall lediglich ca. 14% hoher ausfillt, als der Aufwand
einer linearen Kollisionspriifung zwischen zwei Voxelkarten: Wie oben in
gezeigt, benotigt die Voxelkarten-Kollision einen Aufwand von Avygxelkarte(S) = 2 - (5/q)
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2

Abb. 6.5.: Erkannte Kollision bei Abbruch der Priifung auf Ebene 3. Durch den Abstieg
auf Ebene 2 kann jedoch die Kollisionsfreiheit erkannt werden. Voxel: belegt
(schwarz), frei (weif3), teils belegt (grau).

Der Aufwand zur Traversierung zweier Octrees hiangt hingegen von vielen Faktoren ab,
unter anderem dem Belegtheitsgrad und -muster, da diese die Parallelisierbarkeit der Tie-
fensuche bestimmen. Daher soll hier der Fall mit dem hochstmoglichen, aber eindeutig
zu berechnenden Aufwand untersucht werden, in dem jeder innere Knoten des Baumes
tiber Kindknoten verfiigt und die Tiefensuche somit immer bis zur Blattebene auszufiih-
ren ist:

logg £

Aoctree(s) =2+ [ k+ Y & =2-<k+81+82+...+2> (6.7)
=1

fir s>q, s=g"enen o — gk | #FEbenen € IN

Die ausgeschriebene Summe in der Gleichung setzt sich aus den Aufwinden der ein-
zelnen Ebenen zusammen. Fiir die oberen k£ Ebenen sind genau k£ Rechenschritte erfor-
derlich, da diese Ebenen weniger Knoten aufweisen, als Threads ¢ verfiigbar sind. Somit
kann jede Ebene voll parallelisiert in je einem Schritt bearbeitet werden. Unterhalb der
Ebene k verachtfacht sich der Aufwand pro Ebene fiir jeden Thread (8*EPen¢), bis auf
der Blattebene s Voxel durch ¢ Threads zu verarbeiten sind. In der Summenschreibweise
wird die Anzahl der Ebenen zwischen & und der Blattebene mittels logg 2 — 1 bestimmt.
Diese Summe kann umgeformt und mittels der geometrischen Reihenentwicklung zu

abgeschitzt werden (siehe[Gleichung A.6|in[Abschnitt A.7).

s 8

Vernachldssigt man hier k£ = logg ¢ zeigt sich im Vergleich mit dem Voxelkartenaufwand
aus ein Mehraufwand von 1/7 ~ 14%. Dies beschreibt jedoch den schlecht-
moglichsten Fall, bei voller Belegung. Bei der Verwendung mit realistischen Umweltda-
ten, bei denen weit weniger als die Halfte des Raumvolumens belegt ist, ist der Octree
fiir den lesenden Zugriff immer performanter als eine Voxelkarte, da der Aufwand im
Schnitt logarithmisch mit der Menge an Daten abfallt.
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6.2.6. Kollisionspriifung Octree N Voxelliste

Da eine Voxelliste lediglich belegte Voxel speichert, ist es am effizientesten, die Eintrdge
der Liste parallel abzuarbeiten, wobei jeder Thread eine Tiefensuche im Octree durch-
fithrt, um den Voxel aus der Liste zu suchen. Ein inverses Vorgehen wére auch auf-
grund der gewdhlten Implementierung der Voxelliste nicht zielfithrend, da diese kei-
nen wabhlfreien Zugriff auf bestimmte Voxel untersttitzt. Ist die Suche erfolgreich, fiihrt
der Collider die nutzdatenspezifische Kollisionspriifung aus. Da aufeinanderfolgen-
de Voxel der Liste meist eine ortliche Lokalitat aufweisen, verfolgen viele der parallelen
Tiefensuchen einen zumindest teilweise {ibereinstimmenden Pfad, wie in[Abb. 6.6zu se-
hen ist. Der Grad der Uberlappung, d.h. die kleinste gemeinsame Ebene im Baum, kann
mittels weniger Bit-Operationen aus den Morton-Codes der gesuchten Voxel bestimmt
werden (siehe . Durch einen Vorverarbeitungsschritt, der die Ahnlichkeit
mehrerer Voxel vor der Tiefensuche tiberpriift und Abstiege zusammenfasst, kann viel
Rechenzeit gespart werden, da individuelle Threads erst ab der divergierenden Ebene
starten miissen. Daher verbindet auch diese Kombination effektiv die Vorteile beider Da-
tenstrukturen.

6.2.7. Kollisionsprifung Octree N Voxelkarte

Wie aus den Beschreibungen der unterschiedlichen Datenstrukturen im vorigen Kapitel
und den Grafiken aus hervorgeht, weisen Octree und Voxelkarte unterschied-
liche Vorteile auf, die bei einer Kollisionspriifung gewinnbringend kombiniert werden
konnen. Dies ist gut nachvollziehbar, wenn die Kommutation der Datenstrukturen be-
trachtet wird, die in dargestellt ist und die im Folgenden erldutert wird.

Im ersten Fall wird die Voxelkarte maximal parallelisiert abgelaufen. Jeder dabei gefun-
dene belegte Voxel b muss dann durch eine Tiefensuche im Octree nachgeschlagen wer-
den, was abhdngig von dessen Belegtheitsgrad unterschiedlichen Aufwand verursacht.
Da konsekutive Threads ortlich nah aneinanderliegende Voxel bearbeiten und sich die-
se Lokalitdt auch auf den Octree tibertragt, verfolgen viele Threads bei ihrem Abstieg
im Baum zunédchst den gleichen Pfad. Wie auch bei der Voxelliste kann dies erkannt
und zur Effizienzsteigerung ausgenutzt werden. Der durchschnittliche, theoretische Auf-
wand ohne Parallelisierung liegt somit bei O(m+(blog n)) (wenn b der insgesamt m Voxel
in der Voxelkarte belegt sind und der Baum n Voxel beinhaltet).

Dennoch ist diese Methode dem kommutierten Fall meist unterlegen: Wird als primére
Struktur der Octree traversiert, konnen grofiere freie Regionen effizient ausgelassen und
nur belegte Voxel gezielt in der Voxelkarte in O(1) nachgeschlagen werden. Dazu kommt
wiederum die parallele Tiefensuche mit Lastausgleich zum Einsatz, wobei deren Arbeits-
elemente nun, neben der bearbeiteten Ebene und den Zeigern auf Kindknoten, auch de-
ren 3D-Koordinaten beinhalten. Diese werden fiir die Adressierung der Voxelkarte beno-
tigt und lassen sich beim Abstieg im Baum einfach generieren. Die Priifung auf Belegtheit
in der Voxelkarte ist dann voll parallel moglich. Eine effiziente Implementierung dieses
Algorithmus muss jedoch einige Besonderheiten aufweisen, um Lastungleichheit zu ver-
meiden und ist daher wesentlich komplexer als die Implementierung des ersten Falls. So
eignet sich die Bearbeitung ohne Arbeitsstapel fiir die beiden untersten Baumebenen bes-
ser, als das differenzierte Bearbeiten von belegten Teilbaumen. Weiterhin werden ab einer
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Abb. 6.6.: Gemeinsamer Pfad der Tiefensuche.
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Abb. 6.7.: Effizienzsteigerung durch Kommutation der Datenstrukturen bei einer Kollisi-
onspriifung (X markiert eine erkannte Kollision).
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gewissen Ebene auch vollstandig belegte Knoten zu Gunsten der gleichméfiigen Lastver-
teilung weiter traversiert (wenn auch mit einem statischen Zeiger auf das Elternelement),
obwohl das Verarbeitungsergebnis bereits feststeht. Die dadurch vermiedene Divergenz
im Programmfluss verbessert dennoch die Gesamtlaufzeit (vgl. [Unterabschnitt 3.2.1)).

Die Abwiagung, welche der beiden Methoden eingesetzt wird, hangt von der Problem-
grofle und der Belegtheit der Datenstrukturen ab. Ist der Octree sehr ungleichméfig be-
legt, macht der Mehraufwand des Lastausgleiches im zweiten Verfahren die Vorteile zu-
nichte.

Da sich das repréasentierte Volumen eines Octrees und einer Voxelkarte unterscheiden, ist
zunichst ihre Uberlappung zu berechnen. Dafiir werden die minimalen und maximalen
Koordinaten der Octree-Teilbaume herangezogen, die sehr effizient ermittelbar sind (sie-
he . Mit diesen Koordinaten kann die Uberlappung und die vollstandige

Umfassung eines Teilbaumes von einer Voxelkarte direkt bestimmt werden.

6.2.8. Kollisionsprifung Distanzkarte N Voxelliste

Distanzkarten verhalten sich hinsichtlich des Zugriffs auf einzelne Voxel wie Voxelkar-
ten, weshalb sie analog eingesetzt werden konnen. Allerdings ware die feingranulare
Abtastung der Distanzkarte ein suboptimales Vorgehen, da insbesondere im Freiraum ei-
ne einzelne Abfrage bereits implizit Informationen tiber ein kugelférmiges Volumen im
Umfeld liefert und somit alle anderen Abfragen innerhalb der Kugel redundant waren.
Daher ist es eine effizientere Vorgehensweise, Geometrien durch Kugeln mit konstantem
Radius zu approximieren und lediglich deren Mittelpunkte bei der Kollisionspriifung in
der Distanzkarte nachzuschlagen (dhnlich der Arbeit von Greenspan [90]). Da es sich bei
dieser Darstellung um sehr spérliche Daten handelt, bietet sich die Verwendung einer
Voxelliste an, um die Mittelpunkte zu speichern. Uber einen Collider, der als zusitzli-
chen Parameter den verwendeten Kugelradius erhélt, konnen diese mit der Distanzkarte
auf Kollision gepriift werden.

Fiir die Versuche in|Abschnitt 8.9 wurde jedoch letztendlich gar keine eigene Datenstruk-
tur zur Modellierung des Roboters verwendet, da die komplette Flugdrohne durch eine
einzelne Kugel représentiert werden konnte.

Da der Aufbau und die Aktualisierung einer Distanzkarte aus Sensordaten, verglichen
mit den anderen Datenstrukturen, verhadltnismaflig lange dauert und Lese- / Schreib-
zugriffe nicht parallel stattfinden koénnen, bremst dies die Reaktivitit der Datenstruktur
empfindlich aus. Daher bietet sich die Verwendung zweier Distanzkarten zur Umsetzung
eines doppelten Puffers an, um eine Parallelisierung iiber den abwechselnden zeitver-
setzten Zugriff zu erreichen.

6.3. Fazit

Bedingt durch die Vielzahl an Datenstrukturen mussten bei der Kollisionsdetektion spe-
zifische Vorgehen implementiert werden, um die Zugriffseigenschaften der beteiligten
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Strukturen je nach Kombination zum Vorteil zu nutzen. Bei der Verwendung der Algo-
rithmen ist die folgende Aussage zu beachten:

Feststellung 10. Datenstrukturen bei der Kollisionspriifung verhalten sich
nicht kommutativ. Eine verwendete Ausgangsdatenstruktur sollte moglichst
effizient iterierbar sein und wenige Voxel enthalten, wihrend die zweite Struk-
tur einen effizienten, wahlfreien Zugriff erlauben sollte, da in ihr nachgeschla-
gen wird.

In der praktischen Anwendung finden jedoch meist kontrare Datenstrukturen Verwen-
dung, die den Anforderungen der zu reprasentierenden Daten gerecht werden und die
sich gleichzeitig bei der Kollisionspriifung optimal ergdnzen. Daher sind die Laufzeiten
im Vergleich zur Verwendung gleichartiger Strukturen fast immer kiirzer, wie auch die
Evaluation in belegt. Somit ist auch der zweite Teil der [Forschungsfrage 3| zu
den Eigenschaften der Datenstrukturen positiv beantwortet.

Durch das umgesetzte Konzept des Colliders, welches von den verfiigbaren
@ abstrahiert, potenziert sich die Anzahl der zu implementierende Félle dennoch nicht.
Bei der praktischen Verwendung von|GPU-Voxels| hilft eine eingingige, templatebasierte
API, die die verfiigbaren Kollisionsfunktionen pro Datenstrukturpaar tibersichtlich ge-

staltet.
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7. Bewegungsplanung

In diesem Kapitel sollen nun, aufbauend auf den Datenstrukturen und der Kollisionsde-
tektion, Verfahren vorgestellt werden, die es einem Roboter ermdglichen, seine Bewegun-
gen zu planen. Wie in [Definition 3|beschrieben, ist die Pramisse dabei, kollisionsfrei von
einem Ausgangszustand zu einem gegebene Zielzustand zu gelangen. Dafiir miissen als
weitere Eingabedaten ein Umweltmodell und ein Egomodell zur Verfiigung stehen. Auf
Basis dieser Daten kann dann ein Plan in Form einer Trajektorie aus Zwischenzustanden
generiert werden, entlang derer sich der Roboter dann bewegt. Dabei kann es nétig sein,
Zwischenzustiande einzunehmen, die den Roboter zundchst noch weiter von seinem Ziel
entfernen, aber global gesehen zur Losung des Problems dienen. Die Verfahren der Pla-
nung konnen daher sehr komplex ausfallen (Klasse der NP-harten [167] und auch NP-
kompletten Probleme [53]). Weiterhin entsteht insbesondere in dynamischen Umgebun-
gen die Problematik, dass erstellte Pliane bereits veraltet und nicht mehr kollisionsfrei
sind, noch bevor sie zur Ausfithrung kommen.

Im Gegensatz zur zeitintensiven Planung stehen reaktive Verfahren, die den grofien Re-
chenaufwand vermeiden, indem sie zielorientiert, aber lediglich lokal arbeiten, um einen
Roboter von Hindernissen fernhalten. Sie kénnen schneller auf Anderungen in der Um-
welt eingehen, sind jedoch anféllig dafiir, an lokalen Minima zu scheitern, weshalb sie
nur fiir kiirzere zeitliche und ortliche Horizonte ausgelegt sind. Oftmals werden daher
beide Verfahrensklassen zu hybriden Systemen kombiniert. Die vorliegende Arbeit hat
hingegen das Ziel, die Planungzeit so weit zu verkiirzen, dass auf lokale, reaktive Kom-
ponenten verzichtet werden kann. Moglich wird dies, indem die zeitintensivste Kom-
ponente der Planung, ndmlich die Kollisionspriifung, durch die Parallelisierung auf der
GPU massiv beschleunigt wird.

Dieses Kapitel untersucht daher zunédchst unterschiedliche Planungsverfahren, um die
Kandidaten zu ermitteln, die am meisten von einer GPU-beschleunigten Kollisionsprii-
fung profitieren. Ihr Einsatz wird dann anhand konkreter Probleme detaillierter beschrie-
ben. Eine symbolischen Planung, die in der Steuerungshierarchie oberhalb der Bewe-
gungsplanung steht, wird in dieser Arbeit nicht ndher behandelt.

7.1. Grundlagen

Zu Beginn sollen einige Grundlagen definiert werden, um den Einsatz schneller Verfah-
ren der Kollisionsdetektion in der Planung zu motivieren.

Fast alle Planungsalgorithmen bestehen aus den folgenden vier Schritten, die teilwei-
se wiederholt ausgefiihrt werden: Zunéchst ist eine Transformation aus dem Arbeits-
raum in den Konfigurationsraum des Roboters zu definieren. Daraufhin wird eine Dis-
kretisierung des Konfigurationsraumes durchgefiihrt (explorativ oder analytisch) und
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zwischen den diskretisierten Zustdnden ein Graph aufgespannt. Liegen Start- und Ziel-
zustand im Graphen, kann eine Verbindung zwischen ihnen gesucht werden. Wahrend
dieses Prozesses muss die Validitét einzelner Zustdnde bzw. der Zustandstiibergdnge ent-
lang der Graphenkanten evaluiert werden. Hierunter fallen geometrische Vorgaben wie
Kollisionsfreiheit und Gelenkwinkelbeschrankungen, aber auch dynamische Einschran-
kungen.

7.1.1. Arbeitsraum, Konfigurationsraum und Planungsraum

In der Bewegungsplanung unterscheidet man zwischen zwei Rdumen unterschiedlicher
Dimensionalitdt, in denen die Bewegung eines Roboters beschrieben werden konnen:
Dem Arbeitsraum S und dem Konfigurationsraum C. Der Arbeitsraum definiert sich {iber
die physische Umgebung und wird iiber das Umweltmodell (siehe reprisen-
tiert. Dagegen beschreibt der Konfigurationsraum die Posen des Roboters, weshalb er
durch die beweglichen Freiheitsgrade (Degree of freedom (DOF)) aufgespannt wird. Im
Allgemeinen ist der Konfigurationsraum surjektiv, aber nicht injektiv zum Arbeitsraum.
Somit ist die Abbildung einer|Roboterkonfiguration, die durch ein Tupel aus Gelenkwin-
keln beschrieben ist, in den Arbeitsraum durch die so genannte Direkt Kinematik eindeutig
und trivial moglich. Das Ergebnis ist die Pose des[Endeffektors|im Raum. Der inverse Fall
hingegen, also die Berechnung der Gelenkwinkel aus einer gegebenen Endeffektorpose
mittels der Inversen Kinematik, ist nur in Sonderféllen eindeutig und direkt berechenbar.
Da in den meisten Fallen der Planungsraum der Konfigurationsraum ist, beeinflusst diese
Mehrdeutigkeit die Planbarkeit bzw. die Planungszeit von Bewegungsproblemen. Hier-
zu seien drei Beispiele gegeben:

- Bei einer rotationssymmetrischen mobilen Roboterplattform, welche ihre Position
in einer Ebene steuern kann, entspricht der Konfigurationsraum dem Arbeitsraum,
da in beiden Rdumen die Freiheitsgrade durch die Position der Plattform in der

Ebene (SE(2)} z, y, 6) bestimmt werden.

- Bei einem stationdren Roboterarm mit sechs steuerbaren Gelenken j;,i € [1..6], der
sein Werkzeug frei im Raum bewegen kann (SE(3)t z, v, 2, a, 3,7), ist zwar die An-
zahl, nicht aber die Bedeutung der Dimensionen beider Rdume gleich. Je nach Auf-
bau seiner kinematischen Kette ist solch ein Roboter in der Lage, denselben Punkt
im Raum bei vorgegebener Orientierung mit acht unterschiedlichen Gelenkkonfi-
gurationen zu erreichen. In Sonderfillen, in denen zwei Freiheitsgrade achsparallel
liegen (sog. Singularitdten), sogar mit unendlich vielen verschiedenen Stellungen.

- Auch der mobile Serviceroboter HoLLIiE (siehe bewegt sich im selben
sechsdimensionalen Arbeitsraum, verfiigt aber (unter Vernachldssigung der Frei-
heitsgrade der Héande) {iber wesentlich mehr Freiheitsgrade: 3 DOF der mobilen
Plattform + 2 x 6 DOF der Arme + 2 DOF des Korpers = 17 DOF. Hierbei ist eine
Mehrdeutigkeit offensichtlich, da der Roboter mit seinem TCP eine Pose auf sehr
unterschiedliche Arten erreichen kann.

Die Vorgabe aller Freiheitsgrade positioniert einen Roboter also eindeutig in seinem Ar-
beitsraum und bestimmt damit, ob eine Kollision mit der Umgebung vorliegt. Entspre-
chend wird der Freiraum als die Teilmenge des Konfigurationsraums definiert, in der

120



7.1. Grundlagen

keine Kollisionen auftreten:

Cfrei CC wobei Cfrei =C \ CHindemis (7'1)

Da jedoch, wie in den Beispielen gezeigt, im Allgemeinen keine eindeutige Abbildung
von Arbeitsraum in Konfigurationsraum existiert, kann auch der Freiraum nicht direkt
in den Konfigurationsraum projiziert werden, selbst wenn die Umgebung komplett be-
kannt ist. Ein Ansatz zur Erstellung einer Freiraumkarte im Konfigurationsraum wiére es,
diesen schrittweise abzutasten und jeden Abtastschritt im Arbeitsraum auf Kollisionen
zu priifen. Dies ist jedoch nicht tragbar: Wenn beispielsweise der Konfigurationsraum
des 6-DOF-Roboterarmes (—180 deg < j; < 180deg) in 1 Grad Schritten diskretisiert wiir-
de, ergébe dies 360° ~ 2, 177 x 10'® zu priifende Konfigurationen, die bei einem dynami-
schen Arbeitsraum fiir jede Posendnderung erneut gepriift werden miissten.

Dies stellt ein Problem fiir die Bewegungsplanung dar, da vieles darauf hindeutet, dass
die Berechnungskomplexitit exponentiell mit der Dimension des Konfigurationsraumes
wachst [168]. Da die Art des Roboters und die Anzahl seiner Freiheitsgrade in dieser
Arbeit nicht weiter eingeschrankt werden soll, werden unterschiedliche Herangehens-
weisen an diese Problematik in spateren Abschnitten beschrieben.

1/

y

Start ’
VZiel
Ziel !I
(a) Arbeitsraum (b) Konfigurationsraum

Abb. 7.1.: Vergleich der Hindernisformation im Arbeits- und Konfigurationsraum eines
Roboters mit serieller 2 DOF Kinematik. Abbildung adaptiert aus [159].

7.1.2. Graphensuche

Ein grundlegender Schritt der Planung ist das Aufspannen eines abstrakten Graphen
G innerhalb des Konfigurationsraums, dessen Knoten V' meist diskrete Zustdnde des
Roboters beschreiben, wiahrend die Kanten £ unterschiedlich teure Zustandsiibergénge
abbilden. Auf diesem Graphen konnen dann unterschiedliche Suchfunktionen genutzt
werden, um Wege von einem Start- zu einem Zielknoten zu finden. Die Auswahl der
Suche bestimmt mit tiber die Leistungsfahigkeit des Planers und sollte daher passend zu
den Eigenschaften des Graphen getroffen werden.

Der klassische Algorithmus, der auf einem statischen Graphen mit gewichteten Kanten
den kiirzesten Weg zwischen zwei Knoten finden kann, ist der Dijkstra Algorithmus, der
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1959 publiziert wurde [71]. Um auf einem engmaschigen Graphen, wie z.B. einer diskreti-
sierten 2D Karte mit Achternachbarschaft effizienter zu suchen, wurde das urspriingliche
Greedy-Verfahren 1968 von von Hart et al. [97] um eine Heuristik erganzt. Der entstan-
dene A*-Algorithmus schétzt die Distanz eines Knotens zum Ziel, um dariiber die Suche
in Richtung des Ziels zu lenken (informierte Suche). Inzwischen existieren einige paralle-
lisierte Varianten (vgl. Ubersicht in [209]), die den Suchraum aufteilen und im Falle von
R* auch auf der GPU implementiert wurden [118]. Wie spéter noch gezeigt wird, ist der
Einsatz einer parallelen Suche in dieser Arbeit jedoch nicht zielfiihrend.

Die Nachteile von A* sind sein hoher Speicherverbrauch und die Tatsache, dass bei An-
derungen im Graphen bereits generierte Teilplane wertlos werden. Vor diesem Hinter-
grund wurde D* (Dynamic A*) entwickelt [191], der es ermoglicht, gefundene Teilpldane
beizubehalten und lediglich ab dem blockierten Teil inkrementell neu zu planen. Populdr
ist jedoch die D*-Lite Variante, die Konig und Likhachev 2005 veroffentlichten [121]], da
diese wesentlich einfacher umzusetzen ist, und dennoch mindestens so effizient wie D*
ist. D*-Lite plant von Ziel zu Start und nutzt einen zweidimensionalen Tupel k, um den
n-ten Knoten zu bewerten:

min(g(n), rhs(n)) + h(nstare, n) + km
k(n) = < min(g(n), rhs(n)) >

Neben dem g(n)-Wert, der wie bei A* die kiirzeste Distanz ab dem Startknoten 7.+ be-
schreibt und der Heuristik h(n, nsat), die die erwartete Entfernung bis zum Startknoten
abschitzt, spielt der rhs(n)-Wert (Right Hand Side) eine wichtige Rolle: Er speichert, dhn-
lich zu g, in jedem Knoten den vom Zielknoten aus zuriickgelegten Wert, allerdings unab-
héngig von den g-Werten des Vorgéngerknotens n’. Daher kann er genutzt werden, um
bei Anderungen im Graphen Inkonsistenzen aufzudecken. Diese entstehen, wenn auf-
grund von Hindernissen hohere Kosten ¢(n/, n) zwischen den Knoten n und n’ auftreten
und somit g(n) = g(n')+c(n’,n) # rhs(n) ist. In diesem Fall muss rhs(n) rekursiv aus neu
bestimmten g-Werten gesetzt werden. Diese gezielte Reparatur des Graphen ist effizien-
ter als der komplette Neuaufbau und erlaubt den Einsatz von D*-Lite auf dynamischen
Daten. Somit konnen Pfade durch teilweise unbekannte Regionen geplant werden, die
erst wiahrend der Pfadausfiihrung einsehbar sind. Da D*-Lite den kiirzesten Pfad jedoch
durch die Minimierung von rhs sucht und dieser wihrend dem Abfahren des Pfades au-
tomatisch abnimmt, ist der Ausgleichsterm k,, notwendig, der die bereits abgelaufene
Distanz kompensiert.

(7.2)

Bei der Komplexitdtsbetrachtung eines samplingbasierten Planers, wie dem RRT oder
RRT*, erscheint die Kollisionsdetektion nur als konstanter Zeitfaktor wahrend Graphen-
Operationen wie Nachbarschaftssuche und Einfligeoperationen mit O(logn) den grofie-
ren Aufwand erzeugen. Dies trifft jedoch nur fiir den in der Praxis irrelevanten Fall der
asymptotischen Betrachtung zu. In realistischen Szenarien, insbesondere jedoch bei der
Betrachtung einer dreidimensionalen Umwelt, tiberwiegt die Laufzeit der Kollisionsprii-
fung der Planer-Samples bei weitem die Berechnungen im Graphen [46].

7.1.3. Taxonomie der Planungsverfahren

So vielfaltig wie die Kollisionspriifungsverfahren sind auch die Ansitze zur Bewegungs-
planung, die auf ihnen aufbauen. Und auch hier unterscheiden sich die Verfahren dar-
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in, ob sie auf a priori Wissen in Form von abstrakten, exakten Modellen ausgelegt sind
oder auf aktuellen, probabilistischen Sensordaten arbeiten konnen. Im ersten Fall wird
meist von einem vollstaindigen Umweltwissen ausgegangen, um global korrekte und
moglichst optimale Pldne zu generieren. Soll hingegen auf Sensordaten und somit auf
unvollstindigem Wissen geplant werden, miissen sich die Ergebnisse einfacher an un-
vorhergesehene Gegebenheiten anpassen lassen. Hierbei konnen Planer konservativ und
pessimistisch vorgehen, oder aber optimistische und opportunistische Entscheidungen
treffen (Vgl. Sensorhorizont: Over the Horizon Planning [73])).

Gleiches gilt fiir die Annahme einer statischen oder dynamischen Umgebung. Wie bereits
bei der Berechnung von Distanzkarten, gibt es auch hier zwei Moglichkeiten: Sind die
Algorithmen leichtgewichtig, lassen sie sich zyklisch oder bei jeder Anderung der Um-
welt komplett neu berechnen. Alternativ miissen die Auswirkungen einer Verdnderung
analysiert werden, um dann gezielt lokale Anpassungen durchzufiihren. In beiden Fal-
len findet die Planung auf Standbildern der Umgebung statt. Um dennoch die zeitliche
Komponente berticksichtigen zu konnen, nutzen einige Verfahren dynamische Modelle
der Hindernisse und des Roboters, um Bewegungen in Form rdumlicher Ausdehnungen
explizit zu modellieren (vgl.[Abschnitt 4.6|und [Abschnitt 6.2.1).

Eine Ubersicht der einflussreichsten Ansétze zur Bewegungsplanung soll nun helfen, die
Verfahren zu vergleichen und ihre Verwendbarkeit in Kombination mit voxelbasierter
Kollisionsdetektion beurteilen zu konnen. Die Liste orientiert sich am Referenzwerk Ro-
bot Motion Planning von Latombe [126].

Kombinatorische Verfahren

Entspricht die Dimensionalitdt des Konfigurationsraumes der des Planungsraumes, und
ist diese niedrig (n < 3), konnen geometrische Verfahren zur Zelldekomposition (bspw.
Voronoi Zerlegung, Sichtbarkeitsgraph, Line-Sweep ...) den Arbeitsraum in freie und be-
legte Regionen unterteilen. In den entstehenden Strukturen spannt sich ein Graph auf,
der alle kollisionsfreien Trajektorien reprasentiert [175]. Darauf lassen sich dann die oben
genannten erschopfenden oder heuristischen Suchverfahren einsetzen, um einen Weg
von Start zu Ziel zu finden. Eingesetzt werden diese Verfahren oft auf 2D oder 2,5D
Datenstrukturen, in denen ein Planungszustand die Grundfldche einer mobilen Platt-
form innerhalb einer Kostenkarte beschreibt [127]. Es wird entweder von einem punkt-,
scheiben- oder kugelférmigen Roboter ausgegangen, so dass dessen Ausrichtung ver-
nachldssigt werden kann. Im Sonderfall einer dquidistanten Aufteilung des Planungs-
raumes ist der einfachste Ansatz der Planung eine Breitensuche, bei der alle Zellen nach
einer Metrik (z.B. Manhattan- oder Chebyshev-Distanz) mit Kosten beschrieben werden.
Dies entspricht einer kiinstlichen Wellenfront (Wave Front) oder einer Flutung der Karte
(Flood Fill), wie auch im Bsp. aus zu sehen ist. Erreicht die Welle das Ziel, kann
entlang des Kostengradienten direkt der kiirzeste Pfad abgelesen werden. Diese Art der
Planung findet immer einen Pfad zwischen Start und Ziel, falls dieser existiert. Allerdings
sind die Kosten dafiir meist hoher als bei einer heuristischen Suche. Unter Verwendung
von Kugel- oder Zylinderkoordinaten konnen die Verfahren auch fiir einfache serielle
Kinematiken verwendet werden.
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A B CDEF G H | A B CDEF G H | A B CDEF G H |
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(a) Ausgangsdaten mit Start (b) Welle ausgebreitet, Pfad (c) Berticksichtigung  eines
und Ziel gefunden Mindesabstandes

Abb. 7.2.: Ausbreitung einer Wellenfront. Wurden Abstandswerte zu den Hindernissen
bspw. mittels einer EDT berechnet, konnen Felder, die nah an Hindernissen
liegen, wie in (c) effizient ausgelassen werden.

Dienen Voxel als Basis der Zelldekomposition, eignen sich kombinatorische Verfahren
sehr gut fiir die Verwendung in dieser Arbeit, insbesondere in der Kombination mit rota-
tionsinvarianten Egomodellen. Als Beispielanwendung wird in [Unterabschnitt 7.2.2| die
Planung einer mobilen Plattform mittels Rotations-Swept-Volumen detailliert beschrie-

ben und in [Unterabschnitt 8.7.2l evaluiert.

Potentialfelder

Anstatt den Suchraum kombinatorisch aufzuteilen, kann er auch als Potentialfeld in-
terpretiert werden, in welchem die Hindernisse in Form von abstofifenden Potentialen
dargestellt werden. Kombiniert man deren Felder mit einem zweiten Feld, in dem das
Ziel eine anziehende Kraft ausiibt, entsteht ein Gradient, dem ein rotationsinvarianter
Roboter folgen kann, um ohne weiteren Suchaufwand von jedem beliebigen Punkt im
Arbeitsraum zum Ziel zu gelangen [116]. Allerdings miissen vielfdltige Randbedingun-
gen beachtet werden, deren Verletzung sonst zu lokalen Minima und somit zu Blockaden
oder Sackgassen fiihrt, in denen sich die Potentiale auftheben. Durch diese Problematik ist
der Ansatz nur sehr bedingt fiir globale Planungsprobleme einsetzbar und wird haufig
fiir reaktive Verfahren verwendet.

Entstehen konnen diese durch unpassende Kostenfunktionen oder ungeschickte Gewich-
tung der beiden Potentialfelder bei ihrer Linearkombination. Ein Beispiel ist in
zu sehen. Hier ist die Abstoflung durch das Hindernis so grof3, dass ein Agent vor dem
Durchlass gefangen wire. Um lokale Minima weitestgehend zu vermeiden, sollten die
Felder durch harmonische Funktionen [201} 138] wie beispielsweise

¢ = And, d = || Position — Ziel|| bzw. d = ||Position — Hindernis||

beschrieben werden. X ist hierbei ein Skalierungsfaktor, dessen Vorzeichen iiber Anzie-
hung oder Abstofsung entscheidet. Doch auch dies schiitzt nicht vor Fallen in Hinder-
nissen, die konvexe Formen aufweisen [78]. Ein Beispiel zeigt wobei hier die
starke Gewichtung des anziehenden Feldes das Problem umgeht. Strategien zum Um-
gang mit lokalen Minima, wie Random-Walks oder Wavefront Expansion (Best First Search),
beschreiben unter anderem Barraquand et al. [41].
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Enthélt eine Karte in jedem Punkt Informationen tiber das nichstgelegene Hindernis,
konnen Potentialfeldplaner sehr effizient arbeiten, da sie nur einen kleinen Bereich um
die aktuelle Roboterposition auswerten miissen, um den Gradienten zu finden, dem zu
folgen ist. Im Gegensatz dazu skaliert die Rechenzeit von Planern, die kiinstliche Wel-
lenfronten nutzen, mit der Grofie der betrachteten Karten und auch mit den Langen der
erzeugten Plane. Die Komplexitdt von Navigationsfunktionen [123] ist wiederum von der
Anzahl der Hindernisse in der Umgebung abhédngig und eignet sich daher nur bedingt
fuir dichte und hoch auflosende 3D-Karten.

Weiterhin existieren Arbeiten, in denen auch Bewegungen fiir artikulierte Roboterkine-
matiken mittels Potentialfeldern geplant werden [137]. Da hierbei nicht mehr von einer
rotationsinvarianten Geometrie ausgegangen wird, miissen die Potentialfelder nach dem
Vorbild eines elektrostatischen Feldes auch Drehmomente erzeugen, die auf die einzel-
nen Roboterglieder wirken. Einen aktuellen, GPU beschleunigten Ansatz mit einem 2,5D
Potentialfeld stellen Kaldestad et al. in [109] vor. Allerdings handelt es sich hierbei eher
um ein Regelungverfahren und nicht um einen Planer, da hier die Impedanzregelung
eines Leichtbauroboters durch virtuelle Krafte des dynamischen Kraftfeldes von Hin-
dernissen ferngehalten wird. Ein dhnliches CPU-basiertes Verfahren wurde bereits 2012
von Flacco et al.[80] publiziert. Ein echtes Planungsverfahren hingegen konnte Kitamu-
ra bereits 1995 in [120] vorstellen, bei dem Voxel-Potentialfelder fiir die Navigation in
dreidimensionalen Umgebungen genutzt werden.

Vergleichbar dazu wird auch in der vorliegenden Arbeit der Arbeitsraum diskretisiert,
um jeder Zelle ein Potential zuweisen zu konnen. Dafiir kommen Distanz-Voxel und die

parallelisierter Distanzberechnung aus [Abschnitt 5.6|zum Einsatz.

(a) (b)

Abb. 7.3.: Kostenfunktion aus kombinierten Potentialfeldern: Das Navigationsziel liegt
im Minimum der Funktion (dunkelblau), wahrend Hindernisse hohe Kosten
(rot) aufweisen. Bilder aus [24].
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Samplingbasierte Verfahren

Hochdimensionale Planungsrdaume werden fast ausschliefSlich mit randomisierten, samp-
lingbasierten Planern erschlossen. Die Herausforderung liegt dabei in der geschickten
Verteilung der Samples, die sich bestenfalls an lokale Gegebenheiten anpasst. Anders als
deterministische Ansétze, die durch ein Resolution Complete Sampling Aussagen zur Exis-
tenz einer Losung treffen konnen, geben diese Algorithmen zwar keine Garantie, eine
vorhandene Losung zu finden, sind aber dennoch probabilistisch vollstindig (die Wahr-
scheinlichkeit, eine existente Losung zu finden konvergiert mit steigender Planungs-
zeit gegen 1). Zu den populdrsten Verfahren zdhlen die Rapidly Exploring Random Trees
(RRT) [131].

Wie der Name andeutet, bauen diese Algorithmen zunéchst einen Graphen G = (V, E)
aus randomisierten Samples auf, bevor sie auf diesem einen Pfad suchen. Zustiande im
Planungsraum werden durch Knoten V' im Roadmap-Graphen reprasentiert. Trajektori-
en zwischen ihnen durch Kanten E. Ausgehend vom Startzustand wird der Graph so
expandiert, dass moglichst schnell eine Abdeckung des gesamten Raumes erreicht wird.
Dafiir werden zunéchst randomisiert Punkte im Planungsraum gewihlt, deren néchster
Nachbar im Graphen gesucht wird. Ausgehend von diesem Nachbarn wird in Richtung
des Zufallspunktes, in einer festen Distanz, ein weiterer Punkt generiert. Ist dieser kol-
lisionsfrei, wird er zu V' hinzugefiigt, eine Kante zu seinem Nachbarn generiert, und
G damit erweitert. Je nach Explorationsdistanz muss dafiir die neue Verbindung noch-
mals interpoliert und auch ihre Zwischenpunkte auf Kollisionsfreiheit tiberpriift wer-
den. Werden zwei Baume genutzt, die gleichzeitig von Start- und Zielzustand ausgehend
wachsen, um sich zu verbinden, spricht man von Bidirectional Rapidly-Exploring Random
Trees (BiRRT) [11]. Hierbei wird die Verbindung zwischen den Baumen provoziert, in-
dem diese abwechselnd in Richtung des zuletzt hinzugefiigten Knotens des anderen
Baumes wachsen, bis es zu einer Kollision kommt. Das Uberpriifen der Graphenkan-
ten auf Kollisionsfreiheit ist ein rechenintensiver Prozess, der fiir alle Kanten ausgefiihrt
wird, auch wenn diese am Ende nicht am Losungspfad beteiligt sind. Daher bietet sich
eine so genannte Lazy Evaluation an: Dabei werden lediglich die Knoten auf Kollision ge-
priift und alle Kanten zunéchst als valide angenommen. Erst wenn ein Pfad im Graph
gefunden wurde, werden seine Kanten auf Kollisionsfreiheit gepriift. Da in vielen rea-
len Planungsszenarien mindestens von einem 70/30 Verhiltnis aus freiem / belegtem
Raum ausgegangen werden kann, erspart die Lazy Evaluation viel Rechenzeit. Sollte ei-
ne Kante nicht ausfiihrbar sein, muss ein anderer Pfad im Graphen gesucht werden. In
|[Unterabschnitt 8.6.2|sind Versuche mit einem Lazy Bi-directional KPIECE with one level of
discretization (LBKPIECE1) Planer beschrieben. Dieser kombiniert die nachgelagerte Kol-
lisionspriifung mit einer bidirektionalen Suche, die {iber eine Projektion in einen zweidi-
mensionalen Raum geleitet wird [194].

Die Nachteile samplingbasierter Verfahren liegen in ihren nachweisbar suboptimalen
Losungen und der hidufigen Notwendigkeit einer nachgelagerten Glittung, da die ent-
stehenden Losungswege sehr unstetig sind. Auch hierbei sind Kollisionspriifungen un-
erldsslich, was ihren Aufwand steigert. Abhilfe schafft hier der RRT* Algorithmus, der
asymptotische Optimalitét erreicht (mit steigender Planungszeit konvergiert die Losung
zur optimalen Losung), indem er den entstehenden Graphen reorganisiert und dabei
auch glattere Trajektorien erzeugt. Wegen der praktisch beschrankten Samplingdichte
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stellen enge oder verwinkelte Korridore jedoch immer grofie Herausforderungen an alle
Suchverfahren.

