
Reaktive Bewegungsplanung
auf 3D-Sensordaten mittels

GPU-basierter Kollisionserkennung
Untersuchung von hochgradig parallelen Algorithmen für

mobile Serviceroboter

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

Dipl.-Inform. Andreas Hermann

Tag der mündlichen Prüfung: 12. Juli 2018
1. Referent: Prof. Dr.-Ing. Rüdiger Dillmann
2. Referent: Prof. Dr.-Ing. Torsten Kröger

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung -
Weitergabe unter gleichen Bedingungen 4.0 International Lizenz (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.de

Danksagung

Diese Arbeit ist meiner wundervollen Frau Ümmüye gewidmet. Ohne ihre unendliche
Unterstützung wäre es für mich undenkbar gewesen, meine Familie und die vorliegende
Arbeit erfolgreich unter den einen berühmten Hut zu bekommen.
Yildizima teşekkürler!

Die folgenden Inhalte entstanden in den Jahren 2009 bis 2017 während meiner Tätigkeit
als wissenschaftlicher Mitarbeiter in der Abteilung Interaktive Diagnose- und Service-
systeme am Forschungszentrum Informatik in Karlsruhe. Während der gesamten Zeit
konnte ich wichtige Erfahrungen sammeln und mich in einer breiten Vielzahl von The-
mengebieten weiterbilden. Diese Möglichkeiten möchte ich nicht missen. Herrn Prof.
Dr.-Ing. Rüdiger Dillmann danke ich besonders für die Anregung zu dieser Arbeit, die
wissenschaftliche Förderung, die stets vorhandene Diskussionsbereitschaft und für die
Übernahme des Hauptreferates. Für die freundliche Übernahme des Korreferates ge-
bührt mein Dank Herrn Dr.-Ing. Torsten Kröger. Ein besonders großer Dank steht Zhi-
xing Xue zu, für die Einführung in die wissenschaftliche Arbeit während meiner ersten
Jahre am FZI und die wichtige Erkenntnis, dass alle nur mit Wasser kochen. Für viele wert-
volle Gespräche, die zum Gelingen dieser Arbeit beigetragen haben, danke ich auch Prof.
Dr.-Ing. J. Marius Zöllner. Arne Rönnau danke ich dafür, dass er als Abteilungsleiter die
Freiräume zur Promotion geschaffen hat und keine Mühen scheute, das Arbeitsklima
für seine Kollegen so positiv wie möglich zu gestalten. Ebenso fand ich in ihm einen
großen Unterstützer der Voxel-Technologien. Weiterhin wären die praktischen Versuche
dieser Arbeit ohne eine Reihe von herausragenden Studenten nicht möglich gewesen.
Hier möchte ich Sebastian Klemm, Jian Sun, Jörg Bauer, Florian Drews, Matthias Wag-
ner, Klaus Fischnaller, Felix Mauch, Herbert Pietrzyk und Christian Jülg meinen großen
Dank aussprechen. Meinen IDS und TKS Kollegen danke ich für eine tolle Zusammenar-
beit, den Zusammenhalt in stressigen Zeiten sowie für die angeregten Gespräche. Ganz
besonders Danken möchte ich Sebastian Klemm für die gute Freundschaft, sowie Ge-
org Heppner als stetige Quelle guter Laune. Meinen ehemaligen Büronachbarn Steffen
Rühl und Marc Zofka gilt darüber hinaus der Dank für die stets gute Stimmung und den
regelmäßigen Austausch von zuckerhaltigen Nahrungsmitteln.

Für ihre ununterbrochene Unterstützung in allen Belangen des Lebens gilt mein ganz
persönlicher Dank meinen tollen Eltern Eva und Hans-Peter Hermann. Sie geben mir
die Liebe und den Rückhalt, den man sich nur wünschen kann und ermöglichten es mir,
meine Träume umzusetzen. Derselbe innige Dank gilt auch der besten Schwester der
Welt: Svenja.

i

Kurzfassung

In der vorliegenden Arbeit wird die Anwendung von hoch-parallelen Algorithmen zur
Auswertung von 3D-Punktwolken in der Robotik untersucht. Die Zielstellung ist es, es-
sentielle Berechnungen der Kollisionsprüfung und Planung so weit zu beschleunigen,
dass Roboter ein reaktives Verhalten erreichen und somit in einer dynamischen, teils
unbekannten Umgebung eingesetzt werden können. Da die präsentierten Lösungen di-
rekt auf 3D-Sensordaten der Umgebung arbeiten, reduzieren sie die Abhängigkeit auf
a priori bekannte geometrische Modelle, was das Einsatzgebiet erweitert. Die untersuch-
ten Aufgabenstellungen decken alle drei Teilbereiche des traditionellen Sense-Plan-Act-
Zyklus ab und reichen von Bewegungsprädiktion, inverser Kinematik, über Greif- und
Trajektorienplanung bis zur Ausführungsüberwachung.

Aktuelle 3D-Kameras liefern detaillierte geometrische Umweltmodelle in Form von Punkt-
wolken, welche jedoch hohe Anforderungen an den Datendurchsatz der verarbeitenden
Algorithmen stellen. Um hier die benötigte Effizienz zu erreichen, liegt der erste Bei-
trag dieser Arbeit in der Entwicklung unterschiedlicher diskretisierender Datenstruk-
turen auf Voxelbasis, die eine hoch parallele Interpretation der Sensordaten auf Gra-
fikprozessoren ermöglichen. Hervorzuheben ist hierbei der umgesetzte, lastbalancierte
Octree.

Ausgehend von spezialisierten Techniken zur Kollisionsprüfung werden weitere Beiträ-
ge durch Softwarekomponenten geleistet, die es erlauben, unterschiedliche Planungs-
und Überwachungsaufgaben zur Ausführungszeit (also während der Bewegung) zu lö-
sen. Ein Kernaspekt dabei ist die Verwendung von dichten Swept-Volumen zur volu-
metrischen Darstellung von Bewegungstrajektorien. Im Gegensatz zur weit verbreiteten
Dreiecksnetzdarstellung sind diese durch eine Voxeldarstellung sehr effizient zu erstellen
und auf Kollisionen zu evaluieren.

Die im Rahmen dieser Arbeit entwickelten Lösungen wurden in einer OpenSource Soft-
warebibliothek zusammengeführt und sehr ausführlich in unterschiedlichen Szenarien
praktisch evaluiert. Neben den Evaluationsergebnissen sind auch die dafür vom Autor
entwickelten Robotersysteme Teil dieser Arbeit.

iii

Inhaltsverzeichnis

Akronyme ix

Glossar xi

Symbolverzeichnis xv

1. Einführung 1
1.1. Kurzfassung . 3
1.2. Begriffsbildung . 3
1.3. Zielsetzung und Problemstellung . 5
1.4. Einordnung und Wissenschaftlicher Beitrag 7
1.5. Aufbau der Arbeit . 10

2. Stand der Technik 11

3. Heterogene Parallelverarbeitung 17
3.1. Grundlagen . 18

3.1.1. Flynn’s Taxonomie . 18
3.1.2. Parallelisierung auf Aufgaben- und Datenbasis 20
3.1.3. Programmsynchronisation: Daten- und Ressourcenabhängigkeit . 20
3.1.4. Multithreading . 21
3.1.5. Zusammenfassung . 22

3.2. CUDA Praxis . 23
3.2.1. CUDA-Kernel . 24
3.2.2. Grids, Blöcke, Warps und Threads in CUDA 26
3.2.3. Speicherarchitektur . 26
3.2.4. CUDA Intrinsics . 30
3.2.5. Weitere Konzepte der Parallelverarbeitung 30

3.3. Fazit . 33

4. Perzeption und Modellierung 35
4.1. Visuelle Sensorik . 35

4.1.1. Registrierung von Farb- und Tiefendaten 37
4.1.2. Untersuchte Tiefenkameras . 37
4.1.3. Sensordatenverarbeitung . 39
4.1.4. Sensormodell . 40

4.2. Umweltmodell . 40
4.2.1. Oberflächen beschreibende Modelle 41
4.2.2. Zusammengesetzte Primitive und generative Beschreibungen . . . 42
4.2.3. Raumpartitionierende Modelle . 43
4.2.4. Truncated Signed Distance Functions (TSDFs) 45

v

Inhaltsverzeichnis

4.2.5. Auswahl der geeignetsten Modellierung 45
4.3. Voxelumwandlung . 46

4.3.1. Freiraumbestimmung . 47
4.4. Roboter-Modell . 48

4.4.1. Artikulierte Robotermodelle . 48
4.4.2. Voxelmodelle . 50
4.4.3. Selbstausblendung und Eigenkollisionen 51

4.5. Swept-Volumen . 52
4.6. Bewegungsprädiktion . 54

4.6.1. Vorverarbeitung . 57
4.6.2. RGBD-Flow . 57
4.6.3. Segmentierung bewegter Objekte . 58
4.6.4. Tracking . 59
4.6.5. Prädiktion in Form eines Swept-Volumens 60
4.6.6. Unscharfe Kollisionsprüfung . 60
4.6.7. Implementierung . 61
4.6.8. Kamerabewegung . 61
4.6.9. Zusammenfassung . 62

4.7. Simulierte Umgebung . 63
4.8. Fazit . 63

5. Voxel-Datenstrukturen auf der GPU 65
5.1. Voxeltypen . 65

5.1.1. Deterministische Voxel . 66
5.1.2. Probabilistische Voxel . 66
5.1.3. Distanz-Voxel . 67
5.1.4. Bitvektor-Voxel . 68

5.2. Anforderungsanalyse Datenstrukturen . 69
5.3. Voxelkarten . 70

5.3.1. Translation mittels Basisversatz . 71
5.3.2. Voxelkarten mit mehrstufiger Auflösung 72

5.4. Voxelliste . 73
5.5. Octree . 74

5.5.1. Stand der Technik . 75
5.5.2. Umsetzung . 76

5.6. Distanzkarten . 86
5.6.1. Zielstellung . 87
5.6.2. Verwandte Arbeiten . 88
5.6.3. Umsetzung . 89
5.6.4. Zusammenfassung und Vergleich 93

5.7. Visualisierung . 94
5.7.1. Geometriegenerierung aus Voxeldaten 96
5.7.2. Umsetzung . 99
5.7.3. Zusammenfassung . 100

5.8. Fazit . 101

6. Kollisionsdetektion 103
6.1. Taxonomie Kollisionserkennungsverfahren 103

vi

Inhaltsverzeichnis

6.2. Voxelbasierte Kollisionsdetektion . 106
6.2.1. Semantik der Kollisionsprüfung . 107
6.2.2. Kollisionsprüfung Voxelkarte ∩ Voxelkarte 110
6.2.3. Kollisionsprüfung Voxelliste ∩ Voxelliste 111
6.2.4. Kollisionsprüfung Voxelliste ∩ Voxelkarte 112
6.2.5. Kollisionsprüfung Octree ∩ Octree 112
6.2.6. Kollisionsprüfung Octree ∩ Voxelliste 114
6.2.7. Kollisionsprüfung Octree ∩ Voxelkarte 114
6.2.8. Kollisionsprüfung Distanzkarte ∩ Voxelliste 116

6.3. Fazit . 116

7. Bewegungsplanung 119
7.1. Grundlagen . 119

7.1.1. Arbeitsraum, Konfigurationsraum und Planungsraum 120
7.1.2. Graphensuche . 121
7.1.3. Taxonomie der Planungsverfahren 122
7.1.4. Zusammenfassung . 131

7.2. Umgesetzte Planungsverfahren . 132
7.2.1. Überwachung der Planausführung 132
7.2.2. Planung mit Rotations-Swept-Volumen 132
7.2.3. Plattformplanung mit generischen Bewegungsprimitiven 141
7.2.4. Manipulatorarm Planung mit Bewegungsprimitiven 143
7.2.5. Manipulatorarm Planung mit samplingbasierten Verfahren 144
7.2.6. Ganzkörperplanung . 144
7.2.7. Greifplanung . 145

7.3. Fazit . 148

8. Experimentelle Evaluation 149
8.1. CUDA Laufzeitparametrierung . 150
8.2. Voxelkarte . 151
8.3. Octree . 152

8.3.1. Aufbau eines Octrees . 153
8.3.2. Kollisionsprüfung . 154

8.4. Vergleich von Voxel- und Mesh-basierter Kollisionsdetektion 161
8.4.1. Voxel-Swept-Volumen . 161
8.4.2. Prüfung einzelner Posen . 162

8.5. Visualisierung . 165
8.6. Experimente mit stationärem Roboter . 167

8.6.1. Geteilter Arbeitsraum . 167
8.6.2. Samplingbasiertes Planen . 170
8.6.3. Ablaufplanung von mehreren Robotern 172

8.7. Experimente mit mobilen Robotern . 174
8.7.1. Demonstrationssysteme . 175
8.7.2. Planung mit Rotations-Swept-Volumen 177
8.7.3. Planung mit generischen Bewegungsprimitiven 186

8.8. Evaluierung der Bewegungsprädiktion . 191
8.8.1. Datenbasis . 191
8.8.2. Experimente . 191

vii

Inhaltsverzeichnis

8.8.3. Einschränkung und mögliche Erweiterungen 194
8.8.4. Zusammenfassung . 196

8.9. Experimente zur Onlineberechnung von 3D-Distanzkarten 197
8.10. Experimente zur Greifplanung . 204

8.10.1. Datenakquise . 204
8.10.2. Implementierung . 206
8.10.3. Zusammenfassung . 213

8.11. Fazit . 215

9. Zusammenfassung und Ausblick 217
9.1. Zusammenfassung und Beitrag . 217
9.2. Diskussion und offene Probleme . 218
9.3. Ausblick . 219

Anhang 223

A. Appendix 225
A.1. Log-Odd . 225
A.2. CUDA Intrinsics . 225
A.3. Morton-Codes . 226
A.4. Structure-of-Arrays und Arrays-of-Structures 229
A.5. Primitive der Parallelverarbeitung . 230

A.5.1. Präfixsummen auf Threadebene . 230
A.5.2. Parallelsierte Reduktion . 230
A.5.3. Parallelsierte Radix-Sortierung . 231

A.6. Partikelschwarmoptimierung . 232
A.7. Octree . 233

A.7.1. Lastbalancierung (Balance Work) . 234
A.7.2. Schneiden von zwei Octrees (Intersect Octrees) 235
A.7.3. Eingeschränkte Zwei-Phasen-Tiefensuche mit Lastausgleich 236
A.7.4. Verwendete Hard- und Software . 239
A.7.5. Unscharfe Prüfung von Bitvektor-Voxeln mittels Zeitfenster 240
A.7.6. Backtracking für Scheduling . 241

A.8. Visualisierung . 242
A.9. Greifplanung . 243

viii

Akronyme

AABB Axis Aligned Bound Box.
API Application Programming Interface.
BVH Bounding-Volume-Hierarchie.
CPU Central Processing Unit.
CUDA Compute Unified Device Architecture.
DOF Degree of freedom.
EDT Euklidische Distanz Transformation.
EKF Erweitertes Kalman Filter.
FCL Flexible Collision Library.
FPS Frames per Second.
GNAT Geometric Near-neighbor Access Tree.
GP-GPU General-purpose Graphics Processing Unit.
GPU Graphics Processing Unit.
HAL Hardware Abstraction Layer.
HPC High-Performance Computing.
ICP Iterative Closest Point.
MRK Mensch-Roboter-Kollaboration.
OMPL Open Motion Planning Library.
OOBB Object Oriented Bound Box.
OpenGL Open Graphics Library.
OpenMP Open Multi-Processing Library.
PCL Point Cloud Library.
PSO Partikelschwarmoptimierung.
RANSAC Random sample consensus.
RGBD Red, Green, Blue, Depth.
ROS Robot Operating System.
SBPL Search-based Planning Library.
SLAM Simultaneous Localization and Mapping.
SSV-ID Sub-Swept-Volumen-Identifikator.
TCP Tool Center Point.
TSDF Truncated Signed Distance Function.
URDF Unified Robot Description Format.
VBO Vertex-Buffer Object.

ix

Glossar

Adero (Advanced Dexterous Robot) ist ein mobiler, zweiarmiger Roboter, der vom Au-
tor zu Testzwecken als Vorgänger von Immp entwickelt wurde.

Anytime Algorithmus ist ein iterativer, approximierender Algorithmus, der nach jedem
Durchlauf valide Ergebnisse bereitstellt, und somit jederzeit abgebrochen werden
kann. Mit zunehmenden Iterationen nähert sich das Ergebnis dem Optimum.

Baum-Invariante beschreibt den eindeutigen, gültigen Zustand eines gewurzelten Bau-
mes, in dem alle inneren Knoten den ihren Kindknoten entsprechenden, zusam-
mengefassten Zustand besitzen. Siehe Definition 14.

Block ist eine Einheit aus CUDA Threads, die synchron einen Kernel ausführt und sich
einen gemeinsamen Speicher teilt.

CUDA ist eine Programmiertechnik mit einer gleichnamigen Laufzeitumgebung, mit der
Algorithmen für GPUs compiliert und auf ihnen ausgeführt werden können. CU-
DA wird von Nvidia exklusiv für Grafikkarten der eigenen Marke entwickelt.

CUDA-Thread führt einen Kernel auf einer Recheneinheit (Core) der GP-GPU aus. CU-
DA Threads werden in Blöcken gestartet, in denen sie synchron ablaufen und einen
gemeinsamen Speicher nutzen.

Device ist die physische und logische Einheit aus GP-GPU, ihrem Speicher, und allen
weiteren Komponenten, die auf einer Grafikkarte verbaut sind. Da das Device nicht
eigenständig nutzbar ist, benötigt es einen Host, also ein Computersystem, in dem
es läuft.

Endeffektor ist das Werkzeug am Ende eines robotischen Armes, mit dem Objekte ge-
griffen oder manipuliert werden.

Erweitertes Kalman Filter ist eine nichtlineare Erweiterung des Kalman Filters, die es
erlaubt, nichtlineare Systemmodelle zu schätzen.

Euklidische Distanz Transformation beschreibt eine Rechenvorschrift und ein Muster
zur Anwendung auf die Elemente einer Datenstruktur. Dient zur Berechnung der
euklidische Distanz zu einem anderen Element der Datenstruktur.

GP-GPU ist ein Grafikprozessor, der für generische Berechnungen genutzt werden kann.

GPU-Voxels ist die im Verlauf dieser Dissertation entwickelte Open Source Software"=Bibliothek,
die hoch parallelisierte Algorithmen und Datenstrukturen zur Arbeit mit Voxeln
zur Verfügung stellt.

Grid besteht aus mehreren CUDA Blöcken, die ohne Synchronisierung auf einer GP-
GPU ausgeführt werden.

xi

Glossar

Grid-Stride-Loop sind for-Schleifen in CUDA Kerneln, die Arbeit im Kernel serialisie-
ren, falls zu wenige Threads für eine vollständige Parallelisierung gestartet wurden.
Siehe Algorithmus 1.

HoLLiE (House of Living Labs intelligent Escort) ist ein mobiler Roboter mit anthropo-
matischem Torso, der vom Autor entwickelt und in dieser Arbeit als Testplattform
verwendet wurde.

Host ist das Computer-System, welches eine GP-GPU beinhaltet, und diese als unterge-
ordnete Einheit (Device) nutzt, um CUDA Berechnungen auszuführen.

Immp (Industrial mobile manipulation plattform) ist ein mobiler, zweiarmiger Roboter,
der vom Autor entwickelt und in dieser Arbeit als Testplattform verwendet wurde.
Der Roboter verfügt über eine leistungsstarke on-board GP-GPU.

Kernel bezeichnet eine in sich abgeschlossenen Funktion, die in einem CUDA-Kontext
auf der GP-GPU zur Ausführung gebracht wird. Die Parallelisierung des Kernels
mit mehreren Threads kann über Aufrufparameter gesteuert werden.

Kinematische Konfiguration beschreibt die Anordnung aller beweglichen Achsen ei-
nes Roboters zueinander und somit seine Beweglichkeit. Nicht zu verwechseln mit:
Roboterkonfiguration.

KinFu ist die OpenSource Implementierung von Kinect Fusion, einem Algorithmus zur
Rekonstruktion von Oberflächenmodellen aus 3D-Punktwolken, die mit bewegten
Sensoren aufgenommen werden.

Memory Coalescing beschreibt ein Speicher-Zugriffsmuster, bei dem mehrere Threads
auf im Speicher hintereinander liegende Elemente zugreifen und somit den Speicher-
bus / Cache effizient nutzen .

Morton-Code ist die Linearisierung einer n-dimensionalen Adressierung, die bei einem
n-ären Baum indirekt den Weg von der Wurzel zu einem Blatt beschreibt..

Octree ist eine 8-äre Baum-Datenstruktur mit einer einzelnen Wurzel. Jeder Knoten im
Baum weist somit entweder acht direkte Nachfolger oder keine Nachfolger (Blatt-
knoten) auf.

OpenGL ist eine Plattform- und Programmiersprachen-übergreifende Programmierschnitt-
stelle zur Darstellung von 2D und 3D-Szenen. GPUs bieten eine Hardwarebeschleu-
nigung für OpenGL .

Partikelschwarmoptimierung ist eine biologisch motivierte Herangehensweise um nicht-
lineare Optimierungsprobleme zu lösen. Ähnlich dem Schwarmverhalten in der
Natur wird dabei eine Population von potentiellen Lösungen (Partikel) iterativ
durch den Suchraum bewegt und über eine Bewertungsfunktion beurteilt.

Prefixsumme ist ein Verarbeitungsprimitiv der Parallelverarbeitung, bei dem über ei-
ne Folge von Eingabedaten iteriert wird und sukzessive ihre Partialsummen (oder
das Ergebnis anderer binärer Operationen) gebildet werden. Auch Scan genannt. (s.
Anhang).

Provider ist das Haupt-Programm in GPU-Voxels, das Berechnungen durchführt, und
dessen Daten durch den Visualizer angezeigt werden können.

xii

Glossar

Raycasting beschreibt Verfahren zur Abtastung eines simulierten Licht- oder Sichtstrah-
les, um synthetische Bilder zu generieren oder Freiräume zu bestimmen.

Reduktion ist ein Verarbeitungsprimitiv der Parallelverarbeitung, bei dem eine Folge
von Eingabedaten paarweise rekursiv zu einem einzigen Ergebniswert zusammen-
gefasst wird (s. Anhang).

RGBD-Kamera ist eine Kombination aus zwei Sensoren in einem Gehäuse: Durch die
gleichzeitige Auswertung der Daten einer Farbkamera (RGB: Red Green Blue) und
eine Tiefenkamera (D: Depth) können eingefärbte 2,5 dimensionale Abbildungen
einer Szene erstellt werden.

Roboterkonfiguration beschreibt den Zustand aller beweglichen Achsen eines Roboters
und somit seine Pose. Nicht zu verwechseln mit: Kinematische Konfiguration.

Sense-Plan-Act-Zyklus beschreibt den typischen Ablauf von Roboterhandlungen: Sen-
sorielle Wahrnehmung und Analyse der Daten. Basierend darauf eine Planung von
Aktionen und letztendlich die Ausführung der Pläne. Die Ausführung geschieht
somit blind.

Sub-Swept-Volumen-Identifikator ist ein Bitmuster, das in Voxeln gespeichert wird, um
ihre Zugehörigkeit zu einer oder mehreren Entitäten zu kennzeichnen.

Swept-Volumen entspricht dem aufintegrierte Volumen im Raum, das von einem Ob-
jekt durch seine Bewegung überstrichen wird.

Vertex-Buffer Object ist ein Speicherbereich der in OpenGL genutzt wird, um Eckpunk-
te und andere Informationen über mehrere Zeichenaufrufe hinweg zu speichern.
VBOs dienen zur Entkopplung der Daten-Bereitstellung und dem eigentlichen Zeich-
nen. Im GPU-Voxels-Visualizer liegen VBOs im CUDA Shared Memory.

Visual Servoing ist ein Kamera gestützter Regelungsprozess, bei dem ein Endeffektor
relativ zu einem detektierten Objekt positioniert wird.

Visualizer ist ein eigenständiges Programm zu Visualisierung von Daten in GPU-Voxels.
Es benötigt einen laufenden Provider, dessen Daten interpretiert werden.

Voxel bezeichnet ein kubisches Volumen im dreidimensionalen Raum, das die kleinste
Einheit der in dieser Arbeit verwendeten Raumpartitionierung darstellt. Ein Vo-
xel kann unterschiedliche Zustände annehmen und einer oder mehreren Entitäten
zugeordnet werden. Er ist das Pendant des zweidimensionalen Pixel.

Voxel-Bedeutung entspricht der semantischen Interpretation von Voxeldaten. Haupt-
sächlich als Bitmuster in Bitvektor-Voxeln gespeichert, oder als Wahrscheinlich-
keitsgrenze bei probabilisitischen Voxeln definiert.

Voxeltyp bezeichnet die Art der Implementierung eines Voxels. Je nach Typ können un-
terschiedliche Informationen pro Voxel gespeichert werden.

Voxelumwandlung bezeichnet das Einfügen einer Punktwolke in eine Voxel"=Datenstruktur,
wobei die Belegtheitsinformationen der Voxel, in welchen die Punkte liegen, aktua-
lisiert werden.

Warp bestehend aus 32 Threads. Ist die Menge an Threads, die ein Prozessorkern der
GPU gleichzeitig ausführt.

xiii

Symbolverzeichnis

P bezeichnet eine Punktwolke, die aus den Punkten pi besteht.

�‡(V) ist der Operator, der einen Voxel V durch die Operation ‡ aktualisiert.

q beziffert die Anzahl an parallel ablaufenden Threads innerhalb eines Kernels.

lVoxel beschreibt die Kantenlänge eines Voxel.

Ψ bezeichnet den Zustand eines Voxels, der über die voxeltypspezifische Nutzdaten re-
präsentiert wird.

‡ ist der Operator, der bei einer Aktualisierung auf die Nutzdaten Ψ eines Voxels ange-
wendet wird.

�(M,P) ist der Operator, mit dem die Voxel-Datenstruktur M durch die Punktwolke P
aktualisiert wird. Verwendet den �‡(V)-Operator.

�(V) ist der Operator, der als wahr ausgewertet wird, wenn der Voxel V als belegt zu
interpretieren ist. Kann weitere, vom Voxeltyp abhängige Parameter aufweisen.

& ist der Operator, der zwei Voxel mittels �(V) auf Belegtheit überprüft und der als
wahr ausgewertet wird, wenn beide Eingabevoxel belegt sind. Der Operator ist je
nach Voxel-Datentyp und Semantik unterschiedlich implementiert und parametri-
siert.

‖ ist der Operator, der zwei Voxel mittels�(V) auf Belegtheit überprüft und der als wahr
ausgewertet wird, wenn einer der Eingabe-Voxel belegt ist. Der Operator ist je nach
Voxel-Datentyp und Semantik unterschiedlich implementiert und parametrisiert.
Im Octree bestimmt er den Status eines Elternknotens aus den Kindknoten.

∩ ist der Operator, der zwei Voxel-Datenstrukturen überlagert und welcher die Menge
der Voxel findet, die nach einem gegebenen Belegtheitskriterium in beiden Daten-
strukturen belegt sind. Dafür werden paarweise alle Voxel mittels dem &-Operator
verglichen.

∪ ist der Operator, der die Vereinigung zweier Punktwolken oder Voxel-Datenstrukturen
(mittels ‖ -Operator) bildet. Doppelte Einträge werden dabei entfernt.

VO ist die Menge aller Voxel, die von einem Objekt O geschnitten werden.

∆tsv ist die Zeitdauer, die einem Sub-Swept-Volumen-Identifikator (SSV-ID) entspricht.

SE (2) ist eine spezielle euklidische Gruppe in der Ebene, die Translationen und Rotatio-
nen enthält (3 DOF).

SE (3) ist eine spezielle euklidische Gruppe im dreidimensionalen Raum, die Translatio-
nen und Rotationen enthält (6 DOF).

xv

1. Einführung

Nicht erst seit der Prägung des Begriffs „Roboter“ durch Čapec streben Menschen nach
einer intelligenten und universellen Maschine, die sie in möglichst allen Belangen des Le-
bens unterstützen kann. Ein unbändiger Enthusiasmus und Erfindungsreichtum führten
zu immer gewagteren Vorhersagen, zu was und vor allem wann Roboter dazu in der La-
ge sein sollten. Doch der Durchbruch ist leider auch zu Zeiten des Deep Learnings noch
immer nicht erreicht. Daher soll an dieser Stelle auf Zukunftsprognosen verzichtet und
stattdessen die aktuellen Themen der praktischen Robotik kurz beschrieben werden, die
diese Arbeit motivieren:

Das Einsatzspektrum von Robotern erweitert sich stetig. Während die Politik in einer
Industrie 4.0 1 die Zukunft der (dann individualisierten) Produktion sieht, in der Ma-
schinen untereinander und mit ihren Produkten in einem Internet der Dinge kommuni-
zieren, spricht die Industrie momentan erst von der Dritten Revolution in der Robo-
tik 2. Diese bringt die mobile Manipulation in die Produktionsanlagen und soll so die
nicht gewinnschöpfenden 25% der Produktionszeit, die aktuell für Materialfluss benötigt
werden, eklatant verkürzen, indem eine Bearbeitung im Materialfluss möglich wird (frei
nach Peter Klüger, KUKA Roboter GmbH, Juli 2015). Dafür müssen sich die Maschinen in
ihrem Umfeld frei bewegen können, was insbesondere eine kollisionsfreie Bewegungs-
planung in mehr oder minder unstrukturierter Umgebung erfordert. In der Forschung
wird daher bereits seit vielen Jahren die vierte Revolution vorbereitet, welche die ko-
gnitiven Fähigkeiten der Roboter auf eine neue Ebene heben soll. Auch hier gilt es, die
Herausforderungen, die bei der Verarbeitung der immensen Datenmengen entstehen, zu
bewältigen.

Kollisionsfreie Bewegungsplanung und die für eine Arbeitsraumüberwachung erforder-
liche effiziente Datenverarbeitung bilden die Grundlage für eine sichere Koexistenz von
Menschen und Robotern und erlaubt deren zaunlosen Betrieb. Doch erst die Kombina-
tion aus Leichtbaurobotik und inherenter bzw. intrinsischer Nachgiebigkeit ermöglicht
eine sichere Kooperation zwischen Mensch und Maschine.

Die nun angestrebte industrielle und somit auch robotische Revolution zielt jedoch auf
eine echte Kollaboration zwischen Mensch und Roboter, für die noch einige essentielle
Technologien fehlen und zu welcher diese Arbeitet einen Beitrag leisten möchte.

1Vorangegangen waren die erste industrielle Revolution mit der Einführung dampfbetriebener, mechani-
scher Produktionsanlagen gegen Ende des 18. Jahrhunderts. Mit der Wende zum 20. Jahrhundert folgte
die zweite industrielle Revolution, die eine Massenproduktion von Gütern mit Hilfe elektrischer Energie
und Arbeitsteilung (Fordismus, Taylorismus) erlaubte. Ab Mitte der 70er Jahre und bis heute andauernd
sorgt der Einsatz von Elektronik und IT in der Automatisierung von Produktionsprozessen für die dritte
industrielle Revolution.

2Eine erste Revolution war die eigentlich Einführung der Robotik in der Automatisierungstechnik. Diese
ging mit dem Einsatz von komplexer Sensorik in einer zweiten Revolution in die sichere, sensitive und
adaptive Automatisierung über.

1

1. Einführung

(a) Koexistenz (b) Kooperation (c) Kollaboration

Abb. 1.1.: Stufen der Zusammenarbeit zwischen Mensch und Roboter.

Klassische Sicherheitssysteme wie Lichtgitter, Laserscanner, kapazitive Annäherungssen-
soren, taktile Böden und Kraft- / Momentensensoren beschränken die Produktivität von
Robotern enorm, da sie zum einen sehr große Schutzbereiche um die Maschinen erfor-
dern und zum anderen, im Falle einer Verletzung dieser Bereiche, einen Stillstand des
Roboters auslösen. Aus diesem Grund stoppen Roboter in Szenarien der Mensch-Ro-
boter-Kollaboration (MRK) meist erst kontaktbasiert. Dies ist möglich, da sich die Ma-
schinen so langsamen bewegen, dass sie bei einem physischen Kontakt mit einer Person
schnell und sicher abgebremst werden können. Ein Kontakt mit dem Roboter ist jedoch
weder angenehm für den Menschen noch ist dieser effizient, da er zu einem komplet-
ten Stillstand und Wiederanlauf führt. Die Ansätze und Techniken aus der DIN EN ISO
10218-1 und DIN EN ISO 10218-2, die die Anforderungen für inhärent sichere, kollabo-
rative Industrieroboter festgelegen und die grundlegenden Gefährdungen und Risiken
beschreiben, sind im Hinblick auf ihre Effizienz unzureichend.

(a) Optisch (b) Kapazitiv (c) Haptisch

Abb. 1.2.: Aktuelle Kollisionserkennungsverfahren

Um eine höhere Effizienz in der im Bereich der MRK zu erreichen, sollten Kollisionen
nicht nur erkannt, sondern antizipiert werden und so eine sinnvolle Behandlung ermög-
lichen. Für eine solche proaktive Kollisionsvermeidung ist eine visuelle Perzeption zur
Planung und Überwachung von kollisionsfreien Bahnen ein vielversprechender Ansatz.
Daher sind in dieser Arbeit ausschließlich Kollisionserkennungsverfahren von Interesse,
die mit Daten aus einer visuellen 3D-Perzeption arbeiten. Nur sie erlauben es, Hindernis-
se bereits aus der Distanz detailliert und mit hoher Bildrate zu erkennen, um frühzeitig
auf sie reagieren zu können, und somit physische Kollisionen zu verhindern. Dies macht
den Unterschied zwischen einem einfachen Industrieroboter und dem kollaborierenden
Assistenten (CoBot) aus und kann den Wunsch nach sicheren, geteilten Mensch-Roboter-
Arbeitsräumen erfüllen.

2

1.1. Kurzfassung

Durch reaktive Verhalten, die geplante Bewegungen in dynamischen Umgebungen an-
passen können, steigt nicht nur die Effizienz eines Systems, sondern auch das vermittelte
Sicherheitsgefühl. Die somit geschaffene höhere Akzeptanz erhöht letztendlich die Ergo-
nomie eines geteilten Arbeitsplatzes für den Mitarbeiter und sollte ein langfristiges Ziel
der Robotik darstellen.

1.1. Kurzfassung

Um in einer teilweise unbekannten Umgebung eine reaktive Planung auf Basis von 3D-
Sensordaten zu ermöglichen, wird in dieser Arbeit die GPU-Voxels Softwarebibliothek
entworfen. Sie basiert auf einer Kollisionsdetektion durch die hoch parallele Überlage-
rung zweier Voxel-Datenstrukturen im Graphics Processing Unit (GPU) Speicher. Der
klassische Fall ist in Abb. 1.3 zu sehen: Dabei enthält eine der Datenstrukturen das Um-
weltmodell aus 3D-Sensordaten, während die zweite ein Egomodell des Roboters und
seiner Bewegungen beinhaltet. Eine leere Schnittmenge als Ergebnis der Überlagerung
bedeutet dabei Kollisionsfreiheit, wohingegen eine nicht leere Menge das in Kollision lie-
gende Volumen repräsentiert. Unterschiedliche Datenstrukturen und darauf abgestimm-
te Methoden zur Bestimmung ihrer Schnittmengen bzw. Befüllung werden untersucht.
Aufbauend auf der GPU-Kollisionsdetektion können dann unterschiedliche, spezialisier-
te Algorithmen zur Bewegungsplanung entwickelt werden.

(a) Egomodell (b) Umweltmodell (c) = (a) ∪ (b) (d) = (a) ∩ (b)

Abb. 1.3.: Zwei Voxel-Datenstrukturen und das Ergebnis des Vereinigungs- und Schnitt-
Operators zur Kollisionsdetektion.

1.2. Begriffsbildung

Zu besseren Einordnung der vorliegenden Arbeit sollen zunächst die wichtigsten Begriff-
lichkeiten definiert werden:

Begriffsbildung Kollisionsdetektion: Flexibel einsetzbare Roboter müssen in der La-
ge sein, sich kollisionsfrei in ihrer Umwelt zu bewegen. Um Kollisionen verhindern zu
können, müssen diese zunächst auf Basis von simulierten Situationen erkannt werden.

3

1. Einführung

Hierbei werden Momentaufnahmen einer Szene, bestehend aus Umwelt und Roboter
miteinander überlagert. Die Kollisionserkennung findet also auf statischen Daten statt
und kann folglich auch nur Aussagen über einzelne Zeitpunkte bzw. Konstellationen in
der Szene liefern. Dabei können auch Umweltdaten aus Sensoren berücksichtigt werden.

Definition 1. Die Kollisionserkennung oder Kollisionsdetektion ermittelt,
ob sich zwei Entitäten zur selben Zeit am selben Ort befinden und somit ei-
ne Kollision vorliegt. Kollisionen können auch Eigenkollisionen einer Entität
mit sich selbst beinhalten. In dieser Arbeit geschieht die Kollisionserkennung
innerhalb von Simulationen und bezieht sich somit nicht auf die Detektion
physischer Kontakte.

Begriffsbildung Kollisionsvermeidung: Da Roboter ihre auszuführenden Bewegun-
gen im Voraus exakt kennen, kann die Simulation der Kollisionserkennung auch zukünf-
tige Zustände des Roboters auf Zusammenstöße mit dem aktuellen Zustand der Umwelt
überprüfen. Somit lassen sich bereits vor der Ausführung Probleme mit statischen Hin-
dernissen erkennen und vermeiden, indem der Roboter rechtzeitig gestoppt wird. Neben
der binären Entscheidung über eine Kollision können zusätzlich auch Distanzen zu Ob-
jekten oder Kollisionswahrscheinlichkeiten betrachtet werden, die bei der Vermeidung
von Kollisionen helfen.

Definition 2. Bewegt sich ein Roboter in einer veränderlichen Umgebung oder
ist sein Umweltwissen nicht vollständig, sollte er über Strategien zur Kolli-
sionsvermeidung verfügen. Sie ermöglichen es, auf Basis eines Modells der
eigenen Bewegungsbahn (Egotrajektorie) noch vor Eintritt einer Kollision Ge-
genmaßnahmen einzuleiten. Zur Kollisionsvermeidung zählt auch die Mini-
mierung der Kollisionswahrscheinlichkeit, beispielsweise über die Maximie-
rung des Abstandes zu Hindernissen.

Begriffsbildung Bewegungsplanung: Durch die Evaluierung vieler hypothetischer
Zustände oder Bewegungen kann ein Roboter eine Bewegungsabfolge generieren, die
ihn an Hindernissen vorbei und zu einem konkreten Ziel führen.

Definition 3. In der Robotik stützt sich die Bewegungsplanung auf die Kol-
lisionsdetektion, um simulierte Bewegungen zu evaluieren. Das Ziel ist es,
einen Agenten von einem Start-Zustand in einen Ziel-Zustand zu überfüh-
ren, ohne dabei Kollisionen hervorzurufen. Mehr als 90% der Berechnungszeit
für die Planung einer Bewegung in realistischen Umgebungen sind dabei der
Kollisionsprüfung geschuldet [46]. Bewegungen können weiterhin nach un-
terschiedlichen weichen Kriterien optimiert werden, wobei jedoch immer das
harte Kriterium der Kollisionsfreiheit gewährleistet sein muss.

4

1.3. Zielsetzung und Problemstellung

Begriffsbildung Kollisionsprädiktion: Da sich Bewegungsplanung und Kollisionser-
kennung zunächst auf statische Momentaufnahmen der Umwelt stützen, erweist sich
dieses Vorgehen in dynamischen Szenen jedoch nur bedingt als geeignet, da Kollisionen
erst erkannt werden, wenn sich Hindernisse bereits in der Bewegungsbahn des Roboters
befinden. Verfügt der Roboter jedoch über Informationen zu seiner eigenen Dynamik
und zu derjenigen des Hindernisses, kann er Kollisionen vorhersagen, die mit einer ge-
wissen Wahrscheinlichkeit zu einem späteren Zeitpunkt auftreten werden und proaktiv
darauf eingehen.

Definition 4. Wurde eine Bewegung eines Hindernisses über eine gewisse Zeit
beobachtet, kann eine Kollisionsprädiktion stattfinden. Diese detektiert und
verfolgt dynamische Entitäten und nutzt ein Bewegungsmodell, um ihre zu-
künftige Trajektorie vorherzusagen. Überschneidet sich die geplante Egotra-
jektorie mit der vorhergesagten Hindernistrajektorie, kann eine Kollision prä-
diziert werden.

Begriffsbildung reaktives Verhalten: Weiterhin ist es in dynamischen Umgebungen
unabdingbar, schnell zu planen, beziehungsweise Pläne dynamisch anzupassen, da die-
se in einem typischen Sense-Plan-Act System sonst korrumpiert sein können, bevor sie
überhaupt zur Ausführung gebracht werden. Rein reaktive Systeme hingegen können
keine global optimierten Lösungen liefern und sich in lokalen Minima verfangen. Daher
werden Planer meist mit reaktiven Ansätzen kombiniert. Je weiter dabei die Grenze zwi-
schen deliberativer Planung und reaktiver Ausführung in Richtung einer onlinefähigen
Planung verschoben wird, desto deterministischer fallen die Ergebnisse aus.

Definition 5. Sind die Verfahren der Kollisionserkennung und Kollisionsver-
meidung an die Dynamik der Umgebung angepasst, kann ein Roboter ein re-
aktives Verhalten bei gleichzeitig vollem Determinismus zeigen. Im optima-
len Fall ist seine Planung schnell genug, um mit Veränderungen in der Umwelt
umzugehen, ohne dafür seine Bewegung zu stoppen.

1.3. Zielsetzung und Problemstellung

Mit den definierten Begriffen kann nun die Zielsetzung dieser Arbeit beschrieben wer-
den:

Forschungsziele. In der Arbeit sollen Planungsysteme entwickelt werden,
welche es erlauben, einen Roboter in einer dynamischen, teils unbekann-
ten Umgebung einzusetzen. Voraussetzung hierfür ist eine hoch performante
Kollisionsprüfung auf Basis von 3D-Sensordaten, die dem Roboter eine re-
aktive Planung ermöglicht. Dafür sollen ermittelte Bewegungspläne antizi-
pierend auf Kollision mit dynamischen Hindernissen überwacht werden. Bei
Bedarf sind die Pläne an wechselnde Umgebungsbedingungen zu adaptieren,
indem kritische Teile umgeplant werden, oder auf alternative Pläne ausgewi-
chen wird, ohne dafür die Ausführung zu stoppen.

5

1. Einführung

Aus diesen Zielen lassen sich mehrere Problemstellungen ableiten: Zunächst wird eine
passende Perzeption benötigt, um die Umwelt wahrzunehmen. Diese muss zwangsläufig
dreidimensionale Daten liefern, da sich Mensch und Roboter im Raum bewegen. Auch
die Rate, mit der diese Informationen aktualisiert werden, muss adäquat sein, um Ände-
rungen der Umwelt rechtzeitig erkennen zu können. Eine Sensorik, die diese Anforde-
rungen erfüllt, ist in Form moderner 3D-Kameras vorhanden und kann daher als gegeben
angenommen werden. Die zu verarbeitende Informationsmenge aus der 3D-Perzeption
ist jedoch so umfangreich, dass ihre sequentielle Verarbeitung auf aktueller Hardware an
Durchsatzgrenzen stößt. Daher verwendet diese Arbeit Parallelprozessoren mit einem
sehr hohem Parallelisierungsgrad und beschäftigt sich folglich mit den Fragen:

Forschungsfrage 1. Welche Algorithmen der Verarbeitungskette zur Interpre-
tation von 3D-Daten können effizient parallel ablaufen?

Weiterhin müssen die gewonnenen Daten für ihre Interpretation in eine Repräsentation
umgewandelt werden, die den Anforderungen unterschiedlicher Kollisionsprüfungsver-
fahren gerecht wird, und die einen parallelen Zugriff ermöglicht. Hierfür hat sich die
Klasse der raumpartitionierenden Repräsentationen als geeignet erwiesen, deren Vor-
und Nachteile gegenüber etablierten Modellen auf Basis von Dreiecksnetzen aufgezeigt
werden sollen.

Forschungsfrage 2. Welche Vor- und Nachteile haben raumpartitionierende
Repräsentationen gegenüber Oberflächenmodellen bei der Verarbeitung von
3D-Daten zur Kollisionserkennung?

Nach der Beantwortung dieser Frage sollen die spezifischen Eigenschaften mehrerer kon-
kreter Datenstrukturen untersucht werden, um Ego- und Umwelt-Modell je nach An-
wendungsszenario passend abbilden zu können. Hierbei müssen Speicherverbrauch ge-
gen Berechnungsgeschwindigkeit entsprechend der zu modellierenden Daten aufgewo-
gen werden. Weiterhin muss die Datenstruktur es ermöglichen, örtliche, zeitliche und
semantische Informationen zu speichern.

Forschungsfrage 3. Welche Datenstrukturen, die einen parallelen Zugriff er-
lauben, eignen sich zur Speicherung dynamischer raumpartitionierender 3D-
Repräsentationen? Welche Vorteile können bei der Kollisionserkennung in un-
terschiedlichen Anwendungszenarien aus ihren spezifischen Eigenschaften
gezogen werden?

Aufbauend auf den Datenstrukturen und dazu passenden Algorithmen sollen schließlich
Planungsverfahren entwickelt werden:

Forschungsfrage 4. Welche Verfahren zur Bewegungsplanung können von ei-
ner hochparallelen Kollisionserkennung profitieren? Welche Vorteile entste-
hen durch die Verwendung von Swept-Volumen zur Abbildung von Bewe-
gungen?

Am Ende der Arbeit wird die Praxisrelevanz der entwickelten Lösungen hinterfragt. Die
Evaluation von General-purpose Graphics Processing Unit (GP-GPU)s in der Robotik
wird dabei an zahlreichen Beispielen durchgeführt, die in Abb. 1.4 in einen typischen
Sense-Plan-Act-Zyklus eingeordnet sind.

6

1.4. Einordnung und Wissenschaftlicher Beitrag

Forschungsfrage 5. Erlaubt der Einsatz der entwickelten hochparallelen Ver-
fahren die Planung von Roboterbewegungen in dynamischen Umgebungen?
Auf welche anderen typischen Robotik-Probleme lassen sich die Ergebnisse
dieser Arbeit anwenden?

Abb. 1.4.: Einordnung der bearbeiten Themengebiete in den Sense-Plan-Act-Zyklus.
GPU-Voxels stellt die Kernalgorithmen, Datenstrukturen und Werkzeuge wie
eine Visualisierung für alle Aufgaben bereit.

1.4. Einordnung und Wissenschaftlicher Beitrag

Die Generierung von kollisionsfreien Bewegungen ist in der Robotik seit jeher eine fun-
damentale Herausforderung. Entsprechend groß ist das Feld verwandter Arbeiten in den
Bereichen Kollisionsprüfung, Planung und reaktiver Verfahren, auf die im folgenden Ka-
pitel eingegangen wird. Während die Entwicklung der Planungsverfahren rasante Fort-
schritte durchlaufen hat, ergaben sich bei der Modellierung der Umwelt und den darauf
aufbauenden Verfahren zur Kollisionserkennung wesentlich weniger Änderungen. Der
dominierende Anteil an Kollisionsprüfungsverfahren arbeitet auf Dreiecksnetzen und
Hierarchien aus Hüllkörpern, deren Generierung aus Sensor-Punktwolken einen erheb-
lichen Berechnungsaufwand erfordert. Somit werden diese Verfahren bevorzugt im Zu-
sammenhang mit a priori bekannten Modellen eingesetzt, deren Geometrien statisch sind
und die zur Laufzeit lediglich ihre Pose ändern.

Im Gegenzug herrscht ein Defizit bei der Generierung von Bewegungen in Umgebungen,
die erst während der Aktivität des Roboters sensorisch erfasst werden: Bei der Verarbei-
tung von Punktwolkendaten mit Hilfe von diskretisierenden Datenstrukturen reduzie-
ren viele Verfahren aus dem aktuellen Stand der Technik die Problemstellung auf 2 oder
2,5 Dimensionen, um hochauflösende Sensordaten schritthaltend verarbeiten zu können.

7

1. Einführung

Verfahren, die dagegen dreidimensionale Belegtheitskarten erstellen, müssen die anfal-
lenden Datenmengen entweder in ihrer räumlichen oder zeitlichen Auflösung beschrän-
ken, um echtzeitfähig zu sein. Daraus leitet sich der direkte Bedarf nach neuen, paralle-
lisierten Herangehensweisen ab, um nicht nur in robotischen Anwendungen performan-
ter mit hochauflösenden Punktwolken zu arbeiten und Kollisionen zwischen ihnen zu
bestimmen. Zwar ist die Verarbeitung von a priori gegebenen Volumendaten auf Paral-
lelprozessoren weit verbreitet, allerdings existieren nur sehr wenige Arbeiten, die spei-
chereffiziente, volumetrische Modelle zur Laufzeit aufbauen, da die benötigten dynami-
schen Datenstrukturen eine Herausforderung auf solcher Hardware darstellen. Weiterhin
existieren auch nur wenige Arbeiten, die Swept-Volumen heranziehen, um die Planung
und Ausführungsüberwachung zu verbessern, da die Generierung von Sweeps auf Basis
von Dreiecksnetzen sehr rechenintensiv ist, und sich daher nicht für Echtzeitverarbeitung
eignet. Ein weiterer Schwachpunkt aktueller Planungsverfahren ist die Nutzung unter-
schiedlicher Modelle für die Trajektorienplanung und die Ausführungsüberwachung.
Um hier fehleranfällige Redundanzen zu vermeiden, sollte nur ein einziges einheitliches
Modell in allen drei Phasen des Sense-Plan-Act-Zyklus zum Tragen kommen.

Die vorliegende Arbeit setzt an allen gelisteten Problemen an, indem sie eine Voxelmo-
dellierung auf GP-GPUs realisiert, die sowohl für die Trajektorienplanung als auch für
die Ausführungsüberwachung nutzbar ist. Weiterhin wandelt sie etablierte Algorithmen
der Robotik, insbesondere Planungsverfahren so ab, dass sie das volle Potential der par-
allelisierten Kollisionsprüfung ausschöpfen. Alle weiteren abgedeckten Themengebiete
finden sich in Abb. 1.4.

G
PU

K
on
te
xt

H
os
t
K
on
te
xt

Punktwolken
Sensoren

Visualisierung
oGL-VBO

Kollisionsprüfung

Bewegungs-
Planer

Roboter
HAL

Schnitt Operator ∩

AktualisierungsOperator

<Voxelliste> Roboter

<Octree> Umwelt

<Voxelkarte> Swept-Volumen

R
ob
ot
er
En
ti
tä
te
n

Abb. 1.5.: Übersicht über die grundlegenden Software-Module, aufgeteilt in GPU (grün)
und Host (blau) Komponenten. Daten, die im GPU-RAM liegen sind hellgrün
dargestellt.

Bei einer Einordnung anhand der NASREM-Architektur [35] bewegt sich die Arbeit auf
der mittleren Ebene: Unterhalb eines Missionsplaners und oberhalb der ausführenden
Schichten. Die Schwerpunkte liegen auf den beiden Säulen der Sensorik und des Welt-
modells, wie auch in Abb. 1.5 zu erkennen ist. Symbolische Planung, Regelungsverfahren

8

1.4. Einordnung und Wissenschaftlicher Beitrag

und verhaltensbasierte Ansätze sind nicht Teil der Arbeit.

Der wissenschaftliche Beitrag stützt sich auf die Verknüpfung von Volumenreprä-
sentationen, die bereits seit mehreren Jahrzehnten untersucht werden, mit modernen
Methoden der heterogenen Parallelverarbeitung auf CPUs und GPUs. Ziel ist die schritt-
haltende Kollisionsprüfung und Bewegungsplanung, die anhand von drei Teilzielen eva-
luiert wird (vgl. Begriffsbildung):

1. Zunächst ist die Parallelisierbarkeit verschiedener Datenstrukturen und ihre Eig-
nung zur Modellierung unterschiedlicher Entitäten der Bewegungsplanung zu prü-
fen. Hierfür wird eine Unabhängigkeit zwischen den einzelnen Zellen der diskre-
tisierenden Modelle angenommen, um diese datenparallel verarbeiten zu können.
Aufbauend darauf soll eine Kollisionsprüfung von Momentaufnahmen durchge-
führt werden. Der Erfolg wird anhand der Laufzeit der Verfahren gemessen und
mit etablierten Algorithmen verglichen. Es soll mindestens eine Verarbeitungsrate
erreicht werden, die der Bildrate aktueller 3D-Sensoren entspricht.

2. In einem zweiten Schritt soll eine Kollisionsvermeidung in Form einer Bewegungs-
planung umgesetzt werden. Ziel ist es, die geplanten Robotertrajektorien während
der Ausführung kontinuierlich auf Kollision mit Momentaufnahmen einer dyna-
mischen Umwelt zu prüfen. Es soll ein überwachter Korridor aus Swept-Volumen
entstehen, in dem sich der Roboter sicher bewegen kann. Untersucht werden daher
Planungsverfahren, die nicht nur einzelne Posen, sondern ganze Bewegungsabläu-
fe nutzen, um aus diesen komplexe, kollisionsfreie Bahnen zu synthetisieren. Zur
Evaluation werden verwandte Arbeiten herangezogen und zahlreiche Experimente
durchgeführt.

3. Um die Planung zu einer Kollisionsprädiktion zu erweitern, werden schließlich
nicht nur die Eigenbewegungen, sondern auch die Trajektorien dynamischer Hin-
dernisse als Swept-Volumen modelliert. Dies erlaubt proaktiv auf dynamische Um-
gebungen zu reagieren. Um die Unsicherheiten der Prädiktion abzubilden werden
weiterhin Distanzfelder auf Voxelkarten definiert, über die ein variabler Sicher-
heitsabstand um Hindernisse herum gewahrt werden kann. Somit ist neben einer
exakten Kollisionsberechnung auch die Distanzberechnung zwischen zwei Model-
len umgesetzt, die für zahlreiche Planungsalgorithmen benötigt wird. Beispielswei-
se können Distanzkarten als Potentialfeld interpretiert werden, um entlang dessen
Pfade zu planen. Auch hier dienen vorhandene Arbeiten praktische Versuche zur
Bewertung der erzielten Ergebnisse.

Technisch soll der Einsatz von General Purpose GPUs für die Robotik vorangebracht
werden, die eine Echtzeitverarbeitung von umfangreichen Sensordaten erlauben und so-
mit reaktivere Verhalten ermöglichen. Hierfür wird untersucht, in wieweit sich traditio-
nelle Verfahren der Robotik auf GPUs übertragen lassen, da hier der Einsatz einer dyna-
mischen Speicherverwaltung äußerst negative Auswirkungen auf den Datendurchsatz
hat. Ein sehr praktischer Beitrag ist die Zusammenstellung und Veröffentlichung aller
Softwarekomponenten in Form einer Open-Source Bibliothek, die in das sehr stark ver-
breitete Robot Operation System (ROS) integrierbar ist.

9

1. Einführung

1.5. Aufbau der Arbeit

Kapitel 7: Planungsverfahren: Samplingbasiert und mit Bewegungsprimitiven

Kapitel 6: Kollisionsprüfung zwischen den Datenstrukturen

Kapitel 4: Modellierung von Umwelt und Roboter & Sensorik

Kapitel 3: Heterogene Parallelverarbeitung & CUDA

Kapitel 9: Fazit und Ausblick

Kapitel 1: Einleitung Kapitel 2: Stand der Technik

Kapitel 5: Datenstrukturen auf der GPU & Visualisierung

G
ru

n
d

la
g

en
B

ei
tr

a
g

 d
er

 A
rb

ei
t

A
n

w
en

d
u

n
g

Kapitel 8: Evaluation: Anwendungsbeispiele und quantitative Messungen

Abb. 1.6.: Übersicht über die aufeinander aufbauenden Kapitel.

Nach dieser Einführung und der Vorstellung des aktuellen Forschungsstandes in Kapi-
tel 2 folgt der weitere Aufbau der Arbeit den logischen Abhängigkeiten der umgesetzten
Verarbeitungskette. Zu Beginn werden in Kapitel 3 die Grundlagen der heterogenen Da-
tenverarbeitung eingeführt und die Prinzipien der Programmierung in CUDA erläutert.
Kapitel 4 behandelt dann das Thema Sensorik und die unterschiedlichen Modelle die aus
den Sensordaten gewonnen werden können. Den Schwerpunkt bilden die verwendeten
Voxelmodelle zur Darstellung der Umwelt und des Roboters, sowie Swept-Volumen zur
Repräsentation von Bewegungen. Auch die Prädiktion von Bewegungen auf Basis der
Sensordaten findet sich in diesem Kapitel. Daran schließt sich in Kapitel 5 die Imple-
mentierung von Datenstrukturen an, mit denen die Voxelmodelle auf der GPU effizient
repräsentiert werden können. Detailliert wird hierbei auf den GPU-Octree eingegangen,
da dieser wissenschaftlich und praktisch von großer Bedeutung ist. Aufgrund der imple-
mentierungstechnischen Nähe ist hier auch das Vorgehen zur Visualisierung aller Daten-
strukturen erörtert, die über einen geteilten Speicher erfolgt.

Nachdem alle nötigen Bestandteile definiert sind, kann der Kern der Arbeit folgen: Ka-
pitel 6 setzt sich mit der eigentlichen parallelen Kollisionsprüfung zwischen den Daten-
strukturen auseinander, auf denen die restlichen Kapitel aufbauen. Insbesondere Kapi-
tel 7, das mehrere Planungsverfahren untersucht, die von den Vorteilen der GPU-basier-
ten Kollisionsprüfung profitieren.

Die umfangreiche experimentelle Evaluation in Kapitel 8 belegt dann die praktische
Einsetzbarkeit der entwickelten Verfahren in unterschiedlichen Szenarien und Anwen-
dungen. Ein abschließendes Fazit bzw. einen Ausblick gibt Kapitel 9. Im Anhang sind
letztendlich mathematische Definitionen und technische Details der Implementierung
zusammengestellt.

10

2. Stand der Technik

Wie bereits beschrieben, stellt die Bahnplanung und somit auch die Kollisionsprüfung
ein fundamentales Problem der Robotik dar. Aus den anfänglichen Fragestellungen zur
Bestimmung von Trajektorien für punktförmige Roboter in zweidimensionalen Umge-
bungen [97] wurden schnell Planungssysteme, die eine Vielzahl von Freiheitsgraden in
Kombination mit einer dreidimensionalen Umgebung handhaben konnten [116]. Dies ist
eine Voraussetzung für die mobile Manipulation, also die Kombination eines Manipulati-
onsroboters mit einer mobilen Plattform, die bereits seit beinahe dreißig Jahren erforscht
wird [170]. Ziel eines mobilen Roboters ist die Erweiterung seines Arbeitsraumes und
eine Steigerung der Flexibilität, die durch die Mobilität gewonnen wird. Diese bringt
jedoch auch neue Schwierigkeiten für die Planung mit sich, da der Arbeitsraum eines
mobilen Roboters im Allgemeinen nicht komplett einsehbar ist, weshalb auch Hinder-
nisse oder Probleme eventuell erst während der Ausführung einer Aufgabe erkannt wer-
den können. Roboter, die in einer unstrukturierten, dynamischen Umwelt agieren sollen,
müssen somit nicht nur auf bekannten Modellen planen, sondern auch auf Sensordaten
ihrer Umgebung – einerseits, um Kollisionen zu vermeiden, andererseits aber auch, um
physikalische Interaktionen planen zu können.

Erste Systeme zur mobilen Manipulation bearbeiteten die Planung in zwei unabhängi-
gen Teilaufgaben: Zunächst wurde ein Pfad für die mobile Plattform gesucht, um dann
in nächster Nähe eines Zielobjektes die eigentlich Manipulationsaufgabe des Roboter-
arms zu planen. Folgende Arbeiten versuchten die beiden Teilprobleme immer enger zu
koppeln, bis schließlich erste Planer leistungsfähig genug waren, um alle Freiheitsgrade
gleichzeitig zu berücksichtigen und zu planen.

Die Ansätze folgten zunächst dem klassischen deliberativen Sense-Plan-Act-Zyklus einer
NASREM Architektur [35] und konnten einmal berechnete Pläne nur sehr eingeschränkt
an neu gewonnene Umweltinformationen anpassen. Bedingt durch die Planung in einem
hochdimensionalen Zustandsraum mit zahlreichen Randbedingungen und über größe-
re Distanzen hinweg, lagen zwischen dem Eintreffen eines Auftrages und dem Start der
Ausführung durch den Roboter lange Stillstandszeiten. Wurde dann während der Aus-
führung ein Problem festgestellt, musste der Roboter gestoppt werden und der Planungs-
prozess begann von neuem. Ein Paradigmenwechsel zur reaktiven Robotik löste dieses
Problem auf lokaler Ebene in der direkten Umgebung des Roboters. Eine globale Pla-
nung war damit jedoch nicht mehr möglich, was in komplexeren Problemstellungen zu
inkonsistenten Entscheidungen und damit zum Scheitern führen konnte. Daher finden
sich in modernen Systemen meist Kombinationen aus globalen Planern mit reaktiven
Komponenten, die bei der Ausführung in gewissem Maße von einer geplanten Trajekto-
rie abweichen können, um Hindernissen auszuweichen (Elastic Bands and Strips [165, 52]).
Zur Verkürzung der Berechnungszeiten verflechten neuere Ansätze Planungs- und Aus-
führungsvorgänge (Interleaved Planning and Execution [153]). Darüber hinaus existieren
Planer, welche ihre Ziele und Zwischenziele abstrakter und somit variabler definieren

11

2. Stand der Technik

(Task-Space-Regions [45]) können, was zur Ausführungszeit mehr Spielraum zur Anpas-
sung eines Planes lässt. Kapitel 7 stellt die wichtigsten Klassen von Planungsalgorith-
men ausführlicher vor. Alle Verfahren profitieren von einer immer weiter gesteigerten
Rechenkapazität und erlauben somit die Lösung komplexer Planungsprobleme zur Aus-
führungszeit. Auch die vorliegende Arbeit nutzt moderne parallele Hardware in Form
von GPUs und hat sich zum Ziel gesetzt, die Planung global konsistenter Lösungen so
weit zu beschleunigen, dass in vielen Szenarien auf eine reaktive Komponente verzichtet
werden kann. Dabei nimmt die Umweltmodellierung und die darauf aufbauende Kolli-
sionsprüfung eine Schlüsselfunktion ein.

Erste Kollisionsprüfungen für den 3D-Raum basierten auf einer Diskretisierung des Ar-
beitsraumvolumens in gleichmäßige würfelförmige Abschnitte, so genannte Voxel. Diese
fanden seit den 80er Jahren einen Einsatz für die grafische Darstellung von Volumenob-
jekten, insbesondere für Bildgebende Verfahren der Medizin. Vorreiter war hier Kauf-
man und Bakalash [111, 112]. Bereits 1989 konnte eine hardwarebeschleunigte Echtzeit-
Kollisionsdetektion auf Basis von Voxeln durch Duffy et al. [72] umgesetzt werden. Be-
legen in einer Voxelrepräsentation mehrere Entitäten denselben Voxel, so liegt eine Kol-
lision zwischen ihnen vor [105]. Für Planungsaufgaben konnten darüber hinaus Poten-
tialfelder um belegte Voxel erzeugt werden, die einen Sicherheitsabstand für Agenten
definierten. So war Kitamura bereits 1995 in der Lage, eine Trajektorie für einen beliebig
geformten Roboter durch eine 3D-Umgebung zu berechnen [120].

Aufkommende Anforderungen nach realistischeren Kollisionstests, die auch die physi-
kalische Interaktion von Modellen simulieren konnten, verdrängten ab 1990 die Voxel-
verfahren. Hierfür wurde auf eine Oberflächennetz-Modellierung von Objekten mittels
Dreiecken zurückgegriffen, wie sie aus der Computergrafik bekannt war. Um dabei nicht
jedes einzelne Dreieck berücksichtigen zu müssen, wurden die Modelle zusätzlich in
Hüllkörper-Geometrien eingeschlossen, die als geschlossener mathematischer Ausdruck
darstellbar sind. Somit lässt sich schnell berechnen, ob sich diese einfachen geometri-
schen Primitive überlappen und somit eine potenzielle Kollision vorliegt. Nur in die-
sem Fall sind alle Dreiecke innerhalb des Primitivs detailliert zu überprüfen. Werden
mehrere Ebenen dieser Diskretisierung ineinander geschachtelt, spricht man von Boun-
ding-Volume-Hierarchies (BVHs). An diesen Techniken änderte sich über mehrere Jah-
re nichts grundlegendes, allerdings konnten sie extrem beschleunigt werden, indem sie
teilweise auf GP-GPUs portiert wurde. Durch die Verfügbarkeit dieser leistungsfähigen
Parallelprozessoren entstanden viele Arbeiten auf dem Gebiet der Kollisionserkennung,
die in Kapitel 6 detaillierter vorgestellt werden. Die meisten dieser Verfahren sind jedoch
nicht darauf ausgelegt, Punktwolken aus 3D-Kameras zu verarbeiten. Um dennoch mit
Sensordaten arbeiten zu können, ist es ein verbreiteter Ansatz, die Messpunkte mit ho-
hem Aufwand zu triangulieren und das entstehende Oberflächennetz genau wie andere,
a priori bekannte, Modelle handzuhaben. Dies schränkt die erreichbare Wiederholungs-
rate der Kollisionsprüfung bzw. den Detailgrad ihrer Modelle ein und erfordert starke
Prämissen für den Umgang mit Verschattungen und Sichtkanten. Einen probabilistische
Umsetzung, bei der die Durchdringung zweier Punktwolken als Klassifikationsproblem
modelliert wird, verfolgt die FCL Kollisionserkennungsbibliothek [157].

Die Verbindung von Punktwolkendaten mit kubischen Volumen in Form des Voxmap-
Pointshell Algorithmus von McNeely [142] stellt 1999 ein erstes Revival der Voxeltech-
nologien dar. Seine Lösung, die zunächst für ein haptisches Rendering von CAD Da-

12

ten entwickelt wurde, konnte ab 2007 auch teilweise in die Robotik übertragen wer-
den [171, 177]. Das Verfahren erlaubt schnelle und vor allem zeitkonstante Kollisions-
prüfungsintervalle, womit im Gegensatz zu Dreiecksnetz-Modellen eine Echtzeitfähig-
keit nachweisbar ist.

Auch in der Welt der Spiele wurden Voxel ab 2008 wieder ein populäres Thema, nachdem
id-Software erste Techologiedemonstrationen seiner Voxelengine veröffentlichte [155],
die eine verformbare Umwelt erlaubte. Aufgrund technischer Herausforderungen dau-
erte es jedoch bis 2016, bis das erste erfolgreiche Spiel (DOOM) mit einer Voxel-Engine
(id tech 6) vermarktet wurde.

Um das stark eingeschränkte repräsentierbare Arbeitsvolumen von Voxelkarten zu er-
weitern, folgten viele Arbeiten, die sich auf die Datenstruktur des Octree stützten. Wich-
tigster Vertreter einer Octree-basierten Punktwolkenverarbeitung auf der Central Pro-
cessing Unit (CPU) ist die OctoMap Bibliothek [104], die jedoch nur zweitrangig für eine
Kollisionsdetektion nutzbar ist [103, 95].

Andere aktuelle Arbeiten im Bereich der Robotik, die ebenfalls das Ziel eines reaktiven
Verhaltens auf Basis von Sensordaten verfolgen, sind optimierende Ansätze. Hierbei ma-
ximieren Flacco et al. in [80] oder Kaldestad et al. in [109] die Distanzen dynamischen
Hindernismessungen aus Tiefensensoren (siehe Abb. 2.1).

Fig. 6. No obstacle: Showing the original robot path.

Fig. 7. Static obstacle: A box blocks the robot path.

Fig. 8. Static obstacle: Another object is placed in front of the robot, to make the free movement volume even smaller.

Fig. 9. Dynamic obstacle: A human worker enters the work area and the robot actively avoids him.

3257

Fig. 6. No obstacle: Showing the original robot path.

Fig. 7. Static obstacle: A box blocks the robot path.

Fig. 8. Static obstacle: Another object is placed in front of the robot, to make the free movement volume even smaller.

Fig. 9. Dynamic obstacle: A human worker enters the work area and the robot actively avoids him.

3257

Abb. 2.1.: Reaktives Verhalten zur Vermeidung von Kollisionen: Der Roboter weicht dem
Menschen aus. Bild aus [109].

Andererseits gibt es Ansätze, die direkt vergleichbar mit der vorliegenden Arbeit sind
und auf einer schnellen Kollisionsdetektion basieren. So beschreibt Gibson in [87] eine
Voxel-Kollisionsdetektion, die pro Voxelkarte zwei Datenstrukturen nutzt: Zum einen
ein Feld aus Zeigern, die entweder Null sind (freier Raum), oder auf einen Voxel in ei-
nem weiteren Feld aus Voxel-Nutzdaten zeigen. Somit müssen bei einer Kollisionsprü-
fung lediglich Prüfungen auf Null durchgeführt werden, während Voxel dennoch belie-
big komplizierte Nutzdaten speichern können. Diese Implementierung ist auf der GPU
nicht zielführend, da der Nutzdatenspeicher dynamisch verwaltet werden muss.

Grundlegende Übereinstimmungen bestehen auch mit den Arbeiten von He und Kauf-
mann [98], die ebenfalls volumetrische Repräsentationen von Umwelt und Roboter in

13

2. Stand der Technik

Form von Kugelbäumen nutzen, um darüber Distanzfelder zu erzeugen und hierarchi-
sche Kollisionstests durchführen. Von besonderem Interesse sind weiterhin Arbeiten, die
GPUs zur parallelen Verarbeitung von Sensordaten nutzen, da diese bei größeren Einga-
bedaten seriellen Ansätzen weit überlegen sind. Bedkowski et al. haben dies in [47] für
typische Aufgaben wie Normalen- oder Histogrammberechnung bereits gezeigt. Abgese-
hen davon existiert umfangreiche theoretische und praktische Arbeit im Bereich hetero-
gener Parallelverarbeitung [58], die bisher hauptsächlich in den Gebieten der Computer-
grafik und des Machine Learnings eingesetzt wird, jedoch selten in der Robotik verwen-
det wird. Hier schlägt diese Arbeit eine Brücke und verbindet typische Vorgehensweisen
der robotischen Pfadplanung mit moderner Parallelisierung.