Parallelisierte Varianten des RRT bzw. RRT* wurde von Devaurs et al. [69] und Bialkow-
ski et al. [46] vorgestellt, wobei Letzteres lediglich eine Art Stapelverarbeitung von GPU
Kollisionspriifungen nutzen und nicht den Planer parallelisieren.

Bei Nutzung der parallelisierten Voxel-Kollisionspriifung mit einem samplingbasierten
Verfahren ergibt sich bei komplexeren Kinematiken die Problematik, dass die Konfigu-
ration jedes Samples einzeln in Voxel umgewandelt werden muss. Eine Vorberechnung
ist nicht moglich, und auch die effiziente Translation mittels Basisversatz aus
kommt nicht in Frage. Weiterhin erfordern viele Planer eine sequentielle
Priifung ihrer Samples, da diese inkrementell die Expansionsrichtung beeinflusst. Aus
diesen Griinden kann mit ihnen nicht das volle Potential der GPU-Parallelisierung ge-
nutzt werden.

Roadmap Verfahren

Sollen in einer quasistatischen Umgebung mehrfach Bewegungen geplant werden, bietet
es sich an, die Suche von der Erstellung der bereits beschrieben Graphen (Raodmaps)
loszuldsen. Somit kann einerseits auch bei noch unbekanntem Start- / Zielpunkt bereits
ein Graph aufgebaut werden, und dieser anderseits tiber mehrere Suchanfragen hinweg
beibehalten oder erweitert werden, um den Freiraum Cr.; moglichst gut abzudecken..
Im Falle einer Anfrage miissen lediglich zwei kurze Pfade zu den nidchstgelegenen Start-
und Zielknoten bestimmt werden, wihrend der eigentliche Pfad im existierenden Gra-
phen schnell gefunden werden kann. Ein bekanntes Beispiel ist der Probabilistic Roadmap
Planner (PRM) von Kavraki et al. [113], der inkrementell arbeitet und einen lokalen Planer
zum Hinzuftigen von Kanten involviert. Dafiir wird zunédchst eine Menge randomisier-
ter Punkte im Planungsraum erzeugt und diese im Arbeitsraum auf Kollisionsfreiheit
tiberpriift. Im néchsten Schritt wird versucht, Verbindungen zwischen kollisionsfreien
Punkten und ihren k-ndchsten Nachbarn zu erstellen. Wie bei RRT miissen die Verbin-
dungen dafiir eventuell auch feingranular auf Kollisionsfreiheit tiberpriift werden oder
es kommt sogar ein lokaler Planer zum Einsatz. Kann mindestens eine Verbindung zum
Graphen hergestellt werden, wird der Punkt zur Menge V' und die Verbindung(en) zu £
hinzugefiigt. Diese Schritte werden so lange wiederholt, bis ein moglichst dichter und zu-
sammenhdngender Graph entstanden ist. Bei einer Suchanfrage miissen der Start- und
Zielpunkt auf dieselbe Art mit dem Graphen verbunden werden. Danach kann mittels
A*, Dijkstra 0.A. ein Pfad vom Start- zum Zielpunkt gesucht werden. Eine Eigenschaft
der PRM Methode ist die problembezogene Optimierung der Samplingstrategie. So gibt
es Verfahren, die besonders fiir enge Passagen im Arbeitsraum geeignet sind und grofse
zusammenhdngende Freirdiume moglichst sparlich abtasten (Bridge Sampling, Obstacle
based Sampling, Gaussian Pair Sampling).

Eine PRM Umsetzung auf der GPU stammt von Pan et al. [158]]. Der vorgestellte g-Planner
arbeitet auf globalem Wissen und ermdoglicht eine Echtzeitplanung, indem alle relevanten
Schritte paralellisiert wurden und fiir die Kollisionspriifung das bereits genannte BVH
Verfahren gProximity [130] eingesetzt wird.
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Sollen Roadmap Verfahren in verdnderlichen Umgebungen eingesetzt werden, ist die In-
validierung von Kanten im Graphen sehr wichtig, wenn Anderungen in der Umwelt Teil-
pléne blockieren. Dies erfordert jedoch eine bijektive Abbildung zwischen Ausfithrungs-
und Planungsraum, welche, wie eingangs beschrieben, nur in niedrigdimensionalen Fal-
len gegeben ist. Anderenfalls muss tiber eine zusitzliche Datenstruktur fiir jedes Raum-
volumen die Menge an Planen vorgehalten werden, die dieses Volumen kreuzen. Ist dies
gegeben, kann eine Invalidierung inklusive einer Suche innerhalb weniger Millisekun-
den durchgefiihrt werden. Dies zeigt Schumann-Olsen in [184] bei der Planung eines
5-Achs-Roboters. Die Besonderheit dabei ist die effiziente bidirektionale Abbildung zwi-
schen Arbeitsraum S und Planungsraum C mit Hilfe einer komprimierten Lookup-Tabel-
le. Allerdings ist das Verfahren nicht allgemeingiiltig und ldsst sich schlecht auf komple-
xere Kinematiken erweitern.

Auch in dieser Arbeit wurde erwigt, jeden Voxel des Umweltmodells mit der Menge an
Planen zu annotieren, die durch ihn hindurchfithren. Somit wiren im Falle einer Kol-
lision des Voxels direkt ablesbar, welche Teilpldane zu invalidieren sind. Da dies jedoch
einen dynamischen, pro Voxel unterschiedlichen Speicheraufwand erfordert, wurde die
Idee verworfen.

Optimierungsverfahren

Um global konsistente Pline bei kleineren Anderungen in der Umwelt nicht komplett
verwerfen zu miissen, entstanden Arbeiten zur lokalen, dynamischen Modifikation von
Planen. In den klassischen Methoden Elastic Bands [165] und Elastic Strips [52] ist es
moglich, zur Laufzeit die Graphenkanten in einem gewissen Maf$ zu modifizieren, und
so lokalen Hindernissen auszuweichen, wiahrend globale Vorgaben eingehalten werden.
Einen aktuellen, optimierenden GPU-Planer stellen Park et al. in [161] vor. Dieser liefse
sich durch die Verwendung der vorgestellten Distanzkarten generalisieren, was in wei-
terfiihrenden Arbeiten geplant ist. Da diese Arbeit jedoch lokale Optimierungen generell
vermeiden mochte, werden diese Verfahren zunichst nicht weiter beleuchtet.

Planung mit Bewegungsprimitiven

In vielen Fillen kann es zielfithrend sein, einen Plan nicht aus diskreten Posen, son-
dern mit Hilfe einer Bibliothek aus Primitiven fundamentaler Bewegungen zu synthe-
tisieren (Motion Primitive Planning). Ahnlich zur Diskretisierung des Arbeitsraumes, zur
Einschréankung der Berechnungskomplexitit, wird hierbei das Ziel verfolgt, den Konfi-
gurationsraum zu diskretisieren. Anstatt jeden Freiheitsgrad als unabhingig zu betrach-
ten werden also zusammenhingende Bewegungen eines oder mehrerer Freiheitsgrade
zu Primitiven zusammengefasst, womit eine beliebig starke Diskretisierung moglich ist.
Dabei gilt es, einen Kompromiss zwischen dem Reduktionsfaktor (also der Anzahl an Pri-
mitiven) und Abbildungsgenauigkeit zu erreichen (Erreichbarkeit aller Zielpunkte). Die
Anzahl und Art der Primitive entscheidet somit, ob ein Planungsproblem losbar ist. Das
Erzeugen einer Menge geeigneter Primitive geschieht vor der eigentlichen Planungspha-
se und kann entweder manuell, durch den Einsatz von Vorwissen geschehen, oder durch
maschinelle Lernverfahren [[135].
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7.1. Grundlagen

Im Falle von nichtholonomen Robotern kann durch die Planung mit Primitiven bspw.
die kinematische Durchfiihrbarkeit des resultierenden Planes sichergestellt werden, oh-
ne die physikalischen Beschrénkungen des Roboters in der Planung explizit zu betrach-
ten [183]. Somit wird verhindert, dass der Planer intrinsisch unmogliche Zustandstiber-
gange evaluieren und eventuell verwerfen muss. Dadurch reduziert sich das Planungs-
problem auf die Suche einer geeigneten Konkatenation von Primitiven, welche den Ro-
boter von seinem Start- in einen gewiinschten Zielzustand tiberfithren. Weiterhin kann
eine Zustandsabhédngigkeit in jedem Bewegungsprimitiv modelliert werden, um nicht
ausfiihrbare Uberginge zu unterbinden. Aber auch bei holonomen Robotern kann da-
mit eine Vorzugsrichtung und somit eine fiir den Menschen intuitivere Bewegungsbahn
realisiert werden.

Wie bei den Roadmap Verfahren entspricht die Planung letztendlich dem Aufbau eines
gerichteten Graphen, dessen Knoten die diskretisierten Zustdnde darstellen, wahrend
die Kanten die durch die Primitive ausfiihrbaren Zustandsiibergdnge reprasentieren. Mit
fortschreitender Suchtiefe bei der Exploration verzweigt sich der Baum an jedem Knoten
um den Faktor der verfiigbaren Bewegungsprimitive. Daher ist es wichtig, dass im Baum
entstehende Schleifen erkannt und geschlossen werden, um ein exponentielles Anwach-
sen des Baumes zu verhindern. Auch die Herausforderungen der Roadmaps finden sich
hier wieder: Ein inhdrentes Problem bei der Arbeit mit Primitiven besteht, wenn sich
nach der Planung eines (Teil-)Pfades Anderungen in der Umwelt ergeben. Wird dadurch
ein Knoten im Planungsgraphen als unpassierbar markiert, werden nur diejenigen Kno-
ten aktualisiert, von denen aus der gednderte Knoten tiber ein Primitiv erreichbar ist.
Liegt die Anderung jedoch auch auf der Strecke eines anderen Primitivs oder zwischen
solchen Endknoten, wird sie bei der Aktualisierung tibersehen. Dies fiihrt zu einer In-
konsistenz im Planungsgraphen, da die Kosten der Transitionen nicht mehr der realen
Umwelt entsprechen. Da keine bijektive Abbildung zwischen Planungsraum und Aus-
filhrungsraum existiert, ist somit nicht klar, ob und welche anderen Kanten von dem
Hindernis betroffen sind. In diesem Fall muss der Planungsgraph invalidiert werden.
Ein Beispiel dazu ist in zu sehen. Weiterhin ergibt sich das Problem, von einer
beliebigen Pose zundchst auf das Planungsgitter zu gelangen, bzw. von einer Pose auf
dem Gitter zu einer nichtdiskretisierten Zielpose. Dieses Lattice Problem wird meist durch
ein zusétzliches lokales Planungsverfahren gelost.

Einige ausgewihlte Arbeiten aus dem Stand der Technik sind die folgenden: Hornung et
al. evaluieren Bewegungsprimitive in mehreren zweidiemensionalen Schnitten durch die
Umwelt, die sie auf unterschiedlichen Hohen aus 3D-Sensordaten gewinnen [102]. Somit
vermeiden sie den Aufwand einer echten 3D-Kollisionspriifung. Die eigentliche Planung
geschieht dann mit einem Anytime Repairing A* Algorithmus. Paranjape et al. entwickel-
ten einen Planer, der enge Wendemanover fiir Flugzeuge planen kann, und damit auch in
hindernisreichen Umgebungen, wie einem Wald, erfolgreich reaktiv geplantes Fliegen er-
moglicht [160]. Ebenfalls auf schnelle Reaktionen und die Einhaltung von Echtzeitanfor-
derungen sind die Planer von Likhachev et al. optimiert, die Pfade fiir autonome Autos
generieren [136]. Sie reduzieren die Komplexitdt und somit die Laufzeit, indem auf un-
terschiedlichen Auflosungen geplant wird, zwischen denen nahtlos gewechselt werden
kann. Ebenfalls fiir den Automobilbereich ausgelegt sind die Tentakelplaner von Wang
Ke-ke et al., bei denen virtuelle Tentakel den Raum vor dem Fahrzeug explorieren um
schnell den am besten geeignetsten Pfad durch unbekanntes Geldande zu finden [114].
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7. Bewegungsplanung

Abb. 7 4.: Ein neues Hindernis, das nicht am Ende eines Primitives liegt, wird tibersehen.

Auch in der vorliegenden Arbeit werden Bewegungsprimitive eingesetzt. Da sie offline
vorberechnet werden konnen, lassen sie sich sehr gut durch [Swept-Volu-men|repréasen-
tieren. Ein Verfahren, das mit rotierenden Bewegungsprimitven Bewegungen fiir eine
holonome mobile Plattform auf einem engmaschigen Gitter generiert, wird in
vorgestellt. Die Planung von Bewegungen fiir nichtholonome Fahrzeuge an-
hand von ldngeren Primitiven folgt dann in [Unterabschnitt 7.2.3| Beide Ansédtze werden
weiter unten in diesem Kapitel noch detaillierter ausgefiihrt und in|Unterabschnitt 8.7.3
bzw.|Unterabschnitt 8.7.2| fiir die Planung mobiler Plattformen evaluiert.

Es liegt nahe, die Vorteile der Planung mit Bewegungsprimitiven auch auf serielle Kine-
matiken {ibertragen zu wollen. Hierzu existieren Arbeiten von Cohen et al., die adaptiven
Primitive verwenden [64], sowie von Barry, deren DARRT System mit parametrisier-
ten Bewegungen arbeitet. Einer Verkniipfung dieser Planer mit der parallelisierten Vo-
xel-Kollisionspriifung scheitert jedoch an zwei Punkten: Da die verwendeten Primitive
veranderlich sind, konnen ihre [Swept-Volu-men|nicht vorberechnet werden. Und selbst
wenn dies der Fall wire, liefSen sie sich nicht effizient im Voxelraum konkatenieren, da sie
hierfiir frei im Raum positiniert werden miissten. Dies verursacht neben hohem Berech-
nungsaufwand auch Abtastfehler und macht die Vorteile der Vorberechnung zunichte.

Kinodynamische Planung

Muss ein Planer auch dynamische Einschrankungen (ausgedriickt durch Differentialglei-
chungen) berticksichtigen, ergeben sich komplexe Probleme in sehr hochdimensionalen
Planungsraumen. Diese werden in der Regel entweder durch samplingbasierte Planer ge-
16st, oder auch durch die Planung mittels diskretisierter Bewegungsprimitive [83]. Diese
Klasse der Planungsprobleme liegt jedoch auflerhalb des Rahmens dieser Arbeit.
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besucht.

Abb. 7.5.: Bewegung der Schachfigur Pferd als Beispiel fiir die Planung mit konkatenier-
ten Bewegungsprimitiven. Adaptiert nach [23].

7.1.4. Zusammenfassung

Der hauptsachliche Berechnungsaufwand aller Planer stammt aus der unverzichtbaren
Kollisionspriifung und kann somit durch den parallelisierten Ansatz dieser Arbeit ver-
kiirzt werden. Aus obigem Vergleich ist jedoch ersichtlich, dass sich nicht alle Planer ef-
fizient mit der GPU Kollisionspriifung verbinden lassen. Miissen hochdimensionale Pro-
bleme mit samplingbasierten Verfahren gelost werden, verschiebt sich der Aufwand von
der eigentlichen Kollisionspriifung in Richtung der Voxelumwandlung des Egomodells.
Somit nutzen diese Planer das Potential der vorgestellten Kollisionserkennung nicht op-
timal aus. Daher sind Verfahren, die eine Vorberechnung der Voxelumwandlung erlau-
ben, und die Ergebnisse in [Swept-Volumen| speichern, zu bevorzugen. Pradestiniert ist
somit die Planung mit Bewegungsprimitiven, in der Kombination mit den sehr effizient
implementierbaren translativen Bewegungen.

Eine weitere Methode zur Beschleunigung der Planung ist die Aufteilung der Probleme
in Teilprobleme, die entkoppelt einfacher zu 16sen sind: So ist es bei mobilen Robotern
noch immer {iblich, die Plattformbewegung von den Armbewegungen zu trennen und
beides, auf Kosten der Flexibilitit, separat zu planen. Um diese Einbuflen zu umgehen,
wird in spédteren Abschnitten zur Planung mobiler Plattformen ein anderer Ansatz ver-
folgt: Durch die zeitliche Verflechtung von Planungs- und Ausfithrungsvorgéange (inter-
leaved planning and execution) lasst sich die Reaktivitdt eines Planungssystems ebenfalls
steigern.

Implementierungen der meisten beschriebenen Verfahren fiir das Forschungsfeld der Ro-
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botik finden sich in der |Open Motion Planning Library (OMPLJ| Daneben ist auch die
\Search-based Planning Library (SBPL)f| sehr stark verbreitet, die mafigeblich von Maxim
Likhachev entwickelt wird. Beide Bibliotheken bieten jedoch keine integrierten Losun-
gen fiir die Arbeit mit volumetrischen Bewegungsprimitiven, weshalb diese im folgen-
den Abschnitt entwickelt werden.

7.2. Umgesetzte Planungsverfahren

Ausgehend von den zuvor genannten Erkenntnissen wurden mehrere Ansétze praktisch
umgesetzt, um Bewegungen sowohl in Szenarien mit mobilen Plattformen als auch mit
Manipulatoren planen zu kénnen. Die wichtigste gemeinsame Eigenschaft der entwi-
ckelten Verfahren liegt in der Verwendung von dichten [Swept-Volu-men| Diese werden
einerseits bei der Planung als Alternative zu interpolierenden Kollisionspriifungsschrit-
ten entlang eines Zustandsiiberganges eingesetzt, andererseits konnen sie nach der Pla-
nung direkt zur Ausfithrungsiiberwachung weiterverwendet werden.

7.2.1. Uberwachung der Planausfiihrung

Wurde durch einen Planer eine Trajektorie gefunden, werden alle darin genutzten Teil-
pfade in einem grofien [Swept-Volumen| konkateniert, wobei sie eindeutige er-
halten. Somit entsteht ein Korridor, in dem sich der Roboter sicher bewegen kann, und
der wihrend der Ausfiihrung des Planes auf eindringende dynamische Hindernisse hin
iiberwacht werden kann. Wird eine Kollision mit dem Korridor erkannt, ldsst sich aus der
betroffenen ID die Distanz zum Hindernis abschédtzen, um den Roboter entsprechend an-
zuhalten oder zu verlangsamen, wéahrend der Planer nach einer alternativen Route sucht.
Diese Technik der verschrankten Planung und Ausfiihrung ldsst sich unabhédngig vom
Robotertyp einsetzen und ist schematisch in [Abb. 7.6|zusammengefasst. Eine Herausfor-
derung dabei ist es, den aktuellen Plan wéhrend der Ausfithrung nahtlos in den neuen
Plan zu tiberfiithren. Hierfiir ist eine komplexe Logik auf der Ausfithrungsseite des Ro-
boters notig, auf die hier jedoch nicht genauer eingegangen werden soll.

7.2.2. Planung mit Rotations-Swept-Volumen

Dieser Abschnitt beschéftigt sich mit der Bewegungsplanung fiir eine nicht rotationssym-
metrische, mobile Plattform mit holonomem Antrieb. DerPlanungsraum weist die
drei Dimensionen C(z, y, §) auf, die mit einer Kombination aus|Swept-Volu-men|und ei-
nem kombinatorischen Verfahren geplant werden. Die Effizienz des entwickelten Ver-
fahrens ergibt sich aus der getrennten Betrachtung der translatorischen und des rotatori-
schen Freitheitsgrades. Somit konnen vorberechnete Rotationsbewegungen durch Trans-
lation mittels Basisversatz sehr schnell an unterschiedlichen Positionen in der Umwelt
auf Kollision gepriift werden (siehe [Unterabschnitt 5.3.1). Die Umwelt wird daher nicht

lOpen Motion Planning Library http://ompl.kavrakilab.org/
2Search-based Planning Library http://sbpl.org
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Swept Volumen Generierung

Sensordaten™\, Umweltmodell Virtuelle
Aufnahme aktualisieren Kollisions- Ausfiihrung
Planung

ki
Pose Egomodell R Reale
ermitteln aktualisieren Ausfiihrung

Ausfiihrungsiiberwachung

Abb. 7.6.: Virtueller Roboter fihrt voraus und erzeugt dabei einen [Swept-Volument
Korridor, den der reale Roboter auf dynamische Hindernisse hin tiberwachen
kann. Blaue Komponenten werden nicht auf der GPU ausgefiihrt.

durch einen Octree, sondern durch eine Voxelkarte reprasentiert, die in unterschiedli-
chen Auflosungen vorgehalten wird. Somit konnen, wie in|{Unterabschnitt 5.3.2beschrie-
ben, Kollisionspriifungen in zwei Aufldsungen durchgefiihrt werden. Die beschriebenen
Techniken wurden in der Diplomarbeit von Jorg Bauer [20] erfolgreich umgesetzt und
evaluiert.

Unabhéngig, aber beinahe zeitgleich mit der hier vorgestellten Methode wurde auch von
Dakulovic et al. in [67] ein Verfahren vorgestellt, das mit dhnlichen Techniken arbeitet.
Auch Lau et al. arbeiten in [129] mit rotationsabhdngigen Modellen, jedoch nur in ei-
ner 2,5D Umwelt. Sie generieren Hohenkarten ihres Roboters, die tiber einen speziellen
Faltungsoperator mit Umweltkarten zur Durchfahrtshéhe zu einem befahrbaren Bereich
umgerechnet werden.

Arbeits- und Planungsraum

Viele Arbeiten, die Plattformbewegungen in einem zweidimensionalen Umweltmodell
planen, vernachldssigen den rotierenden Freiheitsgrad 6, indem sie den Roboter als punkt-
formig annehmen und dafiir die Hindernisse um die maximale Ausdehnung des Ro-
boters erweitern. Durch diese konservative Abschitzung konnen Kollisionen fiir alle
Orientierungen ausgeschlossen werden. Die Ausrichtung des Roboters wird bei diesen
Verfahren in einem Nachbearbeitungs- oder Glattungsschritt frei gewahlt und meist in
Fahrtrichtung ausgerichtet. Problematisch ist diese Abschdtzung jedoch in engen Pas-
sagen, die der Roboter zwar praktisch durchfahren konnte, die jedoch in der Planung
aufgrund der Erweiterung der Hindernisse als nicht passierbar erscheinen.

Um dieses Problem zu vermeiden, werden im hier vorgestellten Verfahren mogliche
Plattformorientierungen bei der Planung explizit berticksichtigt. Hierfiir wird der Ar-
beitsraum durch ein zweidimensionales Gitter in der Fahrtebene diskretisiert und auf
diesem die Kollisionsfreiheit der Plattform in unterschiedlichen Orientierungen getestet,
wie in[Abb. 7.7 gezeigt. Zur Reduzierung des Planungsaufwands lasst sich der Gitterab-
stand wesentlich grober wihlen, als die Auflosung des Umweltmodells. Bleibt er unter-
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halb der Breite des Roboters, kann bei einem Ubergang zwischen zwei Gitterzellen die
Kollisionsfreiheit garantiert werden.

Fiir die Ermittlung der kollisionsfreien Orientierungen wird ein Rotations-Swept-Volu-
men eingesetzt, das zundchst in einem Offline Schritt zu erstellen ist. Das Robotermodell
wird dafiir schrittweise um 360° um seine zentrale Rotationsachse gedreht und seine Vo-
xeldarstellung in eine Voxelliste eingetragen (siehe[Abb. 7.8b). Da hierbei Bitvektor-Voxel
verwendet werden, kann gemifs [Unterabschnitt 5.1.4| eine Rotation durch 250 individu-
ell identifizierbare Abschnitte reprédsentiert werden. Bei einer Kollisionspriifung mit der
Umwelt lassen sich somit valide Winkelbereiche auf ~1,5° genau ermitteln.

e e
(a) Erweiterung der Nodes (b) Extraktion des Pfades  (c) Optimierung des finalen Pfa-
des

Abb. 7.7.: Planung einer Trajektorie fiir einen mobilen Roboter anhand eines Swept-Vo-
lumens seiner Rotation. Veroffentlicht in [3].

Planung mittels D*-Lite

Die eigentliche Planung findet auf einem eng vermaschten Graphen statt, dessen Kno-
ten Zustdande aus Cp; darstellen, die auf dem Planungsgitter liegen. Kanten im Graphen
repréasentieren den Ubergang zwischen einer Gitterzelle und einer ihrer acht Nachbarzel-
len. Da jedoch innerhalb einer Gitterzelle mehrere valide Winkelbereiche auftreten kon-
nen, bedarf es in diesen Fillen mehrerer Graphenknoten um eine Zelle zu reprasentieren.
Kanten im Graphen werden nur erstellt, wenn zwei Zellen einen tiberlappenden, kollisi-
onsfreien Winkelbereich aufweisen. Ein Beispiel dazu ist in gezeigt. Die Kanten
im Graphen werden mit den Kosten fiir einen Ubergang zwischen zwei Zellen annotiert.
Details zur verwendeten Kostenfunktion folgen spéter.

Die Suche im Graphen erfolgt mittels des D*-Light-Algorithmus, wobei der Aufbau des
Graphen und die eigentliche Suche zeitlich verschrankt ablaufen. Wird eine Zelle expan-
diert, miissen ihre Nachfolger ermittelt bzw. aktualisiert, und die Kollisionspriifung des
Rotations-Swept-Volumens an den Koordinaten der Zelle durchgefiihrt werden. Danach
konnen die Pfadkosten jedes Nachfolgers bestimmt werden, wobei die Kosten antipro-
portional zum tibereinstimmenden Winkelbereich sind. Die Uberpriifung, ob Nachbat-
knoten im Graphen iiberlappende Rotationswinkel aufweisen und welche Winkel dies
sind, ist nach der Kollisionspriifung beider Zellen effizient moglich: Da die Ergebnisse
der Priifungen durch Bitvektoren dargestellt werden, konnen diese iiber eine einfache
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(a) Mobile  Plattform (b) Swept-Volumen ei- (c) Subvolumen  des (d) Subvolumen des
bei 0° Ausrichtung ner 360° Drehung  kollisionsfreien kollidierenden
mit SSV-IDs Winkelbereichs Winkelbereichs

Abb. 7.8.: Rotatives|Swept-Volumen|des IMMP Roboters, das mit einer einzelnen Kollisi-
onspriifung ausgewertet wird.

Gitter Swept-Volumen Graph

] ee %
| - o‘e»
T e ® X

Abb. 7.9.: Uberfiihren der moglichen Rotationen in einen Planungsgraphen. Veroffent-
licht in [3].
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[FOperation zusammengefasst werden. Nicht gesetzte Bits kennzeichnen dann kollisi-
onsfreie Rotationswinkel. Kann der Roboter somit ohne Anderung seiner Ausrichtung
zwischen zwei Zellen wechseln, entstehen keine Ubergangskosten und es flieflen ledig-
lich die euklidischen Distanzen in die Kostenfunktion ein. Sind die Kosten giiltig (< un-
endlich), kann der Schliisselwert k (vgl. des Knotens berechnet werden
und damit der Knoten in die Liste der zu expandierenden Knoten eingetragen werden.
Da bei der Suche Knoten auch mehrfach auf Kollisionen untersucht werden konnen, ver-
fiigen diese iiber eine zusétzliche Boolsche Variable, die kennzeichnet, ob ihre Priifung
bereits durchgefiihrt wurde und somit tibersprungen werden kann. Als Resultat entste-
hen einer oder mehrere neue Knoten und entsprechende Kanten im Surchgraphen. Zu-
sdtzlich wird gepriift, ob das Stopkriterium des D*-Lite Algorithmus erfiillt ist. Ist dies
der Fall, kann der Pfad von Ziel zu Start extrahiert werden, indem rekursiv der Vor-
ganger mit den niedrigsten Kosten ausgewihlt wird. Der resultierende Pfad besteht aus
den zu befahrenden Zellen, wobei sichergestellt ist, dass diese einen zumindest teilweise
iiberlappenden, kollisionsfreien Winkelbereich aufweisen.

Eine Besonderheit des D*-Light-Algorithmus ist die Wiederverwendung von Teilpfaden,
wenn es aufgrund von Anderungen in die Umwelt entlang des geplanten Pfades zu ei-
ner Kollision kommt. In diesem Fall werden alle Knoten entlang des Pfades erneut auf
Kollisionen gepriift. Reprasentieren mehrere Graphenknoten unterschiedliche Rotations-
bereiche innerhalb derselben Gitterzelle, so werden diese nur einmalig auf Kollision ge-
priift, um Rechenzeit zu sparen. Nicht langer freie Knoten werden aus dem Pfad entfernt,
und alle angrenzenden Nachbarn werden wieder zur Liste der zu untersuchenden Kno-
ten hinzugefiigt. Durch die folgenden Suchschritte werden die rhs-Werte aller betroffe-
nen Knoten aktualisiert, und die neuen Kosten bis zum Ziel propagiert. Dabei werden
im Allgemeinen auch weitere Knoten expandiert und Zellen zum Graphen hinzugefiigt.
Ist das Stop-Kriterium erfiillt, wurden alle relevanten g-Werte aktualisiert, und ein Pfad,
der an die neuen Gegebenheiten angepasst ist, kann extrahiert werden. Ist das Kriterium
auch nach der Bearbeitung aller Knoten nicht erfiillt, existiert kein Pfad zwischen Ziel
und Start.

Fiir die Graphendatenstruktur des D*-Lite Algorithmus wurde ein|Geometric Near-neighbol
|Access Tree (GNAT)| genutzt, weshalb Knoten keine Zeiger auf ihre Vorganger oder Nach-
folger halten miissen, da diese immer auf der Datenstruktur gesucht werden. Somit liegt
der benétigte Speicher unter dem normalerweise hohen Speicheraufwand eines A*-Algo-
rithmus. Ob ein Nachbarknoten auf dem Pfad vor oder nach einem anderen Knoten liegt,
wird alleine tiber die Suchheuristik und den rhs-Wert der Knoten entschieden. Die Ver-
wendung eines vereinfacht weiterhin die Ermittlung der nachstgelegenen Knoten
zu gegebenen Start- und Zielkonfigurationen, da diese nicht auf dem diskretisierten Ras-
ter liegen miissen. Die Liste der zu expandierenden Knoten wurde als Prioritdtsschlange
umgesetzt, so dass Eintrdge sortiert nach ihren Kosten bearbeitet werden konnen.

Pfadoptimierung

Planer, die auf einer diskretisierten Umweltreprasentation arbeiten, erzeugen meist sub-
optimale Pldne, was die zuriickgelegten Distanzen betrifft.[Abb. 7.10a| verdeutlicht, dass
die Manhattan-Distanz auf dem Planungsgitter langer ist, als die direkte Verbindung im
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kontinuierlichen Raum. Daher schliefst sich an die Planung ein einfacher Nachbearbei-
tungsschritt an, der versucht, den Pfad mit einem Verfahren aus der Doktorarbeit von
Nash [149] zu kiirzen. Der umgesetzte Algorithmus iteriert dafiir tiber den Pfad [so..s,],
wobei gepriift wird, ob eine Sichtverbindung zwischen sp und sy besteht. Ist dies der
Fall, kann s; aus dem Pfad entfernt werden, und es wird zwischen sy und s3 auf Sicht
gepriift. So wird weiter verfahren, bis die Sichtpriifung bei s, fehlschlagt, woraufhin die
Iteration bei s, neu startet und auf Sichtkontakt mit s, priift. Ist das Verfahren bei s,, an-
gelangt, wurden alle unnétigen Zwischenpunkte entfernt und der direkteste Weg ist das
Resultat. Sichtverbindung heifst in diesem Fall, dass alle Zellen auf der Geraden zwischen
zwei Gitterfeldern unter allen Rotationswinkeln kollisionsfrei sind, womit sichergestellt
ist, dass in der Ndhe von Hindernissen keine Optimierung durchgefiihrt wird. Das Ver-
fahren wurde als Erweiterung der Pfadextraktion der D*-Lite Suche implementiert. Ein

beispielhaftes Ergebnis findet sich in[Abb. 7.10b}]

- 7 |Sgoal

C&
Sstart
— — = true shortest path
------- shortest grid path
A* Post- Smoothing path
(a) Vergleich unterschiedlicher Pfade (b) Pfadoptimierung durch Nachbearbei-
(Grafik aus [149]). tung.

Abb. 7.10.: Optimierung der suboptimalen Pfade eines A*-Planers, die bedingt durch die
Diskretisierung entstehen.

Rotationsoptimierung

Neben seiner Lange zeichnet sich ein guter Pfad fiir eine mobile Plattform auch durch
seine Glattheit und die gewahrte Minimaldistanz zu Hindernissen aus. Da die beschrie-
bene Graphensuche bisher lediglich einen Pfad aus zusammenhidngenden Gitterzellen
liefert, muss durch einen nachgelagerten Schritt eine optimale Plattformorientierung ent-
lang der X/Y-Trajektorie festgelegt werden. Auch wenn die verwendete Plattform einen
holonomen Antrieb aufweist, ist es von Vorteil, bei der Fahrt eine Vorzugsrichtung zu
beachten, da dies intuitiver fiir den Menschen ist und bessere Fahreigenschaften erreicht
werden. Seitliches oder sogar riickwiérts gerichtetes Fahren soll durch hohe Kosten wei-
testgehend vermieden werden. Weiterhin sind gerade Strecken vor hdufig alternierenden
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Richtungswechseln zu bevorzugen, so dass hohere Geschwindigkeiten erreichbar sind.
Um Aussagen iiber die Ausrichtung der Plattform verwalten zu kénnen, speichert jede
Gitterzelle den Plattformwinkel.

Nachdem ein Pfad gefunden und gekiirzt wurde, muss ausgehend von einem Startwin-
kel die finale Ausrichtung ¢ der Plattform bestimmt werden. Da fiir jede Gitterzelle s,
entlang des Pfades der minimale und maximale Winkel 6, injmax bekannt ist, kann tiber
eine einfach Mittelung zwischen zwei benachbarten Zellen eine valide Ausrichtung be-
stimmt werden. Dadurch ist einerseits der Abstand zu allen Hindernissen maximiert,
andererseits ist es jedoch wahrscheinlich, dass sich der Winkel hédufig dndert, wie in
zu sehen ist. Um iiber lingere Streckenabschnitte eine konstante Plattform-
orientierung zu halten, ist eine geometrische Betrachtung der Winkel wie in
hilfreich, bei denen der Winkel so gewdahlt wird, dass er iiber eine maximale Anzahl
von Zellen nicht gedndert werden muss. Die glattesten Fahrbewegungen entstehen je-
doch, wenn nicht der Winkel, sondern seine Anderung moglichst konstant bleiben, wie
in gezeigt. Hierfiir kann mit den minimalen und maximalen Winkeln aufein-
ander folgenden Zellen die Steigung der Winkelgeschwindigkeit eingegrenzt werden, bis
diese eindeutig bestimmt ist (angedeutet durch die gestrichelten Geraden). Da sich mini-
male und maximale Steigung nur monoton dndern diirfen, entstehen die rot markierten
Bereiche, in denen keine Anpassung der Steigung stattfindet. Bei allen Berechnungen
werden die Ausrichtungen der Plattform als Polarkoordinaten auf dem Einheitskreis be-
trachtet, um zwischen den Winkeln mitteln zu konnen.

Beginnend mit der Orientierung im Startzustand wird diese Ausrichtung entlang des
geplanten Pfades weitergegeben und nur gedndert, wenn der Winkel in einer Kollision
resultiert. In diesem Fall wird der dhnlichste, kollisionsfreie Winkel gewihlt. Die Winkel-

differenz « (siehe[Abb. 7.11a) geht als cr(«) in die Kostenfunktion ein (teilweise auch in
Form ihrer Ableitung).

Neben diesen Rotationskosten miissen auch die zuriickgelegten Distanzen optimiert wer-
den. Die dafiir zustandige Kostenfunktion cr(3) sorgt weiterhin dafiir, dass seitliche oder
riickwiérts gerichtete Bewegungen zwar planbar sind, aber aufgrund ihrer hohen Kosten
im Allgemeinen vermieden werden. Der verwendete Winkel S liegt zwischen der ver-
wendeten kollisionsfreien Plattformausrichtung und der eigentlichen Bewegungsrich-

tung beim Zelleniibergang (siehe [Abb. 7.11b).

Zusammen mit den Kosten fiir die Lange der zuriickzulegenden Strecke c,,qjiq ergibt sich
fiir die Pfadkosten folgende Summe:

s, = Cpudid + cr () + cr(B) (7.3)

Planung von Manipulationsposen

Eine Fragestellung, die bei der Planung von Manipulationsaufgaben mit mobilen Ro-
botern eine grofie Rolle spielt, ist die Auswahl von geeigneten Plattformposen fiir die
auszufithrenden Aufgaben. Dabei muss fiir die Ausfiithrung sichergestellt sein, dass der
Manipulatorarm alle relevanten Objekte erreichen kann, und die Armbewegung zu kei-
nem Zeitpunkt mit der Umgebung in Kollision liegt. Nach aktuellem Stand der Technik
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Abb. 7.11.: Bestandteile der Kostenfunktion.
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(a) Optimierung auf grofem Hindernisabstand. Dies fithrt zu haufigen Anderungen des Winkels
bei s, bis s;.
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(b) Optimierung auf einen konstanten Winkel. Bei s, muss die Orientierung das erste Mal ange-
passt werd%n, bei s, das zweite Mal, ebenso an der unstetigen Stelle s..
A

»
'
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(c) Optimierung auf eine konstante Drehrate. Bei s, muss die Winkelgeschwindigkeit das erste
Mal angepasst werden, bei s. das zweite Mal. An der unstetigen Stelle s;, dreht sich die Platt-
form vorbei.

Abb. 7.12.: Unterschiedliche Moglichkeiten zur Wahl der Plattformorientierung 6 entlang
des Pfades s.
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wird dafiir eine vielversprechende Plattformpose ausgewdhlt, und an dieser die Arm-
bewegung simuliert, um auftretende Kollisionen und die Erreichbarkeit evaluieren zu
konnen. Treten Probleme auf, wird die Plattform so lange iterativ verschoben und er-
neut die Manipulationsaufgabe simuliert, bis diese erfolgreich ist. Dieser zeitaufwendige
Prozess kann durch die Verwendung von [Swept-Volumen| stark verkiirzt werden. Da-
fiir muss im Vorfeld durch zahlreiche Simulationen leicht unterschiedlicher Manipulati-
onsausfithrungen einer Aufgabenklasse (bspw. Objekt von Tisch aufnehmen oder Schublade
dffnen) zunichst dasSwept-Volumen|des Manipulator-Arbeitsraumes berechnet werden.
Beispiele sind in zu sehen. Dieses Volumen rotiert man dann zusammen mit
der Plattform, jedoch nicht um das Plattformzentrum, sondern um den[Iool Center Point|
des Manipulators. Wahrend der Arm bei der Erzeugung von Rotationsvolumen
fiir die Plattformplanung meist auf einer eingezogenen Parkposition steht, um kompakte
Volumen zu erhalten, entstehen nun ausladende Rotationskorper. Priift man diese mittels
Bitvektor-Kollisionstests gegentiber der Umwelt, ist sofort ersichtlich, an welchen Posen
im Raum eine potentielle Manipulationsaufgabe ausfiihrbar ist. Diese Posen bilden dann
passende Zielkandidaten fiir den beschriebenen D*-Lite Planer.

Die vorgeschlagene Methode abstrahiert durch eine statistische Vorberechnung von der
Vielzahl an Freiheitsgraden, die ein mobiler Manipulator im Allgmeinen aufweist, und
nutzt zur Laufzeit lediglich eine sehr schnelle Kollisionspriifung. Probabilistischen Ver-
fahren, wie Inverse Capability Maps [193]], ist diese einfache Form der Erreichbarkeitsana-
lyse in so fern Uberlegen, dass sie keine unausfiihrbaren Hypothesen liefert.

(a) Armbewegung einer typi- (b)[Swept-Volumen| mehrerer, (c) Potentielle Manipulations-

schen Manipulationsaufga- leicht unterschiedlicher posen: Erreichbar und Kol-
be Armbewegungen lisionsfrei

Abb. 7.13.: Rotierte [Swept-Volumen| zur effizienten Evaluierung von Plattformposen bei
Manipulationsaufgaben. Veroffentlicht in [3].

Zusammenfassung

Durch die beschriebene D*-Lite-Planung auf Basis von Rotations{Swept-Volu-men|ist es
moglich, auch ohne eine zusatzliche Nachbearbeitung glatte Pfade fiir eine mobile Platt-
form zu generieren. Da dabei die Orientierung des Roboters in der Kostenfunktion ex-
plizit berticksichtigt wird, konnen {iber unterschiedliche Kriterien gewisse Bewegungs-
muster bevorzugt werden. Durch die Verwendung eines diskretisierten Planungsgitters
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bleibt der Konfigurationsraum und damit auch der Planungsgraph tibersichtlich. Wei-
terhin ist der Gitterabstand so gewihlt, dass keine interpolierenden Kollisionspriifungen
entlang der Zustandstibergédnge erforderlich sind, wodurch kurze Berechnungszeiten er-
reicht werden. Zusitzlich kann dadurch die Wiederverwendbarkeit von Teilpldnen bei
Verdanderungen in der Umwelt durch den D*-Lite Planer risikofrei ausgeschopft wer-
den, da bei Zustandsiibergédngen keine unvorhergesehenen Hindernisse auftreten kon-
nen. Das Verfahren ist vollstandig, so dass existierende Losungen immer gefunden wer-
den. Es eignet sich somit besonders fiir die Planung in stark zerkliifteten Innenrdumen
mit beschrankter Ausdehnung.

7.2.3. Plattformplanung mit generischen Bewegungsprimitiven

Die Verwendung von Rotations{Swept-Volu-men|ist nicht der optimale Ansatz, wenn es
groflere Distanzen zu tiberbriicken gilt. Hier bietet sich eine Planung mit Bewegungspri-
mitiven an, deren grundlegenden Eigenschaften bereits in der Ubersicht der Planungs-
verfahren vorgestellt wurden. Zielplattform ist wieder ein holonomes Fahrzeug, weshalb
die verwendeten Bewegungsprimitive lediglich aus 2D Trajektorien in der Fahrtebene be-
stehen. Ahnlich wie bei der Planung mit Rotationsvolumen sollen auch hier konkatenier-
bare und universell verwendbare Trajektorienstiicke genutzt werden, um daraus langere
Plane zusammenzusetzen. Ziel ist dabei, die rotierenden Freiheitsgrade durch Vorberech-
nungen abzudecken, so dass zur Planungszeit mit reinen Translationen gearbeitet wer-
den kann, um wieder die Effizienzvorteile des Basisversatzes aus [Unterabschnitt 5.3.1]
nutzen zu konnen. Die hier vorgestellten Verfahren wurden von Klaus Fischnaller in sei-
ner Masterarbeit [23] implementiert.

Die fiir die Fahrtplanung gewéahlten Primitve decken unterschiedlich lange, geradlini-
ge Pfade sowie Kurvenfahrten mit unterschiedlichen Langen und Radien ab. Sie begin-
nen alle mit derselben Startorientierung und enden facherformig (vgl. mit fest
definierten Orientierungen (in dieser Arbeit 0, £45 und +90 Grad). Die Definition der
Primitive erfolgt komfortabel in einem eigens implementierten grafischen Designer, in
dem einzelne Pfade entweder als Polynom definiert oder als Spline {iber Stiitzpunkte
editiert werden konnen. Dabei muss die Geometrie der Pfade so gewéahlt werden, dass
die Endpunkte der Primitive nicht nur die diskretisierten Orientierungen aufweisen, son-
dern sich auch auf virtuellen Gitterpunkten befinden. Nur so ist sichergestellt, dass nach
einigen Konkatenationen Zirkelschliisse entstehen konnen, wie sie in zu er-
kennen sind. Anderenfalls wéchst das Netz aus Primitiven sowie der Planungsgraph bei
der Suche ins Unendliche. Sind die 2D-Pfade festgelegt, werden sie mit dem Roboter-
modell virtuell abgefahren und dabei die [Swept-Volu-men| der Bewegungen generiert.
Alle Volumen erhalten eine individuelle [SSV-IDs| und werden zusammen in einer Vo-
xel-Datenstrukur gespeichert. Somit lassen sich alle Primitive gleichzeitig mit nur einer
Kollisionspriifung gegeniiber dem Umweltmodell auf Ausfiihrbarkeit priifen. Durch das
Einbringen eines Versatzes konnen die vorberechneten Pfade effizient an beliebigen Po-
sitionen in der Umwelt evaluiert werden.
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(a) Aufbau der acht ficherformig angeordnete Bewegungsprimitive.

"

(b) Kombination von acht Bewegungsfachern mit unterschiedlicher Startorientierung.

Abb. 7.14.: Bewegungsprimitive des IMMP Roboters, die bei der Planung auf Kollisions-
freiheit gepriift werden.

Planer

Die erste Umsetzung eines Planers stiitzte sich auf die Algorithmen der (ARA*,
Anytime D*, R*), welche die GPU-basierte Kollisionsdetektion nutzen. Da SPBL-Planer
die Primitive jedoch serialisiert evaluieren, wurden sie so abgeéndert, dass die Anfra-
gen teilweise parallel ablaufen konnten, was die Effizienz drastisch steigerte. Dennoch
ergaben Vergleiche mit einem reinen 2D Szenario und fiinf Bewegungsprimitiven kei-
ne zufriedenstellenden Ergebnisse. Die Originalimplementierung fiihrte dabei 64 000 2D-
Kollisionspriifungen in 4,7 s durch, wahrend die GPU fiir 12 800 3D-Kollisionspriifungen
(Parallelisierung mit Faktor fiinf) 25,37 s benétigte. Auch wenn sich dieses Verhiltnis mit
einer steigenden Anzahl bzw. lingeren Primitiven verbessert, wurde der SBPL-Ansatz
wieder verworfen. Als Alternative wurde ein eigener D*-Lite Planer entwickelt, der bes-
sere Einsichten und mehr Freiheiten bei der Entwicklung erlaubte.

Probleme bei dynamischer Umwelt

Wie in der Taxonomie der Planungsverfahren beschrieben wurde, haben Planer, die mit
Pfadabschnitten arbeiten, das Problem, bei neu auftretenden Hindernissen zu beurteilen,
welche Teile des Planungsgraphen zu invalidieren sind. Um dieses Problem zu vermei-
den, wurde die Expansion des Planungsgraphen von der eigentlichen Suche entkoppelt.
Wird nun eine Kollision erkannt, konnen die betroffenen Abschnitte aus dem Graphen
entfernt werden, womit eine spatere Suche nur auf konsistenten Daten stattfindet. Ahn-
lich dem A*-Algorithmus wird der Graph durch Expansionsschritte so lange erweitert,
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Abb. 7.15.: Bewegungspfade der Primitive fiir 45 bzw. 90 Grad Startorientierungen und
ihren moglichen Konkatenationen.

bis das Ziel erreichbar ist. Allerdings wird danach nicht direkt der Pfad extrahiert, son-
dern iiber eine separate Dijkstra-Suche ermittelt. Somit ist sichergestellt, dass auch bei
einer Anderung im Graphen durch neue Umweltinformationen noch ein giiltiger Pfad
gefunden werden kann. Der entstandene Algorithmus entspricht nun ansatzweise einem
dynamischen Roadmap-Planer, in dem eine A*-Expansion fiir die Wegesuche eingesetzt
wird. Umgesetzt wurde dies mit Hilfe der LEMON Graphenbibliothek [70]. Dieses Vor-
gehen 16st nicht das eigentliche Problem, sorgt aber dafiir, dass der Planungsgraph durch
zusatzliche Berechnungen konsistente Losungen generieren kann.

Somit besteht weiteres Optimierungspotential bei der Suche nach alternativen Pldnen,
nachdem neue Hindernisse auf dem Weg zum Ziel bekannt wurden. Diese blockieren
in der diskretisierten Umgebung meist mehr als nur eine Kante entlang des Losungs-
pfades, da sie eine Ausdehnung tiber mehrere Zellen aufweisen. Da versperrte Knoten
jedoch erst bei der Expansion des Graphen erkannt werden, tastet sich die Suche den-
noch nur in direkter Nachbarschaft zum urspriinglichen Plan voran. Dies fiihrt zu zahl-
reichen Fehlversuchen aufgrund desselben Hindernisses, bis ein valides Primitiv neben
dem Hindernis gefunden wurde. Da das Verhalten keinen Fehler, sondern nur unnétige
Rechenzeit bedeutet, wurde es in der Implementierung nicht umgangen. Eine mogliche
Losung wire beispielsweise eine gezielte Abtastung der Region um das Hindernis, bevor
die Berechnung alternativer Plane immer wieder vom Ziel aus startet.

7.2.4. Manipulatorarm Planung mit Bewegungsprimitiven

Die vorgestellten Bewegungsprimitive (Rotationsvolumen bzw. kurze Plattformpfade)
eignen sich gut fiir die GPU-beschleunigte Planung, da ihre vorberechneten
durch eine translative Bewegung konkateniert werden kénnen. Diese Translation
kann im Voxelgitter sehr effizient durch einen einfachen Basisversatz umgesetzt wer-
den.

Anders sieht es hingegen bei den Bewegungen eines Roboterarmes aus, die fiir eine Kon-
katenation nicht nur verschoben sondern auch rotiert werden miissten. Um die Rotati-
onskonstellationen in den Primitiven zu codieren (wie bei der Plattformplanung), miisste
eine zu grobe Diskretisierung der Winkel vorgenommen werden, um die Daten identi-
fizierbar zu speichern. Diese Diskretisierung wiirde insbesondere in den Basisgelenken
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einen zu hohen Diskretisierungsfehler im TCP des Roboters bedeuten, um allgemein-
glltige Bewegungen planen zu konnen. Auch das Arbeiten mit Polarkoordinaten wére
(abgesehen von den schwierigen und unregelméfiigen Voxelformen) keine Losung, da
eine Translation tiber einen Offset nicht moglich ist.

Aus diesen Griinden konnte in dieser Arbeit keine Losung fiir die feingranulare Planung
von Manipulatortrajektorien mittels Primitiven umgesetzt werden.

7.2.5. Manipulatorarm Planung mit samplingbasierten Verfahren

Wie bereits in der Taxonomie beschrieben, verschiebt sich der Berechnungsaufwand bei
der Planung mit samplingbasierten Verfahren von der Kollisionspriifung hin zur Vo-
xelumwandlung der gesampelten Posen bzw. den abgetasteten Bewegungen zwischen
den Samples. Diese Problematik kann durch die Verwendung von so genannten Lazy
evaluating Planungsverfahren minimiert werden. Dabei wird wéhrend einer ersten Pla-
nungsphase auf die Kollisionspriifung der Bewegungen verzichtet und wéahrend dem
Sampling lediglich Start- und Endposen evaluiert. Erst wenn ein potentieller Pfad ge-
funden wurde, werden in einer zweiten Phase nur die benttigten Bewegungen zwischen
den verwendeten Posen abgetastet und auf Kollisionsfreiheit gepriift. Werden dabei un-
ausfithrbare Abschnitte detektiert, kann der Planer lokal nach Alternativen suchen. Dies
reduziert den Aufwand der Voxelumwandlung eklatant und es konnen konkurrenzfihi-
ge Planungszeiten erreicht werden. Die Priifung der Bewegungen erfolgt mit Hilfe von
iSwept-Volu-men| die die abgetastete Bewegung reprasentieren und die dann mit einer
einzelnen Kollisionspriifung bearbeitet werden kénnen. Auf Grund der nicht existenten
Abbildung von Ausfiihrung zu Planungsraum kénnen keine Roadmap Planer eingesetzt
werden. In der Evaluation wurden die Planer LBKPIECE1 und SBL aus der er-
folgreich getestet.

Ahnlich wie bei der Plattformplanung entsteht durch die Kollisionspriifung der Bewe-
gungen zwischen den Samples ein virtueller Korridor, in dem sich der Roboter wéahrend
der Ausfithrung bewegt. Dieser kann mittels der in bis zu 250 Abschnitte unter-
teilt werden, um bei einer detektierten Kollision die verbleibende sichere Strecke bestim-
men zu konnen. Durch eine Interaktion zwischen der Ausfithrung und dem Planer ldsst
sich der Startpunkt einer Neuplanung auf die aktuelle Pose des Roboters festlegen, um
unterbrechungsfrei an die alte Trajektorie ankniipfen zu kénnen.

7.2.6. Ganzkorperplanung

Sollen Pfade fiir mobile Manipulatoren (also die Kombination einer mobilen Plattform
mit einem oder mehreren Armen) gefunden werden, lassen sich auch die im vorigen
Abschnitt beschriebene samplingbasierte Planer einsetzen. Auf Grund der Vielzahl an
Freiheitsgraden solcher Systeme muss das Sampling allerdings sehr effizient gestaltet
werden. Hier bietet es sich an, die geplanten Freiheitsgrade durch eine Heuristik zu be-
schranken. RRT-Goalbias und RRT-Goalzoom sind dafiir zwei Modifikationen des RRT
Algorithmus, die Vahrenkamp et al. in [198] vorgestellt haben. Die erste Erweiterung
verbessert die Konvergenz der Suche in Richtung des Zieles, wihrend die Zweite die
aktiven Freiheitsgrade bei der Planung mit der Anndherung zum Zielobjekt dynamisch
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inkrementiert. Die generierten Pfade sind allerdings nicht optimal und weisen Unstetig-
keiten auf, die in einem Nachbearbeitungsschritt gegldttet werden miissen.

Ein Ansatz von Yang et al. aus [207] nutzt einen PRM Planer, dessen Planungsgraph mog-
lichst klein gehalten wird, indem nur Knoten zum Graphen hinzugefiigt werden, die den
Arbeitsraum des Manipulators signifikant erhéhen. Der genutzte Manipulator wies je-
doch lediglich fiinf Freiheitsgrade auf und die Skalierbarkeit des Ansatzes ist fraglich.

Auch der Ansatz von Gochev et al. alterniert die Anzahl an geplanten Freiheitsgraden [89].
Zunichst wird versucht, das Ziel tiber eine Planung in einem niedrigdimensionalen Raum
zu erreichen. Ist dies nicht moglich, schaltet der Planer in Regionen mit Kollisionen in
einen hochdimensionalen Planungsraum.

Die genannten Verfahren sollen in Folgearbeiten praktisch in der Kombination mit der
GPU Kollisionspriifung evaluiert werden.

7.2.7. Greifplanung

Greifplanung gehort zu den essentiellen Fahigkeiten eines Serviceroboters, da diese un-
terschiedlichste Objekte manipulieren miissen. Gleichzeitig stellt die Greifplanung eine
grofle Herausforderung fiir autonome Systeme dar, da vielfiltige unterschiedliche Vor-
gaben erfiillt sein miissen, um einen stabilen Griff erfolgreich auszufithren. Menschen
benotigen in der frithen Kindheit mehrere Jahre, um diese Fahigkeit zu erlangen. Aller-
dings nutzen sie umfangreiches Kontext-, Objekt- und Hintergrundwissen um tiber einen
Griff zu entscheiden. Entsprechende Herangehensweisen existieren auch in der Robotik
[199], sollen hier aber nicht vertieft werden. Im Gegensatz zu ihnen nutzt das hier vorge-
stellte Verfahren ausschliefSlich geometrische Berechnungen und fokussiert sich darauf,
die Kontaktberechnung zwischen Hand und Objekt so weit zu beschleunigen, dass die
Greifplanung online ablaufen kann.

Wihrend Industrieroboter individuell auf die zu handhabenden Objekte abgestimmte
Greifer verwenden, sind Serviceroboter meist mit Mehrzweckhdnden ausgestattet. Ihre
Flexibilitat erhalten sie durch zahlreiche bewegliche Freiheitsgrade, welche alle koordi-
niert angesteuert werden miissen, um einen erfolgreichen Griff auszufiihren. Um passen-
de Gelenkwinkel zu finden, muss der Kontakt zwischen Hand und Objekt in komplexen
Simulationen bestimmt und optimiert werden. Da Objekte weiterhin auf zahlreiche un-
terschiedliche Weisen gegriffen werden kénnen, sind diese Simulationen zur Beurteilung
der Alternativen zeitaufwendig.

Klassische Greifplaner [205] stiitzen sich daher auf vorberechnete Datenbanken, in denen
passende Griffe fiir bekannte Objekte abgelegt sind. Die Erstellung solcher Datenbanken
benotigt vollstandige geometrische Modelle, was die Einsetzbarkeit auf eine begrenzte
Menge an Objekten einschrankt.

Alternative Ansitze, die Greifhypothesen auch fiir unbekannte Objekte herleiten konnen,
nutzen dafiir Griffe, die fiir geometrische Grundobjekte oder Superquadriken definiert
sind [74]. Diese Primitive werden dann an den, in Sensoraufnahmen sichtbaren, Aus-
schnitt des Zielobjektes angepasst [63]]. Dariiber hinaus ist es auch moglich, eine Men-
ge von maximal grofien Kugeln in das detektierte Objekt einzupassen [164] und diese
als bekannte Greifkorper zu nutzen. Eine weitere Moglichkeit, Annahmen tiber die der
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Kamera abgelegenen Objektseite zu treffen, ist die Spiegelung der Sensordaten an der
Schattenkante der Aufnahme [48].

Die Qualitdt der beschriebenen Prozesse hingt klar von der Aufnahmeperspektive und
somit vom sichtbaren Abschnitt des Objektes ab. Um die Daten zu vervollstindigen ist
ein Perspektivwechsel notwendig, der jedoch je nach Situation und Roboter mit grofsem
Aufwand verbunden sein kann, z.B. wenn der Roboter erst um einen Tisch herumfahren
muss, um das Objekt von der gegeniiberliegenden Seite betrachten zu kénnen.

Eine weitere Schwierigkeit, die aus dem kinematischen Aufbau klassischer Servicero-
boter hervorgeht, ist die Hand-Augen-Kalibrierung: Zahlreiche Methoden des Greifens
basieren auf einem einfachen [Sense-Plan-Act-Zyklus| in dem ein Objekt einmalig detek-
tiert und ein passender Griff geplant wird, der dann ohne weitere Anpassung ausgefiihrt
wird. Somit ist eine exakte, extrinsische Kalibrierung der kinematischen Kette zwischen
der Sensorik und dem [Endeffektor|nétig, welche je nach [Roboterkonfiguration|schwierig
aufrechtzuerhalten ist.

Eine robustere Herangehensweise ist das biologisch motivierte [Visual Servoing| [92], bei
dem das Zielobjekt mittels einer Kamera lokalisiert und der |[Endeffektor{relativ dazu po-
sitioniert wird. In einem geschlossenen Regelungskreis wird dann der Abstand zwischen
Objekt und Greifer minimiert, bis ein Griff moglich ist. Eigens fiir diesen Zweck sind ei-
nige Roboter mit Kameras in den Unterarmen ausgestattet. Dennoch verbleibt auch hier
die Schwierigkeit der Greifplanung. Daher wird |Visual Servoing|oft mit einer haptischen
Sensorik kombiniert [208]], durch die sich die Finger schliefsen lassen, bis ein vordefinier-
ter Druck erreicht wird. Dabei entsteht jedoch das Problem, dass leichtere Objekte durch
den ersten Finger, der das Objekt beriihrt, verschoben werden. Abhédngig von der Ob-
jektgeometrie kann bereits diese Verschiebung ein erfolgreiches Greifen verhindern, falls
das Objekt beispielsweise kippt oder wegrollt.

Um dem entgegenzuwirken, wurde eine Methode entwickelt, die visuelle Exploration
mittels einer In-Hand-Kamera nutzt, um Objektmodelle zu erzeugen. Diese ersetzen a prio-
ri Wissen iiber die Objektgeometrie, wodurch Griffe fiir zundchst unbekannte Objekte
gefunden werden konnen. Hochparallele Algorithmen ermoglichen es, diese Greithypo-
thesen zu evaluieren, wahrend sich die Hand noch um das Objekt bewegt. Die pro Fin-
ger individuell geplanten Bewegungen stellen sicher, dass alle Fingerglieder das Objekt
gleichzeitig beriihren, ohne es zu verschieben oder die Umwelt sonst zu verdndern. Die-
se Technik ist weiterhin mit taktiler Sensorik oder kraftbasierter Regelung kombinierbar,
um ausgefiihrte Griffe zusatzlich zu stabilisieren.

Technische Fortschritte in der 3D-Sensorik (siehe erlauben es, die bendtigten
hochauflosenden Kameras direkt in den Roboterarm [88] oder auch in den Greifer zu in-
tegrieren. Durch ist es moglich, unterschiedliche Griffe sehr schnell zu eva-
luieren und zu optimieren und diesen Prozess schritthaltend auszufiihren, wahrend sich
der Greifer bereits dem Objekt ndhert.

Im Gegensatz zu Ansédtzen wie [43, 139], die Oberflaichenmodelle als Dreiecksnetze aus

Sensordaten generieren, ist dieser Schritt hier nicht notig, da wie in allen anderen Expe-
rimenten volumetrische Voxelmodelle zum Einsatz kommen.
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7.2. Umgesetzte Planungsverfahren
Optimierungsproblem

Bei der Greifplanung miissen unterschiedliche und teilweise gegensitzliche Kriterien er-
fullt werden, die nicht in linearem Zusammenhang stehen. Daher wird sie hier als mehr-
dimensionales Optimierungsproblem der Bewertungsfunktion f betrachtet, welche die
folgenden Eingabedaten bewertet:

e A,y.und A, p,: Geometrische Transformation zwischen Objekt und Hand (6 ) .
A S [Amim Amax]

e J: Gelenkwinkel aller N Finger. Bilden Vektor & € [@min, $max]
e O: Objekt Geometrie: Wird als unveranderlich angenommen
e H:Hand Geometrie: Kein Freiheitsgrad, da die Bewegung durch ¢ geschieht

Folglich sucht man nach

arg; fgax ( f (o, H A, gﬁ') ) (7.4)

Um dieses Maximum analytisch zu berechnen, wire eine Formel notig, welche die kom-
plexe physikalische Interaktion einer Mehrkorperkinematik der Hand A mit dem Objekt
O abbildet. Die Berechnung eines solchen Systems, in einer fiir die Greifplanung ausrei-
chenden Qualitét, ist nicht tragbar. Auch kann der Konfigurationsraum nicht systema-
tisch abgesucht werden, da seine Dimensionalitdt >= 8 zu hoch ist.

Daher wird in dieser Arbeit eine |[Partikelschwarmoptimierung (PSO)| eingesetzt, die in
|Abschn1tt 8.10. 2| ndher beschrieben ist. Diese optimiert die Untermenge (Awyz, Aam) des
Konfigurationsraumes, welche die Pose des Objektes beschreibt, wahrend kontinuierlich
die Gelenkwinkel ¢ der Finger mittels GPU Kollisionspriifung bestimmt werden.

Die Bewertungsfunktion

f (O,H,&,(/_f) = (Vcol Handfliche T Vol Finger) : Z (‘Pn) (75)
née(2,N]

die von der genutzt wird nutzt die folgenden Variablen:

® Vol Handfliche: Kontaktvolumen zwischen Handfldche und Objekt
® Vol Finger: Kontaktvolumen zwischen Fingern und Objekt

e &: Gelenkwinkel der Finger zum Kontaktzeitpunkt. Grofiere Winkel bedeuten wei-
tere Schlieffung.

Die Funktion bewertet Griffe anhand des Kontaktvolumens zwischen Hand und Objekt
und bevorzugt Griffe, bei denen die Finger weiter geschlossen sind.

Die Eingabedaten werden auf der GPU durch die Simulation mehrerer tausend Griffe g
erzeugt. Das Ergebnis jedes simulierten Griffs besteht aus folgendem Tupel:

g (O, H, A) = (V;:ol Handfliche» Vcol Finger>» 95) (76)

147



7. Bewegungsplanung

Die Parameter, unter denen f(g) sein Maximum erreicht, definieren den stabilsten Griff
mit den Fingergelenkwinkel @ und der Objektpose A relativ zur Handwurzel. Jede PSO
Optimierungsiteration liefert bereits die Gelenkwinkel eines Griffes, bei dem alle Finger
in Kontakt mit dem Objekt liegen und der somit theoretisch ausfiihrbar wére. Dies be-
schreibt die Charakteristik eines|Anytime Algorithmus), die es erlaubt, den Optimierungs-
prozess jederzeit abzubrechen und dennoch valide Ergebnisse zu erhalten. Praktisch be-
notigt es jedoch einige Iterationen, um einen stabilen Griff zu erreichen.

Zusammenfassung

Mit Hilfe der voxelbasierten Kollisionsdtetektion kann die Planung von Griffen direkt
auf Punktwolkendaten durchgefiihrt werden. Somit entfillt die Notwendigkeit fiir ab-
strakte Modelle und es lassen sich auch Griffe fiir unbekannte Objekte erzeugen und
bewerten. Weitere Details der praktischen Umsetzung des Verfahrens finden sich in
Ebenso eine Evaluation, die zeigt, dass die Algorithmen schnell genug ablau-
fen, um wihrend einer Anriickbewegung zu einem Objekt bereits gute Griffe zu finden.
Die vorgestellte Greifplanung wurde in [8] vercffentlicht.

Eine Funktion, die zugunsten der Voxelumwandlung aufgegeben werden muss, ist die
physikalische Modellierung der Greifkontakte, die bei Oberfichenmodellen durch ihre
Normalen ermoglicht wird. Auch wenn dies in einigen Szenarien einen Nachteil dar-
stellt, ergeben sich daraus jedoch keine generelle Probleme. Ebenso verringert sich die
Genauigkeit mit der Kantenldnge der Voxel. Da Serviceroboter jedoch héufig iiber eine
Impedanzregelung verfiigen, lassen sich dariiber die verlorenen Millimeter problemlos
ausgleichen.

7.3. Fazit

Die in diesem Kapitel vorgestellten Verfahren ermoglichen es Robotern, in einer senso-
riell erfassten, dynamischen Umwelt kollisionsfreie Bewegungen zu planen. Durch die
Nutzung der parallelen Kollisionspriifung erreichen die Planer dabei ein reaktives Ver-
halten, wie in der folgenden Evaluation gezeigt wird. Es konnten unterschiedliche Her-
angehensweisen aufgezeigt werden, mit denen sich der Aufwand zur Voxelumwandlung
wahrend der Planung minimieren ldsst, um somit eine effiziente Implementierung zu
erhalten. Insbesondere die Verwendung von vorberechneten Bewegungsprimitiven, die
von rotierenden Bewegungskomponenten abstrahieren, erweisen sich als sehr gute Lo-
sung fiir die Planung von mobilen Plattformen. Weiterhin wurden Losungen fiir Robo-
terarme, sowie eine Greifplanung von Mehrfingergreifern vorgestellt, die die universelle
Verwendbarkeit der Voxelverfahren unterstreichen. Zusammenfassend konnte dadurch
die[Forschungsfrage 4|positiv beantwortet werden, da sowohl etablierte Planungsansétze
als auch neue Herangehensweisen erfolgreich mit parallelisierten Datenstrukturen kom-
binierbar sind.
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8. Experimentelle Evaluation

In diesem Kapitel werden die im Laufe der Arbeit entwickelten Verfahren der Voxelmo-
dellierung und der hochparallelen Kollisionspriifung evaluiert und ihr praktischer Ein-
satz in sehr unterschiedlichen Anwendungen erprobt. Die Szenarien decken dabei drei
Problemklassen ab, die in dargestellt sind:

(a) Momentauf- (b) Ego-Swept-Volumen und (c) Ego- und Hindernis Swept-
nahme Hindernis Momentaufnahme Volumen

Abb. 8.1.: Die durchgefiihrten Experimente decken drei Problemklassen ab, die hier an-
hand von HoLLie (1) (Ansicht von Oben) dargestellt sind. Das[Swept-Volumen|
der geplanten Trajektorie ist unterteilt in den bereits abgefahrenen Bereich (4,
grau) und die ausstehende Bewegung (2, blau). Das Hindernis (3) ist in rot dar-
gestellt.

1. Zunichst ist die Parallelisierbarkeit verschiedener Datenstrukturen und ihre Eig-
nung zur Modellierung unterschiedlicher Entitdten der Bewegungsplanung zu prii-
fen. Hervorzuheben ist der GPU-optimierte Octree, der durch probabilistische Last-
balancierung alle bekannten Implementierungen aussticht. Aufbauend auf den Da-
tenstrukturen wird eine Kollisionspriifung von Momentaufnahmen umgesetzt. Der
Erfolg wird anhand der Laufzeit der Verfahren gemessen und mit etablierten Algo-
rithmen verglichen. Es soll mindestens eine Verarbeitungsrate erreicht werden, die
der Bildrate aktueller 3D-Sensoren entspricht.

2. Ineinem zweiten Schritt wird die Kollisionsvermeidung beurteilt. Hierfiir sind die
geplanten Robotertrajektorien in Form von Swept-Volumen dargestellt, die wéh-
rend der Ausfithrung auf eindringende Hindernisse (Momentaufnahmen der Um-
welt) hin tiberwacht werden. So entsteht ein tiberwachter Korridor, in dem sich
der Roboter sicher bewegen kann. Herausforderungen liegen in der zeitlichen und
ortlichen Identifizierbarkeit von Subvolumen bei der Kollisionspriifung. Weiterhin
wird die Planung mittels Bewegungsprimitiven untersucht, bei der Trajektorien fiir
nichtholonome Plattformen aus[Swept-Volu-men|synthetisiert werden.

3. Im dritten Szenario werden schliefilich nicht nur die Eigenbewegungen, sondern
auch die Bewegungen dynamischer Hindernisse als [Swept-Volu-men| modelliert,
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8. Experimentelle Evaluation

um eine Kollisionspradiktion zu erlauben, damit kollisionsfreie Bahnen in dyna-
mischen Umgebungen geplant werden konnen. Hierfiir kommt eine voxelbasierte
Bewegungssegmentierung und -pradiktion zum Einsatz. Zur Planung werden Di-
stanzfelder (EDT) auf Voxelkarten definiert, iiber die ein variabler Sicherheitsab-
stand (3D-Potentialfeld) um Hindernisse herum gewahrt werden kann. Somit ist
neben einer exakten Kollisionsberechnung auch die Distanzberechnung zwischen
zwei Modellen umgesetzt, die fiir zahlreiche Planungsalgorithmen benétigt wird.

8.1. CUDA Laufzeitparametrierung

Bevor auf komplexe Anwendungen eingegangen wird, sollen zundchst noch Grundlagen
der CUDA Laufzeitparametrierung evaluiert werden, die allgemein anwendbar sind. Be-
reits in wurde dargestellt, dass fiir die quantitative Beurteilung von CUDA Al-
gorithmen zwischen rechen- und speicherintensiven Programmen unterschieden werden
muss. Theoretisch lassen sich beide Klassen durch einen Vergleich mit der rechnerisch
erreichbaren Rechenleistung der verwendeten GPU (GFLOPS / s) bzw. deren Speicher-
bandbreite (GiB / s) beurteilen. Fiir die Evaluation wurde in dieser Arbeit eine Titan-GPU
verwendet (siehe [Unterabschnitt A.7.4), deren Prozessor bis zu 4,709 GFLOPS erreicht,
wiahrend der theoretische Speicherdurchsatz bei 288,4 GiB/s liegt. Da die erreichbare Be-
schleunigung durch die Parallelisierung bei komplexeren Algorithmen aber von einem
Zusammenspiel vieler Faktoren abhéngt, liegen die praktisch erreichbaren Werte weit
unterhalb der Spezifikation. Daher werden in dieser Evaluation bevorzugt die Laufzei-
ten spezifischer Problemldsungen betrachtet.

Einer der einflussreichen Faktoren bei der Optimierung ist der Grad der Parallelisierung,
der sich in tiber zwei Parameter steuern lasst: Anzahl an Blocken und Anzahl an
Threads pro Block (vgl. [Unterabschnitt 3.2.2). Je nach Aufgabe bedeutet ein hoher Paralle-
lisierungsgrad jedoch auch mehr Aufwand zur Arbeitsverteilung, Synchronisierung und
Zusammenfiithrung der Ergebnisse. Somit ergibt sich ein zweidimensionales Optimie-
rungsproblem, bei dem die Anzahl an Blocken zwischen 1 und 231 _ 1 und die Anzahl
der Threads pro Block zwischen 1 und 1024 zu wéhlen ist. Nvidia bietet mit dem Oc-
cupancy Calculatorﬂ ein Werkzeug an, um im Vorfeld eine passende Parametrierung zu
berechnen und die Auslastung (Occupancy) der GPU zu verbessern. Allerdings sollten
die berechneten Werte nicht generell als optimale Parameter angesehen werden, da diese
von weitaus mehr Faktoren abhdngen, welche zur Laufzeit bspw. mit dem Visual ProﬁlerE]
tiefgehend analysierbar sind.

Aus diesen Griinden wurden beispielsweise fiir das Traversieren des Octrees umfang-
reiche empirische Versuchsreihen auf der Zielhardware ausgefiihrt, um das Laufzeitver-
halten bei unterschiedlicher Parallelisierung zu bestimmen. Die Ergebnisse aus
verdeutlichen, wie sehr optimale Parameter von der Problemgrofse abhidngen (4096 Blo-
cke mit je 32 Threads bei 3 Mio. Punkten bzw. 4096 Blocke mit je 512 Threads bei 13
Mio. Punkten). Da nicht fiir jede Problemgrofie eine solche Studie durchgefiihrt werden
konnte, wurde eine lineare Abhingigkeit der Threads pro Block mit der Punkteanzahl

1http ://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.
x1ls
“https://developer.nvidia.com/nvidia-visual-profiler
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8.2. Voxelkarte
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Abb. 8.2.: Empirische Ermittlung der optimal Anzahl an Blocken und Threads fiir den
Octree-Aufbau anhand der benétigten Laufzeit in Millisekunden.

angenommen, deren Stiitzstellen die ermittelten Optima sind. Diese Wahl erweist sich
als valide Annahme, wie das Diagramm in belegt.

Die Laufzeitparameter weiterer Klassen von Algorithmen, die in dieser Arbeit eingesetzt
werden, wurden dhnlich ermittelt.

8.2. Voxelkarte

Da die Erstellung und Verarbeitung von Voxelkarten keine komplexen Berechnungen
erfordert, und somit auch keine Datenabhéngigkeiten vorliegen, ist diese Datenstruk-
tur hauptsdchlich durch die Speicherbandbreite der Hardware begrenzt. Entsprechend
knapp kann die Evaluation ausfallen.

Liegen die Ausgangsdaten bereits im Speicher der GPU vor, ergeben Messungen zum
Eintragen von Sensorpunktwolken folgendes Bild: Pro Millisekunde kénnen ca. 3 Mio.
Messpunkte aus R? in probabilistische Voxel eingetragen werden. Im Testszenario waren
die Punkte dabei so verteilt, dass pro Punkt ein Voxel zu aktualisieren ist, also maxi-
mal viele Speicherzugriffe nétig waren. Die Laufzeit skaliert linear mit der Anzahl an
Punkten, wobei diese maximal parallel verarbeitet werden, wahrend die Dimensionen
der Zielkarte dagegen keine Auswirkung auf die Laufzeit aufweisen.

Eine Kollisionspriifung verarbeitet innerhalb einer Millisekunde zwei Voxelkarten aus je
knapp 5Mio. probabilistischen oder 7,5 Mio. bindren Voxeln zu einer einfachen binédren
Kollisionsaussage. Hierbei kann der Speicherzugriff den Bus voll ausnutzen, da parallel
ablaufende Threads sequentielle Daten verarbeiten.

Da eine Kinect-Kamera bei voller Bildrate von 30 FPS ca. 9,2 Mio. Messpunkte pro Sekun-
de erzeugt, wire es bei ausschliefdlicher Betrachtung der Voxelumwandlung moglich, die
Daten von tiber 300 Kameras simultan in eine Voxelkarte einzutragen. Auf Grund von
hostseitigen Einschrankungen ist die Grenze praktisch jedoch bereits bei vier Kinects er-
reicht.

Sind bei gleicher Verarbeitungsrate Voxelkarten auf Kollision zu priifen, diirfen diese
unter Vernachldssigung weiterer Verarbeitungsschritte folglich 5 - 10° Voxel/ms - 33 ms =
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8. Experimentelle Evaluation

165 Mio.Voxel pro Karte aufweisen. Praktisch evaluiert wurden Szenarien mit komple-
xen Verarbeitungsketten auf 128 Mio. Voxeln. Dies entspricht bei 2cm Voxelauflosung
einem abgedeckten Volumen von bspw. 20m x 20m X 2,5m, das in ausreichender Ge-
schwindigkeit auf Kollisionen priifbar ist. Der Speicherverbrauch fiir zwei probabilisit-
sche Karten liegt hierbei bei 1,26 GiB. Selbst grofie Innenrdume stellen folglich kein Pro-
blem dar.

Laufzeitvergleiche gegeniiber dem implementierten Octree und anderen CPU- und GPU-
basierten Verfahren finden sich im nidchsten Abschnitt.

Mehrstufiger Kollisionscheck

Um die praktischen Auswirkungen eines hierarchischen Kollisionschecks auf Voxelkar-
ten unterschiedlicher Auflosungen (vgl. [Unterabschnitt 5.3.2) besser beurteilen zu kon-
nen, soll hier der erreichbare Laufzeitvorteil betrachtet werden. Dafiir wurde in vier un-
terschiedlichen Versuchen eine Voxelliste mit einer Voxelkarte geschnitten. Das Szenario
entstammt der Planung mit Rotationsvolumen, auf das weiter unten eingegangen wird.
Die Ergebnisse finden sich in[Tab. 8.1, wobei ausschliefSlich die reinen Laufzeiten der Kol-
lisionspriifung gemessen wurden. Ausgehend von vorberechneten Listen ergibt sich bei
der Verwendung einer acht mal groberen Aufldsung nur ein Zehntel der Laufzeit, wenn
keine Kollisionen auftreten.

Voxel- Grofie Liange Kollisionscheck
kantenlinge Umweltkarte Roboter-Voxelliste Laufzeit Durchsatz
[cm] [MVoxel] [Voxel] [ms] [Voxel/ms]
1 200 1889192 0,696 2714 356
2 25 250818 0,263 953 681
4 3,125 33789 0,089 379652
8 0,391 4820 0,067 71940

Tab. 8.1.: Durchschnittlicher Zeitaufwand fiir Kollisionschecks bei varierender Auflo-
sung.

8.3. Octree

Wesentlich umfangreicher fillt die Evaluation des implementierten Octrees aus, da die-
ser komplexere Verarbeitungsketten beinhaltet, um die Problematik der Parallelisierung
dynamischer Datenstrukturen anzugehen. Die folgenden Abschnitte geben daher einen
detaillierten Einblick in die Laufzeiten der wichtigsten Funktionen und vergleichen diese
mit einer CPU-Implementierung eines Octrees und eines kd-Trees.
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8.3. Octree

Abb. 8.3.: Ausschnitt einer Punktwolke mit 40,4 - 10° Punkten, die ein Volumen von
101,5m x 97,2m x 24,7 m abdecken. Um diese in 2 cm-Auflosung in einem Oc-
tree zu speichern sind lediglich 300 MiB an GPU RAM nétig, wéhrend eine
Voxelkarte hingegen mindestens 28 GiB benétigt. Die Punktwolke des FZI Ge-
biaudes wurde von Jan Oberldnder erstellt.