Nur sehr wenige der vorgestellten Verfahren befinden sich im kommerziellen Einsatz.
Verfügbare Lösungen sind die interaktive Anzeige von Daten bildgebender Verfahren in
der Medizin, das Rendern fotorealistischer Szenarien in der Computergrafik, die Monta-
geplanung in CAD Programmen oder Computerspiele. Bei allen handelt es sich jedoch
um rein virtuelle Anwendungen. Nach aktuellem Kenntnisstand des Autors existieren
keine industriellen Anwendungen, bei denen Voxel- oder GPU-Techniken mit live 3D-
Daten aus Sensoren verbunden werden. Begründet wird dies meist mit dem Fehlen von
sicherheitszertifizierten 3D-Kameras, auch wenn diese bereits seit langem auf der Agen-
da vieler Anbieter von Sicherheitstechnik stehen. Roboterhersteller hingegen planen be-
reits, ihre Steuerungen mit GPUs auszustatten, wobei diese eher zur Ausführung und
zum Training neuronaler Netze dienen sollen.

Neben diesem groben Überblick über den Stand der Technik, der sich weitgehend in die
Taxonomie aus Abb. 2.2 gliedern lässt, gehen auch die einzelnen Kapitel jeweils detail-
lierter auf verwandte Arbeiten ein.

14

Kollisionsfreie
Bahnplanung

Hindernis-
Repräsentation

Semantische
Entitäten

mit Modell

Sensor-
daten

Kollisions-
prüfung

Hardware

GPU

CPU

Dimensio-
nalität

2D

3D

Repräsen-
tation

Mesh-
basiert

Diskreti-
sierend

Approxi-
mierend

Anwendungs-
klasse

Computer-
grafik &
Spiele

Roboter

Manipu-
latorMobile

Plat-
tform

Mobiler
Manip-
ulator

Greif-
planung

Umwelt

Bekannt

Unbekannt

Statisch

Dynamisch

Planungs-
raum

Zustands-
raum

Probabi-
listisch

Determi-
nistisch

Temporale
Repräsen-

tation

Planung
auf

Momen-
tauf-
nahme

Planung
mit

Bewe-
gungsmod-

ell

Abb. 2.2.: Taxonomie zur Einordnung der kollisionsfreien Bahnplanung in verwandte
Themengebiete.

15

3. Heterogene Parallelverarbeitung

Dye

Schema

Kontroll
Logik

RAM

Cache Speicher

ALU ALU

ALU ALU

RAM

RAM
PCIe
Bus

CPU GPU
Bezeichnung Intel Core i7 Broadwell Nvidia GP104 Pascal

Rechenkerne 4 2560
Max. Threads 8 2048

Rechenleistung ∼ 220 GFlops SP: 8,873, DP: 277 GFlops
Takt 2,9 GHz 1,607 GHz

L2 Chache 4 × 256 kb 2048 kb
Transistoren ∼ 1,8 Mrd. (ohne GPU) 7,2 Mrd.

Die Größe ∼ 123 mm2 (ohne GPU) 314 mm2

Strukturgröße 14 nm 16 nm
Abwärme 47 Watt 150 Watt

Tab. 3.1.: Vergleich einiger technischer Daten einer aktuellen CPU und GPU1.

Nachdem über Jahrzehnte die Berechnungsleistung von Prozessoren durch höhere Takt-

1Bildquellen: http://hothardware.com und https://www.flickr.com/photos/130561288@
N04/29111683364/,
Technische Daten: https://www.microway.com/, https://en.wikichip.org/, https://de.
wikipedia.org/wiki/Nvidia-Geforce-10-Serie

17

http://hothardware.com
https://www.flickr.com/photos/130561288@N04/29111683364/
https://www.flickr.com/photos/130561288@N04/29111683364/
https://www.microway.com/
https://en.wikichip.org/
https://de.wikipedia.org/wiki/Nvidia-Geforce-10-Serie
https://de.wikipedia.org/wiki/Nvidia-Geforce-10-Serie

3. Heterogene Parallelverarbeitung

frequenzen, Befehlssatzerweiterungen, optimierte Caching-Taktiken und erweiterte Sprung-
vorhersagen verbessert wurde, war 2005 eine weitere Steigerung ökonomisch nicht mehr
vertretbar. Ab diesem Moment hielten Mehrkern-Prozessoren Einzug in Workstations
und PCs, um dem Abwärmeproblem bei gleichzeitiger Durchsatzsteigerung zu begeg-
nen. Somit war Parallelverarbeitung nicht mehr nur im High-Performance Computing
(HPC)-Bereich anzutreffen, sondern auch in Einzelplatzcomputern.

Bereits seit einigen Jahren zuvor wuchs die Leistungsfähigkeit und der Befehlssatz von
Grafikprozessoren, so dass deren Shader-Einheiten immer mehr Funktionen der CPU
übernehmen konnten. Ab ca. 2001 wurden GPUs dann erstmals auch für nicht-grafische
Aufgaben genutzt, die stark parallelisierbar ablaufen können (z.B. Matrix-Multiplikatio-
nen). Um den Aufwand der dafür benötigten Shader-Programmierung in OpenGL zu re-
duzieren, entwickelte Nvidia sein proprietäres CUDA Framework2, dessen erste Version
im Juni 2007 freigegeben wurde. Im Dezember 2008 folgte dann das von einem Konsorti-
um spezifizierte, offene und freie OpenCL3, welches auch auf nicht-Nvidia Grafikkarten
ausführbar ist.

Seit diesem Zeitpunkt steigt die Relevanz der heterogenen Datenverarbeitung kontinuier-
lich, da sie die Vorteile von CPUs und GPUs kombiniert, die in Tab. 3.1 in Zahlen ge-
fasst sind. Sehr unterschiedliche Anwendungsbereiche (Finanzwesen, Wetter-Vorhersa-
ge [145], geologische Simulationen [34], usw.) profitieren von dieser Entwicklung. Einer
breiten Öffentlichkeit ist GPU-fokussierte Datenverarbeitung spätestens seit dem Einsatz
neuronaler Netze bekannt, welche medienwirksam durch GO-Spiele [188] oder Google’s
Deep-Dream [140] vermarktet werden.

Auch die vorliegende Arbeit stützt sich auf die Parallelverarbeitung als eine ihrer Kern-
technologie. Dieses Kapitel stellt daher Prinzipien aktueller Hard- und Software vor und
führt grundlegende Begriffe ein, bevor dann Paradigmen der Programmierung von GPUs
vorgestellt werden, die auch in GPU-Voxels verfolgt wurden.

3.1. Grundlagen

Parallelisierung geschieht auf zwei Ebenen: Ein Problem muss einerseits so auf Algorith-
men abgebildet werden, dass seine Teilprobleme gleichzeitig bearbeitet und später zu ei-
ner konsistenten Lösung zusammengeführt werden können. Andererseits muss Hardwa-
re zur Verfügung stehen, die die Teilaufgaben nicht nur parallel abarbeiten kann, sondern
auch Funktionen zur Kommunikation und Synchronisation der einzelnen Recheneinhei-
ten zur Verfügung stellt, um die Arbeit zu koordinieren. Zur Bewertung unterschiedli-
cher Hard- und Software-Kombinationen, die im Folgenden betrachtet werden, dienen
folgende Metriken:

3.1.1. Flynn’s Taxonomie

Die Informatik teilt die vielfältigen Hardwarearchitekturen zur Datenverarbeitung in
Flynn’s Taxonomie [81] ein:

2CUDA: https://developer.nvidia.com/about-cuda
3OpenCL: https://www.khronos.org/opencl/

18

https://developer.nvidia.com/about-cuda
https://www.khronos.org/opencl/

3.1. Grundlagen

Definition 6. Die Leistung einer Berechnungsarchitektur bestimmt sich über
drei Kriterien: Bandbreite (Datenmenge pro Zeit), Durchsatz (Berechnungen
pro Zeit) und Latenz (Zeitdauer vom Start bis zum Ende einer Berechnung).
Die Relevanz der einzelnen Kriterien unterscheidet sich je nach Problemstel-
lung.

Single Instruction, Single Data stream (SISD) Dies beschreibt die klassische Arbeits-
weise von Computern mit einem Einkern-Prozessor, die nach der Von-Neumann-
oder der Harvard-Architektur aufgebaut sind. Um Daten aus einem Vektor der Län-
ge n zu verarbeiten, muss hierbei sequenziell n mal auf den Speicher zugegriffen
und n Instruktionen müssen geladen werden, um n Berechnungsschritte auszufüh-
ren.

Single Instruction, Multiple Data streams (SIMD) Computer mit Vektorprozessoren sind
in der Lage, dieselbe Instruktion gleichzeitig auf m Daten anzuwenden. Stellt ein
Speicherzugriff m Daten zur Verfügung, können diese also in einem einzelnen Be-
rechnungsschritt abgearbeitet werden. Moderne Desktop-Prozessoren enthalten ne-
ben einer SISD Berechnungseinheit oft weitere SIMD Einheiten um spezielle Ope-
rationen datenparallel und somit effizienter abzuarbeiten.

Multiple Instruction, Single Data stream (MISD) Hierbei werden unterschiedliche Ope-
rationen innerhalb eines Berechnungsschritts auf ein Datum angewendet. In der
Praxis ist dies, außer bei redundant ausgelegten Pipeline-Computern, selten anzu-
treffen.

Multiple Instruction, Multiple Data streams (MIMD) Es können gleichzeitig unterschied-
liche Operationen auf mehrere Datenströme angewendet werden. Dies wird meist
durch die Kopplung mehrerer Prozessoren oder Prozessorkerne erreicht. Moder-
ne Desktop-Prozessoren fallen in diese Kategorie, da sie simultan mit mehreren
Threads rechnen können, während sich die Threads über einen geteilten Speicher
synchronisieren und Informationen austauschen.

Die Parallelisierung bei der MIMD Ausführung kann weiter unterschieden werden:

Single Program, Multiple Data (SPMD) Um große Datenmengen parallel mit demsel-
ben Algorithmus zu verarbeiten, kann dieser mehrfach auf unterschiedliche Teil-
mengen der Daten angewendet werden. Derselbe Algorithmus läuft dabei (im Ge-
gensatz zu SIMD) auf mehreren autonomen Berechnungseinheiten. Diese Art der
Parallelisierung ist bei der Nutzung von Mehrkernprozessoren sehr stark verbreitet
und stellt bspw. die Grundlage von Open Multi-Processing Library (OpenMP) 4 dar.

Multiple Program, Multiple Data (MPMD) Hier ist die Kopplung der Recheneinheiten
noch losgelöster, da unterschiedliche Algorithmen auf unterschiedliche Daten an-
gewendet werden. Dies ist der Fall, wenn bei verteiltem Rechnen eine Manage-
ment-Entität die eigentlichen Berechnungen koordiniert an weitere Prozessoren aus-
lagert und ihre Ergebnisse sammelt.

4OpenMP ist ein Application Programming Interface (API) für die einfache parallele Programmierung mit-
tels geteiltem Speicher in C / C++ und Fortran: http://www.openmp.org/

19

http://www.openmp.org/

3. Heterogene Parallelverarbeitung

In Flynn’s Taxonomie wären GPUs zwischen SIMD und MIMD einzuordnen, da die
Shader-Recheneinheiten zwar zunächst alle dieselben Instruktionen laden (Kernel-Co-
de) und diese nach dem SPDM-Prinzip auf unterschiedliche Daten anwenden. Jedoch
können Threads dann zur Laufzeit individuelle Entscheidungen in den Programmver-
zweigungen treffen. Nvidia ordnet daher seine Hardwarearchitektur nicht direkt in die-
ses Schema ein, sondern prägt den Begriff SIMT [154], der wie folgt definiert ist:

Definition 7. Die Hardwarearchitektur einer GPU arbeitet nach dem Sin-
gle Instruction, Multiple Threads (SIMT) Prinzip. Der Name verdeutlicht,
dass einem Programmierer trotz paralleler Logik sämtliche Optionen der Pro-
grammverzweigung zur Verfügung stehen (im Gegensatz zu SIMD). Aller-
dings geschieht im Gegensatz zu MIMD eine pro Thread individuell ablau-
fende Programmausführung auf Kosten der Laufzeit (vgl. Abb. 3.5).

3.1.2. Parallelisierung auf Aufgaben- und Datenbasis

Einer der Gründe für die Vielzahl an Klassen in Flynn’s Taxonomie ist der Unterschied
in den Anforderungen, die verschiedene Problemklassen an die Hardware stellen. Hier
kann zwischen Aufgaben- und Datenparallelisierung unterschieden werden. Im einen Fall
sind viele unabhängige Aufgaben auszuführen, die somit parallel auf verschiedenen Re-
cheneinheiten ablaufen können. Da dabei jede Einheit sequentiell arbeitet, bieten sich
MPMD Architekturen an. Im anderen Fall sind nur wenige Aufgaben auf einer großen
Menge an Daten anzuwenden. Die Parallelisierung erstreckt sich somit über die Daten
und eine SIMD Architektur ist von Vorteil.

Feststellung 1. GP-GPUs eignen sich vorrangig für datenparallele Aufgaben.
Ihre Berechnungseinheiten sind im Vergleich zu CPUs wesentlich leichtge-
wichtiger aufgebaut, und somit nicht auf die Optimierung von komplexen
Kontrollflüssen (keine Sprungvorhersage) ausgelegt, sondern auf eine hohe
Bandbreite bei einfacher Kontrolllogik. CPUs hingegen unterstützen einen
komplexen, unvorhersehbaren aber sequentiellen Kontrollfluss. Sie weisen
kürzere Latenzen und höheren Durchsatz auf.

Die Aufteilung der Daten auf parallel laufende Prozesse muss zum Speicherinterface der
Hardware passen und ist somit entscheidend für die Bandbreite eines Algorithmus. Un-
terschiedliche Muster und Granularitäten der Partitionierung sind in Abb. 3.1 dargestellt.
Zu sehen sind zyklische Muster (jeder Prozess bearbeitet mehrere, weit verteilte Daten)
und blockweise Muster (jeder Prozess bearbeitet einen zusammenhängenden Bereich im
Speicher). Weist eine Problemstellung hohe Datenlokalität auf, ist es von Vorteil, diese
Daten kompakt im Speicher abzulegen, um ein gutes Caching Verhalten zu erreichen.
Diese Problematik wird in Unterabschnitt 3.2.3 detailliert beschrieben.

3.1.3. Programmsynchronisation: Daten- und Ressourcenabhängigkeit

Losgelöst von der verwendeten Hardware ist die Parallelisierbarkeit eines Problems zu-
nächst durch seine interne Datenabhängigkeit bestimmt. So gibt es in jedem Programm Be-
rechnungen, die von den Ergebnissen vorheriger Schritte abhängig sind und daher nicht

20

3.1. Grundlagen

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

8 9 10 11 8 9 10 11 8 9 10 11 8 9 10 11 8 9 10 11

12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15

16 17 18 19 16 17 18 19 16 17 18 19 16 17 18 19 16 17 18 19

Abb. 3.1.: Unterschiedliche Möglichkeiten, ein Datenfeld aus 20 Einträgen mit vier Pro-
zessen (farblich gekennzeichnet) zu bearbeiten. Da auf einer GPU die Threads
eines Blocks gleich lang laufen, entsteht bei einigen Aufteilungen ein Leerlauf
einzelner Threads.

parallel zu diesen ausführbar sind (siehe Abb. 3.2). Auch kleinste Operationen können ei-
ne Abhängigkeit bedeuten: Sollen beispielsweise mehrere Prozesse einen gemeinsamen
Ergebniszähler inkrementieren, kann dies nicht gleichzeitig geschehen. Solche Punkte in
der Berechnungslogik zu identifizieren ist eine Voraussetzung für die Parallelisierung
der unabhängigen Programmteile.

Ähnlich verhält es sich mit Ressourcenabhängigkeiten zwischen mehreren Prozessen.
Müssen diese mit einer exklusiven Ressource arbeiten, beispielsweise dem Speicherbus,
muss der Zugriff serialisiert geschehen. Auch hier liegt es am Programmierer, das Zu-
griffsmuster möglichst so zu gestalten, dass Wartezeiten minimiert werden.

In beiden Fällen ist eine Synchronisierung unter den Prozessen unabdingbar, um kriti-
sche Wettläufe zu unterbinden und eine deterministische Ausführung zu gewährleisten.
Ihr konkreter Aufwand hängt von der Hardwarearchitektur ab, da die Synchronisation
eine bidirektionale Kommunikation beschreibt: Ein Multiprozessor mit gemeinsam ge-
nutztem Speicher bildet die Kommunikation sehr effizient darauf ab, während sich ein
verteiltes System über eine externe Verbindung austauschen muss. In beiden Fällen stellt
die Synchronisation jedoch eine, bezüglich der Ausführungszeit, teure Operation dar, die
nur bei Notwendigkeit eingesetzt werden sollte.

3.1.4. Multithreading

Um die Wartezeiten von Threads, die aufgrund von Daten- oder Ressourcenabhängig-
keiten blockiert sind, effizient zu nutzen, greifen CPUs und GPUs auf Multithreading
zurück. Dabei werden mehrere Prozesse abwechselnd auf der Hardware ausgeführt und

21

3. Heterogene Parallelverarbeitung

… …

Abhängigkeit

Rechenoperationen

Reihenfolge der Ausführung

P
ar

al
le

li
si

er
u

n
g

…

Abb. 3.2.: Parallelisierung und Datenabhängigkeit. Blaue Pfeile symbolisieren Datenab-
hängigkeiten einzelner Programmteile.

Feststellung 2. Das Verhältnis aus unabhängigen und abhängigen Programm-
anteilen entscheidet maßgeblich, ob und wieweit sich die Aufteilung eines
Problems auf mehrere parallele Prozesse rentiert. Das Amdahlsche Gesetz [36]
beschränkt dabei die maximal erreichbare Beschleunigung durch parallele
Ausführung.

so eine weitere virtuelle Parallelisierungsebene oberhalb einer echt-parallelen Ausfüh-
rung geschaffen.

CPU-Threads stellen dabei komplexe Einheiten dar, deren Wechsel aufwendig ist und das
Betriebssystem hochgradig involviert. Der Aufwand zur Konsistenz-Sicherung aller Ca-
che-Hierarchien erfordert dabei einen entsprechend langwierigen Prozess. Im Gegensatz
dazu sind GPU-Threads sehr leichtgewichtig. Durch die schlanken Cache-Hierarchien
auf der GPU ist ein Wechsel sehr schnell und einfach möglich. Daher unterscheiden sich
die Strategien beider Architekturen stark: Während eine CPU auf die Verwaltung von nur
wenigen Threads (2-16) per Hardware ausgelegt ist, kann eine GPU pro Multiprozessor
über 1000 Threads vorhalten und bei Bedarf schnell zur Ausführung bringen.

Feststellung 3. Um den Speicherbus optimal auszulasten, sollte die Auslas-
tung (Occupancy) einer GPU mit wartenden Threads wesentlich höher ausfal-
len, als bei einer CPU. Durch schnelle Threadwechsel können somit Wartezei-
ten aufgrund von Ressourcenkonflikten effizient überdeckt werden. Faktoren,
die Zahl der Threads limitieren, sind unter anderem die begrenzte Anzahl an
Registern und die Größe des geteilten Speichers.

3.1.5. Zusammenfassung

Bereits mit einem einzigen regulären Computer haben Entwickler heute die Möglichkeit,
die Vorteile zweier grundlegend verschiedener Hardwarearchitekturen komfortabel zu

22

3.2. CUDA Praxis

kombinieren: Aktuelle CPUs können vier bis acht komplexe Programme parallel abar-
beiten, wobei diese untereinander über Interprozesskommunikation effizient synchroni-
sierbar sind und auf umfangreiche Speicherhierarchieen zugreifen können. Zusätzlich
stehen für die datenparallele Verarbeitung GPUs bereit, die mit ihrer hohen Zahl an Ver-
arbeitungseinheiten einfache Algorithmen massiv parallel ausführen können. Da CPUs
und GPUs über einen breiten PCI Bus Daten austauschen können, lassen sich die Aufga-
ben je nach ihren Anforderungsprofilen auf beide Architekturen verteilen.

Feststellung 4. Für das Design von effizienten Algorithmen ist eine genaue
Kenntnis über das Verarbeitungsprinzip der Zielhardware essentiell. Da sich
GPU und CPU in ihrer Art der Parallelisierung grundlegend unterscheiden,
können CPU Algorithmen, die auf SPMD Verarbeitung optimiert sind – ab-
hängig von ihrem Datenmodell – gar nicht, oder nur mit großem Aufwand,
zu GPU geeigneten SIMT Algorithmen portiert werden.

Auch GPU-Voxels nutzt heterogene Datenverarbeitung, indem oftmals die eigentlichen
Berechnungen auf der GPU stattfinden, die Ergebnisse jedoch erst auf der CPU zusam-
mengeführt und final ausgewertet werden. Für die Programmierung solcher kombinier-
ter Anwendungen wird in dieser Arbeit das CUDA Framework genutzt. Dieses wird im
Folgenden in Bezug auf weitere GPU-spezifische Kriterien, die sich auf die Effizienz der
Parallelisierung auswirken, vorgestellt.

3.2. CUDA Praxis

Compute Unified Device Architecture (CUDA) stellt eine Reihe von Werkzeugen dar,
die es erlauben, Algorithmen für ein heterogenes System aus einer CPU und einer oder
mehreren Nvidia-GP-GPUs in unterschiedlichen Programmiersprachen zu erstellen und
auszuführen. Dabei ist es dem Programmierer überlassen, welche Teile er für die CPU
und welche er für die GPU implementiert. Die theoretisch erreichbaren Datenraten aus
Abb. 3.4 und Berechnungsdurchsätze aus Abb. 3.3 lassen vermuten, dass GPUs in da-
tenintensiven Anwendungen heutige CPUs um ein Vielfaches überbieten. Auch wenn
Lee et al. zeigen, dass vielfach reklamierte Leistungssteigerungen mehrerer Größenord-
nungen nicht realistisch sind, so können dennoch Beschleunigungen bis zu einem Faktor
von sieben erreicht werden [133]. Im Folgenden Kapitel sollen nun die Besonderheiten
beschrieben werden, die beim Design von Algorithmen zu beachten sind, um GPUs mit
ihrer Vielzahl von Rechenkernen (aktuell bis zu 2688) optimal auszulasten, um so diese
Beschleunigungen zu erreichen.

Die wichtigsten Bestandteile von CUDA sind die API, die Laufzeitumgebung und der nv-
cc Compiler, die in ihrem Zusammenspiel von hardwarespezifischen Eigenschaften der
GPUs abstrahieren und die Erzeugung von portablen Programmen ermöglichen. Dafür
generiert der Compiler einen Meta-Code (PTX), der erst durch den Treiber in Binär-Co-
de umgewandelt und dann ausgeführt wird. Ergänzt werden diese Kernkomponenten
durch anwendungsspezifische Bibliotheken, zum Teil von Drittanbietern (bspw. Thrust5,

5Thrust: https://thrust.github.io/

23

https://thrust.github.io/

3. Heterogene Parallelverarbeitung

Abb. 3.3.: Vergleich des theoretisch möglichen Durchsatzes [GFLOP/s] von Intel CPUs
und Nvidia GPUs über die Jahre 2003 bis 2016. Entnommen aus [154].

ArrayFire6, CUB7, NPP8), die gängige Problemstellungen komfortabel abdecken.

Die Verfügbarkeit dieser Bibliotheken, die optimale Unterstützung der Hardware und
die ausgereiften Optimierungswerkzeuge führten für diese Arbeit zur Entscheidung, das
proprietäre CUDA dem offenen OpenCL vorzuziehen.

3.2.1. CUDA-Kernel

Da eine GP-GPU eine nicht autonom lauffähige Komponente in einem Computersystem
darstellt, spricht man von einem Device, das in einem Host-System läuft. Im weiteren Ver-
lauf werden die Begriffe Device und GP-GPU äquivalent verwendet, genauso wie Host
und CPU. Um Code auf der GP-GPU ausführen zu können, muss dieser bei CUDA in
Form eines Kernels vorliegen, der vom Host Code aufgerufen wird. Wie im Beispielco-
de in Algorithmus 1 zu sehen, ist die Syntax eines Kernels identisch zu einer void C-
Funktion, die um das Schlüsselwort __global__ bzw. __device__ erweitert wurde.
Die übergebenen Funktionsparameter werden beim Methodenaufruf auf die Grafikkarte
kopiert und stehen jedem Thread zur Verfügung. Beim Aufruf muss über gesonderte Pa-
rameter in≪ ...≫-Schreibweise die Anzahl der Ausführungsblöcke und der Threads
pro Block angegeben werden, um durch sie den Parallelisierungsgrad zu bestimmen.
Hierzu mehr im nächsten Abschnitt. Zudem benötigt ein Kernel Zeiger auf seine Nutz-
und Ausgabe-Datenstrukturen, um mit diesen arbeiten zu können. Über die Block- und
Thread-IDs eines jeden Threads können einzelne Kernel-Instanzen unterschiedliche Da-
tenpartitionen bearbeiten (vgl. Abb. 3.1).

6ArrayFire: https://github.com/arrayfire/arrayfire
7CUB: http://nvlabs.github.io/cub/
8NPP: https://developer.nvidia.com/npp

24

https://github.com/arrayfire/arrayfire
http://nvlabs.github.io/cub/
https://developer.nvidia.com/npp

3.2. CUDA Praxis

Abb. 3.4.: Vergleich der theoretisch möglichen Speicherbandbreite [GB/s] von Intel CPUs
und Nvidia GPUs über die Jahre 2003 bis 2016. Entnommen aus [154].

Z
ei

t
/

In
st

ru
k

ti
o

n
en

Warp Warp

Warp

(a) Thread Code

Z
ei

t
/

In
st

ru
k

ti
o

n
en

Warp Warp

Warp

(b) Gleicher Instruktionsfluss pro Warp

Z
ei

t
/

In
st

ru
k

ti
o

n
en

Warp Warp

Warp

(c) Thread Divergenz

Abb. 3.5.: Erhöhte Laufzeit durch Divergenz der Threads eines Warps

Bedingt durch das oben beschriebene SIMT-Prinzip der Hardwarearchitektur führen alle
(innerhalb eines Warps) parallel ablaufenden Instanzen eines Kernels (Threads) ihre Be-
fehle synchron aus. Divergenzen im Programmfluss (siehe Abb. 3.5), wie zum Beispiel
Threadspezifisch ausgewertete if-else-Verzweigungen, oder verschieden lange for-
Schleifen, führen zu einer Serialisierung der Codeabschnitte und zu empfindlichen Per-
formance-Einbrüchen, da Wartezeiten in den Threads entstehen, die für sie irrelevante
Codeabschnitte nicht ausführen. Verzweigungen innerhalb des Kernel-Codes sollten al-
so möglichst vermieden werden, bzw. wie durch Han und Abdelrahman in [94] beschrie-
ben, durch iteration delaying oder branch distribution geschickt angeordnet werden.

25

3. Heterogene Parallelverarbeitung

Algorithmus 1 Beispielkernel mit Grid-Stride-Loops und aufrufender Host-Code.

1 __global__
2 void VecAddition(int n, float* A, float* B, res* C) {
3 for (int i = blockIdx.x * blockDim.x + threadIdx.x;
4 i < n;
5 i += blockDim.x * gridDim.x)
6 {
7 C[i] = A[i] + B[i];
8 }
9 }

11 int main() {
12 ...
13 // Kernelaufruf mit 4 * 512 Threads und 4046 Eingabe-Elementen
14 VecAddition<<<4, 512>>>(4046, A, B, C);
15 ...
16 }

3.2.2. Grids, Blöcke, Warps und Threads in CUDA

Die Ausführung eines Kernels erfolgt durch eine Vielzahl an Threads, die gemeinsam
durch den Kernel-Aufruf auf dem Device gestartet werden. Eine GP-GPU besteht aus
mehreren Streaming-Multiprozessoren, die jeweils eine Vielzahl von Warps zu je 32 Threads
simultan mit einem geteilten Steuerwerk bearbeiten können. Da im Normalfall deut-
lich mehr als 32 Threads zu starten sind, lassen diese sich zur Arbeitsaufteilung und zu
Schedulingzwecken in Blöcken arrangieren. Die Blöcke eines Kernels bilden wiederum
ein Grid. Diese in Abb. 3.6 gezeigte Hierarchie bestimmt auch die Synchronisation und
Kommunikation zwischen den Threads, da nicht alle Speicherebenen einer GPU glei-
chermaßen für alle Threads sichtbar sind (siehe Tab. 3.2 und Abb. 3.8). Jeder Block muss
somit eine unabhängige Einheit darstellen, die für ihre Ausführung keinen Zugriff auf
andere Blöcke benötigt. Dies erlaubt die Skalierung der Parallelität in CUDA: Je mehr
Multiprozessoren zur Verfügung stehen, desto mehr Blöcke laufen gleichzeitig. Wäh-
rend die Threads eines Blocks immer auf demselben GPU-Prozessorkern ausgeführt wer-
den, können sich die Blöcke eines Grids auch über mehrere Prozessoren verteilen oder
sequentiell zur Ausführung gebracht werden. Je nach Anwendungsfall lassen sich so-
wohl Threads als auch Blöcke ein-, zwei-, oder dreidimensional gestalten. So sind aktuell
über 30 000 Threads auf einer GP-GPU verwaltbar, wobei jeder Thread seine Block- und
Thread-ID kennt. Das effizienteste Verhältnis zwischen Threads-pro-Block und Blöcken-
pro-Grid ist von zahlreichen Parametern abhängig und schwer analytisch zu bestimmen.
Daher wird die Auslastung einer GPU meist empirisch mittels konkreter Benchmarks
optimiert, wie in der Evaluation in Abschnitt 8.1 beschrieben ist.

Weiterhin muss beim Design eines Kernels auf die im Folgenden beschriebene CUDA
Speicherhierarchie geachtet werden, um effiziente Inter-Thread und Inter-Block Kom-
munikation bzw. Synchronisation zu bewerkstelligen.

3.2.3. Speicherarchitektur

Die Speicherarchitektur einer CUDA Grafikkarte, die in Abb. 3.8 gezeigt ist, weist, wie
auch das Host-System, eine Hierarchie auf, verfügt aber lediglich über sehr einfache Ca-

26

3.2. CUDA Praxis

Host

Kernel 1

Kernel 2

Device

Grid 1

Grid 2

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Block (2, 0)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Abb. 3.6.: CUDA Kernels werden durch eine Menge von Threads ausgeführt, die in
(mehrdimensionalen) Blöcken organisiert sind. Blöcke wiederum bilden (mehr-
dimensionalen) Grids. Adaptiert nach [154].

ching-Mechanismen. Einzelne Threads arbeiten auf eigenen Registern, die in der Hard-
ware sehr schnell umschaltbar sind, wenn ein Threadwechsel durchgeführt wird. Weiter-
hin verfügt jeder Thread über lokalen Speicher im RAM, der als Heap oder Register-Ausla-
gerung genutzt wird. Die Threads eines Blocks teilen sich einen gemeinsamen Speicher-
bereich (Shared), über den sie Daten austauschen können.

Shared Memory und Datenzugriffsmuster

Jeder Kern eines GPU-Multiprozessors verfügt neben Caches für Texturen und konstan-
ten Speicher über einen Speicherbereich (siehe Abb. 3.9), der von allen Threads eines
Blocks gelesen und geschrieben werden kann. Neben der Inter-Thread-Kommunikation
kann dieser auch als selbstverwalteter L1 Cache dienen, um Daten aus dem GPU-RAM
performant zu puffern. Dieser geteilte Speicher ist ein bis zu 48 kByte großer allozierter
Bereich des L1 Caches, der jedoch zwischen allen Blöcke aufgeteilt werden muss. Daher
ist bei jedem Kernelaufruf die benötigte Größe über einen Kernel-Parameter zu spezifi-
zieren. Da sich der Speicher auf 32 Speicherbänke verteilt, müssen sich alle 32 Threads
eines Warps (nicht eines Blocks) 32 Zugriffswege teilen, die jeweils 1 Wort breit sind.
Ein Wort entspricht 4 Bytes und fasst somit beispielsweise ein float oder einen int32.
Die zuständige Speicherbank für das Lesen eines Bytes B lässt sich über (Addr.B mod 4)
mod 32 bestimmen. Greifen die Threads des Warps auf Speicherbereiche in unterschiedli-
chen Bänken zu (egal, in welcher Permutation), geschieht dies voll parallel. Wenn mehre-
re Threads dieselbe Adresse lesen, erzeugt dies einen Broad- oder Multicast und schränkt
die Parallelisierung somit nicht ein. Benötigen jedoch mehrere Threads Speicheradressen
aus derselben Bank, können diese nur sequentiell abgerufen werden. In diesem Fall be-

27

3. Heterogene Parallelverarbeitung

steht ein Bank-Konflikt, der die Leistung unter Umständen einschränkt. Beispiele dazu
finden sich in Abb. 3.7. Auch wenn die durch Bank-Konflikte verursachten Latenzen in
vielen Fällen durch ein Scheduling anderer Warps abgefangen werden, sollten Konflik-
te durch eine passend gewählte Datenanordnung, notfalls durch zusätzliche Padding-
Bytes, vermieden werden.

Abb. 3.7.: Zugriffsmuster auf Speicherbänke des geteilten Speichers mit 4 Byte Wörtern.
Vlnr: a) Linear mit Schrittgröße 1 (keine Konflikte). b) Linear mit Schrittgrö-
ße 2 (zweifacher Bank-Konflikt). c) Linear mit Schrittgröße 3 (keine Konflikte).
d) Randomisiert ohne Bank-Konflikte (keine Konflikte). e) Randomisiert mit
teilweisem Broadcast (keine Konflikte). Broadcast von zwei Elementen (keine
Konflikte). Entnommen aus [154]).

Datenzugriffsmuster auf globalen Speicher

Feststellung 5. Im Vergleich zur Speicherverwaltung des Host-Systems ist ei-
ne GPU um Faktor 30-40 mal langsamer (malloc() vs. cudaMalloc()). Die-
ser von Boyer et al. in [50] beschriebene Faktor deckt sich mit selbst durch-
geführten Experimenten. Daher eignen sich dynamische Datenstrukturen nur
sehr bedingt für eine Portierung auf GP-GPUs.

Ein Zugriff auf den GPU RAM weist eine Latenz zwischen 200 und 400 Prozessorzyklen
auf, falls die gesuchten Werte noch nicht im Cache vorliegen. Da dies im Vergleich zu
einem Zugriff auf den geteilten Speicher (10 Zyklen Latenz) sehr teuer ist, sollten auch
hier die Zugriffsmuster optimiert werden, um die Bandbreite eines Kernels zu maximie-
ren. Entscheidend ist dafür eine Kenntnis über den Nvidia Speicherbus. Dieser erlaubt
eine lineare Adressierung und überträgt Daten ausschließlich in 32 oder 128 Byte großen
Abschnitten (ohne / mit Caching). Benötigen Threads nur einzelne Bytes aus dem Spei-
cher, und liegen diese verteilt im RAM, so müssen dennoch für jeden Zugriff mindestens
32 Bytes transferiert werden, auch wenn ein Großteil der Daten nicht verwendet wird.

28

3.2. CUDA Praxis

Greifen jedoch mehrere Threads eines Warps auf zusammenhängende Speicherbereiche
innerhalb eines solchen Abschnittes zu, so muss dieser nur einmal übertragen werden.
Ein positives Beispiel für dieses so genannte Memory Coalescing ist in Abb. 3.10 links zu
sehen. Im zweiten, ungünstig ausgerichteten Fall rechts tritt ein Mehraufwand von 25%
bzw. 100% auf (ohne / mit Caching).

In der Praxis ist ein sequentielles Zugriffsmuster am einfachsten zu erreichen, indem
Threads mit fortlaufender ID auf aufeinander folgende Speicheradressen zugreifen, die
möglichst eng zusammen liegen und an Wort-Adressen ausgerichtet sind. Dieses Prinzip
wird in der Kernel-Programmierung durch so genannte Grid-Stride-Loops durchgesetzt,
deren Schrittgröße der Anzahl an Threads pro Block entspricht (siehe Algorithmus 1).
Dabei muss sichergestellt sein, dass bei zu breiter Parallelisierung (mehr Threads als
Daten) keine ungültigen Speicherzugriffe geschehen. Werden zusammengesetzte Daten-
strukturen verwendet, sind des weiteren Structures of Arrays vor einem Array of Structures
zu bevorzugen, wie die Codebeispiele in Abschnitt A.4 des Anhangs verdeutlichen.

Device: Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Abb. 3.8.: Blockdiagramm der CUDA-Speicherarchitektur. Entnommen aus [154].

Textur- und konstanter Speicher

Eine GPU bietet zwei weitere Zugriffswege auf ihren RAM an, die in vielen Anwen-
dungsfällen einen höheren Datendurchsatz und niedrigere Latenzen aufweisen, als der
kanonische Zugriff auf globalen Speicher. Dies ist zum einen ein konstanter Speicher, der
von der Host-Seite aus beschrieben und von Device-Seite lediglich gelesen wird, wo-
durch sich Cache-Inkonsistenzen beim Schreiben zugunsten der Geschwindigkeit eli-
minieren lassen. Gleiches gilt für den Textur-Speicher, der im Allgemeinen ebenfalls in
Kerneln nur lesbar gemappt wird. Er bietet weitere Zusatzfunktionen, wie z.B. hardwa-
rebeschleunigte Interpolation und Normalisierung zwischen Einträgen. Außerdem kann

29

3. Heterogene Parallelverarbeitung

R
A

M

R
A

M

G
P

-G
P

U

Globaler Speicher

Texturspeicher

Konstanter Speicher

L2 Cache

Multiprozessor Multiprozessor Multiprozessor

Konstant Cache

Textur Cache

Geteilter L1
Speicher Cache

… Register

… ALUs

…

Konstant Cache

Textur Cache

Geteilter L1
Speicher Cache

Register

… ALUs

…

Geteilter L1
Speicher Cache

Register

… ALUs

… Lokaler Speicher … … Lokaler Speicher

H
o
s
t

D
e
v
ic

e

Abb. 3.9.: Physische Aufteilung des Speichers (grau) auf RAM und Prozessor-Speicher.
Der Datentransfer ist durch Pfeile rechts dargestellt. Es ist ersichtlich, dass der
lokale Speicher zwar Thread-lokal ist, aber im RAM liegt, während nur der ge-
teilte Speicher direkt im GPU-Chip residiert. Caches sind schwarz dargestellt.

ein Zugriff auf Einträge außerhalb eines Textur-Arrays wieder in das Array umgeleitet
werden. Beide Zugriffsarten verlaufen gecached, wobei bei konstantem Speicher jeder
Speicherzugriff eines halben Warps eine Transaktion darstellt und somit nur effizient ist,
wenn alle Threads an derselben Adresse lesen. Die Verwendung beider Speicherspezia-
lisierungen erfordert sehr detailliertes Wissen zur Beurteilung der Zweckmäßigkeit und
einen höheren Programmieraufwand, da ein Zugriff nur mittels Bindings möglich ist.

3.2.4. CUDA Intrinsics

Die CUDA-API stellt dem Programmierer viele Befehle zur Verfügung, die komplexe
Funktionen hardwarenah umsetzen und dabei wesentlich effizienter ablaufen, als eine
manuelle Implementierung. Dazu zählen sowohl Funktionen, die innerhalb eines Warps
Ergebnisse zusammenführen (Voting), aber auch mathematische Funktionen (Bitcounting)
oder Synchronisationsbarrieren für ganze Threadblöcke. Einige Funktionsbeispiele, die
in GPU-Voxels konsequent eingesetzt wurden, finden sich im Anhang in Abschnitt A.2.

3.2.5. Weitere Konzepte der Parallelverarbeitung

Neben den beschriebenen, sehr hardwarenahen Optimierungstechniken, existieren auch
allgemeingültigere, abstraktere Programmiermuster zur Effizienzsteigerung von paralle-
len Algorithmen. So sollte es immer das Ziel sein, eine Aufgabe mit geringem Aufwand
in möglichst gleich große Teilaufgaben zu zerlegen, die sich in unabhängigen Paketen

30

3.2. CUDA Praxis

(a) Ausgerichteter Speicherzugriff
(sequentiell und nicht-sequentiell)

(b) Nicht ausgerichteter Speicherzugriff
(sequentiell und nicht-sequentiell)

Abb. 3.10.: Beispiel für den Speicherzugriff eines Warps mit und ohne Memory-Coalescing
und die benötigten Bus-Übertragungen. Jeder Thread greift auf ein 4 Byte-
Wort zu. Grafik aus [154].

Speicher Latenz Zugriff Sichtbarkeit Lebensdauer

Global 200-400 R/W Alle Threads + CPU Programm
Constant 10 R Alle Threads + CPU Programm
Texture 200-400 R Alle Threads + CPU Programm
Local 200-400 R/W Thread Thread
Shared 10 R/W Block Block
Register 0 R/W Thread Thread

Tab. 3.2.: Übersicht der wichtigsten Eigenschaften der unterschiedlichen Speichertypen.
Bei der Latenz von Constant Memory und Shared Memory ist keine zuverläs-
sige Angabe möglich, sondern nur eine pessimistische Abschätzung. Daten aus
[22].

Feststellung 6. Bedingt durch die parallele Nutzung der lokalen / globa-
len Speicherbusse und die beschränkten Möglichkeiten des CUDA-Compilers
zur Zugriffsoptimierung, ist eine genaue Planung der Speicherzugriffsmuster
durch den Programmierer bei der Implementierung eines GPU-Algorithmus
von wesentlich größerer Bedeutung, als bei einer CPU-Implementierung.

parallel bearbeiten lassen. Diese Pakete formen dann CUDA-Blöcke, in welchen wieder-
um eine feingranulare Parallelisierung auf Thread-Ebene stattfindet. Hier ist dann auf-
grund der SIMT Hardwareeigenschaften eine datenparallele Verarbeitung der Schlüssel,
wofür ein genaues Verständnis der Datenabhängigkeiten vorliegen muss. Auf Blockebe-
ne stehen für eine effiziente Kommunikation und Synchronisation die genannten Intrin-
sics zur Verfügung. Abschließend sind die Ergebnisse mittels Compaction bzw. Reduktion
wieder zusammenzuführen, wobei eine Abwägung zwischen Datentransfer und Berech-
nungsaufwand aufzustellen ist. So kann es bei hoher Komplexität zielführend sein, den
letzten Schritt auf dem Host auszuführen. Konkrete Code-Beispiele finden sich in Ab-
schnitt A.5 des Anhangs.

31

3. Heterogene Parallelverarbeitung

Kontextwechsel und CUDA Streams

Host und Device stellen zwei eigenständige Systeme mit eigener Speicherhierarchie dar,
die untereinander ausschließlich über den PCIe Bus gekoppelt sind. Da dieser Bus, vergli-
chen mit den jeweiligen Speicherhierarchien, eine vergleichsweise niedrige Datenüber-
tragungsrate aufweist [65], empfiehlt es sich, Algorithmen zu entwerfen, die einen mög-
lichst geringen Datenaustausch zwischen GPU und CPU erfordern. Aus demselben Grund
sollte bei einem Vergleich der Berechnungszeiten unterschiedlicher GPU-Algorithmen,
wie von Gregg et al. in Where is the data? [91] angemahnt, immer angegeben werden, ob
die gemessenen Zeiten die Datenübertragung beinhalten.

Es hat sich bewährt, Verarbeitungsketten zu implementieren, deren Eingabedaten ein-
malig auf das Device kopiert und dort bei ihrer Verarbeitung entsprechend verändert
werden. Lediglich das Endergebnis sollte zurück auf den Host kopiert werden müssen.
Techniken, wie Unified Memory oder Thrust’s Zuweisungsoperator, verbergen den nöti-
gen Speichertransfer vor dem Programmierer und verleiten so zu einem feingranularen
Kopieren von Daten, was jedoch zu Lasten der Laufzeit geht.

Aktuelle GP-GPU Generationen erlauben noch eine weitere Stufe der Parallelisierung, in-
dem Operationen auf so genannten CUDA-Streams aufgeteilt werden. Unter bestimmten
Umständen sind diese gleichzeitig ausführbar, zum Beispiel wenn ein Stream ausschließ-
lich Kernel mit Berechnungen auf einem Teil des GPU-Speichers ausführt, während ein
zweiter Stream Daten in oder aus einem anderen GPU-Speicherbereich von oder auf den
Host kopiert. CUDA-Streams kommen in dieser Arbeit nicht zum Einsatz, stellen aber
eine potentielle Leistungssteigerung dar, wenn unterschiedliche Voxelkarten aus unter-
schiedlichen Datenquellen befüllt werden.

Abgesehen vom Datenaustausch geschieht jedoch auch das Starten eines Kernels auf dem
Device nicht latenzfrei. Daher ist unabhängig von der Verwendung von Streams bei jeder
Operation abzuwiegen, ob der zusätzliche Aufwand für einen Kontextwechsel gerecht-
fertigt ist, oder ob die Aufgabe nicht in kürzerer Zeit direkt auf dem Host ausführbar
ist.

Lastbalancierung

Bei einigen Aufgabentypen ist der Berechnungsaufwand einzelner Arbeitspakete im Vor-
feld nicht bestimmbar, wodurch eine gleichmäßige Aufteilung auf CUDA Kernel nicht
gewährleistet werden kann. In solchen Fällen ist es zur Laufzeit wichtig, zyklisch oder
anhand eines Kriteriums zur Auslastungsbestimmung eine Neuverteilung der Aufgaben
durchzuführen, um brachliegende Rechenkerne zu vermeiden. Dieses Prinzip der Last-
balancierung wurde beispielsweise von Steinberger et al. im Whippletree Load-Balancer
generisch implementiert [190]. Auch die GPU Kollisionsprüfung gProximity setzt Lastba-
lancierung ein [130]. Der dort verwendete Ansatz inspirierte die Octree-Implementierung
dieser Arbeit, wurde dabei jedoch um eine probabilistische Komponente erweitert, die
zum Ziel hat, Threads mit ähnlichen Laufzeiten in Blöcken zusammenzufassen. Dafür
nutzt sie eine Bewertungsfunktion, die auf die auszuführenden Arbeitselemente ange-
wendet wird. Details dazu finden sich in Abschnitt 5.5.2. Weitere Arbeiten zum Thema
stammen aus dem High-Performance-Computing Bereich (Chen et al. [57]) und skalieren

32

3.3. Fazit

das Prinzip auch über mehrere GPUs [169]. Vergleichbar ist auch das Work Stealing von
Cederman et al. aus [55].

3.3. Fazit

Das Kapitel stellte die heterogene Parallelverabeitung mit CUDA auf Basis von GPUs
und CPUs vor. Verbreitete Konzepte wurden beschrieben und praktisch motiviert. Dabei
wurde deutlich, dass für eine effiziente Umsetzung von parallelen Algorithmen sehr ge-
naue Kenntnisse über die Datenabhängigkeiten innerhalb der Problemstellung, als auch
über die Zielhardware nötig sind. So wurde die Entscheidung, welche Algorithmen für
welche Zielplattform umgesetzt werden, vorrangig anhand der benötigten Dynamik ih-
rer Datenstrukturen getroffen. Planungsverfahren, die zur Laufzeit Graphen aufbauen
und regelmäßig umorganisieren, residieren auf dem Host, während bspw. die Sensorda-
tenvorverarbeitung mit konstanter Nutzdatengröße auf der GPU stattfindet. Die gesam-
melten Erkenntnisse werden in den folgenden Kapiteln für die Implementierung von
GPU-Voxels herangezogen.

33

4. Perzeption und Modellierung

Um sich in einer veränderlichen Umwelt zurechtzufinden, wird die Fähigkeit zur Wahr-
nehmung des Umfelds benötigt. Der Mensch kombiniert hierfür unterbewusst und in-
tuitiv seine sechs Sinne. In der Robotik stehen dagegen meist nur wenige und wesent-
lich eingeschränktere „Sinne“ zur Verfügung, ebenso ist ihre Fusion (noch) nicht selbst-
verständlich. Da die entwickelten Techniken zur Kollisionserkennung auf visuellen Da-
ten beruhen, beschränkt sich auch diese Arbeit auf die visuelle Perzeption der Umwelt.
Im Hinblick darauf beleuchtet dieses Kapitel daher zunächst passende Sensoren, bevor
dann unterschiedliche Umwelt- und Egomodellierungen analysiert werden. Abschlie-
ßend wird ein Verfahren zur Bewegungsprädiktion sowie eine Simulation zur Generie-
rung von Punktwolkendaten vorgestellt.

4.1. Visuelle Sensorik

Abb. 4.1.: Vergleich des Funktionsprinzips und des Bauraumes unterschiedlicher Tiefen-
kameras. Bild veröffentlicht in [8].

Sensoren dienen im Allgemeinen dazu, eine physikalische Größe in ein elektrisch mess-
bares und interpretierbares Signal umzuwandeln. Dabei wird zwischen externe und inter-
nen Sensoren unterschieden. Erstere ermöglichen es einem Roboter, seine Umwelt wahr-
zunehmen. Im Gegensatz dazu dienen internen Sensoren zur Erfassung des Roboterzu-
standes, beispielsweise seiner Gelenkwinkel. Sie spielen eine Rolle bei der Aktualisierung
des weiter unten beschriebenen Robotermodells und werden hier nicht näher betrachtet.
Der Fokus liegt dagegen auf visuellen Sensoren, da diese berührungslos messen und ei-
ne große Bandbreite und Datenvolumen an Informationen bereitstellen können. Anderen

35

4. Perzeption und Modellierung

Messprinzipien, wie z.B. akustische oder taktile Sensoren, eignen sich nur in Sonderfällen
für die Kollisionserkennung, da sie entweder eine zu geringe örtliche Auflösung aufwei-
sen oder nicht alle relevanten Hindernisse detektieren können.

Klassische visuelle Sensoren sind Intensitätskameras (Graustufen- oder Farbkameras),
deren Daten sich durch vielfältige Verfahren interpretieren lassen, um beispielsweise
Gegenstände oder Personen zu klassifizieren. Bedingt durch das Messprinzip, das ei-
ne Projektion auf eine Bildebene erfordert, sind diese Kameras jedoch nicht in der Lage,
Tiefeninformationen der erfassten Szene zu messen. Da sich diese Arbeit jedoch mit der
Kollisionserkennung im 3D-Raum befasst, werden folglich Sensoren benötigt, welche Di-
stanzen messbar machen. Hierbei unterscheidet man zwischen passiven und aktiven Sen-
soren, je nachdem ob zusätzliche Energie emittiert wird oder der Sensor ausschließlich
mit Umgebungslicht arbeitet.

Eine Klasse von aktiven Tiefensensoren bildet LIDAR (Light Detection And Ranging):
Hier tastet ein einzelner Laserstrahl die Umgebung ab, indem er mittels mechanischer
Vorrichtungen um zwei Achsen rotiert wird. Die Laufzeit, des von den Oberflächen zu-
rückgeworfenen Lichtes, kann gemessen und somit die Distanz bestimmt werden. Be-
dingt durch die Abtastbewegung vergeht eine gewisse Zeit, bis die Szene vermessen
wurde (je nach Auflösung bis zu mehreren Sekunden). Daher ist LIDAR nur bedingt
für dynamische Szenen geeignet.

Relevanter ist hingegen die Klasse der Sensoren, die in einer einzigen Aufnahme ein
ganzes Feld aus Messwerten erzeugen. Geräte dieser Art waren noch bis vor einigen
Jahren sehr hochpreisig und wiesen ein großes Bauvolumen auf. Inzwischen sind jedoch
Kameras aller drei folgenden Messprinzipien in kompakter Bauweise (vgl. Abb. 4.1) auch
für Privatanwender erschwinglich:

• Stereokameras bestehen aus zwei konventionellen, passiven Intensitätskameras,
die nach biologischem Vorbild Punkte in der Szene triangulieren. Auch wenn beide
Kameras hochauflösende Bilder liefern, kann die Menge der vermessenen Punkte
in der Szene stark schwanken, da eine Triangulation nur mit kontrastreichen Struk-
turen in den Bildern funktioniert.

• Strukturiertes Licht aus einem Musterprojektor ersetzt hier eine der Stereokameras
und erzeugt künstliche Texturen (örtliche Modulation) auf der Szene, die mit der
Kamera detektierbar sind. Aus dem bekannten Abstand zwischen Projektor und
Sensor kann auf die Distanz der erkannten Muster geschlossen werden.

• PMD Sensoren (Photonic Mixture Devices) arbeiten nach dem Time of Flight Prin-
zip. Sie senden sinusförmig moduliertes Licht (zeitliche Modulation) aus und mes-
sen die Phasenverschiebung der Reflexionen. Die Sensoren sind, wie andere Kame-
ras auch, im CMOS Verfahren herstellbar.

Als Messergebnis erzeugen alle drei Kameraklassen zunächst 10 bis 30 mal pro Sekunde
ein Tiefenbild, also eine 2D-Matrix aus Distanzwerten. Mit Hilfe der intrinsischen Ka-
librierungsparameter der Kameraoptik lassen sich daraus 3D-Punktwolken berechnen.
Anzumerken sei jedoch, dass zwar von 3D-Sensoren gesprochen wird, es sich tatsächlich
aber um 2,5D Sensoren handelt, da die visuelle Messtechnik nicht hinter oder in Objek-
te blicken kann. Deshalb existiert keine echte bijektive Abbildung der 3D-Szene auf das
Messergebnis, da nicht jeder Punkt im Raum, der im Sichtfeld der Kamera liegt, eine

36

4.1. Visuelle Sensorik

Entsprechung in der Aufnahme findet. Somit kann ein einzelnes Tiefenbild nicht dazu
verwendet werden, das Volumen eines Objektes zu bestimmen. Weiterhin kann es durch
Verschattungen zu Diskontinuitäten in den Messdaten kommen. Beides ist in späteren
Verarbeitungsschritten zu berücksichtigen.

4.1.1. Registrierung von Farb- und Tiefendaten

Da Tiefenbilder an sich keine Farb- oder Intensitätsdaten enthalten, basieren viele Ka-
meras, die für den Privatgebrauch hergestellt werden, auf der Kombination eines Tiefen-
sensors mit einer konventionellen RGB-Kamera. Sie stellen also so genannte Red, Green,
Blue, Depth (RGBD)-Kameras dar. Um eine Zuordnung zwischen den Tiefen- und Farb-
werten zu schaffen (siehe Abb. 4.2), müssen beide Kameras gegeneinander kalibriert wer-
den. Da sich die beiden Sensoren auf derselben horizontalen Achse befinden, stimmen
ihre vertikalen Komponenten überein. Die vertikale Zuordnung von Messpunkten kann
nach [189] wie folgt bestimmt werden:

uRGB = ~KRGB · dis
(
~RRGB

(
~xIR − ~cRGB,~kRGB

))
(4.1)

Hierbei steht uRGB für die Komponente im Farbbild, die dem Pixel ~xIR zugeordnet wird.
Als bekannt vorausgesetzt wird die intrinsische Kalibriermatrix ~KRGB der Farbkamera,
die extrinsische Kalibrierung der Farbkamera gegenüber der IR-Kamera über ~RRGB und
~cRGB, und ihre Verzerrungsparameter ~kRGB. Die optische Entzerrung geschieht über die
Funktion dis().

Eine genaue Zuordnung der Farb- und Tiefeninformationen ist in dieser Arbeit für Be-
wegungs-Prädiktion aus Abschnitt 4.6 wichtig.

(a) RGB-Bild (b) Registriertes Tiefenbild (c) Eingefärbte Punktwolke

Abb. 4.2.: Beispiel der Komponenten einer RGBD-Aufnahme aus [27]. Die 3D-Struktur
der Flugdrohne ist in der gegebenen Distanz nicht mehr aufzulösen. Schwarz
dargestellte Pixel repräsentieren Stellen, an denen keine Tiefenwerte vorliegen.
In der gewählten Darstellungsperspektive (die nicht der Kamera-Perspektive
entspricht) sind die Abschattungen, welche aufgrund der 2,5D-Datenstruktur
entstehen, deutlich sichtbar.

4.1.2. Untersuchte Tiefenkameras

Im Folgenden sollen konkrete Kameras kurz vorgestellt werden, die in dieser Arbeit un-
tersucht und verwendet wurden. Einige der Sensoren wurden aus dem aktuellen Bedarf

37

4. Perzeption und Modellierung

Bildauflösung: 640× 480 Tiefenmessbereich: 0, 8 - 4 m
Bildwiederholfrequenz: ∼ 301

s Pixelgröße bei 2 m: 3, 4× 3, 6 mm
Tiefenauflösung bei 2 m: 12 mm Öffnungswinkel: 57 ◦ ↔ 43 ◦ l

Tab. 4.1.: Hardwarespezifikation des ersten Kinect-Modells aus [37].

heraus entwickelt, Verbraucherelektronik mit integrierter Gestenerkennung auszustat-
ten. Diese Tiefenkameras sind für den Nahbereich optimiert und weisen eine sehr kleine
Bauform auf. Somit eignen sie sich für den Einbau in oder nahe am Endeffektor, was
z.B. in der Greifplanung von Vorteil ist, wie in Unterabschnitt 7.2.7 beschrieben. Andere
Sensoren entstammen der Spieleindustrie, sowie der Automatisierungstechnik.

Kinect Dieser von Microsoft seit 2010 für den Spielemarkt vertriebene Sensor mach-
te die 3D-Datenerhebung in der Robotik zu einem Routineproblem. Es handelt sich um
eine aktive RGBD-Kamera, die mit einem Infrarot-Musterprojektor arbeitet und verhält-
nismäßig hoch auflösende Tiefenbilder erzeugt. Die technischen Einschränkungen (siehe
Tab. 4.1) der Kinect sind in den meisten Robotikanwendungen hinnehmbar. So funktio-
niert der Sensor nicht in hellem Sonnenlicht, was ihn für den Einsatz im Freien unbrauch-
bar macht. Der Messbereich ist auf 0,8 m bis ca. 4 m beschränkt und bei der Nutzung
mehrerer Sensoren sollten sich deren Sichtfelder nicht überlappen, da die projizierten
Muster nicht kameraindividuell sind. Durch einen integrierten Prozessor (zur Weiter-
verarbeitung der Kameradaten zu einem artikulierten Skelettmodell) weist die Kamera
einen großen Bauraum auf.

Asus Xtion Ein Nachbau der Kinect ist von Asus verfügbar. Diese Kamera zeichnet sich
durch ihre kleine Bauform (keine komplexe Datenverarbeitung in der Kamera) und ihren
geringeren Stromverbrauch aus (siehe Abb. 4.1). Allerdings strahlt die Infrarotlichtquelle
weniger intensiv als bei der Kinect, weshalb die maximal messbaren Distanzen nur bis
zu 3 m verlässlich sind.

Intel RealSense Intel nutzt in dieser Kamera eine neue, dem DLP-Prinzip (Digital
Light Processing) ähnliche, Projektionstechnik, bei der ein oszillierender Mikrospiegel ei-
ne Laserlinie ablenkt. Wie auch bei der Kinect wird das damit erzeugte Muster von einer
versetzt angebrachten Infrarot-Kamera aufgenommen und zu einem Tiefenbild umge-
rechnet. Der Sensor ist in zwei Ausführungen für den Nah- und Fernbereich erhältlich.
In dieser Arbeit wurde eine RealSense SR300 für die Greifplanung (siehe Abschnitt 8.10)
im Nahbereich verwendet. Der sehr kleine Sensor erzeugt 640×480 Bildpunkte und misst
Distanzen zwischen 0,11 und 1,2 m.

PMD Nano und Basler TOF Kamera Beide Kameras basieren auf dem oben beschrie-
benen TOF Prinzip, unterscheiden sich jedoch stark in ihrem Bauvolumen. Während die
PMD Nano nur wenige Kubikzentimeter groß ist, misst die Basler TOF ca. 15 × 8 cm.
Bedingt durch die miniaturisierte Lichtquelle reicht der Messbereich der Nano auch nur
bis ca. 2 m. Dieser ist bei der Basler TOF Kamera mit 0 m bis 13 m bei einer Auflösung von

38

4.1. Visuelle Sensorik

640 × 480 Pixeln und einer Bildrate von 20 FPS wesentlich größer. Negativ fiel bei Tests
mit beiden Kameras allerdings ihr Signal/Rausch-Verhältnis und eine Kissenverzerrung
der Distanzwerte auf, weshalb sie hier in Experimenten nicht eingesetzt wurden.

Leap 3D Die kleine Leap 3D-Stereo-Kamera arbeitet mit einer zusätzlichen Infrarot Be-
leuchtung und einer Fischaugen-Stereooptik. Sie wurde entwickelt, um die Finger eines
Benutzers zu detektieren und somit als alternatives Eingabegerät zu fungieren. Versuche,
die Bilder der beiden Kameras manuell zu einem Disparitätsbild zu fusionieren, um dar-
aus Punktwolken zu berechnen, scheiterten an der intrinsischen Kalibrierung. Da diese
bedingt durch die Fischaugenoptik nicht gelang, war auch dieser Sensor nicht nutzbar.

4.1.3. Sensordatenverarbeitung

Nachdem unterschiedliche, passende Sensoren ermittelt wurden, erläutert dieser Ab-
schnitt die in Abb. 4.3 gezeigte Verarbeitungskette, mit der Kameradaten in Voxel um-
gewandelt werden. Das Ausgangsmaterial, das alle verwendeten 3D-Kameras liefern,
sind Tiefenbilder, also 2D-Felder aus Distanzinformationen. Diese werden auf die GPU
kopiert, da alle weiteren Schritte sehr gut parallel ausführbar sind und alle Ergebnis-
se direkt auf der GPU verbleiben können. Zunächst werden die Tiefenbilder als Grau-
stufenbild interpretiert, wodurch sich regulärer Bildverarbeitungsalgorithmen als erste
Filterschritte anwenden lassen (Min/Max-, Ausreißer-, Rauschfilterung, zur Entfernung
ungültiger Messwerte). Die vorverarbeiteten Daten werden dann mit Hilfe der intrinsi-
schen Kameraparameter zu einer Punktwolke im 3D-Raum projiziert und über die extrin-
sischen Parameter in das Weltkoordinatensystem transformiert. In einem letzten Schritt
wird die Punktwolke anhand des verwendeten Voxelrasters diskretisiert und je nach ge-
nutzter Datenstruktur anhand ihres Morton-Codes sortiert. Zuletzt müssen dann die Vo-
xel, in welche die Messpunkte fallen, entsprechend des Voxeltyps (siehe Abschnitt 5.1)
angepasst werden. Dieser Prozess der Voxelumwandlung wird in Abschnitt 4.3 noch de-
tailliert erläutert.

Die verwendeten 3D-Sensoren können lediglich Messpunkte auf sichtbaren Oberflächen
der Umwelt erzeugen. Basierend auf der einfachen Annahme, dass das Volumen im
Sichtkegel, der sich zwischen Sensor und den detektierten Objekten befindet, freier Raum
sein muss (da die Messung sonst nicht in ihrer Form möglich gewesen wäre), kann den-
noch zwischen unbekanntem und freiem Raum unterschieden werden. Ein Verfahren zur
Berechnung des Freiraumes ist in Unterabschnitt 4.3.1 dargelegt.

Tiefenbild 2D Filterkette Voxelgrid

Vorverarbeitung und Transformation Applikation Externer Sensor

Projektion zur
Punktewolke

Transformation in
Welt-Koordinaten

Filter Parameter
Intrinsische

Kameraparameter

Diskretisierung

Voxel-
Datenstruktur

Extrinsische
Kameraparameter

Abb. 4.3.: Verarbeitungskette zur Umwandlung von Tiefenbildern in Voxel. Grün darge-
stellte Schritte laufen auf der GPU ab.

39

4. Perzeption und Modellierung

4.1.4. Sensormodell

Eine exakte probabilistische Modellierung des Sensormodells der unterschiedlichen ver-
wendeten Tiefenkameras liegt außerhalb der Möglichkeiten dieser Arbeit. Alternativ wur-
de ein sehr einfaches Sensormodell verwendet, das lediglich die Entfernung der Messun-
gen berücksichtigt. Dieses Modell ist allgemein genug, um für alle genutzten Klassen von
Sensoren praktikabel zu sein.

Als Rechtfertigung wurden die Untersuchungen von Khoshelham et al. [117] herange-
zogen, in denen der Kinect bescheinigt wird, dass ihr Messrauschen quadratisch mit der
gemessenen Entfernung zunimmt und bei 5 m bereits 4 cm beträgt. Weiterhin sinkt die
messbare Tiefenauflösung über die Distanz, so dass die Kinect am Ende ihres Messberei-
ches nur noch in 7 cm Schritten auflöst. Daher wurden bei der Verwendung einer Kinect
alle Messwerte jenseits von 3 m verworfen, womit auch die zu erwartenden Fehler un-
terhalb der gängigen Voxelauflösung von 2–4 cm liegt. Ähnlich wurde bei PMD Kameras
vorgegangen, deren Messbereich noch wesentlich restriktiver eingeschränkt wurde.

Nguyen et al. stellen in [151] fest, dass auch das Messrauschen linear mit der lateralen
Distanz zur Hauptachse des Sensors zunimmt, was in dieser Arbeit jedoch nicht berück-
sichtigt ist. Messfehler aufgrund des Winkels, unter dem eine Oberfläche vom Sensor
gesehen wird, spielen laut Nguyen erst ab 70◦ eine Rolle. Da noch steilere Messungen je-
doch meist direkt vom Sensor verworfen werden, wurden auch diese nicht im Sensormo-
dell beachtet. Einen absoluten Versatz der Messungen, der abhängig von der Temperatur
der Kamera ist, stellen Choo et al. in [60] fest, weshalb sie eine 30-minütige Aufwärm-
phase empfehlen, bevor mit relevanten Messungen begonnen wird.

Weitere Fehlerquellen, die bei allen Sensoren beobachtet wurden, sind so genannte Jump-
Edges, die an Kanten von Objekten auftreten, hinter welchen weitere sichtbare Oberflä-
chen liegen. In diesem Fall generieren die Kameras häufig fehlerhafte Messpunkte hinter
der Kante, entlang des Sichtlinie des Sensors. Da in dieser Arbeit jedoch von bewegten
Sensoren ausgegangen wird, treten solche geisterhaften Messpunkte örtlich stark verteilt
auf. Statistisch und praktisch betrachtet, werden sie daher verlässlich von korrekten Mes-
sungen überschrieben.

Auch die Anfälligkeit der Sensoren gegen Fremdlicht, insbesondere Sonnenlicht ist pro-
blematisch. Sie wurde in den Versuchen durch angepasste Umgebungsbedingungen ver-
mieden.

Ausgehend von den Messdaten soll nun ein passendes Umweltmodell zu ihrer Aggrega-
tion und Weiterverarbeitung gefunden werden.

4.2. Umweltmodell

Grundlegender Bestandteil eines Robotersystems ist sein Umweltmodell. Dieses erfüllt
sehr unterschiedliche Aufgaben, von der Selbstlokalisierung, über die Bewegungspla-
nung, bis zur Verwaltung von detektierten Objekten. Da entsprechend vielfältige Umset-
zungen existieren, soll die folgende Taxonomie aus der Robotikvorlesung von Prof. Dill-
mann einen strukturierten Vergleich ermöglichen. Sie unterscheidet die Kategorien:

40

4.2. Umweltmodell

• Abstraktionsniveau: Geometrisch, topologisch, semantisch
• Umweltbedingung: Statisch, dynamisch, bekannt, unbekannt
• Operationsraum: 2D, 2,5D, 3D
• Informationsgehalt: Pfade, Freiraum, Objekte
• Anwendungsgebiet: Gemischt, strukturiert, unstrukturiert
• Art der Modellierung: Exakt, approximierend

Da nicht alle Inhalte sinnvoll in einem Modell vorgehalten werden können, lassen sich
auch mehrere Modelle kombinieren, was allerdings ein Konsistenzproblem in sich birgt.
Oftmals wird ein Umweltmodell aus Sensordaten mit einem abstrakten Objektmodell aus
bekannten Entitäten und ihren Posen im Raum kombiniert. Diese Arbeit hingegen unter-
scheidet nicht zwischen zwei Modellen, sondern annotiert Objektinformationen direkt
in den zugehörigen Teilen des Umweltmodells und vermeidet so potentielle Inkonsis-
tenzen.

Einige weit verbreitete Arten der Modellierung sollen nun kurz beschrieben und in die
gegebenen Kategorien eingeordnet werden. In direktem Zusammenhang mit dem Mo-
dell stehen auch die möglichen Verfahren zur Kollisionsdetektion, auf die in Abschnitt 6.1
eingegangen wird. Da für eine Kollisionserkennung immer geometrische Modelle benö-
tigt werden, sind hier keine rein topologischen oder semantischen Ansätze berücksich-
tigt, wie beispielsweise Datenbanken aus abstrakten Objektinformationen.

4.2.1. Oberflächen beschreibende Modelle

Die verbreitetste Art der 3D-Modellierung stammt aus dem Bereich der Computergrafik
und beschränkt sich auf die geometrische Beschreibung von Oberflächen. Liegt exaktes
Wissen über die zu modellierenden Geometrien vor, können ihre Flächen mittels funktio-
naler Methoden (bspw. Polynome, NURBS) repräsentiert und mit beliebiger Genauigkeit
interpretiert werden. Häufiger anzutreffen sind jedoch approximative Methoden, bei de-
nen beliebige Formen durch Polygon-Netze angenähert werden, wie in Abb. 4.4a zu se-
hen ist. Die kleinsten Einheiten der Netze sind fast immer Dreiecke, da diese planar und
konvex sind, was ihre Berechnung und Darstellung vereinfacht. Ein Vorteil dieser Model-
lierung ist die hohe Speichereffizienz, die durch einen örtlich variablen Detaillierungs-
grad (Dreiecksgröße) erreicht wird. So lassen sich innerhalb eines Modells einheitliche
Flächen mit wenig Dreiecken darstellen, während detailreiche Regionen feiner aufgelöst
werden können. Alternativ lassen sich unterschiedlich fein strukturierte Versionen der-
selben Oberfläche erzeugen (Level of Detail, LOD), um je nach Anforderung dynamisch
zwischen diesen zu wechseln [85].

Weiterhin lassen sich Normalenvektoren bestimmen, anhand derer die Ausrichtung der
Fläche definiert wird, um Unterscheidungen wie innerhalb / außerhalb zu ermöglichen.
Diese Oberflächennormalen sind auch zur Berechnung physikalischer Interaktion, wie
Kraftübertragung oder Reibung, nötig.

Mesh-basierte Repräsentationen sind sehr gut für die Darstellung von strukturierten,
a priori bekannten Modellen geeignet. Es existieren zahllose Programme zur Erzeugung
und Animierung von Oberflächen-Geometrien und für deren Darstellung. Sind die Mo-
delle jedoch zur Laufzeit aus Sensordaten zu rekonstruieren, müssen die Punktwolken

41

4. Perzeption und Modellierung

mittels Triangulierungsverfahren wie z.b. Poisson-Meshing oder Marching-Cubes in Drei-
ecksnetze umgewandelt werden. Diese Tesselierung weist einen hohen Rechenaufwand
auf, der mit jeder Sensoraufnahme anfällt und kubisch (O(n3)) mit der Anzahl an Mess-
punkten skaliert [61]. Daher können selbst parallelisierte Verfahren, die auf GP-GPUs ab-
laufen, aktuell nur ca. 10 Mio. Punkte pro Sekunde [163] verarbeiten, was gerade der Da-
tenrate einer einzelnen Kinect-Kamera entspricht (307 200 Punkte mit 25 Hz). Da die ge-
nannten Algorithmen eine szenenabhängige Parametrierung benötigen, um Annahmen
zur Sichtbarkeit und Zusammengehörigkeit von Messungen zu treffen, kann es zu Fehl-
interpretationen kommen, die die Dreiecksnetze für eine Kollisionsprüfung unbrauchbar
machen können. Weiterhin ist die Repräsentation von Pfaden oder Bewegungen mittels
Swept-Volumen aus Dreiecksnetzen sehr rechenaufwendig, wie in Abschnitt 4.5 gezeigt
wird.

Der größte Nachteil von Oberflächenmodellen liegt jedoch darin, dass Freiräume oder
unbekannte Regionen nicht oder nur sehr umständlich darstellbar sind.

(a) Dreiecksnetzmodell mit unterschiedlichen Auflösungen

(b) Voxel- und Octree-Modell

Abb. 4.4.: Stanford Bunny in unterschiedlichen Modellierungen [185].

4.2.2. Zusammengesetzte Primitive und generative Beschreibungen

Eine andere Klasse der Modellierung nutzt parametrisierte Primitive und aus ihnen er-
zeugte Vereinigungen, um Objekte zu beschreiben. Weit verbreitet im CAD-Umfeld ist
das Constructive Solid Geometry (CSG)-Verfahren, das mittels Kugeln, Quadern oder Zy-
lindern und Operatoren wie Schnitt, Vereinigung oder Differenz auch komplexe Geome-
triene darstellen kann. Die formelbasierte Beschreibung garantiert korrekte Modelle, die

42

4.2. Umweltmodell

Abb. 4.5.: Unterschiedliche 2,5D Repräsentationen: V.l.n.r.: Eingabedaten als 3D-Punkt-
wolke, Höhenkarte, Multi-Level-Höhenkarte. Adaptiert aus [203].

als Baumstruktur speicherbar sind. In der Robotik bietet sich CSG an, um Greifaufga-
ben zu planen. Wurden für alle Grundkörper passende Griffe vorberechnet, muss zur
Laufzeit lediglich eine Approximation des zu greifenden Objektes aus den bekannten
Körpern gefunden werden, um einen Griff auszuwählen [74].

Einen Spezialfall stellen so genannte Superquadriken dar. Diese geometrischen Körper
werden über Formeln beschrieben, deren Parametrisierung die Gestalt grundlegend, aber
stetig verändert. So kann eine einzelne Superquadrik sowohl Zylinder, Kugeln oder Qua-
der approximieren. Auch dies wird zur Greifplanung genutzt, indem Griffe definiert
werden, die sich adaptiv mit den Superquadrik Parametern verhalten. Auch hier ist zur
Laufzeit lediglich die beste Approximation des Zielobjektes durch einen Superquadrik-
Parametersatz zu finden [63].

Eine weitere Art der generativen Modellierung ist die Erzeugung von Rotationsflächen
oder Sweeps, um komplexe Oberflächen zu beschreiben. Dafür werden Kurven oder Vo-
lumen rotiert bzw. entlang einer weiteren Kurve verschoben, um das entstehende Inte-
gral zu generieren. Die in dieser Arbeit mehrfach eingesetzten Swept-Volumen folgen
einer ähnlichen Vorgehensweise. Sie sind in Abschnitt 4.5 erläutert.

Keines dieser Verfahren eignet sich jedoch zur Repräsentation von Sensordaten. Hierfür
wäre mit jeder neuen Punktwolke ein komplexes Optimierungsproblem zu lösen, das
bestimmt, welches Primitiv in welcher Parametrierung die Anordnung der Messpunkte
am besten beschreibt.

4.2.3. Raumpartitionierende Modelle

Sollen nicht nur Oberflächen, sondern Volumendaten repräsentiert werden, bietet sich
die Nutzung von raumpartitionierenden Modellen an.

Definition 8. Eine raumpartionierende Repräsentation teilt den darzustellen-
den Raum in adressierbare, disjunkte Zellen auf, die als Container für sortierte
Daten dienen, oder denen Eigenschaften wie belegt / frei zugesprochen wer-
den. Die Partitionierung kann in einem gleichförmigen Schema oder flexibel
erfolgen.

43

4. Perzeption und Modellierung

Klassische Beispiele für eine flexible Partitionierung im R3 sind Voronoi-Diagramme, der
Binary Space Partitioning Tree [84] oder Octalbäume (Octrees) [143]. Werden die umschlie-
ßenden Geometrien rekursiv zur Unterteilung genutzt, entstehen Bounding-Volume-Hierarchies
(BVHs) [62], auf welche im Zusammenhang mit der Kollisionsprüfung in Kapitel 6 noch
genauer eingegangen wird. Weiterhin lassen sich BVHs mit Oberflächennetzen in einer
hybrider Darstellungen kombinieren, bei der Oberflächenmodelle zusätzlich in grobe
Hüllkörper unterteilt werden [85].

Im Gegensatz zu einer Abtastung eines darzustellenden Volumens an diskreten Punkten,
bei der der Raum zwischen den abgetasteten Koordinaten undefiniert ist, repräsentiert
eine einzelne Zelle eines raumpartinionierenden Modells die Menge an Information in-
nerhalb des abgedeckten Teilvolumens. Entweder indem alle Daten, die in die Zelle fal-
len, in ihr gespeichert werden, oder indem alle Datenpunkte über ein probabilistisches
Modell miteinander verrechnet werden.

Definition 9. Ein Spezialfall der Partitionierung ist die gleichförmige Unter-
teilung eines Volumens in kubische Einheiten, so genannten Voxel (das drei-
dimensionale Pendant eines Pixels). Eine Menge aus adressierbaren Voxeln,
die ein zusammenhängendes, quaderförmiges Volumen bilden, wird in dieser
Arbeit als Voxel-Datenstruktur bezeichnet.

Diese Modellierung ist geometrischer Natur, da Voxel die Lage und Dimension von Ob-
jekten im dreidimensionalen Operationsraum beschreiben können. Semantisch kann im
einfachen Fall zwischen unbekanntem, freiem und belegtem Volumen unterschieden wer-
den, im Falle von annotierten Voxeln lassen sich Volumen auch unterschiedlichen Entitä-
ten zuordnen. Die Voxelmodellierung eignet sich ebenso für strukturierte Anwendungs-
gebiete mit Umweltinformationen, die z.B. aus geometrischen Modellen gewonnen wer-
den, als auch zur Repräsentation von Sensordaten eines unstrukturierten Gebietes, wie
bspw. der freien Natur. Weiterhin sind alle anfangs gelisteten Umweltbedingungen ab-
gedeckt, da durch annotierte Voxel auch unvollständiges Wissen explizit modellierbar ist
und die Verarbeitungsgeschwindigkeit dynamischen Situationen des untersuchten An-
wendungsgebietes gerecht wird. Die Generierung einer Voxel-Datenstruktur aus einer
Punktwolke erfolgt sehr effizient in O(n) anhand einer Diskretisierung der einzelnen
Punktkoordinaten und der Zusammenfassung aller Messungen innerhalb einer Zelle.
Spezifische Verfahren hierzu werden in Kapitel 5 vorgestellt. Gleiches gilt auch für die
mehrfache Umwandlung einer bewegten Punktwolke, was zur einfachen Generierung
von Swept-Volumen genutzt werden kann. Der Informationsgehalt umfasst also neben
Objekten und Freiraum auch Pfade dynamischer Objekte.

Problematisch ist jedoch der Speicherverbrauch einer kanonischen Voxel-Datenstruktur,
da sie nicht nur belegte, sondern auch freie Volumen explizit repräsentiert. Daher existie-
ren zahlreiche Ansätze, die auf Kosten der Laufzeit eine Kompression der Daten durch-
führen. Möglich ist das Zusammenfassen gleichförmiger Volumen mittels Octrees (siehe
Abschnitt 5.5), oder das Verwerfen von nicht relevanten Voxeln (siehe Voxellisten in Ab-
schnitt 5.4).

Eine andere verbreitete Möglichkeit ist eine Dimensionsreduktion, wie sie in Abb. 4.5 zu
sehen ist. Hier werden in einer 2D-Datenstruktur lediglich eine oder mehrere Höhen-
informationen gespeichert, um die Eingabedaten bestmöglich abzubilden. Semantische
oder probabilistische Informationen sind dabei jedoch nicht sinnvoll repräsentierbar.

44

4.2. Umweltmodell

4.2.4. Truncated Signed Distance Functions (TSDFs)

Das Kinect-Fusion Verfahren [150] zur 3D-Modellierung von unstrukturierten Umge-
bungen aus Tiefenaufnahmen nutzt eine weitere Art der geometrischen Modellierung:
Oberflächen werden hier mittels Truncated Signed Distance Functions (TSDFs) repräsen-
tiert. Die grundlegende Datenstruktur ist auch hier eine Voxelkarte, deren Voxel jedoch
keine Belegtheit, sondern den Abstand zu der ihnen am nächsten liegenden Oberfläche
speichern. Voxel, die den Wert Null enthalten, repräsentieren also eine Oberfläche. Durch
die Verwendung der TSDF bewegen sich die Distanzwerte im negativen Bereich, wenn
sie hinter einer Fläche liegen, bzw. im positiven Bereich, wenn sie vor einer der Flächen
liegen, und erreichen bereits ab einer geringen euklidischen Distanz einen Betrag von
Eins. Die Vorteile dieser Modellierung liegen in der effizienten Integration aufeinander-
folgender Sensoraufnahmen von statischen Szenen, bei gleichzeitiger Minimierung des
Messrauschens. Problematisch ist der hohe Berechnungsaufwand, der mit dem darstell-
baren Volumen wächst: Die kontinuierliche Generierung eines Modells aus den Daten
einer Kinect-Kamera lastet eine moderne GPU bereits aus, auch wenn das Volumen auf
5123 Voxel beschränkt wird. Daher wurden TSDFs für die Kollisionserkennung nicht wei-
ter in Betracht gezogen. Eine spätere Unterstützung wäre jedoch einfach möglich.

4.2.5. Auswahl der geeignetsten Modellierung

Eine Modellierung von Sensordaten durch Primitive, generative Beschreibungen oder
TSDFs scheidet aus den genannten Gründen aus. Bei den verbleibenden Techniken de-
cken diskretisierende Modelle alle für eine Bewegungsplanung relevanten Punkte aus
der Taxonomie ab. Weiterhin ergeben sich durch ihre Verwendung mehrere Vorteile ge-
genüber einer Modellierung mittels Dreiecksnetzen:

• Punktwolken lassen sich wesentlich effizienter auf Voxel-Datenstrukturen abbilden
(O(n)), als auf Oberflächennetze (O(n3)).

• Eine Datenfusion über die Zeit oder aus mehreren Datenquellen ist inhärent inner-
halb der Voxel möglich.

• Freiraum und unbekannter Raum kann explizit modelliert werden, was für eine
Bewegungsplanung sehr vorteilhaft ist.

• Swept-Volumen können ohne zusätzlichen Reduktionsaufwand generiert und di-
rekt gespeichert werden.

• Durch die Annahme einer statistischen Unabhängigkeit zwischen einzelnen Voxeln
können diese einfach parallel bearbeitet werden.

Die Einschränkungen, die sich bei Voxelmodellen durch nicht vorhandene Oberflächen-
normalen ergeben, sind in der Bewegungsplanung nicht relevant. Prinzipbedingte Dis-
kretisierungsfehler lassen sich außerdem zur Ausführungszeit beispielsweise durch eine
Regelung des Systems (bspw. Impedanzregelung) ausgleichen. Somit ist Forschungsfra-
ge 2 beantwortet und es kann, auch im Hinblick auf die Evaluierung in Abschnitt 8.4, die
Feststellung 7 getroffen werden:

45

4. Perzeption und Modellierung

Feststellung 7. Zusammenfassend eignet sich die Voxelmodellierung am bes-
ten für die in dieser Arbeit verfolgten Ziele einer Kollisionsdetektion auf Basis
von 3D-Punktwolken, weshalb sie als Grundlage in GPU-Voxels gewählt wur-
de.

4.3. Voxelumwandlung

Das Aktualisieren von Voxel-Datenstrukturen durch Punktwolken ist ein grundlegender
Arbeitsschritt, der hier formalisiert werden soll.

Definition 10. Als Voxelumwandlung wird das Eintragen einer Punktwolke
P in eine Voxel-Datenstruktur M bezeichnet, das mit dem Operator �(M,P)
beschrieben wird. Hierfür sind die Voxel, in welche die Punkte fallen, entspre-
chend zu aktualisieren. Um sie zu bestimmen, müssen die Koordinaten der
Punkte mit dem Raster der Datenstruktur, das der Voxelkantenlänge lVoxel ent-
spricht, diskretisiert werden. Je nach Dichte der Punktwolke können bei der
Diskretisierung Voxel übersprungen werden, was zu Löchern im belegten Vo-
lumen führt. Um auch unter einer beliebigen Rotation der Punktwolke solche
Abtastfehler zu vermeiden, muss für den maximalen Abstand ∆p zwischen
einzelnen Messpunkten p ∈ P gelten: ∆ < l√

2
∗. Der maximale Diskretisie-

rungsfehler durch die Voxelumwandlung liegt bei 1
2

√
3l.

∗Kantenlänge des minimalen Würfels, dessen Ecken außerhalb eines Voxels liegen

Gegeben sei: Eine Voxel-Datenstruktur M und eine Punktwolke P . Dabei sei ein Voxel
V = (a, b, c, Ψ) das Tupel seiner Koordinaten a, b, c ∈ Z und seinem Zustand Ψ (Ψ kann je
nach Voxeltyp unterschiedliche Wertebereiche aufweisen). Ein Punkt p ∈ P : p = (x, y, z)
sei das Tupel seiner Koordinaten x, y, z ∈ R.

Weiterhin existiere ein Operator �‡(V), der den Zustand Ψ eines gegebenen Voxels V
entsprechend einer vom Voxeltypen abhängigen Funktion ‡ ändert.

Mit diesen Voraussetzungen lässt sich der Operator�(M,P) definieren, der den Zustand
einer Voxel-Datenstruktur M aktualisiert, wenn eine Punktwolke P in diese eingetragen
wird:

�(M,P) :=
⋃
�‡(Vj) ; ∀pj ∈ P und Vj ∈M

wobei Vj =
( bxj/lVoxelcbyj/lVoxelc

bzj/lVoxelc

T

, Ψj
)

mit (xj , yj , zj) = pj
(4.2)

Unter der Annahme einer konstanten Laufzeit für �‡(V) ist der Aufwand der Voxel-
umwandlung direkt durch die Parallelisierbarkeit der Zieldatenstruktur bestimmt, da
zwischen den Eingabedaten keine Abhängigkeiten bestehen.

46

4.3. Voxelumwandlung

4.3.1. Freiraumbestimmung

Aufgrund der genutzten visuellen Messprinzipien können die verwendeten 3D-Senso-
ren nur Messpunkte auf den sichtbaren Oberflächen der Umwelt erzeugen. Um dennoch
eine Unterscheidung zwischen unbekanntem und freiem Raum zu ermöglichen, kann
die vereinfachte Annahme getroffen werden, dass das Volumen im Sichtkegel zwischen
dem Sensor und den detektierten Objekten freier Raum sein muss, da die Messung sonst
so in ihrer Form nicht möglich gewesen wäre. Basierend auf dieser Annahme können
die freien Voxel mittels einem Raycasting Verfahren bestimmt werden, welches seinen
Ursprung in der Computergrafik hat. Dort wird es verwendet, um den Schnittpunkt der
Sichtstrahlen einer Kamera mit virtuellen Objekten zu bestimmen. Ganz ähnlich wird in
dieser Arbeit eine Abwandlung des Bresenham Algorithmus [51] eingesetzt, um die Men-
ge F der Voxel zu berechnen, die in einer Voxel-Datenstruktur auf der Strecke zwischen
dem Sensorursprung und einem Messpunkt liegen (vgl. Abb. 4.6a). Dabei sind jedoch
zwei Beobachtungen zu berücksichtigen, die sich aus dem pyramidenförmigen Sichtfeld
des Sensors ergeben: 1) Die Menge F enthält viele Voxel mehrfach, da die Voxel, die na-
he am Sensor liegen, von den Strahlen vieler weiter entfernter Messpunkte geschnitten
werden (das Verhältnis steigt quadratisch mit der Distanz h zum Sensor). 2) Die Anzahl
|F | der freien Voxel übersteigt die Anzahl der belegten Voxel |O| bei einer Objektdistanz
h von 300 cm und einer Voxelkantenlänge von 1 cm bereits um zwei Größenordnungen
(da |F | = h/3 · |O|). Bei 0,3 Mio. Messpunkten der Kinect wären dies 30 Mio. Freiraum-
voxel.

Um die große Menge an Voxeln, die sich aus Beobachtung 2) ergeben, effizient zu ermit-
teln, läuft das Raycasting parallel für alle Messstrahlen. Beobachtung 1) zeigt jedoch, dass
dabei mehrere Threads gleichzeitig auf dieselben Voxel zugreifen können. Aus Effizienz-
gründen wurde dennoch auf eine Serialisierung mittels atomarer Operationen verzich-
tet, auch wenn im Falle von probabilistischen Voxeln das mehrfache Dekrementieren der
Belegtheitswahrscheinlichkeit das korrekte Verhalten wäre. Um Fehler zu minimieren,
wurde die Strahlenverfolgung invertiert und läuft ausgehend vom Messpunkt in Rich-
tung Kamera, wodurch die Strahlen unterschiedlich lang sind, und die Threads somit
die kameranahen Voxel asynchron traversieren. Weiterhin stellt die Speicher-Koherenz
sicher, dass jeder betroffene Voxel mindestens einmal als frei markiert wird. Praktische
Tests haben letztendlich bestätigt, dass die verbleibenden Fehler so selten auftreten, dass
sie vernachlässigbar sind.

Um ein nachträgliches Überschreiben von belegten Voxeln durch das Raycasting zu ver-
meiden (vgl. Abb. 4.6b), werden zunächst alle Freiraumvoxel markiert, und erst danach
die Hindernisse eingetragen. Abtastfehler, wie sie in Abb. 4.6c dargestellt sind, können
zwar nicht ausgeschlossen werden, sie stellen jedoch auch kein Problem dar, da sie nur
in einem sehr kleinen Randbereich des Sichtkegels auftreten.

Die letztendliche Implementierung des Raycastings unterscheidet sich zwischen Voxel-
karte und Octree: Während bei einer Voxelkarte die Markierung direkt ausgeführt wird
(setzen der Voxeleigenschaften im Falle einer binären Voxelkarte, bzw. aktualisieren der
Belegtheitswahrscheinlichkeiten im Falle von probabilistischen Voxeln), wird beim Oc-
tree noch ein Zwischenschritt eingeführt. Auch dort dienen Voxelkarten aufgrund ihres
effizienteren wahlfreien Zugriffes als Datenstruktur für das Raycasting. Ist dieses abge-
schlossen, lassen sich bereits auf Basis der Voxelkarten zusammenhängede Freiräume

47

4. Perzeption und Modellierung

(a) Positivbeispiel (b) Falschdeklaration (c) Abtastfehler

Abb. 4.6.: Freiraumberechnung vereinfacht für den zweidimensionalen Fall. Legende: 1)
Sensor, 2) Strecke |Sensor-Messpunkt|, 3) Hindernis, 4) Belegte Zelle, 5) Freies
Feld, 6) Sichtkegel, 7) Fehlerhafte Markierung

zusammenfassen, bevor die Ergebnisse in den Octree übertragen werden. Weiterhin ist
es damit möglich, den Freiraum in einer gröberen Auflösung zu bearbeiten und somit
Berechnungsaufwand einzusparen, ohne die Auflösung der Hindernisvoxel zu beein-
trächtigen (siehe Abb. 4.7).

Ein Beispiel für das Raycasting ist in Abb. 4.7 gezeigt. Hierbei wird das Umweltmodell
aufgebaut, während die Kamera ein Objekt umkreist.

4.4. Roboter-Modell

Ebenso wie das Umweltmodell dient auch das Egomodell eines Roboters vielen unter-
schiedlichen Zwecken, wie beispielsweise der Zustands- oder Fehlerdiagnose. Für die
Kollisionsdetektion ist jedoch ausschließlich ein animiertes geometrisches Modell rele-
vant. Um dieses effizient verarbeiten zu können, soll es ebenso wie die Umwelt über eine
diskretisierende Voxel-Datenstruktur repräsentiert werden. Die folgenden Abschnitte be-
schreiben die Generierung und Aktualisierung eines Voxel-Egomodells.

4.4.1. Artikulierte Robotermodelle

Das Modell eines beweglichen Roboters muss die Geometrie und die kinematische Kon-
figuration eines Mehrkörpersystems aus rigiden Teilen beschreiben können, um die re-
lativen Bewegungen der einzelnen Roboterglieder im SE (3) eindeutig abzubilden [125].
Dafür wird meist auf so genannte Szenengraphen zurückgegriffen. Diese stellen baumar-
tige Strukturen mit verketteten geometrischen Transformationen dar, die ausgehend von
einem Welt-Koordinatensystem bis zu den einzelnen Elementen des Roboters reichen.
Jede Stelle im Baum repräsentiert ein Koordinatensystem, mit dem ein geometrisches
Modell verknüpft werden kann. Zur Laufzeit lassen sich die Transformationen durch

48

4.4. Roboter-Modell

(a) Eigabeszene aus Sicht der Kamera (ca.
200 kVoxel)

(b) Freiraum aus entgegengesetzter Richtung (ca.
5 MVoxel)

Abb. 4.7.: Beispiel der Freiraumberechnung mittels Raycasting. Der Freiraum wird im
Octree zu größeren Voxeln zusammengefasst.

Abb. 4.8.: Aufbau des Umweltmodells aus zusammengeführten Punktwolken: Während
der Sensor (grüner Würfel) um das Objekt wandert (gelber Zylinder auf Bo-
denebene) berechnet ein Raycasting Algorithmus den tatsächlichen Freiraum
(graue Pyramiden). Alle nicht einsehbaren / verschatteten Regionen verblei-
ben als unbekannt modelliert.

Gelenkwinkel oder andere Sensormessungen anpassen, womit sich auch die Modelle im
Raum bewegen. Zwei verbreitete Konventionen, um diese Transformationsketten mathe-
matisch zu definieren, sind in GPU-Voxels umgesetzt worden:

Denavit Hartenberg (DH) Konvention: Unter Nutzung der DH-Konvention [68] kann
für jedes Robotergelenk n aus den vier geometrischen Parametern θn, dn, an und αn ei-
ne homogene Matrix T bestimmt werden, die die Anordnung des n-ten Rotations- oder
Schubgelenks gegenüber seiner Basis n− 1 beschreibt.

49

4. Perzeption und Modellierung

n−1Tn = Rot(zn−1, θn) · Trans(zn−1, dn) · Trans(xn, an) · Rot(xn, αn)

=


cos θn − sin θn cosαn sin θn sinαn an cos θn
sin θn cos θn cosαn − cos θn sinαn an sin θn

0 sinαn cosαn dn
0 0 0 1


(4.3)

Durch die Multiplikation aller n Matrizen entsteht eine Kette, die die Transformationen
von der Roboterbasis bis hin zum Endeffektor beschreibt. Kürzere Teilketten können ver-
wendet werden, um die Pose der Roboterglieder zu berechnen. Durch die Änderung von
θn bei Rotationsgelenken bzw. αn bei Schubgelenken kann die Kinematik und somit die
Geometrie des Roboters bewegt werden.

Unified Robot Description Format (URDF): Eine redundantere, aber intuitivere Mög-
lichkeit ist es, die Transformationsmatrizen direkt über die Art, die Verschiebung und die
Rotation der Glieder zueinander zu bestimmen [124]. Dieses Format der kinematischen
Beschreibung findet sich in der Unified Robot Description Format (URDF)1 Modellie-
rung, die im Robot Operating System (ROS) verwendet wird. Auch hier wird letztendlich
eine Transformationskette aufgebaut, über welche die Lage der einzelnen Glieder je nach
Roboterpose bestimmt werden kann.

4.4.2. Voxelmodelle

Ist die Transformationskette bekannt, kann damit jeder rigide Roboterbestandteil an seine
Pose bewegt werden. Während bei einer Modellierung mittels Oberflächen jedes Dreieck
nach seiner Transformation direkt auf Kollision prüfbar ist, muss bei einer Voxelmodel-
lierung ein Zwischenschritt stattfinden, da hier nicht die Modelle selber, sondern zwei
Voxel-Datenstrukturen miteinander überlagert werden.

Um ein Voxelmodell eines Roboters zu erhalten, sind zunächst vorhandene CAD Ober-
flächenmodelle der einzelnen Glieder des Roboters in dichte 3D-Punktwolken umzu-
wandeln (vgl. Abb. 4.9). Dieser Prozess entspricht einer Abtastung der Oberflächenmo-
delle mit einem dreidimensionalen Gitter aus Messpunkten, wobei alle Punkte gespei-
chert werden, die auf oder innerhalb des Oberflächenmodells liegen. Hierbei muss die
Auflösung der Abtastung so hoch gewählt werden, dass bei der Voxelumwandlung der
Punktwolke in beliebiger Rotation keine Löcher im Modell entstehen. Dieser Diskreti-
sierungsfehler wird vermieden, wenn gemäß Definition 10 für die Abtastdistanz ∆ gilt:

∆ <
Voxel-Seitenlänge√

2
. In dieser Arbeit wurde für die Abtastung das Werkzeug binvox2

eingesetzt [152]. Weiterhin muss der Ursprung des Koordinatensystems der Punktwolke
im Rotationspunkt des Gelenkes liegen, welches das betrachtete Körperglied bewegt.

Die Punktwolken aller Körperteile werden einmalig untransformiert in den konstan-
ten Speicher der GPU geladen und verbleiben dort schreibgeschützt. Verändert sich zur

1URDF: http://wiki.ros.org/urdf
2binvox: http://www.patrickmin.com/binvox/

50

http://wiki.ros.org/urdf
http://www.patrickmin.com/binvox/

4.4. Roboter-Modell

(a) CAD-Oberflächenmodell
des Roboter Oberarmes

(b) Als dichte Punktwolke
abgetastetes Modell

(c) In Ausgangslage in Vo-
xel umgewandelte Punkt-
wolke

Abb. 4.9.: Voxelumwandlung eines einzelnen Roboter-Gliedes am Beispiel des Oberar-
mes.

Laufzeit die Position des Roboters oder seine Gelenkwinkel, muss eine Kopie jeder Punkt-
wolke gemäß der kinematischen Kette transformiert, und in eine Voxel-Datenstruktur
eingetragen werden. Wird der Roboter nur achsparallel verschoben, kann auf das re-
chenintensive Transformieren der einzelnen Punktwolken verzichtet werden und statt
dessen auf das Verfahren zur Translation mittels Basisversatz aus Unterabschnitt 5.3.1
zurückgegriffen werden.

4.4.3. Selbstausblendung und Eigenkollisionen

Soll der Arbeitsraum eines Roboters visuell auf Kollisionen hin überwacht werden, so
kann nicht vermieden werden, dass neben der Umwelt auch der Roboter von den Sen-
soren erfasst wird. Um hierbei nicht fälschlicherweise Eigenkollisionen zu detektieren,
müssen die Messpunkte, die den Roboter repräsentieren, aus den Aufnahmen entfernt
werden. Hierfür wurden zwei unterschiedliche Verfahren genutzt, die eine exakte Kali-
brierung zwischen Kamera und Roboter voraussetzen:

In ROS existiert hierfür das Realtime URDF Filter-Paket3. Wie der Name vermuten lässt,
filtert dieses aus dem Datenstrom einer 3D-Kamera basierend auf einem URDF-Modell
des Roboters die problematischen Punkte heraus. Dafür rendert ein OpenGL-Programm
live das geometrische Modell des Roboters aus der Perspektive der Tiefenkamera und
vergleicht die Tiefendaten der Sensorwerte mit den Z-Puffer-Ergebnissen des Rende-
rings. Messpunkte, die ähnliche Entfernungswerte wie der Z-Puffer aufweisen, werden
entfernt. Das Resultat ist der Datenstrom aus Tiefeninformationen, die um den Roboter
bereinigt wurden. Der URDF Filter wurde erfolgreich für die Evaluation der Bewegungs-
prädiktion aus Abschnitt 4.6 genutzt.

Wird der original Datenstrom aus der Kamera nicht benötigt, da es ausreicht, Roboter-
Voxel auszufiltern, kann der Aufwand des OpenGL-Renderings vermieden werden. Da-
zu wurde ein Verfahren umgesetzt, das rein auf GPU-Voxels und dem darin vorhandenen

3Realtime URDF Filter: http://wiki.ros.org/realtime_urdf_filter

51

http://wiki.ros.org/realtime_urdf_filter

4. Perzeption und Modellierung

Robotermodell basiert. Als Voraussetzung müssen die Modell- und Sensordaten in unter-
schiedlichen Datenstrukturen gehalten werden: Die in Voxel umgewandelten Sensorda-
ten liegen in einer Umweltkarte vor, während sich das Robotermodell in einer weiteren
Datenstruktur befindet. Somit kann das animierte Robotermodell von den Sensorvoxeln
subtrahiert werden. Die verbleibenden Daten können dann herangezogen werden, um
sie gegen eine dritte Datenstruktur auf Kollisionen zu prüfen, bspw. um darin Bewegun-
gen zu planen.

Echte Eigenkollisionen werden separat während des Eintragens einer Roboterpose in die
Voxel-Datenstruktur behandelt. Da die Elemente der Kinematik hierbei sequentiell abge-
arbeitet werden, kann vor dem Eintragen eines Modellpunktes geprüft werden, ob der
Zielvoxel bereits belegt ist. In diesem Fall liegt eine Eigenkollision vor. Aufgrund von
Diskretisierungsfehlern tritt dieser Fall jedoch an fast jedem Robotergelenk auf, da die
Geometrien hier sehr eng aneinander liegen (siehe Abb. 4.10). Somit ist es notwendig,
Paare von Entitäten im Voraus durch Expertenwissen von einer Kollisionsprüfung aus-
zuschließen, wenn diese rein kinematisch nicht kollidieren können. Eine Identifizierbar-
keit einzelner Entitäten kann über Bitvektor-Voxel gewährleistet werden, die in Unterab-
schnitt 5.1.4 vorgestellt werden.

(a) Gabelung im Fuß ei-
nes Industrie-Roboters-
Gelenks

(b) Eng aneinander liegende Geometrien

Abb. 4.10.: Beispiele für potentielle Falschdetektion von Eigenkollisionen, die durch ma-
nuell modellierte Kollisionspaare auszuschließen sind.

4.5. Swept-Volumen

Da sowohl bei der Bewegungsplanung, als auch bei der Überwachung von Bewegungen,
meist nicht nur einzelne, unabhängige Posen auf Kollisionen geprüft werden müssen,
sondern Abfolgen von zusammenhängenden Bewegungen, ist es von Vorteil, diese effi-
zient repräsentieren und evaluieren zu können. Ein Beispiel einer solchen Repräsentation
ist in Abb. 4.11 zu sehen.

In der Praxis wird zur Berechnung die Bewegung des Objektes an diskreten Zeitpunkten
ti abgetastet, woraus sich ein Approximationsfehler ergibt. Wird die zeitliche Auflösung
∆t zu grob gewählt, können im entstehenden Swept-Volumen Lücken wie in Abb. 4.12

52

4.5. Swept-Volumen

(a) Grob abgetastete Bewegung des Ober-
flächenmodells

(b) Fein abgetastetes Voxel Swept-Volumen

Abb. 4.11.: Swept-Volumen einer Ganzkörperbewegung des Roboters HoLLiE

Definition 11. Ein Swept-Volumen beschreibt das aufintegrierte Volumen
VSwept im Raum, das von einem Objekt mit Volumen VO durch seine Bewe-
gung s im Zeitraum t1 − t0 überstrichen wird.
VSwept =

∫ t1
t0
VO · s(t) dt.

entstehen, die bei einer Kollisionsprüfung zu einer Nichtdetektion von Kollisionen füh-
ren können. Wird hingegen die Abtastfrequenz zu hoch angesetzt, führt dies zu einem
hohen Ressourcenverbrauch bei der Erstellung des Volumens.

Abb. 4.12.: Unterabtastung (links) und ausreichende Abtastung (rechts) bei der Generie-
rung eines Swept-Volumen zur Kollisionsprüfung mit rotem Objekt. Aus [38].

Bei einer Oberflächennetzbasierten Darstellung des Sweeps werden entweder Instanzen
des Objektes an den Abtastzeitpunkten erstellt und einzeln verarbeitet, oder die Mo-
mentaufnahmen werden mittels Boolscher Operationen miteinander verschmolzen und
als ein einzelnes Modell gesehen. Im ersten Fall bleiben bei einer Kollisionsprüfung die
Bestandteile und somit die Zeitschritte identifizierbar, jedoch steigt der Speicher- und
Rechenaufwand linear mit der Anzahl der Abtastschritte. Im zweiten Fall müssen im
Inneren liegende Oberflächen aufwendig entfernt werden [33]. Algorithmen für die Ver-
schmelzung basieren meist auf Marching Intersections und weisen bei n Dreiecken eine
Laufzeit von O(n3) auf [119, 195, 85]. In beiden Fällen wird dennoch lediglich die Ober-
fläche und nicht das Volumen des Sweeps betrachtet.

Bei einer voxelbasierten Repräsentation entfallen diese Probleme, da hier das durch die

53

4. Perzeption und Modellierung

Voxel diskretisierte Volumen erzeugt wird. Überlappen sich die Momentaufnahmen, stellt
das mehrfache kennzeichnen belegter Voxel keinen besonderen Aufwand dar und benö-
tigt auch keinen zusätzlichen Speicher. Durch eine besondere Repräsentation der Voxel
(siehe Bitvektor-Voxel in Unterabschnitt 5.1.4), die die Swept-Volumen-Implementierung
in dieser Arbeit nutzt, ist es möglich, Segmente innerhalb des Gesamtvolumens identi-
fizierbar zu halten, und somit eine Zuordnung zum Abtastzeitpunkt zu speichern. So-
mit lässt sich die Generierung des Volumens als Abfolge von Operationen zur Voxelum-
wandlung�(M,P (ti)) beschreiben, wobei die Punktwolke P (ti) animiert ist und die Ak-
tualisierungsfunktion �‡i(V) einen Operator ‡i aufweist, der vom Abtastzeitpunk ti ab-
hängt. Da der Speicher pro Bitvektor-Voxel stark beschränkt ist, können in der aktuellen
Implementierung lediglich i ≤ 250 Zeitintervalle unterschieden werden. Somit bestimmt
sich das minimale, identifizierbare Zeitintervall ∆tB direkt aus dem abzubildenden Zeit-
raum: ∆tB = Tgesamt/250. Dieses Intervall ist unabhängig von der Abtastdichte ∆t, was
bedeutet, dass bis zu b Abtastschritte dieselbe ID aufweisen können: b = ∆tB/∆t.

Der zeitliche Verlauf einer Armbewegung ist in Abb. 4.13 durch die Farben von Grün
(i = 0) bis Magenta dargestellt. Da die Gelenkwinkeländerung des Armes in der linken
Bildhälfte größer ist, als auf der rechten Seite, und somit eine längere Bewegungsdauer
aufweist, werden hier intensivere Magenta-Töne erreicht.

Abb. 4.13.: Swept-Volumen einer Roboterbewegung. Aufsteigende Sub-Swept-Volumen-
Identifikatoren (SSV-IDs)) sind durch den Farbverlauf von Grün nach Magen-
ta visualisiert.

Eine alternative Abtaststrategie wäre es, den Moment der Abtastung über die zurück-
gelegte Distanz ∆s und nicht über feste Zeitintervalle ∆t zu definieren. Somit könnten
Lücken im Swept-Volumen optimal vermieden werden. Da ∆s jedoch sowohl Gelenk-
winkel als auch kartesische Distanzen ausdrücken müsste, wäre die Zuordnung des Ab-
tastzeitpunktes zu Voxeleigenschaften unverhältnismäßig komplex. Daher wurde dieser
Ansatz hier nicht verfolgt.

4.6. Bewegungsprädiktion

Um einem Roboter ein vorausschauendes Verhalten (siehe Definition 4) zu ermöglichen,
muss dieser die Bewegung in einer Szene zunächst erkennen und korrekt interpretie-

54

4.6. Bewegungsprädiktion

Segmentierung Bewegungs-
Extraktion

Kollisionsprüfung Swept-Volumen Tracking

Abb. 4.14.: Schritte der Bewegungssegmentierung und Prädiktion4.

ren, um dann Vorhersagen treffen zu können. Die Prädiktion kann dann in Voxelmodelle
umgewandelt werden, um sie in der Kollisionsdetektion und der Bewegungsplanung zu
berücksichtigen (vgl. Abb. 4.14). Der Fokus dieser Arbeit liegt auf der weiterführenden
Nutzung der Bewegungsschätzungen zur Kollisionsprädiktion, weswegen die Prädikti-
onskette nicht erschöpfend untersucht und implementiert wurde.

In diesem Abschnitt wird eine vierstufige Verarbeitungskette beschrieben, die die ge-
nannten Aufgaben löst und die in der Masterarbeit von Felix Mauch [27] evaluiert wur-
de:

1. Erkennung und Segmentierung aller Objekte (gegenüber ihrer Umgebung), deren
Bewegung geschätzt werden soll. Bei der Segmentierung von RGBD-Daten kann
hierfür neben den Farbinformationen die Tiefenkomponente verwendet werden,
um ein Objekt gegenüber einem Hintergrund freizustellen.

2. Verfolgung der Objekte über einen gewissen Zeitraum, um ihren Bewegungsver-
lauf zu bestimmen.

3. Schätzung von Bewegungshypothesen für einen bestimmten Zeithorizont mit Hilfe
eines a priori Bewegungsmodells.

4. Voxel-Rendering der Bewegung aus dem segmentierten Objekt entlang seiner Be-
wegungshypothese.

Die ersten drei Schritte werden unter dem Begriff Tracking zusammengefasst. Klassische
Verfahren, die heute bereits beispielsweise im Automotive-Umfeld [82] zum Tracking
von Verkehrsteilnehmern genutzt werden, sind auf die Vorhersage einzelner starrer Ob-
jekte ausgelegt. Hierbei genügt es, den Mittelpunkt oder den Schwerpunkt eines zusam-
menhängenden Bereiches in den Sensordaten zu verfolgen und dessen Bahn vorherzu-
sagen. In anderen Fällen werden geometrische Modelle für die Segmentierung genutzt
[39, 59], um die Ergebnisse der Detektion robuster und die Vorhersagen genauer zu ma-
chen. Da hierfür Objektmodelle nötig sind, können die Verfahren nicht auf unbekannte
Objekte angewendet werden. Für diese Anwendung existieren modellfreie Ansätze, die
mit wenigen, dafür aber markanteren Merkmalspunkten pro Objekt arbeiten [197], wobei
die Herausforderung dann in der Bestimmung und der Extraktion geeigneter Merkmale
besteht.

Solche modellfreien Verfahren bilden auch die Grundlage zur Verfolgung artikulierter
oder deformierbarer Objekte, wie beispielsweise den menschlichen Körper. Hierbei er-
folgt das Tracking, bzw. die Vorhersage per Pixel oder im 3D-Fall per Voxel und die Seg-
mentierung bildet erst den zweiten Schritt der Verarbeitungskette.

4Illustration der Laufbewegung von Charles Leon

55

4. Perzeption und Modellierung

Ein verbreiteter Ansatz dieser Kategorie zur Analyse von Bewegungen in Videoaufnah-
men ist der so genannte Bildfluss oder optische Fluss, der einzelne Pixel über eine Bild-
sequenz hinweg verfolgt, und ihnen somit einen zweidimensionalen Bewegungsvektor
zuordnen kann [86]. Wird das Verfahren um die dritte Dimension erweitert, spricht man
von Szenenfluss. Dieser wurde erstmals in [200] eingeführt und in mehreren Arbeiten auf
unterschiedliche Weisen berechnet:

• Statistische Optimierungsverfahren: RGBD-Flow [99, 202], Dense Semi-Rigid Scene
Flow [166]
• Partikelfilter: Scene Particles [93]
• Bewertungsfunktionen mit Hin- und Rücktransformation: Sphere Flow [101]
• Expectation Maximization Algorithmen: Dense Ridgid-Body Motion Segmentation and

Estimation [192]

Eine Visualisierung von Ergebnissen der ersten drei Kategorien ist in Abb. 4.15 zu sehen.
Aus der vierten Kategorie war zum Zeitpunkt der Untersuchung noch keine Implemen-
tierung verfügbar.

(a) RGB-Bild t0 (b) RGB-Bild t1 = t0 + 1 (c) Farblegende des Be-
wegungsvektors

(d) SphereFlow (e) RGBD-Flow (f) DSR Scene Flow (g) Scene Particles

Abb. 4.15.: Visualisierung der Ergebnisse der untersuchten Szenenfluss-Algorithmen für
das Bildpaar a) und b). Sphere Flow mit aussagekräftigstem Szenenfluss, inho-
mogene aber korrekte Ergebnisse aus RGBD-Flow und Dense Semi-Rigid Sce-
ne Flow. Fehldetektion im Hintergrund aus Scene Particles. Gegenüberstellung
entnommen aus [101].

Um den am besten für die Integration in GPU-Voxels geeigneten Algorithmus zu finden,
wurden in der Masterarbeit von Mauch [27] alle genannten Verfahren untersucht und
diejenigen praktisch evaluiert, von denen eine Implementierung zur Verfügung stand.
Das Fazit der Arbeit stellt sich wie folgt dar: Sphere Flow musste wegen seiner hohen
Laufzeit von der Verwendung ausgeschlossen werden, da die gesamte Verarbeitungsket-
te mehrere Bilder pro Sekunde verarbeiten sollte. Das Scene-Particles-Verfahren litt un-
ter hohen Fehlerraten, da es nicht vorhandene Bewegungen in Bildregionen detektierte,
welche kurz zuvor durch das eigentlich bewegte Objekt noch verdeckt waren. Bei den

56

4.6. Bewegungsprädiktion

verbleibenden, zueinander ähnlichen Verfahren RGBD-Flow und Dense Semi-Rigid Scene
Flow unterschieden sich die quantitativen und qualitativen Ergebnisse nur wenig. Da-
her wurde letztendlich der RGBD-Flow-Ansatz weiter verfolgt, da von diesem bereits ei-
ne GPU-optimierten Implementierung vorlag. Im Folgenden soll dessen implementierte,
optimierte Version beschrieben werden.

4.6.1. Vorverarbeitung

In einem ersten Filterschritt gilt es, die Messpunkte, die den Roboter darstellen, aus den
Aufnahmen zu entfernen. Da neben den Tiefendaten auch die Farbwerte relevant sind,
wird dafür der Realtime URDF Filter aus Unterabschnitt 4.4.3 eingesetzt. Der zweite Filter-
schritt besteht dann aus einer zeitlichen Glättung über mehrere Bilder, um das Grundrau-
schen des verwendeten Kinect Sensors zu kompensieren (vgl. Unterabschnitt 4.1.4). Für
die betrachteten Anwendungsfälle wurde dafür empirisch eine geeignete Fenstergröße
von fünf aufeinander folgenden Aufnahmen ermittelt. Die Filterung ist unproblematisch,
da die Framerate der Kamera weitaus höher ist, als die der folgenden Verarbeitungsket-
te. Auch Unschärfeeffekte sind nicht zu erwarten, da die Kamera statisch positioniert ist,
und die betrachteten Objektbewegungen von geringer Geschwindigkeit sind. In einem
letzten Vorverarbeitungsschritt kann die Kameraauflösung von 640 × 480 auf 160 × 120
beschränkt werden, da alle Objekte eine gewisse Minimalgröße aufweisen und so auch
bei niedriger Auflösung gut erkennbar sind. Diese Datenreduktion ist notwendig, um die
Laufzeiten aller nachfolgenden Berechnungen echtzeitfähig zu halten.

4.6.2. RGBD-Flow

(a) Vektorfeld des 3D-Szenen-
flusses

(b) Objektsegmentierung

Abb. 4.16.: Mittels RGBD-Flow berechneter Szenenfluss der durch den Roboterarm ver-
ursachten Objektbewegungen. Die unterschiedlichen Bewegungsrichtungen
werden zur Objektsegmentierung genutzt. Verfahren und Grafiken aus [99].

Das RGBD-Flow-Verfahren aus [99] basiert auf der Optimierung der Energiefunktion aus
Gleichung 4.4, die über alle Pixel ~x = (x, y) des Bildes I gebildet wird:

E (~u(~x)) =

∫
~x∈I

(EC (~u(~x)) + EZ (~u(~x)) + αES (~u(~x)) + γEB (~u(~x))) d~x (4.4)

~u(~x) ∈ R3 beschreibt hier den 3D-Szenenfluss im Pixel ~x.

57

4. Perzeption und Modellierung

Die beiden ersten Komponenten, aus denen sich die Funktion zusammensetzt, maximie-
ren die Konsistenz im Farbbild EC (~u(~x)) und die Konsistenz im Tiefenbild EZ (~u(~x)), da da-
von ausgegangen wird, dass ein Pixel seine Farbe während einer Bewegung nicht verän-
dert bzw. die Position im Raum sich nur entsprechend der Schätzung bewegt. ES (~u(~x))
dient der Regularisierung, indem hohe Gradienten im Fluss-Vektorfeld unterdrückt wer-
den, um somit Mehrdeutigkeiten im Farbbild-Fluss zu vermeiden.EB (~u(~x)) ist ein Balan-
cierungsterm, der entsprechend der Entfernung des Messpunktes mit Hilfe der Kamera-
brennweite die Einheiten Meter und Pixel aneinander angleicht. Somit können EC (~u(~x))
und EZ (~u(~x)) verrechnet werden.

Um Lösungen für dieses nichtlineare Gleichungssystem zu finden, wird das Fixpunktver-
fahren eingesetzt. Dabei wird das System schrittweise linear approximiert und dann das
Gleichungssystem jedes Schrittes mittels Successive Over-Relaxation-Verfahren (SOR) op-
timiert. Weiterhin läuft das Lösungsverfahren auf einer Bildpyramide mit ansteigender
Bildauflösung ab, so dass die Lösung der Fixpunktiteration einer niedrigen Auflösung
als Startwert der Berechnung für die nächsthöhere Auflösung dienen kann.

Die Parameter und Abbruchkriterien dieses Lösungsverfahrens wurden in der Abschluss-
arbeit von Mauch [27] so weit optimiert, dass die Laufzeit des Algorithmus eine schritt-
haltende Verarbeitung der Kameradaten mit ca. 10 Frames per Second (FPS) ermöglicht.

4.6.3. Segmentierung bewegter Objekte

Abb. 4.17.: Körpersegmentierung anhand der Bewegungen.

Zur einfacheren weiteren Verarbeitung wird das Ergebnis-Vektorfeld des RGBD-Flow-
Verfahrens in eine konsistent metrische Darstellung umgewandelt. Ähnlich zum Balan-
cierungsterm EB aus Gleichung 4.4 müssen hierfür Bewegungsangaben in Pixeln mit
Hilfe des Kameramodells in Meter umgerechnet werden. Im Ergebnis liegt zu jedem 3D-
Punkt der Punktwolke ein Farbwert und ein 3D-Bewegungsvektor vor. Dieser muss le-
diglich durch die Differenz der Aufnahmezeitpunkte dividiert werden, um seine Bewe-
gungsgeschwindigkeit zu erhalten. Über eine Filterung anhand einer Minimalgeschwin-
digkeit werden nun alle Punkte entfernt, die sich nicht, oder nur sehr langsam bewe-
gen.

58

4.6. Bewegungsprädiktion

Um letztendlich die Objekte in der verbleibenden Punktwolke zu segmentieren, wird im
Gegensatz zum Originalverfahren aus [99] kein Random sample consensus (RANSAC)-
Ansatz angewandt, sondern ein performanteres Region-Growing. Dessen Ähnlichkeits-
metrik berücksichtigt neben den Bewegungsgeschwindigkeiten auch räumliche Distan-
zen, um ausgehend von einem Startpunkt benachbarte Punkte zu clustern.

Jedes gefundene Cluster repräsentiert somit ein Objekt, dessen Bewegung aus den Ei-
genschaften aller seiner 3D-Punkte zu ermitteln ist. Um ohne weitere Vorkenntnisse oder
Annahmen eine Objektposition festlegen zu können, wird diese als Schwerpunkt aller
Messungen definiert. Diese Definition ist jedoch stark von der Betrachtungsperspektive
und Verdeckungen abhängig. Daraus entstehende Sprünge oder Schwankungen müssen
in der weiteren Verarbeitung berücksichtigt werden.

Für die Bestimmung einer Objektbewegung wird die Bewegungsrichtung als Mittelwert
aller Punkte definiert. Für die Bewegungsgeschwindigkeit ist eine Mittelung jedoch nicht
ohne weiteres möglich, da verfahrensbedingt die Geschwindigkeiten nur am Rand ei-
nes Objektes korrekt berechnet werden und zum Inneren des Clusters abfallen (in Glei-
chung 4.4 präferiert ES niedrige Gradienten im Szenenfluss, während fehlende Kontras-
te innerhalb eines Objektes EC und EZ ansteigen lassen, weshalb kleinere Bewegungen
bevorzugt werden). Daher wird die Geschwindigkeit bei weiteren Berechnungen nicht
direkt verwendet, sondern wie im nächsten Abschnitt beschrieben, über ein Erweitertes
Kalman Filter (EKF) geschätzt.

4.6.4. Tracking

Zur Verfolgung der Detektionen über die Zeit wird pro Objekt ein EKF instantiiert. Da-
bei entscheidet ein Ähnlichkeitsmaß (aus Position und Richtung) darüber, ob für eine
Detektion bereits ein Filter existiert, welcher aktualisiert werden muss, oder ob ein neuer
Filter anzulegen ist. EKF Instanzen, die zu lange keine Aktualisierung erfahren, werden
gelöscht.

In der Implementierung für diese Arbeit wurde ausschließlich ein lineares Bewegungs-
modell angenommen. Das Zustandsraummodell der Filter weist dabei folgende sieben
Dimensionen auf: Position und Richtung der Bewegung im 3D-Raum und eine skalare
Geschwindigkeit. Diese getrennte Betrachtung von Geschwindigkeit und Bewegungs-
richtung erlaubt die Berücksichtigung der unterschiedlichen Verlässlichkeit der Messun-
gen.

Der Kalman-Prädiktionsschritt, der mit jeder Aktualisierung des Filters ausgeführt wird,
lässt sich direkt aus dem einfachen Bewegungsmodell ableiten. Eine Besonderheit liegt
lediglich in der Nichtbetrachtung des Messwertes der Geschwindigkeit, da dieser we-
nig zuverlässig ist. Zustandsraum, Prozess- und Messmodell werden sonst als fehlerlos
modelliert. Für das Mess- und Modellrauschen wird die Unabhängigkeit der einzelnen
Dimensionen von Position und Richtung angenommen, ihre Genauigkeit bzw. Unsicher-
heit soll in allen drei Dimensionen identisch sein.

59

4. Perzeption und Modellierung

(a) RGB Anteil der Einga-
bedaten

(b) Segmentierungsergeb-
nis

(c) Swept-Volumen der Prädik-
tion

Abb. 4.18.: Beispiel des Trackings und der Prädiktion von zwei Personen.

4.6.5. Prädiktion in Form eines Swept-Volumens

Die Prädiktion jedes Filters liefert letztendlich eine geschätzte Bewegungsrichtung und
Geschwindigkeit für jede Objektpunktewolke. Ausgehend von einer bekannten Kame-
raperspektive kann daraus jedes Cluster entlang seines Bewegungsvektors schrittweise
transformiert werden. Die Schrittlänge ergibt sich aus der geschätzten Geschwindigkeit
und einem festen Zeitraster. Wird die transformierte Punktwolke in jedem Schritt in eine
Voxelliste (vgl. Abschnitt 5.4) eingetragen, entsteht somit ein Swept-Volumen der anzu-
nehmenden Bewegung. Listen werden hier einer Voxelkarte vorgezogen, da eine Karte
nur sehr dünn besetzt wäre. Weiterhin wird das Swept-Volumen in jeder Iteration ge-
löscht und neu aufgebaut, wofür der geringe Speicherbedarf der Liste von Vorteil ist.

Die Liste wiederum besteht aus Bitvektor-Voxeln (siehe Unterabschnitt 5.1.4), um jeden
Zeitschritt mit einer inkrementierten SSV-ID kennzeichnen zu können. Somit ist bei ei-
ner Kollisionsprüfung nachvollziehbar, zu welchem Zeitpunkt diese auftreten würde.
Um Bitvektor-Voxel zur Repräsentation von zeitabhängiger Belegtheit im Raum nutzen
zu können, wurde eine Codierung gewählt, in der jedes Bit einer konstanten Zeitdauer
entspricht. Somit können Zeitpunkte (relativ zu einer bekannten Startzeit) direkt auf SSV-
IDs abgebildet werden, um so die räumliche Ausdehnung einer Bewegung zu diskreten
Zeitschritten darzustellen.

4.6.6. Unscharfe Kollisionsprüfung

Um den geschätzten Bewegungsschlauch auf Kollisionen mit dem Swept-Volumen der
Robotertrajektorie zu prüfen, muss neben der örtlichen auch die zeitliche Überschnei-
dung berücksichtigt werden. Um hierbei leichte Fehler in der prädizierten Geschwin-
digkeit ausgleichen zu können, kommt ein besonderes Verfahren zum Einsatz, das nicht
eine exakte zeitliche Übereinstimmung prüft, sondern ein Zeitfenster aus mehreren SSV-
IDs. Zusätzlich muss die Zeitdifferenz zwischen Roboter- und Hindernisrepräsentation
kontinuierlich auf alle Voxel des Roboter-Swept-Volumens addiert werden, bevor eine
korrekte Kollisionsprüfung möglich ist. Die Addition einer Zeitspanne t entspricht dem
bitweisen Verschieben der SSV-IDs um t/∆tSv Bits. Für den nötigen�-Operator ergeben
sich durch die Größe des Bitvektors dieselben Herausforderungen wie bei der zeitlich ge-
fensterten Kollisionsprüfung (siehe Abschnitt 6.2.1), weshalb die Implementierung den-
selben Code nutzt.

60

4.6. Bewegungsprädiktion

Rückmeldung zur Neu-Planung

Voxel
Kollisions-
erkennung

Roboter Lokalisierung
Zeit bis

Kollision

> Gamma

< Epsilon

Sicherheits
Stop Umgebungs Karte

Roboter Planungs-Karte

Parallele Ausführung in drei synchronisierten Threads

RGBD
Sensoren

Punktewolken
Transformation

& Raycasting

Datenbank aus
Bewegungs-
primitiven

Transformation
mittels direkter

Kinematik

Verlangsamen

Bewegungs-
planer

Flow Berechnung
&

Bewegungs-Clustering

Punktewolken-
modell des
Roboters

Ego-
Swept-Volumen

Rendering

Hindernis-
Swept-Volumen

Rendering

Bewegungs
Tracking &
Prädiktion

Abb. 4.19.: Der Programmablauf lässt sich in zwei Stränge einteilen: Die Verarbeitung
der Umweltinformationen und die Planung mit dem Robotermodell. Blau ge-
färbte Abschnitte werden auf dem Host ausgeführt, grüne auf der GP-GPU.
Nach der Detektion einer Kollision ergeben sich je nach verbleibender Zeit
drei Möglichkeiten: Not-Stop, Neuplanung, Verlangsamung.

4.6.7. Implementierung

Das Gesamtprogramm ist auf Host-Seite in vier asynchron laufende Threads aufgeteilt.
Während ein Thread die Kameradaten vorverarbeitet und glättet, arbeitet die Szenen-
flussberechnung parallel dazu auf dem letzten Kameraframe. Hierbei wird zunächst der
CUDA-Code zur Flussberechnung aufgerufen, das berechnete Vektorfeld segmentiert
und die ermittelten Objekthypothesen getrackt. Auf diese Ergebnisse wartet ein drit-
ter Thread, der das Rendern der Swept-Volu-men auf der GPU übernimmt. Ein Haupt-
Thread verwaltet die beschrieben Arbeiten, löst die Kollisionsprüfung aus, und entschei-
det je nach Ergebnis über die Reaktion. Optional kann zusätzlich ein fünfter Thread der
GPU-Voxels-Visualisierung (siehe Abschnitt 5.7) die Prädiktionen und Sensorwerte für
den Nutzer darstellen.

4.6.8. Kamerabewegung

Die bisher aufgezeigte Verarbeitungskette setzt eine statische Kamerapose voraus. Ist je-
doch, wie bei einem mobilen System üblich, die Kamera auf dem Roboter montiert, so
muss die Eigenbewegung in der Berechnung berücksichtigt werden. Würde man aus-
schließlich das Kamerabild auswerten, wäre bei der Detektion einer Bewegung unklar,
ob diese durch ein dynamisches Objekt oder durch die Änderung der Kameraperspekti-
ve verursacht wurde.

Um die Eigenbewegung zu neutralisieren, muss nach der Berechnung des Szeneflusses
von den Bewegungsvektoren jedes Clusters ein Kompensationsvektor subtrahiert wer-
den. Rotiert der Roboter bzw. die Kamera, muss dabei pro Cluster (anhand dessen Lage
bezüglich des Roboterkoordinatensystems) bestimmt werden, wie sich eine Rotation auf
die Abbildung der Cluster auswirkt (siehe Abb. 4.20).

Das Ergebnis der Kompensation ist direkt abhängig von der Qualität der Daten zur Ei-
genbewegung und deren zeitlichen Synchronisierung gegenüber den Sensordaten. Ist
kein externes Trackingsystem zur Überwachung der Kamerapose vorhanden, muss sich

61

4. Perzeption und Modellierung

p1'
p2'

p1

p2

C2

θ

C1

Abb. 4.20.: Eine Rotation des Roboters um θ wirkt sich je nach Distanz unterschiedlich
auf wahrgenommene Objekte aus.

das Verfahren auf die interne Sensorik des Roboters stützen. Da insbesondere bei rotato-
rischen Bewegungen jedoch bereits kleinste Abweichungen zu einer Über- oder Unter-
kompensation führen, wurde für die Evaluierung kein bewegter Sensor verwendet. In
den Versuchen kam statt dessen ein statischer RGBD-Sensor zum Einsatz. Als Lösung
für weiterführende Arbeiten wird der Einsatz von visueller Odometrie vorgeschlagen,
da hierbei derselbe Sensor genutzt wird und somit keine Synchronisation zur Eigenbe-
wegungsmessung benötigt wird.

4.6.9. Zusammenfassung

In diesem Abschnitt wurden Verfahren vorgestellt, die aus einer zeitlichen Abfolge von
RGBD-Daten zusammenhängende Volumen bestimmen können, die sich gemeinsam be-
wegen. Durch eine Schätzung ihrer Bewegungsvektoren können kurzzeitige Vorhersa-
gen erstellt und in die Zukunft projiziert werden, um daraus den zukünftig belegten
Raum in Form von Swept-Volumen zu generieren. Mit Hilfe dieser prädizierten Bewe-
gungsschläuche ist eine Kollisionsdetektion in der Lage, nicht nur auf Momentaufnah-
men der Umwelt, sondern auf der zu erwarteten Situation wahrscheinlich auftretende
Kollisionen zu bestimmen. Die Annahme eines linearen Bewegungsmodells mit konstan-
ten Geschwindigkeiten schränkt die Genauigkeit der Prädiktionen stark ein. Dies kann
jedoch in weiterführenden Arbeiten durch die Verwendung komplexerer Modelle ver-
bessert werden.

Anwendungen, die die Prädiktion zur Vermeidung von Zusammenstößen nutzen, wer-
den in Abschnitt 8.8 ausführlich evaluiert.

62

4.7. Simulierte Umgebung

4.7. Simulierte Umgebung

Viele Szenarien und Algorithmen können anhand von aufgezeichneten Tiefendaten ge-
testet werden. Sollen jedoch reaktive Verhalten oder dynamische Planungsalgorithmen
untersucht werden, ist eine Simulation von sich mit dem Roboter bewegenden 3D-Kame-
ras unabdingbar. Nur so kann ein dynamischer Informationshorizont geschaffen werden.
Daher wurde unabhängig von GPU-Voxels ein rudimentärer Simulator implementiert,
der für mehrere virtuelle Sensoren Punktwolken innerhalb deren begrenzten Sichtfeldes
und Reichweite generiert. Auf Basis von zwei Höhenkarten (Graustufenbildern) erlaubt
es der Simulator, 2,5D Hindernisse von Boden und Decke ausgehend zu generieren und
so auch Überhänge zu simulieren. Eingesetzt wird dafür ein Raycasting, das Schichtweise
die Höhenprofile abtastet und an Hindernissen Messpunkte generiert. Diese Erzeugung
von Punktwolken stellt zwar eine sehr gut parallelisierbare Aufgabe dar, dennoch wurde
die Software explizit nur für die CPU umgesetzt, um nicht in Konkurenz zu GPU-Voxels
auf der GPU ausgeführt zu werden. Eine Parallelisierung mit Hilfe von OpenMP erlaubt
aber auch auf der CPU die gleichzeitige Simulation von bis zu vier Kinect-Aufnahmen
mit realistischen Wiederholraten von 20 Hz.

Die Erzeugung künstlicher Punktwolken kam zur ersten Evaluation von allen in Kapi-
tel 8 beschriebenen Szenarien zum Einsatz. Beispiele simulierter Umgebungen finden
sich in Abschnitt 5.7, Abb. 5.23 oder Abschnitt 8.9, Abb. 8.35.

4.8. Fazit

Das Kapitel schafft die Voraussetzung für den Umgang mit Messdaten der Umwelt. Da-
für wurden zunächst passende Datenquellen untersucht und ein adäquates Sensormo-
dell begründet. Im Anschluss wurden mögliche Modellierungen der Umwelt verglichen,
um die Vorteile einer Voxelrepräsentation herauszustellen und Forschungsfrage 2 zu be-
antworten. Ebenso konnte ein animiertes Egomodell über Voxel umgesetzt werden, in
dessen Rahmen auch der Begriff der Swept-Volumen definiert wurde.

Im Verlauf des Kapitels konnten mehrere Verarbeitungsschritte identifiziert werden, die
sich sehr gut für eine Parallelisierung auf der GPU eignen: Bereits die Vorfilterung und
Projektion von Distanzbildern zu Punktwolken ist effizient parallelisierbar. Ebenso die ei-
gentliche Voxelumwandlung – sowohl von Umweltinformationen (inklusive der simul-
tan ablaufende Freiraumbestimmung mittels Raycasting), als auch von animierten Ro-
botermodellen. Darüber hinaus wurde eine Bewegungsprädiktion für dynamische Hin-
dernisse entwickelt, die eine komplexe Verarbeitungskette aus mehreren Algorithmen
auf der GPU berechnet. Zusammenfassend konnte somit Forschungsfrage 1 umfangreich
und positiv beantwortet werden, was zu Feststellung 8 führt. Dieses Aussage wird auch

Feststellung 8. Alle für die Kollisionsprüfung relevanten Teilgebiete der Sens-
ordatenverarbeitung und Modellierung lassen sich effizient datenparallel be-
arbeiten.

durch die praktischen Versuche in Kapitel 8 unterstrichen.

63

5. Voxel-Datenstrukturen auf der GPU

Im Rahmen dieser Dissertation wurde seit Mitte 2012 an einer Softwarebibliothek gear-
beitet, welche das Ziel hat, möglichst vielfältige Robotikanwendungen, die in den vor-
ausgehende Kapiteln beleuchtet wurden, durch den Einsatz von GPU-Technologie zu
verbessern oder sogar erst zu ermöglichen. Wie in Kapitel 4 dargelegt, ist der Grundge-
danke der Bibliothek die Vermeidung von Dreiecksnetzen zur Repräsentation von Um-
welt und Roboter, wie es im aktuellen Stand der Forschung üblich ist, da diese nur über
Umwege aus Punktwolkendaten erstellbar sind. Statt dessen wurden mehrere diskreti-
sierende Datenstrukturen mit unterschiedlichen Eigenschaften und Vorzügen implemen-
tiert, um die 3D-Daten aufzunehmen, welche bei Kollisionstests und zur Bewegungs-
planung benötigt werden. Diese Datenstrukturen speichern wiederum unterschiedliche
Voxeltypen, die die eigentlichen anfallenden Nutzdaten Ψ beinhalten. Zusätzlich zu den
Datenstrukturen wurden Algorithmen entwickelt, die den Operator zur Voxelumwand-
lung �(M,P) aus Definition 10 individuell für jede Datenstruktur umsetzen, um die-
se mit Daten zu befüllen. Die Architektur der Datentypen und Algorithmen wurde auf
bestmögliche Parallelisierbarkeit ausgelegt, indem ihre Implementierung den Paradig-
men aus Kapitel 3 folgt. Die Parallelisierung in CUDA erfolgt, wenn nicht explizit anders
erwähnt, grundsätzlich datenparallel auf Voxel- bzw. Punkte-Ebene.

Im Folgenden sollen zunächst die Voxeltypen, die Datenstrukturen und ihre Eigenschaf-
ten und darauf aufbauend die Algorithmen zur Auswertung erläutert werden. Das spä-
tere Kapitel zur Kollisionserkennung stützt sich wiederum auf diese Auswertungen.

5.1. Voxeltypen

Je nach Anwendungszenario gilt es, den 3D-Raum mit unterschiedlich umfangreichen
Daten zu annotieren. Daher wurden vier Voxeltypen implementiert, um unterschiedli-
che Informationen repräsentieren zu können. Mit Ausnahme des einfachsten Typs wur-
de die Speichergröße der Voxel dabei passend zur Cache-Architektur der verwendeten
Hardware gewählt.

Definition 12. Die verfügbaren Voxeltypen unterscheiden sich durch die in
ihnen speicherbaren Nutzdaten Ψ . Dies können Belegtheitswahrscheinlichkei-
ten, Distanzen oder Zugehörigkeiten sein. Jeder Voxeltyp weist unterschied-
liche Aktualisierungsoperatoren �‡(V) auf, die seinen Zustand entsprechend
neuer Eingabedaten ändern. Weiterhin existieren �-Operatoren, die die spe-
zifischen Informationen im Zuge einer Kollisionsdetektion interpretieren, um
eine Aussage zu treffen, ob ein Voxel belegt ist. Nicht zu verwechseln sind
Voxeltypen mit der Voxel-Bedeutung der Bitvektor-Voxel (siehe Definition 13).

Diese vier Typen werden nun detailliert beschrieben.

65

5. Voxel-Datenstrukturen auf der GPU

5.1.1. Deterministische Voxel

Diese Art der Voxel weisen den kleinsten Speicherverbrauch auf, da sie nur drei Zustände
kennen und daher mit 2 Bit codiert werden können: frei, belegt und unbekannt. Sie sind zu
bevorzugen, wenn eindeutige Belegtheitsinformationen abzubilden sind, beispielsweise
zur Repräsentation des Roboter-Egomodells. Für die Aktualisierung deterministischer
Voxel stehen genau zwei Operatoren zur Verfügung, die einen Voxel V durch eine Mes-
sung zum Zeitpunkt t entweder als belegt oder frei markieren:

�+(V) := Ψt = belegt ∀Ψt−1 ∈ [unbekannt, frei, belegt] (5.1)
�−(V) := Ψt = frei ∀Ψt−1 ∈ [unbekannt, frei, belegt] (5.2)

Ein einmal aktualisierter Voxel kann folglich seinen Zustand nicht mehr in unbekannt
ändern, sondern nur noch seine Belegtheit wechseln.

Der Belegtheitsoperator � ist offensichtlich definiert als:

�(V) :=

{
1 : ΨV = belegt
0 : sonst

(5.3)

5.1.2. Probabilistische Voxel

Um gegenüber Sensorrauschen bzw. kurzzeitigen Ereignissen robuster zu sein, speichern
probabilistische Voxel eine Belegtheitswahrscheinlichkeit. Arbeiten aus dem Bereich der
robotischen Kartierung verfolgen für die Aktualisierung�±(V) meist einen Weg, der auf
eine langfristige Stabilität des Zustandes Ψ ausgelegt ist. Moravec und Elfes [146] nutzen
dafür zwei Zählvariablen ∈ Z pro Zelle und ermitteln die Belegtheitswahrscheinlichkeit
p(belegt) als Quotienten aus der Anzahl von Messungen, die ein Hindernis in der Zelle
anzeigen und der Anzahl, mit der die Zelle als frei gesehen wurde, also sie von einem
Messstrahl passiert wurde:

pV (belegt) =
|�+ (V)|

|�+ (V)|+ |�− (V)| und entsprechend pV (frei) = 1− pV (belegt) (5.4)

Da hierbei kein Sensormodell berücksichtigt wird, wurde in dieser Arbeit der probabi-
listische Ansatz verfolgt, den unter anderem Thrun et al. in [196] vorstellen und der mit
einer Variablen pro Voxel auskommt. Hierbei ist die Belegung einer Zelle als Schätzung
eines binären Zustandes formuliert und durch einen binären Bayes-Filter berechnet. Die-
ser kann eingesetzt werden, wenn aus einer Folge von Sensormessungen auf eine binäre
Zustandsvariable geschlossen werden soll. Als Log-Odd dargestellt (Definition siehe Ab-
schnitt A.1 im Anhang), ergibt sich die folgende einfache Formel zur Aktualisierung der
Belegtheitswahrscheinlichkeit Ψ einer Zelle, gegeben einer Messung zt aus einem inver-
sen Sensormodell:

�± (V, zt) := Ψt = Ψt−1 + log
p(belegt|zt)

1− p(belegt|zt)
− log p(belegt)

1− p(belegt)
(5.5)

66

5.1. Voxeltypen

Die Verlässlichkeit einer Messung ergibt sich aus der probabilistischen Modellierung des
eingesetzten Sensors (siehe Unterabschnitt 4.1.4, Sensormodelle).