8.3.1. Aufbau eines Octrees

Zunichst soll der Aufbau eines neuen Baumes mit 15 Ebenen aus einer Punktwolke be-
trachtet werden. Um eine reprdsentative Laufzeitmessung in Abhingigkeit der Punk-
teanzahl zu erhalten, muss gewdhrleistet sein, dass die Punktwolke pro Voxel nur einen
Punkt enthélt. Dies wurde durch eine Diskretisierung mittels eines Voxelfilters erreicht,
dessen Voxelgrofie direkt die Dichte der entstehenden Punktwolke bestimmt. Fiir die fol-
genden Experimente variiert die Voxelgrofle zwischen 1,7 cm und 30 cm.

Wie zeigt, kann durch die in [Abschnitt 5.5.2 beschriebenen Techniken des ad-
aptiven Lastausgleichs ein nahezu lineares Laufzeitwachstum bei steigender Grofie der
Eingabedaten erreicht werden. Die Messungen zeigen den Mittelwert aus 100 Durch-
laufen mit einem probabilistischen Octree (die Zeiten eines deterministischen Octrees
unterscheiden sich nur marginal und sind daher nicht angegeben). Den grofiten Auf-
wand verursacht das Sortieren der Eingabedaten, sowie der ebenenweise Aufbau der
Octreestrukturen. Bei Kopieren + Diskretisieren entfallen ca. 87%der Laufzeit auf den
reinen Datentransfer zur GPU, wogegen das Berechnen der Morton-Codes sehr schnell
ablauft. Fiir das Sortieren kam die Thrust-Implementierung des Radix-Sort zum Einsatz,
die einen Durchsatz von 310 Mio. Morton-Codes pro Sekunde erreicht. Das Aufbauen der
Ebenen beinhaltet das Setzen der Kindzeiger sowie des Knotenzustandes. Hier entfallt
erwartungsgemafd die meiste Arbeit auf die Blattknoten in Ebene 0. Das anschliefSende
Herstellen der [Baum-Invariante| fasst das Ab- und Aufsteigen im Baum bei probabilisti-
schem Lastausgleich zusammen, wobei der Ausgleich ab ca. 3 Mio. Punkten gut skaliert
(bei kleineren Punktemengen sollte ein Octree mit weniger Ebenen genutzt werden).
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Abb. 8.4.: Nahezu lineares Laufzeitverhalten fiir den Aufbau eines Octrees aus unter-
schiedlich grofien Punktwolken (bis zu 25Mio. Punkte) mit Aufschliisselung
der Algorithmenbestandteile. Diagramm aus [22].

Der ermittelte Datendurchsatz reicht folglich einerseits aus, um einen Octree aus den
Daten von bis zu drei Kinect-Kameras mit voller Bildrate komplett neu zu konstruieren,
aber auch, um extrem detaillierte Punktwolken aus 25 Mio. Messpunkten mehrmals pro
Sekunde zu verarbeiten.

8.3.2. Kollisionspriifung

Zur Evaluierung der Leistungsfahigkeit der Kollisionspriifung wurden praxisnahe Ver-
suche der Bewegungsplanung am Modell des HoLLiE-Roboters durchgefiihrt. Dafiir muss-
ten zufallsgenerierte Swept-Volu-men| von Bewegungen auf Uberschneidung mit einem
Ausschnitt der bereits gezeigten, statischen Punktwolke des FZI Gebaudes gepriift wer-
den.

Octree N Octree

Zunichst wurden beide Modelle in probabilistische Octrees eingefiigt und diese mit-
tels der lastbalancierten Tiefensuche (siehe [Unterabschnitt 6.2.5) miteinander geschnit-
ten. Die hierarchische Struktur des Baumes erlaubt eine zielgerichtete Abarbeitung der
Octrees fiir eine effiziente Kollisionspriifung, wobei sich die kompakte Datenspeiche-
rung zusitzlich positiv auf die Laufzeit auswirkt. Uber eine Einschriankung der Suchtiefe
lasst sich dabei die Auflosung und somit die erforderliche Berechnungszeit beschranken.
Im Laufzeitdiagramm aus verursacht der Lastausgleich bis zu 50%des Berech-
nungsaufwandes, was durch die hohe Lokalitit der Bewegungsdaten bedingt ist. Den-
noch sind durch die Heuristik zur Gruppierung vergleichbarer Arbeitselemente nur ma-
ximal sieben Lastausgleichsschritte notig. Die Berechnungszeit steigt mit zunehmender

154



8.3. Octree

Suchtiefe nahezu linear an, was die Eignung der implementierten Parallelisierungsstra-
tegien und des Lastausgleiches unterstreicht.
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Abb. 8.5.: Laufzeit der Kollisionspriifung zwischen zwei Octrees mit anteiligem Auf-
wand fiir den Lastausgleich. Abhingig von der maximalen Suchtiefe werden
Laufzeiten zwischen 1 und 3 ms erreicht um bis zu 0,5Mio. Voxel zu priifen.
Diagramm aus [22].

Octree N Voxelkarte

In Szenarien, in denen ein schneller, wahlfreier Zugriff auf eine dichte Voxelmenge beno-
tigt wird, kann ein Octree auch gegentiber einer Voxelkarte auf Kollision gepriift werden.
Dabei werden belegte Eintrdge des Octrees gezielt in der Voxelkarte nachgeschlagen.
vergleicht die Laufzeiten unterschiedlicher Kombinationen von Datenstruktu-
ren. Hier zeigt sich, dass der Einsatz einer Voxelkarte nur in Szenarien mit einer kleinen
Menge an Voxeln (grofier Voxelkantenldnge) gerechtfertigt ist, da die Kombination aus
zwei Octrees bei umfangreicheren Datenmengen um bis zu einer Grofienordnung schnel-
ler auszuwerten ist. Da sich die Voxelmenge mit jeder Halbierung der Voxelkantenldnge
verachtfacht, ist die Nutzung mindestens eines Octree gegeniiber zwei Voxelkarten fast
immer iiberlegen. Voxelkantenldngen unter sieben Zentimetern konnten nicht evaluiert
werden, da die resultierende Voxelmenge mit der 32 Bit Adressierung der Voxelkarte
nicht darstellbar ist. Weitere Ergebnisse sind in [Tab. 8.2 zu finden. Die bewerteten Mes-
sungen berticksichtigen jedoch nicht den Aufwand fiir das Aufbauen oder Modifizieren
des Octrees. Wie im nédchsten Abschnitt beschrieben, hat dies jedoch gerade in dynami-
schen Szenen einen grofien Einfluss auf die Laufzeiten und muss daher bei der Auswahl
einer passenden Datenstruktur beachten werden.
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Abb. 8.6.: Laufzeiten der Kollisionspriifung bei unterschiedlichen Kombinationen von
Datentypen. Diagramm aus [22].

Aufbau aus Sensordaten

In der Praxis ist der Aufbau eines Octrees aus Sensordaten ein relevanter Benchmark.
Daher wurden fiir diesen Test die Punktwolken einer bewegten Innenraumszene aufge-
zeichnet, wobei die Daten von einer Kinect-Kamera stammten, die mittels einer Schwenk-
Neige-Einrichtung kontrolliert gedreht wurde. Einzelne Aufnahmen bestanden dabei aus
200000 bis 300 000 Messpunkten, die kontinuierlich in einen Octree eingefiigt wurden.
Gleichzeitig wurde der Freiraum mittels[Raycasting|bestimmt (siehe[Unterabschnitt 4.3.T).
Da hierbei fiir die Freiraumvoxel dieselbe Auflosung gewidhlt wurde, tiberwiegen diese
die belegten Voxel um ein 6 bis 107-faches. Dies zeigt sich auch im Laufzeitdiagramm
aus in dem das Sortieren der Freiraumvoxel den groiten Anteil der Berech-
nungszeit einnimmt und zusammen mit dem Berechnen und Einfiigen 80% der Laufzeit
ausmacht. Die Messungen belegen, dass der Octree bei einer Voxelgrofie von 3 cm in der
Lage ist, die Punktwolken einer Kinect-Kamera mit 25 Hz zu verarbeiten. Wird die Auf-
16sung auf 1 cm erhoht, liegt der erreichte Durchsatz noch immer bei 133 MVoxel/s. Eine
signifikante Laufzeitersparnis ergibt sich durch die Berechnung des Freiraumes mit einer
geringeren Auflosung im Vergleich zu den Hindernisvoxeln: So ist bei Verdopplung der
Freiraumvoxelgrofie weniger als 50% der Gesamtlaufzeit notig. Durch den kompletten
Verzicht lasst sich der Berechnungsaufwand sogar um Faktor fiinf reduzieren, wodurch
eine simultane Auswertung von vier Kinect-Kameras moglich wird.

Vergleich mit anderen Arbeiten

Leider sind nur wenige andere Softwarebibliotheken verfiigbar, die nicht mit Oberfla-
chennetzen arbeiten und daher fiir einen Benchmark herangezogen werden kénnen. Des
Weiteren fallt der Vergleich aufgrund einer fehlenden, etablierten Metrik schwer, soll aber
dennoch unternommen werden. Als Datengrundlage dient dafiir der Vergleich zwischen
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8.3. Octree

Hindernis I7] Octree Octree Voxelkarte Octree
Seiten- Anzahl N N N N
linge  Kollisionen Octree Voxelliste Voxelkarte Voxelkarte
[Voxel] [Voxel] [ms] [ms] [ms] [ms]

2 0,01 1,46 0,10 15,31 4,21
4 0,04 1,46 0,10 15,31 4,21
8 0,44 1,46 0,10 15,31 4,20
16 5,25 1,47 0,11 15,31 4,21
32 37,60 1,44 0,11 15,32 4,28
64 217,03 1,65 0,15 15,32 4,36
128 1862,98 1,88 0,41 15,32 4,71
187 6781,29 1,91 1,04 15,34 5,61

Tab. 8.2.: Median-Laufzeiten iiber 100 Kollisionspriifungen zwischen der FZI Gebaude-
karte (150 684 belegte Voxel bei einer Kartengrofie von 884 x 1004 x 187 Vo-
xeln) und einem zuféllig platzierten Wiirfel aus bis zu 6,5 Mio Voxeln. Publiziert

in [4].
180 ; ; : ; g : 9
Freiraum-Voxel sortieren I i i
160 - Freiraum berechnen BN -ooocdrnnndinnnns 8
Bauminvariante herstellen I :
140 4 Objekt-Voxel einfiigen I - R 7
Freiraum-Voxel einfigen : —
— 120 Vorverarbeitung (Sensordaten) 6 €
g VoxelgréBe )
= 100 oo 5 9
§ 80 g 4 2
H H Q
@© H X
- 60 o e i 3 8
40 - 2
20 1
0 1 1 1 1 1 1 1 1 1 1 0

0 2 4 6 8 10 12 14 16 18 20
Anzahl Voxel [10°]

Abb. 8.7.: Laufzeit zum Aufbau eines Octrees aus Sensordaten inklusive Freiraumberech-
nung bei variierender Auflosung. Diagramm aus [22].

CPU- und GPU-basierten Kollisionspriifungsverfahren von Schauer et al. aus dem Jahr
2016 [180]. Hier wird zum einen ein mittels OpenMP parallelisierter kd-Tree vorgestellt,
der genutzt wird, um in einem definierten Suchradius um eine Eingabekoordinate einer
Punktwolke nach Punkten einer zweiten Punktwolke zu suchen. Zum anderen ein GPU
RGD-Ansatz, der die Punktwolke der Umgebung in einem Vorverarbeitungsschritt zu-
ndchst grob in Voxel diskretisiert. Im Unterschied zur vorliegenden Arbeit werden dabei
jedoch die zugehorigen Punkte in jedem Voxel gespeichert. In einem zweiten Schritt kon-
nen dann gezielt nur die Punkte derjenigen Voxel auf ihre Distanz zu Egomodellpunkten
tiberpriift werden, die in kollidierenden Voxeln liegen.
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Voxelkarte Octree Kollisionspriifung
Anzahl Kollisions- Gesamt- Balancierungs- Balancierungs-
Eintrige  priifung aufwand aufwand schritte
[Knoten] [ms] [ms] [ms]
32K 0,55 1,52 0,28 2
256 K 0,13 2,16 0,40 2
2M 0,55 3,22 0,41 3
16 M 3,86 5,13 0,55 3
128 M 17,59 21,05 0,57 1

Tab. 8.3.: Median-Laufzeiten iiber 100 Kollisionspriifungen zwischen zwei voll ausgefiill-
ten Octrees bzw. zwei voll belegten Voxelkarten bei unterschiedlichen Daten-
mengen. Durch die gleichméfiige Verteilung der Daten sind nur sehr wenige
Balancierungsschritte im Octree notig.

Als Metrik fiir den Vergleich soll der Durchsatz an Voxeln bzw. Punkten pro Millisekun-
de herangezogen werden. Dieser ergibt sich aus der addierten Menge an Eingabedaten
(Umwelt + Egomodell) die mit den durchgefiihrten Kollisionspriifungen multipliziert
werden. Verglichen werden Szenarien mit vergleichbaren Umgebungsbedingungen mit
der letzten Zeile aus(Tab. 8.2] Schauer et al. evaluieren die Algorithmen auf unterschiedli-
cher Hardware. Fiir den hier gezogenen Vergleich werden die Messungen mit einer GTX
980 GPU verwendet, die eine leicht hohere Leistung aufweist, als die in dieser Arbeit
eingesetzte Titan GPU. Die CPU Messungen basieren auf einer Intel Xeon Workstation,
die tiber acht Kerne (16 virtuelle hyperthrading Kerne) und 32 GiB RAM verfiigt. Die Er-
gebnisse finden sich in|[Tab. 8.4, Alle Zeiten beziffern exklusiv die Kollisionspriifung und
beinhalten nicht den Aufbau der verwendeten Datenstrukturen.

Die Ergebnisse der Vergleichskandidaten unterscheiden sich erheblich innerhalb der un-
tersuchten Szenarien, obwohl diese dhnliche Umgebungen abbilden (Fahrten durch tun-
nelartige Strukturen). Als Ursache geben die Autoren unterschiedliche Dichteverteilun-
gen in den Datensitze an. Es zeigt sich, dass die verglichenen Verfahren auf zwei der Da-
tensatze (El Teniente, Tunnel) einen hoheren Gesamtdurchsatz von Punkten bzw. Voxeln
als erreichen. Betrachtet man jedoch den Durchsatz der erkannten Kollisio-
nen pro Millisekunde, liegt GPU-Voxels in realen Szenarien um mehr als eine Grofien-
ordnung iiber den Vergleichskandidaten. Gleichzeitig benotigen diese einen wesentlich
zeitaufwendigeren Aufbau ihrer Datenstrukturen, was sie fiir eine schritthaltende Da-
tenauswertung ungeeignet macht. Der Aufbau des kd-Trees aus 16 Mio. Punkten wurde
bspw. in der vorausgegangenen Arbeit [75] mit 9 Sekunden beziffert und ist damit auch
um beinahe zwei Groflenordnungen aufwendiger, als die Konstruktion des vorgestellten
GPU Octrees. Auf Datengrofien, wie sie bei der Verarbeitung von typischen 3D Kameras
auftreten, liegt der erreichbare Datendurchsatz beider Verfahren ebenfalls weit unterhalb
der Leistung der hier implementierten Datenstrukturen.
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8.3. Octree

Datensatz Umwelt Egomodell Verfahren Durchsatz
[Eintrage] [Eintrage] [Eintrage/ms] [Koll./ms]

CPU kd-Tree 0,77 - 106 2,27

. 6 . 6 ? Y
Hannover 55,8710 0,21-10 GPU RGD 1.34- 106 3.56
CPU kd-Tree 0,61 -106 111,02

. 6 . 6 ? 9
Wolfsburg 350,11 - 10 0,43 -10 GPU RGD 117 - 106 91741
CPU kd-Tree 22,27 - 109 162,72

. 6 . 6 ? Y
Tunnel - 18,92-10% 0,03 107 Gpy rgp 3,34 - 10° 15,35
CPU kd-Tree 75,51 - 106 195,70

1 . 6 . 6 9 9
El Teniente 806,18 - 10 0,10- 10 GPU RGD 46,28 - 106 117,42
GPU 2x Octree 3,50 - 106 3550,41

. 6 . 6 ’ 9
Planung 6,54 -10° 0,15 10° piy oo iTiste 6,43 - 109 6520,47
Maximum 128,00 - 106 128,00 - 10° GPU 2x Octree 14,55 - 10° 14,55 - 10°

Tab. 8.4.: Vergleich des Berechnungsdurchsatzes der Kollisionspriifung von GPU-Voxels
(letzte zwei Datensitze) mit zwei anderen Verfahren aus [180].

Vergleich mit der OctoMap

Ein weiterer Vergleich soll mit der in der Robotik weit verbreiteten Octree-Implementie-
rung OctoMap von Hornung et al. [104] gezogen werden. Diese CPU-basierte Software
verfligt tiber einen dhnlichen Funktionsumfang, wie die hier vorgestellte GPU Variante,
weshalb sie fiir einen Vergleich herangezogen werden soll. Hierfiir wurde der im vori-
gen Abschnitt beschriebene Datenstrom einer Kinect-Kamera verwendet und mittels der
Funktion insertPointCloud () in die OctoMap eingefiigt. Zur Performanzsteigerung
waren die Optionen lazy_eval und discretize aktiviert.

Der Laufzeitvergleich als doppelt-logarithmische Darstellung in[Abb. 8.8|bescheinigt der
GPU-Implementierung eine Beschleunigung um bis zu zwei Groéflenordnungen, vergli-
chen mit der OctoMap. Bei gleichzeitiger Berechnung des Freiraums und unter Einbe-
ziehung des Datentransfers auf die (vgl. [91])) ist die probabilistische Version bis zu
80 mal, die deterministische bis zu 170 mal schneller. Weiterhin ist ersichtlich, dass der
GPU-Octree besser mit der Menge der Voxel skaliert.

Vergleicht man den Speicherverbrauch der Datenstrukturen, so féllt dieser bei der GPU-
Implementierung um den Faktor 3,4 niedriger aus, als bei der Octomap. Dieses sehr gu-
te Verhiltnis der benotigten Bytes pro Punkt wird durch den Verzicht auf acht separate
Kindzeiger (OctoMap) zugunsten von nur einem Zeiger (GPU-Octree) auf acht gleichzei-
tig zu allozierende Kindknoten erreicht. Selbst bei einer Vervierfachung der Nutzdaten
in den Blattknoten wire der GPU-Octree noch immer 25% speichereffizienter als die Oc-
toMap-Implementierung.

Zusammengefasst ist die GPU-Implentierung der OctoMap in den Punkten Berechnungs-
geschwindigkeit und Speicherverbrauch weit iiberlegen. Es soll jedoch angemerkt wer-
den, dass die OctoMap tiber eine Templatesierung beliebige Nutzdaten in ihren Knoten
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Abb. 8.8.: Vergleich der Laufzeiten zum Einfiigen von Daten in den GPU-Octree und
die CPU-Implementierung OctoMap (doppelt logarithmische Darstellung).
Die GPU-Variante ist gegeniiber OctoMap um bis zu zwei Grofsenordnungen
schneller. Diagramm aus [22].

erlaubt, wogegen die GPU Variante auf die zwei verfiigbaren [Voxeltypen|beschrankt ist.
Eine Erweiterung um neue Datentypen ist hier aufgrund besonderer Optimierungen nur
mit groffem Aufwand moglich.

Fazit

Dynamische Datenstrukturen, deren Speicherverbrauch sich inkrementell dndert, eige-
nen sich prinzipiell schlecht fiir eine Umsetzung auf der GPU. Auch die ungleichma-
Bigen und a priori unbekannten Traversierungsdistanzen innerhalb des Baumes lassen
sich nicht kanonisch zur parallelen Ausfiihrung aufteilen. Dennoch {tibertrifft der reali-
sierte Octree in seiner Leistung bei der geometrischen Modellierung von Volumendaten
den Stand der Technik. Wie die Laufzeitmessungen zeigen, konnte eine effiziente Im-
plementierung umgesetzt werden, indem GPU-typische Programmierparadigmen einge-
halten wurden: Inkrementelle Speicherallokationen konnten durch vorgeschaltete Zahl-
operationen zusammengefasst werden, wihrend einer Speicherfragmentierung durch
zyklischen Neuaufbau der Datenstruktur begegnet wird. Eine Strategie zur systemati-
schen, leichten Uberallokation von GPU-Speicher kaschiert die langsame Speicherver-
waltung der GPU bei dennoch beinahe linearem Speicherzuwachs durch neue belegte
Voxel. Gleichzeitig konnte der Speicherverbrauch minimiert werden, indem fiir je acht
Kindknoten nur ein Zeiger verwendet wird. Weiterhin sorgt eine heuristische Lastbalan-
cierung auch bei unterschiedlich aufwendigen Aufgabenfragmenten fiir eine gleichma-
Big hohe Auslastung der GPU.

Durch die genannten Punkte wird eine Bandbreite erreicht, die es erlaubt, 25 mal pro Se-
kunde die Daten von vier hochauflosenden 3D-Sensoren (640 x 480 Datenpunkte) gleich-
zeitig in einen Octree (2cm Auflosung) einzutragen und diesen in weniger als zehn Mil-
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8.4. Vergleich von Voxel- und Mesh-basierter Kollisionsdetektion

lisekunden auf Kollision mit einer Robotertrajektorie zu priifen. Gegentiber weit verbrei-
teten CPU-Implementierungen stellt dies eine 80-fache Beschleunigung dar.

Verglichen mit Voxelkarten ist es somit moglich, extrem grofie Volumen speichereffizient
zu reprédsentieren und in vielen Féllen sogar einen effizienteren Lesezugriff zu gewéh-
ren. Auch im Vergleich der Kollisionspriifung von Voxelkarten konnte in realistischen
Szenarien eine zehnfache Beschleunigung erzielt werden. Gleichzeitig fallt der Speicher-
verbrauch fiir die Modellierung typischer Innenraumszenen gegeniiber Voxelkarten um
ca. 70%, da in menschlichen Umgebungen meist nur ca. 30% des Raumvolumens Objekte
enthalten.

8.4. Vergleich von Voxel- und Mesh-basierter
Kollisionsdetektion

Um einen Eindruck der Moglichkeiten einer voxelbasierten Kollisionsdetektion zu er-
halten, wurde diese in zwei aussagekraftige Beispielszenarien mit der weit verbreiteten
IFlexible Collision Library (FCL)|Bibliothek [156] aus ROS vergleichen. Da es sich bei der
FCL um ein [BVH}-Verfahren handelt, ist hier vor der eigentlichen Kollisionspriifung ein
Vorverarbeitungsschritt auszufiihren, bei dem die Oberflichennetze aller rigiden Ein-
zelmodelle einer Szene in Hiillvolumen aufgeteilt werden. Dieser Schritt ist bei jeder
Anderung der Modelle erneut durchzufiihren, bspw. wenn ein Umweltmodell aus Sens-
ordaten tesseliert wird und sich Teile der Umwelt dynamisch verdandern.

8.4.1. Voxel-Swept-Volumen

Zunidchst sollen die Laufzeiten einer[Swept-Volumen|Kollisionspriifung den akkumulier-
ten Laufzeiten mehrerer Einzelpriifungen gegeniibergestellt werden. In der verwendeten
Testszene bewegt sich der mobile Roboter geradlinig vorwirts und durchdringt
dabei das Modell eine Bar-Theke. Hierfiir wurde die Fahrstrecke in 100 Zwischenpo-
sitionen unterteilt und diese zum einen einzeln mit der FLC evaluiert bzw. als

gerendert und mittels [GPU-Voxels| ausgewertet. Durch die Verwendung von

Bitvektor-Voxeln konnten dabei alle einzelnen Schritte getrennt bewertet werden.

In FCL bestehen die komplexen Dreiecksnetze des Roboters aus insgesamt 322 254 Dreiecken,
wiahrend die Bar aus 18 197 Dreiecken zusammengesetzt ist. Das Voxelmodell hingegen
ergibt sich aus 230 751 Punkten fiir den Roboter, der in einer Voxelkarte mit 1 cm Auf-
16sung im Schnitt 10427 712 Voxel belegt (bzw. 1600 656 Voxel bei einer Auflésung von

2 cm). Die Punktwolke der Bar enthilt 13 200 504 Punkte, die 830 635 Voxel bzw. 109 361 Voxel
belegen.

Die Zeitmessungen aus zehn Kollisionspriifungen sind in [Tab. 8.5] gelistet. Als Initiali-
sierung zahlt bei FCL der Aufbau der[BVHS| bei|[GPU-Voxels| das Generieren des
Die Zahlen verdeutlichen, dass bei einem Voxelansatz die Initialisierung weit
mehr Zeit kostet, als die eigentliche Priifung. Daher ergibt sich fiir den Voxelansatz ein
Laufzeitvorteil erst dann, wenn mehrere gleichartige Priifungen auszufiihren sind. Dies
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ist jedoch sehr hédufig der Fall. Beispielsweise wenn bei Planungsaufgaben mit Bewe-
gungsprimitiven gearbeitet wird (siehe [Unterabschnitt 7.2.3), oder bei der Ausfithrungs-
tiberwachung, wie sie weiter unten noch beschrieben wird. Je nach Auflosung ist dann
bereits ab zwei bis drei Durchldufen der Voxelansatz effizienter, als die Priifung ein-
zelner Posen mittels Oberflaichennetzen. Insbesondere kann nur durch die Verwendung
von [Swept-Volumen| eine schritthaltende Kollisionspriifung erreicht werden, die mit der
Bildrate der Kinect-Kamera durchfiihrbar ist. Im Gegensatz dazu ist es selbst unter Ver-
nachldssigung des Tesselierungsaufwandes nicht moglich, mit Dreicksnetzen ein Bewe-
gungsvolumen mit der notigen Wiederholungsrate auf eindringende Hindernisse zu prii-
fen.

8.4.2. Prifung einzelner Posen

Anwendungen, in denen keine vorberechnete [Swept-Volumen| genutzt werden konnen,
sind samplingbasierte Planungsszenarien, die in[Unterabschnitt 7.2.5/vorgestellt wurden.
Hierbei ist die Verarbeitungszeit der Kollisionspriifung einzelner, unabhéngiger Roboter-
posen ausschlaggebend. Um diese realistisch bewerten zu konnen, wurde ein Szenario
mit einem komplexen Umweltmodell und einem einfachen Robotermodell gewéhlt, in
dem nur wenig Bewegungsfreiraum gegeben ist. In sind Umwelt- und Robo-
termodell zu sehen, zwischen denen es bei der Planung héufig zu Kollisionen kommt.

Die Umwelt besteht in der Oberflichendarstellung aus 384 624 Dreiecken, der Roboter
aus 5750 Dreiecken. In deckt das Volumen der gesamten Szene 8,2 Mio. Vo-
xel bei einer Auflosung von 3 mm ab. Eingefiigt werden Punktwolken der Umgebung
mit 593 784 Punkten und der Roboter aus 1046 Punkten. Davon sind 591 062 Voxel durch
das Umweltmodell und 995 Voxel durch den Roboter belegt. Die Laufzeiten in
wurden aus ca. 3000 Durchfiihrungen der Kollisionspriifungen ermittelt. Einige Konstel-
lationen wiesen im Falle einer Kollision andere Laufzeiten auf, als im kollisionsfreien
Fall. Diese sind separat gelistet.

Es zeigt sich, dass durch die Kombination einer probabilistischen Voxelkarte fiir die Um-
weltreprasentation mit einer Liste aus Bitvektor-Voxeln konkurrenzfshige Laufzeiten fiir
die eigentliche Kollisionspriifung erreichbar sind. Allerdings diirfen diese nicht losge-
16st betrachtet werden. In einer komplexen verdnderlichen Umgebung miisste das Um-
weltmodell regelmiflig neu aufgebaut werden. Bei der Verwendung der FCL benétigt
diese Generierung der BVH um drei Groflenordnungen mehr Zeit, als die Kollisions-
priifung. Bei fallt der Unterschied um eine Groflenordnung geringer aus.
Bedingt durch den grofsen Komplexitdtsunterschied zwischen Umwelt- und Robotermo-
dell sind die Laufzeiten fiir die Vorverarbeitung des Roboters bei dieser Betrachtung ver-
nachldssigbar. Somit bestehen die Vorteile des voxelbasierten Ansatzes wieder klar bei
der Verarbeitung eines Umweltmodells, das aus Sensordaten generiert wird.
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(a) Mesh-Darstellung (b) Voxel-Darstellung

Abb. 8.9.: Szenario zum Vergleich der Mesh-basierten Kollisionsdetektion mit GPU-
Voxels. Der Roboter fahrt vorwirts und durchdringt dabei den Tisch mit seinen
Armen und dem Torso.

Szenario Teilschritt Dauer [ms] o [ms]

ROS FCL Mesh N Mesh Initialisierung 46,911 0,212
(100 Zwischenpriifungen) X Kollisionschecks 428,980 37,385

Initialisierung 1591,987 51,705

Octree N Voxelkarte (1 cm)

Kollisionscheck 48,223 2,034
Ouer et P T
N M
Ouveer ot [y

Tab. 8.5.: Vergleich der Berechnungsdauer von Mesh-basierter Kollisionsdetektion mit
GPU-Voxels (gemittelt iiber jeweils zehn Messungen, Standardabweichung o).

(a) Mesh-Darstellung (b) Voxel-Darstellung

Abb. 8.10.: Szenario zum samplingbasierten Planen in Voxel- und Mesh-Darstellung. Das
Robotermodell ist in rot dargestellt.
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Laufzeit [ms]
7] Median Min Max

ROS FCL Mesh N Mesh

Initialisierung BVHs 53,354 53,281 53,199 54,682
Kollisionschecks positiv 0,053 0,041 0,005 0,398
Kollisionschecks negativ 0,091 0,08 0,001 0,519

Prob. Voxelkarte N Prob. Voxelkarte
Modelle einfiigen 0,292 0,283 0,266 4,008
Kollisionscheck 1,864 1,654 1,648 5,125

Prob. Voxelkarte N Bitvektor Voxelliste

Modelle einfiigen 1,043 0,930 0,878 6,219
Kollisionscheck 0,098 0,064 0,061 1,964

Prob. Octree N Bitvektor Voxelliste
Initialisierung 16,172 15,988 13,742 25,587
Kollisionscheck 0,280 0,203 0,19 2,948

Prob. Octree N Bitvektor Voxelkarte
Initialisierung 16,205 15,926 13,088 31,904

Kollisionscheck 1,223 0,968 0,861 4,27
Prob. Octree N Prob. Octree

Initialisierung 24,484 23,834 17,912 35,664
Kollisionscheck positiv 6,159 6,073 5,257 9,493
Kollisionscheck negativ 5,782 5,613 5,04 8,894

Tab. 8.6.: Vergleich der Berechnungsdauer von Mesh-basierter Kollisionsdetektion mit
GPU-Voxels. Daten aus ca. 3000 Durchldufen.
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8.5. Visualisierung

Um einen Eindruck der Leistungsfahigkeit der implementierten Visualisierung zu ge-
winnen, wurde diese anhand mehrerer Beispielszenen evaluiert. Zunédchst wird eine In-
nenraumszene in Form einer Voxelkarte aus ca. 62,5 Mio. Voxeln betrachtet, in welcher
knapp 60 000 Voxel belegt sind (siehe [Abb. 5.20). Eine solche Szene kann in voller Aufls-
sung mit tiber 40 Hz angezeigt werden, was mit einem Umweg iiber den nicht er-
reichbar wére. Durch die Verwendung von Supervoxeln zur Auflosungsreduktion lasst
sich die Bildrate auf tiber 100 Hz steigern. Das Diagramm aus zeigt auch, un-
ter welchen Randbedingungen die einzelnen Verfahren, die in verglichen
wurden, Vorteile haben. So eignet sich der Algorithmus mit Zwischenspeicher fiir um-
fangreiche Szenen, die nur mit geringer Auflosung zu zeichnen sind, da seine Laufzeit
mit der Grofie des Zwischenspeichers skaliert. Bei den Verfahren ohne Zwischenspeicher
ist die Version ohne Vorberechnung erwartungsgemafs um bis zu Faktor zwei schneller,
als die Version mit Vorberechnung, da die Datenstruktur nur einmal durchlaufen werden
muss. Deutlich zu sehen sind auch die Effekte der sequenziellen Codeausfiihrung inner-
halb der Supervoxel-Kernel, welche beide Algorithmen bei grofieren Supervoxelgrofien
ausbremsen. Diese sind jedoch eher von theoretischem Belang, da Supervoxel mit Kan-
tenldngen > 8 in der Praxis nicht bendtigt werden. Tests mit synthetischen Szenen, die
im Gegensatz zu realen Szenen eine Voxelkarte sehr dicht belegen, zeigen jedoch erwar-
tungsgemafs hohere Bildraten bei grofien Supervoxeln, da die Kernel stoppen, sobald ein
erster belegter Voxel im Supervoxel gefunden wurde.

— Ohne Vorberechnung - - - Mit Vorberechnung

Supervoxel Anzahl -----Mit Zwischenspeicher

Grofie Voxel

1 59808 100 N
2 19974

3 9821 80 g
4 5954 =

5 4074 &

6 2994 g 00 |
8 1801 %‘

10 1148 7 40 a
12 860

14 607 20 B
16 534

20 356 . | | | | | |
32 158 0 5 10 15 20 25 30 35

Supervoxelgrofie

Abb. 8.11.: Vergleich der drei umgesetzten Verfahren: Gezeichnete Bilder pro Sekunde
bei unterschiedlicher Supervoxelgrofie. Daten aus [32].

Weiterhin wurde die Auswirkung einer Beschrankung des Sichtbereiches auf die Bildrate
anhand einer Gebdudeszene evaluiert. Diese wurde zundchst komplett visualisiert, und
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8. Experimentelle Evaluation

dann auf einen quaderférmigen Bereich vor der Kamera beschnitten. Da sich dabei die
Anzahl der zu zeichnenden Voxel kaum verandert (sieche Diagramm aus[Abb. 8.12), sind
die entstehenden visuellen Unterschiede in marginal. Dennoch zeigt sich je
nach Supervoxelgrofie eine um ein Vielfaches gesteigerte Bildrate im Diagramm. Grund
hierfiir ist das stark verkleinerte Iterationsintervall, das der Geometrie-Kernel auf der
beschnittenen Karte abarbeiten muss.

104
350 —— —6
30002 i & 1
1y \ 0
3 K — 1
. 250 |- ;. \‘\ N §<) Bildrate [FPS]
L 3 5 14 £ — nicht beschrankt
B 200 ¥ N 1 9 ---=-  beschrankt
[} ; 2N B 3 L
IS . £
'E 150 H . | -% Gezeichnete Voxel
B il ", | N
& 100 | ; ; k 12 & - - - nicht beschrankt
TN el e beschrankt
50 ik
0 \' BT LT e [ L . 0
0 5 10 15 20 25 30

Supervoxelgrofie

Abb. 8.12.: Anstieg der Bildrate bei Einschrankung des Sichtbereiches (Szene aus

Abb. 5.22)). Daten aus [32].

Ein Vergleich der unterschiedlichen Darstellungsvarianten zeigt die fiir zu er-
wartenden Ergebnisse: Die Darstellung der Szene unter Nutzung der ambienten Beleuch-
tung ist erwartungsgemafs am schnellsten. Das zusétzliche Einzeichnen von Wireframes
reduziert die Bildrate um etwa die Halfte, da die Szene hierfiir zweimal gerendert wer-
den muss. Dagegen reduzieren die komplexeren Berechnungen der [OpenGL}Shader bei
der Verwendung einer zuséatzlichen Punktlichtquelle die Bildrate nur um ca. 40%.

Wie bei allen CUDA Anwendungen muss auch bei den Geometrie-Kerneln ein moglichst
optimales Verhiltnis der Laufzeitparameter bestimmt werden (siehe|Unterabschnitt 3.2.2).
In umfangreichen empirischen Versuchen hat sich gezeigt, dass in durchschnittlichen
Szenen Blocke mit 43 oder 8 Threads die hochsten Bildraten erzielen, wobei pro
Thread ca. 15 Supervoxel sequentiell abgearbeitet werden (bei einem Datenstrukturvo-
lumen von 62Mio. Voxeln). Unter Verwendung dieser Parameter konnen bei der um-
fangreichen Szene zur Octree Evaluierung aus die Bildraten des Diagramms in
erreicht werden.

Ein Vergleich mit rviz, der auf OGRE basierenden Visualsierungslosung aus ROS, er-
brachte bei einer dhnlichen Szene aus 3 Mio. gezeichneten Wiirfeln zwar noch annehmba-
re Bildraten zwischen 7 und 10 FPS. Jedoch verzogerte die Datentibermittlung zwischen
Device und Host die Anzeige neuer Daten im Schnitt um 2 Sekunden. Dies macht die
Auswertung von in Voxel umgewandelten Echtzeitdaten mit rviz unmoglich.
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7,5 1296 x 1353 x 330 3046267
8,0 1215 x 1269 x 309 2708613
9,0 1080 x 1128 x 275 2179571
10,0 972 x 1015 x 248 1789652
12,5 778 x 812 x 198 1167927
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Abb. 8.13.: Erreichte Bildraten bei der Visualisierung umfangreicher Daten (Szene siehe
Abb. 8.3) mit unterschiedlichen Voxelseitenldngen. Daten aus [32].

8.6. Experimente mit stationarem Roboter

Die folgenden Experimente beschiftigen sich mit der Planung und Uberwachung von
Bewegungen eines Roboterarmes mit serieller Kinematik. Der Planungsraum ist dabei
der sechdimensionale Konfigurationsraum, wéahrend die Ausfithrung im dreidimensio-
nalen Arbeitsraum stattfindet. Die gewéahlten Szenarien decken die beiden grofien
Problemklassen der samplingbasierten Planung sowie der feingranularen Arbeitsraum-
iiberwachung ab und stehen somit fiir sehr allgemeine Fragestellungen.

8.6.1. Geteilter Arbeitsraum

Ein in der Industrie immer relevanteres Szenario ist der geteilte Arbeitsraum, in dem
Mensch und Roboter gemeinsam agieren und eine Vielzahl von unabhéngigen Teilauf-
gaben abarbeiten. Dabei ist es unabdingbar, dass der Roboter seine Ausfithrungen tiber-
wacht und so plant, dass er einerseits die Sicherheit des Menschen wahrt, aber anderer-
seits auch seine Aufgaben mit moglichst geringer Storung durch den Menschen durch-
fithren kann. Aktuelle Losungen teilen hierfiir den Arbeitsraum in Bereiche ein, die ex-
klusiv durch den Mensch oder durch den Roboter belegt sein diirfen. Die Sensorik, die
die Anwesenheit des Menschen ermittelt, ist dabei der limitierende Faktor, der Form
und Grofle der Bereiche einschrankt. So konnen Laserscanner oder Lichtgitter pro Sen-
sor lediglich eine zweidimensionale Ebene iiberwachen, wodurch nur eine sehr grobe
Aufteilung des Raumes moglich ist. Betritt der Mensch einen Bereich, in dem der Robo-
ter gerade aktiv ist, so muss dieser seine Ausfiihrung unterbrechen und abwarten, bis
der Mensch sich wieder entfernt hat. Diese bindre Entscheidung ist dabei unabhingig
von den genauen Posen und Bewegungsrichtungen von Mensch und Roboter. Um dieses
konservative und ineffiziente Verhalten mit potentiell unnétigen Stopps des Roboters zu
vermeiden, muss eine feingranulare Arbeitsraumiiberwachung ermoglicht werden, die
im Folgenden beschrieben wird.
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Als Beispielanwendung wurde ein Teilaspekt der industriellen Fertigung einer Autotiir
gewdhlt, bei der Mensch und Roboter gemeinsam Schrauben in der Tiirverkleidung set-
zen. Dabei ist es unerheblich, wer welche Schraubpositionen bearbeitet. Auf Grund von
Gewihrleistungsfragen wird in industriellen Anwendungen eine weitreichende Auto-
nomie hdufig eher kritisch betrachtet. Da es in einem solchen Szenario fiir den Roboter
jedoch ausreicht, aus der Menge der Teilaufgaben diejenigen auszuwihlen, die in Ab-
hiangigkeit vom Aufenthaltsort des Menschen gerade ausfiihrbar sind, ertibrigt sich eine
dynamische Neuplanung der Bewegungen. So herrscht jederzeit eine deterministische
Situation, da lediglich im voraus geplante und als sicher eingestufte Trajektorien ausge-
fithrt werden. Dennoch kann auch hier einen wichtigen Beitrag leisten, um
einen klassischen Roboter flexibler einzusetzen.