Für die betrachteten Szenarien ist es wichtig, Voxel als Hindernis anzusehen, auch wenn
sie nur sehr kurzzeitig als belegt gemessen wurden. Dabei genügt es, lediglich einen
kurzen Zeithorizont auszuwerten, so dass die Belegtheitswahrscheinlichkeit p pro Voxel
speichereffizient in Form eines ganzzahlingen Wertes aus Z ∈ [−128, 127] in Ψ gespei-
chert werden kann. Dem Wert −128 kommt die besondere Bedeutung der Unbekanntheit
zu, mit dem zunächst alle Voxel initialisiert werden. Volumen dieses Wertes wurden also
nie von einem Sensor erfasst und identifizieren Verschattungen, oder nicht explorierte
Bereiche. Andere negative Werte stellen eine Wahrscheinlichkeit der Nicht-Belegtheit dar,
positive Werte die Wahrscheinlichkeit der Belegtheit. Bei einem Voxel mit Ψ = 0 ist die
Wahrscheinlichkeit der Belegtheit pbelegt(V) = 0, 5. Da der Log-Odd aus Gleichung 5.5
einen Wertebereich von ±∞ aufweist, muss dieser zunächst beschnitten, skaliert und
dann diskretisiert werden, um ihn auf den Wertebereich von Ψ abzubilden. Das relevan-
te Intervall lässt sich aus der Reaktionszeit ∆t (ab der die Belegtheitswahrscheinlichkeit
sich um 0,5 geändert hat), der Frequenz f , mit der Sensordaten verarbeitet werden und
der maximalen Änderung des Log-Odds pro Berechnungsschritt ∆p aus dem Sensormo-
dell ermitteln.

Ψmax = ∆p · f ·∆t (5.6)

So ergibt sich unter der Annahme repräsentativer Daten ein Wertebereich von ±14, 31
(f = 25 FPS, ∆t = 0,5 s, ∆l = log 0,9

0,1 ' 0, 954. Skaliert man dies auf den verfügbaren
Wertebereich von ±127, ergibt sich eine Auflösung von 0, 113 für Ψ , womit sich Wahr-
scheinlichkeitsinkremente von 0, 565 darstellen lassen. Dies ist für den angestrebten Zeit-
horizont von wenigen Sekunden und dem angenommenen einfachen Sensormodell mehr
als ausreichend.

Der Belegtheitsoperator � für probabilistische Voxel wird über einen Grenzwert ε pa-
rametriert, der bestimmt, ab welcher Wahrscheinlichkeit ein Voxel als belegt angesehen
wird:

�(V, ε) :=

{
1 : ΨV > ε

0 : sonst
(5.7)

5.1.3. Distanz-Voxel

Distanz-Voxel werden zur Berechnung und Darstellung von Distanzfeldern (vgl. Ab-
schnitt 5.6) eingesetzt. Sie speichern in Ψ die Voxeladresse des ihnen am nächsten lie-
genden, belegten Voxels. Die Distanz zu diesem Hindernis kann entweder zur Laufzeit
aus der eigenen und der Hindernisvoxelposition abgeleitet werden, oder zugunsten der
Rechenzeit, zusätzlich im Voxel gespeichert werden. Durch die Speicherung des Hinder-
nisses - und nicht alleine dessen Entfernung - ist es einigen, der in Abschnitt 5.6 vorge-
stellten Algorithmen möglich, propagierte Distanzen exakt zu berechnen, wohingegen
anderenfalls nur eine Abschätzung möglich wäre.

Zwei Datentypen stehen zur Verfügung:

67

5. Voxel-Datenstrukturen auf der GPU

• 32 Bit Voxel: Speichert lediglich die Position seines nächstgelegenen Hindernisses
in Form von drei 10 Bit Integer Werten. Erlaubt sind somit Distanzfelder von maxi-
mal 1023× 1023× 1023 Voxeln (3× 1 Bit sind reserviert für uninitialisierte Voxelko-
ordinaten).

• 128 Bit Voxel: Speichert Hinderniskoordinaten in 3 × 32 Bit. Zusätzlich ist die Di-
stanz zum Hindernis in den verbleibenden 32 Bit gespeichert, so dass diese nicht
wiederholt aus den Koordinaten berechnet werden muss.

Wird im Voxel nicht der Distanzwert (∈ R) sondern sein Quadrat (∈ Z) gespeichert,
so kommt die eigentliche Distanzberechnung fast ohne Fließkomma-Wurzeloperationen
aus [134]. Da die Algorithmen dann hauptsächlich durch die Speicherbandbreite limi-
tiert sind, wirkt sich die Verwendung des 32 Bit Voxels dennoch wesentlich drastischer
zu Gunsten der Laufzeiten aus, als das Zwischenspeichern der Distanzwerte in 128 Bit
Voxeln.

Der Aktualisierungsoperator �±(V) entspricht in seiner ersten Stufe dem Operator der
deterministischen Voxel. Sinnvoll kann er jedoch nur in Kombination mit �(M,P) an-
gewendet werden, da nach jedem Einfügen einer neuen Punktwolke die Distanzberech-
nungen durchzuführen sind.

Der Belegtheitsoperator � erlaubt die Berücksichtigung eines Kollisionsradius. Liegt in-
nerhalb dessen ein Voxel, gilt der angefragte Voxel als belegt:

�(V, r) :=

{
1 : ΨV < r

0 : sonst
(5.8)

5.1.4. Bitvektor-Voxel

Bitvektor-Voxel erlauben die Codierung diskreter Zustände oder Zugehörigkeiten. Dafür
besteht Ψ aus einem Bitvektor, dessen Bits die Bedeutungen aus Abb. 5.1 zugeordnet
sind.

Definition 13. Das im Bitvektor gespeicherte Muster beschreibt die Voxel-
Bedeutung des Bitvektor-Voxels. Über sie können Zeitpunkte (Voxel ist zum
Zeitschritt n belegt) oder Zugehörigkeiten zu Entitäten (bspw. Roboter, stati-
sches / dynamisches Hindernis, Bewegungsplan n, ...) repräsentiert werden.
Nicht zu verwechseln mit Voxeltypen (siehe Definition 12).

Die Länge des Bitvektors kann zur Übersetzungszeit definiert werden und geht direkt
in den Speicherverbrauch pro Voxel ein. In allen Experimenten in dieser Arbeit wurde
eine Bitvektorlänge von 32 Byte pro Voxel gewählt, so dass ein Voxel bis zu 256 identi-
fizierbare Zustände gleichzeitig annehmen kann. Sechs der Bits sind allgemeiner Natur,
die verbleibenden 250 Bits stehen für SSV-IDs oder identifizierbare Entitäten zur Verfü-
gung.

Um die Bits der Voxel zu setzen, wurden mehrere Aktualisierungsoperationen �‡(V, Φ)
implementiert, die Ψ über einen binären Operator ‡ mit dem zusätzlichen Bitvektor Φ
verknüpfen. Als Operator ‡ stehen AND, OR, NOT und NOR zur Verfügung:

68

5.2. Anforderungsanalyse Datenstrukturen

�‡ (V, Φ) := Ψt = Ψt−1 ‡ Φ (5.9)

Somit kann �+(V, Φ) mittels �OR(V, Φ) umgesetzt werden, wobei in Φ das Bit 1 gesetzt
sein muss und optional ein oder mehrere Bits ≥ 4.

Auch der Belegtheitsoperator � benötigt einen zweiten Bitvektor Φ, der angibt, welcher
Zustand relevant ist. Ist eines oder mehrere der Bits aus Φ und die gleichwertigen Bit in
Ψ gesetzt, ist der Voxel belegt:

�(V, Φ) :=
254∨
n=4

ΨV,n ∧ Φn (5.10)

Spielt die Voxelbedeutung keine Rolle, genügt es, das Belegtheitsbit 1 abzuprüfen:

�(V) := ΨV,1 (5.11)

Byte 0 7 6 5 4 3 2 1 0

Byte 1 15 14 13 12 11 10 9 8

...
Byte 31 255 254 253 252 251 250 249 248

0 = Frei
1 = Belegt
2 = In Kollision
3 = Unbekannt
4 = Erste SSV-ID

...
254 = Letzte SSV-ID
255 = Nicht definiert

Abb. 5.1.: Aufbau eines Bitvektors in GPU-Voxels: 32 Bytes in einem Array ergeben eine
Bit-Maske mit 256 Einträgen, von denen die ersten vier und das letzte Bit eine
besondere Bedeutung besitzen.

5.2. Anforderungsanalyse Datenstrukturen

In der Informatik existieren eine Vielzahl von potentiellen Datenstrukturen, in welchen
die vorgestellten Voxeltypen arrangiert werden könnten. Von diesen, in der imperativen
Programmierung typischen Strukturen sind in dieser Arbeit jedoch lediglich drei rele-
vant: Felder fester Größe, Felder variabler Größe und Bäume. Auf die Umsetzung von
anderen Datenstrukturen mit variabler Größe (Verkettete Listen, Halden) wurde auf-
grund der Einschränkungen der CUDA Speicherverwaltung verzichtet. Da neben der
Position im Raum keine andere Ordnung auf Voxeln benötigt wurde, sind auch Hashta-
bellen oder Vorrang-Warteschlangen nicht von Bedeutung, ebenso Graphen mit bi- oder
multidirektionalen Verknüpfungen.

Um eine fundierte Zuordnung zwischen diesen Strukturen und vier typischen Anwen-
dungsfällen zu schaffen, wurden anhand von sechs charakteristischen Eigenschaften Pro-
file der genutzten Datenquellen aufgestellt. Dafür wurden in Abb. 5.2 die folgenden Kri-
terien qualitativ bewertet:

69

5. Voxel-Datenstrukturen auf der GPU

• Wahlfreie Schreibzugriffe
• Hoher Anteil von unbekannten / freien Voxeln
• Selektives Löschen vorgehaltener Daten
• Spärliche Datendichte
• Hochfrequente Kollisionsprüfung (sequentielles Lesen)
• Häufige abschnittsweise Aktualisierung

Im Fazit des Kapitels werden diese Profile mit den Leistungsmerkmalen der im Folgen-
den vorgestellten Datenstrukutren verglichen: Voxelkarten (Felder fester Größe), Voxel-
listen (Felder variabler Größe) und Voxel-Octrees (Baumstrukturen).

Minimal Update
Overhead

Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(a) Umgebungskarte

Minimal Update
Overhead

Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(b) Roboter oder dynamisches Hindernis
Minimal Update

Overhead
Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(c) Swept-Volumen

Minimal Update
Overhead

Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(d) Bewegungsprimitive

Abb. 5.2.: Anforderungen unterschiedlicher Datenquellen bei der Planung

5.3. Voxelkarten

Eine Voxelkarte stellt eine bijektive Abbildung des diskretisierten dreidimensionalen Raum-
es N3

0 auf ein konstantes eindimensionales Feld an Adresse B im Speicher der GPU dar.
Unter der Annahme einer statistischen Unabhängigkeit zwischen den Voxeln erlaubt die
Datenstruktur das parallele Schreiben und Lesen beliebig vieler Voxel. Eine datenpa-
rallele Verarbeitung des Speicherinhaltes ist somit über Grid-Stride-Loops sehr effizient
möglich (vgl. Kapitel 3). Weiterhin ist ein wahlfreier Zugriff auf beliebige Voxel in O(1)
möglich. Besitzt der abgebildete Raum die Dimensionen (dimx, dimy, dimz)

T besteht das

70

5.3. Voxelkarten

Feld aus n = dimx · dimy · dimz Voxeln, deren Speicher einmalig und zusammenhängend
zu allozieren ist. Daher ist der Speicherverbrauch konstant, da er direkt über die Dimen-
sionen der Voxelkarte und der Speichergröße pro Voxel MemVoxel bestimmt ist und nicht
vom Grad der Belegtheit abhängt (ein belegter Voxel verbraucht dieselbe Speichermenge,
wie ein freier oder unbekannter Voxel). Um die Menge der belegten oder freien Voxel zu
bestimmen, muss die gesamte Karte mit linearem Aufwand durchlaufen werden. Sind
dafür q Threads verfügbar, liegt der Aufwand für den Schnittoperator ∩ und den Verei-
nigungsopertator ∪ bei O(n/q).

Für die Voxelumwandlung� von Datenpunkten mit Fließkommakoordinaten p = (x, y, z)T , x, y, z ∈
Rwerden diese in jeder Dimension mit der Voxelseitenlänge lVoxel diskretisiert und zeilen-
/ ebenenweise nach dem Schema

addr(x, y, z) = B + (b z

lVoxel
c · dimx · dimy + b y

lVoxel
c · dimx) + b x

lVoxel
c) ·MemVoxel

(5.12)
auf die Adresse addr im Speicher abgebildet (vgl. Gleichung 4.2 zur Voxelumwand-
lung).

Entsprechend kann die geometrische Mitte des Voxels mit der Adresse addr bestimmt
werden:

Iz = b addr −B
dimx · dimy

c

Iy = baddr −B − (dimx · dimy · Iz)
dimx

c

Ix = addr −B − (dimx · dimy · Iz)− (dimx · Iy)

(5.13)

~Ci =

 x
y
z

 =

 Ix
Iy
Iz

+
1

2
·

 lVoxel
lVoxel
lVoxel

 (5.14)

5.3.1. Translation mittels Basisversatz

Weist die Punktwolke eines mobilen Objektes eine rein translatorische Bewegung auf, so
muss sie nicht mehrfach in Voxel umgewandelt werden. In diesem Fall ist es ausreichend,
die Punkte einmalig in eine Voxelkarte oder Voxelliste einzutragen, und die Translation
über einen Versatz der Basisadresse, wie in Gleichung 5.12, abzubilden. So kann der Ver-
satz in der Implementierung des ∩- oder ∪-Operators auf die Basisadresse B der ortsfes-
ten Voxelkarte addiert werden, um so die Voxel gegenüber der zweiten Datenstruktur des
mobilen Objektes virtuell zu verschieben, bevor die & bzw. ‖ Operationen angewendet
werden (vgl. Abb. 5.3).

Da lediglich ganzzahlige Additionen ausgeführt werden müssen, ist eine empfindliche
Perfomance-Steigerung gegenüber einer matrixbasierten, geometrischen Transformation
der Punktwolke mit 28 Fließkommaoperationen pro Datenpunkt und dem erneuten Ein-
tragen in die Datenstruktur gegeben.

Diese Technik wird in den Anwendungsfällen der Pfadplanung mit Rotations-Swept-Vo-
lu-men (Unterabschnitt 7.2.2), der Planung mit Bewegungsprimitiven (Unterabschnitt 7.2.3)
und der Greifplanung (Unterabschnitt 7.2.7) eingesetzt.

71

5. Voxel-Datenstrukturen auf der GPU

140 149

t1

t0

0 1 2 3 4 5 6 7 8 9

10 11 12 …

…

+75

(a) Addressierungsschema der Voxelliste

Voxeladressen

t0 Offset t1

16

+75

91
17 92
26 101
27 102
28 103
36 111
37 112
38 113
39 114
47 122
48 123
49 124

(b) Voxelliste vor und nach Translation

Abb. 5.3.: Translation der Voxelliste einer umgewandelten Punktwolke zwischen t0 und
t1. Alle Voxeladressen der Liste werden um den Versatz inkrementiert. Dies
erspart die geometrische Transformation der Punktwolke.

5.3.2. Voxelkarten mit mehrstufiger Auflösung

Ähnlich einer Bildpyramide in der 2D-Datenverarbeitung kann auch bei Voxelkarten ei-
ne bedarfsgesteuerte, schrittweise Verfeinerung der Verarbeitung realisiert werden, wäh-
rend die Vorteile des effizienten Datenzugriffs nutzbar sind. Dafür müssen mehrere Kopi-
en der maximal auflösenden Ausgangs-Voxelkarte MMaxres angelegt werden, die schritt-
weise gröber diskretisieren. Der Speicheraufwand einer Voxelkarte ist zwar, im Vergleich
mit den anderen Datenstrukturen, prinzipbedingt groß, jedoch reduziert er sich mit jeder
Halbierung der Auflösung um den Faktor acht. So kann der Speicherbedarf MemMultires

einer N -stufigen Kartenpyramide mit folgender Formel berechnet werden:

MemMultires =
N−1∑
n=0

#VoxelMaxres

8n
·MemVoxel (5.15)

An einem Beispiel mit realistischen Werten sieht man, dass der zusätzlich benötigte Spei-
cher für eine Pyramide mit N = 4 Ebenen im Vergleich mit der original Karte sehr gering
ist: Die Karte MMaxres von der ausgegangen wird, soll 5,12 m× 5,12 m× 2,56 m mit 1 cm3

Voxeln abdecken. Benötigt ein Voxel dabei 1 B Speicher, ergibt sich ein Speicherbedarf
von 512 B× 512 B× 256 B = 64 MiB für die erste Etage, und lediglich 64 MiB

8 + 64 MiB
82

+
64 MiB

83
= 9,125 MiB für die weiteren drei Etagen der Pyramide, bzw. MemMultires = 73,125 MiB

für die gesamte Pyramide. Ähnlich wie der Speicherverbrauch sinkt auch die Zeit für

72

5.4. Voxelliste

Kollisionsprüfungen mit der Voxelanzahl. Daher ist auch hier der entstehende Zusatz-
aufwand für mehrfache Prüfungen, verglichen mit der erzielbaren Beschleunigung, ver-
nachlässigbar. Das hierarchische Verfahren, das in Abb. 5.4 skizziert ist, lässt sich auch
mit Voxellisten umsetzen. Zeitmessungen dazu finden sich in Abschnitt 8.2.

In der praktischen Umsetzung werden die Zwischenstufen der Pyramide nicht genutzt
und nur auf einer maximalen und minimalen Diskretisierung gearbeitet, da dies in der
Evaluation zum höchsten Zeitgewinn führte.

Roboter-
Pose

3D
Punktwolken

R
o

b
o

te
r

U

m
w

el
t

Kopieren &
Reduzieren

Kollision

Kopieren &
Reduzieren

Kopieren &
Reduzieren

(offline)

Kollision Kollision

Kollisionsfrei Kollisionsfrei Kollisionsfrei

Kopieren &
Reduzieren

(offline)

Karte

in voller
Auflösung

Karte

in viertel
Auflösung

Karte

in halber
Auflösung

Kolli-
sions-
check

Kolli-
sions-
check

Kolli-
sions-
check

primitiv
in voller

Auflösung

Rotations-

primitiv
in viertel

Auflösung

Rotations-

primitiv
in halber

Auflösung

Rotations-

Abb. 5.4.: Hierarchische, bedarfsgesteuerte Kollisionsprüfung. Das Roboter-Modell wird
offline in der Auflösung reduziert, während die Umweltdaten kontinuierlich
komprimiert werden. Grüne Komponenten sind in CUDA implementiert.

5.4. Voxelliste

Auch eine Voxelliste ist prinzipiell ein eindimensionales Feld im GPU-Speicher. Jedoch
werden in ihr nur Voxel eines bestimmten Typs vorgehalten. Somit lässt sich beispiels-
weise gezielt nur der belegte Raum speichern, womit der Speicherverbrauch für dünn be-
setzte Umgebungen gegenüber einer Voxelkarte drastisch reduziert wird. Effizienter als
bei einer Voxelkarte ist dadurch auch das lineare Durchlaufen der Datenstruktur, da hier-
bei nicht über irrelevante Voxel iteriert werden muss, was die Laufzeit des ∪-Operators
für Kollisionsprüfungen entsprechend beschleunigt. Ein Zugriff auf einzelne Voxel über
geometrische Koordinaten ist hingegen nur mit Hilfe einer Suche möglich. Um den Such-
aufwand zu minimieren, sind die Einträge der Liste anhand ihrer Voxeladresse sortiert
und dedupliziert. Diese beiden Eigenschaften müssen bei der Verschmelzung zweier Lis-
ten durch den ∩-Operator oder bei der Voxelumwandlung einer dichten Punktwolke mit
dem �-Operator aufrechterhalten werden.

Um eventuelle Duplikate aus der Liste zu entfernen, müssen alle Einträge mittels ei-
nes Radix Sort nach ihrer Voxeladresse aufsteigend geordnet werden. In der Folge lie-
gen mehrfach existierende Voxel benachbart im Speicher. Anschließend läuft eine Pre-

73

5. Voxel-Datenstrukturen auf der GPU

fix-Summe rückwärts über die Nutzdaten und wendet dabei einen Voxeltypspezifischen
Vereinigungsoperator auf Voxel an, die dieselbe Adresse aufweisen. Durch die rückwärts
ablaufende Bearbeitung enthält somit der erste von mehreren ortsgleichen Voxeln die
kombinierten Nutzdaten (Bitvektoren oder Belegtheitswahrscheinlichkeiten) der Dublet-
ten. Daraufhin kann erneut vorwärts über die Liste gelaufen werden, um alle Duplikate
zu löschen. Voxellisten weisen entsprechend einen hohen Aufwand bei ihrem Aufbau
auf, der lineare Zugriff ist hingegen sehr effizient.

Je nachdem ob eine Voxelliste in Kombination mit einem Octree oder einer Voxelkarte
einsetzt werden soll, handelt es sich bei den gespeicherten Voxeladressen um virtuelle
Adressen in der zugehörigen Voxelkarte (nach Gleichung 5.12), oder um Morton-Codes
im entsprechenden Octree. Die Adressierung ist um eine Basisadresse der Datenstruktur
bereinigt und beginnt somit bei Null.

Neben den Adressen speichert die Voxelliste auch die geometrischen Koordinaten und
die Nutzdaten der Voxel. Da die Implementierung in Thrust umgesetzt ist, werden al-
le Daten, entsprechend des Structure-of-Arrays-Prinzips, in drei gleich langen Listen
gespeichert. Die Einträge am selben Listenplatz repräsentieren zusammen einen Voxel,
weshalb in Thurst so genannte Zip-Iteratoren den Zugriff auf zusammengesetzte Ele-
mente erleichtern. Ändert sich die Anzahl der Voxel in der Liste, so muss der Speicher
aller drei Listen neu alloziert werden. Auch ein Umsortieren der Voxel muss auf allen
Listen gleichermaßen angewendet werden. Die redundante Speicherung von Voxeladres-
sen und geometrischen Koordinaten wurde aus Performancegründen gewählt. Da bei
typischen Anwendungsszenarien die Listen kurz sind, fällt der zusätzliche Speicherver-
brauch gering aus.

Der�-Operator zur Voxelumwandlung entspricht dem einer Voxelkarte. Er generiert zu-
nächst für jeden Punkt einen eigenen Voxel. Fallen durch die Diskretisierung mehrere
Punkte in denselben Voxel, so werden die mehrfachen Einträge bei der Sortierung zu-
sammengefasst. Aufgrund dieses Aufwandes sollte � nicht für hochfrequente Aktuali-
sierungen eingesetzt werden.

5.5. Octree

Bei der geometrischen Modellierung von Volumendaten mittels Voxelkarten stellt der
Speicher schnell eine Grenze für die mögliche Auflösung, oder das abzubildende Vo-
lumen dar, unabhängig davon, zu welchem Grad dieses Volumen belegt ist. Daher ist
eine Repräsentation mit variabler Auflösung erstrebenswert, in der sich gleichförmige
Bereiche (bspw. der Freiraum) speichereffizient zusammenfassen lassen. Eine weit ver-
breitete Datenstruktur, die diese Anforderung umsetzt, ist der Octree (eine baumförmige
Struktur, deren Knoten je acht Verzweigungen aufweisen, siehe Abb. 5.5b). Bei einer geo-
metrischen Interpretation (siehe Abb. 5.5a) repräsentiert der Wurzelknoten auf der höchs-
ten Ebene einen Kubus, der alle abzubildenden Daten enthält. Er wird rekursiv in acht
gleich große Kuben unterteilt, bis jeder Kubus nur noch gleichartige Daten enthält, oder
eine vorgegebene Maximaltiefe erreicht ist, die bis zu n Einträge aufweist. Diese Baum-
struktur und die auf ihr definierte Ordnung erlaubt eine schnelle Suche nach Elementen
in O(log n).

74

5.5. Octree

Während der Aufbau eines Octrees aus Datenpunkten in einer seriellen Implementie-
rung durch eine Rekursion gut lösbar ist, bestehen für eine GPU-Implementierung durch
den a priori unbekannten Speicher- und Laufzeitaufwand zwei Herausforderungen: Zu-
nächst ist das bedarfsgesteuerte, inkrementelle Allozieren von Speicher während der Re-
kursion nach Feststellung 5 ineffizient. Weiterhin ist der Arbeitsaufwand von der Vertei-
lung der Eingabedaten abhängig und somit nicht direkt parallelisierbar. Die folgenden
Abschnitte beschreiben eine Herangehensweise, die eine effiziente heterogene Paralleli-
sierung dennoch ermöglicht.

5.5.1. Stand der Technik

Die ersten Arbeiten zur Implementierung von Octrees wurden bereits 1980 von Meagher
in [143] und Jackins [105] veröffentlicht. Während der Fokus dieser ersten Arbeiten noch
auf der effizienten Manipulation und Darstellung der Datenstrukturen lag, folgten be-
reits 1984 erste Veröffentlichungen zur kollisionsfreien Bahnplanung für einen Manipu-
lator [79] auf Octree-Basis, die dann 1986 von Herman um Rotations-Swept-Volumen
erweitert [100] wurden. Auch gab es Versuche, Distanzinformationen in Bäumen zu spei-
chern, um Kollisionsanfragen noch schneller zu beantworten [107]. In den 1990er Jahren
wurden dann jedoch vermehrt Dreiecksnetzmodelle zur Darstellung und zur Planung
mit 3D-Modellen verwendet und die Fortschritte der Octrees stagnierten.

Klassische Octree-Implementierungen speichern pro internem Knoten acht Zeiger auf
Kindknoten, was bei kleinen Nutzdaten einen großen Zusatzaufwand an Speicher be-
deutet. Eine Alternative dazu sind mittels Hashfunktion linear gespeicherte Bäume. Hier
werden ausschließlich belegte Knoten vorgehalten, wobei jeder Knoten den Morton-Co-
de seiner Position zusammen mit einem Bitvektor speichert, der angibt, welche seiner
Kindknoten existieren. Über diese Informationen lassen sich Eltern- und Kindknoten
adressieren. Auch die Tiefe im Baum und daraus die Größe des abgedeckten Volumens ist
implizit repräsentiert. Die eigentliche Speicheradresse muss letztendlich über eine Hash-
funktion aus dem Morton-Code abgeleitet werden. Diese Art der Bäume tauschen Spei-
chereffizienz gegen Laufzeitaufwand ein und kommen daher für diese Arbeit nicht in
Frage.

Eine relevante, modere CPU-Implementierung ist der äußerst speichereffiziente Octree
von Borrman et al. [49], der je acht Kindknoten mit nur einem einzigen Zeiger adressiert.
Die Implementierung ist jedoch nicht für dynamische Szenen ausgelegt und differenziert
nicht zwischen freiem und unbekanntem Raum. Dies ist hingegen bei Octomap möglich,
einer weit verbeitete CPU-Bibliothek, die Octrees mit beliebigen Nutzdaten erlaubt [104].
Die Implementierung ist jedoch weder speichereffizient noch besonders performant, was
somit auch für das darauf aufbauende ROS Collider Paket gilt, das Kollisionsprüfungen
mit dem Octree ermöglicht [95].

Die einzigen relevanten GPU-Octrees stammen aus der Spielewelt [155] oder der Com-
putergrafik [185]. Bei ihnen handelt es sich jedoch um statische Datenstrukturen, die zur
Laufzeit partiell geladen und wieder freigegeben werden (Out-of-core Aufbau), womit
sie sich nicht für die bearbeiteten Problemstellungen eignen. Eine Arbeit, die hingegen
den Aufbau eines Octrees auf der GPU durchführt, stammt von Karras [110]. Dieser ver-
zichtet dabei jedoch auf die Propagierung von Knotenzuständen entlang des Baumes in

75

5. Voxel-Datenstrukturen auf der GPU

Richtung Wurzel, womit ein effizienter Abstieg im Baum, der für die Kollisionsprüfung
unabdingbar ist, nicht gegeben ist. Eine weitere Arbeit, die sich mit der parallelen Ma-
nipulation von dynamischen Baumstrukturen auseinandersetzt, stammt von Chaudhary
[56]. Hier liegt der Fokus auf der effizienten Umsetzung von boolschen Operationen, je-
doch wird eine Hardware vorausgesetzt, die eine dynamische Allokation von Rechenein-
heiten erlaubt. Da dies ist bei GPUs nur mit hohen Latenzen möglich ist, ist der Ansatz
hier nicht nutzbar. Somit ist keine vergleichbare Arbeit bekannt, die einen effizienten,
parallelen Aufbau und eine parallelisierte Traversierung unterstützt, wie sie der im fol-
genden beschriebene dynamische GPU-Octree umsetzt.

(a) Überlagerung eines Oberflä-
chenmodells mit einer Octree-
Partitionierung [162].

30 1 2 54 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7Ebene 0

Ebene 1

Ebene 2

Ebene 3

BlattknotenInnerer Knoten

(b) Baumstruktur der rekursiven Unterteilung des Wur-
zelknotens auf Ebene 3 bis zu Blattknoten auf Ebene
0.

Abb. 5.5.: Beispiele zur Verdeutlichung des Octree-Prinzips.

Definition 14. Die Baum-Invariante beschreibt den eindeutigen, gültigen Zu-
stand eines gewurzelten Baumes, in dem alle inneren Knoten den ihren Kind-
knoten entsprechenden, zusammengefassten Zustand besitzen (frei, belegt, teil-
weise belegt, unbekannt). Die Invariante muss nach jeder Änderung am Baum
geprüft und bei Bedarf wiederhergestellt werden. Ein parallelisiertes Verfah-
ren dazu wird in Abschnitt 5.5.2 vorgestellt.

5.5.2. Umsetzung

In den folgenden Abschnitten werden Vorgehen beschrieben, die in der Octree-Imple-
mentierung von Florian Drews im Rahmen seiner Masterarbeit [22] umgesetzt wurden.
Dafür sollen zunächst einige Begriffe und Grundlagen definiert werden. In dieser Arbeit
wächst der Baum von oben nach unten. Seine Wurzel liegt somit auf der höchsten Ebe-
ne und die Blattknoten (Knoten ohne weitere Kindknoten) auf Ebene 0. Die Blattknoten
weisen das kleinste adressierbare Volumen auf und bestimmen somit die räumliche Auf-
lösung des Octrees. Zwischen Wurzel und Blattknoten liegen innere Knoten. Sie können
jedoch, im Gegensatz zur üblichen Definition, auch ohne Kindknoten existieren. Alle Oc-
tree-Knoten, deren Größe sich über ihre Ebene im Baum definiert, werden auch als Voxel

76

5.5. Octree

bezeichnet. Die Kindknoten eines inneren Voxels sind eindeutig von 0 bis 3 nummeriert
und über 40 Bit-Zeiger erreichbar (erlaubt 1 TB große Bäume). Die Implementierung ist
auf Datensparsamkeit ausgelegt, weshalb implizite Daten, wie der Morton-Code eines
Voxels, nicht in den Nutzdaten gespeichert sind. Auch die Zeiger auf die Kindknoten
sind auf einen einzigen reduziert, da die Kinder in einem Array angeordnet sind und
ihre Adressen somit durch Zeigerarithmetik bestimmbar sind (siehe Abb. 5.6). Dies ist
durch eine, später beschriebene, konservative Speicherallokation möglich und verbes-
sert den Zugriff bei der Parallelverarbeitung durch Memory Coalescing. Ein weiteres
8 Bit großes Statuswort pro Voxel enthält Verwaltungsinformationen, beispielsweise ob
sein Subbaum zu aktualisieren ist.

data m_child

InnerNode

LeafNodes

InnerNodes

... ...

Abb. 5.6.: Speicherlayout von inneren Knoten und Blattknoten. Grafik aus [22].

Blattknoten können als deterministische oder probabilistische Voxel implementiert sein
(siehe Abb. A.6 in Anhang A). Eine Umsetzung mit Bitvektor-Voxeln ist möglich, wurde
bisher aber nicht benötigt. Im determinsistischen Fall müssen innere Knoten alle Zustän-
de (belegt, frei und unbekannt auch gleichzeitig aufweisen können, um ihre Unterbäume
korrekt zu repräsentieren. Der Speicherbedarf stellt sich wie in Tab. 5.1 dar.

Typ
Deterministisch Probabilistisch

LeafNode InnerNode LeafNodeProb InnerNodeProb

Größe [Byte] 1 8 2 8

Tab. 5.1.: Speicherbedarf der verschiedenen Knotentypen des Octrees

Speicherverwaltung

Ein Octree stellt eine dynamische Datenstruktur dar, da bei seinem sukzessiven Auf-
bau aus Sensordaten im Vorfeld nicht bekannt ist, wie viele Knoten benötigt werden. Ihr
Speicher ist fortlaufend anzulegen, oder beim Zusammenfassen von Kindknoten zu ver-
werfen. Daher sind Strategien zu entwickeln, die diesen Widerspruch der dynamischen
Speicherallokation aus Feststellung 5 möglichst auflösen.

Naheliegend ist zunächst die Zusammenfassung vieler kleiner Speicherreservierungen
einzelner Knoten zu größeren Einheiten, die auf einmal angefordert werden. Neben der
Zeitersparnis würde dies auch zu zusammenhängenden Speicherbereichen führen, was
parallele Berechnungen durch Memory Coalescing beschleunigt. Allerdings könnten so-
mit auch Speicherfreigaben nicht mehr auf Knotenbasis, sondern nur in denselben großen
Einheiten erfolgen, was ohne eine Octree-spezifische Speicherverwaltung zu Fragmentie-
rung führt. Da die Umsetzung einer eigenen Verwaltung aufgrund des hohen Aufwan-
des und der durch sie eingeführten zusätzlichen Latenzen nicht zielführend ist, wird eine
andere Strategie verfolgt:

77

5. Voxel-Datenstrukturen auf der GPU

Ein regelmäßiger Neuaufbau des Octrees erlaubt es, zunächst zu viel Speicher zu reser-
vieren und eine Fragmentierung während der Konstruktion des Baumes in Kauf zu neh-
men. Nachdem der tatsächliche Speicheraufwand ermittelt ist, kann der komplette Baum
zusammenhängend kopiert werden, um den fragmentierten Speicher freizugeben. Die-
ser Kompromiss zur Umsetzung einer dynamischen Datenstruktur ist in Abb. 5.7 gezeigt.
Ausgelöst wird der Neuaufbau durch das Überschreiten von Grenzwerten des Speicher-
verbrauchs.

Aufbau Neubau Änderungen

Abb. 5.7.: Zyklischer Neuaufbau des Octrees als Kompromiss zur Umsetzung einer dy-
namischen Datenstruktur auf der GPU.

Die finale Umsetzung des Octrees reserviert Speicher jedoch nicht auf Knotenebene, son-
dern vorausschauend in Blöcken von acht Voxeln, was der hohen Wahrscheinlichkeit
geschuldet ist, dass Knoten meist mehr als einen Kindknoten aufweisen. Somit besitzt
ein innerer Knoten in dieser Implementierung entweder keinen oder gleich acht Kind-
knoten, die dann im Speicher direkt nebeneinander liegen (mit den bereits beschrieben
Vorteilen des Memory Coalescings).

Adressierung über Morton-Codes

(a) 2x2x2 Unterteilungen (b) 4x4x4 Unterteilungen (c) 8x8x8 Unterteilungen

Abb. 5.8.: Z-Kurve der 3D-Morton-Adressierung in drei Rekursionsschritten. Illustration
von Asger Hoedt1.

Um ausgehend von 3D-Koordinaten in einem Octree den zugehörigen Knoten zu finden,
muss ein Abstieg im Baum erfolgen, der in jedem Knoten die Abstiegsrichtung durch drei
Größer-/Kleiner-Vergleiche mit den Koordinaten bestimmt. Eine andere Art der Adres-
sierung ist die Verwendung von Morton-Codes, wie sie in Abb. 5.8 dargestellt sind. Ihre

78

5.5. Octree

genaue Definition, sowie weitere Beispiele finden sich in Abschnitt A.3. Diese Codes las-
sen sich aus den Koordinaten ableiten und beschreiben implizit den Pfad von der Wurzel
bis zum gesuchten Voxel in Form der zu verfolgenden Kindknoten. Durch diese Eigen-
schaft kann weiterhin sehr effizient der kleinste gemeinsame Elternknoten zweier Vo-
xel bestimmt werden, was bei der parallelisierten Traversierung des Octrees hilfreich ist.
Außerdem können Morton-Codes genutzt werden, um zu ermitteln, ob ein Voxel in den
durch zwei 3D-Punkte aufgespannten Quader fällt und somit die Kollisionsdetektion be-
schleunigen. Diese Funktionen werden im Folgenden noch aufgegriffen.

Umgesetzt wurden in dieser Arbeit Morton-Codes mit 60 Bit Breite, womit pro Koordina-
te 220 Bit (also =̂1 048 576 Voxel) adressierbar sind. Dies entspricht bei 1 cm3 Voxelgröße
einem abgedeckten Raum von ∼1153 km3.

Aufbau

Beim Aufbau eines Octrees muss zwischen unterschiedlichen Voraussetzungen der Aus-
gangsdaten unterschieden werden. Diese können geometrisch sortiert oder unsortiert
vorliegen. Weiterhin könnten die Ausgangsdaten unverarbeitet den verfügbaren Spei-
cher überschreiten, was eine schrittweise Verarbeitung erzwingt (Out-of-core Aufbau).
Hier soll von unsortierten Punktwolken aus einem oder mehreren 3D-Sensoren ausge-
gangen werden, deren Größe einen In-core Aufbau erlaubt.

Mortoncode
berechnen

Punkte
sortieren

Bauminvariante
herstellen

Ebenenweise
Knoten erstellen

Speicherbedarf
ermitteln

Knoten
initialisieren

Kindzeiger
setzen

Abb. 5.9.: Octree Aufbau aus einer unsortierten Punktwolke in vier Schritten.

Die Erstellung des Octrees erfolgt nach den vier, in Abb. 5.9 gezeigten, Schritten:

1. Zunächst sind die Morton-Codes aller Eingabedaten zu berechnen. Dabei findet
automatisch eine Diskretisierung mit der maximal unterstützten Auflösung statt.
Dieser Schritt kann problemlos parallelisiert erfolgen, da keine Abhängigkeiten im
Prozess oder in den Daten vorliegen.

2. Liegen die Codes vor, werden sie für eine effizientere parallele Verarbeitung sor-
tiert. Dies geschieht mittels parallelisiertem Radix-Sort (siehe Unterabschnitt A.5.3).

3. Der wichtigste Schritt ist dann der ebenenweise Aufbau des Baumes, ausgehend
von den Blättern in Richtung der Wurzel. Hierfür sind drei Teilschritte auszufüh-
ren:

1Blog von Asger Hoedt: http://asgerhoedt.dk/?p=276

79

http://asgerhoedt.dk/?p=276

5. Voxel-Datenstrukturen auf der GPU

a) Um die benötigte Anzahl an Elternknoten für alle belegten Kinder zu ermit-
teln, werden die Präfixe aller Kinder-Morton-Codes auf Gleichheit untersucht
und ungleiche Präfixe gezählt. Da die Codes sortiert sind, ist es ausreichend,
benachbarte Einträge zu vergleichen und das binäre Ergebnis in einem Array
zu speichern. Das Array kann dann über eine parallele Reduktion (siehe Un-
terabschnitt A.5.2) mit einem Zähloperator zusammengefasst werden.

b) Mit der nun bekannten Anzahl an benötigten Elternknoten wird der Speicher
für alle ihre Kindknoten reserviert, in dem dann Knoten mit Initialwerten an-
gelegt werden. Wie bereits beschrieben, sind grundsätzlich alle acht Kindkno-
ten zu reservieren, auch wenn sie nicht alle benötigt werden.

c) Der letzte Schritt unterscheidet sich zwischen Blattebene und inneren Ebenen.
Im Falle der Blattebene müssen die Knoten, die tatsächlich belegt sind (also
Daten mit ihrem Morton-Code vorhanden sind), entsprechend markiert wer-
den. Im Falle einer inneren Ebene ist der Zeiger auf den ersten der acht Kind-
knoten zu setzen. Dieser Zeiger wurde bereits im vorhergehenden Zählschritt
aus einer Präfix-Summenberechnung (siehe Unterabschnitt A.5.1) abgeleitet.

4. Im letzten Schritt sind die Zustände der inneren Knoten in Abhängigkeit ihrer Kin-
der zu setzen, um die Baum-Invariante herzustellen. Details hierzu folgen in Ab-
schnitt 5.5.2.

Da aus Gründen der Speichereffizienz die Morton-Codes der Knoten nicht explizit vor-
gehalten werden, müssen diese während dem Aufbau des Baumes temporär gespeichert
werden, um im nächsten Durchgang als Berechnungsgrundlage der nächsten Schicht be-
reitzustehen.

Die folgenden Formeln werden beim Aufbau des Octrees genutzt, um die Knotenposi-
tionen und die Zeiger auf Kindknoten zu berechnen:

clk :=


1, falls k = 0

1, falls prefix l(ml[k − 1]) 6= prefix l(ml[k])
0, sonst

(5.16)

offset lparent(i) :=

i∑
k=0

clk − 1 (5.17)

offset lnode(i) := 8 · offset lparent(i) + childl(ml[i]) (5.18)

offset lchild(i) := 8 · i (5.19)

Als Eingabedaten dienen n temporär gespeicherte Morton-Codes ml der Blätter (l = 0)
bzw. der vorher bearbeiteten Knotenebene l. Ausgehend vom i-ten Morton-Code ml[i]
kann die Position des zu ihm gehörenden Knotens im Feld aus Knoten N l der Ebene l
mittels offset lnode(i) berechnet werden. Somit steht sein erster Kindknoten an der Posi-
tion offset lchild(i) des Feldes N l−1 der Ebene l − 1. Dabei ist 0 ≤ childl(ml[k]) < 8 die
Nummer des Kindknotens. clk indiziert, ob Morton-Code ml[k] der kleinste Kindknoten
unter den Knoten mit gleichem Elternknoten darstellt. Ist dies der Fall (also wenn für
Morton-Code ml[i] gilt: cli = 1), dann wird dieser Knoten für die Erstellung der nächsten

80

5.5. Octree

ml

0 1 n− 1

offset lnode(i)

i . . .
cli 1 0 0 0 0 1 0 0 0. . .

offset lparent(i)

N l−1

offset lchild(i)
childl 0 4 0 0 0 1 0 3 6. . .

. . .

. . .

. . .

3 4

N l

ml+1

Abb. 5.10.: Illustration der Gleichung 5.16 zur Be-
rechnung von Knotenpositionen (gestri-
chelte Linien) und Zeigern auf Kindkno-
ten (durchgezogene Linien).

Stacks initialisieren

#Untätige Threads
> Grenzwert ?

Start

Elemente
auf Stack?

Nein

Nein

Parallele Tiefensuche

Lastausgleich

Ja

Ja

Ende

Abb. 5.11.: Paralleles traversieren
des Baumes mit heuris-
tischem Lastausgleich.

Ebene benötigt, und daher in das temporären Feld ml+1 der Größe offset lparent(n− 1) + 1

an Stelle offset lparent(i) kopiert.

In Abb. 5.10 sind die Zusammenhänge anhand eines Beispiels skizziert. Grau hervorge-
hoben sind Blöcke von Knoten, die den gleichen Elternknoten besitzen.

Propagieren von Statusinformationen: Baum-Invariante herstellen

Zur Herstellung der Baum-Invariante wird der Baum komplett traversiert, um dabei
Informationen durch alle Ebenen zu propagieren. Knoten, die dabei einen ungültigen
oder nicht initialisierten Zustand aufweisen, erben den Zustand ihres nächsten gültigen
Elternknotens. Da bei der Erstellung des Baumes alle Knoten, die nicht explizit als be-
legt markiert wurden, zunächst nicht initialisiert sind, entscheidet letztendlich der Wur-
zelknoten über ihren Zustand. In einer sensoriell erfassten Umgebung sollte daher die
Baumwurzel als unbekannt markiert sein, wohingegen sie in einer vollständig bekann-
ten Umwelt (z.B. durch ein geometrisches a priori Modell) mit dem Zustand frei starten
kann. In einem zweiten Durchlauf (von unten nach oben) wird der Wurzelzustand dann
auf seinen wahren Wert aktualisiert.

Dieser Mechanismus kann auch dazu verwendet werden, größere kubische Volumen im
Baum effizient zu verändern. Dazu muss lediglich der Elternknoten des Teilbaumes vor
der Herstellung der Invariante angepasst werden, um alle Kindknoten automatisch zu
verändern.

81

5. Voxel-Datenstrukturen auf der GPU

Hochparalleles Traversieren des Baumes mit Lastausgleich

Nicht nur zur Durchsetzung der Baum-Invariante, sondern auch für viele weitere, im
Folgenden vorgestellten Operationen, ist das Traversieren des Octrees eine grundlegen-
de Funktion. Die dafür verwendete Tiefen- oder Breitensuche ist in einer sequentiellen
Implementierung problemlos umzusetzen, während die Datenabhängigkeit beider Such-
verfahren eine geradlinige Parallelisierung jedoch verhindert: Der Arbeitsaufwand für
das Ablaufen eines dünn besetzten Baumes lässt sich ohne genaue Kenntnis der Baum-
struktur nicht in gleiche Arbeitspakete aufteilen. Eine Tiefensuche, die parallel auf unter-
schiedlichen Teilbäumen abläuft, hat abhängig von der Baumstruktur sehr unterschied-
liche Laufzeiten, da manche Teilbäume früher enden, als andere. Eine Breitensuche da-
gegen, die einzelne Ebenen parallel abarbeiten könnte, benötigt neben einer größeren
Menge an Speicher (zum Zwischenspeichern aller Voxel der Ebene) auch eine Synchro-
nisation aller Threads vor jeder neuen Ebene, was eine hohe Latenz einführt.

Um diese wichtige Funktion dennoch gewinnbringend zu parallelisieren, wurde eine
Tiefensuche umgesetzt, die mit Hilfe eines bedarfsgesteuerten Lastausgleichs für eine
gleichmäßige Umverteilung der Arbeitspakete sorgt. Das Verfahren orientiert sich an der
Arbeit von Lauterbach et al. [130] zur Traversierung der dort verwendeten BVHs, wur-
de aber um eine Heuristik zur Aufwandsabschätzung erweitert. Der Lastausgleich wird
ausgelöst, wenn die Anzahl untätiger Threads einen Grenzwert überschreitet. Das Fluss-
diagramm in Abb. 5.11 skizziert den Algorithmus.

Ein unausgeglichener Lastzustand, wie er in Abb. 5.12 links gezeigt ist, definiert sich
über unterschiedlich gefüllte Arbeitsstapel der laufenden Threads. Ziel des Lastausglei-
ches ist es, den Aufwand der Elemente aller Arbeitsstapel gleichmäßig auf die Threads
umzuverteilen.

Stack 0

L3

L3

L2

L0

Stack 1

L3

L2

L2

L2

L1

Stack 2 Stack 3

L3

L1

Lastausgleich

Stack 0

L3

L2

L1

Stack 1

L3

L2

L1

Stack 2 Stack 3

L3

L2

L0

L3

L2

L0

L0

Abb. 5.12.: Lastausgleich unter Berücksichtigung des geschätzten Arbeitsaufwandes.

Da jedes Element den Wurzelknoten unterschiedlich tiefer Teilbäume repräsentieren kann,
wäre eine Aufteilung anhand der Anzahl der Elemente nicht ausreichend. Daher bewer-
tet die implementierte Lastverteilung die Arbeitselemente über eine Heuristik, und ord-
net Elemente mit ähnlichem Aufwand auf gleicher Höhe im Arbeitsstapel an. Das Er-
gebnis ist in Abb. 5.12 rechts zu sehen. Die Heuristik basiert auf der Annahme, dass
Teilbaum-Wurzelknoten, die auf einer höheren Ebene im Gesamtbaum liegen, potentiell
weiter absteigen müssen und daher mehr Arbeitsaufwand (maxArbeit) verursachen:

Knoten n,m | Ebene(n) > Ebene(m) =⇒ maxArbeit(n) > maxArbeit(m) (5.20)

82

5.5. Octree

Das Resultat erfordert durchschnittlich weniger Lastausgleichsschritte und sorgt für einen
höheren Parallelisierungsgrad. Voraussetzung ist jedoch, dass die Ebene jedes Arbeitsele-
ments bekannt ist, und jeder Arbeitsstapel die darüber definierte Arbeitsstapel-Invariante
erfüllt:

S[n], ∀ i ∈ [1, n) | Ebene(S[i− 1]) ≥ Ebene(S[i]) (5.21)

Ist diese Gleichung erfüllt, können über Prä- und Postfixsummen sehr effizient die Posi-
tionen der sortierten Elemente in den Arbeitsstapeln berechnet werden. Einzelne CUDA
Blöcke sind dabei jeweils für die Analyse eines Arbeitsstapels zuständig, wobei die Eta-
gen des Stapels über die Threads pro Block parallel bearbeitet werden. Nach der Zähl-
und Sortierphase können die Elemente parallel an ihre neuen Positionen geschrieben
werden und erfüllen dann noch immer die Arbeitsstapel-Invariante. Der Pseudocode
dieses parallelisierten Lastausgleiches findet sich in Abschnitt A.7, Algorithmus 5. Über
kleine, problemspezifische Anpassungen kann die balancierte Tiefensuche für viele un-
terschiedliche Aufgaben im Octree eingesetzt werden.

Erweiterung eines bestehenden Octrees

Nach der Vorstellung der parallelen Traversierung sollen nun Techniken zur Erweite-
rung eines bestehenden Octrees beleuchtet werden, da diese über die Leistung der Da-
tenstruktur in dynamischen Umgebungen entscheidet. Die Erweiterung ist die komple-
mentäre Ergänzung zum bereits beschriebenen zyklischen Neuaufbau (siehe Abb. 5.7):
Einerseits benötigt sie weniger Rechenzeit und weitaus weniger temporären Speicher, je-
doch steigt durch sie die Speicherfragmentierung, da es bei der Erweiterung nicht mög-
lich ist, Speicherbereiche wiederzuverwenden oder freizugeben, auch wenn Knoten zu-
sammengefasst werden. Vorausgesetzt wird, dass die Menge der einzufügenden Voxel
alle von derselben Größe bzw. Ebene sind, diese nach ihrem Morton-Code sortiert vor-
liegen und keine Voxel denselben Morton-Code aufweisen. Das Einfügen neuer Daten
geschieht in zwei Schritten: Zunächst werden neue Knoten erstellt und über Kindzeiger
in den bestehenden Baum eingehängt. Daraufhin muss die Baum-Invariante wiederher-
gestellt werden, wobei auch Knoten gleichen Zustands verschmolzen werden.

Der erste Schritt zur Erweiterung der Baumstruktur gliedert sich in dieselben Teilschrit-
te wie der Aufbau eines neuen Octrees, der bereits in Abschnitt 5.5.2 dargelegt wurde,
wobei jedoch die bestehende Baumstruktur zu berücksichtigen ist:

1. Speicherbedarf ermitteln: Für jeden neu hinzuzufügenden Blattknoten ist der Baum
zu traversieren, um zu bestimmen, ob fehlende innere Knoten einzufügen sind. Da
unterschiedliche Voxel dieselben Elternknoten aufweisen können, muss bei einer
Parallelisierung des Zählens ein doppeltes Traversieren von inneren Voxeln ver-
hindert werden. Um die ineffiziente, naive Verwendung von atomaren Mutexes pro
Knoten zu vermeiden, wurde dafür ein Verfahren umgesetzt, welches die Seriali-
sierung über die Sortierung der Voxel nach ihren Morton-Codes löst. Durch diese
ist sichergestellt, dass Voxel mit demselben Elternknoten nebeneinander liegen und
jeder Voxel durch Prüfung seines Nachbarn feststellen kann, ob er der Kindknoten
mit der kleinsten ID ist. Wenn nun jeweils ausschließlich die Knoten mit den kleins-
ten IDs bei der Traversierung fortschreiten und dabei das Zählen übernehmen, kön-
nen keine Doppelungen auftreten. Die Zählung der benötigten Knoten (und somit

83

5. Voxel-Datenstrukturen auf der GPU

auch die Prüfung auf die kleinste Kind-ID) geschieht pro Ebene über eine Präfix-
summe. Bei ihrer Ausführung wird gleichzeitig der als letztes erreichte, bereits im
Baum existierende Knoten und dessen Ebene gespeichert. Diese Information wird
für das Setzen der Kindzeiger im dritten Schritt benötigt und müsste anderenfalls
durch ein zusätzliches Traversieren des Baumes erneut bestimmt werden.

2. Speicher reservieren und Knoten initialisieren: Nachdem die Anzahl der inne-
ren Knoten sowie der Blattknoten bekannt ist, kann deren benötigter Speicher auf
einmal reserviert werden. Alle neuen Knoten werden zunächst als undefiniert mar-
kiert.

3. Knotenzustand und Kindzeiger setzen: Im letzten Schritt müssen die neuen Kno-
ten in den bestehenden Baum gehängt und dieser stellenweise aktualisiert werden.
Auch hier wird die Sortierung der Voxel genutzt, um jeweils nur den Knoten mit
der kleinsten Kind-ID beim Setzen der Kindzeiger zu verfolgen, da diese sonst auch
mehrfach überschrieben würden. Die Knoten im bestehenden Baum, die durch die
Erweiterung erstmals Kindknoten erhalten, sind bereits aus der Traversierung im
ersten Schritt bekannt: Sie waren die letzten erreichten Knoten beim Abstieg in
Richtung eines neu erzeugten Blattknotens. Ihr Zustand lässt sich mit dem Zustand
der neuen Kindknoten verrechnen und entsprechend aktualisieren.

Nach der Ausführung dieser drei Teilschritte sind alle neuen Knoten in den Baum ein-
gefügt. Es ist jedoch sehr wahrscheinlich, dass es durch die neuen Kindknoten zu einer
Verletzung der Baum-Invariante gekommen ist, weshalb diese nachträglich wiederher-
gestellt werden muss. Verfahren dazu werden im nächsten Abschnitt aufgezeigt.

Baum-Invariante durchsetzen

Zum besseren Verständnis soll zunächst ein naiver, sequentieller Ansatz dargelegt wer-
den. Dieser Algorithmus iteriert über die, als bekannt vorausgesetzte, Menge der geän-
derten Voxel. Für jeden wird der Baum in Richtung Wurzel abgelaufen, um dabei jeden
inneren Knoten in den Zustand zu versetzen, der sich aus der ‖ -Verknüpfung seiner acht
Kindknoten ergibt. Die Kosten C des nötigen Berechnungsaufwandes müssen über die
Baumtiefe d und der Menge der geänderten Knoten m auf C ≈ m · d · 8 abgeschätzt wer-
den, da keinerlei Synergien genutzt werden und das Verfahren wegen dem gleichzeitigen
Zugriff auf innere Knoten nicht gut parallelisierbar ist.

Gewünscht wäre es hingegen, den gemeinsamen Pfad mehrerer Knoten nur einmalig ab-
zulaufen, womit sich die Kosten auf C ≈ 8/7 ·m+8 · (d− log8(m)) (vgl. Gleichung 6.8 zur
Aufwandsabschätzung der Kollisionsprüfung) reduzieren ließen. Hierbei entsteht jedoch
offensichtlich eine Datenabhängigkeit, da vorausgesetzt wird, dass alle auszuwertenden
Kindknoten bereits aktualisiert wurden, bevor höhere innere Knoten bearbeitet werden
können. Um damit umgehen zu können, wurde die bereits definierte Tiefensuche mit
Arbeitsstapel zu einer eingeschränkten Zwei-Phasen-Tiefensuche mit Lastausgleich (Load-Ba-
lancing Propagate) erweitert, die den Baum parallelisiert einmal von oben nach unten und
danach von unten nach oben traversiert. Auf dem Weg in Richtung Blattknoten wer-
den noch nicht initialisierte Knoten auf den Zustand ihrer Elternknoten gesetzt (Abstieg),
während auf dem Rückweg von den Blättern zur Wurzel die Kindknoten zusammenge-
fasst und der Status ihres Elternknotens aktualisiert wird (Aufstieg). Wie bereits erklärt,

84

5.5. Octree

können einzelne Threads bei der Traversierung ungleiche Arbeitslast erzeugen, insbe-
sondere durch die Expansion von Knoten, die vorher voll belegt oder komplett frei wa-
ren, und daher keine Kindknoten aufwiesen. Das Ausstatten mit Kindknoten stellt ge-
genüber der Aktualisierung vorhandener Knoten bei der Traversierung einen deutlichen
Mehraufwand dar. Daher ist die Lastbalancierung ein sehr wichtiger Bestandteil. Örtlich
eingeschränkt ist das Verfahren insofern, dass es gezielt nur die Regionen des Baumes
abläuft, die von einer Aktualisierung betroffen sein können. Somit wird eine hohe Daten-
lokalität erreicht und gegenüber dem Ablaufen des kompletten Baumes viel Zeit gespart.
Die relevanten Regionen ergeben sich aus dem maximalen Sichtfeld der auszuwertenden
Sensoren. Die Elemente der Zwei-Phasen-Tiefensuche, die auf dem Arbeitsstapel liegen,
sind so gewählt, dass sie klein sind und gleichzeitig das Memory Coalescing optimieren.
Für die parallele Abarbeitung führt jeder CUDA Block eine Tiefensuche mit eigenem Ar-
beitsstapel aus. Da die Verteilung des Arbeitsaufwands aber nicht a priori bekannt ist,
müssen die Elemente der Stapel zur Laufzeit zwischen den Threads aufgeteilt werden.
Hier kommt die Technik zur dynamischen Lastverteilung, die in Abschnitt 5.5.2 bzw. Al-
gorithmus 5 im Anhang bereits für die Kollisionsprüfung entwickelt wurde, zum Einsatz.
Der komplette Ablauf kann in Abschnitt A.7 in Algorithmus 7 nachvollzogen werden.
Eine Besonderheit der Lastbalancierung hierbei ist eine potentielle Blockade des paral-
lelen Algorithmus, der durch Abhängigkeiten zwischen Aufstiegs-Arbeitselementen auf
den Stapeln entstehen kann: Sind die Stapel zu groß zur simultanen Abarbeitung aller
Elemente und sind genau die Elemente inaktiv, auf welche die aktiven Threads warten,
führt dies zum Stillstand. Daher verfügen die Arbeitselemente über eine Boolsche Varia-
ble, die anzeigt, ob der zugehörige Thread Berechnungsfortschritte erzielen kann. Über
die Variable kann bei der Balancierung entschieden werden, ob alle Threads auf Ressour-
cen warten und in diesem Fall der Algorithmus neu zu starten ist.

Extrahieren von Voxeldaten

Sollen die Daten des Octrees ohne Kenntnis der Baum-Datenstruktur extern weiterverar-
beitet werden, bietet es sich an, diese in Form einer Liste aus Voxeln zu exportieren. Jeder
Voxel speichert dabei seine kartesische Position und Kantenlänge. Dafür wird der Baum
mit der bereits vorgestellten lastbalancierten Tiefensuche abgelaufen und jeder Blattkno-
ten bzw. jeder innere Knoten, der keine Kinder aufweist, kopiert, wobei sein Morton-
Code in kartesische Koordinaten umgerechnet wird. Da die Octree-Knoten ihren Mor-
ton-Code nicht explizit speichern, wird dieser beim Abstieg im Baum sukzessive aus
dem Code seines Elternknotens generiert (siehe Gleichung A.4 im Anhang). Soll nicht
der komplette Baum kopiert werden, lässt sich die Suche anhand örtlicher Grenzen, der
maximalen Detailstufe (Abstiegstiefe) oder dem Knotenzustand beschränken. Diese Ein-
schränkungen werden beispielsweise für die Visualisierung aus Abschnitt 5.7 genutzt,
um nur den Ausschnitt des Octrees in der benötigten Auflösung zu extrahieren, der sich
im Sichtfeld der virtuellen Kamera befindet.

Da vor der Traversierung des Baumes nicht bekannt ist, wie viele Knoten zu kopieren
sind, kann der Speicher für die Voxelliste nicht im Voraus reserviert werden. Daher ste-
hen zwei Strategien zur Verfügung: Entweder kann der benötigte Speicherplatz großzü-
gig abgeschätzt und iterativ erweitert werden, falls die Extraktion mehr Platz benötigt,
oder der Baum muss zweimal traversiert werden, um zunächst die benötigten Voxel zu

85

5. Voxel-Datenstrukturen auf der GPU

zählen, bevor diese extrahiert werden. Für die Visualisierung wurde das erste Verfah-
ren gewählt, da hier eine unvollständige Extraktion keine sicherheitsrelevanten Probleme
verursacht (vgl. Abschnitt 5.7.1 zum Thema Visualisierung).

Zusammenfassung

Die vorgestellte, sehr speichereffiziente Implementierung eines Octrees nutzt unterschied-
liche Strategien, um die dynamische Natur dieser Datenstruktur so weit zu kaschieren,
dass eine Parallelisierung des Aufbaus und der Traversierung des Baumes auf der GPU
möglich werden. Dafür wurden zwei grundlegende Techniken realisiert: Zum einen ei-
ne hochgradig an die Zielhardware angepasste Technik des probabilistischen Lastaus-
gleichs zur Arbeitsverteilung zwischen CUDA-Blöcken. Zum anderen eine präventive
Überallokation von Speicher in Kombination mit einem bedarfsgesteuerten Neuaufbau
der Datenstruktur zur Vermeidung von Speicherfragmentierung. Die Unterstützung von
deterministischen und probabilistischen Voxeln im Baum deckt sowohl die Roboter- als
auch die Umweltmodellierung ab, während in beiden Fällen zwischen belegten, freien
und unbekannten Volumen unterschieden werden kann. Quantitative Details zur Leis-
tungsfähigkeit finden sich in der Evaluation in Abschnitt 8.3.

5.6. Distanzkarten

(a) Eingabedaten (b) Voxel bis zu Distanz 10

(c) Voronoi-Regionen in Bodenebene (d) Voronoi-Regionen in 2 m Höhe

Abb. 5.13.: Teilweise angeschnittenes Distanzfeld einer Laborumgebung. Kombination
mehrerer Schnitte durch den Raum.

86

5.6. Distanzkarten

Neben den Planungsansätzen aus Kapitel 7 existiert in der Robotik der weit verbreitete
Ansatz zur Navigation anhand von Distanzkarten mit so genannten Potentialfeld-Pla-
nern. Hierbei wird in einer diskretisierten Datenstruktur in jeder Zelle die Distanz zum
nächstgelegenen Hindernis gespeichert (siehe Abb. 5.13). Diese Distanzen können inver-
tiert und als abstoßende Potentiale interpretiert werden, die den Roboter von Hinder-
nissen fernhalten. Übt das Ziel gleichzeitig eine anziehende Kraft auf den Roboter aus,
kann dieser sich, wie in Abb. 5.14 gezeigt, entlang des Gradienten im kombinierten Vek-
torfeld sicher ins Ziel bewegen. Da zusätzlich zur Kollisionserkennung auch beliebige
Annäherungen detektierbar sind, reicht das Anwendungsgebiet von Distanzkarten über
die reine kollisionsfreie Bewegungsplanung hinaus, bis hin zur Freiraumoptimierung.

Unterschiedliche Verfahren zur Berechnung von Distanzfeldern werden im folgenden
untersucht.

Abb. 5.14.: Beispiel eines Pfades entlang des Gradienten in einem kombinierten Potenti-
alfeld aus abstoßenden Kräften der Hindernisse und einer anziehenden Kraft
des Zieles (Grafik aus [132]).

5.6.1. Zielstellung

Aufgrund von begrenzter Rechenkapazität wurden Distanzkarten, deren Berechnungs-
aufwand sehr hoch ist, in vorhergehenden Arbeiten meist nur zweidimensional erstellt
und ausgewertet [172]. In diesem Kapitel soll, basierend auf einer Parallelisierung und
dem damit einhergehenden Performancegewinn, die Berechnung hochauflösender, drei-
dimensionaler Distanzfelder mit einer hohen Aktualisierungsrate ermöglicht werden.
Dies erlaubt die Umsetzung von online-fähigen Potentialfeldplanern auf Basis von live
Punktwolken einer dynamischen Umgebung. Weiterhin wird untersucht, ob es zielfüh-
rend ist, bei Änderungen in der Umwelt nur betroffene Ausschnitte der Distanzkarte neu
zu berechnen, oder die gesamte Karte neu zu erstellen.

87

5. Voxel-Datenstrukturen auf der GPU

Vorausgesetzt wird eine exakte Lokalisierung des Sensors bzw. des Roboters bspw. durch
Simultaneous Localization and Mapping (SLAM). Wäre dieses nicht gegeben, müssten
zeitlich aufeinander folgende Aufnahmen mittels Iterative Closest Point (ICP) o.ä. zu-
nächst aneinander ausgerichtet werden. Als Vorverarbeitungsschritt zur Filterung und
Ausdünnung der Sensordaten werden die aufgenommenen Punktwolken zunächst in
einer probabilistischen Voxelkarte aggregiert, um dann mit ihren belegten Voxeln die Di-
stanzberechnung durchzuführen.

5.6.2. Verwandte Arbeiten

Bei der Berechnung von Distanzkarten können unterschiedliche Metriken eingesetzt wer-
den. Für die Robotik ist lediglich die euklidische Distanz von Bedeutung, weshalb in die-
ser Arbeit ausschließlich Euklidische Distanz Transformationen (EDTs) betrachtet wer-
den. Diese lassen sich wiederum in approximierende und exakte Verfahren aufteilen.
Speichern die Algorithmen in jedem Eintrag ihrer Datenstruktur nicht nur die Distanz
des nächstgelegen Hindernisses, sondern auch dessen Position, dann entsprechen die
generierten Karten einem Voronoi-Diagramm.

Die Arbeiten von Jones [106] und Fabbri [77] geben eine Übersicht über 2D- und 3D-
Distanztransformationen, von denen die meisten sequentiell angelegt sind. Sie verwen-
den entweder Wellenfronten, die sich von Hindernissen aus kreisförmig ausbreitende
oder mehrere lineare Abtastungen der kompletten Datenstruktur, um eine EDT anzu-
wenden.

Neben diesen sequentiellen Ansätzen existieren jedoch auch solche, die eine Paralleli-
sierung auf GP-GPUs erlauben und daher hier von Interesse sind. Hierzu gehören der
Jump Flooding Algorithm (JFA) [173, 174], der Parallel-Banding-Algorithm (PBA) [54], der
Schneider, Kraus und Westermann Algorithm (SKW) [182] und der Fast Hierarchical Algo-
rithm (FHA) [66]. Aufgrund ihrer Vorteile wurden von diesen vier Ansätzen PBA und JFA
weitergehend untersucht: PBA als schnellster Kandidat für große Eingabedaten (SKW
wurde in [54] langsamer als PBA getestet) und JFA für kleinere Karten (da er eine einfa-
che Struktur und weniger Verwaltungsaufwand aufweist [54]). Weiterhin setzt PBA als
einziger der vier Algorithmen eine exakte Berechnung der EDT um, während FHA und
JFA Approximationsfehler aufweisen, die in [66] verglichen werden. Die GP-GPU opti-
mierte Variante des SKW aus [182] basiert auf der Vektor Distanz Transformation von
Danielsson [179] und weist daher wie diese eine obere Fehlerschranke der berechneten
Distanzen von 0.091 Voxeln auf.

Alle gelisteten Ansätze erfordern eine Neuberechnung des kompletten Distanzfeldes, so-
bald Änderungen in den Ausgangsdaten auftreten. Somit erscheint ihre Anwendung zu-
nächst bevorzugt in statischen Fällen sinnvoll. Im Gegensatz dazu ist bspw. der Brush-
fire Algorithmus aus [127] in der Lage, in dynamischen Szenen gezielt nur die Bereiche
des Distanzfeldes zu aktualisieren, in denen sich Änderungen auch auswirken. Dennoch
ermöglicht die hochparallele Berechnung von „statischen“ Ansätzen eine vielfach effi-
zientere Datenverarbeitung, weshalb sie in den, in dieser Arbeit betrachteten Anwen-
dungsfällen, die „dynamischen“ Ansätze auch in bewegten Szenen ausstechen. Letztere
eignen sich aufgrund von inhärenten Datenabhängigkeiten nicht für eine parallelisier-
te Implementierung auf der GPU. Weiterhin bestehen ihre Eingabedaten aus der Menge

88

5.6. Distanzkarten

der geänderten Voxel, welche in vielen Fällen nur mit dem zusätzlichem Aufwand einer
Differenzberechnung zu ermitteln sind.

Die letzte betrachtete Kategorie von EDTs beschreibt Octrees, welche mit Distanzinfor-
mationen angereichert sind. Hierzu gehört die Arbeit von Jung [107, 108], die sich auf
statische Szenen konzentriert und den Aufbau der Datenstrukturen als einen Offline-
Prozess mit beliebiger Laufzeit interpretiert. Die eigentliche Online-Kollisionsprüfung
auf Octree Distance Maps lässt sich so auf CPUs um bis zu 40% beschleunigen, während
sie im Verglich zu regulären Octrees nur ca. 25% mehr Speicher benötigen. In dynami-
schen Szenen kann die zeitliche Einsparung den Aufwand für den zyklischen Aufbau der
Datenstrukturen jedoch nicht aufwiegen, weshalb der Ansatz hier nicht verfolgt wird.

5.6.3. Umsetzung

Unterschiedliche Ansätze zur parallelisierten Berechnung von Distanzfeldern wurden in
der Masterarbeit von Christian Jülg [24] realisiert und verglichen. Dieser Abschnitt stützt
sich auf seine Ergebnisse.

Kanonische, exakte Euklidische Distanz Transformation

Die einfachste Herangehensweise zur Berechnung der Distanzen in einer Menge Voxel V
zu einer Menge an belegten Hindernisvoxeln O ist durch die folgende Minimumssuche
beschrieben:

∀v ∈ V : argmin
o∈O

‖ v − o ‖ (5.22)

Dieser naive Ansatz ist in seiner Berechnungskomplexität O(n ·m) linear abhängig von
der Anzahl der Voxel n = |V | und der Anzahl der Hindernisse m = |O|, weshalb er le-
diglich zur Überprüfung anderer Algorithmen herangezogen wurde. Bei einer Szene aus
16 Mio. Voxeln, von welchen 67 625 belegt waren, lag der erreichte Berechnungsdurchsatz
auf der GPU bei 877 000 Voxel/s.

Brushfire

Hier wird die Ausbreitung von Wellenfronten imitiert, die von neu entdeckten Hinder-
nissen ausgehen. Jeder Voxel, durch den die Welle läuft, wird mit Distanzinformationen
beschrieben. Da dies pro Voxel nur einmal geschieht, ist der Algorithmus bezüglich sei-
ner Schreiboperationen optimal. Um Approximationsfehler ähnlich derer der CDT zu
vermeiden, kann beim Schreiben auch der Ursprung der Welle in jedem Voxel gespei-
chert werden, um daraus bei Bedarf die exakte Distanz berechnen zu können. Der Algo-
rithmus nutzt eine Min-Heap-Datenstruktur, um die Kandidaten, durch welche die Welle
läuft, in der Reihenfolge entsprechend ihrer Hindernisdistanz abzuarbeiten. Die Berech-
nungskomplexität liegt bei O(n ∗ logn), wobei n = |V | die Menge der Voxel beschreibt.
Der logarithmische Anteil rührt von der Suche im Min-Heap und liegt normalerweise

89

5. Voxel-Datenstrukturen auf der GPU

weit unter logn, da die Anzahl der Hindernisse weitaus kleiner ist, als die Anzahl der
Voxel in der Karte.