Dafiir wird der Arbeitsraum von zwei Kinect-Kameras tiberwacht, deren Blickwinkel
so gewdhlt wurden, dass sich Verschattungen minimieren. Wie in zu sehen,
waren die Sensoren oberhalb und unterhalb der Tiir angebracht. Ihre Aufnahmen wer-
den in eine probabilistische Voxelkarte Mg, mit 2cm Voxelkantenldnge eingetragen:
B(Mgny, Pkinect). Anschliefend muss das Volumen des Egomodells aus der Karte ent-
fernt werden, um nicht filschlicherweise zu Kollisionen zu fithren. Hierfiir wird das
Robotermodell anhand der aktuellen Gelenkwinkelstellungen in eine weitere Voxellis-
te eingetragen und diese von der Umweltkarte subtrahiert: Mgy, = (Mgny — MRob) mit

EE‘(MRoba PRob)'

Fiir die Planung einer Aktion wurden im Vorfeld alle N moglichen Bewegungen des
Roboters zu den verschiedenen Schraubpositionen vorberechnet und ihre
in je eine Voxelliste Mg, ., eingetragen. Wie in zu sehen, ist dabei jede
Bewegung in K = 250 dquidistante Schritte unterteilt, die einer individuellen
s zugeordnet sind. Die Winkelinkremente innerhalb des Volumens berechnen sich aus
YA = (Briel — Pstart)/ K. Eine zusitzliche Liste Mggo A (siehe @ enthilt zudem
die Menge aller Trajektorien, wobei hier pro Bewegung nur eine [SSV-ID| genutzt wurde.
Durch die Verwendung von Listen, die ausschliefllich belegte Voxel speichern, liegt der
kombinierte Speicherverbrauch unter 2 GB.

(a) Kalibrierung der zwei Kinect (b) Subvolumen einer einzel- (c)[Swept-Volume aller
Sensoren in ROS nen Trajektorie moglichen Trajektorien

Abb. 8.14.: Kalibrierung und [Swept-Volumen|der auszufiihrenden Trajektorien.
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Vor Beginn einer Schraubaktion kann mittels einer einzigen Kollisionspriifung Mgn, N
Meggo,an zwischen der Umweltkarte und der Liste mit allen Trajektorien bestimmt wer-
den, welche kollisionsfrei sind. Somit ist klar, welche Bewegungen aktuell aus-
fiihrbar sind. Aus dieser Liste wird dann eine Bewegung n gestartet.

Ab diesem Moment lduft mit jeder Aktualisierung der Umweltkarte durch eine neue
Punktwolke eine Kollisionspriifung mit der n-ten Voxelliste Mgg,,, ab, die die zeitlich
abgetastete Einzelbewegung enthélt: Mg,y N Mg 5. Gleichzeitig kommuniziert die Be-
wegungsausfithrung den aktuellen Gelenkwinkelzustand 5; des Roboters an die Uber-
wachung. Aus dieser kann mit der step Funktion der Abschnitt s im [Swept-Volumen|
berechnet werden, dem die Roboterpose ¢; am dhnlichsten ist. Wird nun eine Kollisi-
on erkannt, l4sst sich iiber die kleinste, in Kollision liegende ermitteln, ob die
Kollision in einem bereits abgefahrenen Teil der Trajektorie liegt, oder in einem noch zu
durchquerenden Volumen. Somit entscheidet die Funktion stop aus ob
der Roboter angehalten werden muss, oder ob die Kollisionen ignoriert werden, da sie
zeitlich gesehen bereits hinter der aktuellen Roboterstellung liegen. In den Formeln ist
nicht dargestellt, dass Kollisionen nur berticksichtigt wurden, wenn die Menge an kol-
lidierenden Voxeln iiber einem festen Grenzwert lag. Uber diesen lassen sich minimale
Eigenkollisionen ignorieren, die von der detektierten Verkabelung am Roboter ausgelost
werden.

1 min (Mgny N Mggon) < step(Mggon » ¥t
stop(Pxinect: Pt) = ssv-D' so (Migorn ) (8.1)
0 :sonst
step(Megon » 1) := s | min(]|@} — (s 6,)|) (8.2)

Muss der Roboter anhalten, wartet er eine definierte Zeit ab, ob sich das Hindernis wie-
der entfernt und die Bewegung fortgesetzt werden kann. Im anderen Fall wird die Bewe-
gungsrichtung invertiert und der Roboter fahrt zu seiner Ausgangspose zuriick. Auch
diese Bewegung wird iiberwacht und bei Bedarf auf unbegrenzte Zeit angehalten. Ist
die Startpose erreicht, kann erneut mit der Auswahl einer alternativen Trajektorie begon-
nen werden. Dabei wird die Wahl so getroffen, dass die neue Bewegung moglichst viel
Abstand zur zuletzt blockierten Ausfithrung liegt, um die Wahrscheinlichkeit einer wie-
derholten Kollision zu minimieren. Dies kann aus der bekannten ortlichen Anordnung
der Zielpunkte abgeleitet werden.

Die Beispielanwendung wurde im Rahmen von Prasentationen mehrfach offentlich ge-
zeigt. Momentaufnahmen verschiedener Situationen sind in abgebildet. Der
Statusmonitor oberhalb der Tiir visualisiert in rot und griin das vorliegen einer rele-
vanten Kollision. Durch die erfolgreichen Experimente konnte gezeigt werden, dass eine
feingranulare, schritthaltende Uberwachung des Arbeitraumes mittelsmé')g—
lich ist, und dieser somit sehr effizient gemeinsam genutzt werden kann. Die Berech-
nungszeiten aller notigen Schritte lagen durchgehend unter den verfiigbaren 33 ms, die
zwischen zwei Sensoraufnahmen vergehen. Eine grofse Herausforderung bei der prak-
tischen Umsetzung bestand in der extrinsischen Kalibrierung der Kameras gegeniiber
dem Roboter. Liegt hier ein Fehler vor, schldgt die Subtraktion des Egomodells aus den
Kameradaten fehl, und der Roboter detektiert sich selbst als Hindernis.
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L = .

(a) Mensch aufserhalb des Arbeitsbereichs

= — =

(c) Mensch hinter der Ausfiihrung (d) Getrennte Arbeitsvolumen

Abb. 8.15.: Geteilter Arbeitsraum zur Autotiirenmontage. In allen vier Szenen bewegt
sich der Roboter auf die Tiir zu und bremst, falls der Mensch seine auszu-
fiihrende Trajektorie kreuzt. Bewegt sich der Mensch zeitlich gesehen hinter
dem Roboter, wird hingegen nicht angehalten.

8.6.2. Samplingbasiertes Planen

Auch wenn die Kollisionspriifung einzelner unabhéngiger Posen theoretisch nicht das
optimale Anwendungsszenario fiir darstellt, sollte dennoch gepriift wer-
den, wie gut sich ein samplingbasiertes Planungsverfahren damit umsetzen lasst. Als
Basis wurde hierfiir die herangezogen, die eine Vielzahl an unterschiedlichen
Planungsverfahren unter einer einheitlichen API zusammenfasst. Geplant werden die
sechs Freiheitsgrade eines Universal Robot 10 Armes mittels LBKPIECE1 (siehe
auch|Abschnitt 7.1.3). Die Evaluation erfolgte in zwei Szenarien: Im ersten Versuch (siehe
musste sich der Roboter durch eine statische Engstelle bewegen, im zweiten
Versuch (siehe in einer offenen Umgebung um ein dynamisches Hindernis
herum. In beiden Féllen war auch der Boden der Szene als Hindernis modelliert. Der
verwendete Arbeitsraum hatte eine Grofie von 3m x 3m x 2m die durch 2250 000 Voxel
mit 2 cm Kantenldnge dargestellt wurden.

Neben der generellen Zeitmessung sollte verglichen werden, ob eine Voxelkarte oder eine
Voxelliste als Reprasentation fiir das Robotermodell effizienter ist. Dieses bestand aus
zehn Segmenten, die insgesamt 36 504 Punkte enthielten, welche durchschnittlich knapp
4000 Voxel belegten.
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(a) Szenario mit Start und Zielkonfiguration ~ (b)[Swept-Volumen|der geplanten Trajektorie

Abb. 8.16.: Beispiel einer Trajektorienplanung durch einen engen Korridor. Die durch-
schnittliche Planungszeit liegt bei 2 Sekunden.

Abb. 8.17.: Planungsergebnisse in dynamischer Szene. Die Sdule bewegt sich von hinten
nach vorne am Roboter vorbei. Die durchschnittliche Planungszeit liegt bei
0,77 Sekunden.

Beide Szenarien wurden pro Reprasentationstyp 100 mal geplant. Die resultierenden Tra-
jektorien enthielten zwischen 5 und 137 Zwischenzustiande, wihrend die Glattung diese
auf eine Lange von 5 bis 45 reduzierte. Die Zeitmessungen der vier Tests, die sich in
finden, zeigen, dass trotz der geringen Voxelzahl des Robotermodells eine Vo-
xelkarte in diesem Szenario deutlich performanter als eine Voxelliste ist. Zum genaueren
Verstandnis schliisselt die Zeiten der verwendeten Kollisionstests detaillierter
auf. Hier ist ersichtlich, dass der Aufbau der Listen und nicht die eigentliche Kollisions-
priifung fiir den hohen Zeitaufwand verantwortlich ist. Bei den Voxelkarten hingegen ist
Rechenzeit dagegen nahezu gleichmiflig aufgeteilt.
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Der verwendete LBKPIECE1 Planer nutzt drei unterschiedliche Kollisionspriifungen, die
mittels implementiert wurden: Zunéchst sind im Lazy-Teil diskrete Posen
fiir den Aufbau des Planungsgraphen zu priifen (erste Spalte). Ist eine Losung gefunden,
wird diese abschnittsweise durch Einzelposen abgetastet, die wiederum auf Kollisions-
freiheit gepriift werden (dritte Spalte). Bei der finalen Glattung kommt dann ein
zum Einsatz (zweite Spalte), das optimierte Abschnitte reprasentiert. Hier be-
scheinigt die Zeitmessung die Vorteile des [Swept-Volumens| da damit im Schnitt auf 10
Posen im Pfad nur eine Kollisionspriifung kommt.

Die Ergebnisse zeigen, dass ein samplingbasierter Planungsansatz auf dynamischen Punkt-
wolkendaten mit der entwickelten Voxel-Kollisionspriifung in vertretbaren Berechnungs-
zeiten umsetzbar ist. Kann jedoch eine statische Umgebung vorausgesetzt werden, lassen

sich vergleichbare Planungsszenarien mit demselben Planer und einer BVH-Kollisionspriifung
bis zu 80 mal schneller 16sen (evaluiert mittels ROS Movelf).

S ] Laufzeit [ms] Evaluierte
zenarno 7] Median o Min Max Posen @
Mobiles Hindernis Voxelkarte N Voxelkarte
Planung 625,6 581,1 2874 119,4 1390.,9 711
Glattung 214,9 197,7 85,1 73,3 602,9 496
) 840,5 778,8 3725 1927 1993.8 1207
Mobiles Hindernis Voxelliste N Voxelkarte
Planung 2621,7 2806,8 919,8 1292,0 4444.,1 564
Glattung 3487,7 3323,2 1031,4 2387,6 5841,4 675
> 6109.,4 6130,0 1951,2 3679.6 10285,5 1239
Enge Passage Voxelkarte N Voxelkarte
Planung 2103,3 1761,5 14753  501,5 7843,2 2026
Glattung 293,1 289.0 133,3  138,8 837,8 772
! 2396,4 2050,5 1608,6  640,3 8681,0 2798
Enge Passage Voxelliste N Voxelkarte
Planung 9851,6 9285,6 4956.,6 1620,9 20026,1 1854
Glattung 6405,1 5961,0 2743,8 3011,1 14581,1 1073
> 16256,7 15246,6 7700,4 4632,0 346072 2927

Tab. 8.7.: Berechnungsdauer der samplingbasierten Planung eines Roboterarmes (gemit-
telt tiber jeweils 100 Durchldufe, Standardabweichung o).

8.6.3. Ablaufplanung von mehreren Robotern

In industriellen Roboterzellen teilen sich oft mehrere Roboter einen Arbeitsraum, in dem
sie gemeinsam ein Bauteil bearbeiten. Jeder Roboter fiihrt dabei mehrere, meist unabhéan-
gige Aktionen aus. Ab einer gewissen Anzahl von Bewegungen wird es fiir den Roboter-

SROS Movelt Planning Frameworkhttp://moveit.ros.org/
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& Laufzeit: Kollisionscheck / Pose [ms]

Datenstruktur Teil- Diskrete = Swept-  Swept-Volumen
des Roboters Operation Posen  Volumen aus Einzelposen
Einfiigen 0,415 0,180 0,457
Voxelkarte Koll. Priifung 0,489 0,123 0,511
> 0,904 0,303 0,968
Einfiigen 5,016 3,626 6,372
Voxelliste Koll. Priifung 0,081 0,027 0,220
b 5,097 3,653 6,592

Tab. 8.8.: Durchschnittliche Berechnungsdauer der Kollisionstests pro Pose bei der samp-
lingbasierten Planung (Zeiten incl. Voxelumwandlung).

programmierer jedoch schwierig, eine kollisionsfreie Abfolge aller Aktionen zu bestim-
men. Pausen innerhalb des Ablaufs verringern die Taktzeit der Produktion und sollten
vermieden werden. Dieses Problem der Ablaufplanung wird aktuell in CAD Program-
men durch die Trial-and-Error-Methode geldst, bei denen die Roboterbewegungen mit
klassischen Kollisionspriifungsverfahren langwierig evaluiert werden. Treten Kollisio-
nen auf, wird die Reihenfolge der Bewegungen durch menschliches Expertenwissen so
lange verandert, bis die Ausfiihrung sicher ist.

Um das Problem automatisch zu optimieren, muss das Kreuzprodukt aller Bewegun-
gen auf Kollisionen tiberpriift werden. Dies kann durch den Einsatz von
aus Bitvektor-Voxeln sehr effizient per GPU-Kollisionspriifung erreicht werden. Ist
in den IDs der Sweeps die Zeit codiert, lasst sich mit dem Bitvektor-Voxel Schnitt aus
IAbschnitt 6.2.1] feststellen, welche Aktionen in Kollision liegen. Voraussetzung ist, dass
die Aufgaben unabhidngig voneinander sind und somit in einer beliebigen Reihenfolge
ausfiihrbar sind. Weiterhin miissen alle Einzelbewegungen zu Beginn diskreter, gleich
langer Zeitfenster starten, deren Dauer sich nach der lingsten Bewegung richtet. Um die
Rechenzeit zu verkiirzen und die Auflosung zu maximieren, sollten alle n, beteiligten
Roboter etwa gleich viele Einzelbewegungen n,, aufweisen, die dhnlich lange dauern.
Dann werden insgesamt n,.-n,, Voxellisten erstellt, die in einem rekursiven Backtracking-
Verfahren (siehe [Algorithmus 9|in Appendix gegeneinander auf Kollisionen
gepriift werden. Da dabei hédufig dieselben Bewegungen miteinander geschnitten wer-
den, wurde ein Zwischenspeicher implementiert, der zu jedem Bewegungspaar das Er-
gebnis ihrer Kollisionspriifung vorhilt. So ist in vielen Féllen nur ein Nachschlagen not-
wendig.

Das Ergebnis sind n, Listen mit je n,,, Eintrdgen, die pro Roboter die validen Bewegungs-
IDs in ihrer auszufiihrenden Reihenfolge enthalten. Ist keine kollisionsfreie Abfolge mog-
lich, so schldgt das Backtracking fehl. In diesem Fall kann der Nutzer jedem Roboter eine
Pausenbewegung hinzuftigen und den Algorithmus erneut starten.

Fiir eine Laufzeitmessung wurde ein Beispiel mit unterschiedlichen Robotern herange-
zogen, deren Trajektorien sich regelméfiig kreuzen (siehe [Abb. 8.18). Der Speicherver-
brauch des Ablaufplaners steigt linear mit der Anzahl der Roboter und deren Anzahl an
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Bewegungen (O(n, - ny,)). Bei der Berechnungsdauer muss zwischen zwei Ergebnissen
unterschieden werden: Die Dauer zur Ermittlung aller moglichen Losungen wichst ex-
ponentiell mit beiden Parametern (O((n,!)"")). Beachtenswert ist hingegen, dass die Zeit
tiir die Berechnung einer ersten validen Losung im Schnitt lediglich linear mit der Anzahl
der Roboter und deren Bewegungen steigt. Da im Allgemeinen eine Losung ausreichend
ist, ist dies die relevantere Aussage. Prinzipbedingt schwankt die genaue Laufzeit mit
der Sortierung der Eingabedaten, da sie die Rechenzeit des Backtrackings beeinflusst.
Dies spiegelt sich auch in den Ergebnissen aus wieder, die einen Ausschnitt aus
den ermittelten Messungen auflistet. Im realistischen Szenario mit vier Robotern und je
vier Bewegungen konnte aus 331 776 Kombinationen eine kollisionsfreie Reihenfolge al-
ler 16 Aktionen im Schnitt in nur 1,52 s gefunden werden.

Abb. 8.18.: Beispieltrajektorien fiir das Scheduling von Roboterbewegungen (Links und
Mitte). Kombination im geteilten Arbeitsraum (Rechts).

Konfiguration @ Laufzeit [s]

# Roboter # Bewegungen Initialisierung Erstes Ergebnis Alle Ergebnisse
6 4 2,170 2,481 80,661
5 4 1,893 2,250 10,524
4 4 1,672 1,520 5,211
3 4 1,458 0,763 2,880
2 4 1,310 0,324 1,243
1 4 1,186 0,001 0,001
3 2 0,877 0,398 0,715
3 3 1,202 0,572 1,547
3 4 1,450 0,765 2,864
3 5 1,779 0,974 6,058
3 6 2,192 1,156 180,629

Tab. 8.9.: Unterschiedliche Kombinationen aus Roboteranzahl bzw. Bewegungsanzahl
und ihr Finfluss auf die Berechnungsdauer des Backtracking-Verfahrens. Ergeb-
nisse gemittelt tiber 10 Durchlédufe.

8.7. Experimente mit mobilen Robotern

Im Folgenden sollen Planungsaufgaben im Raum betrachtet werden, die kollisi-
onsfreie Bewegungspfade fiir mobile Plattformen erzeugen. Die komplexe Geometrie,
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8.7. Experimente mit mobilen Robotern

der in den Beispielen verwendeten Roboter HoLLiE und IMMDP, erfordert dabei eine drei-
dimensionale Kollisionserkennung.

8.7.1. Demonstrationssysteme

Da besonders in der Robotik die theoretische Evaluation von Algorithmen mittels Simu-
lationen erfahrungsgemaf weit von den Ergebnissen mit physischen Systemen abweicht,
wurden im Rahmen dieser Arbeit mehrere mobile Robotersysteme entwickelt. Sie dienen
als Test- und Demonstrationsplattformen fiir viele praxisnahe Versuche, unter anderem
mit[GPU-Voxels| Ihre wichtigsten Eigenschaften sollen daher hier in aller Kiirze beschrie-
ben werden.

Die Gemeinsamkeit der konstruierten Systeme liegt in ihrem kinematischen Aufbau, der
eine hohe Anzahl an beweglichen Freiheitsgraden aufweist und der den Robotern ei-
ne sehr wandelbare Geometrie verleiht. Aus diesem Grund lassen sich bei einer Bewe-
gungsplanung keine validen Approximationen der Geometrien durch 2D Projektionen
umsetzen, was einen der praktischen Beweggriinde fiir diese Arbeit darstellt.

(a) Adero (b) HoLLiE (c) IMMP

Abb. 8.19.: Demonstratorsysteme, deren Entwicklung der Autor im Laufe der Disserta-
tion leitete: Anthropomorphe mobile Manipulationsplattform Adero, House
of Living Labs intelligent Escort (HoLLiE), Industrielle Mobile Manipulations
Plattform (IMMP)

Adero - Advanced Dexterous Robot

Zur Untersuchung zweihdndiger Manipulationsaufgaben im Rahmen der Projekte DE-
SIRE [176] und Dexmart [15] standen am Forschungszentrum Informatik (FZI) zwei KU-
KA Leichtbauroboterarme zur Verfiigung. Um diese nicht nur stationdr, sondern auch
fiir mobile Manipulationsaufgaben nutzen zu konnen, wurde eine erste mobile Plattform
entwickelt, die diese Arme tragen konnte. Grundlage bildete die Antriebsmechanik eines
Roboters des Instituts fiir Anthropomatik (IFA) von Professor Dillmann, die mit moder-
nen Motorreglern, zwei Computern und vielfdltiger Sensorik ausgestattet wurde. Der
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Aufbau des Systems fand ab 2010 statt, genutzt wurde der Roboter bis 2012. Heraus-
ragendes Merkmal von Adero war eine passive Achse im Oberkorper, mit welcher der
Arbeitsraum der Arme von Tischhohe auf die Bodenebene gebracht werden konnte. Die
Konstruktion des Roboters war so ausgelegt, dass der Schwerpunkt der Plattform eine
statische Stabilitdt auch bei ausgestreckten Armen garantierte [10]. Trotz ausreichend di-
mensionierter Akkumulatoren zur Stromversorgung war jedoch kein kabelloser Betrieb
des Roboters moglich, da die industriell ausgelegten Steuerungseinheiten der Leichtbau-
arme zu grofd waren, um auf einem mobilen Roboter untergebracht werden zu kénnen.

Softwareseitig konnte mit Adero das vorhandene Greifplanungssystem von Xue [204] mit
einer mobilen Komponente erweitert werden, um unterschiedliche Umweltmodellierun-
gen (teilweise basierend auf Graphendatenbanken) und Objekterkennungsverfahren zu
evaluieren.

HoLLiE - House of Living Labs intelligent Escort

Um {iber ein wirklich kabelloses und somit mobiles System zu verfiigen, wurde 2011
der Roboter HoLLiE ins Leben gerufen [9]. Seine Entwicklung verfolgte zwei mafigebli-
che Strategien: Da eine hohere Verlasslichkeit und eine beschleunigte Entwicklung hohe
Prioritdt hatten, sollten beim Aufbau zum grofitmoglichen Anteil industrielle Kompo-
nenten Verwendung finden. Des weiteren sollte HOLLiE in der Lage sein, bestmoglich in
menschlichen Umgebungen arbeiten und fiir Menschen gemachte Gegenstiande hand-
haben zu koénnen. Entsprechend wurde die Grofle des Roboters auf rollstuhlgerechte
Umgebungen abgestimmt und seine Kinematik so gestaltet, dass er Gegenstidnde vom
Boden aufnehmen kann. Das Erscheinungsbild des Roboters wurde in Zusammenarbeit
mit einem Industriedesigner entwickelt und in grofien Teilen im SLS 3D-Druck gefertigt.
Es wirkt durch seine leicht humanoiden Ziige zwar freundlich, bleibt dabei jedoch sehr
weit von einem Uncanny Valley Effekt [147] entfernt. Eine flexible Stofffront erlaubt die
Bewegung des Oberkorpers ohne sichtbare Scharniere.

Geplant und umgesetzt wurde eine innovative Parallelogrammechanik zum Last- / Mo-
mentenausgleich im Korper des Roboters [31]. Diese nimmt die Torsionsmomente, die im
Korper durch ein Ausstrecken der Arme entstehen konnen, auf, so dass sie nicht auf den
Antriebseinheiten lasten, sondern in die Basis des Roboters abgeleitet werden. AufSerdem
hélt sie die Schulter- und Hals-Aktuatoren stets waagerecht. Eine verwindungssteife Ver-
bindung zwischen Kopf und Armen stellt eine konstante Hand-Augen-Kalibrierung si-
cher. Die Basiskomponenten bilden eine omnidirektional verfahrbare Segway Plattform,
zwei SCHUNK LWR 6-Achs Roboterarme, zwei SCHUNK Antriebsmodule zur Korper-
bewegung sowie ein SCHUNK Zwei-Achs-Antriebsmodul im Hals. Als Hande konnen
sowohl DLR-HIT 4-Finger-Héande als auch SCHUNK SVH 5-Finger-Hande angebracht
werden. Neben der selbst entwickelten Sicherheits- und Energiemanagementelektronik
verfligt HoLLiE tiber ein RGB-LED-Band, das die mobile Basis umgibt und fiir die intui-
tive Visualisierung unterschiedlicher Informationen (bspw. beabsichtigter Bewegungs-
richtung oder detektierte Hindernisse) genutzt wird. Die Basis enthélt auflerdem zwei
Computer, Laserscanner und Akkus, wiahrend im Korper Netzwerktechnik, Lautspre-
cher und Verstarker untergebracht sind.
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Zur zielgerichteten Bewegung des Roboters wurden in der Masterarbeit von Rusche-
weyh [30] unterschiedliche Ansidtze zur Berechnung einer inversen Ganzkorperkinema-
tik unter Nutzung von Nullrdumen und unterschiedlichen Gewichtungsfaktoren der ki-
nematischen Teilketten implementiert.

HoLLiE absolvierte tiber die Jahre viele medienwirksame Auftritte, teilweise auch vor
grofem Messepublikum. Im Rahmen der Entwicklung diente der Roboter
mehrfach als Testplattform. In diesen Féllen wurde HoLLiE jedoch kabelgebunden ver-
wendet, da die Bordcomputer nicht iiber eine GPU verfiigen, und alle Daten daher auf
einem externen PC verarbeitet werden mussten.

IMMP - Industrial Mobile Manipulation Plattform

Zum Auftakt des Projektes ISABEL konnte eine weitere mobile Plattform angeschafft
werden, um die Arme von Adero aufzunehmen: Ein holonomer KUKA omniRob. Die-
se Plattform verfiigt tiber eine aufierordentlich solide, mechatronische Basis und sollte
daher fiir industrienahe Aufgaben eingesetzt werden. Zusatzliche Umbauten ermoglich-
ten den mobilen Betrieb der leistungsstarken Nvidia Titan GPU an Bord des Roboters.
Die GPU dient der Sensordatenverarbeitung von insgesamt acht Kinect-Kameras mittels
die dem Roboter eine 3D Rundumsicht ermdglichen.

Trotz mehrjdhriger Anstrengungen und einer intensiven Kooperation mit dem Herstel-
ler wurde leider keine passende Moglichkeit gefunden, die Plattform {iber eine externe,
hochfrequente Regelung anzusteuern. Somit konnte der Roboter wahrend der Dissertati-
on nur zur Datenaufnahme genutzt werden (siehe[Abb. 8.20), nicht aber fiir eine reaktive
Bewegungsplanung, wie sie in[Unterabschnitt 7.2.3 entwickelt wurde.

Abb. 8.20.: Tests im Rahmens des ISABEL-Projektes im Reinraum bei Infineon Regens-
burg zur Demonstration eines geteilten Arbeitsraumes mit einem mobilen Ro-
boter. Rechts: Erstellte Voxelkarten zur Kollisionsvermeidung.

8.7.2. Planung mit Rotations-Swept-Volumen

Die Verfahren aus [Unterabschnitt 7.2.2| zeigen, wie mit Rotations{Swept-Volu-men| effi-
zient kollisionsfreie Bewegungen einer mobilen Plattform auf einem Planungsgitter ge-
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neriert werden konnen. Um die Praxistauglichkeit des Verfahrens bewerten zu kénnen,
wurden Versuche mit unterschiedlichen Robotern durchgefiihrt.

(a) Szanerio 1: Roboter muss durch enge Passa- (b) Szenario 2: Planung einer langeren Strecke

ge hinter die Tische. Rotationen sind durch im freien Raum. Der Planer generiert eine
Box auf Tisch eingeschrankt, weshalb eine sehr glatte Trajektorie.

Drehung vor der Passage eingeplant wer-

den muss.

(c) Szanerio 3: Planung auf Sensordaten einer (d) Ergebnis der RRT-Connect Planung auf
engen Passage, die die Rotationsmoglich- Szenario 2 (oben) als Vergleich.
keiten stark einschrankt.

Abb. 8.21.: Ergebnisse des implementierten Plattformplaners auf drei Testszenarien und
das Ergebnis einer RRT-Connect Planung zum Vergleich. Veroffentlicht in [3]].

Zunichst soll der Einfluss der Voxel, bzw. Zellengrofle auf die Planungsgeschwindig-
keit ermittelt werden, wofiir Voxel mit Kantenldngen von 1cm, 2cm, 4cm und 8 cm und
Zellen mit 4 cm und 8 cm betrachtet werden. Da bei der Planung eine hierarchische Kol-
lisionspriifung eingesetzt wird (siehe [Unterabschnitt 5.3.2), ermoglichen diese Voxelgro-
en das einfache Umrechnen zwischen den unterschiedlichen Auflosungen. Weiterhin
kommt die Translation mittels Basisversatz aus |Unterabschnitt 5.3.1| zum Einsatz, wobei
die Voxelliste des Egomodells gegeniiber der Umweltkarte verschoben wird. Die ersten
Tests verdeutlichen den Zusammenhang zwischen Voxel-, bzw. Zellengrofie und der Pla-
nungszeit.
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Im ersten Testszenario muss der mobile Roboter seinen Weg durch zwei Tische finden,
wiéhrend die Armpose nicht verdndert werden kann. Ein zuséitzliches Hindernis auf ei-
nem der Tische schrankt die moglichen Rotationswinkel weiter ein. Die Resultate in
zeigen, wie sowohl die Planungszeit, als auch die Zeit der Kollisionspriifung
bei kleinerer Diskretisierung ansteigt, wobei die Pfadkosten anndhernd gleich bleiben.
Die Kosten setzen sich dabei aus der zuriickzulegenden euklidischen Distanz, als auch
den Rotationskosten zusammen.

Diskretisierung Laufzeit [s]
Zellgrofie Kantenlinge Kollisions- Pfad- Kollisions-  Pfad-
[m] Voxel [m] checks kosten checks planung
0,04 0,01 2651 2,472 9,73 3,621
0,04 0,02 2634 1,114 5,77 2,241
0,04 0,04 2670 0,546 5,95 1,692
0,08 0,01 745 0,608 6,17 0,787
0,08 0,02 720 0,292 5,86 0,471
0,08 0,04 757 0,139 5,99 0,322

Tab. 8.10.: Resultate der Planung mit Rotationsprimitiven im ersten Testszenario (vgl.

[XBE 5213

Im zweiten Szenario muss ein etwas langerer Pfad gefunden werden, wobei ein hoherer
Anteil an freiem Raum durchfahren wird. Hierbei zeigen sich die Vorteile der Kollisions-
priifung auf unterschiedlich aufgeldsten Voxelkarten, wie an den Ergebnissen in
abzulesen ist: Trotz einer grofseren Anzahl an Priifungen ist die Laufzeit kiirzer, da viele
Checks im Freiraum stattfinden, und somit nur auf der niedrig aufgelosten Karte durch-
gefiihrt werden.

Diskretisierung Laufzeit [s]
Zellgrole Kantenlinge Kollisions- Pfad- Kollisions-  Pfad-
[m] Voxel [m] checks kosten checks planung
0,04 0,01 3412 2,464 7,54 4,393
0,04 0,02 3417 1,060 7,55 3,007
0,04 0,04 3412 0,414 7,60 2,331
0,08 0,01 943 0,628 7,55 0,859
0,08 0,02 1009 0,299 7,56 0,560
0,08 0,04 1214 0,107 7,70 0,411

Tab. 8.11.: Resultate der Planung mit Rotationsprimitiven im zweiten Testszenario (vgl.

Abb. 5.216).

Das dritte Szenario nutzt eine Punktwolke, die mit einem rotierenden Laserscanner im
Labor des FZI erstellt wurde. Da der Roboter auch hier eine enge Passage traversieren
muss, konnte der Planer bei einer Auflosung von 0,08 m des Planungsgitters keinen giil-
tigen Pfad finden. Erwartungsgemafs unterscheiden sich die Planungszeiten nicht von
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den Szenarien mit synthetischen Daten, wie[lab. 8.12|belegt.

Diskretisierung Laufzeit [s]
Zellgrole Kantenlinge Kollisions- Pfad- Kollisions-  Pfad-
[m] Voxel [m] checks kosten checks planung
0,04 0,01 1233 3,71 1,108 1,688
0,04 0,02 1208 3,72 0,414 1,011
0,04 0,04 1078 3,69 0,161 0,679

Tab. 8.12.: Resultate der Planung mit Rotationsprimitiven im dritten Testszenario auf rea-

len Sensordaten (vgl.{Abb. 8.21c).

Diese Evaluation zeigt, dass auch in verwinkelten Szenarien innerhalb weniger Sekun-
den valide und sogar glatte Trajektorien geplant werden konnen. Es ist hervorzuheben,
dass die gezeigten Testfélle nicht mit einem 2D oder 2,5D Kollisionserkennungsverfah-
ren losbar sind, da sich die Arme des Roboters teilweise iiber den Hindernissen befinden
miissen, oder die Plattform unter ihnen.

Mehrstufige Kollsionspriifung in der Planung

Da die Listen, welche die Rotationsvolumen beinhalten, statisch sind, lassen sich diese
in unterschiedlichen Auflosungen vorberechnen und fiir eine mehrstufige Kollisionsprii-
fung nutzen. Damit kann ein merklicher Laufzeitvorteil in der Planung erzielt werden.
Folgende Formel beschreibt den Laufzeitvorteil (Speedup) gegeniiber dem ausschliefdlich
hochauflosenden Kollisionscheck:

tfein * nExpand

Speedup = (8.3)

Lfein * Mifein + T Expand * tgrob

Dabei beziffert ngypana die Anzahl der Expansionsschritte im Graphen wéhrend des Pla-
nungsprozesses, tei, die Laufzeit der hochauflosenden Kollisionspriifungen, die mein
mal stattfinden und ¢, die Laufzeit einer niedrig auflosenden Kollisionspriifung.

Nimmt man die Laufzeiten aus als Ausgangspunkt, ergibt sich wiederum
der Speedup aus|Iab. 8.13|fiir die Bewegungsplanung.

Somit ist ersichtlich, dass eine Kombination mit moglichst unterschiedlichen Voxelgro-
Ben den besten Laufzeitgewinn bewirkt. Grobere Auflosungen als 4cm wurden nicht
betrachtet, da bei diesen zu viele Kollisionen im ersten Priifungsschritt detektiert wer-
den.

Zusammengefasst kann festgestellt werden, dass eine Voxelgrofie von 4 cm fiir die Pla-
nung von Plattformtrajektorien ausreichend ist. Durch den hierarchischen Ansatz ist
dennoch sichergestellt, dass auch in engen Passagen keine Losungen iibersehen werden.
Kleinere Auflosungen fithren erwartungsgemafs zu einem starken Anstieg des Aufwands
fiir die Kollisionspriifung und somit zu langeren Planungszeiten. Weiterhin erwies sich
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Feine Grobe Expandierungs- Anzahl feine
Voxelgrofie Voxelgrofse schritte Kollisionschecks Speedup
[m] [m] M Expand Mfein
0,01 0,02 839 413 1,149
0,01 0,04 839 434 1,547
0,02 0,04 863 432 1,188

Tab. 8.13.: Laufzeitgewinn durch unterschiedliche Auflésungskombinationen der hierar-
chischen Kollisionspriifung.

bei der Lange der mobilen Plattform von etwas tiber einem Meter ein Abstand im Pla-
nungsgitter von 8 cm in Biiroumgebungen als ausreichend. In verwinkelten Szenarien,
wie z.B. einer Reinraum-Produktionsumgebung (vgl. sollte diese auf 4 cm re-
duziert werden.
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Vergleich mit RRT-Connect Planer

Als Vergleich zum hier vorgestellten Fahrtplanungsverfahren soll die RRT-Connect-Im-
plementierung der herangezogen werden. Fiir die Kollisionspriifung kommt je-
doch aus praktischen Griinden nicht das hierarchische Verfahren mit der Translation
durch Basisversatz zum Einsatz, sondern ein weit weniger performantes Verfahren, bei
dem die Punktwolke des Roboters bei jeder Bewegung neu in eine Voxelkarte eingetra-
gen wird. Um dennoch einen direkten Vergleich ziehen zu konnen, wird hier lediglich die
Anzahl der auszufithrenden Kollisionspriifungen berticksichtigt und nicht deren Lauf-
zeit.

Ein Vergleich der Laufzeit mit einer Mesh-basierten Kollisionspriifung wurde dennoch
durchgefiihrt, indem die Anzahl der Priiffungen mit den durchschnittlichen Laufzeiten
einer vergleichbar komplexen Kollisionspriifung multipliziert werden. Dafiir wurde mit
einem Messwert von 0,24 s gerechnet, den die weit verbreiteten FCL Bibliothek laut
fiir 1000 Kollisionspriifungen benétigt (dies deckt sich auch mit eigenen Test).

Die Kollisionspriifung beider Planer fand auf 4 cm Voxeln statt. In Szenario 1 und 2 wur-
den 8cm Gitterabstand genutzt, in Szenario 3 hingegen 4 cm. Die Parametrierung des
RRT-Connect wurde zuvor empirisch optimiert.

4000 - Kollisionspriifungen Planungszeit | | 1.4
el a | DRRT-Connect IIRRT-Connect
o Eigener Planer In Eigener Planer | | 1.2
o
o]
% 3,000 | oz
: . 3
‘g i N
g, 0.8 2
§ 2,000 |- 5
2 106 g
— R~y
o)
N —10.4
1,000 |
-10.2
0 0
1 2 3
Szenario

Abb. 8.23.: Vergleich des Plattform Planers dieser Arbeit mit RRT-Connect aus der OMPL
Bibliothek.

Das Diagramm in zeigt, dass bei dem selbst entwickelten Plattformplaner die
Planungszeit weniger von der Komplexitdt des Szenarios abhégt, als bei RRT-Connect. So
ist die eigene Implementierung im ersten, kurvigeren Szenario wesentlich schneller, wo-
hingegen im dritten Szenario der RRT-Connect bei einer kiirzeren euklidischen Distanz
effizienter ist. Dieses Ergebnis ist exemplarisch und deckt sich mit weiteren durchgefiihr-
ten Versuchen. Weiterhin wird die Kollisionspriifung durch den eigenen Planer erheblich
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seltener aufgerufen. Dabei ist jedoch zu berticksichtigen, dass ein einzelner Aufruf alle
Rotationen simultan evaluiert, was bei den Samples der RRT-Connect nicht der Fall ist.

Bei der Beurteilung eines Planers sollte jedoch neben der Berechnungsdauer auch die
Pfadldnge und die Glattheit der entstehenden Losungen beurteilt werden. So fillt bei
der Betrachtung von|Abb. 8.21bfund |Abb. 8.21d| auf, wie glatt die Pfade des implemen-
tierten Planers ohne weitere Nachbearbeitungsschritte ausfallen. Der samplingbasierte
RRT-Connect generiert im freien Raum dagegen mehrere unnétige Knicke, die den Pfad
zusitzlich verlangern.

Weiterverwendung von Teilpldnen

Durch die Verwendung eines D*-Lite Planers ist es moglich, Teilplane bzw. Graphenkno-
ten weiter zu verwenden, auch wenn geénderte Umweltdaten eine Anderung der Trajek-
torie verlangen. Um diesen Vorteil bestmoglich zu nutzen, expandiert der Algorithmus
auch nach dem Finden eines Plans weiterhin systematisch Graphenknoten. Da der gefun-
dene Plan wihrenddessen bereits ausgefiihrt werden kann, erzeugt dies keine Laufzeit-
nachteile. Im Falle einer Neuplanung stehen so jedoch bereits umfangreichere, nutzbare
Informationen fiir die Graphensuche zur Verfiigung.

Zwei exemplarische Versuche, in denen dynamische Hindernisse einen Plan unausfiihr-
bar machen, sind in gezeigt. Ein Vergleich der Adaptions- bzw. Neuplanungs-
zeiten mit neuen Umweltinformationen ist in zu sehen. Dabei zeigt sich, dass
die erreichbaren Zeiteinsparungen erwartungsgemdfs mit der Lange des neuen Pfades
steigen, auch wenn viele Graphenknoten aktualisiert werden miissen (rote Punkte in den
Grafiken).

Laufzeit [s]

Szenario Kollisionspriifung Planung
Szenario 4: Neuplanung 0,304 0,605
Szenario 4: Weiterverwendung 0,299 0,567
Szenario 5: Neuplanung 0,763 1,511
Szenario 5: Weiterverwendung 0,362 0,947

Tab. 8.14.: Laufzeitgewinn durch Weiterverwendung von Graphenknoten bei der Pla-
nung mit gednderten Umweltinformationen.

Nach diesen Versuchen in einer ROS-basierten Simulation wurde der Planer auch erfolg-
reich in einer realen Umgebung mit dem Roboter HoLLiE getestet. Ausschnitte aus zwei
Versuchen sind in[Abb. 8.22]zu sehen. Im ersten Szenario blockierte eine Person mehrfach
den geplanten Pfad des mobilen Roboters, der um ein statisches Hindernis herum fiihrte,
so das dynamisch neue Losungen generiert werden mussten. Da dies in weniger als einer
Sekunde moglich war, konnte der Roboter iibergangslos zwischen den Trajektorien um-
schalten, ohne dabei komplett zum Halten zu kommen. Dies funktionierte auch im zwei-
ten, wesentlich engeren Szenario. Hier fiihrte der urspriinglich geplante Pfad den Robo-
ter vorwarts gerichtet durch einen engen Korridor. Wahrend der Ausfithrung wurde der
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©

N,

(a) Szenario 4: Urspriinglich geplante Trajek-  (b) Neuer Pfad mit Ausweichbewegung.
torie. Dynamisches Hindernis wird gerade
wahrgenommen.

(c) Szenario 5: Urspriinglich geplante Trajek- (d) Neuer Pfad rechts an allen Hindernissen

torie links am statischen Hindernis vor- vorbei. Das Beispiel zeigt auch die Fahig-
bei. Zwei dynamsiche Hindernisse rechts keit des Planers, riickwérts gerichtete Be-
sind bereits bekannt, dynamisches Hinder- =~ wegungen zu planen, wenn keine Alterna-
nis links wird neu wahrgenommen. tiven bestehen.

Abb. 8.24.: Weiterverwendung von Teilpldnen, nachdem neue Hindernisse erkannt wur-
den. Rote Punkte markieren inkonsistente Graphenknoten, deren kiirzester
Pfad zum Ziel ungiiltig wurde. Veroffentlicht in [3].

185



8. Experimentelle Evaluation

Korridor durch ein zusatzliches Hindernis auf Hohe des Ellenbogens versperrt. Der ad-
aptierte Pfad beinhaltete daraufhin eine 90 Grad Drehung, mittels der der Roboter dann
quer zur Fahrtrichtung die neue Hindernissituation passieren konnte. Das Umweltmo-
dell stammte in beiden Versuchen ausschliefllich aus Punktwolkendaten aus der im Kopf
von HoLLiE montierten Kinect-Kamera. Da der Roter tiber keine GPU verfiigt, wurden
die Berechnungen auf einem externen Planungscomputer durchgefiihrt, der die Umwelt-
und Lokalisierungsdaten tiber eine Netzwerkverbindung erhielt. Berechnete Plane wur-
den dann wiederum an eine ROS-Komponente auf dem Roboter gesendet, welche zum
passenden Zeitpunkt zwischen altem und neuem Plan wechselte.

Zusammenfassung

Die dargestellten Ergebnisse bestitigen die Laufzeiteinsparungen durch die Verwendung
von [Swept-Volumen|aus Bitvektor-Voxeln. Das verwendete Planungsverfahren mit Rota-
tionsprimitiven ist ein optimaler Anwendungsfall, nicht nur fiir kumulative Kollisions-
priifungen, sondern auch fiir die versatzbasierte Kollisionspriifung zwischen Voxellisten
und Voxelkarten. Diese konnte durch hierarchische Priifung mit unterschiedlichen Auf-
losungen noch weiter beschleunigt werden.

Durch den D*-Lite Suchalgorithmus kénnen Teilplane weiterverwendet werden, womit
sich das Verfahren auch gut fiir dynamische Umgebungen eignet. Da bei der Planung
alle drei Dimensionen des Konfigurationsraums beriicksichtigt werden, erzeugt das Ver-
fahren glatte Trajektorien fiir holonome Plattformen, wihrend dennoch intuitive Fahrbe-
wegungen mit Vorzugsrichtung praferiert werden. Als Erweiterung wurde bereits in[Ab-]
gezeigt, wie sich mit Hilfe von Swept-Volumen des Manipulatorarmes auch
erfolgversprechende Plattformposen fiir mobile Manipulationsaufgaben bestimmen las-
sen.

Die Ergebnisse dieses Abschnittes wurden in [3] veroffentlicht.

8.7.3. Planung mit generischen Bewegungsprimitiven

Bevor die Planung mittels Bewegungsprimitiven, wie sie in [Unterabschnitt 7.2.3| entwi-
ckelt wurde, in einem realen Szenario evaluiert werden konnte, mussten umfangreiche
Tests in der Simulation durchgefiihrt werden. Gepriift und optimiert wurden hierbei ei-
nerseits die eingesetzten Primitive, so dass am Ende auch lange Pfade in verschachtelten
Umgebungen in wenigen Sekunden erzeugt werden konnten. Zum anderen aber auch
der rechtzeitige Wechsel zwischen Pfaden, der ein mehrstufiges Protokoll erfordert. Hier-
fiir wurde ein einarmiges Modell der IMMP Plattform verwendet, das mit vier virtuel-
len Tiefenkameras ausgestattet war. Deren Punktwolken wurden anhand der simulierten
Kameraperspektive aus einem gegebenen 2,5D Modell der Umwelt berechnet (siehe

schnitE 4.7).

Momentaufnahmen aus zwei Simulationsdurchldufen finden sich in In bei-
den Szenarien musste der Roboter durch eine, vorerst unbekannte, Umwelt navigieren
und dabei die geplanten Trajektorien mehrfach aufgrund neu detektierter Hindernis-
se anpassen. Planungszeiten des zweiten Szenarios sind in angegeben. Dabei
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8.7. Experimente mit mobilen Robotern

spiegelt jede Zeile eine neue Trajektorie wider, wobei sich die Dauer der Planung aus
mehreren Komponenten zusammensetzt: Angegeben sind die durchgefiihrten Expan-
dierungen des Suchgraphen, fiir die jeweils die Voxelliste eines kompletten Fachers aus
Bewegungsprimitiven durch eine Kollisionspriifung mit der Umwelt zu evaluieren ist.
Die verbleibende Zeit ist hauptsdchlich dem Aufbau einer neuen Voxelliste zur Ausfiih-
rungsiiberwachung aus allen verwendeten Primitiven geschuldet. Deren kontinuierliche
Kollisionspriifung ist wiederum in aufgeschliisselt. Angegeben sind hier die
ausgefiihrten Priifungen pro Abschnitt, die multipliziert mit den Segmenten die Anzahl
der iiberwachten Primitive ergeben. Hier zeigt sich, dass die Ausfithrung im Median mit
33 Hz auf neue Hindernisse hin tiberwacht werden kann, was sogar iiber der Kinect-
Bildrate liegt.

Setzt man die gemessenen Zeiten mit der durchschnittlichen Bewegungsgeschwindigkeit
von 0,7m/s des Roboters in Relation wird klar, dass die Planung im Normalfall schnell
genug ablduft, um statischen Hindernissen im Fahrtkorridor ausweichen zu kénnen, oh-
ne dabei anhalten zu miissen: Da die Sichtweite der Kinect mindestens 4 Meter betragt,
und die Latenz der Datenverarbeitung vernachlédssigbar ist (ca. 60 ms), ergibt sich bis zu
einer Kollision eine verbleibende Fahrtdauer von ca. 7,7 Sekunden. In realistischen Sze-
narien werden dagegen bereits in unter 3 Sekunden alternative Trajektorien berechnet,
was ausreichend Zeit fiir einen Wechsel in der Ausfiihrung lasst. Selbstverstandlich gilt
diese Annahme nicht, wenn bei einer Kurvenfahrt neue Hindernisse direkt hinter einer
Ecke erkannt werden. In diesem Fall muss der Roboter gestoppt werden und kann erst
nach der Planung weiterfahren.
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8.7. Experimente mit mobilen Robotern

Ab- Linge Planung  Expandierung Dauer pro Priifung [ms]
schnitt [Primitive] [s] Dauer [ms] Schritte @& Median Min Max
1 4 2,220 8,63 3 2,86 2,36 228 3,95
2 8 11,663 9727,53 101 96,30 9,50 2,22 732,58
3 3 2,119 27,09 3 899 7,59 220 17,18

4 7 2,160 42,47 7 6,06 2,86 2,20 25,1

Tab. 8.15.: Berechnungsdauer der Planung mittels Bewegungsprimitiven in unbekannter
Umgebung aus Pro Schritt in der Expandierung wird ein vollstin-
diger Bewegungsfacher auf Kollision gepriift.

Ab-  Kollisions- Evaluierte Dauer pro Priifung [ms]
schnitt priifungen Primitive %] Median Min Max
1 88 352 182,43 9,63 2,21 704,76
2 150 1200 250,91 29,55 2,54 786,85
3 74 222 214,71 16,18 2,18 743,85
4 190 1330 254,78 25,79 2,38 779,71

Tab. 8.16.: Ausfithrungsiiberwachung der geplanten Trajektorienabschnitte aus

Nach den erfolgreichen Tests in der Simulation wurde das Verfahren auch mit HoLLiE
in realen Szenarien erfolgreich demonstriert (siehe[Abb. 8.26). Der Roboter musste dabei
sowohl um statische, als auch um dynamische Hindernisse navigieren, wobei seine ein-
zigen Datenquellen die Kinect im Kopf, sowie die Radodometrie waren. Auch bei diesen
Versuchen in der Laborumgebung des FZI betrug die Geschwindigkeit ca. 0,7 m/s. Wie
bei der Planung mit Rotations{Swept-Volu-men| mussten die Berechnungen auf einem
externen Computer durchgefiihrt werden.

Die Ergebnisse erfiillen alle Erwartungen und belegen die Vorteile der kontinuierlichen
Trajektorientiberwachung mittels |[Swept-Volumen| Traten in der Umgebung neue Hin-
dernisse in einem Abstand von mindestens einem Meter vor dem Roboter auf, war kein
Anhalten der Plattform notig, um auszuweichen, da alternative Pfade schnell genug ge-
plant werden konnten. Andere Hindernisse, auch in direkter Ndhe zum Roboter, 16sten
hingegen keine Neuplanung aus, so lange sie aufSerhalb des zu durchquerenden Volu-
mens lagen.
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8.8. Evaluierung der Bewegungspréddiktion

8.8. Evaluierung der Bewegungspradiktion

Der folgende Abschnitt untersucht die Praxistauglichkeit der Bewegungspradiktion aus
anhand mehrerer Versuche. Um die angestrebte Verarbeitungsgeschwin-
digkeit von mehreren Berechnungen pro Sekunde zu erreichen, mussten starke Reduk-
tionen der Eingabedaten in Kauf genommen werden. Daher sollen zunéchst ihre Aus-
wirkungen betrachtet werden:

8.8.1. Datenbasis

Da die genutzten Algorithmen zundchst pixelweise arbeiten, liegt es nahe, die benétigte
Rechenzeit durch eine Verkleinerung der Eingabebilder zu reduzieren. Hieraus ergeben
sich zwar per se keine qualitativen Einbufien bei den Ergebnissen, jedoch sinkt mit der
Auflosung auch die minimale Grofie der detektierbaren Objekte. Dass dies in den un-
tersuchten Szenarien keine praktische Einschrankung darstellt, wurde empirisch anhand
von Hindernissen unterschiedlicher Grofie ermittelt.

Wie in der Masterarbeit von Mauch [27] beschrieben, kann weiterhin durch die Redukti-
on der maximalen Durchgénge der Energieoptimierungsfunktion und ihrer inneren SOR-
Optimierungszyklen bei gleichzeitigem Aufweichen der Abbruchkriterien eine Laufzeit-
reduktion um ca. Faktor 7 erreicht werden (siehe [Tab. 8.17). Auch hier lassen sich die
Qualititseinbufen der Anderungen visuell gut beurteilen: |[Abb. 8.27 zeigt, dass die Ab-
weichungen der berechneten Bewegungsvektoren auf denselben Eingabedaten marginal
ausfallen.

Laufzeit
7] Median Min Max

320 x 240 Original 3723 3046 1414 22665
320 x 240  Modifiziert 441 429 390 582
160 x 120 Original 1226 1103 405 4111
160 x 120  Modifiziert 177 176 162 236

Auflosung Parameter

Tab. 8.17.: Vergleich der RGBD-Flow Laufzeiten auf unterschiedlichen Eingabedimensio-
nen mit und ohne Modifikationen. Daten aus [27]]. Ermittelt {iber 83 Bildiiber-

génge.

8.8.2. Experimente

Um die berechneten Bewegungen quantitativ beurteilen zu kénnen, wurden Versuche
durchgefiihrt, bei denen ein Objekt einerseits anhand eines kiinstlichen Markers und an-
dererseits mittels der in [Abschnitt 4.6 beschriebenen Verarbeitungskette getrackt wurde.
Das Objekt war dafiir an einem durchsichtigen Stab befestigt, so dass es damit vor der Ka-
mera bewegt werden konnte. Fiir die Ermittlung der Referenzdaten kam das[ROS}Paket
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(a) RGBD-Flow mit Originalparametern. Lauf- (b) RGBD-Flow mit modifizierten Parametern.
zeit: 5,649 Sekunden Laufzeit: 0,594 Sekunden

Abb. 8.27.: Qualitativer Vergleich des RGBD-Flow-Vektorfeldes mit unterschiedlichen
Parametrisierungen. Die rote Farbung der Pfeile symbolisiert eine sich ent-
fernende Bewegung. Bild aus [27].

7 : s % : b - 7 | A ’/7
/T ST~ I ;

(a) Pradizierte Kollisi- (b) Pradizierte Kollisi- (c) Pradizierte Kollisi- (d) Pradizierte Kollisi-
on zwischen mo- on zwischen mo- on zwischen Robo- on zwischen Ro-
bilem Roboter und  bilem Roboter und  terarm und Person boterarm und Per-
Person Person son

Abb. 8.28.: Momentaufnahmen aus vier Experimenten zur pradizierten Kollisionserken-
nung zwischen mobilem bzw. stationdrem Roboter und einer Person. Die Bil-
der einer Spalte zeigen denselben Zeitpunkt. Oben: Pradiktion des Menschen,
Mitte: Schnitt mit dem Bewegungsplan des Roboters. Unten: In Kollision lie-
gendes Volumen (rot). Verdffentlicht in [7].
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8.8. Evaluierung der Bewegungspréddiktion

ar_tmck_alvarﬂ zum Einsatz, dessen gemessene |SE(3)[Posen tiber den Differenzenquoti-
enten in Geschwindigkeiten umgerechnet wurden.

Die Ergebnisse des Vergleichs, welche in[Abb. 8.29|zu sehen sind, wurden in [7] veroffent-
licht. Sie zeigen in fiir alle drei Dimensionen eine sehr geringe Abweichung
der berechneten Position. Ausnahmen sind kleine Spitzen an den Hoch- / Tief- und Sat-
telpunkten des Graphen. Zu diesen Zeitpunkten sinkt die Objektgeschwindigkeit nahezu
auf null, weswegen der RGBD-Flow einen Grofsteil der Objektmesspunkte aufgrund ih-
rer zu geringen Geschwindigkeit bereits vor der Segmentierung verwirft. Das Rauschen
in den wenigen verbleibenden Punkten fiihrt dann zu den fehlerhaften Ergebnissen. Die-
se sind fiir eine weiterfiihrende Verarbeitung allerdings nicht von Belang und wurden
daher auch nicht weiter untersucht.

Position Motion
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(a) Ergebnis der Positionsbestimmung (b) Ergebnis der Bewegungsbestimmung

Abb. 8.29.: Evaluation des Objekttrackings mittels 3D-Szenenfluss. Der blaue Graph vi-
sualisiert die Referenzdaten des Marker-Trackings. Rot ist das Messergebnis
aus dem Szenenfluss, griin das Kalman-gefilterte Tracking. Veroffentlicht in

7.

Das Ergebnis der Bewegungsgeschwindigkeiten aus ist hingegen wesent-
lich stirkeren Abweichungen unterworfen. Die Filterung mittels glattet zwar die
Schwankungen in den Messungen, fiihrt jedoch prinzipbedingt auch zu einer zeitlichen
Verzogerung des Signales. Der grobe Bewegungsverlauf wird allerdings ausreichend gut
wiedergegeben, so dass Experimente mit Objekten einer gewissen Massentragheit erfolg-
reich durchgefiihrt werden konnten. Eine statistische Auswertung der Abweichung von
Positions- bzw. Bewegungsschitzung von den Referenzdaten in [Tab. 8.18  und [Tab. 8.19
zeigt dieselben Ergebnisse im Detail. e bezeichnet hier das arithmetische Mittel und RMS
das quadratische Mittel des Fehlers.

In einem weiteren Testszenario mit einem bewegten Objekt, das ca. 20% des Kamera-
bildes ausfiillte, wurden Laufzeitmessungen der einzelnen Funktionsblocke durchge-
fithrt. Die Ergebnisse in zeigen, dass die Szenenflussberechnung die hichste
Berechnungsdauer aufweist. Da jeder Funktionsblock in einem eigenen Thread ablauft,

‘Sieheflhttp://wiki.ros.org/ar_track_alvar
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8. Experimentelle Evaluation

bestimmt somit die Laufzeit der Flussberechnung t f;0,, ~125ms die maximal erreichbare
Framerate ff;,, des Systems, die bei tﬂﬁ ~8 Hz liegt. Die Reaktionszeit ergibt sich aus
der Summe aller Verarbeitungsschritte und liegt somit bei ~200 ms.

Die praktische Anwendbarkeit der Kollisionspradiktion konnte in zwei Szenarien er-
probt werden: Ein geteilter Mensch-Roboter-Arbeitsplatz aus demonstriert die
Erkennung und Pradiktion menschlicher Gliedmafien, wéahrend ein zweites Szenario die
Pradiktion menschlicher Bewegungen aus groferer Entfernung testete (Abb. 8.32). Als
Roboter kam in beiden Fillen HoLLiE zum Einsatz, die ihren Arbeitsraum mittels der
im Kopf eingebauten Kinect-Kamera tiberwachte. Die Bewegung des Roboters liegt nach
ihrer Planung bereits als [Swept-Volumen| vor, welches mit den oben beschriebenen Ver-
fahren auf eine Kollision mit dem Volumen der préddizierten Bewegung des Menschen
tiberpriift wird. Beide Szenarien wurden mehrfach erfolgreich getestet: Der Roboter un-
terbrach seine Bewegungen bereits lange, bevor es zu einer Kollision kommen konnte.

Abb. 8.30.: Beispielszenario: Geteilter Mensch-Roboter-Arbeitsplatz. Bild aus [27].

8.8.3. Einschrankung und mdégliche Erweiterungen

Die Laufzeit des verwendeten Szenenflussverfahrens ist der einschrankende Faktor bei
der Auswertung dynamischer Bewegungen, was Raum fiir Optimierungen ldsst. Weiter-
hin stellen die rein linearen Bewegungsmodelle des [EKF eine gro8e Einschrinkung dar,
insbesondere bei der Betrachtung menschlicher Armbewegungen. Hier wire es hilfreich,
auf skelettbasierte Bewegungsmodelle zu wechseln, was jedoch dem urspriinglichen Ge-
danken eines moglichst allgemeingtiltigen Ansatzes widersprechen wiirde.

Ohne Widerspriiche liefsen sich hingegen Strategien entwickeln, die den Roboter im Fal-
le einer pradizierten Kollision proaktiv reagieren liefien. Hier wére es je nach Szenario
denkbar, die unterbrochene Bewegung riickwérts auszufiihren, um Zusammenstofse zu
verhindern, oder den Roboter in eine weiche Impedanzregelung zu versetzen, um ein
Verletzungsrisiko zu minimieren.

Soll das entwickelte Verfahren auf einem mobilen Roboter zum Einsatz kommen, bei
dem die Kamera nicht statisch verbleibt, miissen robuste und exakte Verfahren gefun-
dene werden, um die Eigenbewegung aus dem Vektorfeld des Szenenflusses herauszu-
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épos RMSpos,x RMSpos,y RMSpos,z €pos,min

€pos,max

[m] [m] [m] [m] [m] [m]
Nach
Segmentie- 0,0101 0,0121 0,0099 0,0020 0,0091 0,1392
rung
Nach EKF  0,0145 0,0116 0,0100 0,0062 0,0070 0,1773
Tab. 8.18.: Fehler der Positionsschidtzung aus [27].
émot RMSmot,X RMSmot,y RMSmot,z emot,min emot,max
[m/s] [m/s] [m/s] [m/s] [m/s] [m/s]
Nach
Segmentie- 0,1392 0,1149 0,0683 0,1032 0,0192 0,5292
rung
Tab. 8.19.: Fehler der Bewegungsschitzung aus [27].
Laufzeit [ms]
Thread Durchlaufe
@ Median Min Max
Vorverarbeitung 9,588 9,113 7,035 14,363 523
RGBD-Flow 125,955 125,623 91,312 184,952 467
SV-Rendering 8,519 8,284 5518 19,513 441
Kollisionscheck 51,557 50,621 49,121 54,628 523

Gesamtlaufzeit 195,619 193,641 152,986 273,456

Tab. 8.20.: Laufzeiten der einzelnen Threads. Aus der Laufzeit des RGBD-Flow-Threads
ergibt sich eine Framerate von ca. 8 Hz, wiahrend die Reaktionszeit im Durch-
schnitt unter 200 ms liegt.

Szenario Laufzeit Framerate
Median [ms] [Hz]
Kontinuierliche Bewegung mehrerer Objekte 158,149 6,32
25% des Eingangsbildes ohne Bewegung 130,812 7,64
Wakeln der Kamera, 100% Bewegung 166,882 5,99

Tab. 8.21.: Laufzeit der Bewegungspradiktion, abhidngig von der Menge an Bewegungen
im Bild. Gemessen in drei Szenarien tiber je 400 Bildiibergénge, ohne Kollisi-
onspriifung, aber mit Visualisierung.
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(a) Geplante Roboterbewegung (b) Kollision mit pradizierter mensch-
licher Bewegung

Abb. 8.31.: Geteilter Arbeitsraum: Die Trajektorie des linken Roboterarmes verlduft von
oben nach unten, ihr[Swept-Volumen|von griin nach magenta. Die préadizierte
menschliche Bewegung verlduft orthogonal dazu und ist von gelb nach blau
eingefarbt. Da zwischen beiden [Swept-Volumen)| eine Kollision herrscht, un-
terbricht der Roboter seine Ausfiihrung, bevor es in der Realitdt wahrschein-
lich zu einer Kollision gekommen wiére. Bild aus [27].

rechnen. Vielversprechend erscheint hier die Nutzung von visueller Odometrie, um Feh-
lerquellen durch Radodometrie und Sensorsynchronisation zu vermeiden. Hintergriinde
dazu wurden in |[Unterabschnitt 4.6.8 gegeben.

Letztendlich wére ein probabilistischer Ansatz bei der Generierung des pradiziertenSwept-
denkbar, bei dem die Objektpunktewolke wihrend ihrer Verschiebung entlang
des pradizierten Bewegungsvektors vergrofiert wird, um so der zunehmenden Unsicher-
heit gerecht zu werden. Hierfiir wiren die EDT-Algorithmen aus denk-
bar.

8.8.4. Zusammenfassung

In diesem Abschnitt wurde eine vollstandige Verarbeitungskette evaluiert, die pradizier-
te Bewegungen zur Kollisionsdetektion nutzt, und somit der Kollisionspradiktion aus

entspricht.

Die Umsetzung basiert auf einem 3D-Szenenfluss, dessen Ausgabevektorfelder in dyna-
mische, nichtrigide Objekte segmentiert werden. Ein erweiterter Kalmanfilter trackt die
Segmente, so dass ihre Bewegungen in die Zukunft extrapoliert und als [Swept-Volumen|
gerendert werden konnen. Die Vorhersagen wurden in praktischen Versuchen erfolgreich
genutzt, um die Sicherheit eines Roboters zu erhohen, indem dieser seine geplanten Be-
wegungen gegeniiber den Vorhersagen priift, und abbremst, lange bevor ein Mensch sei-
ne Bahnen kreuzt. Das onlinefihige Verfahren lduft mit ca. 8 Hz und weist eine Reakti-
onszeit von ca. 200 ms auf. Es wurde in [7]] veroffentlicht.
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Abb. 8.32.: Der linke Roboterarm bewegt sich zwischen Regal und Tisch, sein
verlduft von griin nach magenta. Die pradizierte menschliche Bewe-
gung ist von gelb nach blau eingefarbt. Da zwischen beiden |[Swept-Volumen|
eine Kollision herrscht, unterbricht der Roboter seine Ausfiihrung (erkenn-
bar an der roten Brust-LED), bevor es in der Realitidt wahrscheinlich zu einer
Kollision gekommen wire.

8.9. Experimente zur Onlineberechnung von 3D-Distanzkarten

Bei der Untersuchung von Verfahren zur Erzeugung von Distanzfeldern miissen maf3-
geblich zwei Kriterien betrachtet werden: Die Berechnungsdauer und die Genauigkeit
der Ergebnisse. Da es sich beim umgesetzten Verfahren nicht um einen approximativen
Algorithmus handelt, konnten die Messergebnisse mit den Referenzdaten aus einer ka-
nonischen Berechnung (siehe |[Abschnitt 5.6.3) abgeglichen und fiir korrekt erklart wer-
den.

Fiir eine Beurteilung der Berechnungsdauer standen die Implementierungen von PBA,
JFA und der kanonischen Methode zur Verfiigung, also explizit nur ,statische” Verfah-
ren. Dies ist mit ihrer guten Parallelisierbarkeit und der einhergehenden Laufzeit be-
griindet, welche ,,dynamische” Verfahren aussticht. Alle Algorithmen arbeiten mit 32 Bit-
Distanz-Voxeln (vgl. [Unterabschnitt 5.1.3), die in jedem Voxel eine Referenz zu ihrem
néchstgelegenen Hindernis speichern.

Neben dem reinen Benchmarking der Algorithmen wurden zur praktischen Evaluierung
der Distanzfelder auch zwei reale Szenarien untersucht: Die Navigation einer Flugdroh-
ne und die Berechnung der inversen Kinematik eines mobilen Manipulators unter Opti-
mierung des Freiraumes. Die Umwelt wird hier als Punktwolke wahrgenommen, wobei
als Datenquelle reale oder simulierte Kinect-Kameras eingesetzt wurden. Die 3D-Daten
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Grie Laufzeit [ms] Durchsatz [MVoxel/s]
Voxelkarte  yEA  PBA PBA (orig) JFA PBA PBA (orig)
2563 Voxel 2557 24,9 10,2 230 673 1315
5123 Voxel 23258 101,3 64,1 57 1325 2093

Tab. 8.22.: Laufzeiten und Durchsatz von drei EDT Algorithmen auf dreidimensionalen
Karten. Die kleine Karte (256%) enthalt 67 625 Hindernisvoxeln, die grofSe (5123)
89295 Hindernisvoxel. PBA (orig) bezieht sich auf die Referenzimplementie-
rung zu [54], wihrend PBA und JFA die eigenen Implementierungen darstel-
len. Die Messwerte reprasentieren den Median tiber 20 Durchldufe.

werden auf der in Weltkoordinaten transformiert und als Hindernisse in die
Distanzkarte eingefiigt.

Ausgehend von einer Kartengrofie von 5m x 5m x 5m bei einer Auflésung von 2cm
sind die Distanzen von 256> (also iiber 16,7 Millionen) Voxeln zu berechnen. Um die
Daten einer Kinect-Kamera schritthaltend verarbeiten zu konnen, betrdgt die dafiir an-
gestrebte Latenz 33 ms. Somit sollte die [EDT]bei der gegeben Kartengrofe einen Berech-
nungsdurchsatz von 500 Millionen Voxeln (MVoxel) pro Sekunde erbringen. Zum Ver-
gleich: Das approximative Verfahren SKW erreicht auf Karten aus 5123 Voxeln laut Cao et
al. [54] auf einer Nvidia Tesla C1060 GPU einen Berechnungsdurchsatz von 134 MVoxel/s.

Laufzeitmessungen

Iab. 8.22| zeigt die Laufzeiten bzw. den Durchsatz unterschiedlicher Implementie-
rungen. JFA liegt hier mit steigender Kartengrofie um Faktor 3 bis 23 hinter PBA, wih-
rend die Referenzimplementierung nochmals nahezu doppelt so performant ist, wie die
Umsetzung in [GPU-Voxels| Der Laufzeitnachteil ist durch den Verzicht auf Texturspei-
cher (siehe[Abschnitt 3.2.3) zu Gunsten der Codetransparenz begriindet, was aber in spa-
teren Programmuversionen dnderbar ist. Dennoch kann die angestrebte Latenz tibertrof-
fen werden.

Wie bereits in [54] beschrieben, haben die Parameter m; und my den grofiten Einfluss auf
die Berechnungszeiten des PBA, wenn die Dimension der Eingabedaten, verglichen mit
den verfiigbaren CUDA Threads, klein ausfallt. Ist dies zum Beispiel bei 2D Problemen
der Fall, konnen die Bander durch grofie m; und my noch weiter aufgeteilt und somit
besser parallelisiert werden. Da die Eingabedaten in dieser Arbeit aber dreidimensional
sind, ist die Parallelisierbarkeit kein Problem, und m; bzw. ms haben keinen grofsen Ein-
fluss (siehe Diagramm in[Abb. 8.33). Der Parameter m3 wirkt sich hingegen unterschied-
lich aus, da er auch Speicherzugriffsmuster beeinflusst. Da sich die drei Parameter nicht
gegenseitig beeinflussen, lassen sie sich unabhdngig voneinander auf die Eingabedaten
und die verwendete Hardware optimieren.
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Abb. 8.33.: PBA Laufzeiten fiir 256 Voxel mit unterschiedlichen Parallelisierungspara-
metern. Gedndert wird pro Graph nur ein Parameter, wahrend die beiden an-
deren statisch auf 1 gesetzt sind. Diagramm aus [24].

Externe

Komponenten Distanz Berechnung ‘ Kollisionsfreie Bahnplanung Ausfithrung
SLAM Pose ) \
Probablhstlsche \, Euklidisches . Wavefront
F Voxelrnap Distanzfeld ~ / Potentialfeld Planer Flugdrohne
3D Punktewolken

ot

Abb. 8.34.: Systembestandteile der Potentialfeld-Navigation einer Flugdrohne (griin:
GPU, blau CPU). Der Fokus dieser Arbeit liegt auf den dunkel hinterlegten
Teilen.

Navigation einer Flugdrohne

Nachdem sichergestellt ist, dass der Berechnungsdurchsatz mehr als ausreichend ist, las-
sen sich nun praktische Anwendungen betrachten. Dieses erste Beispiel nutzt ein Di-
stanzfeld, um die Flugroute einer Drohne durch ein zundchst unbekanntes Szenario zu
bestimmen (siehe [Abb. 8.35). Das Umweltmodell bestand in den Tests aus einer 21 Mio.
Voxel grofsen probabilistischen Voxelkarte, deren Distanzfeld mit dem Parallel-Banding-
Verfahren aus im Schnitt in 22 ms berechnet wurde. Als Kollisionsmodell
der Drohne wurde eine Kugel verwendet. Die komplette Verarbeitungskette ist in[Abb. 8.34]
dargestellt. Zwei alternative Planungsansitze wurden umgesetzt und in[Tab. 8.23 bewer-
tet: Eine Potentialfeld- und eine Wavefront-basierte Navigation. Beide Algorithmen liefen
mit jeder neuen Sensorpunktwolke ab, wobei die Hinderniskarte standig um alle neuen
Messungen erweitert wurde, und somit auch die Distanzkarte jedes Mal neu aufzubauen
war. Die eigentliche Planung lief auf dem ab, wofiir es notig war, die Distanzkarten

von der zu kopieren.
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8. Experimentelle Evaluation

Im ersten Ansatz folgte die Flugroute dem Gradienten eines Potentialfeldes, welches wie
in [Abschnitt 7.1.3| beschrieben, aufgebaut war. Ein abstoflendes Feld wurde mit Hilfe
einer harmonischen Funktion aus dem Distanzfeld abgeleitet, wahrend ein weiteres an-
ziehendes Feld die Drohne in Richtung ihres Zieles fiihrte. Der Einfluss des anziehenden
Potentials konnte durch den Planer inkrementell verstiarkt werden, falls die Drohne sich
nicht weiter Richtung Ziel bewegte. Auch wenn diese Strategie iiber lokale Minima an
Engstellen hinweg fiihrte, war das Ergebnis nicht zufriedenstellend, da das Labyrinth zu
viele konkave Sackgassen aufwies, aus denen sich der Algorithmus nicht befreien konn-
te.

Den zweiten Ansatz bildete eine 3D-Wavefront-Suche, welche direkt auf dem Distanz-
feld arbeitete und den global optimalen inversen Pfad vom Ziel zur aktuellen Positi-
on der Drohne berechnete. Durch einen Schwellwert der Distanzen konnte sichergestellt
werden, dass die Flugroute dabei einen Mindestabstand zu allen Hindernissen aufwies.
Naturgemaf stellten lokale Minima und Sackgassen kein Problem dar, jedoch lag die Be-
rechnungsdauer wesentlich hoher als bei der Potentialfeldmethode und variierte mit der
Léange des Pfades.

Planungs- PBA auf Host Pfad Erreichbare
verfahren kopieren [ms] konstruieren [ms] Pfadlinge

Min Max Median & Min Max Median @

Gradienten-
abstieg

Wavefront 22,03 129,63 55,42 65,62 0,02 2,7 0,66 0,70 84 Felder

579 11,87 848 843 001 2,5 048 0,53 23 Felder

Tab. 8.23.: Laufzeiten von zwei 3D-Pfadplanungsverfahren fiir eine Flugdrohne mittels
Distanzfeldern.

Die Verwendung einer schnellen Distantanzfeldberechnung ermdglicht ein reaktives Ver-
halten einer Flugdrohne in einer komplexen dynamischen Umwelt, die erst zur Ausfiih-
rungszeit erkundet wird. Zwar war es nicht moglich, allein auf Basis eines Gradienten-
abstiegs zum Ziel zu gelangen, jedoch war auch eine Wavefront-Suche schnell genug,
um global konsistente Plane unter lokaler Hindernisvermeidung mehrmals pro Sekunde
zu generieren. Durch eine Portierung des Planers auf die GPU konnte in Zukunft der
Aufwand des Datentransfers zwischen [GPU| und [CPU]| vermieden werden. Die kugel-
formige Approximation der Robotergeometrie erlaubt es, die Kollisionsfreiheit mit nur
einem Lesezugriff in der Distanzkarte sicherzustellen. Eine spannende Erweiterung des
Planungsszenarios wire es, die Distanzkarte mit dem Skelettierungsprozess aus [128] so
weit auszudiinnen, bis nur noch ausgewédhlte Voronoi-Achsen erhalten blieben, die di-
rekt als Navigationsgraph verwendet werden kdnnten.
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Abb. 8.35.: Momentaufnahmen der Navigation einer Flugdrohne in einem unbekannten,
zerkliifteten Szenario mittels Distanzfeldern. Der Pfad wird kontinuierlich mit
15-20 Hz an neue Umweltdaten angepasst.
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Distanz optimierende inverse Kinematik

Der zweite Anwendungsfall nutzt ein Distanzfeld, um den verfiigbaren Freiraum um
einen Roboter zu bestimmen und iiber eine Variation seiner Konfiguration zu maximie-
ren. Ein Roboter konnte mit diesem Verfahren seinen Aufgaben nachkommen und den-
noch einem Menschen aus dem Weg gehen oder die Distanz zu allen Hindernissen ma-
ximieren, um seinen Manipulationsspielraum zu vergrofsern.

Fiir die Berechnung wird eine statische Punktwolke der Umgebungsgeometrie mit den
Punkten einer Kinect-Kamera kombiniert und das gemeinsame Distanzfeld mittels PBA
berechnet. In diesem Distanzfeld lassen sich dann Roboterkonfigurationen bewerten, in-
dem an unterschiedlichen Punkten der kinematischen Kette der verfiigbare Freiraum
abgefragt und aufsummiert wird. Dies entspricht sinngemaf} einer Menge von virtuel-
len Abstandssensoren, die an den Ecken der mobilen Plattform und an den Gelenken
des Roboters angebracht sind. Der aufsummierte Abstandswert geht dann in eine Me-
trik ein, mit der unterschiedliche IK-Lésungen verglichen werden kénnen. Somit werden
kleine Bewegungsinkremente bevorzugt. Die Metrik bildet die Grundlage einer Partikel-
Schwarm-Optimierung, deren Partikel randomisierte Startwerte einer iterativen inversen
Kinematik darstellen. Als Ziel der inversen Kinematik wurde eine konstante TCP Pose
vorgegeben.

Folgende Notation wird dabei verwendet:

e P: Punktwolke aller Hindernisse, zusammengesetzt aus einem statischen Anteil
und der dynamischen Kamera-Punktwolke: P = Psatisch U Pinect

EDT p: Distanzfeld der Punktwolke P

&: Gelenkwinkel aller N Freiheitsgrade. ¢ € [@min, $max]

Pi—1: Vorherige Roboterpose

dk(g, k): Vorwartskinematik. Berechnet die Pose des k-ten Elements der Roboterki-
nematik anhand der Gelenkwinkel ¢

o A, max: Maximal erlaubte Gelenkwinkelbewegung pro Gelenk

o Ajmax: Obergrenze fiir Distanz zu ndachstem Hindernis

Folglich sucht man nach einer Roboterpose ;, welche die Funktion f unter Bertick-
sichtigung der vorherigen Roboterpose ¢;—1 und dem aktuellen Distanzfeld £ DT ma-
ximiert:

arg max ( f (1,4, EDTp ) (8.4)
2

Die Funktion f setzt sich daher aus zwei gewichteten Teilen a und b zusammen, die die
Gelenkwinkelbewegung und den Freiraum bewerten:

f(@r-1, 81, EDTp ) = (04 ca(Gi-1,8t) + 8- b(‘ﬁtaEDTP)> : (8.5)

1
a+fp
Da die Funktionen a und b auf den Wertebereich [0, 1] normiert sind, bewegt sich auch f
in diesem Wertebereich. Die beiden Formeln setzen sich wie folgt zusammen:

N
1 o — .
a(Bi-1,Bt) = N Z (1 — min (1, i %(t”)) (8.6)

=0 Agomax
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N+1 -
B} 1 _ EDTp (dk(, k)
b(th, EDTP) = m E (mln (1, Admax )) (87)
k=0

EDTp (dk(@:, k)) entspricht hierbei der|Gleichung 5.22{und beschreibt somit den kleins-
ten Abstand zwischen Roboterkinematik und Umweltmodell, gegeben einer Roboterstel-
lung.