A

raise lower

B

lower
lower

C D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=∞ and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn
(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn∨
(d=distn ∧ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =
true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

A

raise lower

B

lower
lower

C D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=∞ and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn
(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn∨
(d=distn ∧ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =
true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

Abb. 5.15.: 2D-Distanzfelder vor (A) und nach einem Update (D). Das neu hinzugekom-
mene, blau umrandete Hindernis löst eine Welle aus, die die Distanzwerte
der umliegenden Voxel verringert, während die Welle um das verschwunde-
ne, rot umrandete Hindernis zunächst Distanzen löscht, bevor diese von den
umliegenden Feldern neu beschrieben werden. Grafik aus [127].

Da die Welle in Voxeln verebbt, die bereits kleinere Distanzen enthalten, muss der Al-
gorithmus beim Einfügen neuer Hindernisse nicht die komplette Karte ablaufen (siehe
Abb. 5.15).

Die Berechnungen zur Ausbreitung der Wellen sind in CUDA nur schlecht parallelisier-
bar, da in jedem Voxel Entscheidungen getroffen werden, die direkt von umliegenden
Voxeln abhängig sind, was eine Vielzahl an Synchronisationen zwischen den Threads
erfordert. Weiterhin ist der Kontrollfluss einzelner Threads von der Position ihrer be-
arbeiteten Voxel abhängig, was Laufzeitdivergenzen verursacht und einen kohärenten
Speicherzugriff verhindert (vgl. Kapitel 3).

Eine serialisierte Implementierung des Brushfire Algorithmus von Lau und Sprunk ist als
Erweiterung des ROS-Paketes OctoMap [104] verfügbar. Hier werden kontinuierlich 3D-
Sensordaten in eine Octree-Datenstruktur eingefügt und die Differenzen zwischen zwei
Momentaufnahmen des Octrees als Startpunkte der Wellenausbreitung genutzt [128].

Fast Marching Method

In diesem sehr generischer Ansatz der Wellenausbreitung wird die Ausbreitungsgeschwin-
digkeit F der Wellen als konstant angenommen, weshalb die Ankunftszeit der Welle in
einem Voxel direkt in die Distanz zum Wellenursprung umgerechnet werden kann [106,
186]. Vergleichbar mit Brushfire kann auch hier mit einer Menge von Startpunkten ge-
arbeitet werden. Allerdings tragen die Wellen keine Information über die Koordinaten

90

5.6. Distanzkarten

ihres Ursprungs mit sich, wodurch die berechneten Distanzen Rundungsfehler enthal-
ten und lediglich eine Annäherung der euklidischen Distanz darstellen. Erweiterungen
wie FMMHA reduzieren diese Fehler, können ihn aber prinzipbedingt nicht vermei-
den [106].

Auch wenn sich eine Parallelisierung aus den im vorherigen Abschnitt genannten Grün-
den schwierig gestaltet, konnten mehrere Arbeiten einen hohen Performancegewinn durch
die Ausführung auf verteilten Supercomputer-Systemen erzielen [122, 206]. So dauert die
Berechnung eines Distanzfeldes aus 10243 Voxeln auf 65536 Rechenknoten lediglich 0,5
Sekunden (≈ 2 GVoxel/s) bzw. 10 Sekunden auf 256 Rechenknoten (≈ 100 MVoxel/s).

Jump Flood Algorithmus

Dieser Algorithmus zeichnet sich durch seine niedrige Berechnungskomplexität von
O(N log n) fürN = n3 = |V |Voxel aus [174]. Diese wird erreicht, da die dreidimensionale
Datenstruktur nur log n mal abgetastet werden muss, wie in Abb. 5.16b zu sehen ist. Bei
jeder Abtastung gibt ein Voxel seine Hindernisinformationen an bis zu 26 Nachbarvoxel
in der Schrittweite k weiter. Da dabei sowohl der Kontrollfluss, als auch die Speicherzu-
griffsmuster nicht von der Anzahl oder Verteilung der Hindernisse abhängen, eignet sich
JFA sehr gut für eine parallele GP-GPU Implementierung.

Allerdings liefert der Algorithmus lediglich eine Annäherung an die exakten euklidi-
schen Hindernisabstände und in besonderen Fällen können Hindernisse in sehr spitzen
Voronoi-Regionen übersehen werden, da diese durch Diskretisierungsfehler ihren Zu-
sammenhang verlieren [173]. Diese Fehler können durch zusätzliche Abtastschritte mi-
nimiert werden. In der JFA Basisversion lässt sich pro Voxel nur die Information eines
Hindernisses weitergeben, was zwangsläufig zu einem Informationsverlust führt, wenn
mehrere Hindernisse gleichzeitig in der Datenstruktur propagiert werden. Ein nahelie-
gender Kompromiss ist es daher, pro Voxel mehr als nur eine Hindernisinformation zu
speichern.

Die JFA Implementierung in dieser Arbeit nutzt Double-Buffering, so dass neue Hinder-
nisdaten geschrieben werden können, während die Distanzberechnung auf den vorher-
gehenden Daten abläuft.

Parallel Banding Algorithmus

Als einer der wenigen parallelen Algorithmen liefert PBA nicht nur Annäherungen, son-
dern exakte euklidische Distanzinformationen für jeden Voxel. Alle drei Phasen dieses
Algorithmus wurden explizit für eine Ausführung auf GP-GPUs entworfen und folgen
demselben Grundprinzip: Reduktion der Problemdimensionalität zu Gunsten der Par-
allelisierbarkeit [54]. Hierfür werden die Eingabedaten in so genannte Bänder aufgeteilt,
die in Phase 1 und 2 zunächst unabhängig voneinander bearbeitet werden können, bevor
sie in Phase 3 zusammengefasst werden. Der Programmfluss, in dem sich Phase 2 und 3
im dreidimensionalen Fall einmal wiederholen, ist in Abb. 5.17 zu sehen.

Phase 1 verbreitet Hindernisinformationen entlang der Z-Achse, der erste Durchlauf von
Phase 2 entlang der Y-Achse. Da die Inhalte der Voxelkarte im Speicher nach ihrer X-

91

5. Voxel-Datenstrukturen auf der GPU

2

number of sites. All of these three variants are
orthogonal, so any two or all of them can be combined
with each other into a more powerful flooding solution.

The rest of the paper is organized as follows.
Section 2 reviews the basic idea of JFA. Sections 3 to
5 introduce our three new variants. Section 6
concludes the paper with possible directions for future
work.

2. Review of JFA

Suppose we have a site s at pixel (x, y) in a texture

with resolution of n×n, and we want to pass its
information to all the other pixels in the texture. The
most straightforward way is to use the standard flood
filling algorithm. In the first pass, we pass the
information of s to its (maximum) eight neighbors at
positions (x+i, y+j) where i, j ∈ {–1, 0, 1}. These
neighbors continue to pass the information to their
neighbors in the later passes. This process continues
until all the pixels in the texture receive the
information of s. Figure 1(a) demonstrates this process
in an 8×8 texture with a site at the bottom-left corner.

Now suppose we have many sites in the texture,
and the information of every site is just its coordinate.
When all the pixels in the texture get the information
of the sites, each can use this information to choose the
nearest site to it. Thus, the Voronoi diagram can be
computed using this standard flood filling algorithm. A
simpler version of this idea is also presented in
Algorithm 4.14 in [7]. However, the number of passes
and thus time needed by standard flood filling
algorithm is linear to the resolution of the texture.

In the standard flood filling algorithm, the step
length in all the passes is always 1. So every pixel
effectively only propagates information of a site once
in the entire process. This is wasteful in the computing
power of GPU. To rectify this, we can vary (i.e. jump)
the step lengths in different passes to have the jump
flooding algorithm. In JFA, the step length in the first

pass is equal to half of the resolution. (In our
discussion, we always assume n is a power of 2; in
more general form, the step length of the first pass is

log 12 n −⎡ ⎤⎢ ⎥ for a resolution of n×n.) Then the step length
is halved in every pass until the step length of 1.
Formally, in a pass with step length of k, a pixel at the
position (x, y) passes its information to the pixels at the
positions (x+i, y+j) where i, j∈ {–k, 0, k}. This process
is shown in Figure 1(b) for the same configuration of
input site as in Figure 1(a). By using different step
lengths k, the number of passes needed by JFA is
reduced to logarithmic of n.

Same as the standard flood filling algorithm, JFA
can compute Voronoi diagram. Although JFA may
cause errors at pixels in the final result, as presented in
[9], the rate of such errors is very low, and not
noticeable to the naked eye. Besides Voronoi diagram
and distance transform, JFA has also been successfully
used to compute real-time soft shadows [10].

With this basic idea of JFA, we next present its
three new variants in the following three sections.

3. Variant 1: 1+JFA

During the process of JFA, an error occurs when
the correct site (the nearest site) is killed by other sites
en route during the flooding. According to Property 4
of JFA in [9], the necessary condition for two sites
meeting at a same pixel at step length of 2l is that the l
last bits (in binary encoding) of their x- and y-
coordinates are exactly the same. So if the very last bit
of the x- or the y-coordinate of a site s is already
different to that of another site t, these two sites do not
meet each other in any pixel in any pass before the
pass with step length of 1, and thus one cannot kill the
other.

This leads to the idea of the first variant, called
1+JFA. Before performing the standard JFA, we pass
the information of a site s at position (x, y) to its
(maximum) eight neighbors at positions (x+i, y+j)
where i, j∈ {–1, 0, 1}. This is equivalent to performing
a pass with step length of 1 before the standard JFA,
and leads to the name of 1+JFA. In effect, we have
made information of s available at pixels where their
last bit patterns of x- and y-coordinate cover all
possible combinations of 1s and 0s. This reduces the
chances of all the copies of s being killed by other sites
during flooding. The process of 1+JFA as compared to
that of the standard JFA is shown in Figure 2.

Note that this variant cannot totally eliminate all
the errors, because the other sites are also flooded by
one pixel to their neighbors before the standard JFA
and those neighbors together may kill, for example, all
the copies of s at different passes of flooding. Despite

(b)

k=4 k=1 k=2

k=1 k=1 k=1

Figure 1: Propagation of the content of a site
at the bottom-left corner by (a) standard flood
filling, and (b) JFA.

k=1 k=1 k=1 k=1

(a) (a) Flood Fill mit fester Schrittgröße k = 1

2

number of sites. All of these three variants are
orthogonal, so any two or all of them can be combined
with each other into a more powerful flooding solution.

The rest of the paper is organized as follows.
Section 2 reviews the basic idea of JFA. Sections 3 to
5 introduce our three new variants. Section 6
concludes the paper with possible directions for future
work.

2. Review of JFA

Suppose we have a site s at pixel (x, y) in a texture

with resolution of n×n, and we want to pass its
information to all the other pixels in the texture. The
most straightforward way is to use the standard flood
filling algorithm. In the first pass, we pass the
information of s to its (maximum) eight neighbors at
positions (x+i, y+j) where i, j ∈ {–1, 0, 1}. These
neighbors continue to pass the information to their
neighbors in the later passes. This process continues
until all the pixels in the texture receive the
information of s. Figure 1(a) demonstrates this process
in an 8×8 texture with a site at the bottom-left corner.

Now suppose we have many sites in the texture,
and the information of every site is just its coordinate.
When all the pixels in the texture get the information
of the sites, each can use this information to choose the
nearest site to it. Thus, the Voronoi diagram can be
computed using this standard flood filling algorithm. A
simpler version of this idea is also presented in
Algorithm 4.14 in [7]. However, the number of passes
and thus time needed by standard flood filling
algorithm is linear to the resolution of the texture.

In the standard flood filling algorithm, the step
length in all the passes is always 1. So every pixel
effectively only propagates information of a site once
in the entire process. This is wasteful in the computing
power of GPU. To rectify this, we can vary (i.e. jump)
the step lengths in different passes to have the jump
flooding algorithm. In JFA, the step length in the first

pass is equal to half of the resolution. (In our
discussion, we always assume n is a power of 2; in
more general form, the step length of the first pass is

log 12 n −⎡ ⎤⎢ ⎥ for a resolution of n×n.) Then the step length
is halved in every pass until the step length of 1.
Formally, in a pass with step length of k, a pixel at the
position (x, y) passes its information to the pixels at the
positions (x+i, y+j) where i, j∈ {–k, 0, k}. This process
is shown in Figure 1(b) for the same configuration of
input site as in Figure 1(a). By using different step
lengths k, the number of passes needed by JFA is
reduced to logarithmic of n.

Same as the standard flood filling algorithm, JFA
can compute Voronoi diagram. Although JFA may
cause errors at pixels in the final result, as presented in
[9], the rate of such errors is very low, and not
noticeable to the naked eye. Besides Voronoi diagram
and distance transform, JFA has also been successfully
used to compute real-time soft shadows [10].

With this basic idea of JFA, we next present its
three new variants in the following three sections.

3. Variant 1: 1+JFA

During the process of JFA, an error occurs when
the correct site (the nearest site) is killed by other sites
en route during the flooding. According to Property 4
of JFA in [9], the necessary condition for two sites
meeting at a same pixel at step length of 2l is that the l
last bits (in binary encoding) of their x- and y-
coordinates are exactly the same. So if the very last bit
of the x- or the y-coordinate of a site s is already
different to that of another site t, these two sites do not
meet each other in any pixel in any pass before the
pass with step length of 1, and thus one cannot kill the
other.

This leads to the idea of the first variant, called
1+JFA. Before performing the standard JFA, we pass
the information of a site s at position (x, y) to its
(maximum) eight neighbors at positions (x+i, y+j)
where i, j∈ {–1, 0, 1}. This is equivalent to performing
a pass with step length of 1 before the standard JFA,
and leads to the name of 1+JFA. In effect, we have
made information of s available at pixels where their
last bit patterns of x- and y-coordinate cover all
possible combinations of 1s and 0s. This reduces the
chances of all the copies of s being killed by other sites
during flooding. The process of 1+JFA as compared to
that of the standard JFA is shown in Figure 2.

Note that this variant cannot totally eliminate all
the errors, because the other sites are also flooded by
one pixel to their neighbors before the standard JFA
and those neighbors together may kill, for example, all
the copies of s at different passes of flooding. Despite

(b)

k=4 k=1 k=2

k=1 k=1 k=1

Figure 1: Propagation of the content of a site
at the bottom-left corner by (a) standard flood
filling, and (b) JFA.

k=1 k=1 k=1 k=1

(a)

(b) Jump Flooding mit sich halbierender Schrittgröße k

Abb. 5.16.: Vergleich von Strategien zur Informationsverbreitung (aus [174]).

Phase 1: Ausbreitung der Hindernisinformationen entlang der Z-Achse.
 Erzeugt ein 1D-Voronoi-Diagramm.

Phase 2: Durchführen der Maurer-Elemination entlang der Y-Achse.

Phase 3: Aktualisierung der Informationen über das nächstgelegene Hindernis
 auf der Y-Achse für alle Voxel. Erzeugt ein 2D-Voronoi Diagramm.

Phase 2: Durchführen der Maurer-Elemination entlang der X-Achse.

Phase 3: Aktualisierung der Informationen über das nächstgelegene Hindernis
 auf der X-Achse für alle Voxel. Erzeugt ein 3D-Voronoi Diagramm.

Abb. 5.17.: Vereinfachter Ablauf des Parallel-Banding-Algorithmus.

Koordinate abgelegt sind, werden die Threads eines Warps den Bändern zugeordnet, die
Nachbarn bezüglich der X-Achse sind. Somit greifen Threads und Warps auf fortlaufen-
den Speicher zu, was durch Memory Coalescing für einen optimalen Speicherdurchsatz
sorgt. Um diesen Vorteil auch in der zweiten Runde von Phase 2 und 3 nutzen zu kön-
nen, die entlang anderer Achsen ausgerichtet sind, findet zunächst eine XY-Transforma-
tion mittels schnellem geteiltem Speicher statt. Die Maurer-Elimination der zweiten Phase
beschreibt den Algorithmus zur exakten euklidischen Distanztransformation in linearer
Laufzeit aus [141]. Sie wird genutzt, um zu entscheiden, welche Punkte Einfluss auf ein
Band haben. Drei Parameter m1,m2 und m3 bestimmen den Parallelisierungsgrad von
PBA. Während m1 und m2 die Anzahl Bänder in Phase 1 und 2 beschreiben, steht m3 für
die Anzahl der gleichzeitig auf Voronoi-Zugehörigkeit geprüften Voxel in Phase 3. Der
Einfluss der Parameter wird in Abschnitt 8.9, Abb. 8.33 bewertet.

92

5.6. Distanzkarten

Die Berechnungskomplexität des gesamten Ablaufes ist lediglich linear abhängig von der
Anzahl der betrachteten Voxel (O(n)), da PBA die Eigenschaft eindimensionaler Voro-
noi-Diagramme ausnutzt, die besagt, dass jeder Punkt nur durch einen einzigen anderen
Punkt auf derselben Achse beeinflusst wird. Der Ablauf zum Aufbau eines 2D Voronoi
Diagramms mittels PBA ist in einem Video2 zur Publikation von Cao et al. [54] gut nach-
vollziehbar.

(a) Eingabedaten (b) Voxel bis zu Distanz 3 (c) Voxel bis zu Distanz 5

Abb. 5.18.: Spärlich abgetastete Punktwolke einer Wand mit Tür. Die Distanzberechnung
funktioniert robust und schließt Lücken.

Die PBA Implementierung dieser Arbeit folgt in der Programmlogik der Referenzimple-
mentierung von Cao et al. [54]. Inhaltliche Änderungen bereinigen zum einen Program-
mierfehler, die die Ergebnisse der Phase 2 bei Bändern mit mehr als einem Pixel Breite
zerstören konnten. Zum anderen greift die Implementierung dieser Arbeit nicht auf Tex-
turspeicher, sondern auf generellen CUDA Speicher zurück. Darüber hinaus wurde der
Code zum besseren Verständnis restrukturiert. Ein technisch interessantes Detail der Um-
setzung ist die doppelte Verwendung der Voxel-Datenstruktur: Zunächst werden in ihr
alle belegten Hindernisvoxel eingetragen, während am Ende jeder Voxel die Koordinaten
seines nächstgelegenen Hindernisses enthält. Zur Laufzeit von PBA können Voxel jedoch
temporär auch die Zeiger einer doppelt-verlinkten Liste auf nächstgelegene Hindernisse
aufnehmen, da PBA die Kartendimensionen sequentiell bearbeitet. In den bereits aus-
gewerteten Koordinatenkomponenten (X-Koordinate) eines Voxels kann dann der Index
(Y-Koordinate) eines Hindernisvoxels abgelegt werden. Da PBA zeilen- und spaltenwei-
se vorgeht, müssen beide Voxel dieselbe X-Koordinate aufweisen, womit die Position des
verlinkten Hindernisvoxels eindeutig bestimmt ist. Sind X- und Y-Komponenten ausge-
wertet, gilt dieses Vorgehen auch für die Z-Komponente.

5.6.4. Zusammenfassung und Vergleich

Es wurden unterschiedliche Verfahren zur Berechnung euklidischer Distanztransforma-
tionen untersucht, umgesetzt und evaluiert. Als erfolgreichster Ansatz ist daraus der Par-
allel Banding Algorithmus hervorgegangen, mit dem auf modernen GP-GPUs auch für
große 3D-Karten mit hoher Wiederholungsrate die Distanzen zu allen in der Karte vor-
handen Hindernissen berechnet werden können. Wie in Tab. 5.2 zu sehen, liegt der dabei

2http://www.comp.nus.edu.sg/~tants/pba_files/pba.mov

93

http://www.comp.nus.edu.sg/~tants/pba_files/pba.mov

5. Voxel-Datenstrukturen auf der GPU

Verfahren Aufwand
Durchsatz

[MVoxel/sek]

Kanonisch O(n ·m) 0,9
Brushfire O(n · log n) 163,5
FMM O(n · log n) 2000,0
JFA O(n · log n) 75,0
PBA (original) O(n) 2093,0

PBA (GPU-Voxels) O(n) 1325,0

Tab. 5.2.: Vergleich unterschiedlicher Verfahren zur Berechnung von Distanzfeldern.

erreichte Datendurchsatz bei bis zu 1,3 GVoxel pro Sekunde und lässt CPU-basierte Ver-
fahren somit weit hinter sich, auch wenn diese gezielt nur die Kartenteile analysieren, in
denen sich geänderte Hindernisse befinden.

Wie in Abschnitt 5.6.3 erwähnt, erreicht das CPU-basierte dynamische Brushfire-Verfah-
ren auf 3D-Karten aus 12 MVoxel einen Datendurchsatz, der 163,5 MVoxel/s bei einem
„statischen“ Verfahren entspricht. Dabei werden jedoch nur Distanzen bis zu einer Ent-
fernung von 10 Voxeln berechnet. Dagegen erreicht der in GPU-Voxels implementierte
PBA bis zu 1,3 GVoxel/s auf wesentlich größeren Karten, mit mehr Hindernissen und bei
unbeschränkter Entfernung. Die Geschwindigkeitsvorteile von PBA steigen sogar noch
weiter, wenn Brushfire größere Distanzen berechnen müsste.

Gregg und Hazelwood hinterfragen in [91] bei Vergleichen von CPU- und GPU-Lauf-
zeiten den zusätzlichen Aufwand der Datenübertragung zwischen Host und Device. Im
Falle von PBA verbleibt die Distanzkarte auf der GPU, so dass lediglich eine Menge von
Hindernisdaten zu übertragen ist. Da deren Datenmenge um mehrere Größenordnungen
kleiner als die eigentliche Karte ausfällt, ist der Aufwand vernachlässigbar. So beträgt die
Zeit der Datenübertragung von 67 625 Hindernissen inklusive der Initialisierung einer
2563 Voxel großen Karte ca. 1,8 ms.

Aufbauend auf diesen Ergebnissen wurden zwei sehr unterschiedliche Robotikanwen-
dungen implementiert, die in Abschnitt 8.9 evaluiert werden.

5.7. Visualisierung

Sowohl bei der Entwicklung und Validierung von Algorithmen, als auch während der
Ausführung derselben ist es sehr hilfreich, über eine Visualisierung der Ein- und Ausga-
bedaten zu verfügen. Im Bezug auf GPU-Voxels bedeutet dies, dass ein Nutzer sowohl
die Punktwolken der Sensoren, als auch die Voxel (und ihre Eigenschaften) aus mehreren
Voxel-Datenstrukturen betrachten kann. Da es sich hierbei um räumliche Daten handelt,
ist eine dreidimensionale Darstellung unerlässlich, welche hier wegen der guten Inter-
operabilität mit CUDA über Open Graphics Library (OpenGL) realisiert wird. Weiterhin
ist es wichtig, dem Benutzer eine Kontrolle über die Menge und Art der dargestellten
Daten zu erlauben, so dass dieser zu Gunsten der Übersichtlichkeit eine aufgabenspezi-
fische Darstellung umsetzen kann.

94

5.7. Visualisierung

Host RAM Device RAM

Provider

Visualizer

Provider

Visualizer

(a) Übertragung der Ergebnisse auf
den Host und zurück zur GPU

Host RAM Device RAM

Provider

Visualizer

Shared Memory

Provider

Visualizer

(b) Aufbereitung der Ergebnisse inner-
halb des GPU-Speichers.

Abb. 5.19.: Prinzipieller Datenfluss zur Visualisierung von Ergebnissen aus GP-GPU-Be-
rechnungen. Die Dicke der Pfeile symbolisiert die übertragene Datenmenge.

Da Voxel eine sehr einfache Würfelgeometrie aufweisen und ihre Eigenschaften, bezie-
hungsweise Zugehörigkeiten, über Farben darstellbar sind, besteht die Herausforderung
nicht in der Art der Darstellung, sondern in der Menge der darzustellenden Voxel und
somit in der geforderten Effizienz. Im Gegensatz zu weit verbreiteten Grafik- und Spiele-
Engines, wie OGRE3 oder Cryengine4, benötigt die Visualisierung für Voxel keinen kom-
plexen Szenengraphen mit aufwendigen Licht- oder Textureffekten. Erforderlich ist viel-
mehr der schnelle Umgang mit großen Mengen an dynamischen Daten, die die Voxelsze-
nen ausmachen.

Eine erste Implementierung einer Visualisierung basierte darauf, Kopien aller darzustel-
lenden Informationen, die auf dem Device nach einer Voxelberechnung vorlagen, auf den
Host zu kopieren, dort in OpenGL Strukturen umzuwandeln und diese dann erneut auf
die GPU zu transferieren, um sie anzuzeigen (siehe Abb. 5.19a). Wie in Abschnitt 3.2.5 be-
schrieben, stellt dieses mehrfache Kopieren offenkundig ein Performanceproblem dar.

Daher wurde eine Lösung entwickelt, bei der die Daten auf der GPU verbleiben und dort
für ihre Visualisierung aufbereitet werden (siehe Abb. 5.19b). Da CUDA und OpenGL da-
für einen gemeinsam genutzten Speicher auf dem Device verwenden, spricht man von
einem Shared Memory-Ansatz. Die Nutzdaten werden somit zwischen dem Provider, also
dem eigentlichen Programm und dem Visualizer geteilt. Eine Synchronisation geschieht
mittels Interprozesskommunikation über den Host. Dieser Ansatz wurde in der Bache-
lorarbeit [32] von Matthias Wagner erfolgreich umgesetzt und über die Dauer der Disser-
tation ständig weiterentwickelt. Ein Klassendiagramm der Implementierung findet sich
in Abschnitt A.8 in Abb. A.9. Alle Voxelgrafiken in diesem Dokument, mit Ausnahme
derer in Unterabschnitt 7.2.2, wurden mit dieser Visualisierung erstellt.

3http://www.ogre3d.org/
4http://cryengine.com/

95

http://www.ogre3d.org/
http://cryengine.com/

5. Voxel-Datenstrukturen auf der GPU

Funktionsumfang

Hier sollen zunächst die wichtigsten Funktionen aufgelistet werden, die umgesetzt wur-
den: Die Visualisierung ist als eigenständiges Programm lauffähig. Sie kann somit un-
abhängig von einem Provider gestartet und beendet werden, um keine GPU-Ressourcen
zu belegen, wenn keine Visualisierung benötigt wird. Aktualisierungen der Datenstruk-
turen werden gezielt über Nachrichten des Providers ausgelöst, um unnötige Speicher-
zugriffe einzusparen. Zusätzlich kann der maximale Speicherverbrauch beschränkt wer-
den, um dem Provider stets eine definierte Laufzeitumgebung zu gewähren.

Alle in GPU-Voxels verfügbaren Datenstrukturen sind (auch mehrfach) darstellbar, wo-
bei verschiedene Voxeltypen bzw. SSV-IDs beliebig wählbare Farben erhalten. Zur Ver-
besserung der Darstellung kann sich die Farbe einer Datenstruktur entlang einer Achse
des Koordinatensystems ändern, um beispielsweise die Höhe eines Voxels über dem Bo-
den besser einzuschätzen. Zur Verbesserung der Tiefenwahrnehmung wird die Szene
zusätzlich zu ambientem Licht aus Richtung der Kamera beleuchtet, deren Perspekti-
ve per Maus und Tastatur in mehreren Modi anpassbar ist. Neben den Voxeln sind 3D-
Punktemengen und geometrische Hilfsobjekte (Kugel, Quader) darstellbar.

Zu Gunsten der Bildwiederholrate und des Speicherverbrauchs lassen sich Voxel zu Su-
pervoxeln zusammenfassen. Dies reduziert die sichtbare Auflösung und somit die An-
zahl der zu zeichnenden Dreiecke. Weiterhin kann der Nutzer das zu zeichnende Volu-
men einschränken, was es auch ermöglicht, Schnittflächen zu visualisieren. Wird ein Vo-
xel angeklickt, erhält der Benutzer Informationen zum diesem (zugehörige Datenstruk-
tur, Position, Ausdehnung, Status). Zur Verbesserung des Überblicks sind alle dargestell-
ten Informationen separat an und abschaltbar. Alle Einstellungen lassen sich in Konfigu-
rationsdateien speichern.

5.7.1. Geometriegenerierung aus Voxeldaten

Die Darstellung von Geometrien in OpenGL erfolgt über Dreicksnetze, deren Eckpunk-
te in einem Vertex-Buffer Object (VBO) im GPU-Speicher abgelegt sein müssen. Für ihre
Erzeugung wurden Geometrie-Kernel in CUDA implementiert, die für jeden darzustel-
lenden Voxel 36 Eckpunkte (6 Flächen aus je 2 Dreiecken) aus den 3D-Koordinaten der
Voxel generieren und im VBO speichern (siehe Abb. 5.21). Zur Steigerung der Effizienz
werden alle Voxel derselben Farbe auf einmal gezeichnet und müssen daher aufeinan-
derfolgend im Speicher abgelegt sein. Da jede Voxel-Datenstruktur im Normalfall nur
zu einem gewissen Grad belegt ist, variiert die Größe des benötigten geteilten Speichers.
Weiterhin variieren die Anteile der unterschiedlichen Voxel-Bedeutungen (bekannt, un-
bekannt, SSV-IDs, usw.), die in einzelne Abschnitte des VBOs zu kopieren sind. Im Fol-
genden wird ein Ansatz entwickelt, der die Voxeldaten effizient in den VBO überträgt.

Speicherabschätzung und Hysterese

Um alle potentiell möglichen, anteiligen Zusammensetzungen von Voxel-Bedeutungen
naiv und ohne Vorberechnungen direkt in den VBO kopieren zu können, müsste für jede

96

5.7. Visualisierung

(a) Supervoxel-Kantenlänge 1 (b) Supervoxel-Kantenlänge 2

(c) Supervoxel-Kantenlänge 4 (d) Supervoxel-Kantenlänge 8

Abb. 5.20.: Benchmarkszene dargestellt mit unterschiedlicher Supervoxelgröße. Bildra-
ten siehe Abb. 8.11. Die Punktwolke wurde mit einem rotierendem Lasers-
canner aufgenommen.

5

4

6

SSV-ID
7

C4 C5 C6 C7

OpenGL VBO Voxel Datenstruktur

Geometrie Kernel

CUDA RAM

SSV-ID SSV-ID SSV-ID

Abb. 5.21.: CUDA Kernel zum Erzeugen von Geometrie-Daten aus Voxeln und anschlie-
ßender sortierter Ablage im OpenGL Vertex-Buffer Object.

Voxel-Bedeutung der Speicher einer kompletten Datenstruktur vorgehalten werden. Um
diese eklatante Überallokation von Speicher zu vermeiden, liegt es nahe, die Voxel-Da-
tenstruktur zunächst zu traversieren, um den Belegtheitsgrad pro Voxel-Bedeutung zu
ermitteln. Anschließend lässt sich ein passend dimensionierter VBO inklusive Zeigern
auf die Einzelabschnitte anlegen. Während sich der Zählschritt problemlos parallelisie-
ren lässt, benötigt das eigentliche Kopieren der Daten in den Puffer eine Synchronisati-
on zwischen parallel arbeitenden Threads. Diese müssen über geteilte Zählvariablen die
Schreibzeiger im Puffer inkrementieren, sobald sie einen belegten Voxel geschrieben ha-
ben. Als Alternative zum Engpass einer Synchronisation werden in dieser Arbeit Präfix-
summen für jeden Datentyp generiert (siehe Unterabschnitt A.5.1), um die Zieladressen

97

5. Voxel-Datenstrukturen auf der GPU

der Kopieroperationen jedes Threads zu bestimmen.

Um weiterhin das doppelte Traversieren der Datenstruktur (zählen, kopieren) für jedes
zu zeichnende Bild zu vermeiden, wurde eine dynamische Speicherverwaltung umge-
setzt, die jeweils um ein Bild versetzt auf geänderte Speicheranforderungen reagieren
kann. Hierfür wird der VBO initial mit einer gewissen Größe angelegt und gleichmä-
ßig unter allen Voxel-Bedeutungen aufgeteilt. Vor jedem Zeichnen wird er dann, ent-
sprechend der Prefixsummen, mit Voxeldaten befüllt und dabei festgestellt, ob das Fas-
sungsvermögen der Abschnitte den zu zeichnenden Voxelmengen entspricht. Falls nicht,
werden die Abschnitte für das nächste Bild um einen definierten prozentualen Anteil
vergrößert oder verkleinert, so dass es zu einer möglichst stabilen Hysterese kommt.

Octree

Im Gegensatz zu einer Voxelliste oder Voxelkarte stellt ein Octree eine Datenstruktur mit
fragmentiertem Speichermanagement dar. Somit ist es bei einem Octree nicht möglich,
dem Kernel zur Geometriegenerierung lediglich die Speicheradresse des Wurzelknotens
zu übergeben, da die Visualisierung den Baum dann selbstständig traversieren müss-
te, um die zu zeichnenden Blattknoten zu finden. Diese Arbeit geschieht daher auf der
Seite des Providers, wo eine zusammenhängende Liste aus Würfeln (definiert über kar-
tesische Koordinaten und Seitenlängen) erstellt wird, die dann von der Visualisierung
genau wie eine Voxelkarte abgearbeitet wird. Die Datenextraktion ist in Abschnitt 5.5.2
beschrieben.

Reduktion der darzustellenden Daten

Um auch bei umfangreichen Szenen eine hohe Bildrate zu erreichen, wurden zwei Ansät-
ze zur Datenminimierung verfolgt: Zum einen wurde eine Abwandlung des in OpenGL
verwendeten Viewport-Cullings (Filterung der zu zeichnenden Geometrie durch das Sicht-
feld der Kamera) durchgeführt und zum anderen lassen sich Voxelkarten bei Bedarf in
einer gröberen Auflösung visualisieren.

Beim sichtfeldabhängigen Kopieren wird der Blickwinkel der OpenGL-Kamera berück-
sichtigt, um nicht die komplette Voxel-Datenstruktur zu bearbeiten, sondern nur den ge-
rade sichtbaren Teil. Aus Praktikabilitätsgründen wird hierfür im Gegensatz zum View-
port-Culling kein Kegelstumpf zur Repräsentation des sichtbaren Volumens genutzt, son-
dern eine Überabschätzung in Form eines Quaders. Zusätzlich kann der darzustellende
Ausschnitt künstlich verkleinert werden, um beispielsweise bei der Darstellung geschlos-
sener Räume die Decke zu entfernen, oder bei Distanzkarten einen Schnitt durch die Sze-
ne zu ermöglichen. Abb. 5.22 zeigt ein Beispiel, bei dem die Szene in der Tiefe beschnitten
wurde.

Bei der Supervoxel-Methode werden Voxel zusammengefasst und als größere Würfel ge-
zeichnet (vgl. Abb. 5.20), was die Anzahl der darzustellenden Dreiecke stark reduziert.
Dies ist bei der Visualisierung eines Octrees nativ möglich, indem nicht die Blattkno-
ten, sondern die (teilweise) belegten inneren Knoten gezeichnet werden. Bei Voxelkarten

98

5.7. Visualisierung

(a) Einschränkung des Sichtbereiches (b) Keine Einschränkung des Sichtbereiches

Abb. 5.22.: Testszene mit und ohne Einschränkung des Sichtbereiches (sichtbar im Hin-
tergrund der linken Bildhälfte).

oder Voxellisten muss die Zusammenfassung beim Iterieren über die Datenstruktur ge-
schehen. Dafür läuft ein Kernel die Daten in einer Schrittweite ab, die der Supervoxel-
größe entspricht und prüft dabei die in den Supervoxel fallenden Voxel. Mit dem ersten
Fund wird der zugehörige Supervoxel in den VBO kopiert und die Iteration abgebrochen.
Auch hierbei stellen sich die anfangs genannten Herausforderungen des a priori unbe-
kannten Speicherverbrauchs und es kann wieder mit oder ohne exakte Vorberechnung
gearbeitet werden. Ab einer gewissen Supervoxelgröße bietet es sich an, das Verfahren in
zwei Schritte aufzuteilen und die gefundenen Supervoxel nicht direkt in den VBO, son-
dern in einen Zwischenspeicher zu schreiben. Dieser Puffer kann in seiner maximalen
Größe angelegt werden, da er um das 8Supervoxelgröße-fache kleiner ist, als die Ausgangs-
karte. Somit müssen auch keine Schreibzeiger synchronisiert werden. In einem zweiten
Schritt durchläuft der Geometrie-Kernel den Zwischenspeicher und überträgt belegte Su-
pervoxel wie gehabt in den VBO.

5.7.2. Umsetzung

Die folgenden Abschnitte beschreiben relevante Details und Besonderheiten der Imple-
mentierung der Visualisierung aus GPU-Voxels.

Provider-Visualizer Kommunikation

Die lose Kopplung zwischen der Visualisierung und dem Provider, die es erlaubt, die
Darstellung jederzeit starten und stoppen zu können, wurde über eine Interprozesskom-
munikation mittels eines geteilten Speichersegments im Host-System umgesetzt (Host
Shared Memory). Darin speichert das Provider-Programm Metadaten über die verfügba-
ren Voxelkarten, unter anderem die Adressen der Voxeldaten im GPU-Speicher und die
Kartengrößen. Die Visualisierung wertet diese Informationen aus und kann gleichzeitig
ihre gewünschte Supervoxelauflösungen anfordern oder Semaphoren auf Karten setzen,
um eine doppelt gepufferte Synchronisation sicherzustellen. Die Übertragungszeitpunk-
te der Metadaten unterscheiden sich je nach Datenstruktur: Während eine Voxelkarte
statische Ausmaße besitzt und somit immer gleich viele Voxel von der Visualisierung zu

99

5. Voxel-Datenstrukturen auf der GPU

durchlaufen sind, weisen Octree und Voxelliste dynamische Größen auf. Daher müssen
ihre Metadaten periodisch aktualisiert werden.

Interaktion

Durch anklicken eines Voxels kann sich der Nutzer detaillierte Information über die-
sen anzeigen lassen. Hierfür muss zunächst ermittelt werden, welcher Voxel unterhalb
der 2D Position des Mauszeigers liegt. Um dabei den Aufwand eines 3D-Raycastings in
der Szenengeometrie zu vermeiden, wird auf ein Verfahren zurückgegriffen, bei dem die
Szene in unsichtbaren Fehlfarben dargestellt wird, in denen jeder Voxel individuell ein-
gefärbt ist. Ein besonderer OpenGL-Shader bildet dazu nacheinander die X-, Y- und Z-
Komponenten aller Voxelkoordinaten auf die 2563 Farbschattierungen des RGB-Raumes
ab und zeichnet die Szene in einen nicht dargestellte Framebuffer. Da die Dreiecke der
Szene bereits im VBO vorliegen, ist der zusätzliche Aufwand hierfür minimal. Durch
Auslesen der Farbwerte aus drei aufeinander folgenden Bildern (benötigt ca. 100 ms)
an der Mausposition können somit direkt die Koordinaten des angeklickten Voxels be-
stimmt und seine Metainformationen abgerufen werden. Da die Berechnungen nur auf
Anforderung ausgeführt werden, beeinträchtigt das Verfahren nicht die allgemeine Per-
formance der Visualisierung.

Farbgebung

Für die Darstellung der Szenen wurde auf ein Lamerbertsches Beleuchtungsmodell mit
ambientem Lichtanteil und einer einzelnen punktförmigen Beleuchtungsquelle, die sich
mit der Kamera bewegt, zurückgegriffen [187]. Dieses einfache Modell erzeugt bereits
einen guten räumlichen Eindruck, der dem Benutzer die Orientierung in einer 3D-Szene
erleichtert. Weiterhin lassen sich die Kanten der Voxel einblenden, was bei homogenen
Oberflächen eine zusätzliche Struktur und somit eine bessere Interpretierbarkeit ergibt.
Um den Eindruck von Höhe oder Tiefe weiter zu verbessern, können innerhalb einer Da-
tenstruktur Farbverläufe entlang einer Achse des globalen Koordinatensystems genutzt
werden. Beispiele finden sich in Abb. 5.23.

5.7.3. Zusammenfassung

Es wurde eine leichtgewichtige Visualisierung mit umfangreichen Konfigurationsmög-
lichkeiten entwickelt, die sich an bereits laufende Programme anhängen kann. Über das
Prinzip eines geteilten Speichers werden die darzustellenden Daten ausgelesen, als OpenGL
Dreiecksnetze aufbereitet und schließlich gerendert. Die umgesetzte Technik vermeidet
damit einen Datentransfer zwischen Device und Host nahezu vollständig und kann bis
zu 3 Mio. Voxel flüssig und vor allem nahezu latenzfrei anzeigen. Detaillierte Tests zur
Bewertung der Leistungsfähigkeit finden sich in Abschnitt 8.5.

100

5.8. Fazit

(a) Einfarbiges Modell, am-
bientes Licht

(b) Einfarbiges Modell, am-
bientes Licht, Punktlicht

(c) Einfarbiges Modell, am-
bientes Licht, Kanten

(d) Farbverlauf entlang Z-
Achse, ambientes Licht

(e) Farbverlauf, ambientes
Licht, Punktlicht

(f) Farbverlauf, ambientes
Licht, Punktlicht, Kanten

Abb. 5.23.: Gebäudekarte in unterschiedlichen Darstellungsmodi

5.8. Fazit

Dieses Kapitel untersuchte sehr unterschiedliche Datenstrukturen, die auf einen paralle-
lisierten Zugriff via GPU ausgelegt sind. Vergleicht man die individuellen Anforderun-
gen einzelner Modelle, die in den Diagrammen aus Abb. 5.2 definiert wurden, mit den
Diagrammen in Abb. 5.24, so bestätigt sich, dass Lösungen für eine Kollisionsprüfung in
unterschiedlichen Robotikszenarien zur Verfügung stehen. Die Diagramme zeigen, dass
Umgebungsinformationen mit hohem Raumvolumen, aber spärlicher Belegtheit sehr gut
durch Octrees repräsentierbar sind. Bewegungsprimitive, die eine hohe Datendichte bei
gleichzeitiger Lokalität und geringer Änderungsfrequenz aufweisen, entsprechen den Ei-
genschaften von Voxellisten. Bei der Speicherung von Roboter- und Hindernismodellen
bzw. deren Swept-Volumen entscheidet das abzubildende Volumen ob Voxelkarten oder
Octrees einzusetzen sind. Somit ist Forschungsfrage 3 zur Eignung von Voxeldatenstruk-
turen zunächst positiv beantwortet. Details folgen in Kapitel 6 zur Kollisionsdetektion
sowie in der praktischen Evaluation in Kapitel 8.

Neben den reinen Datenstrukturen wurden weiterhin onlinefähige Verfahren zur Berech-
nung von Distanzfeldern vorgestellt und für die GPU optimiert. Außerdem konnte eine
leistungsfähige, latenzfreie 3D-Visualisierung entwickelt werden, die es ohne Umwege
über den Host erlaubt, alle relevanten Daten der Kollisionserkennung intuitiv und inter-
aktiv darzustellen.

101

5. Voxel-Datenstrukturen auf der GPU

Minimal Update
Overhead

Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(a) Umgebungskarte

Minimal Update
Overhead

Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(b) Roboter oder dynamisches Hindernis
Minimal Update

Overhead
Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(c) Swept-Volumen

Minimal Update
Overhead

Random
Writes

Memory
Efficiency

Clearing
Efficiency

Sparse Coverage
Efficiency

Col. Dect.
Throughput

(d) Bewegungsprimitive

Abb. 5.24.: Vergleich der Anforderungen zur Verarbeitung von vier unterschiedlichen
Datenquellen bei der Planung (schwarz gepunktete Linien) mit den Eigen-
schaften der implementierten Datenstrukturen: Voxelkarte (rot), Octree (grün)
und Voxelliste (blau).

Octree Voxelkarte Voxelliste

Unterstützt Swept-Volumen nein ja ja
Speicherverbrauch O(n log n) O(dimx · dimy · dimz) O(n)
Abbildbare geometr. Größe unbegrenzt begrenzt unbegrenzt
Belegte Voxel iterieren O(n log n) O(dimx · dimy · dimz) O(n)
Wahlfreier Zugriff O(log n) O(1) O(n)
Einfügen neuer Daten O(n log n) O(1) O(n)

Tab. 5.3.: Vergleich der implementierten Datenstrukturen in GPU-Voxels.

102

6. Kollisionsdetektion

Dieses Kapitel stellt die zentralen Algorithmen der GPU-Voxels Bibliothek zu Kollisions-
detektion vor. Wie in Definition 1 beschrieben, ermittelt diese, ob sich zwei Entitäten zur
selben Zeit am selben Ort befinden und somit eine Kollision vorliegt. Dafür werden zu-
nächst die wichtigsten Kategorien von Verfahren zur Kollisionsdetektion vorgestellt und
verglichen, bevor dann die implementierten voxelbasierten Ansätze beschrieben wer-
den.

Da die Möglichkeiten der Kollisionsdetektion aber über die rein binäre Frage hinaus-
gehen, muss bei der Auswahl eines Verfahrens zunächst entschieden werden, welche
Informationen als Resultate erwartet werden und welche Eingabedaten vorliegen: Sind
lediglich Paare von Entitäten gegeneinander zu prüfen (Narrow Phase) oder liegen Men-
gen von Entitäten (Broad Phase) vor? Ist die generelle binäre Information Kollision / keine
Kollision ausreichend oder muss ermittelt werden, welche Entität mit welcher anderen
Entität in Kollision liegt? Sollen Kontakte, Durchdringung oder vollständige Umschlie-
ßung identifizierbar sein? Handelt es sich um dynamische oder statische Szenen? Kann
von einem vollständigen Umweltwissen ausgegangen werden? Ist bei Kollisionsfreiheit
die minimale Distanz zwischen Entitäten von Bedeutung?

Diese Fragen bestimmen zunächst die verwendbare Repräsentation von Entitäten und
somit das Ego- und Umweltmodell. Aufbauend auf den bereits vorgestellten, diskreti-
sierenden Datenstrukturen sollen in diesem Kapitel unterschiedliche Algorithmen zur
Kollisionsdetektion und -vermeidung entworfen werden. Dabei liegt der Fokus darauf,
die individuellen Eigenschaften der Strukturen gewinnbringend zu nutzen und die Par-
allelisierbarkeit bzw. den Datendurchsatz auf der GP-GPU zu maximieren.

Im Folgenden wird vom dreidimensionalen Fall ausgegangen, da mobile Manipulations-
roboter, wie sie in Abb. 6.1 zu sehen sind, aufgrund ihrer Arme bzw. zusätzlicher Körper-
achsen eine variabel ausladende, geometrische Struktur aufweisen. Zahlreiche bestehen-
de, performante Ansätze projizieren hingegen Hindernisse und Roboter auf eine oder
mehrere Ebenen, um die Kollisionsprüfung auf ein zweidimensionales / 2,5D Problem
zu reduzieren [102]. Solche Verfahren sollen hier genau so wenig betrachtet werden, wie
Ansätze zur Auswertung von nicht-rigiden Objekten.

6.1. Taxonomie Kollisionserkennungsverfahren

Um unterschiedliche Technologien besser beurteilen zu können, stellt die folgende Taxo-
nomie vier etablierte Verfahren zur Kollisionsdetektion vor. Dabei lehnt sie sich an die
Taxonomie unterschiedlicher Umweltmodelle aus Abschnitt 4.2 an und beantwortet die
eingangs gestellten Fragen.

103

6. Kollisionsdetektion

(a) Roboter IMMP und HoLLiE (b) Valeri Roboter

Abb. 6.1.: Roboter mit großem Arbeitsraum und variabler Geometrie durch ausladende
Kinematik.

Schnitt von Oberflächennetzen Verfahren dieser Kategorie weisen die weiteste Ver-
breitung auf, da sie auf Dreiecksnetzen arbeiten, die auch in der Computergrafik
genutzt werden. Die Dreiecke zweier Netze können mit einfachen Gleichungssys-
temen auf Überschneidungen geprüft werden [156], was sich sehr gut auf GP-GPUs
parallelisieren und beschleunigen lässt. Die Repräsentation erlaubt es, auch mehre-
re Entitäten zu identifizieren, auf Kollisionen zu überwachen, oder Distanzen zwi-
schen ihnen zu bestimmen. Allerdings skaliert die Laufzeit dieser Verfahren direkt
mit der Anzahl der Dreiecke und ist somit von der Objektanzahl, der Approximati-
onsgüte und der Komplexität der Objektgeometrien abhängig. Da keine Volumen,
sondern Oberflächen betrachtet werden, können komplette Durchdringungen nicht
ohne zusätzlichen Aufwand bestimmt werden.

Da die Modellierung der Oberflächen mit beliebiger Genauigkeit umsetzbar ist, las-
sen sich bei der Kollisionsprüfung auch Kontaktflächen bestimmenn, weshalb diese
Verfahren in der Physiksimulation bevorzugt sind. Hier kommen bspw. parametri-
sierte CAD-Modelle aus NURBS (Non-Uniform Rational B-Splines) in Frage, die
jedoch nur sehr aufwendig berechnet und auf Kollisionen geprüft werden können.

Hierarchien aus Hüllkörpern / Bounding Volume Hierachies (BVH) Um nicht in jedem
Kollisionsberechnungsschritt alle Entitäten (bspw. Dreiecke eines Netzes) gegen-
einander überprüfen zu müssen, aber auch um bei komplexen Modellierungen
nicht alle Details in Betracht ziehen zu müssen, können die Entitäten in BVHs ein-
geschlossen werden. Wie bereits in Unterabschnitt 4.2.3 beschrieben, werden Mo-
delle und ihre Bestandteile hierbei rekursiv in einfach zu berechnende Hüllkörper
(Geometrische Primitive oder einfache konvexe Formen) eingeschlossen. So bildet
sich ein Baum, an dessen Wurzel ein Hüllkörper liegt, der alle Entitäten beinhaltet.
In Richtung seiner Blätter schließen die Hüllkörper dann immer kleinere Subvolu-
men ein. Arbeitet der Kollisionsalgorithmus entlang dieser Baumstruktur, können
bei der Kollisionsprüfung sehr effizient Entitäten oder Teile von ihnen von einer
genaueren Betrachtung ausgeschlossen werden, falls ihre Hüllkörper nicht in Kol-

104

6.1. Taxonomie Kollisionserkennungsverfahren

lision liegen [178]. Bei guter Unterteilbarkeit lässt sich so der durchschnittliche Auf-
wand der Kollisionsprüfung eines Objektes gegen n andere Objekten von O(n) auf
O(log n) Prüfungen reduzieren [76]. Neben der Kollision lässt sich auch die Distanz
analytisch effizient berechnen und auf der GP-GPUs parallelisieren, wie in gProxi-
mity gezeigt [130].

Auch bei BVHs besteht die Herausforderung nicht in der Kollisionsprüfung, son-
dern in der automatischen Aufteilung der Modelle in geometrische Primitive oder
Hüllkörper. Diese stellt einen initialen Aufwand dar, weshalb diese Verfahren be-
vorzugt mit vorausberechneten Modellen und nicht auf Livedaten eingesetzt wer-
den.

Diskretisierende Modellierung Bereits frühe Ansätze zur Kollisionsdetektion nutzten
eine diskretisierende Datenstruktur, die sowohl die Umwelt, als auch das Egomo-
dell des Roboters enthielt [87]. War eine Zelle (Voxel) der Datenstruktur gleich-
zeitig von zwei Entitäten belegt, lag eine Kollision zwischen diesen vor. Ein hoch
optimiertes Beispiel dieser Verfahrensklasse ist der Voxmap Pointshell Algorith-
mus aus [177], der ursprünglich für haptisches Rendering entwickelt wurde [142].
Auch in der Robotik wird die sequentielle CPU-Implementierung des ROS Colli-
der Paketes [95] häufig genutzt, die in Kapitel 8 für Vergleiche herangezogen wird.
Ausschlaggebend für den Berechnungsdurchsatz und den Speicherverbrauch dis-
kretisierender Verfahren sind die genutzten Datenstrukturen, weshalb diese im vor-
hergehenden Kapitel vorgestellt wurden. Einige der umgesetzten Verfahren besit-
zen eine konstante Laufzeit, die unabhängig vom Belegtheitsgrad der Eingabeda-
ten sind. Ausschlaggebend für den Speicherbedarf und die Berechnungsdauer der
meisten Algorithmen ist dagegen die Anzahl der verwendeten Zellen. Da sie vom
Raumvolumen und der Zellgröße bestimmt wird, sollte beides adäquat zum Pro-
blem gewählt werden. Je größer jedoch das Volumen einer Zelle ist, desto größer
fällt die Überabschätzung von Hindernissen aus, da auch ein kleines Hindernis
mindestens eine komplette Zelle als belegt markieren. Bei der Bestimmung von Tra-
versierbarkeit muss somit die Kantenlänge kleiner als der halbe Durchmesser der
kleinsten noch zu passierenden Öffnung sein. Anderenfalls könnten Durchgänge
durch Diskretisierungsfehler als verschlossen erscheinen.

Da die Zellen diskretisierender Modelle auch eine Belegtheitswahrscheinlichkeit
speichern können, lassen sich je nach Anwendungsszenario nicht nur binäre, son-
dern probabilistische Entscheidungen treffen, wenn teilweise belegte Zellen be-
trachtet werden. Somit sind konservative / pessimistische bzw. opportunistische /
optimistische Entscheidungen bei der Kollisionsprüfung und Planung umsetzbar.

Ein Nachteil der Diskretisierung sind fehlende Objektoberflächen und damit auch
fehlende Normalen. Somit können keine exakten Kontaktflächen und deren physi-
kalische Interaktion berechnet werden.

Punktwolken Klassifikation / Probabilistische Verfahren Letztendlich existieren auch
Verfahren, die direkt auf Punktwolken arbeiten. Hierfür kann die Punktwolke in ei-
nem kd-Baum repräsentiert werden, womit die Kollisionsprüfung zu einem Such-
problem wird [181]. Eine weitere Alternative bieten probabilistische Verfahren oder
Ansätze aus dem Bereich des maschinellen Lernens, bei der die Verschränkung
zweier Punktemengen als Klassifikationsproblem betrachtet wird [157]. In beiden

105

6. Kollisionsdetektion

Fällen ist eine semantische Annotation zur Identifikation von einzelnen Entitäten
nur schwer möglich.

Für eine detailliertere Übersicht über weitere Verfahren (vor allem aus dem Gebiet der
interaktiven Computergrafik) sei auf das umfangreiche Nachschlagewerk Real-time colli-
sion detection von Ericson verwiesen [76].

Auswahl des geeignetsten Verfahrens

Im Hinblick auf das Ziel dieser Arbeit, eine hochparallele Kollisionsprüfung von detail-
lierten Egomodellen mit Punktwolken einer nur teilweise bekannten Umwelt zu erlau-
ben, können die eingangs gestellten Fragen wie folgt beantwortet werden: Da die Um-
weltdaten nur in Ausnahmen segmentiert vorliegen, müssen alle bekannten Entitäten bei
der Kollisionsprüfung berücksichtigt werden (Broad Phase), wobei für eine zielgerichtete
Planung dennoch erwünscht ist, festzustellen, welche Entitäten des Egomodells kollidie-
ren. Irrelevant ist dagegen, ob es sich um Kontakte, Durchdringung oder vollständige
Umschließung handelt. Für viele Planungsalgorithmen sind jedoch Informationen über
die schwere der Kollision (also die Überschneidungstiefe) bzw. die minimale Distanz
zwischen nicht kollidierenden Entitäten eine hilfreiche Information, die die Kollisionser-
kennung zur Verfügung stellen sollte. Wie im späteren Kapitel zur Bewegungsplanung
ersichtlich wird, werden meist nicht nur einzelne Posen eines Roboters auf Kollisionen
hin überprüft, sondern ganze Bewegungsabläufe. Hierfür bieten sich die in Abschnitt 4.5
eingeführten Swept-Volu-men an, die folglich von der Kollisionsdetektion effizient ver-
arbeitet werden müssen. Diese Antworten führen zu folgender Aussage:

Feststellung 9. Die Anforderungen einer Kollisionsprüfung von Punktwol-
kenrepräsentationen werden von Verfahren, die auf einer diskretisierenden
Modellierung arbeiten, am besten erfüllt. Zusätzlich bieten sie optimale Vor-
aussetzungen für eine parallelisierte Implementierung, wie die folgenden Ab-
schnitte beschreiben.

Die aktuell relevantesten Arbeiten zur Kollisionsdetektion zwischen Punktwolken, mit
denen sich GPU-Voxels vergleichen kann, sind ein CPU-basierter kd-Tree-Ansatz von
Schauer et at. [181] und ein GPU-basierter Voxelansatz von Bedkowski et al. [47]. Ein
Benchmark von Schauer et al. [180] liefert einen Verglich zwischen diesen. In dessen
Bewertung werden die beiden Verfahren als ähnlich performant eingestuft, wobei spe-
zifische Vorteile hauptsächlich von unterschiedlichen Punktedichten der Eingabedaten
abhängen. Eine detaillierte Gegenüberstellung zu dieser Arbeit findet sich in Kapitel 8.

6.2. Voxelbasierte Kollisionsdetektion

Abb. 1.3 aus der Einleitung visualisiert die Schnittmengenbildung zwischen Umwelt-
und Egomodell und bringt damit das relevanteste Ziel der voxelbasierten Kollisionsprü-
fung auf den Punkt. Es gilt, die Paare von Voxeln aus zwei Datenstrukturen zu finden,
die am selben Ort liegen und eine gewisse Belegtheitseigenschaft aufweisen. Für diese

106

6.2. Voxelbasierte Kollisionsdetektion

Schnittmengenbildung ∩ zwischen den Datenstrukturen Ma und Mb muss im Allgemei-
nen über eine der Strukturen iteriert werden, und für jeden belegten Voxel Va der Voxel
Vb an derselben Position in der zweiten Struktur Mb nachgeschlagen werden. Ist auch
der Voxel der zweiten Karte belegt, wird er zur Menge der kollidierenden Voxel hinzu-
gefügt:

Va & Vb :=

{
1 : (�(Va) = 1) ∧ (�(Vb) = 1)

0 : sonst
(6.1)

Ma ∩ Mb :=
∨
Va |

(
coord(Va) = coord(Vb)

)
∧
(
Va&Vb = 1

)
, ∀Va ∈Ma , ∀Vb ∈Mb

(6.2)

coll(Ma,Mb) :=

{
0 : Ma ∩ Mb = ∅
1 : sonst

(6.3)

Um diese Arbeit parallel ausführen zu können, geschieht die Iteration sowie die Interpre-
tation der besuchten Voxel im Code eines CUDA-Kernels. Da als Datenstruktur für die
beiden zu prüfenden Modelle alle drei Implementierungen (Voxelkarte, Voxelliste und
Octree) aus dem vorherigen Kapitel in Frage kommen, müssen dementsprechend mehre-
re ∩-Operatoren in Form von Kerneln vorhanden sein. Diese Kernel bilden den Kern der
GPU-Voxels Bibliothek, weshalb sie darauf ausgerichtet sind, die Eigenheiten der Daten-
strukturen berücksichtigen, um den bestmöglichen Datendurchsatz zu erreichen. Da wei-
terhin verschiedene Voxeltypen Verwendung finden, muss der &-Operator die Belegtheit
mittels�(V) individuell interpretieren. Um in der Software nicht das Kreuzprodukt aller
Karten- und Voxeltypen als Programmcode umsetzen zu müssen, wird jedem Kollisions-
Kernel ein vorkonfiguriertes Collider-Objekt mit übergeben, welches den &-Operator
entsprechend der eingesetzten Typen implementiert. Neben den, als Templateparame-
ter übergebenen, beteiligten Voxeltypen erhält der Collider weitere Parameter (bspw.
Schwellwerte oder Bitvektoren), um der �(V)-Operator voll zu definieren und um kolli-
dierende Voxel in einer der beiden Datenstrukturen zu kennzeichnen. Der Kernel selbst
muss somit zwar spezifisch für die Iteration über die zu prüfenden Datenstrukturen sein,
bleibt jedoch Voxeltyp agnostisch, da er mit jedem potentiell kollidierenden Voxelpaar
den Collider aufruft.

Die Besonderheiten der Kollisions-Kernel bei allen möglichen Kombinationen der Da-
tenstrukturen werden im folgenden beschrieben. Voraussetzung für alle Algorithmen ist,
dass beide Datenstrukturen achsparallel ausgerichtet sind und sich überlappen.

6.2.1. Semantik der Kollisionsprüfung

Durch die Überlagerung zweier Voxel-Datenstrukturen können je nach verwendetem Vo-
xeltyp unterschiedliche semantische Informationen abgeleitet werden:

107

6. Kollisionsdetektion

Kollisionsprüfung mit probabilistischen und deterministischen Voxeln

Bestehen beide Strukturen aus probabilistischen und / oder deterministischen Voxeln,
so kann entweder lediglich die binäre Aussage Kollision / keine Kollision getroffen werden,
oder aber durch das Zählen der in Kollision liegenden Voxel der Grad der Überschnei-
dung und somit die Schwere der Kollision bestimmt werden. Im ersten Fall können die
Berechnungen mit der Detektion der ersten Kollision abgebrochen werden (Lazy Evalua-
tion), was zu großen Zeitersparnissen führen kann. Im zweiten Fall müssen alle Voxel
erschöpfend bearbeitet werden und zusätzlicher Aufwand zur Zusammenfassung der
parallel ermittelten Kollisionen erbracht werden. Da diese Zusammenfassung von der
Implementierung der verwendeten Datenstruktur abhängig ist, wird in den folgenden
Abschnitten detaillierter auf sie eingegangen.

Kollisionsprüfung mit Bitvector-Voxeln

Ist eine Datenstruktur aus Bitvektor-Voxeln an der Kollisionsprüfung beteiligt, müssen
hierfür, je nach Semantik der Karteninformationen, unterschiedliche Verfahren eingesetzt
werden.

0
1

2
3

4
5

6
7

8

1 2 3 4 5 6 7 8

Abb. 6.2.: Dynamsche Beispielszene zur Verdeutlichung von SSV-IDs: Die Subvolumen
des geplanten Roboterpfades sind in blau dargestellt, der grau markierte Be-
reich wurde bereits abgefahren. In rot ist die Bewegung eines Hindernisses
quer zur Fahrtrichtung des Roboters gezeichnet. Darin ist ein Teilvolumen in
grün hervorgehoben, welches zu drei Zeitschritten (3, 4, 5) belegt ist. Es bildet
die Grundlage für das Beispiel aus Abb. 6.3. Roboter und Hindernis befinden
sich anfangs in SSV-IDs 0.

Stellen die SSV-IDs unterschiedliche Entitäten dar, bspw. die einzelnen beweglichen Seg-
mente eines Roboters, so ist es für die Detektion einer Kollision irrelevant, welches Seg-
ment in Kollision liegt. Dennoch kann es hilfreich sein, Informationen über die betroffe-
nen Segmente zu erhalten, um gezielter zu reagieren. In diesem Fall ist es nicht ausrei-
chend, den �(V) Operator zu nutzen. Vielmehr ist das Belegt-Bit der Voxel auszuwerten,

108

6.2. Voxelbasierte Kollisionsdetektion

und bei einer Kollision alle anderen SSV-ID-Bits in einem Ergebnis-Bitvektor zu vero-
dern:

V1 & V2 := ΨV1,1 ∧ ΨV2,1
Ergebnis-Bitvektor := ΨV1,i ∨ ΨV2,i , 4 ≤ i ≤ 254

(6.4)

Repräsentieren die SSV-IDs jedoch Zeitstempel der Belegtheit, so müssen dieselben Bits
in beiden Voxeln gesetzt sein, um die Voraussetzungen für eine Kollision zu erfüllen
(selber Ort und selber Zeitpunkt).

V1 & V2 :=
254∨
n=4

ΨV1,n ∧ ΨV2,n

Ergebnis-Bitvektor := ΨV1 ∧ ΨV2

(6.5)

Ein Beispiel ist in Abb. 6.4 gezeigt. Der Ausschnitt aus den Bitvektoren von Roboter und
Hindernis zeigt eine Überschneidung in den Bits 18, 19 und 20. Das Ergebnis einer Kolli-
sionsprüfung mittels &-Operator ist im Ergebnis-Bitvektor UND eingetragen.

Wie im Falle der Kollisionsprädiktion aus Abschnitt 4.6 gezeigt, kann es nötig sein, das
Kollisionskriterium aufzuweichen, um ein Zeitfenster aus mehreren angrenzenden Bits
zu überprüfen, damit so Unsicherheiten ausgeglichen werden können. Das Ergebnis ei-
ner &-Operation mit einer Fensterbreite von k = 5 Bits ist in Abb. 6.4 in Zeile UND_5
gezeigt. Hierbei werden auch die Zeitpunkte On−k bis On+k kurz vor bzw. nach dem
eigentlich untersuchten Moment Rn berücksichtigt und somit eine größere Toleranz er-
reicht. Nach einer weiteren &-Operation mit dem Bitvektor des Roboter-Swept-Volumens
steht dann das Ergebnis bereit. Um die Bitvektoren zweiter Voxel A und B mit diesem
zusätzlichen Sicherheitsfenster auf gemeinsame gesetzte SSV-IDs zu prüfen, muss einer
der beiden Vektoren in 1-Bit Schritten positiv wie negativ um die Fensterbreite verscho-
ben werden. Dabei stellt sich das Problem, dass in CUDA zwar ein Bitshifting-Operator
zur Verfügung steht, der größte verfügbare Datentyp jedoch nur 64 Bit aufweist. Somit
ist es nicht möglich, einen kompletten Bitvektor aus 256 Bits auf einmal zu shiften. Die
Kernel-Implementierung bedient sich daher der Konzepte des std::bitset1 aus der
C++-Standardbibliothek und arbeitet intern mit einem 64 Bit breiten Puffer, der Wort-
weise zusammengesetzt wird. Folglich ist in Abschnitten von je einem Byte aus Vektor B
vorzugehen, die innerhalb eines 8 Byte Puffers verschoben werden. Hieraus ergibt sich
eine maximale Fensterbreite von 21 Bit. Weiterhin ist darauf zu achten, die niederwertigs-
ten vier Bits und das hochwertigste Bit der Eingabedaten auszublenden, da diese keine
SSV-IDs darstellen. Das Ergebnis der Bitweisen &-Operation jedes Abschnitts muss letzt-
endlich an der korrekten Position mit den Bits des Ausgabevektors verodert werden. Der
Pseudocode des implementierten Kernel ist in Algorithmus 8 gelistet. Die Parallelisie-
rung erfolgt auf Voxelebene.

Eine weitere Funktion des Colliders ist es, durch die Definition einer Bitmaske ge-
zielt Kollisionen zwischen definierten SSV-IDs zu ignorieren. Diese werden dann weder
gezählt, noch führen sie zu einer Kollision im Gesamtresultat. Dies ist bspw. bei der Aus-
blendung von Eigenkollisionen nützlich (vgl. Unterabschnitt 4.4.3).

1https://gcc.gnu.org/ bzw. www.cplusplus.com/reference/bitset/bitset/

109

https://gcc.gnu.org/
www.cplusplus.com/reference/bitset/bitset/

6. Kollisionsdetektion

0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0· · ·
15 8 7 0

BelegtSSV-ID 0SSV-ID 5

Abb. 6.3.: Die ersten beiden Bytes aus dem Bitvektors eines Voxels, der zu drei Zeitschrit-
ten belegt ist (vgl. grünes Volumen aus Abb. 6.2). Alle nicht dargestellten Bits
des Vektors sind nicht gesetzt.

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 · · ·· · ·Roboter

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 · · ·· · ·Hindernis

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 · · ·· · ·UND

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 · · ·· · ·UND_5

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 · · ·· · ·Ergebnis

31 24 23 16 10

Abb. 6.4.: Beispiel der Kollisionserkennung zwischen dem Swept-Volumen Bitvektor ei-
nes Roboters und eines Hindernisses aus [27]. Die Bitvektoren von Roboter und
Hindernis sind in grün dargestellt, das Ergebnis der Kollisionsprüfung in rot.

Letztendlich können alle Kernel die Kollisionsinformationen in eine der beiden Daten-
strukturen zurückschreiben. Zur Kennzeichnung kollidierender Voxel steht im Bitvektor
explizit das Bit 2 zur Verfügung, welches wiederum von der Visualisierung ausgewertet
wird. Da hierfür jedoch ein schreibender Speicherzugriff nötig ist, sollte diese Möglich-
keit zugunsten der Laufzeit nur bei Bedarf aktiviert werden.

6.2.2. Kollisionsprüfung Voxelkarte ∩ Voxelkarte

Nachdem die Kollisionsprüfung auf Voxelebene definiert wurde, soll sie nun auf der
Ebene der Datenstrukturen erläutert werden. Der geradlinigste Fall ist dabei die Itera-
tion über zwei Voxelkarten mit denselben Dimensionen. Hierbei kann in einer einzigen
Grid-Stride-Loop und bei maximaler Parallelisierung mit q verfügbaren Threads über die
Anzahl s der Voxel pro Karte iteriert werden. Der Laufindex wird zu den Basis-Speicher-
adressen der beiden Karten addiert, um jeweils auf Voxel an denselben Koordinaten zu-
zugreifen, und diese dem Collider zuzuführen. Da der Zugriffsoperator eine konstante
Laufzeit von O(1) aufweist, gilt für den Aufwand AVoxelkarte dieser Kollisionsprüfung:

AVoxelkarte(s) = 2 · (s/p) (6.6)

Der Aufwand ist also insbesondere nicht vom Belegtheitsgrad der Karten abhängig, wo-
mit harte Laufzeitgarantien gegeben werden können. Da die Daten beider Karten linear
im globalen Speicher abgelegt sind, werden pro Warp zwar durchschnittlich zwei Spei-
cherzugriffe benötigt, diese profitieren jedoch maximal von Memory Coalescing.

110

6.2. Voxelbasierte Kollisionsdetektion

Nicht nur bei der Verwendung von Karten unterschiedlicher Größe kann es jedoch nötig
sein, Voxelkarten vor der Kollisionsprüfung gegeneinander zu verschieben (keine Ver-
drehung). Dies ist durch die Addition eines Versatzes auf eine der Basisadressen, wie in
Unterabschnitt 5.3.1 beschrieben, einfach möglich. Somit können bspw. unterschiedliche
Platzierungen eines Roboters in der Umwelt sehr effizient realisiert werden.