Das Verfahren wurde mit Hilfe einer Simulation des mobilen Roboters IMMP in Kom-
bination mit Punktwolken einer realen Umgebung erfolgreich getestet. zeigt
zwei Momentaufnahmen, in denen der TCP des Armes an einer Pose verbleibt, wahrend
alle 10 Freiheitsgrade des Roboters genutzt werden, um den Freiraum zur Punktwol-
ke zu maximieren. Fiir die Berechnung der inversen Kinematik wurde die besonders
schnelle Trac-IK Bibliothek [44] eingesetzt. Im Test mit 10 Partikeln und 5 Iterationen des
Schwarms konnte eine Wiederholrate von 15Hz erreicht werden, was fiir fliissige Aus-
weichbewegungen des Roboters ausreichte. Durch die Beschrankung der Gelenkwinkel-
anderungen pro Schritt mittels A, nax werden dabei grofie Spriinge effektiv verhindert.

(a) Roboterarm weicht nach unten aus

(b) Mobile Plattform weicht nach rechts aus

Abb. 8.36.: Interaktive inverse Kinematik fiir mobilen Manipulator IMMP: Bei vorgege-
bener TCP Pose werden die Freirdume der einzelnen Roboterglieder maxi-
miert (visualisiert durch griine Kugeln). Basis ist ein online berechnetes Di-
stanzfeld der Kinect Punktwolke.
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Zusammenfassung

Die umgesetzte EDT stellt eine wertvolle Ergdnzung zur voxelbasierten Kollisionsdetek-
tion dar, da sie es einem Roboter erlaubt, Abstdnde gegeniiber Hindernissen zu wahren,
auch wenn diese aus Sensordaten gewonnen wurden. Durch die Parallelisierung auf der
GPU lassen sich auch Distanzfelder mit einem grofien Volumen mit der Bildrate eines
3D-Sensors komplett neu aufbauen und auswerten. Es miissen folglich keine approxi-
mierenden oder lokal agierenden Verfahren eingesetzt werden.

In zwei sehr unterschiedlichen Robotikanwendungen konnte die Praxistauglichkeit de-
monstriert werden: Die Navigation einer Flugdrohne in einer dynamisch explorierten,
hoch aufgelosten Umgebungskarte und die reaktive inverse Kinematikberechnung eines
mobilen Manipulators, die den Freiraum zu Hindernissen maximiert. Beide Versuche zei-
gen, dass 3D-Daten durch parallelisierte Algorithmen schritthaltend ausgewertet werden
konnen, um aus ihnen Distanzfelder zu generieren. Dariiber hinaus sind auch Anwen-
dungsfélle von Planungsalgorithmen denkbar, die neben einer Kollisionspriifung auch
Distanzen zu Hindernissen verwerten, um ihre Exploration zu steuern.

8.10. Experimente zur Greifplanung

Abschliefiend soll ein untypischer Anwendungsbereich der voxelbasierten Kollisiosn-
priifung betrachtet werden. Wie bereits in [Unterabschnitt 7.2.7| gezeigt wurde, benotigt
die Greifplanung in der Robotik eine moglichst performante Simulation von Greifthypo-
thesen, um dartiber den erfolgversprechendsten Griff zu bestimmen. Dies ist im Stand
der Technik bisher nicht direkt auf Modellen moglich, die aus Punktwolken gewonnen
wurden, sondern lediglich {iber abstrakte, a priori bekannte Modelle.

Fortschritte in der Hardwareentwicklung brachten unterschiedliche mechatronische Mul-
ti-Finger-Héande hervor, die das Verfahren motivieren. Beispiele sind die Shadow Hand,
das DLR Hand Arm System und die in dieser Arbeit verwendete SCHUNK SVH Hand.
Diese Hande verfiigen tiber fiinf bis hin zu zwanzig aktive und weitere gekoppelte passi-
ve Freiheitsgrade, die fiir einen erfolgreichen Griff koordiniert werden miissen. Die ent-
wickelte Greifplanung lésst sich aber auch fiir andere, einfachere verwen-
den, wie z.B. die Dreifingergreifer der Firma Robotiq.

Generell stellt die Berechnung der Gelenkstellungen das Ziel der Greifplanung dar. Bei
der verwendeten SCHUNK SVH sind dies 20 die iiber neun Motoren bewegt wer-
den. Ihre kinematische Konfiguration| erlaubt die Handhabung einer Vielzahl von un-
terschiedlichen Objekten, wie in [16] beschrieben wurde. zeigt die Hand mit
angebrachten Sensoren.

8.10.1. Datenakquise

Das Ziel der umgesetzten Greifplanung ist die Berechnung und Verbesserung von Fin-
gerstellungen, wihrend sich der Greifer des Roboters einem Objekt ndhert. Um dabei
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(a) Montierter (b) Montierter (c) Montierter
LEAP-Motion Sensor. PMD Nano Sensor. Intel RealSense Sensor.

Abb. 8.37.: Unterschiedliche Tiefenkameras, die auf der anthropomorphen SCHUNK
SVH Hand montiert wurden. Die Anbringung wurde so gewdhlt, dass der
Arbeitsraum der Finger moglichst nicht eingeschrankt wird.

moglichst exakte Messungen zu erhalten, ist es von Vorteil, den Sensor direkt im Grei-
fer zu integrieren. Zwar kénnen mit allen in [Abschnitt 4.1 beschriebenen Sensoren kon-
tinuierliche 3D-Datenstrome erzeugt werden, wie sie im Fall der Online-Greifplanung
benotigt werden. Allerdings sind nur wenige Sensoren klein genug, um im Endeffektor
verbaut zu werden. Von den in[Abb. 8.37|gezeigten Alternativen wies jedoch lediglich die
Intel RealSense Kamera ein ausreichendes Signal/Rausch-Verhiltnis auf, um Punktwol-
ken aus mehreren Aufnahmen zu kombinieren. Daher wurde die Datenaufnahme mit
diesem Sensor durchgefiihrt.
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Abb. 8.38.: Zusammengesetzte Punktwolke  Abb. 8.39.: Ausgefiihrter Griff mit einer
aus acht Einzelaufnahmen. SCHUNK SVH.

8.10.2. Implementierung

[ Grasp Definition [ oine Sweep Online Grasp Evaluation
V Generation Precalculated
Hand Model: i Swept- -
Kinematic + Joint Sweep Volumes of Lasp
Geometry Interpolator /° Rendering Grasps Iterator GVL

Collision
] : g Detection
Depth Stitching / Tabletop Object Pointcloud Tgtl?:fcc;(r-
Sensor SLAM egmentation/” coM, OOBBox mation
Particle
Crlbsars ottt Update Grasp Reward Function
TCP Pose Processing Particle Swarm Optimizer with Virtual Object

Abb. 8.40.: Datenfluss: Alle griinen Komponenten wurden auf der GPU parallelisiert. Al-
le blauen Komponenten sind Eingabe- oder Ausgabedaten, die iiber das Host-
System laufen. Das obere linke Viertel muss lediglich zur einmaligen Offline-
berechnung der Greif{Swept-Volumen|ausgefiihrt werden.

Wie in zu sehen, gliedert sich die Software in einen offline Vorverarbeitungs-
schritt, in welchem die [Swept-Volumen| der Griffe generiert werden und zwei online
ablaufenden Algorithmen zur Verarbeitung von Sensordaten und zum Evaluieren der
Greifoptionen. Diese Komponenten werden im Folgenden nédher beschrieben.
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Offlineerzeugung von Griff-Swept-Volumen

In einem initialen Schritt miissen zundchst die Swept-Volumen|aller ausfiihrbaren Greif-
bewegungen (Kraft-, Prazisionsgriff, usw.) erzeugt werden. Die Griffe sind dabei defi-
niert {iber die Start- und Endwinkel der Fingergelenke und tiber spezifische Kopplungs-
faktoren zwischen einzelnen Gelenken. Zur Erzeugung der Volumen werden die Finger
nacheinander von ihrem Start- zum Endwinkel bewegt und wihrenddessen das tiberstri-
chene Volumen in einer Voxelliste aus Bitvektor-Voxeln gespeichert. In definierten Win-
kelabstinden werden dabei die inkrementiert, um identifizierbare Abschnitte
der Bewegung zu erhalten. Einzelne Subvolumen eines Griffes sind in farblich
abgegrenzt. Die verfiigbaren miissen auf die aktiven Freiheitsgrade der Hand
aufgeteilt werden. Weiterhin wird vorausgesetzt, dass sich ein Finger wahrend eines Grif-
fes in einer kontinuierlichen Bewegung schliefit, auch wenn er {iber mehrere aktive Frei-
heitsgrade verfiigt (wie es bei Mittel- und Ringfinger der SCHUNK SVH der Fall ist). In
diesem Fall werden die Antriebe per Software mit einem griffspezifischen Faktor anein-
ander gekoppelt. Von den neun der SVH wird die Spreizung der Finger und das
Anlegen des Daumens wahrend einem Griff auf einem griffspezifischen Wert gehalten.
Somit blieben N = 5 bewegte Freiheitsgrade, auf welche sich die verwendeten K = 250
verteilen. Die Winkelintervalle aller Gelenke &, und somit die Auflosung der
Sub-Volumen lassen sich iiber

- . N
6<p = ¥max ° E

berechnen. Bei einem typischen Griff reicht der Bewegungsbereich eines Fingers von 0°
bis zu ~90°, die in 50 Sub-Volumen ¢ zu je ~1,8° pro|SSV-ID|aufgeteilt werden.

(8.8)

207



8. Experimentelle Evaluation

(a) Fingerglied  in (b) Gedffnete Hand (c) Swept-Volumen|ei-
04 mm Voxel- nes einzelnen Fin-
auflosung gers

(d) Prazisions-Griff (e) Ausschnitt aus einem Prazi- (f) Kraft-Griff
sions-Griff

Abb. 8.41.: Volumetrisches Handmodell und vorausberechnete [Swept-Volumen| untet-
schiedlicher Griffe. Jede Farbe reprasentiert ein Sub-Volumen, das bei einer
Kollisionspriifung individuell identifizierbar ist.
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Sensordatenverarbeitung

Der verwendete Sensor liefert Wolken aus 640 x 480 3D Punkten mit Bildrate von 30 Hz.
Diese Daten miissen zunéchst in ein globales Koordinatensystem transformiert werden,
wo sie sich dann per oder dhnlichen Fusionierungstechniken in ein konsis-
tentes Modell akkumulieren lassen.

Fiir die hier beschriebenen Experimente wurden die Aufnahmen lediglich durch eine ex-
akte extrinsische Kalibrierung direkt in einem probabilistischen GPU-Octree gesammelt.
Auch eine rechenintensive Oberflichenrekonstruktion ist fiir die Verarbeitung der Voxel
nicht notig.

Fiir die weiterfithrende Verarbeitung wird die Punktwolke in das Objekt und die Tisch-
flache segmentiert. Hierfiir kommt eine[RANSAC|Ebenenschitzung aus der [Point Cloud]
Library (PCL)| zum Einsatz. Das freigeschnittene Objekt und eine darum gebildete [Ob-]
ject Oriented Bound Box (OOBB)[sind der Ausgangspunkt fiir weitere Berechnungen, bei
denen die Tischfldche zur Kollisionsvermeidung beriicksichtigt wird.

Vermeidung unbekannter Regionen

Eine Herausforderung bei der Greifplanung mit unvollstindigem Umweltwissen ist es,
zu verhindern, dass die Finger der Hand in nicht eingesehene Regionen bewegt werden,
und dort mit unbekannten Hindernisse kollidieren. Dennoch sind auch bei unvollstan-
digem Wissen erfolgreiche Griffe moglich, wenn zwischen unbekanntem und freiem Raum
unterschieden werden kann. Dies ist bei Dreiecksnetzmodellierungen schwer moglich,
da hier lediglich die Oberflichen der detektierten Objekte reprasentiert sind, wohingegen
es bei einer Volumenmodellierung einfach umzusetzen ist: Wie in[Unterabschnitt 4.3.1|be-
schrieben, kénnen mittels die Voxel des freien Raumes markiert und so von
unbekanntem Raum unterschieden werden. Dadurch ist es moglich, bei Kollisionsprii-
fungen unbekannten Raum explizit zu berticksichtigen und Griffe, die darin eindringen,
zu verwerfen. Somit konnen auch Objekte, die lediglich von zwei gegeniiberliegenden
Seiten aus gesehen wurden, sicher gegriffen werden, wiahrend die nicht bekannten Ob-
jektseiten vermieden werden.

Virtueller Arbeitsraum

Bei der Griffevaluierung ist es effizienter, nicht die offline berechneten [Swept-Volumen|
relativ zum Objekt zu transformieren, sondern das Objekt in einem virtuellen Arbeits-
raum relativ zu den Griffvolumen zu bewegen. Daher ist eine Reihe von Koordinatensys-
temtransformationen notig, die in[Abb. 8.42Jnachzuverfolgen sind und die aus folgenden
Schritten bestehen:

1. Transformation der Sensorpunktwolken (in Kamerakoordinaten) in das globale Ko-
ordinatensystem mit Hilfe der direkten Kinematik des Roboters, um sie zu fusio-
nieren, zu segmentieren und um den Freiraum zu bestimmen.

2. Transformation des Objektes O in den virtuellen Arbeitsraum der vorberechneten
Griffe, um darin alle Partikel via Greifsimulation zu bewerten.
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(b) Objekt gegriffen

Abb. 8.42.: Unterschiedliche Koordinatensysteme wahrend dem Greifprozess: Griin: Ro-
boterursprung zu Hand. Blau gestrichelt: Transformation von virtuellem zu
realem Objekt bzw. Anriickbewegung. Pink: Ursprung des virtuellen Hand-
modells und seines [Swept-Volumens| Rot: Zu optimierende Pose des virtuel-
len Objekts. Veroffentlicht in [8].

3. Invertierung der Transformation der besten Objektposition, gegeben im Bezugsko-
ordinatensystem der virtuellen Hand.

4. Bestimmung der Transformation zwischen dem realen Objekt und der Greifpose
der realen Hand, mittels der vorigen, invertierten besten Objektlage.

5. Planung / Berechnung der inversen Kinematik, um die Hand mittels Roboterarm
zur Greifpose zu verfahren.

Hybride Partikelschwarmoptimierung

Wie bereits beschrieben, wird die Greifplanung in dieser Arbeit als komplexes Optimie-
rungsproblem aufgefasst, welches mit einer hybriden [PSO| gelost wird. Jeder Partikel
P = (Axyz, Aag,y) stellt dabei eine Translation und Rotation des zu greifenden Objektes
relativ zur Hand dar. Wahrend der Optimierung wird in jeder Iteration die Greiffunktion
g aus fiir jeden Partikel ausgewertet und das Ergebnis mittels der Bewer-
tungsfunktion f aus[Gleichung 7.5|beurteilt. Somit ldsst sich das Problem in Form einer
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PSO darstellen als:

arg max (f (g(PSOi,j, 0, H))),

P (8.9)

mit:i € [1,1],j € [1,J], f(g) < oy

wobei I die Anzahl der verwendeten Partikel, J die maximale Zahl an Iterationen und
oy ein vorgegebenes Abbruchkriterium {iber die erreichte Greifqualitiat darstellt.

Bevor die Optimierung gestartet werden kann, miissen die Geometriemodelle des Objek-
tes O und der Hand H zusammen mit den [Swept-Volumen| des Griffes in den Speicher
der GPU geladen werden. AnschliefSend sind I initiale Partikel zu erzeugen. Da alle Di-
mensionen des Suchraumes als unkorreliert betrachtet werden, kann eine Gleichvertei-
lung aller Partikelparameter angenommen werden.

Die wichtigste Funktion g wird ausgewertet, indem ein Griff in (GPU-Voxels| simuliert
wird, um damit die Gelenkwinkel ¢,, zu bestimmen, unter denen die Finger gerade das
Objekt O beriihren. Gleichzeitig liefert g auch die Anzahl der in Kollision liegenden Vo-
xel:

Veol = ’VO NVu Finger| + |VO NVy Handﬂéche‘ (8-10)

Diese Daten flieen in die Bewertungsfunktion f aus ein und bestimmen
zusammen mit der Historie des Partikels dessen Neuparametrierung. Hierbei wird das
Partikel gleichermafien durch das beste Individuum im Schwarm angezogen aber auch
durch das Optimum in seiner eigenen Historie (PSOFGewichtungsfaktoren a = 3 = 1.0,

siehe [Abschnitt A.6).

Zur Maximierung des Datendurchsatzes bei der Arbeit mit [Swept-Volu-men| wird auf
die Technik der Translation mittels Basisversatz aus [Unterabschnitt 5.3.T| zuriickgegrif-
fen, um die Voxelkarte des Objektes relativ zur Voxelliste des Griff{Swept-Volumens|zu
verschieben. Durch dieses Implementierungsdetail konnen Griffe mit variierender Trans-
lation wesentlich schneller gepriift werden, als Griffe mit unterschiedlichen Rotationen.
Daher wurde mit [Gleichung 8.11] ein hybrider Ansatz verfolgt, der die mit einer
erschopfenden Suche verbindet, die die unterschiedlichen Translationen bei fester Orien-
tierung bewertet.

Somit durchlduft jedes Partikel einen lokalen Optimierer, der die Position Axyz innerhalb
eines engen Rahmens variiert, und X, Y und Z auf das lokale Optimum setzt, bevor die
die Partikel neu verteilt und dabei auch die Orientierung «, 8 und + festlegt:

P, ; = arg max (f(g(arg max f (g (Pyyz, 0, H)) ),O,H)) (8.11)
P ; P; ;

Lokale Optimierung

Die lokale Optimierung ist im ndchsten Abschnitt erldutert.
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8. Experimentelle Evaluation

Auswertung der Greiffunktion

Zunidchst muss die Art des Griffes festgelegt werden, der zu priifen ist. Aktuell geschieht
dies manuell, kénnte aber iiber eine Objektklasse oder die Grole der[OOBB|automatisiert
geschehen. Alternativ werden unterschiedliche Griffe sequentiell evaluiert und die beste
Bewertung gewaihlt.

Die eigentliche Evaluierung besteht aus zwei Schritten. In der ersten Phase sind einfa-
che Kollisionspriifungen zwischen der ausgestreckten Hand und dem Objekt notig: Wie
in [Algorithmus 10| im Anhang skizziert, wird die Punktwolke des Objektes zundchst
entsprechend der durch den Partikel vorgegebenen Pose in die Ndhe des Handballens
transformiert und dort in Voxel umgewandelt. Danach wird die Y-Koordinate so ver-
schoben, dass das Objekt in der Hand liegt, also mit dieser kollidiert. Ausgehend von
diesem Startzustand variieren zwei Schleifen dann die X und Z Koordinaten, wihrend
eine dritte innere Schleife die Y Koordinate so weit inkrementiert und das Objekt aus der
Hand heraus bewegt, bis keine Kollision mehr vorliegt.

An dieser Stelle beginnt dann die zweite Phase, die aus einer besonderen Kollisionsprii-
fung zwischen dem vorberechneten Greif{Swept-Volumen| und dem Objekt O besteht.
Ein kann dabei alle Gelenkwinkel aller Finger gleichzeitig in einer einzi-
gen Kollisionspriifung evaluieren. Das Ergebnis besteht aus einer Liste aller l
die in Kollision liegen, sobald die Finger das Objekt beriihren. Als zusétzliches Ergebnis
liegt die zugehorige Anzahl an Kollisionen pro Finger vor. Durch die monoton steigen-

den [SSV-IDs| konnen anhand der die Gelenkwinkel ¢ bestimmt werden,

unter denen die Finger das Objekt beriihren:

i N\ ¢@nmax- N
Pncol = N <(l modulo K> . 7”11;) ’

le [n'i,(nﬁ-l)-ﬁ)

Das Ergebnistupel aus (7, Vol Handfliches Veol Finger) Wird fiir jedes Partikel gespeichert, so
dass es fiir die Bewertungsfunktion f zur Verfiigung steht.

(8.12)

Evaluierung

In den beschrieben Experimenten wurden 3D-Daten aus einer Simulation verwendet, da
der Schwerpunkt dieser Evaluation auf der Leistung der Kollisionspriifung liegt. Fiir den
Test umkreiste eine virtuelle Kamera das Zielobjekt. Die Punktwolken wurden zunédchst
in einem mit einer Auflosung von 1 mm in Voxel umgewandelt und segmentiert.
Das freigestellte Objekt wurde danach in eine Voxelkarte mit 2mm tibertragen. Zwei
Voxellisten mit je 2 mm Aufldsung hielten ein Modell der ausgestreckten Hand und das
Griff{Swept-Volumen|vor.

Um die Leistungsfdahigkeit der Greifplanung zu bestimmen, wurden verschiedene Grif-
fe mit wechselnden Parametrierungen durchgefiihrt. Die Ergebnisse lassen sich in
ablesen. Zusitzlich listet die Laufzeiten der beiden Hauptfunktionen
und [Abb. 8.43|zeigt den Verlauf der Partikelbewertungen wahrend der Optimierung des
Griffes fiir die Gummiente aus[Abb. 8.38
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8.10. Experimente zur Greifplanung

Bei der Ausfiihrung der Greifplanung waren durch die Anytime-Charakteristik des An-
satzes erste Griffhypothesen bereits nach 353 ms verfiigbar, wenn mit 5 Partikeln gerech-
net wird. Bei 50 Partikeln nach 3,3 s. Die Griffqualitdt verbessert sich mit der zur Verfii-
gung stehenden Zeit. In verschiedenen Tests zeigte sich, dass bei 10 Partikeln brauchbare
Griffe mit einer Bewertung um 200 meist bereits nach ca. 1 s. gefunden wurden.

Anzahl Anzahl P Laufzeit pro Gesamt- Bewertungs

Partikel Iterationen Iteration [ms] laufzeit [sec] Metrik

5 5 1,8 231

5 10 353,66 2,5 235

5 20 5,6 278
10 5 3,9 205
10 10 715,33 4,5 256
10 20 8,6 282
20 5 6,8 335
20 10 1441,66 9,8 399
20 20 23,1 397
50 5 15,6 387
50 10 3375,00 29,6 405
50 20 49,2 502

Tab. 8.24.: Laufzeiten mehrerer PSO-Iterationen wihrend der Optimierung eines Griffes

mit unterschiedlich vielen Partikeln. Das umgesetzte Verfahren liefert bereits
nach der ersten Iteration einen ausfiihrbaren Griff und fillt somit in die Klasse
der Anytime-Algorithmen. Die gelisteten Belohnungsmetriken sind fiir abge-
schlossene Durchldufe angegeben.

Laufzeit [ms]
Median Min Max

Kollisionspriifung 8 10% x 61499 0,103 0,072 0,062 16,357
Griff-Bewertung 8% 106 x 70622 0,507 0473 0,445 2,508

Funktion Untersuchte Voxel

Tab. 8.25.:

Laufzeiten der beiden wichtigsten Funktionen der Greifplanung, gemittelt
tiber 50000 Durchldufe: Kollisionsberechnung zwischen einem Objekt und a)
dem statischen Handmodell mit ausgestreckten Fingern. b) dem

einer Greifbewegung.

8.10.3. Zusammenfassung

In diesem Abschnitt wurde ein vollstandiger Ansatz zur Greifplanung bewertet, der sich
die Vorteile der raumpartitionierenden Datenstrukturen in mehreren Hinsichten zu Nut-
zen macht: Die explizite Unterscheidung zwischen unbekanntem und freiem Volumen
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8. Experimentelle Evaluation
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(a) Beispiel der Bewertungsfunktion von (b) Beispiel der Bewertungsfunktion von
10 Partikeln tiber 10 Iterationen in einer 50 Partikeln tiber 20 Iterationen in einer
Gesamtlaufzeit von 4,5 s. Gesamtlaufzeit von 49,2 s.

Abb. 8.43.: Bewertungsfunktion aller Partikel aufgetragen iiber die Iterationen. Die griine
Linie gibt das globale Maximum an. Gute Griffe wurden bereits nach vier bis
fiinf Iterationen gefunden.

(a) Prazisionsgriff eines zylindrischen Objektes unter Be-  (b) Kraftgriff einer Gummiente
riicksichtigung der Bodenebene

Abb. 8.44.: Resultierende Griffe fiir zwei unterschiedliche Objekte nach einer Optimie-
rung von ~ 2 Sekunden mit zehn Partikeln.
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8.11. Fazit

im Arbeitsraum erlaubt zum einen eine Greifplanung auch bei unvollstindigem Um-
weltwissen. Gleichzeitig arbeiten die Algorithmen, im Gegensatz zu oberflichenbasier-
ten Verfahren, direkt auf 3D-Sensordaten, was es erlaubt, Griffe fiir vorher unbekannte
Objekte zu finden und zu optimieren. Durch die konsequente Parallelisierung ist die Ver-
arbeitungskette onlinefihig und Griffe konnen wahrend der Anndherung des Greifers an
ein Objekt kontinuierlich optimiert werden. Das Verfahren ldsst sich zuséatzlich mittels
taktiler Sensorik erweitern, um Griffe weiter zu stabilisieren oder verformbare Objekte
sicher zu greifen.

8.11. Fazit

Die zahlreichen und sehr heterogenen Experimente dieses Kapitels legen die Praxistaug-
lichkeit der Bibliothek dar. Sowohl in virtuellen aber auch in realen Test-
szenarien konnten iiberzeugende Ergebnisse erreicht werden, die die Fragen aus
ischungstrage 5 positiv beantworten konnen: Die entwickelten hochparallelen Verfahren
sind schnell genug, um eine Planung von Roboterbewegungen in dynamischen Umge-
bungen zu ermoglichen, die durch detaillierte Sensordaten reprasentiert werden. Dies
gilt sowohl fiir die Planung mittels Bewegungsprimitiven als auch fiir Verwendung von
samplingbasierten Verfahren. Weiterhin sind die entwickelten Algorithmen so generisch,
dass sich umfangreiche Nutzungsmoglichkeiten ergeben, die iiber die Trajektorienpla-
nung und -tiberwachung hinaus gehen, wie das Beispiel der schritthaltenden Greifpla-
nung zeigt. Den Laufzeitvergleich mit oberflichenbasierten Kollisionspriifungsverfahren
gewinnt der entwickelte Voxelansatz durch den Einsatz von|Swept-Volu-men| Aber auch
im direkten Vergleich mit alternativen Punktwolkenverfahren erreicht GPU-Voxels den
hochsten Durchsatz von erkannten Kollisionen pro Zeit.
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9. Zusammenfassung und Ausblick

9.1. Zusammenfassung und Beitrag

Eines der grofien Ziele der Robotik ist die Einsetzbarkeit von flexiblen Maschinen in un-
strukturierten Umgebungen des alltdglichen Lebens. Auch der Ausgangspunkt dieser
Arbeit liegt in der Verbesserung der Fahigkeit eines Roboters mit beschranktem Wissen
iiber seine Umgebung und mit dynamischen Anderungen dieser Umgebung umgehen
zu konnen. Dies soll einerseits zu sicheren und effizienteren geteilten Arbeitsraumen fiih-
ren und zum anderen eine schnelle Bewegungsplanung ermoglichen. Der technologische
Kern der vorliegenden Arbeit besteht in der Verkniipfung von Volumenreprisentatio-
nen, die bereits seit mehreren Jahrzehnten untersucht werden, mit modernen Methoden
der heterogenen Parallelverarbeitung auf[CPUs|und [GPUs| Hierfiir mussten zahlreiche
Teilaspekte bearbeitet werden: Zunichst galt es, Datenstrukturen zu definieren, die ei-
nerseits Sensordaten der Umgebung, sowie die Reprédsentation des Roboters und seiner
Bewegungen aufnehmen konnen und die andererseits einen sehr effizienten, parallelen
Zugriff erlauben. Aufbauend darauf mussten Algorithmen implementiert werden, die
parallelisiert die Schnittmenge zweier Datenstrukturen ermitteln konnen, um eine Kol-
lisionsdetektion zu ermoglichen. Mit Hilfe dieser Operationen konnten dann speziali-
sierte Planungsverfahren entwickelt werden, die die Vorteile der Datenstrukturen aus-
nutzen, und eine hoch performante Erzeugung von kollisionsfreien Trajektorien méglich
machen. Dabei ist es jedoch ineffizient, einzelne Roboterposen zu betrachten. Um mit
diesem Problem umzugehen, wurden an vielen Stellen Swept-Volumen verwendet, die
komplette Bewegungsabldufe reprasentieren konnen, ohne dabei einen Zusatzaufwand
fiir ihre Erzeugung zu erfordern, wie es bei etablierten Verfahren mit Oberfachenmodel-
len der Fall ist.

Die drei wichtigsten Beitrdge, die diese Arbeit dabei fiir die Robotik erbringt, lassen sich
wie folgt zusammenfassen:

1. Zunéchst arbeiten alle vorgestellten Verfahren direkt auf Punktwolkendaten, wie
sie von 3D-Sensoren erzeugt werden. Somit ist keine zeitaufwendige Konvertie-
rung in Oberflaichenmodelle oder sonstige abstraktere Reprasentationen notig. Dies
vereinfacht alle Verarbeitungsketten und macht die Nutzung unterschiedlicher Mo-
delle fiir unterschiedliche Teilaufgaben (wie sie in der Robotik haufig anzutreffen
sind) obsolet.

2. Annotierte, voxelbasierte Darstellungen ermoglichen die effiziente Erzeugung und
Handhabung von Swept-Volumen, also der echten volumetrischen Modellierung
von Bewegungsabldufen, ohne dabei Informationen tiber Zeit oder Zugehorigkeit
aufgeben zu miissen. Im Gegensatz zu Oberflichenmodellen kénnen damit die
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9. Zusammentfassung und Ausblick

selben generischen Daten sowohl fiir die Planung, als auch fiir die Ausfithrungs-
tiberwachung herangezogen werden, was eine feingranulare Arbeitsraumanalyse
ermoglicht.

3. Die entwickelten Datenstrukturen und Algorithmen tibertreffen den Stand der Tech-
nik in Hinsicht auf ihren Datendurchsatz (insbesondere der Octree). Gleichzeitig ist
sie so generisch gehalten, dass sich vielfdltige Nutzungmoglichkeiten auch aufSer-
halb der bearbeiteten Fragestellungen ergeben. Auch wenn die Implementierung
in CUDA umgesetzt wurde, lassen sich die prasentierten Losungsansitze auch auf
andere Plattformen zu Parallelverarbeitung tibertragen.

Technisch konnte der Einsatz von General Purpose GPUs fiir die Robotik vorangebracht
werden, indem dynamische Datenstrukturen, die den Programmierparadigmen von Par-
allelprozessoren zundchst widersprechen, hoch performant fiir die GPU implementiert
wurden. Ein sehr praktischer Beitrag ist dabei die Zusammenstellung und Veroffentli-
chung aller Softwarekomponenten in Form einer Open-Source Bibliothek (www.gpu-
voxels.org), die in das sehr stark verbreitete Robot Operation System (ROS) integrierbar
ist.

Durch die Arbeit ist es moglich, hoch auflosende Punktwolken aus mehreren 3D-Kame-
ras mit 30 FPS in einen Octree einzufiigen und den Freiraum darin mittels Raycasting
zu berechnen. Gleichzeitig konnen mit derselben Framerate die Kollisionen gegen bis
zu 256 Trajektorien oder Roboterposen parallel berechnet werden, was einem Verarbei-
tungsdurchsatz von ~ 50 GB/s an Voxeldaten entspricht. Basierend auf diesen Ergeb-
nissen konnten mehrere reaktive Planungsverfahren erfolgreich demonstriert werden.
Weitere Werkzeuge, wie die Berechnung von Distanzfeldern oder die Pradiktion der Be-
wegung von nichtrigiden Korpern, erlauben eine vorausschauende Planung. Diese lasst
sich verwenden, um geteilte Mensch-Roboter-Arbeitsraume effizienter auszunutzen.

Eine umfangreiche Evaluation anhand unterschiedlichster Problemstellungen, die ver-
schiedenste geometrische Grofienordnungen abdecken, konnte die Skalierbarkeit der An-
sidtze unter Beweis stellen.

Mit der Beantwortung der eingangs gestellten Forschungsfragen (siehe
zeigt diese Arbeit somit, dass Voxel eine echte Alternative zu etablierten Oberflaichenmo-
dellen darstellen. Sie sind diesen sogar weit tiberlegen, wenn es gilt, auf Punktwolken
aus Sensordaten kollisionsfreie Trajektorien zu planen oder ihre Ausfiihrung feingranu-
lar zu tiberwachen.

9.2. Diskussion und offene Probleme

Ein wichtiges Ziel der Arbeit war es, eine hohe Generalisierbarkeit durch moglichst mo-
dellfreie Ansétze sicherzustellen. Da dies erreicht wurde, kommen alle vorgestellten Al-
gorithmen ohne abstrakte geometrische und semantische Informationen aus und es miis-
sen somit keine Annahmen tiiber die zu erwartenden Hindernisse oder Umgebungsbe-
schaffenheiten getroffen werden. Dies stellt jedoch auch einen der grofiten Diskussions-
punkte dar. So kann in Frage gestellt werden, ob dieses Vorgehen immer zielfiihrend ist.
Erwiesenermafien liefern etablierte, modellbehaftete Ansitze teilweise wesentlich per-
formantere oder qualitativ hochwertigere Ergebnisse. Jedoch stets nur unter Annahme
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9.3. Ausblick

spezifischer Randbedingungen. Entsprechend ldsst sich diese prinzipielle Frage auch nur
anwendungsspezifisch beantworten, weshalb hier keine finale Aussage getroffen werden
soll.

Zu den offenen Punkten, die weitere spannende Fragestellungen aufwerfen, zahlt sicher-
lich die Bewegungsplanung mittels Bewegungsprimitiven fiir serielle Kinematiken. Hier
konnte keine befriedigende Losung gefunden werden, konkatenierbare [Swept-Volumen|
vorzuberechnen, um dann effizient mit ihnen zu planen. Eventuell kann hierfiir auf ei-
ne Modellierung in Polar- oder Kugelkoordinaten oder einem nichteuklidischen Raum
zuriickgegriffen werden, was jedoch viele der vorgestellten Parallelisierungstechniken
verteiteln wiirde. Die Erforschung wird daher zukiinftigen Arbeiten tiberlassen.

Zwei weitere hochst relevante Fragen ergeben sich, wenn die Kollisionserkennung als
sicherheitskritisches Uberwachungssystem eingesetzt werden soll: Wie sieht eine zerti-
fiziert sichere Sensortechnik zur Erzeugung von 3D Punktwolken aus? Sensoren dieser
Klasse wurden zwar bereits 2016 angekiindigt, sind jedoch auch 2018 noch immer nicht
am Markt verfiigbar. Sind weiterhin die entwickelten GPU Algorithmen formal beweis-
bar korrekt und nachweislich echtzeitfahig? Die Beantwortung dieser Frage erscheint fiir
die Kollisionspriifung zwischen zwei Voxelkarten noch durchaus machbar, ist dagegen
fiir den lastbalancierten Octree eine grofse Herausforderung. Eventuell liefle sich der Auf-
wand aber durch die Verwendung redundanter Kameras und GPUs vermeiden, so dass
auch eine Zertifizierung in Zukunft moglich werden konnte.

Eine letzte, eher oberfldchliche Problematik, die sich aus der Planung von Plattformtra-
jektorien mit Hilfe von Bewegungsprimitiven ableitet, ist die Schwierigkeit, die entwi-
ckelten Verfahren in weit verbreitete Planungsbibliotheken wie Movelt zu integrieren.
Da dort keine passenden APIs fiir die Arbeit mit Primitiven zur Verfiigung stehen, liegt
die Hiirde fiir die Benutzung durch Dritte etwas hoher, als bei samplingbasierten Verfah-
ren. Die enorm iiberwiegenden Vorteile bei der Planung auf Sensordaten mit[GPU-Voxels|
rechtfertigen jedoch den leicht hoheren Aufwand der Integration, den die Bibliothek er-
fordert.

9.3. Ausblick

Die praktische Relevanz der vorliegenden Arbeit ist allein durch die vielfdltigen Anwen-
dungen in der Robotik gegeben. Das allgemeine Interesse an GPU-basierten Technolo-
gien steigt zusammen mit der Leistungsfdhigkeit der Hardware kontinuierlich. Daher
werden in Zukunft immer mehr Roboter auch iiber Parallelprozessoren verfiigen, womit
die Voraussetzungen fiir die Verwendung von |[GPU-Voxels|auch ohne externe Datenver-
arbeitung erfiillt sind. Ein internationales Interesse mehrerer Robotikforscher und Fir-
men an der entwickelten Software ldasst vermuten, dass die Bibliothek in naher Zukunft
in zahlreichen Projekten produktiv eingesetzt wird. Es existieren bereits konkrete Plane
und Partnerschaften, die auch interessante Erweiterungen fiir neue Anwendungsfille ab-
decken: Unter anderem interessiert sich das Unternehmen Hivemapper (Silicon Valley) fiir
Voxel, um damit ihre 3D Kartierung fiir Flugdrohnen zu erweitern und eine Anderungs—
historie der Umwelt erzeugen zu konnen. Weit vorangeschritten sind die Implementie-
rungen des SFI Centers fiir Offshore Mechatronik an University of Agder (Norwegen). Hier
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9. Zusammentfassung und Ausblick

setzen Professor Geir Hovland und sein Team ein, um die Roboter auf zu-
kiinftigen autonomen Olbohrplattformen abzusichern (siehe . Eine andere Rich-
tung schldgt eine Gruppe am Autonomous Robotic Manipulation (ARM) Lab bei Professor
Dmitry Berenson der University of Michigan ein. Dort helfen probabilistische Voxel bei
der haptischen Exploration und Kartierung eines Roboter-Arbeitsraumes. Weitere Pla-
nungsthemen (Roadmap Motion Planning fiir Echtzeitanwendungen wie Drohnenflug)
werden von Dr. Hofmann an den Dynamic Object Language Labs (Massachusetts) unter-
sucht. Aber auch aus dem asiatischen Raum stammen zahlreiche Anfragen zu grofien
Software-Projekten.

4 & ae
(a) Offshore Anlage mit 3 Indus- (b) Kombinierte Voxel-Darstellung der Daten aus 6 Ki-
trierobotern im Laboraufbau nect2 Sensoren

Abb. 9.1.: Szenario am SFI in Norwegen zur Untersuchung von GPU-Voxels in Kombina-
tion mit unterschiedlicher 3D Sensorik fiir die Offshore-Anwendung.

Abgesehen von Neuigkeiten in der Software entwickeln grofse Hardwareanbieter mehr
und mehr Embedded GPU Hardware, wodurch hohere 3D-Leistung bei niedrigem Ener-
gieverbrauch auch in kleinen Gerdten zur Verfiigung steht. Insbesondere der von CPU
und GPU gemeinsam genutzte Speicher dieser Gerdteklasse macht sie fiir neue, intelli-
gente 3D-Kameras attraktiv. Da hierdurch kein Aufwand fiir den Datentransfer zwischen
Host und Device anféllt, reduziert sich die Latenz bei der Echtzeitverarbeitung enorm.
Denkbar wiren dadurch smarte integrierte Sensoren, die durch die Berticksichtigung ei-
nes adaptiven Egomodells den Nutzer direkt vor Kollisionen warnen kénnen. Anwen-
dungen finden sich bspw. in Assistenzsysteme fiir Gabelstapler oder Baumaschinen, die
eine flexible Geometrie aufweisen und eine 360°-Uberwachung erfordern.