Für das Zählen der Kollisionen während einer Iteration verfügt jeder Thread eines Blocks
über eine eigene Zählvariable, die er mit jedem Treffer inkrementiert. Somit sind Ressour-
cenkonflikte ausgeschlossen. Da diese Zähler in einem Feld im geteilten Speicher liegen,
können sie am Ende der Laufzeit per Reduktion zu einer blockweiten Summe aufad-
diert werden. Weiterhin liegt im globalen Speicher ein Feld aus Zählvariablen pro Block
vor, in die ein einzelner Thread des Blocks das Ergebnis der Reduktion schreibt. Die-
ses Feld wird nach der Ausführung des Kernels auf den Host kopiert. Dort lassen sich
in einer kurzen Schleife die Zähler aller Blöcke aufaddieren, womit das Gesamtergebnis
feststeht.

Dasselbe Reduktionsschema wird auch verwendet, um im Falle von Bitvektor-Voxeln
kollidierende SSV-IDs zu bestimmen. Statt der Addition kommt dabei der ‖ -Operator
für die Reduktion zum Einsatz und es werden Bitfelder anstatt Zählvariablen genutzt.

6.2.3. Kollisionsprüfung Voxelliste ∩ Voxelliste

Voxellisten richten sich in ihrem Adressierungsschema nach einer virtuellen Voxelkarte
bzw. einem Octree. Daher ist die Voraussetzung für die Kollisionsprüfung zwischen zwei
Listen, dass ihre entsprechenden virtuellen Karten dieselben Dimensionen bzw. die selbe
Maximaltiefe aufweisen. Ist dies sichergestellt, kann eine einfache Kollisionsprüfung, bei
der lediglich die Voxel zu zählen sind, die in beiden Listen vorhanden sind, durch eine
Suche in den Zeigerlisten realisiert werden.

Soll dagegen jedoch ein Collider genutzt werden, ist zunächst die Menge der kollidie-
renden Elemente zu bestimmen. Unter der Voraussetzung, dass die Listen sortiert vorlie-
gen und keine doppelten Voxel aufweisen, können dafür folgende Thurst-Operationen
eingesetzt werden: Die eigentliche Kollisionsprüfung besteht aus einer Suche der Ein-
träge der kürzeren Eingabeliste innerhalb der längeren Liste. Jeder Fund einer Kollision
wird in temporären binären Masken eingetragen, mit deren Hilfe die betroffenen Ein-
träge beider Eingabelisten in Ergebnislisten kopiert werden. Über diese kann dann im
letzten Schritt sehr effizient iteriert werden, um entweder die Menge der Kollisionen zu
zählen, oder den Collider anzuwenden um ein gewünschtes Resultat zu bestimmen.
Da alle Teilalgorithmen aus linear ablaufenden Primitiven der Parallelverarbeitung auf-
gebaut sind, ist Thrust in der Lage, auf Basis der zu verarbeitenden Datengrößen eine
optimale GPU-Auslastung zu erreichen.

Für die Umsetzung der Greifplanung aus Unterabschnitt 7.2.7 wurde für die Listen noch
eine besondere Auswertung implementiert, die die Anzahl an Kollisionen getrennt pro
SSV-ID ermittelt. Da für die GPU-seitige Umsetzung dieser Funktion eine umfangrei-
che Datenreduktion der 250 geteilten Zählvariablen benötigt würde, ist es in diesem Fall
performanter, die Ergebnislisten auf den Host zu kopieren und dort sequentiell auszu-
werten. Dies ist ein gutes Beispiel für die heterogene Parallelverarbeitung mittels GPU
und CPU.

111

6. Kollisionsdetektion

6.2.4. Kollisionsprüfung Voxelliste ∩ Voxelkarte

Wie bei der Prüfung zwischen zwei Listen, ist auch hier die Voraussetzung, dass die
virtuelle Voxelkarte der Liste dieselben Dimensionen wie die zu prüfende Datenstruk-
tur aufweist. Somit kann in einer Grid-Stride-Loop über die in der Liste gespeicherten
Voxeladressen iteriert werden. Durch die Addition der Karten-Basisadresse können die
entsprechenden Voxel direkt in der Karte abgerufen werden, um mit dem Collider
evaluiert zu werden. Weiterhin kann auch hier ein Versatz eingebracht werden, um eine
virtuelle Translation der Liste zu erzeugen. Diese Kombination aus Datenstrukturen ist
sehr effizient, da das durchlaufen einer Voxelliste den linearem Aufwand O(n) erzeugt,
während der Zugriff auf einzelne Voxel in einer Voxelkarte mit O(1) möglich ist. Somit
bestimmt sich der Gesamtaufwand rein über die Länge der Liste, die in vielen Anwen-
dungen gering gehalten werden kann.

Eine Kommutation der Datenstrukturen (also das Iterieren über die Voxelkarte und das
Prüfen der entsprechenden Voxel in der Liste) ist in keinem Falle sinnvoll, da Voxellisten
nicht über einen Operator zum wahlfreien Zugriff verfügen und daher bei jedem Lesen
eine Suche nötig wäre.

6.2.5. Kollisionsprüfung Octree ∩ Octree

Voraussetzung für den Schnitt von zwei Bäumen ist, dass diese dasselbe Raumvolumen
beschreiben und eine gleiche maximale Tiefe aufweisen. Ist dies gegeben, können die Oc-
trees simultan traversiert werden, um diejenigen Knoten zu finden, die in beiden belegt
sind. Hierfür bietet sich die Nutzung des bereits vorgestellten Lastausgleiches an, wobei
die Arbeitselemente nun nicht mehr nur Knoten aus einem Baum, sondern aus beiden
Bäumen enthalten. Zusätzlich verfügen sie über zwei Boolsche Variablen, die angeben,
ob die Tiefensuche die Blattknoten eines Baumes erreicht hat. Wie im ursprünglichen Al-
gorithmus wird wieder die Ebene der zu bearbeitenden Knoten benötigt und alle Arbeits-
stapel müssen die Invariante aus Gleichung 5.21 erfüllen. Der um die Kollisionsprüfung
erweiterte Algorithmus 6 findet sich in Anhang A. Er bearbeitet die Elemente eines Sta-
pels pro Thread in einer Schleife und verteilt diese neu, wenn eine Lastungleichheit vor-
liegt. Dafür werden zunächst Knotenpaare für jeden Thread aus dem globalen Speicher
in den schnellen, geteilten Speicher kopiert und auf Kollision überprüft. Hierbei kann
eine maximale Abstiegstiefe berücksichtigt werden, die die Granularität der Kollisions-
bestimmung erhöht und ihre Berechnungszeit verringert. Wurde auf der vorgegebenen
Maximaltiefe ein kollidierender Knoten gefunden, steigt der Algorithmus noch eine Ebe-
ne weiter ab, um die Zuverlässigkeit der Kollisionsaussage zu verbessern. Bestätigt sich
die Kollision, werden bei der Aufsummierung der sich schneidenden Voxel alle Blatt-
knoten als kollidierend angenommen, also die Anzahl der kleinsten Kindvoxel gezählt.
Ihre Menge muss jedoch nicht berechnet werden, sondern kann in einer Tabelle im sehr
schnellen konstanten Speicher nachgeschlagen werden. Ein Beispiel dazu ist in Abb. 6.5
zu sehen.

Eine konservative Abschätzung des Rechenaufwands des vorgestellten Verfahrens zeigt,
dass dieser im schlechtmöglichsten Fall lediglich ca. 14% höher ausfällt, als der Aufwand
einer linearen Kollisionsprüfung zwischen zwei Voxelkarten: Wie oben in Gleichung 6.6
gezeigt, benötigt die Voxelkarten-Kollision einen Aufwand von AVoxelkarte(s) = 2 · (s/q)

112

6.2. Voxelbasierte Kollisionsdetektion

2

A B3

4

Abb. 6.5.: Erkannte Kollision bei Abbruch der Prüfung auf Ebene 3. Durch den Abstieg
auf Ebene 2 kann jedoch die Kollisionsfreiheit erkannt werden. Voxel: belegt
(schwarz), frei (weiß), teils belegt (grau).

Der Aufwand zur Traversierung zweier Octrees hängt hingegen von vielen Faktoren ab,
unter anderem dem Belegtheitsgrad und -muster, da diese die Parallelisierbarkeit der Tie-
fensuche bestimmen. Daher soll hier der Fall mit dem höchstmöglichen, aber eindeutig
zu berechnenden Aufwand untersucht werden, in dem jeder innere Knoten des Baumes
über Kindknoten verfügt und die Tiefensuche somit immer bis zur Blattebene auszufüh-
ren ist:

AOctree(s) = 2 ·

k +

log8
s
q∑

i=1

8i

 = 2 ·
(
k + 81 + 82 + . . .+

s

q

)
(6.7)

für s > q, s = 8#Ebenen, q = 8k, k, #Ebenen ∈ N

Die ausgeschriebene Summe in der Gleichung setzt sich aus den Aufwänden der ein-
zelnen Ebenen zusammen. Für die oberen k Ebenen sind genau k Rechenschritte erfor-
derlich, da diese Ebenen weniger Knoten aufweisen, als Threads q verfügbar sind. Somit
kann jede Ebene voll parallelisiert in je einem Schritt bearbeitet werden. Unterhalb der
Ebene k verachtfacht sich der Aufwand pro Ebene für jeden Thread (8#Ebene), bis auf
der Blattebene s Voxel durch q Threads zu verarbeiten sind. In der Summenschreibweise
wird die Anzahl der Ebenen zwischen k und der Blattebene mittels log8

s
q − 1 bestimmt.

Diese Summe kann umgeformt und mittels der geometrischen Reihenentwicklung zu
Gleichung 6.8 abgeschätzt werden (siehe Gleichung A.6 in Abschnitt A.7).

2

(
k − 1 +

s

q
· 8

7

)
(6.8)

Vernachlässigt man hier k = log8 q zeigt sich im Vergleich mit dem Voxelkartenaufwand
aus Gleichung 6.6 ein Mehraufwand von 1/7≈ 14%. Dies beschreibt jedoch den schlecht-
möglichsten Fall, bei voller Belegung. Bei der Verwendung mit realistischen Umweltda-
ten, bei denen weit weniger als die Hälfte des Raumvolumens belegt ist, ist der Octree
für den lesenden Zugriff immer performanter als eine Voxelkarte, da der Aufwand im
Schnitt logarithmisch mit der Menge an Daten abfällt.

113

6. Kollisionsdetektion

6.2.6. Kollisionsprüfung Octree ∩ Voxelliste

Da eine Voxelliste lediglich belegte Voxel speichert, ist es am effizientesten, die Einträge
der Liste parallel abzuarbeiten, wobei jeder Thread eine Tiefensuche im Octree durch-
führt, um den Voxel aus der Liste zu suchen. Ein inverses Vorgehen wäre auch auf-
grund der gewählten Implementierung der Voxelliste nicht zielführend, da diese kei-
nen wahlfreien Zugriff auf bestimmte Voxel unterstützt. Ist die Suche erfolgreich, führt
der Collider die nutzdatenspezifische Kollisionsprüfung aus. Da aufeinanderfolgen-
de Voxel der Liste meist eine örtliche Lokalität aufweisen, verfolgen viele der parallelen
Tiefensuchen einen zumindest teilweise übereinstimmenden Pfad, wie in Abb. 6.6 zu se-
hen ist. Der Grad der Überlappung, d.h. die kleinste gemeinsame Ebene im Baum, kann
mittels weniger Bit-Operationen aus den Morton-Codes der gesuchten Voxel bestimmt
werden (siehe Abschnitt A.3). Durch einen Vorverarbeitungsschritt, der die Ähnlichkeit
mehrerer Voxel vor der Tiefensuche überprüft und Abstiege zusammenfasst, kann viel
Rechenzeit gespart werden, da individuelle Threads erst ab der divergierenden Ebene
starten müssen. Daher verbindet auch diese Kombination effektiv die Vorteile beider Da-
tenstrukturen.

6.2.7. Kollisionsprüfung Octree ∩ Voxelkarte

Wie aus den Beschreibungen der unterschiedlichen Datenstrukturen im vorigen Kapitel
und den Grafiken aus Abb. 5.24 hervorgeht, weisen Octree und Voxelkarte unterschied-
liche Vorteile auf, die bei einer Kollisionsprüfung gewinnbringend kombiniert werden
können. Dies ist gut nachvollziehbar, wenn die Kommutation der Datenstrukturen be-
trachtet wird, die in Abb. 6.7 dargestellt ist und die im Folgenden erläutert wird.

Im ersten Fall wird die Voxelkarte maximal parallelisiert abgelaufen. Jeder dabei gefun-
dene belegte Voxel b muss dann durch eine Tiefensuche im Octree nachgeschlagen wer-
den, was abhängig von dessen Belegtheitsgrad unterschiedlichen Aufwand verursacht.
Da konsekutive Threads örtlich nah aneinanderliegende Voxel bearbeiten und sich die-
se Lokalität auch auf den Octree überträgt, verfolgen viele Threads bei ihrem Abstieg
im Baum zunächst den gleichen Pfad. Wie auch bei der Voxelliste kann dies erkannt
und zur Effizienzsteigerung ausgenutzt werden. Der durchschnittliche, theoretische Auf-
wand ohne Parallelisierung liegt somit beiO(m+(b log n)) (wenn b der insgesamtmVoxel
in der Voxelkarte belegt sind und der Baum n Voxel beinhaltet).

Dennoch ist diese Methode dem kommutierten Fall meist unterlegen: Wird als primäre
Struktur der Octree traversiert, können größere freie Regionen effizient ausgelassen und
nur belegte Voxel gezielt in der Voxelkarte inO(1) nachgeschlagen werden. Dazu kommt
wiederum die parallele Tiefensuche mit Lastausgleich zum Einsatz, wobei deren Arbeits-
elemente nun, neben der bearbeiteten Ebene und den Zeigern auf Kindknoten, auch de-
ren 3D-Koordinaten beinhalten. Diese werden für die Adressierung der Voxelkarte benö-
tigt und lassen sich beim Abstieg im Baum einfach generieren. Die Prüfung auf Belegtheit
in der Voxelkarte ist dann voll parallel möglich. Eine effiziente Implementierung dieses
Algorithmus muss jedoch einige Besonderheiten aufweisen, um Lastungleichheit zu ver-
meiden und ist daher wesentlich komplexer als die Implementierung des ersten Falls. So
eignet sich die Bearbeitung ohne Arbeitsstapel für die beiden untersten Baumebenen bes-
ser, als das differenzierte Bearbeiten von belegten Teilbäumen. Weiterhin werden ab einer

114

6.2. Voxelbasierte Kollisionsdetektion

B

A

GF

D E

Level 0

Level 1

Level 2

Level 3

Level 4

F: 011 100 000 010 G: 011 100 110 101

D: 011 100 000 E: 011 100 110

C: 011 100

B: 011

C

Abb. 6.6.: Gemeinsamer Pfad der Tiefensuche.

X

X

Nachschlagen

im Octree

Voxelmap traversieren

(a) Travesieren der kompletten Voxelkarte
und mehrfaches Travesieren des Octrees
für jeden belegten Voxel.

Nachschlagen in Voxelmap

Octree traversieren

X

X

X

(b) Einmaliges Traversieren des Octree und
gezieltes Nachschlagen der belegten
Blattknoten in Voxelkarte.

Abb. 6.7.: Effizienzsteigerung durch Kommutation der Datenstrukturen bei einer Kollisi-
onsprüfung (X markiert eine erkannte Kollision).

115

6. Kollisionsdetektion

gewissen Ebene auch vollständig belegte Knoten zu Gunsten der gleichmäßigen Lastver-
teilung weiter traversiert (wenn auch mit einem statischen Zeiger auf das Elternelement),
obwohl das Verarbeitungsergebnis bereits feststeht. Die dadurch vermiedene Divergenz
im Programmfluss verbessert dennoch die Gesamtlaufzeit (vgl. Unterabschnitt 3.2.1).

Die Abwägung, welche der beiden Methoden eingesetzt wird, hängt von der Problem-
größe und der Belegtheit der Datenstrukturen ab. Ist der Octree sehr ungleichmäßig be-
legt, macht der Mehraufwand des Lastausgleiches im zweiten Verfahren die Vorteile zu-
nichte.

Da sich das repräsentierte Volumen eines Octrees und einer Voxelkarte unterscheiden, ist
zunächst ihre Überlappung zu berechnen. Dafür werden die minimalen und maximalen
Koordinaten der Octree-Teilbäume herangezogen, die sehr effizient ermittelbar sind (sie-
he Abschnitt A.3). Mit diesen Koordinaten kann die Überlappung und die vollständige
Umfassung eines Teilbaumes von einer Voxelkarte direkt bestimmt werden.

6.2.8. Kollisionsprüfung Distanzkarte ∩ Voxelliste

Distanzkarten verhalten sich hinsichtlich des Zugriffs auf einzelne Voxel wie Voxelkar-
ten, weshalb sie analog eingesetzt werden können. Allerdings wäre die feingranulare
Abtastung der Distanzkarte ein suboptimales Vorgehen, da insbesondere im Freiraum ei-
ne einzelne Abfrage bereits implizit Informationen über ein kugelförmiges Volumen im
Umfeld liefert und somit alle anderen Abfragen innerhalb der Kugel redundant wären.
Daher ist es eine effizientere Vorgehensweise, Geometrien durch Kugeln mit konstantem
Radius zu approximieren und lediglich deren Mittelpunkte bei der Kollisionsprüfung in
der Distanzkarte nachzuschlagen (ähnlich der Arbeit von Greenspan [90]). Da es sich bei
dieser Darstellung um sehr spärliche Daten handelt, bietet sich die Verwendung einer
Voxelliste an, um die Mittelpunkte zu speichern. Über einen Collider, der als zusätzli-
chen Parameter den verwendeten Kugelradius erhält, können diese mit der Distanzkarte
auf Kollision geprüft werden.

Für die Versuche in Abschnitt 8.9 wurde jedoch letztendlich gar keine eigene Datenstruk-
tur zur Modellierung des Roboters verwendet, da die komplette Flugdrohne durch eine
einzelne Kugel repräsentiert werden konnte.

Da der Aufbau und die Aktualisierung einer Distanzkarte aus Sensordaten, verglichen
mit den anderen Datenstrukturen, verhältnismäßig lange dauert und Lese- / Schreib-
zugriffe nicht parallel stattfinden können, bremst dies die Reaktivität der Datenstruktur
empfindlich aus. Daher bietet sich die Verwendung zweier Distanzkarten zur Umsetzung
eines doppelten Puffers an, um eine Parallelisierung über den abwechselnden zeitver-
setzten Zugriff zu erreichen.

6.3. Fazit

Bedingt durch die Vielzahl an Datenstrukturen mussten bei der Kollisionsdetektion spe-
zifische Vorgehen implementiert werden, um die Zugriffseigenschaften der beteiligten

116

6.3. Fazit

Strukturen je nach Kombination zum Vorteil zu nutzen. Bei der Verwendung der Algo-
rithmen ist die folgende Aussage zu beachten:

Feststellung 10. Datenstrukturen bei der Kollisionsprüfung verhalten sich
nicht kommutativ. Eine verwendete Ausgangsdatenstruktur sollte möglichst
effizient iterierbar sein und wenige Voxel enthalten, während die zweite Struk-
tur einen effizienten, wahlfreien Zugriff erlauben sollte, da in ihr nachgeschla-
gen wird.

In der praktischen Anwendung finden jedoch meist konträre Datenstrukturen Verwen-
dung, die den Anforderungen der zu repräsentierenden Daten gerecht werden und die
sich gleichzeitig bei der Kollisionsprüfung optimal ergänzen. Daher sind die Laufzeiten
im Vergleich zur Verwendung gleichartiger Strukturen fast immer kürzer, wie auch die
Evaluation in Kapitel 8 belegt. Somit ist auch der zweite Teil der Forschungsfrage 3 zu
den Eigenschaften der Datenstrukturen positiv beantwortet.

Durch das umgesetzte Konzept des Colliders, welches von den verfügbaren Voxelty-
pen abstrahiert, potenziert sich die Anzahl der zu implementierende Fälle dennoch nicht.
Bei der praktischen Verwendung von GPU-Voxels hilft eine eingängige, templatebasierte
API, die die verfügbaren Kollisionsfunktionen pro Datenstrukturpaar übersichtlich ge-
staltet.

117

7. Bewegungsplanung

In diesem Kapitel sollen nun, aufbauend auf den Datenstrukturen und der Kollisionsde-
tektion, Verfahren vorgestellt werden, die es einem Roboter ermöglichen, seine Bewegun-
gen zu planen. Wie in Definition 3 beschrieben, ist die Prämisse dabei, kollisionsfrei von
einem Ausgangszustand zu einem gegebene Zielzustand zu gelangen. Dafür müssen als
weitere Eingabedaten ein Umweltmodell und ein Egomodell zur Verfügung stehen. Auf
Basis dieser Daten kann dann ein Plan in Form einer Trajektorie aus Zwischenzuständen
generiert werden, entlang derer sich der Roboter dann bewegt. Dabei kann es nötig sein,
Zwischenzustände einzunehmen, die den Roboter zunächst noch weiter von seinem Ziel
entfernen, aber global gesehen zur Lösung des Problems dienen. Die Verfahren der Pla-
nung können daher sehr komplex ausfallen (Klasse der NP-harten [167] und auch NP-
kompletten Probleme [53]). Weiterhin entsteht insbesondere in dynamischen Umgebun-
gen die Problematik, dass erstellte Pläne bereits veraltet und nicht mehr kollisionsfrei
sind, noch bevor sie zur Ausführung kommen.

Im Gegensatz zur zeitintensiven Planung stehen reaktive Verfahren, die den großen Re-
chenaufwand vermeiden, indem sie zielorientiert, aber lediglich lokal arbeiten, um einen
Roboter von Hindernissen fernhalten. Sie können schneller auf Änderungen in der Um-
welt eingehen, sind jedoch anfällig dafür, an lokalen Minima zu scheitern, weshalb sie
nur für kürzere zeitliche und örtliche Horizonte ausgelegt sind. Oftmals werden daher
beide Verfahrensklassen zu hybriden Systemen kombiniert. Die vorliegende Arbeit hat
hingegen das Ziel, die Planungzeit so weit zu verkürzen, dass auf lokale, reaktive Kom-
ponenten verzichtet werden kann. Möglich wird dies, indem die zeitintensivste Kom-
ponente der Planung, nämlich die Kollisionsprüfung, durch die Parallelisierung auf der
GPU massiv beschleunigt wird.

Dieses Kapitel untersucht daher zunächst unterschiedliche Planungsverfahren, um die
Kandidaten zu ermitteln, die am meisten von einer GPU-beschleunigten Kollisionsprü-
fung profitieren. Ihr Einsatz wird dann anhand konkreter Probleme detaillierter beschrie-
ben. Eine symbolischen Planung, die in der Steuerungshierarchie oberhalb der Bewe-
gungsplanung steht, wird in dieser Arbeit nicht näher behandelt.

7.1. Grundlagen

Zu Beginn sollen einige Grundlagen definiert werden, um den Einsatz schneller Verfah-
ren der Kollisionsdetektion in der Planung zu motivieren.

Fast alle Planungsalgorithmen bestehen aus den folgenden vier Schritten, die teilwei-
se wiederholt ausgeführt werden: Zunächst ist eine Transformation aus dem Arbeits-
raum in den Konfigurationsraum des Roboters zu definieren. Daraufhin wird eine Dis-
kretisierung des Konfigurationsraumes durchgeführt (explorativ oder analytisch) und

119

7. Bewegungsplanung

zwischen den diskretisierten Zuständen ein Graph aufgespannt. Liegen Start- und Ziel-
zustand im Graphen, kann eine Verbindung zwischen ihnen gesucht werden. Während
dieses Prozesses muss die Validität einzelner Zustände bzw. der Zustandsübergänge ent-
lang der Graphenkanten evaluiert werden. Hierunter fallen geometrische Vorgaben wie
Kollisionsfreiheit und Gelenkwinkelbeschränkungen, aber auch dynamische Einschrän-
kungen.

7.1.1. Arbeitsraum, Konfigurationsraum und Planungsraum

In der Bewegungsplanung unterscheidet man zwischen zwei Räumen unterschiedlicher
Dimensionalität, in denen die Bewegung eines Roboters beschrieben werden können:
Dem Arbeitsraum S und dem Konfigurationsraum C. Der Arbeitsraum definiert sich über
die physische Umgebung und wird über das Umweltmodell (siehe Kapitel 4) repräsen-
tiert. Dagegen beschreibt der Konfigurationsraum die Posen des Roboters, weshalb er
durch die beweglichen Freiheitsgrade (Degree of freedom (DOF)) aufgespannt wird. Im
Allgemeinen ist der Konfigurationsraum surjektiv, aber nicht injektiv zum Arbeitsraum.
Somit ist die Abbildung einer Roboterkonfiguration, die durch ein Tupel aus Gelenkwin-
keln beschrieben ist, in den Arbeitsraum durch die so genannte Direkt Kinematik eindeutig
und trivial möglich. Das Ergebnis ist die Pose des Endeffektors im Raum. Der inverse Fall
hingegen, also die Berechnung der Gelenkwinkel aus einer gegebenen Endeffektorpose
mittels der Inversen Kinematik, ist nur in Sonderfällen eindeutig und direkt berechenbar.
Da in den meisten Fällen der Planungsraum der Konfigurationsraum ist, beeinflusst diese
Mehrdeutigkeit die Planbarkeit bzw. die Planungszeit von Bewegungsproblemen. Hier-
zu seien drei Beispiele gegeben:

- Bei einer rotationssymmetrischen mobilen Roboterplattform, welche ihre Position
in einer Ebene steuern kann, entspricht der Konfigurationsraum dem Arbeitsraum,
da in beiden Räumen die Freiheitsgrade durch die Position der Plattform in der
Ebene (SE (2): x, y, θ) bestimmt werden.

- Bei einem stationären Roboterarm mit sechs steuerbaren Gelenken ji, i ∈ [1..6], der
sein Werkzeug frei im Raum bewegen kann (SE (3): x, y, z, α, β, γ), ist zwar die An-
zahl, nicht aber die Bedeutung der Dimensionen beider Räume gleich. Je nach Auf-
bau seiner kinematischen Kette ist solch ein Roboter in der Lage, denselben Punkt
im Raum bei vorgegebener Orientierung mit acht unterschiedlichen Gelenkkonfi-
gurationen zu erreichen. In Sonderfällen, in denen zwei Freiheitsgrade achsparallel
liegen (sog. Singularitäten), sogar mit unendlich vielen verschiedenen Stellungen.

- Auch der mobile Serviceroboter HoLLiE (siehe Abb. 6.1a) bewegt sich im selben
sechsdimensionalen Arbeitsraum, verfügt aber (unter Vernachlässigung der Frei-
heitsgrade der Hände) über wesentlich mehr Freiheitsgrade: 3 DOF der mobilen
Plattform + 2 x 6 DOF der Arme + 2 DOF des Körpers = 17 DOF. Hierbei ist eine
Mehrdeutigkeit offensichtlich, da der Roboter mit seinem TCP eine Pose auf sehr
unterschiedliche Arten erreichen kann.

Die Vorgabe aller Freiheitsgrade positioniert einen Roboter also eindeutig in seinem Ar-
beitsraum und bestimmt damit, ob eine Kollision mit der Umgebung vorliegt. Entspre-
chend wird der Freiraum als die Teilmenge des Konfigurationsraums definiert, in der

120

7.1. Grundlagen

keine Kollisionen auftreten:

Cfrei ⊆ C wobei Cfrei = C \ CHindernis (7.1)

Da jedoch, wie in den Beispielen gezeigt, im Allgemeinen keine eindeutige Abbildung
von Arbeitsraum in Konfigurationsraum existiert, kann auch der Freiraum nicht direkt
in den Konfigurationsraum projiziert werden, selbst wenn die Umgebung komplett be-
kannt ist. Ein Ansatz zur Erstellung einer Freiraumkarte im Konfigurationsraum wäre es,
diesen schrittweise abzutasten und jeden Abtastschritt im Arbeitsraum auf Kollisionen
zu prüfen. Dies ist jedoch nicht tragbar: Wenn beispielsweise der Konfigurationsraum
des 6-DOF-Roboterarmes (−180 deg ≤ ji ≤ 180 deg) in 1 Grad Schritten diskretisiert wür-
de, ergäbe dies 3606 ≈ 2, 177 ∗ 1015 zu prüfende Konfigurationen, die bei einem dynami-
schen Arbeitsraum für jede Posenänderung erneut geprüft werden müssten.

Dies stellt ein Problem für die Bewegungsplanung dar, da vieles darauf hindeutet, dass
die Berechnungskomplexität exponentiell mit der Dimension des Konfigurationsraumes
wächst [168]. Da die Art des Roboters und die Anzahl seiner Freiheitsgrade in dieser
Arbeit nicht weiter eingeschränkt werden soll, werden unterschiedliche Herangehens-
weisen an diese Problematik in späteren Abschnitten beschrieben.

(a) Arbeitsraum (b) Konfigurationsraum

Abb. 7.1.: Vergleich der Hindernisformation im Arbeits- und Konfigurationsraum eines
Roboters mit serieller 2 DOF Kinematik. Abbildung adaptiert aus [159].

7.1.2. Graphensuche

Ein grundlegender Schritt der Planung ist das Aufspannen eines abstrakten Graphen
G innerhalb des Konfigurationsraums, dessen Knoten V meist diskrete Zustände des
Roboters beschreiben, während die Kanten E unterschiedlich teure Zustandsübergänge
abbilden. Auf diesem Graphen können dann unterschiedliche Suchfunktionen genutzt
werden, um Wege von einem Start- zu einem Zielknoten zu finden. Die Auswahl der
Suche bestimmt mit über die Leistungsfähigkeit des Planers und sollte daher passend zu
den Eigenschaften des Graphen getroffen werden.

Der klassische Algorithmus, der auf einem statischen Graphen mit gewichteten Kanten
den kürzesten Weg zwischen zwei Knoten finden kann, ist der Dijkstra Algorithmus, der

121

7. Bewegungsplanung

1959 publiziert wurde [71]. Um auf einem engmaschigen Graphen, wie z.B. einer diskreti-
sierten 2D Karte mit Achternachbarschaft effizienter zu suchen, wurde das ursprüngliche
Greedy-Verfahren 1968 von von Hart et al. [97] um eine Heuristik ergänzt. Der entstan-
dene A*-Algorithmus schätzt die Distanz eines Knotens zum Ziel, um darüber die Suche
in Richtung des Ziels zu lenken (informierte Suche). Inzwischen existieren einige paralle-
lisierte Varianten (vgl. Übersicht in [209]), die den Suchraum aufteilen und im Falle von
R* auch auf der GPU implementiert wurden [118]. Wie später noch gezeigt wird, ist der
Einsatz einer parallelen Suche in dieser Arbeit jedoch nicht zielführend.

Die Nachteile von A* sind sein hoher Speicherverbrauch und die Tatsache, dass bei Än-
derungen im Graphen bereits generierte Teilpläne wertlos werden. Vor diesem Hinter-
grund wurde D* (Dynamic A*) entwickelt [191], der es ermöglicht, gefundene Teilpläne
beizubehalten und lediglich ab dem blockierten Teil inkrementell neu zu planen. Populär
ist jedoch die D*-Lite Variante, die König und Likhachev 2005 veröffentlichten [121], da
diese wesentlich einfacher umzusetzen ist, und dennoch mindestens so effizient wie D*
ist. D*-Lite plant von Ziel zu Start und nutzt einen zweidimensionalen Tupel k, um den
n-ten Knoten zu bewerten:

k(n) =

(
min(g(n), rhs(n)) + h(nstart , n) + km

min(g(n), rhs(n))

)
(7.2)

Neben dem g(n)-Wert, der wie bei A* die kürzeste Distanz ab dem Startknoten nstart be-
schreibt und der Heuristik h(n, nstart), die die erwartete Entfernung bis zum Startknoten
abschätzt, spielt der rhs(n)-Wert (Right Hand Side) eine wichtige Rolle: Er speichert, ähn-
lich zu g, in jedem Knoten den vom Zielknoten aus zurückgelegten Wert, allerdings unab-
hängig von den g-Werten des Vorgängerknotens n′. Daher kann er genutzt werden, um
bei Änderungen im Graphen Inkonsistenzen aufzudecken. Diese entstehen, wenn auf-
grund von Hindernissen höhere Kosten c(n′, n) zwischen den Knoten n und n′ auftreten
und somit g(n) = g(n′)+c(n′, n) 6= rhs(n) ist. In diesem Fall muss rhs(n) rekursiv aus neu
bestimmten g-Werten gesetzt werden. Diese gezielte Reparatur des Graphen ist effizien-
ter als der komplette Neuaufbau und erlaubt den Einsatz von D*-Lite auf dynamischen
Daten. Somit können Pfade durch teilweise unbekannte Regionen geplant werden, die
erst während der Pfadausführung einsehbar sind. Da D*-Lite den kürzesten Pfad jedoch
durch die Minimierung von rhs sucht und dieser während dem Abfahren des Pfades au-
tomatisch abnimmt, ist der Ausgleichsterm km notwendig, der die bereits abgelaufene
Distanz kompensiert.

Bei der Komplexitätsbetrachtung eines samplingbasierten Planers, wie dem RRT oder
RRT*, erscheint die Kollisionsdetektion nur als konstanter Zeitfaktor während Graphen-
Operationen wie Nachbarschaftssuche und Einfügeoperationen mit O(log n) den größe-
ren Aufwand erzeugen. Dies trifft jedoch nur für den in der Praxis irrelevanten Fall der
asymptotischen Betrachtung zu. In realistischen Szenarien, insbesondere jedoch bei der
Betrachtung einer dreidimensionalen Umwelt, überwiegt die Laufzeit der Kollisionsprü-
fung der Planer-Samples bei weitem die Berechnungen im Graphen [46].

7.1.3. Taxonomie der Planungsverfahren

So vielfältig wie die Kollisionsprüfungsverfahren sind auch die Ansätze zur Bewegungs-
planung, die auf ihnen aufbauen. Und auch hier unterscheiden sich die Verfahren dar-

122

7.1. Grundlagen

in, ob sie auf a priori Wissen in Form von abstrakten, exakten Modellen ausgelegt sind
oder auf aktuellen, probabilistischen Sensordaten arbeiten können. Im ersten Fall wird
meist von einem vollständigen Umweltwissen ausgegangen, um global korrekte und
möglichst optimale Pläne zu generieren. Soll hingegen auf Sensordaten und somit auf
unvollständigem Wissen geplant werden, müssen sich die Ergebnisse einfacher an un-
vorhergesehene Gegebenheiten anpassen lassen. Hierbei können Planer konservativ und
pessimistisch vorgehen, oder aber optimistische und opportunistische Entscheidungen
treffen (Vgl. Sensorhorizont: Over the Horizon Planning [73]).

Gleiches gilt für die Annahme einer statischen oder dynamischen Umgebung. Wie bereits
bei der Berechnung von Distanzkarten, gibt es auch hier zwei Möglichkeiten: Sind die
Algorithmen leichtgewichtig, lassen sie sich zyklisch oder bei jeder Änderung der Um-
welt komplett neu berechnen. Alternativ müssen die Auswirkungen einer Veränderung
analysiert werden, um dann gezielt lokale Anpassungen durchzuführen. In beiden Fäl-
len findet die Planung auf Standbildern der Umgebung statt. Um dennoch die zeitliche
Komponente berücksichtigen zu können, nutzen einige Verfahren dynamische Modelle
der Hindernisse und des Roboters, um Bewegungen in Form räumlicher Ausdehnungen
explizit zu modellieren (vgl. Abschnitt 4.6 und Abschnitt 6.2.1).

Eine Übersicht der einflussreichsten Ansätze zur Bewegungsplanung soll nun helfen, die
Verfahren zu vergleichen und ihre Verwendbarkeit in Kombination mit voxelbasierter
Kollisionsdetektion beurteilen zu können. Die Liste orientiert sich am Referenzwerk Ro-
bot Motion Planning von Latombe [126].

Kombinatorische Verfahren

Entspricht die Dimensionalität des Konfigurationsraumes der des Planungsraumes, und
ist diese niedrig (n ≤ 3), können geometrische Verfahren zur Zelldekomposition (bspw.
Voronoi Zerlegung, Sichtbarkeitsgraph, Line-Sweep ...) den Arbeitsraum in freie und be-
legte Regionen unterteilen. In den entstehenden Strukturen spannt sich ein Graph auf,
der alle kollisionsfreien Trajektorien repräsentiert [175]. Darauf lassen sich dann die oben
genannten erschöpfenden oder heuristischen Suchverfahren einsetzen, um einen Weg
von Start zu Ziel zu finden. Eingesetzt werden diese Verfahren oft auf 2D oder 2,5D
Datenstrukturen, in denen ein Planungszustand die Grundfläche einer mobilen Platt-
form innerhalb einer Kostenkarte beschreibt [127]. Es wird entweder von einem punkt-,
scheiben- oder kugelförmigen Roboter ausgegangen, so dass dessen Ausrichtung ver-
nachlässigt werden kann. Im Sonderfall einer äquidistanten Aufteilung des Planungs-
raumes ist der einfachste Ansatz der Planung eine Breitensuche, bei der alle Zellen nach
einer Metrik (z.B. Manhattan- oder Chebyshev-Distanz) mit Kosten beschrieben werden.
Dies entspricht einer künstlichen Wellenfront (Wave Front) oder einer Flutung der Karte
(Flood Fill), wie auch im Bsp. aus Abb. 7.2b zu sehen ist. Erreicht die Welle das Ziel, kann
entlang des Kostengradienten direkt der kürzeste Pfad abgelesen werden. Diese Art der
Planung findet immer einen Pfad zwischen Start und Ziel, falls dieser existiert. Allerdings
sind die Kosten dafür meist höher als bei einer heuristischen Suche. Unter Verwendung
von Kugel- oder Zylinderkoordinaten können die Verfahren auch für einfache serielle
Kinematiken verwendet werden.

123

7. Bewegungsplanung
Tabelle1

Seite 1

A B C D E F G H I

1

2 S
3

4 Z
5

6

7

8

9

(a) Ausgangsdaten mit Start
und Ziel

Tabelle1

Seite 1

A B C D E F G H I

1 4
2 11 S 2 3
3 11 10 11 2 1 2
4 11 10 9 10 2 1 Z 1
5 10 9 8 4 3 2 1 2
6 9 8 7 6 5 4 3 2 3
7 10 9 8 7 6 5 4 3 4
8 11 10 9 8 7 6 5 4 5
9 11 10 9 8 7 6 5 6

(b) Welle ausgebreitet, Pfad
gefunden

Tabelle1

Seite 1

A B C D E F G H I

1 15
2 15 14 15 S
3 14 13 14
4 13 12 Z 1
5 12 11 2 1 2
6 11 10 4 3 2 3
7 10 9 8 7 6 5 4 3 4
8 11 10 9 8 7 6 5 4 5
9 12 11 10 9 8 7 6 5 6

(c) Berücksichtigung eines
Mindesabstandes

Abb. 7.2.: Ausbreitung einer Wellenfront. Wurden Abstandswerte zu den Hindernissen
bspw. mittels einer EDT berechnet, können Felder, die nah an Hindernissen
liegen, wie in (c) effizient ausgelassen werden.

Dienen Voxel als Basis der Zelldekomposition, eignen sich kombinatorische Verfahren
sehr gut für die Verwendung in dieser Arbeit, insbesondere in der Kombination mit rota-
tionsinvarianten Egomodellen. Als Beispielanwendung wird in Unterabschnitt 7.2.2 die
Planung einer mobilen Plattform mittels Rotations-Swept-Volumen detailliert beschrie-
ben und in Unterabschnitt 8.7.2 evaluiert.

Potentialfelder

Anstatt den Suchraum kombinatorisch aufzuteilen, kann er auch als Potentialfeld in-
terpretiert werden, in welchem die Hindernisse in Form von abstoßenden Potentialen
dargestellt werden. Kombiniert man deren Felder mit einem zweiten Feld, in dem das
Ziel eine anziehende Kraft ausübt, entsteht ein Gradient, dem ein rotationsinvarianter
Roboter folgen kann, um ohne weiteren Suchaufwand von jedem beliebigen Punkt im
Arbeitsraum zum Ziel zu gelangen [116]. Allerdings müssen vielfältige Randbedingun-
gen beachtet werden, deren Verletzung sonst zu lokalen Minima und somit zu Blockaden
oder Sackgassen führt, in denen sich die Potentiale aufheben. Durch diese Problematik ist
der Ansatz nur sehr bedingt für globale Planungsprobleme einsetzbar und wird häufig
für reaktive Verfahren verwendet.

Entstehen können diese durch unpassende Kostenfunktionen oder ungeschickte Gewich-
tung der beiden Potentialfelder bei ihrer Linearkombination. Ein Beispiel ist in Abb. 7.3a
zu sehen. Hier ist die Abstoßung durch das Hindernis so groß, dass ein Agent vor dem
Durchlass gefangen wäre. Um lokale Minima weitestgehend zu vermeiden, sollten die
Felder durch harmonische Funktionen [201, 138] wie beispielsweise

φ = λ ln d, d = ‖Position − Ziel‖ bzw. d = ‖Position −Hindernis‖

beschrieben werden. λ ist hierbei ein Skalierungsfaktor, dessen Vorzeichen über Anzie-
hung oder Abstoßung entscheidet. Doch auch dies schützt nicht vor Fallen in Hinder-
nissen, die konvexe Formen aufweisen [78]. Ein Beispiel zeigt Abb. 7.3b, wobei hier die
starke Gewichtung des anziehenden Feldes das Problem umgeht. Strategien zum Um-
gang mit lokalen Minima, wie Random-Walks oder Wavefront Expansion (Best First Search),
beschreiben unter anderem Barraquand et al. [41].

124

7.1. Grundlagen

Enthält eine Karte in jedem Punkt Informationen über das nächstgelegene Hindernis,
können Potentialfeldplaner sehr effizient arbeiten, da sie nur einen kleinen Bereich um
die aktuelle Roboterposition auswerten müssen, um den Gradienten zu finden, dem zu
folgen ist. Im Gegensatz dazu skaliert die Rechenzeit von Planern, die künstliche Wel-
lenfronten nutzen, mit der Größe der betrachteten Karten und auch mit den Längen der
erzeugten Pläne. Die Komplexität von Navigationsfunktionen [123] ist wiederum von der
Anzahl der Hindernisse in der Umgebung abhängig und eignet sich daher nur bedingt
für dichte und hoch auflösende 3D-Karten.

Weiterhin existieren Arbeiten, in denen auch Bewegungen für artikulierte Roboterkine-
matiken mittels Potentialfeldern geplant werden [137]. Da hierbei nicht mehr von einer
rotationsinvarianten Geometrie ausgegangen wird, müssen die Potentialfelder nach dem
Vorbild eines elektrostatischen Feldes auch Drehmomente erzeugen, die auf die einzel-
nen Roboterglieder wirken. Einen aktuellen, GPU beschleunigten Ansatz mit einem 2,5D
Potentialfeld stellen Kaldestad et al. in [109] vor. Allerdings handelt es sich hierbei eher
um ein Regelungverfahren und nicht um einen Planer, da hier die Impedanzregelung
eines Leichtbauroboters durch virtuelle Kräfte des dynamischen Kraftfeldes von Hin-
dernissen ferngehalten wird. Ein ähnliches CPU-basiertes Verfahren wurde bereits 2012
von Flacco et al.[80] publiziert. Ein echtes Planungsverfahren hingegen konnte Kitamu-
ra bereits 1995 in [120] vorstellen, bei dem Voxel-Potentialfelder für die Navigation in
dreidimensionalen Umgebungen genutzt werden.

Vergleichbar dazu wird auch in der vorliegenden Arbeit der Arbeitsraum diskretisiert,
um jeder Zelle ein Potential zuweisen zu können. Dafür kommen Distanz-Voxel und die
parallelisierter Distanzberechnung aus Abschnitt 5.6 zum Einsatz.

80

60

40

20

-1.5

-1

-0.5

0

0.5

1

80

60

40

20

(a)

-1

-0.5

0

0.5

1

100
80

60
40

20
0

20
0

40

80
100

60

(b)

Abb. 7.3.: Kostenfunktion aus kombinierten Potentialfeldern: Das Navigationsziel liegt
im Minimum der Funktion (dunkelblau), während Hindernisse hohe Kosten
(rot) aufweisen. Bilder aus [24].

125

7. Bewegungsplanung

Samplingbasierte Verfahren

Hochdimensionale Planungsräume werden fast ausschließlich mit randomisierten, samp-
lingbasierten Planern erschlossen. Die Herausforderung liegt dabei in der geschickten
Verteilung der Samples, die sich bestenfalls an lokale Gegebenheiten anpasst. Anders als
deterministische Ansätze, die durch ein Resolution Complete Sampling Aussagen zur Exis-
tenz einer Lösung treffen können, geben diese Algorithmen zwar keine Garantie, eine
vorhandene Lösung zu finden, sind aber dennoch probabilistisch vollständig (die Wahr-
scheinlichkeit, eine existente Lösung zu finden konvergiert mit steigender Planungs-
zeit gegen 1). Zu den populärsten Verfahren zählen die Rapidly Exploring Random Trees
(RRT) [131].

Wie der Name andeutet, bauen diese Algorithmen zunächst einen Graphen G = (V,E)
aus randomisierten Samples auf, bevor sie auf diesem einen Pfad suchen. Zustände im
Planungsraum werden durch Knoten V im Roadmap-Graphen repräsentiert. Trajektori-
en zwischen ihnen durch Kanten E. Ausgehend vom Startzustand wird der Graph so
expandiert, dass möglichst schnell eine Abdeckung des gesamten Raumes erreicht wird.
Dafür werden zunächst randomisiert Punkte im Planungsraum gewählt, deren nächster
Nachbar im Graphen gesucht wird. Ausgehend von diesem Nachbarn wird in Richtung
des Zufallspunktes, in einer festen Distanz, ein weiterer Punkt generiert. Ist dieser kol-
lisionsfrei, wird er zu V hinzugefügt, eine Kante zu seinem Nachbarn generiert, und
G damit erweitert. Je nach Explorationsdistanz muss dafür die neue Verbindung noch-
mals interpoliert und auch ihre Zwischenpunkte auf Kollisionsfreiheit überprüft wer-
den. Werden zwei Bäume genutzt, die gleichzeitig von Start- und Zielzustand ausgehend
wachsen, um sich zu verbinden, spricht man von Bidirectional Rapidly-Exploring Random
Trees (BiRRT) [11]. Hierbei wird die Verbindung zwischen den Bäumen provoziert, in-
dem diese abwechselnd in Richtung des zuletzt hinzugefügten Knotens des anderen
Baumes wachsen, bis es zu einer Kollision kommt. Das Überprüfen der Graphenkan-
ten auf Kollisionsfreiheit ist ein rechenintensiver Prozess, der für alle Kanten ausgeführt
wird, auch wenn diese am Ende nicht am Lösungspfad beteiligt sind. Daher bietet sich
eine so genannte Lazy Evaluation an: Dabei werden lediglich die Knoten auf Kollision ge-
prüft und alle Kanten zunächst als valide angenommen. Erst wenn ein Pfad im Graph
gefunden wurde, werden seine Kanten auf Kollisionsfreiheit geprüft. Da in vielen rea-
len Planungsszenarien mindestens von einem 70/30 Verhältnis aus freiem / belegtem
Raum ausgegangen werden kann, erspart die Lazy Evaluation viel Rechenzeit. Sollte ei-
ne Kante nicht ausführbar sein, muss ein anderer Pfad im Graphen gesucht werden. In
Unterabschnitt 8.6.2 sind Versuche mit einem Lazy Bi-directional KPIECE with one level of
discretization (LBKPIECE1) Planer beschrieben. Dieser kombiniert die nachgelagerte Kol-
lisionsprüfung mit einer bidirektionalen Suche, die über eine Projektion in einen zweidi-
mensionalen Raum geleitet wird [194].

Die Nachteile samplingbasierter Verfahren liegen in ihren nachweisbar suboptimalen
Lösungen und der häufigen Notwendigkeit einer nachgelagerten Glättung, da die ent-
stehenden Lösungswege sehr unstetig sind. Auch hierbei sind Kollisionsprüfungen un-
erlässlich, was ihren Aufwand steigert. Abhilfe schafft hier der RRT* Algorithmus, der
asymptotische Optimalität erreicht (mit steigender Planungszeit konvergiert die Lösung
zur optimalen Lösung), indem er den entstehenden Graphen reorganisiert und dabei
auch glattere Trajektorien erzeugt. Wegen der praktisch beschränkten Samplingdichte

126

7.1. Grundlagen

stellen enge oder verwinkelte Korridore jedoch immer große Herausforderungen an alle
Suchverfahren.

Parallelisierte Varianten des RRT bzw. RRT* wurde von Devaurs et al. [69] und Bialkow-
ski et al. [46] vorgestellt, wobei Letzteres lediglich eine Art Stapelverarbeitung von GPU
Kollisionsprüfungen nutzen und nicht den Planer parallelisieren.

Bei Nutzung der parallelisierten Voxel-Kollisionsprüfung mit einem samplingbasierten
Verfahren ergibt sich bei komplexeren Kinematiken die Problematik, dass die Konfigu-
ration jedes Samples einzeln in Voxel umgewandelt werden muss. Eine Vorberechnung
ist nicht möglich, und auch die effiziente Translation mittels Basisversatz aus Unterab-
schnitt 5.3.1 kommt nicht in Frage. Weiterhin erfordern viele Planer eine sequentielle
Prüfung ihrer Samples, da diese inkrementell die Expansionsrichtung beeinflusst. Aus
diesen Gründen kann mit ihnen nicht das volle Potential der GPU-Parallelisierung ge-
nutzt werden.

Roadmap Verfahren

Sollen in einer quasistatischen Umgebung mehrfach Bewegungen geplant werden, bietet
es sich an, die Suche von der Erstellung der bereits beschrieben Graphen (Raodmaps)
loszulösen. Somit kann einerseits auch bei noch unbekanntem Start- / Zielpunkt bereits
ein Graph aufgebaut werden, und dieser anderseits über mehrere Suchanfragen hinweg
beibehalten oder erweitert werden, um den Freiraum CFrei möglichst gut abzudecken..
Im Falle einer Anfrage müssen lediglich zwei kurze Pfade zu den nächstgelegenen Start-
und Zielknoten bestimmt werden, während der eigentliche Pfad im existierenden Gra-
phen schnell gefunden werden kann. Ein bekanntes Beispiel ist der Probabilistic Roadmap
Planner (PRM) von Kavraki et al. [113], der inkrementell arbeitet und einen lokalen Planer
zum Hinzufügen von Kanten involviert. Dafür wird zunächst eine Menge randomisier-
ter Punkte im Planungsraum erzeugt und diese im Arbeitsraum auf Kollisionsfreiheit
überprüft. Im nächsten Schritt wird versucht, Verbindungen zwischen kollisionsfreien
Punkten und ihren k-nächsten Nachbarn zu erstellen. Wie bei RRT müssen die Verbin-
dungen dafür eventuell auch feingranular auf Kollisionsfreiheit überprüft werden oder
es kommt sogar ein lokaler Planer zum Einsatz. Kann mindestens eine Verbindung zum
Graphen hergestellt werden, wird der Punkt zur Menge V und die Verbindung(en) zu E
hinzugefügt. Diese Schritte werden so lange wiederholt, bis ein möglichst dichter und zu-
sammenhängender Graph entstanden ist. Bei einer Suchanfrage müssen der Start- und
Zielpunkt auf dieselbe Art mit dem Graphen verbunden werden. Danach kann mittels
A*, Dijkstra o.Ä. ein Pfad vom Start- zum Zielpunkt gesucht werden. Eine Eigenschaft
der PRM Methode ist die problembezogene Optimierung der Samplingstrategie. So gibt
es Verfahren, die besonders für enge Passagen im Arbeitsraum geeignet sind und große
zusammenhängende Freiräume möglichst spärlich abtasten (Bridge Sampling, Obstacle
based Sampling, Gaussian Pair Sampling).

Eine PRM Umsetzung auf der GPU stammt von Pan et al. [158]. Der vorgestellte g-Planner
arbeitet auf globalem Wissen und ermöglicht eine Echtzeitplanung, indem alle relevanten
Schritte paralellisiert wurden und für die Kollisionsprüfung das bereits genannte BVH
Verfahren gProximity [130] eingesetzt wird.

127

7. Bewegungsplanung

Sollen Roadmap Verfahren in veränderlichen Umgebungen eingesetzt werden, ist die In-
validierung von Kanten im Graphen sehr wichtig, wenn Änderungen in der Umwelt Teil-
pläne blockieren. Dies erfordert jedoch eine bijektive Abbildung zwischen Ausführungs-
und Planungsraum, welche, wie eingangs beschrieben, nur in niedrigdimensionalen Fäl-
len gegeben ist. Anderenfalls muss über eine zusätzliche Datenstruktur für jedes Raum-
volumen die Menge an Plänen vorgehalten werden, die dieses Volumen kreuzen. Ist dies
gegeben, kann eine Invalidierung inklusive einer Suche innerhalb weniger Millisekun-
den durchgeführt werden. Dies zeigt Schumann-Olsen in [184] bei der Planung eines
5-Achs-Roboters. Die Besonderheit dabei ist die effiziente bidirektionale Abbildung zwi-
schen Arbeitsraum S und Planungsraum C mit Hilfe einer komprimierten Lookup-Tabel-
le. Allerdings ist das Verfahren nicht allgemeingültig und lässt sich schlecht auf komple-
xere Kinematiken erweitern.

Auch in dieser Arbeit wurde erwägt, jeden Voxel des Umweltmodells mit der Menge an
Plänen zu annotieren, die durch ihn hindurchführen. Somit wären im Falle einer Kol-
lision des Voxels direkt ablesbar, welche Teilpläne zu invalidieren sind. Da dies jedoch
einen dynamischen, pro Voxel unterschiedlichen Speicheraufwand erfordert, wurde die
Idee verworfen.

Optimierungsverfahren

Um global konsistente Pläne bei kleineren Änderungen in der Umwelt nicht komplett
verwerfen zu müssen, entstanden Arbeiten zur lokalen, dynamischen Modifikation von
Plänen. In den klassischen Methoden Elastic Bands [165] und Elastic Strips [52] ist es
möglich, zur Laufzeit die Graphenkanten in einem gewissen Maß zu modifizieren, und
so lokalen Hindernissen auszuweichen, während globale Vorgaben eingehalten werden.
Einen aktuellen, optimierenden GPU-Planer stellen Park et al. in [161] vor. Dieser ließe
sich durch die Verwendung der vorgestellten Distanzkarten generalisieren, was in wei-
terführenden Arbeiten geplant ist. Da diese Arbeit jedoch lokale Optimierungen generell
vermeiden möchte, werden diese Verfahren zunächst nicht weiter beleuchtet.

Planung mit Bewegungsprimitiven

In vielen Fällen kann es zielführend sein, einen Plan nicht aus diskreten Posen, son-
dern mit Hilfe einer Bibliothek aus Primitiven fundamentaler Bewegungen zu synthe-
tisieren (Motion Primitive Planning). Ähnlich zur Diskretisierung des Arbeitsraumes, zur
Einschränkung der Berechnungskomplexität, wird hierbei das Ziel verfolgt, den Konfi-
gurationsraum zu diskretisieren. Anstatt jeden Freiheitsgrad als unabhängig zu betrach-
ten werden also zusammenhängende Bewegungen eines oder mehrerer Freiheitsgrade
zu Primitiven zusammengefasst, womit eine beliebig starke Diskretisierung möglich ist.
Dabei gilt es, einen Kompromiss zwischen dem Reduktionsfaktor (also der Anzahl an Pri-
mitiven) und Abbildungsgenauigkeit zu erreichen (Erreichbarkeit aller Zielpunkte). Die
Anzahl und Art der Primitive entscheidet somit, ob ein Planungsproblem lösbar ist. Das
Erzeugen einer Menge geeigneter Primitive geschieht vor der eigentlichen Planungspha-
se und kann entweder manuell, durch den Einsatz von Vorwissen geschehen, oder durch
maschinelle Lernverfahren [135].

128

7.1. Grundlagen

Im Falle von nichtholonomen Robotern kann durch die Planung mit Primitiven bspw.
die kinematische Durchführbarkeit des resultierenden Planes sichergestellt werden, oh-
ne die physikalischen Beschränkungen des Roboters in der Planung explizit zu betrach-
ten [183]. Somit wird verhindert, dass der Planer intrinsisch unmögliche Zustandsüber-
gänge evaluieren und eventuell verwerfen muss. Dadurch reduziert sich das Planungs-
problem auf die Suche einer geeigneten Konkatenation von Primitiven, welche den Ro-
boter von seinem Start- in einen gewünschten Zielzustand überführen. Weiterhin kann
eine Zustandsabhängigkeit in jedem Bewegungsprimitiv modelliert werden, um nicht
ausführbare Übergänge zu unterbinden. Aber auch bei holonomen Robotern kann da-
mit eine Vorzugsrichtung und somit eine für den Menschen intuitivere Bewegungsbahn
realisiert werden.

Wie bei den Roadmap Verfahren entspricht die Planung letztendlich dem Aufbau eines
gerichteten Graphen, dessen Knoten die diskretisierten Zustände darstellen, während
die Kanten die durch die Primitive ausführbaren Zustandsübergänge repräsentieren. Mit
fortschreitender Suchtiefe bei der Exploration verzweigt sich der Baum an jedem Knoten
um den Faktor der verfügbaren Bewegungsprimitive. Daher ist es wichtig, dass im Baum
entstehende Schleifen erkannt und geschlossen werden, um ein exponentielles Anwach-
sen des Baumes zu verhindern. Auch die Herausforderungen der Roadmaps finden sich
hier wieder: Ein inhärentes Problem bei der Arbeit mit Primitiven besteht, wenn sich
nach der Planung eines (Teil-)Pfades Änderungen in der Umwelt ergeben. Wird dadurch
ein Knoten im Planungsgraphen als unpassierbar markiert, werden nur diejenigen Kno-
ten aktualisiert, von denen aus der geänderte Knoten über ein Primitiv erreichbar ist.
Liegt die Änderung jedoch auch auf der Strecke eines anderen Primitivs oder zwischen
solchen Endknoten, wird sie bei der Aktualisierung übersehen. Dies führt zu einer In-
konsistenz im Planungsgraphen, da die Kosten der Transitionen nicht mehr der realen
Umwelt entsprechen. Da keine bijektive Abbildung zwischen Planungsraum und Aus-
führungsraum existiert, ist somit nicht klar, ob und welche anderen Kanten von dem
Hindernis betroffen sind. In diesem Fall muss der Planungsgraph invalidiert werden.
Ein Beispiel dazu ist in Abb. 7.4 zu sehen. Weiterhin ergibt sich das Problem, von einer
beliebigen Pose zunächst auf das Planungsgitter zu gelangen, bzw. von einer Pose auf
dem Gitter zu einer nichtdiskretisierten Zielpose. Dieses Lattice Problem wird meist durch
ein zusätzliches lokales Planungsverfahren gelöst.

Einige ausgewählte Arbeiten aus dem Stand der Technik sind die folgenden: Hornung et
al. evaluieren Bewegungsprimitive in mehreren zweidiemensionalen Schnitten durch die
Umwelt, die sie auf unterschiedlichen Höhen aus 3D-Sensordaten gewinnen [102]. Somit
vermeiden sie den Aufwand einer echten 3D-Kollisionsprüfung. Die eigentliche Planung
geschieht dann mit einem Anytime Repairing A* Algorithmus. Paranjape et al. entwickel-
ten einen Planer, der enge Wendemanöver für Flugzeuge planen kann, und damit auch in
hindernisreichen Umgebungen, wie einem Wald, erfolgreich reaktiv geplantes Fliegen er-
möglicht [160]. Ebenfalls auf schnelle Reaktionen und die Einhaltung von Echtzeitanfor-
derungen sind die Planer von Likhachev et al. optimiert, die Pfade für autonome Autos
generieren [136]. Sie reduzieren die Komplexität und somit die Laufzeit, indem auf un-
terschiedlichen Auflösungen geplant wird, zwischen denen nahtlos gewechselt werden
kann. Ebenfalls für den Automobilbereich ausgelegt sind die Tentakelplaner von Wang
Ke-ke et al., bei denen virtuelle Tentakel den Raum vor dem Fahrzeug explorieren um
schnell den am besten geeignetsten Pfad durch unbekanntes Gelände zu finden [114].

129

7. Bewegungsplanung

Abb. 7.4.: Ein neues Hindernis, das nicht am Ende eines Primitives liegt, wird übersehen.

Auch in der vorliegenden Arbeit werden Bewegungsprimitive eingesetzt. Da sie offline
vorberechnet werden können, lassen sie sich sehr gut durch Swept-Volu-men repräsen-
tieren. Ein Verfahren, das mit rotierenden Bewegungsprimitven Bewegungen für eine
holonome mobile Plattform auf einem engmaschigen Gitter generiert, wird in Unterab-
schnitt 7.2.2 vorgestellt. Die Planung von Bewegungen für nichtholonome Fahrzeuge an-
hand von längeren Primitiven folgt dann in Unterabschnitt 7.2.3. Beide Ansätze werden
weiter unten in diesem Kapitel noch detaillierter ausgeführt und in Unterabschnitt 8.7.3
bzw. Unterabschnitt 8.7.2 für die Planung mobiler Plattformen evaluiert.

Es liegt nahe, die Vorteile der Planung mit Bewegungsprimitiven auch auf serielle Kine-
matiken übertragen zu wollen. Hierzu existieren Arbeiten von Cohen et al., die adaptiven
Primitive verwenden [64], sowie von Barry, deren DARRT System [42] mit parametrisier-
ten Bewegungen arbeitet. Einer Verknüpfung dieser Planer mit der parallelisierten Vo-
xel-Kollisionsprüfung scheitert jedoch an zwei Punkten: Da die verwendeten Primitive
veränderlich sind, können ihre Swept-Volu-men nicht vorberechnet werden. Und selbst
wenn dies der Fall wäre, ließen sie sich nicht effizient im Voxelraum konkatenieren, da sie
hierfür frei im Raum positiniert werden müssten. Dies verursacht neben hohem Berech-
nungsaufwand auch Abtastfehler und macht die Vorteile der Vorberechnung zunichte.

Kinodynamische Planung

Muss ein Planer auch dynamische Einschränkungen (ausgedrückt durch Differentialglei-
chungen) berücksichtigen, ergeben sich komplexe Probleme in sehr hochdimensionalen
Planungsräumen. Diese werden in der Regel entweder durch samplingbasierte Planer ge-
löst, oder auch durch die Planung mittels diskretisierter Bewegungsprimitive [83]. Diese
Klasse der Planungsprobleme liegt jedoch außerhalb des Rahmens dieser Arbeit.

130

7.1. Grundlagen

(a) Start (Pferd) und Ziel (tür-
kis) der Planung. Pfeile zei-
gen 8 der 16 Bewegeungs-
primitive des Pferdes.

(b) Zwischenstand der Pla-
nung: Aktuell sind drei
Primitive nicht ausführbar.
Hellrote Felder wurden
besucht.

(c) Ergebnis der erfolgreichen
Planung: Ziel ist erreicht,
kürzester Pfad wurde extra-
hiert.

Abb. 7.5.: Bewegung der Schachfigur Pferd als Beispiel für die Planung mit konkatenier-
ten Bewegungsprimitiven. Adaptiert nach [23].

7.1.4. Zusammenfassung

Der hauptsächliche Berechnungsaufwand aller Planer stammt aus der unverzichtbaren
Kollisionsprüfung und kann somit durch den parallelisierten Ansatz dieser Arbeit ver-
kürzt werden. Aus obigem Vergleich ist jedoch ersichtlich, dass sich nicht alle Planer ef-
fizient mit der GPU Kollisionsprüfung verbinden lassen. Müssen hochdimensionale Pro-
bleme mit samplingbasierten Verfahren gelöst werden, verschiebt sich der Aufwand von
der eigentlichen Kollisionsprüfung in Richtung der Voxelumwandlung des Egomodells.
Somit nutzen diese Planer das Potential der vorgestellten Kollisionserkennung nicht op-
timal aus. Daher sind Verfahren, die eine Vorberechnung der Voxelumwandlung erlau-
ben, und die Ergebnisse in Swept-Volumen speichern, zu bevorzugen. Prädestiniert ist
somit die Planung mit Bewegungsprimitiven, in der Kombination mit den sehr effizient
implementierbaren translativen Bewegungen.

Eine weitere Methode zur Beschleunigung der Planung ist die Aufteilung der Probleme
in Teilprobleme, die entkoppelt einfacher zu lösen sind: So ist es bei mobilen Robotern
noch immer üblich, die Plattformbewegung von den Armbewegungen zu trennen und
beides, auf Kosten der Flexibilität, separat zu planen. Um diese Einbußen zu umgehen,
wird in späteren Abschnitten zur Planung mobiler Plattformen ein anderer Ansatz ver-
folgt: Durch die zeitliche Verflechtung von Planungs- und Ausführungsvorgänge (inter-
leaved planning and execution) lässt sich die Reaktivität eines Planungssystems ebenfalls
steigern.

Implementierungen der meisten beschriebenen Verfahren für das Forschungsfeld der Ro-

131

7. Bewegungsplanung

botik finden sich in der Open Motion Planning Library (OMPL)1. Daneben ist auch die
Search-based Planning Library (SBPL)2 sehr stark verbreitet, die maßgeblich von Maxim
Likhachev entwickelt wird. Beide Bibliotheken bieten jedoch keine integrierten Lösun-
gen für die Arbeit mit volumetrischen Bewegungsprimitiven, weshalb diese im folgen-
den Abschnitt entwickelt werden.

7.2. Umgesetzte Planungsverfahren

Ausgehend von den zuvor genannten Erkenntnissen wurden mehrere Ansätze praktisch
umgesetzt, um Bewegungen sowohl in Szenarien mit mobilen Plattformen als auch mit
Manipulatoren planen zu können. Die wichtigste gemeinsame Eigenschaft der entwi-
ckelten Verfahren liegt in der Verwendung von dichten Swept-Volu-men. Diese werden
einerseits bei der Planung als Alternative zu interpolierenden Kollisionsprüfungsschrit-
ten entlang eines Zustandsüberganges eingesetzt, andererseits können sie nach der Pla-
nung direkt zur Ausführungsüberwachung weiterverwendet werden.

7.2.1. Überwachung der Planausführung

Wurde durch einen Planer eine Trajektorie gefunden, werden alle darin genutzten Teil-
pfade in einem großen Swept-Volumen konkateniert, wobei sie eindeutige SSV-IDs er-
halten. Somit entsteht ein Korridor, in dem sich der Roboter sicher bewegen kann, und
der während der Ausführung des Planes auf eindringende dynamische Hindernisse hin
überwacht werden kann. Wird eine Kollision mit dem Korridor erkannt, lässt sich aus der
betroffenen ID die Distanz zum Hindernis abschätzen, um den Roboter entsprechend an-
zuhalten oder zu verlangsamen, während der Planer nach einer alternativen Route sucht.
Diese Technik der verschränkten Planung und Ausführung lässt sich unabhängig vom
Robotertyp einsetzen und ist schematisch in Abb. 7.6 zusammengefasst. Eine Herausfor-
derung dabei ist es, den aktuellen Plan während der Ausführung nahtlos in den neuen
Plan zu überführen. Hierfür ist eine komplexe Logik auf der Ausführungsseite des Ro-
boters nötig, auf die hier jedoch nicht genauer eingegangen werden soll.

7.2.2. Planung mit Rotations-Swept-Volumen

Dieser Abschnitt beschäftigt sich mit der Bewegungsplanung für eine nicht rotationssym-
metrische, mobile Plattform mit holonomem Antrieb. Der SE (2) Planungsraum weist die
drei Dimensionen C(x, y, θ) auf, die mit einer Kombination aus Swept-Volu-men und ei-
nem kombinatorischen Verfahren geplant werden. Die Effizienz des entwickelten Ver-
fahrens ergibt sich aus der getrennten Betrachtung der translatorischen und des rotatori-
schen Freitheitsgrades. Somit können vorberechnete Rotationsbewegungen durch Trans-
lation mittels Basisversatz sehr schnell an unterschiedlichen Positionen in der Umwelt
auf Kollision geprüft werden (siehe Unterabschnitt 5.3.1). Die Umwelt wird daher nicht

1Open Motion Planning Library http://ompl.kavrakilab.org/
2Search-based Planning Library http://sbpl.org

132

http://ompl.kavrakilab.org/
http://sbpl.org

7.2. Umgesetzte Planungsverfahren

Swept Volumen Generierung

Kollisions-
erkennung Planung

Ausführungsüberwachung

Virtuelle
Ausführung

Reale
Ausführung

Umweltmodell
aktualisieren

Egomodell
aktualisieren

Sensordaten
Aufnahme

Pose
ermitteln

Abb. 7.6.: Virtueller Roboter fährt voraus und erzeugt dabei einen Swept-Volumen-
Korridor, den der reale Roboter auf dynamische Hindernisse hin überwachen
kann. Blaue Komponenten werden nicht auf der GPU ausgeführt.

durch einen Octree, sondern durch eine Voxelkarte repräsentiert, die in unterschiedli-
chen Auflösungen vorgehalten wird. Somit können, wie in Unterabschnitt 5.3.2 beschrie-
ben, Kollisionsprüfungen in zwei Auflösungen durchgeführt werden. Die beschriebenen
Techniken wurden in der Diplomarbeit von Jörg Bauer [20] erfolgreich umgesetzt und
evaluiert.

Unabhängig, aber beinahe zeitgleich mit der hier vorgestellten Methode wurde auch von
Dakulovic et al. in [67] ein Verfahren vorgestellt, das mit ähnlichen Techniken arbeitet.
Auch Lau et al. arbeiten in [129] mit rotationsabhängigen Modellen, jedoch nur in ei-
ner 2,5D Umwelt. Sie generieren Höhenkarten ihres Roboters, die über einen speziellen
Faltungsoperator mit Umweltkarten zur Durchfahrtshöhe zu einem befahrbaren Bereich
umgerechnet werden.

Arbeits- und Planungsraum

Viele Arbeiten, die Plattformbewegungen in einem zweidimensionalen Umweltmodell
planen, vernachlässigen den rotierenden Freiheitsgrad θ, indem sie den Roboter als punkt-
förmig annehmen und dafür die Hindernisse um die maximale Ausdehnung des Ro-
boters erweitern. Durch diese konservative Abschätzung können Kollisionen für alle
Orientierungen ausgeschlossen werden. Die Ausrichtung des Roboters wird bei diesen
Verfahren in einem Nachbearbeitungs- oder Glättungsschritt frei gewählt und meist in
Fahrtrichtung ausgerichtet. Problematisch ist diese Abschätzung jedoch in engen Pas-
sagen, die der Roboter zwar praktisch durchfahren könnte, die jedoch in der Planung
aufgrund der Erweiterung der Hindernisse als nicht passierbar erscheinen.

Um dieses Problem zu vermeiden, werden im hier vorgestellten Verfahren mögliche
Plattformorientierungen bei der Planung explizit berücksichtigt. Hierfür wird der Ar-
beitsraum durch ein zweidimensionales Gitter in der Fahrtebene diskretisiert und auf
diesem die Kollisionsfreiheit der Plattform in unterschiedlichen Orientierungen getestet,
wie in Abb. 7.7 gezeigt. Zur Reduzierung des Planungsaufwands lässt sich der Gitterab-
stand wesentlich gröber wählen, als die Auflösung des Umweltmodells. Bleibt er unter-

133

7. Bewegungsplanung

halb der Breite des Roboters, kann bei einem Übergang zwischen zwei Gitterzellen die
Kollisionsfreiheit garantiert werden.

Für die Ermittlung der kollisionsfreien Orientierungen wird ein Rotations-Swept-Volu-
men eingesetzt, das zunächst in einem Offline Schritt zu erstellen ist. Das Robotermodell
wird dafür schrittweise um 360◦ um seine zentrale Rotationsachse gedreht und seine Vo-
xeldarstellung in eine Voxelliste eingetragen (siehe Abb. 7.8b). Da hierbei Bitvektor-Voxel
verwendet werden, kann gemäß Unterabschnitt 5.1.4 eine Rotation durch 250 individu-
ell identifizierbare Abschnitte repräsentiert werden. Bei einer Kollisionsprüfung mit der
Umwelt lassen sich somit valide Winkelbereiche auf ∼1,5◦ genau ermitteln.

(a) Erweiterung der Nodes (b) Extraktion des Pfades (c) Optimierung des finalen Pfa-
des

Abb. 7.7.: Planung einer Trajektorie für einen mobilen Roboter anhand eines Swept-Vo-
lumens seiner Rotation. Veröffentlicht in [3].

Planung mittels D*-Lite

Die eigentliche Planung findet auf einem eng vermaschten Graphen statt, dessen Kno-
ten Zustände aus Cfrei darstellen, die auf dem Planungsgitter liegen. Kanten im Graphen
repräsentieren den Übergang zwischen einer Gitterzelle und einer ihrer acht Nachbarzel-
len. Da jedoch innerhalb einer Gitterzelle mehrere valide Winkelbereiche auftreten kön-
nen, bedarf es in diesen Fällen mehrerer Graphenknoten um eine Zelle zu repräsentieren.
Kanten im Graphen werden nur erstellt, wenn zwei Zellen einen überlappenden, kollisi-
onsfreien Winkelbereich aufweisen. Ein Beispiel dazu ist in Abb. 7.9 gezeigt. Die Kanten
im Graphen werden mit den Kosten für einen Übergang zwischen zwei Zellen annotiert.
Details zur verwendeten Kostenfunktion folgen später.

Die Suche im Graphen erfolgt mittels des D*-Light-Algorithmus, wobei der Aufbau des
Graphen und die eigentliche Suche zeitlich verschränkt ablaufen. Wird eine Zelle expan-
diert, müssen ihre Nachfolger ermittelt bzw. aktualisiert, und die Kollisionsprüfung des
Rotations-Swept-Volumens an den Koordinaten der Zelle durchgeführt werden. Danach
können die Pfadkosten jedes Nachfolgers bestimmt werden, wobei die Kosten antipro-
portional zum übereinstimmenden Winkelbereich sind. Die Überprüfung, ob Nachbar-
knoten im Graphen überlappende Rotationswinkel aufweisen und welche Winkel dies
sind, ist nach der Kollisionsprüfung beider Zellen effizient möglich: Da die Ergebnisse
der Prüfungen durch Bitvektoren dargestellt werden, können diese über eine einfache

134

7.2. Umgesetzte Planungsverfahren

(a) Mobile Plattform
bei 0◦ Ausrichtung

(b) Swept-Volumen ei-
ner 360◦ Drehung
mit SSV-IDs

(c) Subvolumen des
kollisionsfreien
Winkelbereichs

(d) Subvolumen des
kollidierenden
Winkelbereichs

Abb. 7.8.: Rotatives Swept-Volumen des IMMP Roboters, das mit einer einzelnen Kollisi-
onsprüfung ausgewertet wird.

Abb. 7.9.: Überführen der möglichen Rotationen in einen Planungsgraphen. Veröffent-
licht in [3].

135

7. Bewegungsplanung

‖-Operation zusammengefasst werden. Nicht gesetzte Bits kennzeichnen dann kollisi-
onsfreie Rotationswinkel. Kann der Roboter somit ohne Änderung seiner Ausrichtung
zwischen zwei Zellen wechseln, entstehen keine Übergangskosten und es fließen ledig-
lich die euklidischen Distanzen in die Kostenfunktion ein. Sind die Kosten gültig (< un-
endlich), kann der Schlüsselwert k (vgl. Gleichung 7.2) des Knotens berechnet werden
und damit der Knoten in die Liste der zu expandierenden Knoten eingetragen werden.
Da bei der Suche Knoten auch mehrfach auf Kollisionen untersucht werden können, ver-
fügen diese über eine zusätzliche Boolsche Variable, die kennzeichnet, ob ihre Prüfung
bereits durchgeführt wurde und somit übersprungen werden kann. Als Resultat entste-
hen einer oder mehrere neue Knoten und entsprechende Kanten im Surchgraphen. Zu-
sätzlich wird geprüft, ob das Stopkriterium des D*-Lite Algorithmus erfüllt ist. Ist dies
der Fall, kann der Pfad von Ziel zu Start extrahiert werden, indem rekursiv der Vor-
gänger mit den niedrigsten Kosten ausgewählt wird. Der resultierende Pfad besteht aus
den zu befahrenden Zellen, wobei sichergestellt ist, dass diese einen zumindest teilweise
überlappenden, kollisionsfreien Winkelbereich aufweisen.

Eine Besonderheit des D*-Light-Algorithmus ist die Wiederverwendung von Teilpfaden,
wenn es aufgrund von Änderungen in die Umwelt entlang des geplanten Pfades zu ei-
ner Kollision kommt. In diesem Fall werden alle Knoten entlang des Pfades erneut auf
Kollisionen geprüft. Repräsentieren mehrere Graphenknoten unterschiedliche Rotations-
bereiche innerhalb derselben Gitterzelle, so werden diese nur einmalig auf Kollision ge-
prüft, um Rechenzeit zu sparen. Nicht länger freie Knoten werden aus dem Pfad entfernt,
und alle angrenzenden Nachbarn werden wieder zur Liste der zu untersuchenden Kno-
ten hinzugefügt. Durch die folgenden Suchschritte werden die rhs-Werte aller betroffe-
nen Knoten aktualisiert, und die neuen Kosten bis zum Ziel propagiert. Dabei werden
im Allgemeinen auch weitere Knoten expandiert und Zellen zum Graphen hinzugefügt.
Ist das Stop-Kriterium erfüllt, wurden alle relevanten g-Werte aktualisiert, und ein Pfad,
der an die neuen Gegebenheiten angepasst ist, kann extrahiert werden. Ist das Kriterium
auch nach der Bearbeitung aller Knoten nicht erfüllt, existiert kein Pfad zwischen Ziel
und Start.

Für die Graphendatenstruktur des D*-Lite Algorithmus wurde ein Geometric Near-neighbor
Access Tree (GNAT) genutzt, weshalb Knoten keine Zeiger auf ihre Vorgänger oder Nach-
folger halten müssen, da diese immer auf der Datenstruktur gesucht werden. Somit liegt
der benötigte Speicher unter dem normalerweise hohen Speicheraufwand eines A*-Algo-
rithmus. Ob ein Nachbarknoten auf dem Pfad vor oder nach einem anderen Knoten liegt,
wird alleine über die Suchheuristik und den rhs-Wert der Knoten entschieden. Die Ver-
wendung eines GNAT vereinfacht weiterhin die Ermittlung der nächstgelegenen Knoten
zu gegebenen Start- und Zielkonfigurationen, da diese nicht auf dem diskretisierten Ras-
ter liegen müssen. Die Liste der zu expandierenden Knoten wurde als Prioritätsschlange
umgesetzt, so dass Einträge sortiert nach ihren Kosten bearbeitet werden können.

Pfadoptimierung

Planer, die auf einer diskretisierten Umweltrepräsentation arbeiten, erzeugen meist sub-
optimale Pläne, was die zurückgelegten Distanzen betrifft. Abb. 7.10a verdeutlicht, dass
die Manhattan-Distanz auf dem Planungsgitter länger ist, als die direkte Verbindung im

136

7.2. Umgesetzte Planungsverfahren

kontinuierlichen Raum. Daher schließt sich an die Planung ein einfacher Nachbearbei-
tungsschritt an, der versucht, den Pfad mit einem Verfahren aus der Doktorarbeit von
Nash [149] zu kürzen. Der umgesetzte Algorithmus iteriert dafür über den Pfad [s0..sn],
wobei geprüft wird, ob eine Sichtverbindung zwischen s0 und s2 besteht. Ist dies der
Fall, kann s1 aus dem Pfad entfernt werden, und es wird zwischen s0 und s3 auf Sicht
geprüft. So wird weiter verfahren, bis die Sichtprüfung bei sx fehlschlägt, woraufhin die
Iteration bei sx neu startet und auf Sichtkontakt mit sx+2 prüft. Ist das Verfahren bei sn an-
gelangt, wurden alle unnötigen Zwischenpunkte entfernt und der direkteste Weg ist das
Resultat. Sichtverbindung heißt in diesem Fall, dass alle Zellen auf der Geraden zwischen
zwei Gitterfeldern unter allen Rotationswinkeln kollisionsfrei sind, womit sichergestellt
ist, dass in der Nähe von Hindernissen keine Optimierung durchgeführt wird. Das Ver-
fahren wurde als Erweiterung der Pfadextraktion der D*-Lite Suche implementiert. Ein
beispielhaftes Ergebnis findet sich in Abb. 7.10b.

4

C

1 2 3 5 6
A

A* Post- Smoothing path

true shortest path
shortest grid path

B

s

sstart

goal

(a) Vergleich unterschiedlicher Pfade
(Grafik aus [149]).

(b) Pfadoptimierung durch Nachbearbei-
tung.

Abb. 7.10.: Optimierung der suboptimalen Pfade eines A*-Planers, die bedingt durch die
Diskretisierung entstehen.

Rotationsoptimierung

Neben seiner Länge zeichnet sich ein guter Pfad für eine mobile Plattform auch durch
seine Glattheit und die gewahrte Minimaldistanz zu Hindernissen aus. Da die beschrie-
bene Graphensuche bisher lediglich einen Pfad aus zusammenhängenden Gitterzellen
liefert, muss durch einen nachgelagerten Schritt eine optimale Plattformorientierung ent-
lang der X/Y-Trajektorie festgelegt werden. Auch wenn die verwendete Plattform einen
holonomen Antrieb aufweist, ist es von Vorteil, bei der Fahrt eine Vorzugsrichtung zu
beachten, da dies intuitiver für den Menschen ist und bessere Fahreigenschaften erreicht
werden. Seitliches oder sogar rückwärts gerichtetes Fahren soll durch hohe Kosten wei-
testgehend vermieden werden. Weiterhin sind gerade Strecken vor häufig alternierenden

137

7. Bewegungsplanung

Richtungswechseln zu bevorzugen, so dass höhere Geschwindigkeiten erreichbar sind.
Um Aussagen über die Ausrichtung der Plattform verwalten zu können, speichert jede
Gitterzelle den Plattformwinkel.

Nachdem ein Pfad gefunden und gekürzt wurde, muss ausgehend von einem Startwin-
kel die finale Ausrichtung θ der Plattform bestimmt werden. Da für jede Gitterzelle sn
entlang des Pfades der minimale und maximale Winkel θsnmin|max bekannt ist, kann über
eine einfach Mittelung zwischen zwei benachbarten Zellen eine valide Ausrichtung be-
stimmt werden. Dadurch ist einerseits der Abstand zu allen Hindernissen maximiert,
andererseits ist es jedoch wahrscheinlich, dass sich der Winkel häufig ändert, wie in
Abb. 7.12a zu sehen ist. Um über längere Streckenabschnitte eine konstante Plattform-
orientierung zu halten, ist eine geometrische Betrachtung der Winkel wie in Abb. 7.12b
hilfreich, bei denen der Winkel so gewählt wird, dass er über eine maximale Anzahl
von Zellen nicht geändert werden muss. Die glattesten Fahrbewegungen entstehen je-
doch, wenn nicht der Winkel, sondern seine Änderung möglichst konstant bleiben, wie
in Abb. 7.12c gezeigt. Hierfür kann mit den minimalen und maximalen Winkeln aufein-
ander folgenden Zellen die Steigung der Winkelgeschwindigkeit eingegrenzt werden, bis
diese eindeutig bestimmt ist (angedeutet durch die gestrichelten Geraden). Da sich mini-
male und maximale Steigung nur monoton ändern dürfen, entstehen die rot markierten
Bereiche, in denen keine Anpassung der Steigung stattfindet. Bei allen Berechnungen
werden die Ausrichtungen der Plattform als Polarkoordinaten auf dem Einheitskreis be-
trachtet, um zwischen den Winkeln mitteln zu können.

Beginnend mit der Orientierung im Startzustand wird diese Ausrichtung entlang des
geplanten Pfades weitergegeben und nur geändert, wenn der Winkel in einer Kollision
resultiert. In diesem Fall wird der ähnlichste, kollisionsfreie Winkel gewählt. Die Winkel-
differenz α (siehe Abb. 7.11a) geht als cR(α) in die Kostenfunktion ein (teilweise auch in
Form ihrer Ableitung).

Neben diesen Rotationskosten müssen auch die zurückgelegten Distanzen optimiert wer-
den. Die dafür zuständige Kostenfunktion cT (β) sorgt weiterhin dafür, dass seitliche oder
rückwärts gerichtete Bewegungen zwar planbar sind, aber aufgrund ihrer hohen Kosten
im Allgemeinen vermieden werden. Der verwendete Winkel β liegt zwischen der ver-
wendeten kollisionsfreien Plattformausrichtung und der eigentlichen Bewegungsrich-
tung beim Zellenübergang (siehe Abb. 7.11b).

Zusammen mit den Kosten für die Länge der zurückzulegenden Strecke cEuclid ergibt sich
für die Pfadkosten folgende Summe:

cΣ = cEuclid + cT (α) + cR(β) (7.3)

Planung von Manipulationsposen

Eine Fragestellung, die bei der Planung von Manipulationsaufgaben mit mobilen Ro-
botern eine große Rolle spielt, ist die Auswahl von geeigneten Plattformposen für die
auszuführenden Aufgaben. Dabei muss für die Ausführung sichergestellt sein, dass der
Manipulatorarm alle relevanten Objekte erreichen kann, und die Armbewegung zu kei-
nem Zeitpunkt mit der Umgebung in Kollision liegt. Nach aktuellem Stand der Technik

138

7.2. Umgesetzte Planungsverfahren

(a) Rotationskosten (b) Kosten der Ausrichtung

Abb. 7.11.: Bestandteile der Kostenfunktion.

δ

δs0min

δs0

δs0max

0 sa ssb sc sd sesf sg sh si

(a) Optimierung auf großem Hindernisabstand. Dies führt zu häufigen Änderungen des Winkels
bei sa bis si.

δ

δs0min

δs0

δs0max

0 sa ssb sc

(b) Optimierung auf einen konstanten Winkel. Bei sa muss die Orientierung das erste Mal ange-
passt werden, bei sb das zweite Mal, ebenso an der unstetigen Stelle sc.

δ

δs0min

δs0

δs0max

0 sa ssb sc

(c) Optimierung auf eine konstante Drehrate. Bei sa muss die Winkelgeschwindigkeit das erste
Mal angepasst werden, bei sc das zweite Mal. An der unstetigen Stelle sb dreht sich die Platt-
form vorbei.

Abb. 7.12.: Unterschiedliche Möglichkeiten zur Wahl der Plattformorientierung θ entlang
des Pfades s.

139

7. Bewegungsplanung

wird dafür eine vielversprechende Plattformpose ausgewählt, und an dieser die Arm-
bewegung simuliert, um auftretende Kollisionen und die Erreichbarkeit evaluieren zu
können. Treten Probleme auf, wird die Plattform so lange iterativ verschoben und er-
neut die Manipulationsaufgabe simuliert, bis diese erfolgreich ist. Dieser zeitaufwendige
Prozess kann durch die Verwendung von Swept-Volumen stark verkürzt werden. Da-
für muss im Vorfeld durch zahlreiche Simulationen leicht unterschiedlicher Manipulati-
onsausführungen einer Aufgabenklasse (bspw. Objekt von Tisch aufnehmen oder Schublade
öffnen) zunächst das Swept-Volumen des Manipulator-Arbeitsraumes berechnet werden.
Beispiele sind in Abb. 7.13 zu sehen. Dieses Volumen rotiert man dann zusammen mit
der Plattform, jedoch nicht um das Plattformzentrum, sondern um den Tool Center Point
(TCP) des Manipulators. Während der Arm bei der Erzeugung von Rotationsvolumen
für die Plattformplanung meist auf einer eingezogenen Parkposition steht, um kompakte
Volumen zu erhalten, entstehen nun ausladende Rotationskörper. Prüft man diese mittels
Bitvektor-Kollisionstests gegenüber der Umwelt, ist sofort ersichtlich, an welchen Posen
im Raum eine potentielle Manipulationsaufgabe ausführbar ist. Diese Posen bilden dann
passende Zielkandidaten für den beschriebenen D*-Lite Planer.

Die vorgeschlagene Methode abstrahiert durch eine statistische Vorberechnung von der
Vielzahl an Freiheitsgraden, die ein mobiler Manipulator im Allgmeinen aufweist, und
nutzt zur Laufzeit lediglich eine sehr schnelle Kollisionsprüfung. Probabilistischen Ver-
fahren, wie Inverse Capability Maps [193], ist diese einfache Form der Erreichbarkeitsana-
lyse in so fern Überlegen, dass sie keine unausführbaren Hypothesen liefert.

(a) Armbewegung einer typi-
schen Manipulationsaufga-
be

(b) Swept-Volumen mehrerer,
leicht unterschiedlicher
Armbewegungen

(c) Potentielle Manipulations-
posen: Erreichbar und Kol-
lisionsfrei

Abb. 7.13.: Rotierte Swept-Volumen zur effizienten Evaluierung von Plattformposen bei
Manipulationsaufgaben. Veröffentlicht in [3].

Zusammenfassung

Durch die beschriebene D*-Lite-Planung auf Basis von Rotations-Swept-Volu-men ist es
möglich, auch ohne eine zusätzliche Nachbearbeitung glatte Pfade für eine mobile Platt-
form zu generieren. Da dabei die Orientierung des Roboters in der Kostenfunktion ex-
plizit berücksichtigt wird, können über unterschiedliche Kriterien gewisse Bewegungs-
muster bevorzugt werden. Durch die Verwendung eines diskretisierten Planungsgitters

140

7.2. Umgesetzte Planungsverfahren

bleibt der Konfigurationsraum und damit auch der Planungsgraph übersichtlich. Wei-
terhin ist der Gitterabstand so gewählt, dass keine interpolierenden Kollisionsprüfungen
entlang der Zustandsübergänge erforderlich sind, wodurch kurze Berechnungszeiten er-
reicht werden. Zusätzlich kann dadurch die Wiederverwendbarkeit von Teilplänen bei
Veränderungen in der Umwelt durch den D*-Lite Planer risikofrei ausgeschöpft wer-
den, da bei Zustandsübergängen keine unvorhergesehenen Hindernisse auftreten kön-
nen. Das Verfahren ist vollständig, so dass existierende Lösungen immer gefunden wer-
den. Es eignet sich somit besonders für die Planung in stark zerklüfteten Innenräumen
mit beschränkter Ausdehnung.

7.2.3. Plattformplanung mit generischen Bewegungsprimitiven

Die Verwendung von Rotations-Swept-Volu-men ist nicht der optimale Ansatz, wenn es
größere Distanzen zu überbrücken gilt. Hier bietet sich eine Planung mit Bewegungspri-
mitiven an, deren grundlegenden Eigenschaften bereits in der Übersicht der Planungs-
verfahren vorgestellt wurden. Zielplattform ist wieder ein holonomes Fahrzeug, weshalb
die verwendeten Bewegungsprimitive lediglich aus 2D Trajektorien in der Fahrtebene be-
stehen. Ähnlich wie bei der Planung mit Rotationsvolumen sollen auch hier konkatenier-
bare und universell verwendbare Trajektorienstücke genutzt werden, um daraus längere
Pläne zusammenzusetzen. Ziel ist dabei, die rotierenden Freiheitsgrade durch Vorberech-
nungen abzudecken, so dass zur Planungszeit mit reinen Translationen gearbeitet wer-
den kann, um wieder die Effizienzvorteile des Basisversatzes aus Unterabschnitt 5.3.1
nutzen zu können. Die hier vorgestellten Verfahren wurden von Klaus Fischnaller in sei-
ner Masterarbeit [23] implementiert.

Die für die Fahrtplanung gewählten Primitve decken unterschiedlich lange, geradlini-
ge Pfade sowie Kurvenfahrten mit unterschiedlichen Längen und Radien ab. Sie begin-
nen alle mit derselben Startorientierung und enden fächerförmig (vgl. Abb. 7.14) mit fest
definierten Orientierungen (in dieser Arbeit 0, ±45 und ±90 Grad). Die Definition der
Primitive erfolgt komfortabel in einem eigens implementierten grafischen Designer, in
dem einzelne Pfade entweder als Polynom definiert oder als Spline über Stützpunkte
editiert werden können. Dabei muss die Geometrie der Pfade so gewählt werden, dass
die Endpunkte der Primitive nicht nur die diskretisierten Orientierungen aufweisen, son-
dern sich auch auf virtuellen Gitterpunkten befinden. Nur so ist sichergestellt, dass nach
einigen Konkatenationen Zirkelschlüsse entstehen können, wie sie in Abb. 7.15 zu er-
kennen sind. Anderenfalls wächst das Netz aus Primitiven sowie der Planungsgraph bei
der Suche ins Unendliche. Sind die 2D-Pfade festgelegt, werden sie mit dem Roboter-
modell virtuell abgefahren und dabei die Swept-Volu-men der Bewegungen generiert.
Alle Volumen erhalten eine individuelle SSV-IDs und werden zusammen in einer Vo-
xel-Datenstrukur gespeichert. Somit lassen sich alle Primitive gleichzeitig mit nur einer
Kollisionsprüfung gegenüber dem Umweltmodell auf Ausführbarkeit prüfen. Durch das
Einbringen eines Versatzes können die vorberechneten Pfade effizient an beliebigen Po-
sitionen in der Umwelt evaluiert werden.

141

7. Bewegungsplanung

(a) Aufbau der acht fächerförmig angeordnete Bewegungsprimitive.

(b) Kombination von acht Bewegungsfächern mit unterschiedlicher Startorientierung.

Abb. 7.14.: Bewegungsprimitive des IMMP Roboters, die bei der Planung auf Kollisions-
freiheit geprüft werden.

Planer

Die erste Umsetzung eines Planers stützte sich auf die Algorithmen der SBPL (ARA*,
Anytime D*, R*), welche die GPU-basierte Kollisionsdetektion nutzen. Da SPBL-Planer
die Primitive jedoch serialisiert evaluieren, wurden sie so abgeändert, dass die Anfra-
gen teilweise parallel ablaufen konnten, was die Effizienz drastisch steigerte. Dennoch
ergaben Vergleiche mit einem reinen 2D Szenario und fünf Bewegungsprimitiven kei-
ne zufriedenstellenden Ergebnisse. Die Originalimplementierung führte dabei 64 000 2D-
Kollisionsprüfungen in 4,7 s durch, während die GPU für 12 800 3D-Kollisionsprüfungen
(Parallelisierung mit Faktor fünf) 25,37 s benötigte. Auch wenn sich dieses Verhältnis mit
einer steigenden Anzahl bzw. längeren Primitiven verbessert, wurde der SBPL-Ansatz
wieder verworfen. Als Alternative wurde ein eigener D*-Lite Planer entwickelt, der bes-
sere Einsichten und mehr Freiheiten bei der Entwicklung erlaubte.

Probleme bei dynamischer Umwelt

Wie in der Taxonomie der Planungsverfahren beschrieben wurde, haben Planer, die mit
Pfadabschnitten arbeiten, das Problem, bei neu auftretenden Hindernissen zu beurteilen,
welche Teile des Planungsgraphen zu invalidieren sind. Um dieses Problem zu vermei-
den, wurde die Expansion des Planungsgraphen von der eigentlichen Suche entkoppelt.
Wird nun eine Kollision erkannt, können die betroffenen Abschnitte aus dem Graphen
entfernt werden, womit eine spätere Suche nur auf konsistenten Daten stattfindet. Ähn-
lich dem A*-Algorithmus wird der Graph durch Expansionsschritte so lange erweitert,

142

7.2. Umgesetzte Planungsverfahren

Abb. 7.15.: Bewegungspfade der Primitive für 45 bzw. 90 Grad Startorientierungen und
ihren möglichen Konkatenationen.

bis das Ziel erreichbar ist. Allerdings wird danach nicht direkt der Pfad extrahiert, son-
dern über eine separate Dijkstra-Suche ermittelt. Somit ist sichergestellt, dass auch bei
einer Änderung im Graphen durch neue Umweltinformationen noch ein gültiger Pfad
gefunden werden kann. Der entstandene Algorithmus entspricht nun ansatzweise einem
dynamischen Roadmap-Planer, in dem eine A*-Expansion für die Wegesuche eingesetzt
wird. Umgesetzt wurde dies mit Hilfe der LEMON Graphenbibliothek [70]. Dieses Vor-
gehen löst nicht das eigentliche Problem, sorgt aber dafür, dass der Planungsgraph durch
zusätzliche Berechnungen konsistente Lösungen generieren kann.

Somit besteht weiteres Optimierungspotential bei der Suche nach alternativen Plänen,
nachdem neue Hindernisse auf dem Weg zum Ziel bekannt wurden. Diese blockieren
in der diskretisierten Umgebung meist mehr als nur eine Kante entlang des Lösungs-
pfades, da sie eine Ausdehnung über mehrere Zellen aufweisen. Da versperrte Knoten
jedoch erst bei der Expansion des Graphen erkannt werden, tastet sich die Suche den-
noch nur in direkter Nachbarschaft zum ursprünglichen Plan voran. Dies führt zu zahl-
reichen Fehlversuchen aufgrund desselben Hindernisses, bis ein valides Primitiv neben
dem Hindernis gefunden wurde. Da das Verhalten keinen Fehler, sondern nur unnötige
Rechenzeit bedeutet, wurde es in der Implementierung nicht umgangen. Eine mögliche
Lösung wäre beispielsweise eine gezielte Abtastung der Region um das Hindernis, bevor
die Berechnung alternativer Pläne immer wieder vom Ziel aus startet.

7.2.4. Manipulatorarm Planung mit Bewegungsprimitiven

Die vorgestellten Bewegungsprimitive (Rotationsvolumen bzw. kurze Plattformpfade)
eignen sich gut für die GPU-beschleunigte Planung, da ihre vorberechneten Swept-Vo-
lumen durch eine translative Bewegung konkateniert werden können. Diese Translation
kann im Voxelgitter sehr effizient durch einen einfachen Basisversatz umgesetzt wer-
den.

Anders sieht es hingegen bei den Bewegungen eines Roboterarmes aus, die für eine Kon-
katenation nicht nur verschoben sondern auch rotiert werden müssten. Um die Rotati-
onskonstellationen in den Primitiven zu codieren (wie bei der Plattformplanung), müsste
eine zu grobe Diskretisierung der Winkel vorgenommen werden, um die Daten identi-
fizierbar zu speichern. Diese Diskretisierung würde insbesondere in den Basisgelenken

143

7. Bewegungsplanung

einen zu hohen Diskretisierungsfehler im TCP des Roboters bedeuten, um allgemein-
gültige Bewegungen planen zu können. Auch das Arbeiten mit Polarkoordinaten wäre
(abgesehen von den schwierigen und unregelmäßigen Voxelformen) keine Lösung, da
eine Translation über einen Offset nicht möglich ist.

Aus diesen Gründen konnte in dieser Arbeit keine Lösung für die feingranulare Planung
von Manipulatortrajektorien mittels Primitiven umgesetzt werden.

7.2.5. Manipulatorarm Planung mit samplingbasierten Verfahren

Wie bereits in der Taxonomie beschrieben, verschiebt sich der Berechnungsaufwand bei
der Planung mit samplingbasierten Verfahren von der Kollisionsprüfung hin zur Vo-
xelumwandlung der gesampelten Posen bzw. den abgetasteten Bewegungen zwischen
den Samples. Diese Problematik kann durch die Verwendung von so genannten Lazy
evaluating Planungsverfahren minimiert werden. Dabei wird während einer ersten Pla-
nungsphase auf die Kollisionsprüfung der Bewegungen verzichtet und während dem
Sampling lediglich Start- und Endposen evaluiert. Erst wenn ein potentieller Pfad ge-
funden wurde, werden in einer zweiten Phase nur die benötigten Bewegungen zwischen
den verwendeten Posen abgetastet und auf Kollisionsfreiheit geprüft. Werden dabei un-
ausführbare Abschnitte detektiert, kann der Planer lokal nach Alternativen suchen. Dies
reduziert den Aufwand der Voxelumwandlung eklatant und es können konkurrenzfähi-
ge Planungszeiten erreicht werden. Die Prüfung der Bewegungen erfolgt mit Hilfe von
Swept-Volu-men, die die abgetastete Bewegung repräsentieren und die dann mit einer
einzelnen Kollisionsprüfung bearbeitet werden können. Auf Grund der nicht existenten
Abbildung von Ausführung zu Planungsraum können keine Roadmap Planer eingesetzt
werden. In der Evaluation wurden die Planer LBKPIECE1 und SBL aus der OMPL er-
folgreich getestet.

Ähnlich wie bei der Plattformplanung entsteht durch die Kollisionsprüfung der Bewe-
gungen zwischen den Samples ein virtueller Korridor, in dem sich der Roboter während
der Ausführung bewegt. Dieser kann mittels der SSV-ID in bis zu 250 Abschnitte unter-
teilt werden, um bei einer detektierten Kollision die verbleibende sichere Strecke bestim-
men zu können. Durch eine Interaktion zwischen der Ausführung und dem Planer lässt
sich der Startpunkt einer Neuplanung auf die aktuelle Pose des Roboters festlegen, um
unterbrechungsfrei an die alte Trajektorie anknüpfen zu können.

7.2.6. Ganzkörperplanung

Sollen Pfade für mobile Manipulatoren (also die Kombination einer mobilen Plattform
mit einem oder mehreren Armen) gefunden werden, lassen sich auch die im vorigen
Abschnitt beschriebene samplingbasierte Planer einsetzen. Auf Grund der Vielzahl an
Freiheitsgraden solcher Systeme muss das Sampling allerdings sehr effizient gestaltet
werden. Hier bietet es sich an, die geplanten Freiheitsgrade durch eine Heuristik zu be-
schränken. RRT-Goalbias und RRT-Goalzoom sind dafür zwei Modifikationen des RRT
Algorithmus, die Vahrenkamp et al. in [198] vorgestellt haben. Die erste Erweiterung
verbessert die Konvergenz der Suche in Richtung des Zieles, während die Zweite die
aktiven Freiheitsgrade bei der Planung mit der Annäherung zum Zielobjekt dynamisch

144

7.2. Umgesetzte Planungsverfahren

inkrementiert. Die generierten Pfade sind allerdings nicht optimal und weisen Unstetig-
keiten auf, die in einem Nachbearbeitungsschritt geglättet werden müssen.

Ein Ansatz von Yang et al. aus [207] nutzt einen PRM Planer, dessen Planungsgraph mög-
lichst klein gehalten wird, indem nur Knoten zum Graphen hinzugefügt werden, die den
Arbeitsraum des Manipulators signifikant erhöhen. Der genutzte Manipulator wies je-
doch lediglich fünf Freiheitsgrade auf und die Skalierbarkeit des Ansatzes ist fraglich.

Auch der Ansatz von Gochev et al. alterniert die Anzahl an geplanten Freiheitsgraden [89].
Zunächst wird versucht, das Ziel über eine Planung in einem niedrigdimensionalen Raum
zu erreichen. Ist dies nicht möglich, schaltet der Planer in Regionen mit Kollisionen in
einen hochdimensionalen Planungsraum.

Die genannten Verfahren sollen in Folgearbeiten praktisch in der Kombination mit der
GPU Kollisionsprüfung evaluiert werden.

7.2.7. Greifplanung

Greifplanung gehört zu den essentiellen Fähigkeiten eines Serviceroboters, da diese un-
terschiedlichste Objekte manipulieren müssen. Gleichzeitig stellt die Greifplanung eine
große Herausforderung für autonome Systeme dar, da vielfältige unterschiedliche Vor-
gaben erfüllt sein müssen, um einen stabilen Griff erfolgreich auszuführen. Menschen
benötigen in der frühen Kindheit mehrere Jahre, um diese Fähigkeit zu erlangen. Aller-
dings nutzen sie umfangreiches Kontext-, Objekt- und Hintergrundwissen um über einen
Griff zu entscheiden. Entsprechende Herangehensweisen existieren auch in der Robotik
[199], sollen hier aber nicht vertieft werden. Im Gegensatz zu ihnen nutzt das hier vorge-
stellte Verfahren ausschließlich geometrische Berechnungen und fokussiert sich darauf,
die Kontaktberechnung zwischen Hand und Objekt so weit zu beschleunigen, dass die
Greifplanung online ablaufen kann.

Während Industrieroboter individuell auf die zu handhabenden Objekte abgestimmte
Greifer verwenden, sind Serviceroboter meist mit Mehrzweckhänden ausgestattet. Ihre
Flexibilität erhalten sie durch zahlreiche bewegliche Freiheitsgrade, welche alle koordi-
niert angesteuert werden müssen, um einen erfolgreichen Griff auszuführen. Um passen-
de Gelenkwinkel zu finden, muss der Kontakt zwischen Hand und Objekt in komplexen
Simulationen bestimmt und optimiert werden. Da Objekte weiterhin auf zahlreiche un-
terschiedliche Weisen gegriffen werden können, sind diese Simulationen zur Beurteilung
der Alternativen zeitaufwendig.

Klassische Greifplaner [205] stützen sich daher auf vorberechnete Datenbanken, in denen
passende Griffe für bekannte Objekte abgelegt sind. Die Erstellung solcher Datenbanken
benötigt vollständige geometrische Modelle, was die Einsetzbarkeit auf eine begrenzte
Menge an Objekten einschränkt.

Alternative Ansätze, die Greifhypothesen auch für unbekannte Objekte herleiten können,
nutzen dafür Griffe, die für geometrische Grundobjekte oder Superquadriken definiert
sind [74]. Diese Primitive werden dann an den, in Sensoraufnahmen sichtbaren, Aus-
schnitt des Zielobjektes angepasst [63]. Darüber hinaus ist es auch möglich, eine Men-
ge von maximal großen Kugeln in das detektierte Objekt einzupassen [164] und diese
als bekannte Greifkörper zu nutzen. Eine weitere Möglichkeit, Annahmen über die der

145

7. Bewegungsplanung

Kamera abgelegenen Objektseite zu treffen, ist die Spiegelung der Sensordaten an der
Schattenkante der Aufnahme [48].

Die Qualität der beschriebenen Prozesse hängt klar von der Aufnahmeperspektive und
somit vom sichtbaren Abschnitt des Objektes ab. Um die Daten zu vervollständigen ist
ein Perspektivwechsel notwendig, der jedoch je nach Situation und Roboter mit großem
Aufwand verbunden sein kann, z.B. wenn der Roboter erst um einen Tisch herumfahren
muss, um das Objekt von der gegenüberliegenden Seite betrachten zu können.

Eine weitere Schwierigkeit, die aus dem kinematischen Aufbau klassischer Servicero-
boter hervorgeht, ist die Hand-Augen-Kalibrierung: Zahlreiche Methoden des Greifens
basieren auf einem einfachen Sense-Plan-Act-Zyklus, in dem ein Objekt einmalig detek-
tiert und ein passender Griff geplant wird, der dann ohne weitere Anpassung ausgeführt
wird. Somit ist eine exakte, extrinsische Kalibrierung der kinematischen Kette zwischen
der Sensorik und dem Endeffektor nötig, welche je nach Roboterkonfiguration schwierig
aufrechtzuerhalten ist.

Eine robustere Herangehensweise ist das biologisch motivierte Visual Servoing [92], bei
dem das Zielobjekt mittels einer Kamera lokalisiert und der Endeffektor relativ dazu po-
sitioniert wird. In einem geschlossenen Regelungskreis wird dann der Abstand zwischen
Objekt und Greifer minimiert, bis ein Griff möglich ist. Eigens für diesen Zweck sind ei-
nige Roboter mit Kameras in den Unterarmen ausgestattet. Dennoch verbleibt auch hier
die Schwierigkeit der Greifplanung. Daher wird Visual Servoing oft mit einer haptischen
Sensorik kombiniert [208], durch die sich die Finger schließen lassen, bis ein vordefinier-
ter Druck erreicht wird. Dabei entsteht jedoch das Problem, dass leichtere Objekte durch
den ersten Finger, der das Objekt berührt, verschoben werden. Abhängig von der Ob-
jektgeometrie kann bereits diese Verschiebung ein erfolgreiches Greifen verhindern, falls
das Objekt beispielsweise kippt oder wegrollt.

Um dem entgegenzuwirken, wurde eine Methode entwickelt, die visuelle Exploration
mittels einer In-Hand-Kamera nutzt, um Objektmodelle zu erzeugen. Diese ersetzen a prio-
ri Wissen über die Objektgeometrie, wodurch Griffe für zunächst unbekannte Objekte
gefunden werden können. Hochparallele Algorithmen ermöglichen es, diese Greifhypo-
thesen zu evaluieren, während sich die Hand noch um das Objekt bewegt. Die pro Fin-
ger individuell geplanten Bewegungen stellen sicher, dass alle Fingerglieder das Objekt
gleichzeitig berühren, ohne es zu verschieben oder die Umwelt sonst zu verändern. Die-
se Technik ist weiterhin mit taktiler Sensorik oder kraftbasierter Regelung kombinierbar,
um ausgeführte Griffe zusätzlich zu stabilisieren.

Technische Fortschritte in der 3D-Sensorik (siehe Abb. 4.1) erlauben es, die benötigten
hochauflösenden Kameras direkt in den Roboterarm [88] oder auch in den Greifer zu in-
tegrieren. Durch GPU-Voxels ist es möglich, unterschiedliche Griffe sehr schnell zu eva-
luieren und zu optimieren und diesen Prozess schritthaltend auszuführen, während sich
der Greifer bereits dem Objekt nähert.

Im Gegensatz zu Ansätzen wie [43, 139], die Oberflächenmodelle als Dreiecksnetze aus
Sensordaten generieren, ist dieser Schritt hier nicht nötig, da wie in allen anderen Expe-
rimenten volumetrische Voxelmodelle zum Einsatz kommen.

146

7.2. Umgesetzte Planungsverfahren

Optimierungsproblem

Bei der Greifplanung müssen unterschiedliche und teilweise gegensätzliche Kriterien er-
füllt werden, die nicht in linearem Zusammenhang stehen. Daher wird sie hier als mehr-
dimensionales Optimierungsproblem der Bewertungsfunktion f betrachtet, welche die
folgenden Eingabedaten bewertet:

• ~∆xyz und ~∆αβγ : Geometrische Transformation zwischen Objekt und Hand (6 DOF).
~∆ ∈ [~∆min, ~∆max]

• ~ϕ: Gelenkwinkel aller N Finger. Bilden Vektor ~ϕ ∈ [~ϕmin, ~ϕmax]

• O: Objekt Geometrie: Wird als unveränderlich angenommen

• H : Hand Geometrie: Kein Freiheitsgrad, da die Bewegung durch ~ϕ geschieht

Folglich sucht man nach

arg max
~∆,~ϕ

(
f
(
O,H, ~∆, ~ϕ

))
(7.4)

Um dieses Maximum analytisch zu berechnen, wäre eine Formel nötig, welche die kom-
plexe physikalische Interaktion einer Mehrkörperkinematik der Hand H mit dem Objekt
O abbildet. Die Berechnung eines solchen Systems, in einer für die Greifplanung ausrei-
chenden Qualität, ist nicht tragbar. Auch kann der Konfigurationsraum nicht systema-
tisch abgesucht werden, da seine Dimensionalität >= 8 zu hoch ist.

Daher wird in dieser Arbeit eine Partikelschwarmoptimierung (PSO) eingesetzt, die in
Abschnitt 8.10.2 näher beschrieben ist. Diese optimiert die Untermenge (~∆xyz, ~∆αβγ) des
Konfigurationsraumes, welche die Pose des Objektes beschreibt, während kontinuierlich
die Gelenkwinkel ~ϕ der Finger mittels GPU Kollisionsprüfung bestimmt werden.

Die Bewertungsfunktion

f
(
O,H, ~∆, ~ϕ

)
=
(
Vcol Handfläche + Vcol Finger

)
·
∑

n∈[2,N]

(ϕn) (7.5)

die von der PSO genutzt wird nutzt die folgenden Variablen:

• Vcol Handfläche: Kontaktvolumen zwischen Handfläche und Objekt

• Vcol Finger: Kontaktvolumen zwischen Fingern und Objekt

• ~ϕ: Gelenkwinkel der Finger zum Kontaktzeitpunkt. Größere Winkel bedeuten wei-
tere Schließung.

Die Funktion bewertet Griffe anhand des Kontaktvolumens zwischen Hand und Objekt
und bevorzugt Griffe, bei denen die Finger weiter geschlossen sind.

Die Eingabedaten werden auf der GPU durch die Simulation mehrerer tausend Griffe g
erzeugt. Das Ergebnis jedes simulierten Griffs besteht aus folgendem Tupel:

g
(
O,H, ~∆

)
=
(
Vcol Handfläche, Vcol Finger, ~ϕ

)
(7.6)

147

7. Bewegungsplanung

Die Parameter, unter denen f(g) sein Maximum erreicht, definieren den stabilsten Griff
mit den Fingergelenkwinkel ~ϕ und der Objektpose ~∆ relativ zur Handwurzel. Jede PSO
Optimierungsiteration liefert bereits die Gelenkwinkel eines Griffes, bei dem alle Finger
in Kontakt mit dem Objekt liegen und der somit theoretisch ausführbar wäre. Dies be-
schreibt die Charakteristik eines Anytime Algorithmus, die es erlaubt, den Optimierungs-
prozess jederzeit abzubrechen und dennoch valide Ergebnisse zu erhalten. Praktisch be-
nötigt es jedoch einige Iterationen, um einen stabilen Griff zu erreichen.

Zusammenfassung

Mit Hilfe der voxelbasierten Kollisionsdtetektion kann die Planung von Griffen direkt
auf Punktwolkendaten durchgeführt werden. Somit entfällt die Notwendigkeit für ab-
strakte Modelle und es lassen sich auch Griffe für unbekannte Objekte erzeugen und
bewerten. Weitere Details der praktischen Umsetzung des Verfahrens finden sich in Ab-
schnitt 8.10. Ebenso eine Evaluation, die zeigt, dass die Algorithmen schnell genug ablau-
fen, um während einer Anrückbewegung zu einem Objekt bereits gute Griffe zu finden.
Die vorgestellte Greifplanung wurde in [8] veröffentlicht.

Eine Funktion, die zugunsten der Voxelumwandlung aufgegeben werden muss, ist die
physikalische Modellierung der Greifkontakte, die bei Oberfächenmodellen durch ihre
Normalen ermöglicht wird. Auch wenn dies in einigen Szenarien einen Nachteil dar-
stellt, ergeben sich daraus jedoch keine generelle Probleme. Ebenso verringert sich die
Genauigkeit mit der Kantenlänge der Voxel. Da Serviceroboter jedoch häufig über eine
Impedanzregelung verfügen, lassen sich darüber die verlorenen Millimeter problemlos
ausgleichen.

7.3. Fazit

Die in diesem Kapitel vorgestellten Verfahren ermöglichen es Robotern, in einer senso-
riell erfassten, dynamischen Umwelt kollisionsfreie Bewegungen zu planen. Durch die
Nutzung der parallelen Kollisionsprüfung erreichen die Planer dabei ein reaktives Ver-
halten, wie in der folgenden Evaluation gezeigt wird. Es konnten unterschiedliche Her-
angehensweisen aufgezeigt werden, mit denen sich der Aufwand zur Voxelumwandlung
während der Planung minimieren lässt, um somit eine effiziente Implementierung zu
erhalten. Insbesondere die Verwendung von vorberechneten Bewegungsprimitiven, die
von rotierenden Bewegungskomponenten abstrahieren, erweisen sich als sehr gute Lö-
sung für die Planung von mobilen Plattformen. Weiterhin wurden Lösungen für Robo-
terarme, sowie eine Greifplanung von Mehrfingergreifern vorgestellt, die die universelle
Verwendbarkeit der Voxelverfahren unterstreichen. Zusammenfassend konnte dadurch
die Forschungsfrage 4 positiv beantwortet werden, da sowohl etablierte Planungsansätze
als auch neue Herangehensweisen erfolgreich mit parallelisierten Datenstrukturen kom-
binierbar sind.

148

8. Experimentelle Evaluation

In diesem Kapitel werden die im Laufe der Arbeit entwickelten Verfahren der Voxelmo-
dellierung und der hochparallelen Kollisionsprüfung evaluiert und ihr praktischer Ein-
satz in sehr unterschiedlichen Anwendungen erprobt. Die Szenarien decken dabei drei
Problemklassen ab, die in Abb. 8.1 dargestellt sind:

(a) Momentauf-
nahme

(b) Ego-Swept-Volumen und
Hindernis Momentaufnahme

(c) Ego- und Hindernis Swept-
Volumen

Abb. 8.1.: Die durchgeführten Experimente decken drei Problemklassen ab, die hier an-
hand von HoLLie (1) (Ansicht von Oben) dargestellt sind. Das Swept-Volumen
der geplanten Trajektorie ist unterteilt in den bereits abgefahrenen Bereich (4,
grau) und die ausstehende Bewegung (2, blau). Das Hindernis (3) ist in rot dar-
gestellt.

1. Zunächst ist die Parallelisierbarkeit verschiedener Datenstrukturen und ihre Eig-
nung zur Modellierung unterschiedlicher Entitäten der Bewegungsplanung zu prü-
fen. Hervorzuheben ist der GPU-optimierte Octree, der durch probabilistische Last-
balancierung alle bekannten Implementierungen aussticht. Aufbauend auf den Da-
tenstrukturen wird eine Kollisionsprüfung von Momentaufnahmen umgesetzt. Der
Erfolg wird anhand der Laufzeit der Verfahren gemessen und mit etablierten Algo-
rithmen verglichen. Es soll mindestens eine Verarbeitungsrate erreicht werden, die
der Bildrate aktueller 3D-Sensoren entspricht.

2. In einem zweiten Schritt wird die Kollisionsvermeidung beurteilt. Hierfür sind die
geplanten Robotertrajektorien in Form von Swept-Volumen dargestellt, die wäh-
rend der Ausführung auf eindringende Hindernisse (Momentaufnahmen der Um-
welt) hin überwacht werden. So entsteht ein überwachter Korridor, in dem sich
der Roboter sicher bewegen kann. Herausforderungen liegen in der zeitlichen und
örtlichen Identifizierbarkeit von Subvolumen bei der Kollisionsprüfung. Weiterhin
wird die Planung mittels Bewegungsprimitiven untersucht, bei der Trajektorien für
nichtholonome Plattformen aus Swept-Volu-men synthetisiert werden.

3. Im dritten Szenario werden schließlich nicht nur die Eigenbewegungen, sondern
auch die Bewegungen dynamischer Hindernisse als Swept-Volu-men modelliert,

149

8. Experimentelle Evaluation

um eine Kollisionsprädiktion zu erlauben, damit kollisionsfreie Bahnen in dyna-
mischen Umgebungen geplant werden können. Hierfür kommt eine voxelbasierte
Bewegungssegmentierung und -prädiktion zum Einsatz. Zur Planung werden Di-
stanzfelder (EDT) auf Voxelkarten definiert, über die ein variabler Sicherheitsab-
stand (3D-Potentialfeld) um Hindernisse herum gewahrt werden kann. Somit ist
neben einer exakten Kollisionsberechnung auch die Distanzberechnung zwischen
zwei Modellen umgesetzt, die für zahlreiche Planungsalgorithmen benötigt wird.

8.1. CUDA Laufzeitparametrierung

Bevor auf komplexe Anwendungen eingegangen wird, sollen zunächst noch Grundlagen
der CUDA Laufzeitparametrierung evaluiert werden, die allgemein anwendbar sind. Be-
reits in Kapitel 3 wurde dargestellt, dass für die quantitative Beurteilung von CUDA Al-
gorithmen zwischen rechen- und speicherintensiven Programmen unterschieden werden
muss. Theoretisch lassen sich beide Klassen durch einen Vergleich mit der rechnerisch
erreichbaren Rechenleistung der verwendeten GPU (GFLOPS / s) bzw. deren Speicher-
bandbreite (GiB / s) beurteilen. Für die Evaluation wurde in dieser Arbeit eine Titan-GPU
verwendet (siehe Unterabschnitt A.7.4), deren Prozessor bis zu 4,709 GFLOPS erreicht,
während der theoretische Speicherdurchsatz bei 288,4 GiB/s liegt. Da die erreichbare Be-
schleunigung durch die Parallelisierung bei komplexeren Algorithmen aber von einem
Zusammenspiel vieler Faktoren abhängt, liegen die praktisch erreichbaren Werte weit
unterhalb der Spezifikation. Daher werden in dieser Evaluation bevorzugt die Laufzei-
ten spezifischer Problemlösungen betrachtet.

Einer der einflussreichen Faktoren bei der Optimierung ist der Grad der Parallelisierung,
der sich in CUDA über zwei Parameter steuern lässt: Anzahl an Blöcken und Anzahl an
Threads pro Block (vgl. Unterabschnitt 3.2.2). Je nach Aufgabe bedeutet ein hoher Paralle-
lisierungsgrad jedoch auch mehr Aufwand zur Arbeitsverteilung, Synchronisierung und
Zusammenführung der Ergebnisse. Somit ergibt sich ein zweidimensionales Optimie-
rungsproblem, bei dem die Anzahl an Blöcken zwischen 1 und 231 − 1 und die Anzahl
der Threads pro Block zwischen 1 und 1024 zu wählen ist. Nvidia bietet mit dem Oc-
cupancy Calculator1 ein Werkzeug an, um im Vorfeld eine passende Parametrierung zu
berechnen und die Auslastung (Occupancy) der GPU zu verbessern. Allerdings sollten
die berechneten Werte nicht generell als optimale Parameter angesehen werden, da diese
von weitaus mehr Faktoren abhängen, welche zur Laufzeit bspw. mit dem Visual Profiler2

tiefgehend analysierbar sind.

Aus diesen Gründen wurden beispielsweise für das Traversieren des Octrees umfang-
reiche empirische Versuchsreihen auf der Zielhardware ausgeführt, um das Laufzeitver-
halten bei unterschiedlicher Parallelisierung zu bestimmen. Die Ergebnisse aus Abb. 8.2
verdeutlichen, wie sehr optimale Parameter von der Problemgröße abhängen (4096 Blö-
cke mit je 32 Threads bei 3 Mio. Punkten bzw. 4096 Blöcke mit je 512 Threads bei 13
Mio. Punkten). Da nicht für jede Problemgröße eine solche Studie durchgeführt werden
konnte, wurde eine lineare Abhängigkeit der Threads pro Block mit der Punkteanzahl

1http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.
xls

2https://developer.nvidia.com/nvidia-visual-profiler

150

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
https://developer.nvidia.com/nvidia-visual-profiler

8.2. Voxelkarte

 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11

 40
 50
 60
 70
 80
 90

 100

La
u
fz

e
it

 [
m

s]

Blöcke [10³]

Threads [10²]

La
u
fz

e
it

 [
m

s]

 40
 50
 60
 70
 80
 90
 100

(a) Octree aus 3 · 106 Punkten

 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11

 130
 140
 150
 160
 170
 180
 190
 200
 210

La
u
fz

e
it

 [
m

s]

Blöcke [10³]

Threads [10²]

La
u
fz

e
it

 [
m

s]

 130
 140
 150
 160
 170
 180
 190
 200
 210

(b) Octree aus 13 · 106 Punkten

Abb. 8.2.: Empirische Ermittlung der optimal Anzahl an Blöcken und Threads für den
Octree-Aufbau anhand der benötigten Laufzeit in Millisekunden.

angenommen, deren Stützstellen die ermittelten Optima sind. Diese Wahl erweist sich
als valide Annahme, wie das Diagramm in Abb. 8.4 belegt.

Die Laufzeitparameter weiterer Klassen von Algorithmen, die in dieser Arbeit eingesetzt
werden, wurden ähnlich ermittelt.

8.2. Voxelkarte

Da die Erstellung und Verarbeitung von Voxelkarten keine komplexen Berechnungen
erfordert, und somit auch keine Datenabhängigkeiten vorliegen, ist diese Datenstruk-
tur hauptsächlich durch die Speicherbandbreite der Hardware begrenzt. Entsprechend
knapp kann die Evaluation ausfallen.

Liegen die Ausgangsdaten bereits im Speicher der GPU vor, ergeben Messungen zum
Eintragen von Sensorpunktwolken folgendes Bild: Pro Millisekunde können ca. 3 Mio.
Messpunkte ausR3 in probabilistische Voxel eingetragen werden. Im Testszenario waren
die Punkte dabei so verteilt, dass pro Punkt ein Voxel zu aktualisieren ist, also maxi-
mal viele Speicherzugriffe nötig waren. Die Laufzeit skaliert linear mit der Anzahl an
Punkten, wobei diese maximal parallel verarbeitet werden, während die Dimensionen
der Zielkarte dagegen keine Auswirkung auf die Laufzeit aufweisen.

Eine Kollisionsprüfung verarbeitet innerhalb einer Millisekunde zwei Voxelkarten aus je
knapp 5 Mio. probabilistischen oder 7,5 Mio. binären Voxeln zu einer einfachen binären
Kollisionsaussage. Hierbei kann der Speicherzugriff den Bus voll ausnutzen, da parallel
ablaufende Threads sequentielle Daten verarbeiten.

Da eine Kinect-Kamera bei voller Bildrate von 30 FPS ca. 9,2 Mio. Messpunkte pro Sekun-
de erzeugt, wäre es bei ausschließlicher Betrachtung der Voxelumwandlung möglich, die
Daten von über 300 Kameras simultan in eine Voxelkarte einzutragen. Auf Grund von
hostseitigen Einschränkungen ist die Grenze praktisch jedoch bereits bei vier Kinects er-
reicht.

Sind bei gleicher Verarbeitungsrate Voxelkarten auf Kollision zu prüfen, dürfen diese
unter Vernachlässigung weiterer Verarbeitungsschritte folglich 5 · 106 Voxel/ms · 33 ms =

151

8. Experimentelle Evaluation

165 Mio.Voxel pro Karte aufweisen. Praktisch evaluiert wurden Szenarien mit komple-
xen Verarbeitungsketten auf 128 Mio. Voxeln. Dies entspricht bei 2 cm Voxelauflösung
einem abgedeckten Volumen von bspw. 20 m × 20 m × 2,5 m, das in ausreichender Ge-
schwindigkeit auf Kollisionen prüfbar ist. Der Speicherverbrauch für zwei probabilisit-
sche Karten liegt hierbei bei 1,26 GiB. Selbst große Innenräume stellen folglich kein Pro-
blem dar.

Laufzeitvergleiche gegenüber dem implementierten Octree und anderen CPU- und GPU-
basierten Verfahren finden sich im nächsten Abschnitt.

Mehrstufiger Kollisionscheck

Um die praktischen Auswirkungen eines hierarchischen Kollisionschecks auf Voxelkar-
ten unterschiedlicher Auflösungen (vgl. Unterabschnitt 5.3.2) besser beurteilen zu kön-
nen, soll hier der erreichbare Laufzeitvorteil betrachtet werden. Dafür wurde in vier un-
terschiedlichen Versuchen eine Voxelliste mit einer Voxelkarte geschnitten. Das Szenario
entstammt der Planung mit Rotationsvolumen, auf das weiter unten eingegangen wird.
Die Ergebnisse finden sich in Tab. 8.1, wobei ausschließlich die reinen Laufzeiten der Kol-
lisionsprüfung gemessen wurden. Ausgehend von vorberechneten Listen ergibt sich bei
der Verwendung einer acht mal gröberen Auflösung nur ein Zehntel der Laufzeit, wenn
keine Kollisionen auftreten.

Voxel- Größe Länge Kollisionscheck
kantenlänge Umweltkarte Roboter-Voxelliste Laufzeit Durchsatz

[cm] [MVoxel] [Voxel] [ms] [Voxel/ms]

1 200 1 889 192 0,696 2 714 356
2 25 250 818 0,263 953 681
4 3,125 33 789 0,089 379 652
8 0,391 4820 0,067 71 940

Tab. 8.1.: Durchschnittlicher Zeitaufwand für Kollisionschecks bei varierender Auflö-
sung.

8.3. Octree

Wesentlich umfangreicher fällt die Evaluation des implementierten Octrees aus, da die-
ser komplexere Verarbeitungsketten beinhaltet, um die Problematik der Parallelisierung
dynamischer Datenstrukturen anzugehen. Die folgenden Abschnitte geben daher einen
detaillierten Einblick in die Laufzeiten der wichtigsten Funktionen und vergleichen diese
mit einer CPU-Implementierung eines Octrees und eines kd-Trees.

152

8.3. Octree

Abb. 8.3.: Ausschnitt einer Punktwolke mit 40, 4 · 106 Punkten, die ein Volumen von
101,5 m× 97,2 m× 24,7 m abdecken. Um diese in 2 cm-Auflösung in einem Oc-
tree zu speichern sind lediglich 300 MiB an GPU RAM nötig, während eine
Voxelkarte hingegen mindestens 28 GiB benötigt. Die Punktwolke des FZI Ge-
bäudes wurde von Jan Oberländer erstellt.

8.3.1. Aufbau eines Octrees

Zunächst soll der Aufbau eines neuen Baumes mit 15 Ebenen aus einer Punktwolke be-
trachtet werden. Um eine repräsentative Laufzeitmessung in Abhängigkeit der Punk-
teanzahl zu erhalten, muss gewährleistet sein, dass die Punktwolke pro Voxel nur einen
Punkt enthält. Dies wurde durch eine Diskretisierung mittels eines Voxelfilters erreicht,
dessen Voxelgröße direkt die Dichte der entstehenden Punktwolke bestimmt. Für die fol-
genden Experimente variiert die Voxelgröße zwischen 1,7 cm und 30 cm.

Wie Abb. 8.4 zeigt, kann durch die in Abschnitt 5.5.2 beschriebenen Techniken des ad-
aptiven Lastausgleichs ein nahezu lineares Laufzeitwachstum bei steigender Größe der
Eingabedaten erreicht werden. Die Messungen zeigen den Mittelwert aus 100 Durch-
läufen mit einem probabilistischen Octree (die Zeiten eines deterministischen Octrees
unterscheiden sich nur marginal und sind daher nicht angegeben). Den größten Auf-
wand verursacht das Sortieren der Eingabedaten, sowie der ebenenweise Aufbau der
Octreestrukturen. Bei Kopieren + Diskretisieren entfallen ca. 87%der Laufzeit auf den
reinen Datentransfer zur GPU, wogegen das Berechnen der Morton-Codes sehr schnell
abläuft. Für das Sortieren kam die Thrust-Implementierung des Radix-Sort zum Einsatz,
die einen Durchsatz von 310 Mio. Morton-Codes pro Sekunde erreicht. Das Aufbauen der
Ebenen beinhaltet das Setzen der Kindzeiger sowie des Knotenzustandes. Hier entfällt
erwartungsgemäß die meiste Arbeit auf die Blattknoten in Ebene 0. Das anschließende
Herstellen der Baum-Invariante fasst das Ab- und Aufsteigen im Baum bei probabilisti-
schem Lastausgleich zusammen, wobei der Ausgleich ab ca. 3 Mio. Punkten gut skaliert
(bei kleineren Punktemengen sollte ein Octree mit weniger Ebenen genutzt werden).

153

8. Experimentelle Evaluation

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

 0

 5

 10

 15

 20

 25

 30

La
u
fz

e
it

 [
m

s]

V
o
x
e
lg

rö
ß
e
 [

cm
]

Anzahl Punkte [106]

Ebene 2-14 aufbauen
Ebene 1 aufbauen
Ebene 0 aufbauen

Bauminvarianten herstellen
Sortieren

Kopieren+Diskretisieren
Voxelgröße

Abb. 8.4.: Nahezu lineares Laufzeitverhalten für den Aufbau eines Octrees aus unter-
schiedlich großen Punktwolken (bis zu 25 Mio. Punkte) mit Aufschlüsselung
der Algorithmenbestandteile. Diagramm aus [22].

Der ermittelte Datendurchsatz reicht folglich einerseits aus, um einen Octree aus den
Daten von bis zu drei Kinect-Kameras mit voller Bildrate komplett neu zu konstruieren,
aber auch, um extrem detaillierte Punktwolken aus 25 Mio. Messpunkten mehrmals pro
Sekunde zu verarbeiten.

8.3.2. Kollisionsprüfung

Zur Evaluierung der Leistungsfähigkeit der Kollisionsprüfung wurden praxisnahe Ver-
suche der Bewegungsplanung am Modell des HoLLiE-Roboters durchgeführt. Dafür muss-
ten zufallsgenerierte Swept-Volu-men von Bewegungen auf Überschneidung mit einem
Ausschnitt der bereits gezeigten, statischen Punktwolke des FZI Gebäudes geprüft wer-
den.

Octree ∩ Octree

Zunächst wurden beide Modelle in probabilistische Octrees eingefügt und diese mit-
tels der lastbalancierten Tiefensuche (siehe Unterabschnitt 6.2.5) miteinander geschnit-
ten. Die hierarchische Struktur des Baumes erlaubt eine zielgerichtete Abarbeitung der
Octrees für eine effiziente Kollisionsprüfung, wobei sich die kompakte Datenspeiche-
rung zusätzlich positiv auf die Laufzeit auswirkt. Über eine Einschränkung der Suchtiefe
lässt sich dabei die Auflösung und somit die erforderliche Berechnungszeit beschränken.
Im Laufzeitdiagramm aus Abb. 8.5 verursacht der Lastausgleich bis zu 50%des Berech-
nungsaufwandes, was durch die hohe Lokalität der Bewegungsdaten bedingt ist. Den-
noch sind durch die Heuristik zur Gruppierung vergleichbarer Arbeitselemente nur ma-
ximal sieben Lastausgleichsschritte nötig. Die Berechnungszeit steigt mit zunehmender

154

8.3. Octree

Suchtiefe nahezu linear an, was die Eignung der implementierten Parallelisierungsstra-
tegien und des Lastausgleiches unterstreicht.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

 0

 1

 2

 3

 4

 5

 6

 7

 8
4094 1024 256 64 16 4 1

La
u
fz

e
it

 [
m

s]

A
n
za

h
l
S
ch

ri
tt

e

Suchtiefe

Voxelgröße [cm]

Traversieren
Lastausgleich

Lastausgleichsschritte

Abb. 8.5.: Laufzeit der Kollisionsprüfung zwischen zwei Octrees mit anteiligem Auf-
wand für den Lastausgleich. Abhängig von der maximalen Suchtiefe werden
Laufzeiten zwischen 1 und 3 ms erreicht um bis zu 0,5 Mio. Voxel zu prüfen.
Diagramm aus [22].

Octree ∩ Voxelkarte

In Szenarien, in denen ein schneller, wahlfreier Zugriff auf eine dichte Voxelmenge benö-
tigt wird, kann ein Octree auch gegenüber einer Voxelkarte auf Kollision geprüft werden.
Dabei werden belegte Einträge des Octrees gezielt in der Voxelkarte nachgeschlagen.
Abb. 8.6 vergleicht die Laufzeiten unterschiedlicher Kombinationen von Datenstruktu-
ren. Hier zeigt sich, dass der Einsatz einer Voxelkarte nur in Szenarien mit einer kleinen
Menge an Voxeln (großer Voxelkantenlänge) gerechtfertigt ist, da die Kombination aus
zwei Octrees bei umfangreicheren Datenmengen um bis zu einer Größenordnung schnel-
ler auszuwerten ist. Da sich die Voxelmenge mit jeder Halbierung der Voxelkantenlänge
verachtfacht, ist die Nutzung mindestens eines Octree gegenüber zwei Voxelkarten fast
immer überlegen. Voxelkantenlängen unter sieben Zentimetern konnten nicht evaluiert
werden, da die resultierende Voxelmenge mit der 32 Bit Adressierung der Voxelkarte
nicht darstellbar ist. Weitere Ergebnisse sind in Tab. 8.2 zu finden. Die bewerteten Mes-
sungen berücksichtigen jedoch nicht den Aufwand für das Aufbauen oder Modifizieren
des Octrees. Wie im nächsten Abschnitt beschrieben, hat dies jedoch gerade in dynami-
schen Szenen einen großen Einfluss auf die Laufzeiten und muss daher bei der Auswahl
einer passenden Datenstruktur beachten werden.

155

8. Experimentelle Evaluation

2

 0

 5

 10

 15

 20

 25

1 7 5 10 15 20 25 30

2

 0

 5

 10

 15

 20

 25

La
u
fz

e
it

 [
m

s]

Voxelgröße [cm]

Voxelmap ⋂ Voxelmap
Octree ⋂ Voxelmap (LB)

Octree ⋂ Voxelmap
Octree ⋂ Octree

Abb. 8.6.: Laufzeiten der Kollisionsprüfung bei unterschiedlichen Kombinationen von
Datentypen. Diagramm aus [22].

Aufbau aus Sensordaten

In der Praxis ist der Aufbau eines Octrees aus Sensordaten ein relevanter Benchmark.
Daher wurden für diesen Test die Punktwolken einer bewegten Innenraumszene aufge-
zeichnet, wobei die Daten von einer Kinect-Kamera stammten, die mittels einer Schwenk-
Neige-Einrichtung kontrolliert gedreht wurde. Einzelne Aufnahmen bestanden dabei aus
200 000 bis 300 000 Messpunkten, die kontinuierlich in einen Octree eingefügt wurden.
Gleichzeitig wurde der Freiraum mittels Raycasting bestimmt (siehe Unterabschnitt 4.3.1).
Da hierbei für die Freiraumvoxel dieselbe Auflösung gewählt wurde, überwiegen diese
die belegten Voxel um ein 6 bis 107-faches. Dies zeigt sich auch im Laufzeitdiagramm
aus Abb. 8.7, in dem das Sortieren der Freiraumvoxel den größten Anteil der Berech-
nungszeit einnimmt und zusammen mit dem Berechnen und Einfügen 80% der Laufzeit
ausmacht. Die Messungen belegen, dass der Octree bei einer Voxelgröße von 3 cm in der
Lage ist, die Punktwolken einer Kinect-Kamera mit 25 Hz zu verarbeiten. Wird die Auf-
lösung auf 1 cm erhöht, liegt der erreichte Durchsatz noch immer bei 133 MVoxel/s. Eine
signifikante Laufzeitersparnis ergibt sich durch die Berechnung des Freiraumes mit einer
geringeren Auflösung im Vergleich zu den Hindernisvoxeln: So ist bei Verdopplung der
Freiraumvoxelgröße weniger als 50% der Gesamtlaufzeit nötig. Durch den kompletten
Verzicht lässt sich der Berechnungsaufwand sogar um Faktor fünf reduzieren, wodurch
eine simultane Auswertung von vier Kinect-Kameras möglich wird.

Vergleich mit anderen Arbeiten

Leider sind nur wenige andere Softwarebibliotheken verfügbar, die nicht mit Oberflä-
chennetzen arbeiten und daher für einen Benchmark herangezogen werden können. Des
Weiteren fällt der Vergleich aufgrund einer fehlenden, etablierten Metrik schwer, soll aber
dennoch unternommen werden. Als Datengrundlage dient dafür der Vergleich zwischen

156

8.3. Octree

Hindernis ∅∅∅ Octree Octree Voxelkarte Octree
Seiten- Anzahl ∩ ∩ ∩ ∩
länge Kollisionen Octree Voxelliste Voxelkarte Voxelkarte

[Voxel] [Voxel] [ms] [ms] [ms] [ms]

2 0,01 1,46 0,10 15,31 4,21
4 0,04 1,46 0,10 15,31 4,21
8 0,44 1,46 0,10 15,31 4,20

16 5,25 1,47 0,11 15,31 4,21
32 37,60 1,44 0,11 15,32 4,28
64 217,03 1,65 0,15 15,32 4,36

128 1862,98 1,88 0,41 15,32 4,71
187 6781,29 1,91 1,04 15,34 5,61

Tab. 8.2.: Median-Laufzeiten über 100 Kollisionsprüfungen zwischen der FZI Gebäude-
karte (150 684 belegte Voxel bei einer Kartengröße von 884 × 1004 × 187 Vo-
xeln) und einem zufällig platzierten Würfel aus bis zu 6,5 Mio Voxeln. Publiziert
in [4].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16 18 20

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

La
u
fz

e
it

 [
m

s]

V
o
x
e
lg

rö
ß
e
 [

cm
]

Anzahl Voxel [106]

Freiraum-Voxel sortieren
Freiraum berechnen

Bauminvariante herstellen
Objekt-Voxel einfügen

Freiraum-Voxel einfügen
Vorverarbeitung (Sensordaten)

Voxelgröße

Abb. 8.7.: Laufzeit zum Aufbau eines Octrees aus Sensordaten inklusive Freiraumberech-
nung bei variierender Auflösung. Diagramm aus [22].

CPU- und GPU-basierten Kollisionsprüfungsverfahren von Schauer et al. aus dem Jahr
2016 [180]. Hier wird zum einen ein mittels OpenMP parallelisierter kd-Tree vorgestellt,
der genutzt wird, um in einem definierten Suchradius um eine Eingabekoordinate einer
Punktwolke nach Punkten einer zweiten Punktwolke zu suchen. Zum anderen ein GPU
RGD-Ansatz, der die Punktwolke der Umgebung in einem Vorverarbeitungsschritt zu-
nächst grob in Voxel diskretisiert. Im Unterschied zur vorliegenden Arbeit werden dabei
jedoch die zugehörigen Punkte in jedem Voxel gespeichert. In einem zweiten Schritt kön-
nen dann gezielt nur die Punkte derjenigen Voxel auf ihre Distanz zu Egomodellpunkten
überprüft werden, die in kollidierenden Voxeln liegen.