Letztendlich ergibt sich durch das sehr allgemeingiiltige Konzept der Voxel aber auch
eine Anwendbarkeit auflerhalb der Robotik. Beispielsweise werden in der Medizin be-
reits seit der Erfindung der Computertomographie Voxel als Datenformat genutzt. Diese
Daten konnten fiir eine OP Uberwachung oder Planung verwendet werden, indem Tra-
jektorien von Instrumenten mit den Echtzeitdaten wichtiger Gefédfie auf Kollision gepriift
werden. Aber auch die Spieleindustrie setzt vermehrt auf Voxelumgebungen, da sich die-
se durch den Spieler realistischer interaktiv verandern oder zerstoren lassen, als dies bei
Dreiecksnetzmodellen der Fall ist.

Ebenso liefSe sich die Kollisionserkennung gut mit dem grofSen Forschungsfeld Deep Lear-

ning verkniipfen: Erfolgt die Pradiktion von Hindernissen nicht wie beschrieben, durch
simple, physikalische Modelle, sondern durch eingelernte Bewegungsmodelle, so liefien
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sich die Ausgabeneuronen direkt an die probabilistischen Voxel einer GPU-Datenstruk-
tur anschliefsen. In der Folge konnte eine Ausfiihrungsiiberwachung durch neuronale
Pradiktion enorm verbessert werden, falls diese situationsspezifisch reagiert.
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A. Appendix

§’ VOXELS

Abb. A.1.: Logo der|GPU-Voxels|Bibliothek, das die Wiirfelstruktur andeutet.

Hier werden allgemeingiiltige Grundlagen und Definitionen aufgelistet, die in der vor-
liegende Arbeit verwendet werden.

A.1. Log-Odd

Um Rundungsfehler bei der Multiplikati- Um aus der Log-Odd Darstellung wieder
on von kleinen Wahrscheinlichkeiten zu die Wahrscheinlichkeit zu berechnen, be-
vermeiden, konnen diese in Form ihres dient man sich folglich:

Log-Odds ausgedriickt und somit Ad-

diert werden:

() = log= ﬁ (;()x) (A1) pE)=1——— (A2

A.2. CUDA Intrinsics

Die CUDA-API stellt dem Programmierer viele Befehle zur Verfiigung, die komplexe
Funktionen hardwarenah umsetzen und wesentlich effizienter ablaufen, als eine manuel-
le Implementierung. Hier sollen die fiir diese Arbeit wichtigsten API-Befehle gelistet und
kurz erklart werden. Dazu zdhlen in erster Linie Funktionen, die innerhalb eines Warps
Ergebnisse zusammentfiihren, aber auch mathematische Funktionen oder Synchronisati-
ons-Barrieren fiir ganze Threadblocke. Detaillierte Informationen finden sich im CUDA
Programming Guide [154].

225



A. Appendix

Warp Vote Funktionen Diese Gruppe von Funktionen tragt Ergebnisse aller Threads
eines Warps zusammen und stellt diesen ein kombiniertes Ergebnis zur Verfiigung.

unsigned int __all (int predicate)
Wird in jedem Thread zu einem Wert ungleich 0 ausgewertet, wenn die Eingabedaten
aller Threads ungleich 0 waren.

unsigned int __any(int predicate)
Wird in jedem Thread zu einem Wert ungleich 0 ausgewertet, wenn die Eingabedaten
mindestens eines Threads ungleich 0 waren.

unsigned int __ballot(int predicate)

Stellt jedem Thread ein Bitmuster aus 32 Bits zur Verfiigung, in dem jedes Bit einen
Thread reprasentiert, und auf true steht, wenn die Eingabedaten dieses Threads un-
gleich 0 waren.

Synchronisation Um alle Threads eines Blocks zu koordinieren, konnen diese tiber
eine Barriere synchronisiert werden:

void __syncthreads()
Blockiert die Ausfiihrung, bis alle Threads des Blocks diesen Befehlt erreicht haben. Gleich-
zeitig wird Speicherkonsistenz im globalen und geteilten Speicher sichergestellt.

Mathematik Viele Bit-basierten Zahlfunktionen sind direkt als Spezialbefehle verfiig-
bar. In Kombination mit den Warp Vote Funktionen kdnnen mit ihnen beispielsweise
Prefixsummen effizient umgesetzt werden.

__device__int __popc(unsigned int x)
Zahlt die gesetzten Bits in einem Bitmuster aus 32 Bits.

__device__int _ clzll (long long int x)
Ziahlt die fithrenden, aufeinander folgenden, nicht gesetzten Bits in einem 64 Bit Datum,
beginnend bei Bit 63.

A.3. Morton-Codes

Morton-Codes stellen eine Linearisierung einer n-Dimensionalen Adressierung dar und
wurden bereits 1966 vorgestellt [148]]. Da ihr Verlauf im zweidimensionalen Z-férmig
ist, spricht man auch von Z-Kurve. Z-Kurven sind raumfiillende Kurven (FASS-Kurven),
decken also rekursiv den kompletten Raum ab, den sie beschrieben. Thre Berechnung
erfolgt durch einfache Bit-Verschachtelung, wie im Beispiel aus gezeigt. Die
Bindrwerte der einzelnen Koordinaten werden mit je zwei 0-Bits gespreizt und die ent-
stehenden Worte verodert. Um aus einem Morton-Code die urspriinglichen Koordinaten
zu erhalten, miissen die Operationen invers angewendet werden. Alle Schritte konnen
durch vorberechnete Nachschlagetabellen stark beschleunigt werderﬂ

lhttp://www.forceflow.be/2013/10/07/morton-encodingdecoding-
through-bit-interleaving-implementations/
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A.3. Morton-Codes

yv:0 0 1 1 0 0 1 0
zz1 0 0 0 1 1 0 1
m: 101 001 010 011 100 101 011 10
Abb. A.2.: Beispiel zur Erzeugung des Morton-Codes m = 101001010011100101011100,
einer dreidimensionalen Koordinate P = (z,y,2) = (214,50,141);9 =
(11010110,00110010,10001101);. Die Koordinate féllt also in die m =

Der rekurstVe VoAt &@HQSN@&%&?&%{K e ABTIRRIS] 35d22k Baumes mittels post-

order Tiefensuche, weshalb jedes n-Tupel aus Bits beim Abstieg im Baum den zu verfol-
genden Kindknoten beschreibt. Zwei Beispiele anhand des Bindrbaymes sind in
gegeben.

.......................

..................................................

& 9 12 13

16 ‘11 14 15

Level 1 Level 2

Level 0

Level 1

Level 2

o (1)
(034 (7

Abb. A.3.: Verwendung von Morton Codes in einem Bindr-Baum. Die Grafik aus [40] ver-
wendet eine zu dieser Arbeit inverse Numerierung der Baumebenen.

Blatt: 3 Blatt: 14
y:0 1 y:1 1
m: 00 1 m: 111
e <~

Kind: 0 3 Kind: 3 2

Abb. A 4.: Beispiele zum Abstieg im Bindrbaum aus [Abb. A.3|zu Blattknoten 3 und 14
anhand der Morton-Code-Tupel.
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Gemeinsamer Elternknoten

Die Eigenschaft des Kurvenverlaufs erlaubt es auch, den kleinsten gemeinsamen Elternk-
noten p zweier Bldtter m, und m; mit Hilfe einfacher Bit-Operationen zu bestimmen.
Hierfiir ist zunédchst dessen Ebene [, im Baum zu finden:

lp=1(64—__clzll(mga XORmMy))/3)] (A.3)

Die Funktion ___c1z11 () zdhlt in CUDA die fithrenden Nullen in einer 64 Bit-Zahl.

Der Pfad ist dann der Prafix der Lange 3-(d—1—1,) von m, oder my, wobei d die Tiefe des
Octrees (Anzahl Ebenen) angibt. Dies ist insbesondere Hilfreich, wenn mehrere Traver-
sierungen in dieselben Baumregionen durchgefiihrt werden miissen. Dabei lassen sich
dann gemeinsame Abschnitte schnell ermitteln und somit die Arbeit mehrerer Threads
zusammenfassen.

Sukzessive Berechnung

Die zugrunde liegenden Eigenschaften des Morton-Codes erlauben die sukzessive Be-
rechnung aus dem Code des Elternknotens (morton;41) und der Nummer des zu adres-
sierenden Kindknotens (child; 1) mit folgender effizient umsetzbarer Formel:

morton; := (morton;11 < 3) | child4; (A4)

Dabei gilt fiir den Wurzelknoten morton;—o := 0 sowie fiir nicht vorhandene Kindknoten
morton;+1 := 0.

Volumen eines Teilbaumes

Jeder Knoten eines Octrees, der kein Blattknoten ist, reprédsentiert einen Teilbaum der
GroBe k x k x k mit k := 2!, wobei [ die Ebene ist, auf der sich der Knoten befindet.
Das Volumen eines solchen Wiirfels lasst sich durch die kartesischen Koordinaten seines
minimalen (min) und maximalen (maz) Eckpunktes beschreiben. Diese wiederum be-
rechnen sich direkt aus der Kind-ID i | 0 < i < 8 und der minimalen Koordinate ¢ des
Elternknotens:

)
hey) e

Die Funktion morton~!(i) erzeugt aus dem Morton Code i die Koordinaten des Kind-
Wiirfels, also einen Vektor (z,y,2)T | z,y,2 < 1. Weiterhin bezeichnet 1 den Vektor
(1,1,1)7.

calcCoords (¢, 1,7) ==

< min > B < ¢+ 2" morton~! (
= 1

mazx c+ 2. (morton_

Das folgende Beispiel zur Berechnung der min und maz Koordinaten bezieht sich auf
einen Baum mit vier Ebenen, wie in an dargestellt. Gesucht werden der dritte
Mortonvoxel auf Baumebene eins, dessen Elternvoxel auf Ebene zwei seinen minimalen
Eckpunkt bei (4,0,4)7 hat.
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s
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Abb. A.5.: Subvolumens des dritten Mortonvoxels (rot gefarbt) auf Ebene 1 und dessen
minimale / maximale Koordinaten.

max

calcCoords ( <§> ,1,3) = ( min )

= min = (é) + 2! - morton~! (3) = <

= mar = (é) +2' (morton™* (3) + 1) = <§> + (2' ((é) +]1)> = (2)

A.4. Structure-of-Arrays und Arrays-of-Structures
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Sollen mehrere Threads elementweise auf Daten im globalen Speicher der GPU zugrei-
fen, so ist es fiir die effiziente Nutzung des Speicherbusses und Caches unabdingbar, dass
die Elemente fortlaufend im Speicher angeordnet sind (Memory Coalescing). Die folgen-
den Code-Beispiele demonstrieren dies anhand der Nutzung von Structures of Arrays und
einem Array of Structures.

Algorithmus 2 Non Coalesced Algorithmus 3 Coalesced
1 int N = 100; 1 int N = 100;
2 struct { 2 struct {
3 float x, vy, z; 3 float x[N];
4 } Ros; float yINI;

} SoA;

4

5 float z[N]

6

7 __device___ SoA pnt_cloud;

7 __device__ pnt_cloud = AoS[N];

9 __device_ 9 __device___

10 void scale(float factor) { 10 void scale(float factor) {

11 int tid = blockIdx.x*blockDim.x + 11 int tid = blockIdx.x*blockDim.x +
threadIdx.x; threadIdx.x;

12 if (tid < N){ 12 if (tid < N){

13 pnt_cloud[tid].x x= factor; 13 pnt_cloud.x[tid] =x= factor;

14 pnt_cloud[tid] .y %= factor; 14 pnt_cloud.y[tid] %= factor;

15 pnt_cloud[tid] .z *= factor; 15 pnt_cloud.z[tid] *= factor;

16 } 16 }

17 '} 17 '}
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In [Algorithmus 2| konnen mit einer Speichertransaktion lediglich 10 bis 11 Threads eine
Koordinate lesen, da diese mit 12 Bytes Abstand im Speicher liegen (3 f1oats zu 4 Bytes)
und nicht an 128 Byte Grenzen ausgerichtet sind. Somit benétigt der Warp insgesamt 9
Transfers: 11+11+10 Threads lesen x, 11+10+11 lesen y, 10+11+11 lesen z. Dagegen kon-
nen in [Algorithmus 3| alle 32 Threads des Warps gleichzeitig eine Koordinate pro Spei-
cherzugriff lesen (32 f1oats zu 4 Bytes = 128 Byte) und es werden insgesamt nur genau
3 Speichertransfers pro Warp (alle Threads lesen x, dann y, dann z) gebraucht.

A.5. Primitive der Parallelverarbeitung

Weit verbreitete Primitive der datenparallelen Verarbeitung sind: Transformation, Sor-
tierung (Radix, Bitonic), Reduzierung / Verdichtung, Aufteilung. In dieser Arbeit wird
haufig auf die Prafixsumme und die Radix-Sortierung zuriickgegriffen, weshalb diese
hier ndher beschrieben werden:

A.5.1. Prafixsummen auf Threadebene

Die Problemstellung liegt in der Verdichtung (Compaction) von Daten anhand einer Ent-
scheidungsfunktion (Pradikat p(e) € [1,0]), die auf jedes Datum angewendet wird. Nur
wenn das Pradikat zu 1 ausgewertet wird, soll das Datum in die Ausgabedaten iiber-
nommen werden. Dabei diirfen keine Liicken entstehen und die Reihenfolge der Daten
soll beibehalten werden. Bei einem seriellen oder schwach parallelen Ansatz wére die
Verwendung eines atomaren gemeinsamen Zihlers, der den Zeiger in die Ausgabeda-
ten inkrementiert, die naheliegendste Losung. Bei einer massiven Parallelisierung auf
der GPU wire dies aus zwei Griinden nicht effizient: Zunédchst weisen atomare Ope-
rationen eine hohe Latenz auf, zum anderen ist zusdtzlicher Aufwand nétig, um die
Reihenfolge der Daten aufrechtzuerhalten (sortieren nach Thread ID, da CUDA Threads
keine deterministischer Reihenfolge besitzen). CUDA bietet jedoch hardwarenahe Funk-
tionen an, um diese Aufgabe gegeniiber der kanonischen Implementierung 32-fach zu
beschleunigen. Grundlage ist der Befehl _ _ballot (bool), der boolsche Variablen al-
ler 32 Threads eines zu einem Bitvektor der Lange 32 zusammenfasst, ohne dabei
geteilten Speicher nutzen zu miissen. Die Anzahl der Einsen im Bitvektor kann mittels
__popc () gezdhlt und tiber geteilten Speicher mit anderen Warps ausgetauscht werden.
[Algorithmus 4| zeigt die Nutzung dieser Funktionen zur Berechnung der Prafixsumme
auf Thread-Ebene.

A.5.2. Parallelsierte Reduktion

Ziel einer Reduktion ist das Zusammenfiihren einer Menge von Eingabedaten zu einem
einzelnen Wert durch die wiederholte Anwendung eines bindren Operators. Ein einfa-
ches Beispiel ist die Aufsummierung einer Menge aus Zahlen.

Wie Mark Harris in [96] schreibt, ist eine prinzipielle Umsetzung der Reduktion in CUDA
zwar problemlos moglich, die performante Umsetzung jedoch mit zahlreichen Tiicken
versehen: Fine Baum-dhnliche Zusammenfiihrung iiber Block-Grenzen hinweg birgt das
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Problem einer Synchronisation zwischen den Blocken, die zu Lasten der Laufzeit geht.
Daher sollte eine Implementierung schrittweise iiber mehrere Kernel-Aufrufe (mit je-
weils halbierter Anzahl an Blocken) vorgehen und diese als Synchronisationspunkte nut-
zen. Ladt nun jeder Thread ein Element aus dem Globalen Speicher in den schnellen ge-
teilten Speicher, darf nur jeder zweite Thread eine Zusammenfiithrung berechnen. Diese
Divergenz bedeutet eine niedrige Auslastung der Hardware. Daher sollten die zu fusio-
nierenden Daten so iiber die Thread-ID ausgewdhlt werden, dass jeder Thread arbeiten
kann, was bei einer falschen Strategie jedoch schnell zu Bank-Konflikte im geteilten Spei-
cher fiihrt. Harris beschreibt Losungen dieser Punkte und présentiert weitere Verbesse-
rungen, die den Durchsatz und die Bandbreite der Reduktion nahe an die theoretischen
Obergrenzen der Hardware bringen. In dieser Arbeit wird der Reduktionsalgorithmus
aus Thrust genutzt, der die von Harris vorgeschlagenen Techniken umsetzt.

A.5.3. Parallelsierte Radix-Sortierung

Fiir die parallele Sortierung von Daten bietet sich eine Radix-Sortierung an, da diese kei-
nen vergleichenden, sondern einen Zdhlenden Charakter aufweist. Radix besteht aus drei
Phasen, die im Falle von Dezimalzahlen fiir die einzelne Stellen der zu sortierenden Wer-
te ausgefiihrt werden, und die sich gut parallelisieren lassen:

1. Zdhlen: Hier wird das Vorkommen einzelner Werte einer Stelle gezahlt, was sich
effizient parallelisieren und mittels Reduktion zusammenfassen lasst.

2. Bestimmung der Schreibposition: Hier wird die Schreibposition jedes Eingabe-
wertes anhand einer parallelen exklusiven Prafixsumme berechnet.

3. Schreiben: Nach dem die Positionen bekannt sind, werden auch diese sortiert. So-
mit kann das eigentliche Schreiben der neu geordneten Eingabedaten einen

Effekt erzielen.

Da der Prozess stabil ist (also die Reihenfolge von Elemente mit gleichen Werten an der
Sortierstelle nicht @ndert), kann problemlos mehrfach sortiert werden, beginnend von
der niederwertigsten Stelle.

Im Falle von Bindr-Reprasentationen muss die Zahl der pro Durchlauf sortierten Bits
(Stellen) an die Wortbreite der Hardware angepasst sein. Eine extrem performante Im-
plementierung unter Ausnutzung von Dynamic Parallelism stellen Merrill et al. in [144]
vor. Im dieser Arbeit wurde jedoch aus praktischen Griinden die Implementierung aus
Thrust genutzt.
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Algorithmus 4 Prafixsumme auf Thread-Ebene.

1 template<int NUM_WARPS, int WARP_SIZE>

2 __device__ int thread_prefix(uint32_t* shr_sum, uint32_t tid, bool pred) {
3 uint32_t warp_votes = _ ballot (pred); // warp vote

4 if (tid % WARP_SIZE == tid / WARP_SIZE)

5 shr_sum[tid / WARP_SIZE] = _ popc (warp_votes); // population count

6 __syncthreads();

@

// exclusive sequential prefix sum

9 1if (tid == 0) {

10 uint32_t sum = 0;

11 #pragma unroll

12 for (int i = 0; 1 < NUM_WARPS; ++i) {
13 uint32_t tmp = shr_sum[i];

14 shr_sum[i] = sum;

15 sum += tmp;

16 }

17 }

18 __syncthreads () ;

20 int index = shr_sum[tid / WARP_SIZE];
21 return index + _ popc (warp_votes << (WARP_SIZE - (tid % WARP_SIZE)));
2 }

A.6. Partikelschwarmoptimierung

Die Partikelschwarmoptimierung ist ein biologisch motiviertes Optimierungsverfahren,
das 1995 durch Kennedy et al. vorgestellt [115] wurde. Es bildet das Verhalten eines
Schwarmes nach, dessen Individuen bzw. Partikel n einerseits eigenstandig nach einem
Optimum suchen, und andererseits durch das Verhalten des erfolgreichsten Schwarm-
Individuums b beeinflusst werden. Dabei wandert jedes Partikel mit einer sich veran-
dernden Geschwindigkeit ©, durch den Suchraum X des Optimierungsproblems und
speichert dabei seine bisher beste erreichte Position Z, pest. Da der Schwarm ein rando-
misiert exploratives Verhalten aufweist, konnen lokale Minima bei passender Parame-
trierung vermieden werden. In dieser Arbeit wird die PSO dafiir genutzt, nichtlineare
Optimierungsprobleme anzugehen. Dafiir gilt:

Maximiere die Bewertungsfunktion f(Z) unter der Nebenbedingung # € X mit f: W —
R eine reellwertige Funktion und X C W. Die zuldssige Menge X ist durch ihren kon-
kreten Wertebereich beschrieben.

Die Implementierung iteriert nach einer Initialisierung durch drei Phasen, bis ein Maxi-
mum an Iterationen erreicht ist, oder ein Abbruchkriterium fiir das Ergebnis von f(%)
erreicht wurde.

Zundchst wird ein Schwarm mit einer festen Anzahl N an Partikeln erzeugt, indem jedem
Individuum n € N ein randomisierter Startwert 7,, zugewiesen wird. Danach startet die
Optimierung:

1. Bewerte: Berechne f(Z,) fur alle n und setze &, pest, falls f(Z)) > Zppest

2. Ermittle Schwarm-Besten 7, = argmax,,c n(f(Z,,)) aus allen N Partikeln
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3. Berechne neue Partikel-Geschwindigkeit:
Up, = Up + (a *p1- (fnbest - fn)) + (6 “P2 - (fb - fn))
mit Zufallsvariablen p;, ps € [0, 1]

4. Verschiebe Partikel: #,, = &, - U,

Dabei kann iiber die Faktoren oo und 3 gesteuert werden, wie stark Partikel von ihrem

eigenen Optimum &, pest 0der dem Schwarm Optimum b angezogen werden. Durch die
Zufallsvariablen p; und p, streut der Schwarm und konvergiert nicht direkt gegen ein
einziges Maximum. Analog kann iiber entsprechende Umstellungen max — min auch
ein Minimierungsproblem geldst werden.

A.7. Octree

Hier werden einige Details und Datenstrukturen der Octree-Implementierung gelistet:

Deterministic %
Node

#m_status : NodeStatus

+Node()

+getStatus() : NodeStatus

+setStatus(status : NodeStatus)
+hasStatus(status : NodeStatus) : boolean
+extractData(id : VoxellD, level : int) : NodeData

1

LeafNode ‘ InnerNode

I
I
I
I
I
I
I
I
|
|
|
i
A #m _child : Node* ;
#m_flags : NodeFlags !
I

I

I

|

|

|

|

I

I

I

I

I

I

]

+InnerNode()
+getFlags() : NodeFlags
+setFlags(flags : NodeFlags)

+hasFlags(flags : NodeFlags) : boolean
+getChildPtr() : Node*
+setChildPtr(child : Node*)
! +extractData(id : VoxellD, level : int) : NodeData
- A_ _____________________
Probabilistic % NodeProb
I
! #m_occupancy : Probability !
| <t— |
+NodeProb() |
+getOccupancy() : Probability |
+setOccupancy(prob : Probability) !
I
I
| |
: LeafNodeProb InnerNodeProb :
I I
I I
: +extractData(id : VoxellD, level : int) : NodeDataProb +extractData(id : VoxellD, level : int) : NodeDataProb !
I I

Abb. A.6.: UML Diagramme des Octree und von dessen Knoten.
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A.7.1. Lastbalancierung (Balance Work)

[AIgorithmus 5|ist der grundlegende Algorithmus zur Lastbalancierung bei der Verarbei-
tung unterschiedlich aufwendiger Berechnungselemente mit mehreren Threads. Der Al-
gorithmus berechnet die Umverteilung der Elemente auf die Arbeitsstapel der Threads,
unter Aufrechterhaltung der Stapel-Invariante.

Algorithmus 5 Balance Work

Require: S;,[n] : Workltem, each Stack S;, [¢] fulfills invariant
Ensure: S,,;[n] : Workltem, each Stack S, [¢] fulfills invariant

\\ count step
1. C[0: #level = 1][0:n — 1] <= {0...0}, I[0:n — 1][0: #level — 1] + {0...0}

2: fori < 0,n—1do \\ in parallel
3 S« Sinli], S[0:#level —1] <+ {0...0}
4:  for j < tid,size(S) — 1,j < j + #threads do \\ in parallel
5: S[level(S[j]) ] += 1 \\ atomic increment
6: end for
7. for j « tid, #level — 1,j < j + #threads do \\ in parallel
8: C[ #level — 1 —1][i] < S[j]
9: end for
10:  I[i] < suf fixSum(S)
11: end for
12: C « prefixSum(C) \\ in parallel
\\ move step
13: fori < 0,n—1do \\ in parallel
14: S+ Sinli]
15:  for j < tid,size(S) — 1,j < j + #threads do \\ in parallel
16: [ + level(S[j])
17: p < C| #level — 1 —1][i] + (j — I[3][1]) \\\ compute target position
18: Sout[p mod nl[p/n] = Slj]
19:  end for
20: end for

Die folgenden Algorithmen nutzen die beschriebene Lastbalancierung als Grundlage. Ih-
re Arbeitselemente, die zwischen den Arbeitsstapeln umverteilt werden, sind in[Abb. A.7]
zu sehen.

Worklitemintersect WI_IntersectVoxelmap
WorkltemPropagate
a_nodes : InnerNode * nodes : InnerNode *
b_nodes : InnerNode * level : int nodes : InnerNode *
level : int coordinates : Vector3 parent_node : InnerNode *
a_active : bool active : bool level : int
b_active : bool check : bool parent_status : NodeStatus

(a) Arbeitselement von Inter- (b) Arbeitselement von Inter- (c) Arbeitselement von Load
sect Octrees sect Voxelmap Balancing Propagate

Abb. A.7.: Elemente der Arbeitsstapel aller Lastbalancierten Algorithmen.
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A.7.2. Schneiden von zwei Octrees (Intersect Octrees)

Modifizierte Tiefensuche zur Kollisionspriifung zwischen zwei Octrees. Nutzt den vor-
herigen Lastausgleich, wenn zu viele Threads untitig sind.

Algorithmus 6 Intersect Octrees

Require: S[n|: WorkItemIntersect, fulfills stack invariant[5.21|
Ensure: S[m] : WorkItemIntersect, fulfills stack invariant
1: #collisions < 0
2: while n > 0 and #idle < MAX_IDLE do

3:  n < n—min( #threads/8, n)
4 w < Sin+tid/8| \\ w <L if no item available
5. (nodeq,nodey) < (a_nodes(w),b_nodes(w))
6: if a_active(w) then node, < a_nodes(w)[tid mod 8] end if
7. if b_active(w) then node;, < b_nodes(w)[tid mod 8] end if
8:  (Pa,pp, ) < (isPart (node,,) ,isPart (nodey,) , areInConflict(node,, nodey))
9: if cand ((—p, and —py) or level(w) > LEV ELg,,) then \\ handle inner nodes
10: Hcollisions + #collisions + 8evelw)
11: if a_active(w) then setCollision(node,,)
12: else setCollision(node;) end if
13:  end if
14:  iflevel(w) = 1 and (aqctive OF bactive) and LEV ELg,, < 1 then \\ handle leaf
nodes
15: #collisions « #collisions + countCollisions(node,, nodey)
16:  end if
17:  insertyq < c and (pq or pp,) and level(w) > max(1, LEV E L)
18:  off « Ziﬁfgl insert; \ \ prefix sum of insert; € {0,1}
19:  if insertyy then \\ add new work items
20: (@, ap, cq, cp) < (a_active(w) and p,, b_active(w) and py, node,, nodey,)
21: if a, then ¢, + childPtr(node,) end if
22: if a; then ¢, < childPtr(nodey) end if
23: S[n + off] + WorkltemIntersect(c,, cp, level(w) — 1, aq, ap)
24:  end if

25: end while
26: (#idle,m) < (#idle + 1,n)

Umformung zur Aufwandsabschidtzung des Abstiegs in einem voll ausgepréagten Octree.
Durch die Verwendung der geometrischen Reihe ldsst sich zeigen, dass der Aufwand
lediglich 1/7 hoher als bei der Traversierung zweier Voxelkarten liegt.
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logg 2
Apet(s) = 2 (k+ > Si) (A.6)

T <k 148 Z 8281'> (A7)
p =0
- 2 (k: ~14 ]f) z; 8Z1i> (A8)
- 9 <k—1+;i§; <;)) (A.9)
< 2 (k 14 ;2 <;)) geom.Relhe (k 14 If) : i) (A.10)
Level 3 Level 2 Level 1 Level 0

0[{1{0(1(2(0(0|0O0

Abb. A.8.: Array C aus|Algorithmus 5/ vor und nach Berechnung der Préfixsumme iiber

C. Beispiel nutzt Eingabedaten aus

A.7.3. Eingeschrankte Zwei-Phasen-Tiefensuche mit Lastausgleich

In |Algorithmus 7| (Load-Balancing Propagate) fiihrt jeder CUDA Block mehrere Tiefen-
suchen fiir die Elemente (siehe auf seinem Arbeitsstapel durch. Auch wenn
die Anzahl der Arbeitsstapel-Elemente durch den Algorithmus verdndert werden kann,
so gilt vor und nach der Abarbeitung die Stapel-Invariante (siehe |(Gleichung 5.21)), wel-
che die Voraussetzung fiir den effizienten Lastausgleich und fiir eine Abschidtzung des
Aufwandes des gesamten Arbeitsstapels ist. Zu Beginn nehmen sich immer acht Threads
dasselbe Arbeitselement w vom Arbeitsstapel (sind nicht ausreichend Elemente vorhan-
den, werden leere Elemente w <L und bearbeiten gemeinsam die acht Kindknoten.
Zundchst wird gepriift, ob neue Arbeitselemente (insert| bzw. insert;) entstehen. Um
mehrfache Bearbeitungen zu verhindern, kann nur einer der acht Threads neue Bottom-
Up Elemente generieren. An dieser Stelle wird auch abgebrochen, wenn der betrachtete
Knoten nicht im relevanten Sektor des Baumes liegt (updateFlag), oder keine Kindknoten
vorhanden sind (isPart). Zeile 9 und 10 initialisieren neu erstellte Knoten mit dem Status
ihres Elternknotens. Die eigentlich Herstellung der Baum-Invariante|beginnt in Zeile 16:
Nachdem sichergestellt ist, dass alle benotigten Konten bereits aktualisiert sind (upda-
teFlag), wird der Zustand des neuen Elternknotens als [[ } Verkniipfung der Kindknoten
gesetzt und sein updateFlag entsprechend entfernt. Ist die Datenabhédngigkeit nicht auf-
gelost, wird das Arbeitselement durch den ersten Thread wieder auf den Arbeitsstapel
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gelegt, und tiber das makeProgress-Flag gespeichert, dass kein Fortschritt erzielt wurde.
Die M-Verknﬁpfung ist effizient tiber die WARP-Funktion __ballot() umgesetzt. Der Algo-
rithmus profitiert vonMemory Coalescing} da auf Knotenelemente immer geordnet tiber
die Thread-ID zugegriffen wird. Weiterhin wird die letzte Baumebene zur Optimierung
ohne Arbeitsstapel abgearbeitet (ab Zeile 12), wobei analog zum beschriebenen Vorgehen
verfahren wird.

Am Ende jeden Durchlaufs miissen die generierten Elemente auf den Arbeitsstapel gelegt
werden, und dabei die Stapel-Invariante erfiillen. Dafiir sind in der computeOffset(insert, insert;)
Funktion die folgenden Summen implementiert:

m]?x(levelk:level“d)

tid—1
offjid = Z inserti + Z insert%
0 . k o tid (A.11)
tid—1 min(level =level*d)—1
Off%zd = Z inserts + Z insert)
=0 i=0

Sie berechnen aus den Flags insert| und insert, der einzelnen Threads die relativen Posi-
tionen off| und off; der neuen Elemente im Arbeitsstapel, so dass diese parallel zurtick-
geschrieben werden konnen. Implementiert sind sie als effiziente Prefixsumme mittels
__ballot() und __popc(), bzw. als zur Laufzeit erzeugte Lookup-Tabelle fiir die min/max
Ausdriicke.
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Algorithmus 7 Load Balancing Propagate

Require: S[n] : WorkItemPropagate, fulfills stack invariant[5.21]
Ensure: S[m] : WorkItemPropagate, fulfills stack invariant/5.21]
1: makeProgress < true
2: whilen > 0 do
3:  n < n-min(#threads/8,n)

4 w < Sin+tid/8| \\ w <L if no item available
5:  node < node(w)[tid mod 8]
6:  makeProgressyg < w #1
7. inserty « isTopDown(w) and level(w) # 1 and tid mod 8 = 0
8: insert « isTopDown(w) and level(w) # 1 and updateFlag(node) and isPart(node)
\\ process work items
9: if isTopDown(w) and hasInvalidState(node) then \\ propagate
10: setState(node, parentState(node))
11:  endif
12:  if isBottomUp(w) and level(w) = 1 and isPart(node) then \\ handle without stack
13: leaf_propagate ()
14: leaf_propagate;()
15:  end if
16:  if isBottomUp(w) then \\ propagate;
17: children <+ node(w)
18: if VO < i < 8| updateFlag(children[i]) = false then \\ assure children are
up-to-date
19: newState + ORg<;<g state(children]i]) \\ disjunction of children
20: setState(parentNode(w), newState)
21: setUpdateFlag(parentNode(w), false)
22: else
23: inserty < tid mod 8 = 0 \\ back on stack
24: makeProgress;;q < false
25: end if
26:  end if

\\ push work items on stack
27: (off), offy, #insert|, #inserty) < computeOffset(insert, inserts)

28: ifinsert) then \\ WorkItemPropagate(node, parent_node, level, state)

29: S[n + off|] < WorkltemPropagate, (childPtr(node), node, level(node) —1,
state(node))

30:  end if

31:  if inserty then S[n + off4] <~ WorkltemPropagate;(w) end if
32:  n < n+ #Finsert) + #inserty

33:  makeProgress < ORo<i<#threads makeProgress; = true

34:  if -makeProgress or #idle > MAX_IDLE then break end if
35: end while

36: if makeProgress then #idle < #idle + 1 end if

372 m<n
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A.7.4. Verwendete Hard- und Software

Um die Laufzeitangaben in [Kapitel 8/in Relation setzen zu konnen, ist hier die verwen-
dete Hardware aufgelistet:

Host-System Workstation PC

e Prozessor: Intel® Core™ i7-4770 4-Kern CPU
e Hauptspeicher: 8 GB DDR3 RAM

Grafikkarte NVIDIA® GeForce® TITAN

Kepler Architektur (GK110)

2688 Kerne (4,709 GFLOPS)

14 Streaming Multiprozessoren zu je 192 Threads (= 6 Warps)

6144 MB GDDR5-Hauptspeicher (384 Bit Speicherinterface, 6 GHz: 288.4 GB/s
Speicherdurchsatz)

e Host-Anbindung iiber eine 16 x PCI-Express 3.0 Schnittstelle

Software Ubuntu 16.04 LTS

e CUDA75
e GCC 4.9 (Optimierungsstufe -O3)
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A.7.5. Unscharfe Priifung von Bitvektor-Voxeln mittels Zeitfenster

Der gelistete Code iteriert in Byte Schritten tiber alle[SSV-IDs|von Vektor v2 und priift da-
bei in einer inneren Schleife alle im Fenster liegenden IDs aus Vektor v1. Dafiir wird das
entsprechende Byte aus v2 in den Puffer geladen und dort bitweise um die Fensterbreite
geshifted. In jedem Durchlauf der inneren Schleife erfolgt eine Bitweise &-Operation mit
dem betrachteten Byte aus v1 und dem verschobenen Byte aus v2.

Algorithmus 8 Bitshifting in der gefensterten Kollisionspriifung.

1
2
3
4
5

10
11

12

14
15
16

18
19

21
22
23
24
25
26
27

28
29
30

32

34
35
36
37
38
39
40
41

uinte4d_t buffer = 0;

const size_t buffer_half = 4%8; // middle of uint64_t

if (m_type_range > buffer_half)

{

printf ("ERROR: Window size for SV collision check must be smaller than %$lu\n",
buffer_half);

}

// Fill buffer with first 4 bytes. We start at byte 1 and not 0 because we’re only
interested in SV IDs
for (size_t byte_nr = 1; byte_nr < 5; ++byte_nr)
{
buffer += static_cast<uint64_t> (v2.bitVector () .getByte (byte_nr x 8)) << (3x8 +
byte_nrx8);
}

// We start at bit 8 and not 0 because we’re only interested in SV IDs
for (uint32_t i = 8; 1 < eVT_SWEPT_VOLUME_END; i+=8)
{

uint8_t byte = 0;
uint64_t byte_1 = static_cast<uint64_t>(vl.bitVector () .getByte(i)) << (buffer_half
-m_type_range);

// Check range for collision
for (size_t bitshift_size=0; bitshift_size <= 2+m_type_range; ++bitshift_size)
{

byte |= (byte_1 & buffer) >> (buffer_half - m_type_range + bitshift_size);

// if ((byte_1 & buffer) != 0)

// {

// printf ("Byte_1 step %u is %1lu, buffer is %$lu, Overlapping: %u\n", 1i/8,
byte_1, buffer, byte);

// }

byte_1 = byte_1 << 1;
}

collisions—->setByte (i, byte);

// Move buffer along bitvector

buffer = buffer >> 8;

if (i < length - buffer_half)

{

buffer += static_cast<uint64_t> (v2.bitVector().getByte (i + buffer_half)) << 56;
}

}

return !collisions->isZero();
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A.7.6. Backtracking fiir Scheduling

Verwendeter Algorithmus zur Bestimmung einer kollisionsfreien Ausfiihrungsfolge bei
der Verwendung mehrerer Roboter:

Algorithmus 9 Backtracking fiir Scheduling.

1 fitMotions ( Robot[] robots )

2 {

3 result = Result.emptyResult ();

4 if( recursiveFit (result, 0, robots.first) )

5 return result;

6 else

7 return Result.emptyResult ();

8 }

10 recursiveFit ( Result result, int timeIndex, Robot currentRobot) )
11 {

12 if( timeIndex >= getNumSlots () )

13 {

14 if ( currentRobot.hasNext () )

15 return recursiveFit ( result, 0, currentRobot.next () );
16 else

17 return true;

18 }

19 foreach( movement in currentRobot.movements)

20 {

21 if ( result.collides (movement, timeIndex) )

22 continue;

23 solution.get (currentRobot) .push_back (movement) ;

24 if( recursiveFit ( result, timeIndex + 1, currentRobot) )
25 return true;

26 solution.get (currentRobot) .pop_back (movement) ;

27 }

28 return false;

29 }
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A.9. Greifplanung

Algorithmus zur lokalen Optimierung der Objektpose innerhalb der Hand wéhrend der
Greifplanung:

Algorithmus 10 Local Grasp Optimizer

Require:

O : Pointcloud of object surface

H : Swept-Volume of grasp

P : Particle defining initial (x, y), (o, 8, y) pose of the object in hand
Ensure:

Ppest : Finger joint angles for best grasp

P: Contains object pose for best grasp

1: O « transform(O, P) \\ Place object at initial pose
2: O « transform(O, y-start) \\ Stick object into hand
3: for xz-shift «+ -max-shift to max-shift do
4:  for y-shift <— 0 mm to 200 mm do \\ Move object out of hand
5: offset <— xz-shift + y-shift
6: #colls < collisionCheckOffset(O, H, offset)
7: if #colls == 0 then
8: 7, #colls + sweptCollisionCheck(O, H, offset)
9: if #colls > #collspes; then
10: #collspeg < Fcolls \\ Local optimum found
11: pose, ., < offset
12: Phest < @
13: end if
14: end if
15:  end for
16: end for

17: return P, Gpet
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