157

8. Experimentelle Evaluation

Voxelkarte Octree Kollisionsprüfung

Anzahl Kollisions- Gesamt- Balancierungs- Balancierungs-
Einträge prüfung aufwand aufwand schritte
[Knoten] [ms] [ms] [ms]

32 K 0,55 1,52 0,28 2
256 K 0,13 2,16 0,40 2

2 M 0,55 3,22 0,41 3
16 M 3,86 5,13 0,55 3

128 M 17,59 21,05 0,57 4

Tab. 8.3.: Median-Laufzeiten über 100 Kollisionsprüfungen zwischen zwei voll ausgefüll-
ten Octrees bzw. zwei voll belegten Voxelkarten bei unterschiedlichen Daten-
mengen. Durch die gleichmäßige Verteilung der Daten sind nur sehr wenige
Balancierungsschritte im Octree nötig.

Als Metrik für den Vergleich soll der Durchsatz an Voxeln bzw. Punkten pro Millisekun-
de herangezogen werden. Dieser ergibt sich aus der addierten Menge an Eingabedaten
(Umwelt + Egomodell) die mit den durchgeführten Kollisionsprüfungen multipliziert
werden. Verglichen werden Szenarien mit vergleichbaren Umgebungsbedingungen mit
der letzten Zeile aus Tab. 8.2. Schauer et al. evaluieren die Algorithmen auf unterschiedli-
cher Hardware. Für den hier gezogenen Vergleich werden die Messungen mit einer GTX
980 GPU verwendet, die eine leicht höhere Leistung aufweist, als die in dieser Arbeit
eingesetzte Titan GPU. Die CPU Messungen basieren auf einer Intel Xeon Workstation,
die über acht Kerne (16 virtuelle hyperthrading Kerne) und 32 GiB RAM verfügt. Die Er-
gebnisse finden sich in Tab. 8.4. Alle Zeiten beziffern exklusiv die Kollisionsprüfung und
beinhalten nicht den Aufbau der verwendeten Datenstrukturen.

Die Ergebnisse der Vergleichskandidaten unterscheiden sich erheblich innerhalb der un-
tersuchten Szenarien, obwohl diese ähnliche Umgebungen abbilden (Fahrten durch tun-
nelartige Strukturen). Als Ursache geben die Autoren unterschiedliche Dichteverteilun-
gen in den Datensätze an. Es zeigt sich, dass die verglichenen Verfahren auf zwei der Da-
tensätze (El Teniente, Tunnel) einen höheren Gesamtdurchsatz von Punkten bzw. Voxeln
als GPU-Voxels erreichen. Betrachtet man jedoch den Durchsatz der erkannten Kollisio-
nen pro Millisekunde, liegt GPU-Voxels in realen Szenarien um mehr als eine Größen-
ordnung über den Vergleichskandidaten. Gleichzeitig benötigen diese einen wesentlich
zeitaufwendigeren Aufbau ihrer Datenstrukturen, was sie für eine schritthaltende Da-
tenauswertung ungeeignet macht. Der Aufbau des kd-Trees aus 16 Mio. Punkten wurde
bspw. in der vorausgegangenen Arbeit [75] mit 9 Sekunden beziffert und ist damit auch
um beinahe zwei Größenordnungen aufwendiger, als die Konstruktion des vorgestellten
GPU Octrees. Auf Datengrößen, wie sie bei der Verarbeitung von typischen 3D Kameras
auftreten, liegt der erreichbare Datendurchsatz beider Verfahren ebenfalls weit unterhalb
der Leistung der hier implementierten Datenstrukturen.

158

8.3. Octree

Datensatz
Umwelt Egomodell

Verfahren
Durchsatz

[Einträge] [Einträge] [Einträge/ms] [Koll./ms]

Hannover 55,87 · 106 0,21 · 106 CPU kd-Tree 0,77 · 106 2,27
GPU RGD 1,34 · 106 3,56

Wolfsburg 350,11 · 106 0,43 · 106 CPU kd-Tree 0,61 · 106 111,02
GPU RGD 1,17 · 106 217,41

Tunnel 18,92 · 106 0,03 · 106 CPU kd-Tree 22,27 · 106 162,72
GPU RGD 3,34 · 106 15,35

El Teniente 806,18 · 106 0,10 · 106 CPU kd-Tree 75,51 · 106 195,70
GPU RGD 46,28 · 106 117,42

Planung 6,54 · 106 0,15 · 106 GPU 2x Octree 3,50 · 106 3550,41
GPU Oct.+Liste 6,43 · 106 6520,47

Maximum 128,00 · 106 128,00 · 106 GPU 2x Octree 14,55 · 106 14, 55 · 106

Tab. 8.4.: Vergleich des Berechnungsdurchsatzes der Kollisionsprüfung von GPU-Voxels
(letzte zwei Datensätze) mit zwei anderen Verfahren aus [180].

Vergleich mit der OctoMap

Ein weiterer Vergleich soll mit der in der Robotik weit verbreiteten Octree-Implementie-
rung OctoMap von Hornung et al. [104] gezogen werden. Diese CPU-basierte Software
verfügt über einen ähnlichen Funktionsumfang, wie die hier vorgestellte GPU Variante,
weshalb sie für einen Vergleich herangezogen werden soll. Hierfür wurde der im vori-
gen Abschnitt beschriebene Datenstrom einer Kinect-Kamera verwendet und mittels der
Funktion insertPointCloud() in die OctoMap eingefügt. Zur Performanzsteigerung
waren die Optionen lazy_eval und discretize aktiviert.

Der Laufzeitvergleich als doppelt-logarithmische Darstellung in Abb. 8.8 bescheinigt der
GPU-Implementierung eine Beschleunigung um bis zu zwei Größenordnungen, vergli-
chen mit der OctoMap. Bei gleichzeitiger Berechnung des Freiraums und unter Einbe-
ziehung des Datentransfers auf die GPU (vgl. [91]) ist die probabilistische Version bis zu
80 mal, die deterministische bis zu 170 mal schneller. Weiterhin ist ersichtlich, dass der
GPU-Octree besser mit der Menge der Voxel skaliert.

Vergleicht man den Speicherverbrauch der Datenstrukturen, so fällt dieser bei der GPU-
Implementierung um den Faktor 3,4 niedriger aus, als bei der Octomap. Dieses sehr gu-
te Verhältnis der benötigten Bytes pro Punkt wird durch den Verzicht auf acht separate
Kindzeiger (OctoMap) zugunsten von nur einem Zeiger (GPU-Octree) auf acht gleichzei-
tig zu allozierende Kindknoten erreicht. Selbst bei einer Vervierfachung der Nutzdaten
in den Blattknoten wäre der GPU-Octree noch immer 25% speichereffizienter als die Oc-
toMap-Implementierung.

Zusammengefasst ist die GPU-Implentierung der OctoMap in den Punkten Berechnungs-
geschwindigkeit und Speicherverbrauch weit überlegen. Es soll jedoch angemerkt wer-
den, dass die OctoMap über eine Templatesierung beliebige Nutzdaten in ihren Knoten

159

8. Experimentelle Evaluation

 10

 100

 1000

 10000

104 105 106 107

 0.1

 1

 10

 100

La
u
fz

e
it

 [
m

s]

B
e
sc

h
le

u
n
ig

u
n
g

Anzahl Voxel

Octree (Prob.) vs. OctoMap
OctoMap

Octree (Prob.)
Octree (Det.)

Abb. 8.8.: Vergleich der Laufzeiten zum Einfügen von Daten in den GPU-Octree und
die CPU-Implementierung OctoMap (doppelt logarithmische Darstellung).
Die GPU-Variante ist gegenüber OctoMap um bis zu zwei Größenordnungen
schneller. Diagramm aus [22].

erlaubt, wogegen die GPU Variante auf die zwei verfügbaren Voxeltypen beschränkt ist.
Eine Erweiterung um neue Datentypen ist hier aufgrund besonderer Optimierungen nur
mit großem Aufwand möglich.

Fazit

Dynamische Datenstrukturen, deren Speicherverbrauch sich inkrementell ändert, eige-
nen sich prinzipiell schlecht für eine Umsetzung auf der GPU. Auch die ungleichmä-
ßigen und a priori unbekannten Traversierungsdistanzen innerhalb des Baumes lassen
sich nicht kanonisch zur parallelen Ausführung aufteilen. Dennoch übertrifft der reali-
sierte Octree in seiner Leistung bei der geometrischen Modellierung von Volumendaten
den Stand der Technik. Wie die Laufzeitmessungen zeigen, konnte eine effiziente Im-
plementierung umgesetzt werden, indem GPU-typische Programmierparadigmen einge-
halten wurden: Inkrementelle Speicherallokationen konnten durch vorgeschaltete Zähl-
operationen zusammengefasst werden, während einer Speicherfragmentierung durch
zyklischen Neuaufbau der Datenstruktur begegnet wird. Eine Strategie zur systemati-
schen, leichten Überallokation von GPU-Speicher kaschiert die langsame Speicherver-
waltung der GPU bei dennoch beinahe linearem Speicherzuwachs durch neue belegte
Voxel. Gleichzeitig konnte der Speicherverbrauch minimiert werden, indem für je acht
Kindknoten nur ein Zeiger verwendet wird. Weiterhin sorgt eine heuristische Lastbalan-
cierung auch bei unterschiedlich aufwendigen Aufgabenfragmenten für eine gleichmä-
ßig hohe Auslastung der GPU.

Durch die genannten Punkte wird eine Bandbreite erreicht, die es erlaubt, 25 mal pro Se-
kunde die Daten von vier hochauflösenden 3D-Sensoren (640 x 480 Datenpunkte) gleich-
zeitig in einen Octree (2cm Auflösung) einzutragen und diesen in weniger als zehn Mil-

160

8.4. Vergleich von Voxel- und Mesh-basierter Kollisionsdetektion

lisekunden auf Kollision mit einer Robotertrajektorie zu prüfen. Gegenüber weit verbrei-
teten CPU-Implementierungen stellt dies eine 80-fache Beschleunigung dar.

Verglichen mit Voxelkarten ist es somit möglich, extrem große Volumen speichereffizient
zu repräsentieren und in vielen Fällen sogar einen effizienteren Lesezugriff zu gewäh-
ren. Auch im Vergleich der Kollisionsprüfung von Voxelkarten konnte in realistischen
Szenarien eine zehnfache Beschleunigung erzielt werden. Gleichzeitig fällt der Speicher-
verbrauch für die Modellierung typischer Innenraumszenen gegenüber Voxelkarten um
ca. 70%, da in menschlichen Umgebungen meist nur ca. 30% des Raumvolumens Objekte
enthalten.

8.4. Vergleich von Voxel- und Mesh-basierter
Kollisionsdetektion

Um einen Eindruck der Möglichkeiten einer voxelbasierten Kollisionsdetektion zu er-
halten, wurde diese in zwei aussagekräftige Beispielszenarien mit der weit verbreiteten
Flexible Collision Library (FCL) Bibliothek [156] aus ROS vergleichen. Da es sich bei der
FCL um ein BVH-Verfahren handelt, ist hier vor der eigentlichen Kollisionsprüfung ein
Vorverarbeitungsschritt auszuführen, bei dem die Oberflächennetze aller rigiden Ein-
zelmodelle einer Szene in Hüllvolumen aufgeteilt werden. Dieser Schritt ist bei jeder
Änderung der Modelle erneut durchzuführen, bspw. wenn ein Umweltmodell aus Sens-
ordaten tesseliert wird und sich Teile der Umwelt dynamisch verändern.

8.4.1. Voxel-Swept-Volumen

Zunächst sollen die Laufzeiten einer Swept-Volumen Kollisionsprüfung den akkumulier-
ten Laufzeiten mehrerer Einzelprüfungen gegenübergestellt werden. In der verwendeten
Testszene bewegt sich der mobile Roboter HoLLiE geradlinig vorwärts und durchdringt
dabei das Modell eine Bar-Theke. Hierfür wurde die Fahrstrecke in 100 Zwischenpo-
sitionen unterteilt und diese zum einen einzeln mit der FLC evaluiert bzw. als Swept-
Volumen gerendert und mittels GPU-Voxels ausgewertet. Durch die Verwendung von
Bitvektor-Voxeln konnten dabei alle einzelnen Schritte getrennt bewertet werden.

In FCL bestehen die komplexen Dreiecksnetze des Roboters aus insgesamt 322 254 Dreiecken,
während die Bar aus 18 197 Dreiecken zusammengesetzt ist. Das Voxelmodell hingegen
ergibt sich aus 230 751 Punkten für den Roboter, der in einer Voxelkarte mit 1 cm Auf-
lösung im Schnitt 10 427 712 Voxel belegt (bzw. 1 600 656 Voxel bei einer Auflösung von
2 cm). Die Punktwolke der Bar enthält 13 200 504 Punkte, die 830 635 Voxel bzw. 109 361 Voxel
belegen.

Die Zeitmessungen aus zehn Kollisionsprüfungen sind in Tab. 8.5 gelistet. Als Initiali-
sierung zählt bei FCL der Aufbau der BVHs, bei GPU-Voxels das Generieren des Swept-
Volumens. Die Zahlen verdeutlichen, dass bei einem Voxelansatz die Initialisierung weit
mehr Zeit kostet, als die eigentliche Prüfung. Daher ergibt sich für den Voxelansatz ein
Laufzeitvorteil erst dann, wenn mehrere gleichartige Prüfungen auszuführen sind. Dies

161

8. Experimentelle Evaluation

ist jedoch sehr häufig der Fall. Beispielsweise wenn bei Planungsaufgaben mit Bewe-
gungsprimitiven gearbeitet wird (siehe Unterabschnitt 7.2.3), oder bei der Ausführungs-
überwachung, wie sie weiter unten noch beschrieben wird. Je nach Auflösung ist dann
bereits ab zwei bis drei Durchläufen der Voxelansatz effizienter, als die Prüfung ein-
zelner Posen mittels Oberflächennetzen. Insbesondere kann nur durch die Verwendung
von Swept-Volumen eine schritthaltende Kollisionsprüfung erreicht werden, die mit der
Bildrate der Kinect-Kamera durchführbar ist. Im Gegensatz dazu ist es selbst unter Ver-
nachlässigung des Tesselierungsaufwandes nicht möglich, mit Dreicksnetzen ein Bewe-
gungsvolumen mit der nötigen Wiederholungsrate auf eindringende Hindernisse zu prü-
fen.

8.4.2. Prüfung einzelner Posen

Anwendungen, in denen keine vorberechnete Swept-Volumen genutzt werden können,
sind samplingbasierte Planungsszenarien, die in Unterabschnitt 7.2.5 vorgestellt wurden.
Hierbei ist die Verarbeitungszeit der Kollisionsprüfung einzelner, unabhängiger Roboter-
posen ausschlaggebend. Um diese realistisch bewerten zu können, wurde ein Szenario
mit einem komplexen Umweltmodell und einem einfachen Robotermodell gewählt, in
dem nur wenig Bewegungsfreiraum gegeben ist. In Abb. 8.10 sind Umwelt- und Robo-
termodell zu sehen, zwischen denen es bei der Planung häufig zu Kollisionen kommt.

Die Umwelt besteht in der Oberflächendarstellung aus 384 624 Dreiecken, der Roboter
aus 5750 Dreiecken. In GPU-Voxels deckt das Volumen der gesamten Szene 8,2 Mio. Vo-
xel bei einer Auflösung von 3 mm ab. Eingefügt werden Punktwolken der Umgebung
mit 593 784 Punkten und der Roboter aus 1046 Punkten. Davon sind 591 062 Voxel durch
das Umweltmodell und 995 Voxel durch den Roboter belegt. Die Laufzeiten in Tab. 8.6
wurden aus ca. 3000 Durchführungen der Kollisionsprüfungen ermittelt. Einige Konstel-
lationen wiesen im Falle einer Kollision andere Laufzeiten auf, als im kollisionsfreien
Fall. Diese sind separat gelistet.

Es zeigt sich, dass durch die Kombination einer probabilistischen Voxelkarte für die Um-
weltrepräsentation mit einer Liste aus Bitvektor-Voxeln konkurrenzfähige Laufzeiten für
die eigentliche Kollisionsprüfung erreichbar sind. Allerdings dürfen diese nicht losge-
löst betrachtet werden. In einer komplexen veränderlichen Umgebung müsste das Um-
weltmodell regelmäßig neu aufgebaut werden. Bei der Verwendung der FCL benötigt
diese Generierung der BVH um drei Größenordnungen mehr Zeit, als die Kollisions-
prüfung. Bei GPU-Voxels fällt der Unterschied um eine Größenordnung geringer aus.
Bedingt durch den großen Komplexitätsunterschied zwischen Umwelt- und Robotermo-
dell sind die Laufzeiten für die Vorverarbeitung des Roboters bei dieser Betrachtung ver-
nachlässigbar. Somit bestehen die Vorteile des voxelbasierten Ansatzes wieder klar bei
der Verarbeitung eines Umweltmodells, das aus Sensordaten generiert wird.

162

8.4. Vergleich von Voxel- und Mesh-basierter Kollisionsdetektion

(a) Mesh-Darstellung (b) Voxel-Darstellung

Abb. 8.9.: Szenario zum Vergleich der Mesh-basierten Kollisionsdetektion mit GPU-
Voxels. Der Roboter fährt vorwärts und durchdringt dabei den Tisch mit seinen
Armen und dem Torso.

Szenario Teilschritt Dauer [ms] σ [ms]

ROS FCL Mesh ∩Mesh Initialisierung 46,911 0,212
(100 Zwischenprüfungen) Σ Kollisionschecks 428,980 37,385

Octree ∩ Voxelkarte (1 cm)
Initialisierung 1591,987 51,705

Kollisionscheck 48,223 2,034

Octree ∩ Voxelliste (1 cm)
Initialisierung 1672,968 55,284

Kollisionscheck 5,086 0,362

Octree ∩ Voxelkarte (2 cm)
Initialisierung 473,452 43,575

Kollisionscheck 44,206 0,596

Octree ∩ Voxelliste (2 cm)
Initialisierung 537,206 47,095

Kollisionscheck 2,437 0,197

Tab. 8.5.: Vergleich der Berechnungsdauer von Mesh-basierter Kollisionsdetektion mit
GPU-Voxels (gemittelt über jeweils zehn Messungen, Standardabweichung σ).

(a) Mesh-Darstellung (b) Voxel-Darstellung

Abb. 8.10.: Szenario zum samplingbasierten Planen in Voxel- und Mesh-Darstellung. Das
Robotermodell ist in rot dargestellt.

163

8. Experimentelle Evaluation

Laufzeit [ms]
∅∅∅ Median Min Max

ROS FCL Mesh ∩Mesh
Initialisierung BVHs 53,354 53,281 53,199 54,682

Kollisionschecks positiv 0,053 0,041 0,005 0,398
Kollisionschecks negativ 0,091 0,08 0,001 0,519

Prob. Voxelkarte ∩ Prob. Voxelkarte
Modelle einfügen 0,292 0,283 0,266 4,008
Kollisionscheck 1,864 1,654 1,648 5,125

Prob. Voxelkarte ∩ Bitvektor Voxelliste
Modelle einfügen 1,043 0,930 0,878 6,219
Kollisionscheck 0,098 0,064 0,061 1,964

Prob. Octree ∩ Bitvektor Voxelliste
Initialisierung 16,172 15,988 13,742 25,587

Kollisionscheck 0,280 0,203 0,19 2,948

Prob. Octree ∩ Bitvektor Voxelkarte
Initialisierung 16,205 15,926 13,088 31,904

Kollisionscheck 1,223 0,968 0,861 4,27

Prob. Octree ∩ Prob. Octree
Initialisierung 24,484 23,834 17,912 35,664

Kollisionscheck positiv 6,159 6,073 5,257 9,493
Kollisionscheck negativ 5,782 5,613 5,04 8,894

Tab. 8.6.: Vergleich der Berechnungsdauer von Mesh-basierter Kollisionsdetektion mit
GPU-Voxels. Daten aus ca. 3000 Durchläufen.

164

8.5. Visualisierung

8.5. Visualisierung

Um einen Eindruck der Leistungsfähigkeit der implementierten Visualisierung zu ge-
winnen, wurde diese anhand mehrerer Beispielszenen evaluiert. Zunächst wird eine In-
nenraumszene in Form einer Voxelkarte aus ca. 62, 5 Mio. Voxeln betrachtet, in welcher
knapp 60 000 Voxel belegt sind (siehe Abb. 5.20). Eine solche Szene kann in voller Auflö-
sung mit über 40 Hz angezeigt werden, was mit einem Umweg über den Host nicht er-
reichbar wäre. Durch die Verwendung von Supervoxeln zur Auflösungsreduktion lässt
sich die Bildrate auf über 100 Hz steigern. Das Diagramm aus Abb. 8.11 zeigt auch, un-
ter welchen Randbedingungen die einzelnen Verfahren, die in Abschnitt 5.7 verglichen
wurden, Vorteile haben. So eignet sich der Algorithmus mit Zwischenspeicher für um-
fangreiche Szenen, die nur mit geringer Auflösung zu zeichnen sind, da seine Laufzeit
mit der Größe des Zwischenspeichers skaliert. Bei den Verfahren ohne Zwischenspeicher
ist die Version ohne Vorberechnung erwartungsgemäß um bis zu Faktor zwei schneller,
als die Version mit Vorberechnung, da die Datenstruktur nur einmal durchlaufen werden
muss. Deutlich zu sehen sind auch die Effekte der sequenziellen Codeausführung inner-
halb der Supervoxel-Kernel, welche beide Algorithmen bei größeren Supervoxelgrößen
ausbremsen. Diese sind jedoch eher von theoretischem Belang, da Supervoxel mit Kan-
tenlängen > 8 in der Praxis nicht benötigt werden. Tests mit synthetischen Szenen, die
im Gegensatz zu realen Szenen eine Voxelkarte sehr dicht belegen, zeigen jedoch erwar-
tungsgemäß höhere Bildraten bei großen Supervoxeln, da die Kernel stoppen, sobald ein
erster belegter Voxel im Supervoxel gefunden wurde.

Supervoxel Anzahl
Größe Voxel

1 59808
2 19974
3 9821
4 5954
5 4074
6 2994
8 1801
10 1148
12 860
14 607
16 534
20 356
32 158 0 5 10 15 20 25 30 35

0

20

40

60

80

100

Supervoxelgröße

Bi
ld

ra
te

[F
PS

]

Ohne Vorberechnung Mit Vorberechnung
Mit Zwischenspeicher

Abb. 8.11.: Vergleich der drei umgesetzten Verfahren: Gezeichnete Bilder pro Sekunde
bei unterschiedlicher Supervoxelgröße. Daten aus [32].

Weiterhin wurde die Auswirkung einer Beschränkung des Sichtbereiches auf die Bildrate
anhand einer Gebäudeszene evaluiert. Diese wurde zunächst komplett visualisiert, und

165

8. Experimentelle Evaluation

dann auf einen quaderförmigen Bereich vor der Kamera beschnitten. Da sich dabei die
Anzahl der zu zeichnenden Voxel kaum verändert (siehe Diagramm aus Abb. 8.12), sind
die entstehenden visuellen Unterschiede in Abb. 5.22 marginal. Dennoch zeigt sich je
nach Supervoxelgröße eine um ein Vielfaches gesteigerte Bildrate im Diagramm. Grund
hierfür ist das stark verkleinerte Iterationsintervall, das der Geometrie-Kernel auf der
beschnittenen Karte abarbeiten muss.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Supervoxelgröße

Bi
ld

ra
te

[F
PS

]

Bildrate [FPS]

nicht beschränkt
beschränkt

0

1

2

3

4

5

6
·104

G
ez

ei
ch

ne
te

Vo
xe

l

Gezeichnete Voxel

nicht beschränkt
beschränkt

Abb. 8.12.: Anstieg der Bildrate bei Einschränkung des Sichtbereiches (Szene aus
Abb. 5.22). Daten aus [32].

Ein Vergleich der unterschiedlichen Darstellungsvarianten zeigt die für OpenGL zu er-
wartenden Ergebnisse: Die Darstellung der Szene unter Nutzung der ambienten Beleuch-
tung ist erwartungsgemäß am schnellsten. Das zusätzliche Einzeichnen von Wireframes
reduziert die Bildrate um etwa die Hälfte, da die Szene hierfür zweimal gerendert wer-
den muss. Dagegen reduzieren die komplexeren Berechnungen der OpenGL-Shader bei
der Verwendung einer zusätzlichen Punktlichtquelle die Bildrate nur um ca. 40%.

Wie bei allen CUDA Anwendungen muss auch bei den Geometrie-Kerneln ein möglichst
optimales Verhältnis der Laufzeitparameter bestimmt werden (siehe Unterabschnitt 3.2.2).
In umfangreichen empirischen Versuchen hat sich gezeigt, dass in durchschnittlichen
Szenen CUDA Blöcke mit 43 oder 83 Threads die höchsten Bildraten erzielen, wobei pro
Thread ca. 15 Supervoxel sequentiell abgearbeitet werden (bei einem Datenstrukturvo-
lumen von 62 Mio. Voxeln). Unter Verwendung dieser Parameter können bei der um-
fangreichen Szene zur Octree Evaluierung aus Abb. 8.3 die Bildraten des Diagramms in
Abb. 8.13 erreicht werden.

Ein Vergleich mit rviz, der auf OGRE basierenden Visualsierungslösung aus ROS, er-
brachte bei einer ähnlichen Szene aus 3 Mio. gezeichneten Würfeln zwar noch annehmba-
re Bildraten zwischen 7 und 10 FPS. Jedoch verzögerte die Datenübermittlung zwischen
Device und Host die Anzeige neuer Daten im Schnitt um 2 Sekunden. Dies macht die
Auswertung von in Voxel umgewandelten Echtzeitdaten mit rviz unmöglich.

166

8.6. Experimente mit stationärem Roboter

Seiten-
länge Dimension Anzahl
[cm] Voxelkarte Voxel

7,5 1296× 1353× 330 3 046 267
8,0 1215× 1269× 309 2 708 613
9,0 1080× 1128× 275 2 179 571

10,0 972× 1015× 248 1 789 652
12,5 778× 812× 198 1 167 927
15,0 648× 677× 165 814 039
20,0 486× 508× 124 458 672 10 15 20

0

20

40

60

80

Voxel Seitenlänge [cm]

Bi
ld

ra
te

[F
PS

]

Abb. 8.13.: Erreichte Bildraten bei der Visualisierung umfangreicher Daten (Szene siehe
Abb. 8.3) mit unterschiedlichen Voxelseitenlängen. Daten aus [32].

8.6. Experimente mit stationärem Roboter

Die folgenden Experimente beschäftigen sich mit der Planung und Überwachung von
Bewegungen eines Roboterarmes mit serieller Kinematik. Der Planungsraum ist dabei
der sechdimensionale Konfigurationsraum, während die Ausführung im dreidimensio-
nalen Arbeitsraum SE (3) stattfindet. Die gewählten Szenarien decken die beiden großen
Problemklassen der samplingbasierten Planung sowie der feingranularen Arbeitsraum-
überwachung ab und stehen somit für sehr allgemeine Fragestellungen.

8.6.1. Geteilter Arbeitsraum

Ein in der Industrie immer relevanteres Szenario ist der geteilte Arbeitsraum, in dem
Mensch und Roboter gemeinsam agieren und eine Vielzahl von unabhängigen Teilauf-
gaben abarbeiten. Dabei ist es unabdingbar, dass der Roboter seine Ausführungen über-
wacht und so plant, dass er einerseits die Sicherheit des Menschen wahrt, aber anderer-
seits auch seine Aufgaben mit möglichst geringer Störung durch den Menschen durch-
führen kann. Aktuelle Lösungen teilen hierfür den Arbeitsraum in Bereiche ein, die ex-
klusiv durch den Mensch oder durch den Roboter belegt sein dürfen. Die Sensorik, die
die Anwesenheit des Menschen ermittelt, ist dabei der limitierende Faktor, der Form
und Größe der Bereiche einschränkt. So können Laserscanner oder Lichtgitter pro Sen-
sor lediglich eine zweidimensionale Ebene überwachen, wodurch nur eine sehr grobe
Aufteilung des Raumes möglich ist. Betritt der Mensch einen Bereich, in dem der Robo-
ter gerade aktiv ist, so muss dieser seine Ausführung unterbrechen und abwarten, bis
der Mensch sich wieder entfernt hat. Diese binäre Entscheidung ist dabei unabhängig
von den genauen Posen und Bewegungsrichtungen von Mensch und Roboter. Um dieses
konservative und ineffiziente Verhalten mit potentiell unnötigen Stopps des Roboters zu
vermeiden, muss eine feingranulare Arbeitsraumüberwachung ermöglicht werden, die
im Folgenden beschrieben wird.

167

8. Experimentelle Evaluation

Als Beispielanwendung wurde ein Teilaspekt der industriellen Fertigung einer Autotür
gewählt, bei der Mensch und Roboter gemeinsam Schrauben in der Türverkleidung set-
zen. Dabei ist es unerheblich, wer welche Schraubpositionen bearbeitet. Auf Grund von
Gewährleistungsfragen wird in industriellen Anwendungen eine weitreichende Auto-
nomie häufig eher kritisch betrachtet. Da es in einem solchen Szenario für den Roboter
jedoch ausreicht, aus der Menge der Teilaufgaben diejenigen auszuwählen, die in Ab-
hängigkeit vom Aufenthaltsort des Menschen gerade ausführbar sind, erübrigt sich eine
dynamische Neuplanung der Bewegungen. So herrscht jederzeit eine deterministische
Situation, da lediglich im voraus geplante und als sicher eingestufte Trajektorien ausge-
führt werden. Dennoch kann GPU-Voxels auch hier einen wichtigen Beitrag leisten, um
einen klassischen Roboter flexibler einzusetzen.

Dafür wird der Arbeitsraum von zwei Kinect-Kameras überwacht, deren Blickwinkel
so gewählt wurden, dass sich Verschattungen minimieren. Wie in Abb. 8.14a zu sehen,
waren die Sensoren oberhalb und unterhalb der Tür angebracht. Ihre Aufnahmen wer-
den in eine probabilistische Voxelkarte MEnv mit 2 cm Voxelkantenlänge eingetragen:
�(MEnv, PKinect). Anschließend muss das Volumen des Egomodells aus der Karte ent-
fernt werden, um nicht fälschlicherweise zu Kollisionen zu führen. Hierfür wird das
Robotermodell anhand der aktuellen Gelenkwinkelstellungen in eine weitere Voxellis-
te eingetragen und diese von der Umweltkarte subtrahiert: MEnv = (MEnv −MRob) mit
�(MRob, PRob).

Für die Planung einer Aktion wurden im Vorfeld alle N möglichen Bewegungen des
Roboters zu den verschiedenen Schraubpositionen vorberechnet und ihre Swept-Volu-
men in je eine Voxelliste MEgo,n eingetragen. Wie in Abb. 8.14b zu sehen, ist dabei jede
Bewegung in K = 250 äquidistante Schritte unterteilt, die einer individuellen SSV-ID
s zugeordnet sind. Die Winkelinkremente innerhalb des Volumens berechnen sich aus
~ϕ∆ = (~ϕziel − ~ϕstart)/K. Eine zusätzliche Liste MEgo,All (siehe Abb. 8.14c) enthält zudem

die Menge aller Trajektorien, wobei hier pro Bewegung nur eine SSV-ID genutzt wurde.
Durch die Verwendung von Listen, die ausschließlich belegte Voxel speichern, liegt der
kombinierte Speicherverbrauch unter 2 GB.

(a) Kalibrierung der zwei Kinect
Sensoren in ROS

(b) Subvolumen einer einzel-
nen Trajektorie

(c) Swept-Volumen aller
möglichen Trajektorien

Abb. 8.14.: Kalibrierung und Swept-Volumen der auszuführenden Trajektorien.

168

8.6. Experimente mit stationärem Roboter

Vor Beginn einer Schraubaktion kann mittels einer einzigen Kollisionsprüfung MEnv ∩
MEgo,All zwischen der Umweltkarte und der Liste mit allen Trajektorien bestimmt wer-
den, welche SSV-IDs kollisionsfrei sind. Somit ist klar, welche Bewegungen aktuell aus-
führbar sind. Aus dieser Liste wird dann eine Bewegung n gestartet.

Ab diesem Moment läuft mit jeder Aktualisierung der Umweltkarte durch eine neue
Punktwolke eine Kollisionsprüfung mit der n-ten Voxelliste MEgo,n ab, die die zeitlich
abgetastete Einzelbewegung enthält: MEnv ∩ MEgo,n. Gleichzeitig kommuniziert die Be-
wegungsausführung den aktuellen Gelenkwinkelzustand ~ϕt des Roboters an die Über-
wachung. Aus dieser kann mit der step Funktion der Abschnitt s im Swept-Volumen
berechnet werden, dem die Roboterpose ~ϕt am ähnlichsten ist. Wird nun eine Kollisi-
on erkannt, lässt sich über die kleinste, in Kollision liegende SSV-ID ermitteln, ob die
Kollision in einem bereits abgefahrenen Teil der Trajektorie liegt, oder in einem noch zu
durchquerenden Volumen. Somit entscheidet die Funktion stop aus Gleichung 8.1, ob
der Roboter angehalten werden muss, oder ob die Kollisionen ignoriert werden, da sie
zeitlich gesehen bereits hinter der aktuellen Roboterstellung liegen. In den Formeln ist
nicht dargestellt, dass Kollisionen nur berücksichtigt wurden, wenn die Menge an kol-
lidierenden Voxeln über einem festen Grenzwert lag. Über diesen lassen sich minimale
Eigenkollisionen ignorieren, die von der detektierten Verkabelung am Roboter ausgelöst
werden.

stop(PKinect, ~ϕt) :=

{
1 : min

SSV-ID
(MEnv ∩ MEgo,n) ≤ step(MEgo,n , ~ϕt)

0 : sonst
(8.1)

step(MEgo,n , ~ϕt) := s | min(‖ ~ϕt − (s · ~δϕ)‖) (8.2)

Muss der Roboter anhalten, wartet er eine definierte Zeit ab, ob sich das Hindernis wie-
der entfernt und die Bewegung fortgesetzt werden kann. Im anderen Fall wird die Bewe-
gungsrichtung invertiert und der Roboter fährt zu seiner Ausgangspose zurück. Auch
diese Bewegung wird überwacht und bei Bedarf auf unbegrenzte Zeit angehalten. Ist
die Startpose erreicht, kann erneut mit der Auswahl einer alternativen Trajektorie begon-
nen werden. Dabei wird die Wahl so getroffen, dass die neue Bewegung möglichst viel
Abstand zur zuletzt blockierten Ausführung liegt, um die Wahrscheinlichkeit einer wie-
derholten Kollision zu minimieren. Dies kann aus der bekannten örtlichen Anordnung
der Zielpunkte abgeleitet werden.

Die Beispielanwendung wurde im Rahmen von Präsentationen mehrfach öffentlich ge-
zeigt. Momentaufnahmen verschiedener Situationen sind in Abb. 8.15 abgebildet. Der
Statusmonitor oberhalb der Tür visualisiert in rot und grün das vorliegen einer rele-
vanten Kollision. Durch die erfolgreichen Experimente konnte gezeigt werden, dass eine
feingranulare, schritthaltende Überwachung des Arbeitraumes mittels GPU-Voxels mög-
lich ist, und dieser somit sehr effizient gemeinsam genutzt werden kann. Die Berech-
nungszeiten aller nötigen Schritte lagen durchgehend unter den verfügbaren 33 ms, die
zwischen zwei Sensoraufnahmen vergehen. Eine große Herausforderung bei der prak-
tischen Umsetzung bestand in der extrinsischen Kalibrierung der Kameras gegenüber
dem Roboter. Liegt hier ein Fehler vor, schlägt die Subtraktion des Egomodells aus den
Kameradaten fehl, und der Roboter detektiert sich selbst als Hindernis.

169

8. Experimentelle Evaluation

(a) Mensch außerhalb des Arbeitsbereichs (b) Mensch kreuzt Trajektorie

(c) Mensch hinter der Ausführung (d) Getrennte Arbeitsvolumen

Abb. 8.15.: Geteilter Arbeitsraum zur Autotürenmontage. In allen vier Szenen bewegt
sich der Roboter auf die Tür zu und bremst, falls der Mensch seine auszu-
führende Trajektorie kreuzt. Bewegt sich der Mensch zeitlich gesehen hinter
dem Roboter, wird hingegen nicht angehalten.

8.6.2. Samplingbasiertes Planen

Auch wenn die Kollisionsprüfung einzelner unabhängiger Posen theoretisch nicht das
optimale Anwendungsszenario für GPU-Voxels darstellt, sollte dennoch geprüft wer-
den, wie gut sich ein samplingbasiertes Planungsverfahren damit umsetzen lässt. Als
Basis wurde hierfür die OMPL herangezogen, die eine Vielzahl an unterschiedlichen
Planungsverfahren unter einer einheitlichen API zusammenfasst. Geplant werden die
sechs Freiheitsgrade eines Universal Robot 10 Armes mittels LBKPIECE1 [194] (siehe
auch Abschnitt 7.1.3). Die Evaluation erfolgte in zwei Szenarien: Im ersten Versuch (siehe
Abb. 8.16) musste sich der Roboter durch eine statische Engstelle bewegen, im zweiten
Versuch (siehe Abb. 8.17) in einer offenen Umgebung um ein dynamisches Hindernis
herum. In beiden Fällen war auch der Boden der Szene als Hindernis modelliert. Der
verwendete Arbeitsraum hatte eine Größe von 3m× 3m× 2m die durch 2 250 000 Voxel
mit 2 cm Kantenlänge dargestellt wurden.

Neben der generellen Zeitmessung sollte verglichen werden, ob eine Voxelkarte oder eine
Voxelliste als Repräsentation für das Robotermodell effizienter ist. Dieses bestand aus
zehn Segmenten, die insgesamt 36 504 Punkte enthielten, welche durchschnittlich knapp
4000 Voxel belegten.

170

8.6. Experimente mit stationärem Roboter

(a) Szenario mit Start und Zielkonfiguration (b) Swept-Volumen der geplanten Trajektorie

Abb. 8.16.: Beispiel einer Trajektorienplanung durch einen engen Korridor. Die durch-
schnittliche Planungszeit liegt bei 2 Sekunden.

Abb. 8.17.: Planungsergebnisse in dynamischer Szene. Die Säule bewegt sich von hinten
nach vorne am Roboter vorbei. Die durchschnittliche Planungszeit liegt bei
0,77 Sekunden.

Beide Szenarien wurden pro Repräsentationstyp 100 mal geplant. Die resultierenden Tra-
jektorien enthielten zwischen 5 und 137 Zwischenzustände, während die Glättung diese
auf eine Länge von 5 bis 45 reduzierte. Die Zeitmessungen der vier Tests, die sich in
Tab. 8.7 finden, zeigen, dass trotz der geringen Voxelzahl des Robotermodells eine Vo-
xelkarte in diesem Szenario deutlich performanter als eine Voxelliste ist. Zum genaueren
Verständnis schlüsselt Tab. 8.8 die Zeiten der verwendeten Kollisionstests detaillierter
auf. Hier ist ersichtlich, dass der Aufbau der Listen und nicht die eigentliche Kollisions-
prüfung für den hohen Zeitaufwand verantwortlich ist. Bei den Voxelkarten hingegen ist
Rechenzeit dagegen nahezu gleichmäßig aufgeteilt.

171

8. Experimentelle Evaluation

Der verwendete LBKPIECE1 Planer nutzt drei unterschiedliche Kollisionsprüfungen, die
mittels GPU-Voxels implementiert wurden: Zunächst sind im Lazy-Teil diskrete Posen
für den Aufbau des Planungsgraphen zu prüfen (erste Spalte). Ist eine Lösung gefunden,
wird diese abschnittsweise durch Einzelposen abgetastet, die wiederum auf Kollisions-
freiheit geprüft werden (dritte Spalte). Bei der finalen Glättung kommt dann ein Swept-
Volumen zum Einsatz (zweite Spalte), das optimierte Abschnitte repräsentiert. Hier be-
scheinigt die Zeitmessung die Vorteile des Swept-Volumens, da damit im Schnitt auf 10
Posen im Pfad nur eine Kollisionsprüfung kommt.

Die Ergebnisse zeigen, dass ein samplingbasierter Planungsansatz auf dynamischen Punkt-
wolkendaten mit der entwickelten Voxel-Kollisionsprüfung in vertretbaren Berechnungs-
zeiten umsetzbar ist. Kann jedoch eine statische Umgebung vorausgesetzt werden, lassen
sich vergleichbare Planungsszenarien mit demselben Planer und einer BVH-Kollisionsprüfung
bis zu 80 mal schneller lösen (evaluiert mittels ROS MoveIt3).

Szenario
Laufzeit [ms] Evaluierte

∅∅∅ Median σ Min Max Posen ∅∅∅

Mobiles Hindernis Voxelkarte ∩ Voxelkarte
Planung 625,6 581,1 287,4 119,4 1390,9 711
Glättung 214,9 197,7 85,1 73,3 602,9 496

Σ 840,5 778,8 372,5 192,7 1993,8 1207

Mobiles Hindernis Voxelliste ∩ Voxelkarte
Planung 2621,7 2806,8 919,8 1292,0 4444,1 564
Glättung 3487,7 3323,2 1031,4 2387,6 5841,4 675

Σ 6109,4 6130,0 1951,2 3679,6 10 285,5 1239

Enge Passage Voxelkarte ∩ Voxelkarte
Planung 2103,3 1761,5 1475,3 501,5 7843,2 2026
Glättung 293,1 289,0 133,3 138,8 837,8 772

Σ 2396,4 2050,5 1608,6 640,3 8681,0 2798

Enge Passage Voxelliste ∩ Voxelkarte
Planung 9851,6 9285,6 4956,6 1620,9 20 026,1 1854
Glättung 6405,1 5961,0 2743,8 3011,1 14 581,1 1073

Σ 16 256,7 15 246,6 7700,4 4632,0 34 607,2 2927

Tab. 8.7.: Berechnungsdauer der samplingbasierten Planung eines Roboterarmes (gemit-
telt über jeweils 100 Durchläufe, Standardabweichung σ).

8.6.3. Ablaufplanung von mehreren Robotern

In industriellen Roboterzellen teilen sich oft mehrere Roboter einen Arbeitsraum, in dem
sie gemeinsam ein Bauteil bearbeiten. Jeder Roboter führt dabei mehrere, meist unabhän-
gige Aktionen aus. Ab einer gewissen Anzahl von Bewegungen wird es für den Roboter-

3ROS MoveIt Planning Frameworkhttp://moveit.ros.org/

172

http://moveit.ros.org/

8.6. Experimente mit stationärem Roboter

∅∅∅ Laufzeit: Kollisionscheck / Pose [ms]

Datenstruktur Teil- Diskrete Swept- Swept-Volumen
des Roboters Operation Posen Volumen aus Einzelposen

Voxelkarte
Einfügen 0,415 0,180 0,457

Koll. Prüfung 0,489 0,123 0,511

Σ 0,904 0,303 0,968

Voxelliste
Einfügen 5,016 3,626 6,372

Koll. Prüfung 0,081 0,027 0,220

Σ 5,097 3,653 6,592

Tab. 8.8.: Durchschnittliche Berechnungsdauer der Kollisionstests pro Pose bei der samp-
lingbasierten Planung (Zeiten incl. Voxelumwandlung).

programmierer jedoch schwierig, eine kollisionsfreie Abfolge aller Aktionen zu bestim-
men. Pausen innerhalb des Ablaufs verringern die Taktzeit der Produktion und sollten
vermieden werden. Dieses Problem der Ablaufplanung wird aktuell in CAD Program-
men durch die Trial-and-Error-Methode gelöst, bei denen die Roboterbewegungen mit
klassischen Kollisionsprüfungsverfahren langwierig evaluiert werden. Treten Kollisio-
nen auf, wird die Reihenfolge der Bewegungen durch menschliches Expertenwissen so
lange verändert, bis die Ausführung sicher ist.

Um das Problem automatisch zu optimieren, muss das Kreuzprodukt aller Bewegun-
gen auf Kollisionen überprüft werden. Dies kann durch den Einsatz von Swept-Volu-
men aus Bitvektor-Voxeln sehr effizient per GPU-Kollisionsprüfung erreicht werden. Ist
in den IDs der Sweeps die Zeit codiert, lässt sich mit dem Bitvektor-Voxel Schnitt aus
Abschnitt 6.2.1 feststellen, welche Aktionen in Kollision liegen. Voraussetzung ist, dass
die Aufgaben unabhängig voneinander sind und somit in einer beliebigen Reihenfolge
ausführbar sind. Weiterhin müssen alle Einzelbewegungen zu Beginn diskreter, gleich
langer Zeitfenster starten, deren Dauer sich nach der längsten Bewegung richtet. Um die
Rechenzeit zu verkürzen und die Auflösung zu maximieren, sollten alle nr beteiligten
Roboter etwa gleich viele Einzelbewegungen nm aufweisen, die ähnlich lange dauern.
Dann werden insgesamt nr ·nm Voxellisten erstellt, die in einem rekursiven Backtracking-
Verfahren (siehe Algorithmus 9 in Appendix Anhang A) gegeneinander auf Kollisionen
geprüft werden. Da dabei häufig dieselben Bewegungen miteinander geschnitten wer-
den, wurde ein Zwischenspeicher implementiert, der zu jedem Bewegungspaar das Er-
gebnis ihrer Kollisionsprüfung vorhält. So ist in vielen Fällen nur ein Nachschlagen not-
wendig.

Das Ergebnis sind nr Listen mit je nm Einträgen, die pro Roboter die validen Bewegungs-
IDs in ihrer auszuführenden Reihenfolge enthalten. Ist keine kollisionsfreie Abfolge mög-
lich, so schlägt das Backtracking fehl. In diesem Fall kann der Nutzer jedem Roboter eine
Pausenbewegung hinzufügen und den Algorithmus erneut starten.

Für eine Laufzeitmessung wurde ein Beispiel mit unterschiedlichen Robotern herange-
zogen, deren Trajektorien sich regelmäßig kreuzen (siehe Abb. 8.18). Der Speicherver-
brauch des Ablaufplaners steigt linear mit der Anzahl der Roboter und deren Anzahl an

173

8. Experimentelle Evaluation

Bewegungen (O(nr · nm)). Bei der Berechnungsdauer muss zwischen zwei Ergebnissen
unterschieden werden: Die Dauer zur Ermittlung aller möglichen Lösungen wächst ex-
ponentiell mit beiden Parametern (O((nm!)nr)). Beachtenswert ist hingegen, dass die Zeit
für die Berechnung einer ersten validen Lösung im Schnitt lediglich linear mit der Anzahl
der Roboter und deren Bewegungen steigt. Da im Allgemeinen eine Lösung ausreichend
ist, ist dies die relevantere Aussage. Prinzipbedingt schwankt die genaue Laufzeit mit
der Sortierung der Eingabedaten, da sie die Rechenzeit des Backtrackings beeinflusst.
Dies spiegelt sich auch in den Ergebnissen aus Tab. 8.9 wieder, die einen Ausschnitt aus
den ermittelten Messungen auflistet. Im realistischen Szenario mit vier Robotern und je
vier Bewegungen konnte aus 331 776 Kombinationen eine kollisionsfreie Reihenfolge al-
ler 16 Aktionen im Schnitt in nur 1,52 s gefunden werden.

Abb. 8.18.: Beispieltrajektorien für das Scheduling von Roboterbewegungen (Links und
Mitte). Kombination im geteilten Arbeitsraum (Rechts).

Konfiguration ∅∅∅ Laufzeit [s]

Roboter # Bewegungen Initialisierung Erstes Ergebnis Alle Ergebnisse
6 4 2,170 2,481 80,661
5 4 1,893 2,250 10,524
4 4 1,672 1,520 5,211
3 4 1,458 0,763 2,880
2 4 1,310 0,324 1,243
1 4 1,186 0,001 0,001

3 2 0,877 0,398 0,715
3 3 1,202 0,572 1,547
3 4 1,450 0,765 2,864
3 5 1,779 0,974 6,058
3 6 2,192 1,156 180,629

Tab. 8.9.: Unterschiedliche Kombinationen aus Roboteranzahl bzw. Bewegungsanzahl
und ihr Einfluss auf die Berechnungsdauer des Backtracking-Verfahrens. Ergeb-
nisse gemittelt über 10 Durchläufe.

8.7. Experimente mit mobilen Robotern

Im Folgenden sollen Planungsaufgaben im SE (2)-Raum betrachtet werden, die kollisi-
onsfreie Bewegungspfade für mobile Plattformen erzeugen. Die komplexe Geometrie,

174

8.7. Experimente mit mobilen Robotern

der in den Beispielen verwendeten Roboter HoLLiE und IMMP, erfordert dabei eine drei-
dimensionale Kollisionserkennung.

8.7.1. Demonstrationssysteme

Da besonders in der Robotik die theoretische Evaluation von Algorithmen mittels Simu-
lationen erfahrungsgemäß weit von den Ergebnissen mit physischen Systemen abweicht,
wurden im Rahmen dieser Arbeit mehrere mobile Robotersysteme entwickelt. Sie dienen
als Test- und Demonstrationsplattformen für viele praxisnahe Versuche, unter anderem
mit GPU-Voxels. Ihre wichtigsten Eigenschaften sollen daher hier in aller Kürze beschrie-
ben werden.

Die Gemeinsamkeit der konstruierten Systeme liegt in ihrem kinematischen Aufbau, der
eine hohe Anzahl an beweglichen Freiheitsgraden aufweist und der den Robotern ei-
ne sehr wandelbare Geometrie verleiht. Aus diesem Grund lassen sich bei einer Bewe-
gungsplanung keine validen Approximationen der Geometrien durch 2D Projektionen
umsetzen, was einen der praktischen Beweggründe für diese Arbeit darstellt.

(a) Adero (b) HoLLiE (c) IMMP

Abb. 8.19.: Demonstratorsysteme, deren Entwicklung der Autor im Laufe der Disserta-
tion leitete: Anthropomorphe mobile Manipulationsplattform Adero, House
of Living Labs intelligent Escort (HoLLiE), Industrielle Mobile Manipulations
Plattform (IMMP)

Adero - Advanced Dexterous Robot

Zur Untersuchung zweihändiger Manipulationsaufgaben im Rahmen der Projekte DE-
SIRE [176] und Dexmart [15] standen am Forschungszentrum Informatik (FZI) zwei KU-
KA Leichtbauroboterarme zur Verfügung. Um diese nicht nur stationär, sondern auch
für mobile Manipulationsaufgaben nutzen zu können, wurde eine erste mobile Plattform
entwickelt, die diese Arme tragen konnte. Grundlage bildete die Antriebsmechanik eines
Roboters des Instituts für Anthropomatik (IFA) von Professor Dillmann, die mit moder-
nen Motorreglern, zwei Computern und vielfältiger Sensorik ausgestattet wurde. Der

175

8. Experimentelle Evaluation

Aufbau des Systems fand ab 2010 statt, genutzt wurde der Roboter bis 2012. Heraus-
ragendes Merkmal von Adero war eine passive Achse im Oberkörper, mit welcher der
Arbeitsraum der Arme von Tischhöhe auf die Bodenebene gebracht werden konnte. Die
Konstruktion des Roboters war so ausgelegt, dass der Schwerpunkt der Plattform eine
statische Stabilität auch bei ausgestreckten Armen garantierte [10]. Trotz ausreichend di-
mensionierter Akkumulatoren zur Stromversorgung war jedoch kein kabelloser Betrieb
des Roboters möglich, da die industriell ausgelegten Steuerungseinheiten der Leichtbau-
arme zu groß waren, um auf einem mobilen Roboter untergebracht werden zu können.

Softwareseitig konnte mit Adero das vorhandene Greifplanungssystem von Xue [204] mit
einer mobilen Komponente erweitert werden, um unterschiedliche Umweltmodellierun-
gen (teilweise basierend auf Graphendatenbanken) und Objekterkennungsverfahren zu
evaluieren.

HoLLiE - House of Living Labs intelligent Escort

Um über ein wirklich kabelloses und somit mobiles System zu verfügen, wurde 2011
der Roboter HoLLiE ins Leben gerufen [9]. Seine Entwicklung verfolgte zwei maßgebli-
che Strategien: Da eine höhere Verlässlichkeit und eine beschleunigte Entwicklung hohe
Priorität hatten, sollten beim Aufbau zum größtmöglichen Anteil industrielle Kompo-
nenten Verwendung finden. Des weiteren sollte HoLLiE in der Lage sein, bestmöglich in
menschlichen Umgebungen arbeiten und für Menschen gemachte Gegenstände hand-
haben zu können. Entsprechend wurde die Größe des Roboters auf rollstuhlgerechte
Umgebungen abgestimmt und seine Kinematik so gestaltet, dass er Gegenstände vom
Boden aufnehmen kann. Das Erscheinungsbild des Roboters wurde in Zusammenarbeit
mit einem Industriedesigner entwickelt und in großen Teilen im SLS 3D-Druck gefertigt.
Es wirkt durch seine leicht humanoiden Züge zwar freundlich, bleibt dabei jedoch sehr
weit von einem Uncanny Valley Effekt [147] entfernt. Eine flexible Stofffront erlaubt die
Bewegung des Oberkörpers ohne sichtbare Scharniere.

Geplant und umgesetzt wurde eine innovative Parallelogrammechanik zum Last- / Mo-
mentenausgleich im Körper des Roboters [31]. Diese nimmt die Torsionsmomente, die im
Körper durch ein Ausstrecken der Arme entstehen können, auf, so dass sie nicht auf den
Antriebseinheiten lasten, sondern in die Basis des Roboters abgeleitet werden. Außerdem
hält sie die Schulter- und Hals-Aktuatoren stets waagerecht. Eine verwindungssteife Ver-
bindung zwischen Kopf und Armen stellt eine konstante Hand-Augen-Kalibrierung si-
cher. Die Basiskomponenten bilden eine omnidirektional verfahrbare Segway Plattform,
zwei SCHUNK LWR 6-Achs Roboterarme, zwei SCHUNK Antriebsmodule zur Körper-
bewegung sowie ein SCHUNK Zwei-Achs-Antriebsmodul im Hals. Als Hände können
sowohl DLR-HIT 4-Finger-Hände als auch SCHUNK SVH 5-Finger-Hände angebracht
werden. Neben der selbst entwickelten Sicherheits- und Energiemanagementelektronik
verfügt HoLLiE über ein RGB-LED-Band, das die mobile Basis umgibt und für die intui-
tive Visualisierung unterschiedlicher Informationen (bspw. beabsichtigter Bewegungs-
richtung oder detektierte Hindernisse) genutzt wird. Die Basis enthält außerdem zwei
Computer, Laserscanner und Akkus, während im Körper Netzwerktechnik, Lautspre-
cher und Verstärker untergebracht sind.

176

8.7. Experimente mit mobilen Robotern

Zur zielgerichteten Bewegung des Roboters wurden in der Masterarbeit von Rusche-
weyh [30] unterschiedliche Ansätze zur Berechnung einer inversen Ganzkörperkinema-
tik unter Nutzung von Nullräumen und unterschiedlichen Gewichtungsfaktoren der ki-
nematischen Teilketten implementiert.

HoLLiE absolvierte über die Jahre viele medienwirksame Auftritte, teilweise auch vor
großem Messepublikum. Im Rahmen der GPU-Voxels Entwicklung diente der Roboter
mehrfach als Testplattform. In diesen Fällen wurde HoLLiE jedoch kabelgebunden ver-
wendet, da die Bordcomputer nicht über eine GPU verfügen, und alle Daten daher auf
einem externen PC verarbeitet werden mussten.

IMMP - Industrial Mobile Manipulation Plattform

Zum Auftakt des Projektes ISABEL konnte eine weitere mobile Plattform angeschafft
werden, um die Arme von Adero aufzunehmen: Ein holonomer KUKA omniRob. Die-
se Plattform verfügt über eine außerordentlich solide, mechatronische Basis und sollte
daher für industrienahe Aufgaben eingesetzt werden. Zusätzliche Umbauten ermöglich-
ten den mobilen Betrieb der leistungsstarken Nvidia Titan GPU an Bord des Roboters.
Die GPU dient der Sensordatenverarbeitung von insgesamt acht Kinect-Kameras mittels
GPU-Voxels, die dem Roboter eine 3D Rundumsicht ermöglichen.

Trotz mehrjähriger Anstrengungen und einer intensiven Kooperation mit dem Herstel-
ler wurde leider keine passende Möglichkeit gefunden, die Plattform über eine externe,
hochfrequente Regelung anzusteuern. Somit konnte der Roboter während der Dissertati-
on nur zur Datenaufnahme genutzt werden (siehe Abb. 8.20), nicht aber für eine reaktive
Bewegungsplanung, wie sie in Unterabschnitt 7.2.3 entwickelt wurde.

Abb. 8.20.: Tests im Rahmens des ISABEL-Projektes im Reinraum bei Infineon Regens-
burg zur Demonstration eines geteilten Arbeitsraumes mit einem mobilen Ro-
boter. Rechts: Erstellte Voxelkarten zur Kollisionsvermeidung.

8.7.2. Planung mit Rotations-Swept-Volumen

Die Verfahren aus Unterabschnitt 7.2.2 zeigen, wie mit Rotations-Swept-Volu-men effi-
zient kollisionsfreie Bewegungen einer mobilen Plattform auf einem Planungsgitter ge-

177

8. Experimentelle Evaluation

neriert werden können. Um die Praxistauglichkeit des Verfahrens bewerten zu können,
wurden Versuche mit unterschiedlichen Robotern durchgeführt.

(a) Szanerio 1: Roboter muss durch enge Passa-
ge hinter die Tische. Rotationen sind durch
Box auf Tisch eingeschränkt, weshalb eine
Drehung vor der Passage eingeplant wer-
den muss.

(b) Szenario 2: Planung einer längeren Strecke
im freien Raum. Der Planer generiert eine
sehr glatte Trajektorie.

(c) Szanerio 3: Planung auf Sensordaten einer
engen Passage, die die Rotationsmöglich-
keiten stark einschränkt.

(d) Ergebnis der RRT-Connect Planung auf
Szenario 2 (oben) als Vergleich.

Abb. 8.21.: Ergebnisse des implementierten Plattformplaners auf drei Testszenarien und
das Ergebnis einer RRT-Connect Planung zum Vergleich. Veröffentlicht in [3].

Zunächst soll der Einfluss der Voxel, bzw. Zellengröße auf die Planungsgeschwindig-
keit ermittelt werden, wofür Voxel mit Kantenlängen von 1 cm, 2 cm, 4 cm und 8 cm und
Zellen mit 4 cm und 8 cm betrachtet werden. Da bei der Planung eine hierarchische Kol-
lisionsprüfung eingesetzt wird (siehe Unterabschnitt 5.3.2), ermöglichen diese Voxelgrö-
ßen das einfache Umrechnen zwischen den unterschiedlichen Auflösungen. Weiterhin
kommt die Translation mittels Basisversatz aus Unterabschnitt 5.3.1 zum Einsatz, wobei
die Voxelliste des Egomodells gegenüber der Umweltkarte verschoben wird. Die ersten
Tests verdeutlichen den Zusammenhang zwischen Voxel-, bzw. Zellengröße und der Pla-
nungszeit.

178

8.7. Experimente mit mobilen Robotern

Im ersten Testszenario muss der mobile Roboter seinen Weg durch zwei Tische finden,
während die Armpose nicht verändert werden kann. Ein zusätzliches Hindernis auf ei-
nem der Tische schränkt die möglichen Rotationswinkel weiter ein. Die Resultate in
Tab. 8.10 zeigen, wie sowohl die Planungszeit, als auch die Zeit der Kollisionsprüfung
bei kleinerer Diskretisierung ansteigt, wobei die Pfadkosten annähernd gleich bleiben.
Die Kosten setzen sich dabei aus der zurückzulegenden euklidischen Distanz, als auch
den Rotationskosten zusammen.

Diskretisierung Laufzeit [s]

Zellgröße Kantenlänge Kollisions- Pfad- Kollisions- Pfad-
[m] Voxel [m] checks kosten checks planung

0,04 0,01 2651 2,472 5,73 3,621
0,04 0,02 2634 1,114 5,77 2,241
0,04 0,04 2670 0,546 5,95 1,692
0,08 0,01 745 0,608 6,17 0,787
0,08 0,02 720 0,292 5,86 0,471
0,08 0,04 757 0,139 5,99 0,322

Tab. 8.10.: Resultate der Planung mit Rotationsprimitiven im ersten Testszenario (vgl.
Abb. 8.21a).

Im zweiten Szenario muss ein etwas längerer Pfad gefunden werden, wobei ein höherer
Anteil an freiem Raum durchfahren wird. Hierbei zeigen sich die Vorteile der Kollisions-
prüfung auf unterschiedlich aufgelösten Voxelkarten, wie an den Ergebnissen in Tab. 8.12
abzulesen ist: Trotz einer größeren Anzahl an Prüfungen ist die Laufzeit kürzer, da viele
Checks im Freiraum stattfinden, und somit nur auf der niedrig aufgelösten Karte durch-
geführt werden.

Diskretisierung Laufzeit [s]

Zellgröße Kantenlänge Kollisions- Pfad- Kollisions- Pfad-
[m] Voxel [m] checks kosten checks planung

0,04 0,01 3412 2,464 7,54 4,393
0,04 0,02 3417 1,060 7,55 3,007
0,04 0,04 3412 0,414 7,60 2,331
0,08 0,01 943 0,628 7,55 0,859
0,08 0,02 1009 0,299 7,56 0,560
0,08 0,04 1214 0,107 7,70 0,411

Tab. 8.11.: Resultate der Planung mit Rotationsprimitiven im zweiten Testszenario (vgl.
Abb. 8.21b).

Das dritte Szenario nutzt eine Punktwolke, die mit einem rotierenden Laserscanner im
Labor des FZI erstellt wurde. Da der Roboter auch hier eine enge Passage traversieren
muss, konnte der Planer bei einer Auflösung von 0,08 m des Planungsgitters keinen gül-
tigen Pfad finden. Erwartungsgemäß unterscheiden sich die Planungszeiten nicht von

179

8. Experimentelle Evaluation

den Szenarien mit synthetischen Daten, wie Tab. 8.12 belegt.

Diskretisierung Laufzeit [s]

Zellgröße Kantenlänge Kollisions- Pfad- Kollisions- Pfad-
[m] Voxel [m] checks kosten checks planung

0,04 0,01 1233 3,71 1,108 1,688
0,04 0,02 1208 3,72 0,414 1,011
0,04 0,04 1078 3,69 0,161 0,679

Tab. 8.12.: Resultate der Planung mit Rotationsprimitiven im dritten Testszenario auf rea-
len Sensordaten (vgl. Abb. 8.21c).

Diese Evaluation zeigt, dass auch in verwinkelten Szenarien innerhalb weniger Sekun-
den valide und sogar glatte Trajektorien geplant werden können. Es ist hervorzuheben,
dass die gezeigten Testfälle nicht mit einem 2D oder 2,5D Kollisionserkennungsverfah-
ren lösbar sind, da sich die Arme des Roboters teilweise über den Hindernissen befinden
müssen, oder die Plattform unter ihnen.

Mehrstufige Kollsionsprüfung in der Planung

Da die Listen, welche die Rotationsvolumen beinhalten, statisch sind, lassen sich diese
in unterschiedlichen Auflösungen vorberechnen und für eine mehrstufige Kollisionsprü-
fung nutzen. Damit kann ein merklicher Laufzeitvorteil in der Planung erzielt werden.
Folgende Formel beschreibt den Laufzeitvorteil (Speedup) gegenüber dem ausschließlich
hochauflösenden Kollisionscheck:

Speedup =
tfein ∗ nExpand

tfein ∗mfein + nExpand ∗ tgrob
(8.3)

Dabei beziffert nExpand die Anzahl der Expansionsschritte im Graphen während des Pla-
nungsprozesses, tfein die Laufzeit der hochauflösenden Kollisionsprüfungen, die mfein
mal stattfinden und tgrob die Laufzeit einer niedrig auflösenden Kollisionsprüfung.

Nimmt man die Laufzeiten aus Abschnitt 8.2 als Ausgangspunkt, ergibt sich wiederum
der Speedup aus Tab. 8.13 für die Bewegungsplanung.

Somit ist ersichtlich, dass eine Kombination mit möglichst unterschiedlichen Voxelgrö-
ßen den besten Laufzeitgewinn bewirkt. Gröbere Auflösungen als 4 cm wurden nicht
betrachtet, da bei diesen zu viele Kollisionen im ersten Prüfungsschritt detektiert wer-
den.

Zusammengefasst kann festgestellt werden, dass eine Voxelgröße von 4 cm für die Pla-
nung von Plattformtrajektorien ausreichend ist. Durch den hierarchischen Ansatz ist
dennoch sichergestellt, dass auch in engen Passagen keine Lösungen übersehen werden.
Kleinere Auflösungen führen erwartungsgemäß zu einem starken Anstieg des Aufwands
für die Kollisionsprüfung und somit zu längeren Planungszeiten. Weiterhin erwies sich

180

8.7. Experimente mit mobilen Robotern

Feine Grobe Expandierungs- Anzahl feine
Voxelgröße Voxelgröße schritte Kollisionschecks Speedup

[m] [m] nExpand mfein

0,01 0,02 839 413 1,149
0,01 0,04 839 434 1,547
0,02 0,04 863 432 1,188

Tab. 8.13.: Laufzeitgewinn durch unterschiedliche Auflösungskombinationen der hierar-
chischen Kollisionsprüfung.

bei der Länge der mobilen Plattform von etwas über einem Meter ein Abstand im Pla-
nungsgitter von 8 cm in Büroumgebungen als ausreichend. In verwinkelten Szenarien,
wie z.B. einer Reinraum-Produktionsumgebung (vgl. Abb. 8.20) sollte diese auf 4 cm re-
duziert werden.

181

8. Experimentelle Evaluation

(a
)H

oL
Li

E
pl

an
tz

un
äc

hs
tr

ec
ht

s
am

H
in

de
rn

is
vo

rb
ei

,w
ir

d
da

nn
je

do
ch

du
rc

h
ei

ne
Pe

rs
on

ge
zw

un
ge

n,
na

ch
lin

ks
au

sz
uw

ei
ch

en
.

(b
)H

in
de

rn
is

au
fH

öh
e

de
s

re
ch

te
n

El
le

nb
og

en
s

er
fo

rd
er

te
in

e
R

ot
at

io
n

um
di

e
En

gs
te

lle
qu

er
zu

pa
ss

ie
re

n.
D

er
lin

ke
El

le
nb

og
en

ro
ti

er
td

ab
ei

üb
er

da
s

sc
hw

ar
ze

H
in

de
rn

is
.

A
bb

.8
.2

2.
:P

la
nu

ng
m

it
ro

ti
er

en
de

n
Be

w
eg

un
gs

pr
im

it
iv

en
au

fd
em

R
ob

ot
er

H
oL

Li
E.

In
be

id
en

Be
is

pi
el

en
ko

nn
te

sc
hn

el
lg

en
ug

um
ge

-
pl

an
tw

er
de

n,
so

da
ss

de
r

R
ob

ot
er

se
in

e
A

us
fü

hr
un

g
ni

ch
ts

to
pp

en
m

us
st

e.

182

8.7. Experimente mit mobilen Robotern

Vergleich mit RRT-Connect Planer

Als Vergleich zum hier vorgestellten Fahrtplanungsverfahren soll die RRT-Connect-Im-
plementierung der OMPL herangezogen werden. Für die Kollisionsprüfung kommt je-
doch aus praktischen Gründen nicht das hierarchische Verfahren mit der Translation
durch Basisversatz zum Einsatz, sondern ein weit weniger performantes Verfahren, bei
dem die Punktwolke des Roboters bei jeder Bewegung neu in eine Voxelkarte eingetra-
gen wird. Um dennoch einen direkten Vergleich ziehen zu können, wird hier lediglich die
Anzahl der auszuführenden Kollisionsprüfungen berücksichtigt und nicht deren Lauf-
zeit.

Ein Vergleich der Laufzeit mit einer Mesh-basierten Kollisionsprüfung wurde dennoch
durchgeführt, indem die Anzahl der Prüfungen mit den durchschnittlichen Laufzeiten
einer vergleichbar komplexen Kollisionsprüfung multipliziert werden. Dafür wurde mit
einem Messwert von 0,24 s gerechnet, den die weit verbreiteten FCL Bibliothek laut [156]
für 1000 Kollisionsprüfungen benötigt (dies deckt sich auch mit eigenen Test).

Die Kollisionsprüfung beider Planer fand auf 4 cm Voxeln statt. In Szenario 1 und 2 wur-
den 8 cm Gitterabstand genutzt, in Szenario 3 hingegen 4 cm. Die Parametrierung des
RRT-Connect wurde zuvor empirisch optimiert.

1 2 3
0

1,000

2,000

3,000

4,000

Szenario

K
ol

lis
is

on
sp

rü
fu

ng
en

Kollisionsprüfungen
RRT-Connect
Eigener Planer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pl
an

un
gs

ze
it

[s
]

Planungszeit
RRT-Connect
Eigener Planer

Abb. 8.23.: Vergleich des Plattform Planers dieser Arbeit mit RRT-Connect aus der OMPL
Bibliothek.

Das Diagramm in Abb. 8.23 zeigt, dass bei dem selbst entwickelten Plattformplaner die
Planungszeit weniger von der Komplexität des Szenarios abhägt, als bei RRT-Connect. So
ist die eigene Implementierung im ersten, kurvigeren Szenario wesentlich schneller, wo-
hingegen im dritten Szenario der RRT-Connect bei einer kürzeren euklidischen Distanz
effizienter ist. Dieses Ergebnis ist exemplarisch und deckt sich mit weiteren durchgeführ-
ten Versuchen. Weiterhin wird die Kollisionsprüfung durch den eigenen Planer erheblich

183

8. Experimentelle Evaluation

seltener aufgerufen. Dabei ist jedoch zu berücksichtigen, dass ein einzelner Aufruf alle
Rotationen simultan evaluiert, was bei den Samples der RRT-Connect nicht der Fall ist.

Bei der Beurteilung eines Planers sollte jedoch neben der Berechnungsdauer auch die
Pfadlänge und die Glattheit der entstehenden Lösungen beurteilt werden. So fällt bei
der Betrachtung von Abb. 8.21b und Abb. 8.21d auf, wie glatt die Pfade des implemen-
tierten Planers ohne weitere Nachbearbeitungsschritte ausfallen. Der samplingbasierte
RRT-Connect generiert im freien Raum dagegen mehrere unnötige Knicke, die den Pfad
zusätzlich verlängern.

Weiterverwendung von Teilplänen

Durch die Verwendung eines D*-Lite Planers ist es möglich, Teilpläne bzw. Graphenkno-
ten weiter zu verwenden, auch wenn geänderte Umweltdaten eine Änderung der Trajek-
torie verlangen. Um diesen Vorteil bestmöglich zu nutzen, expandiert der Algorithmus
auch nach dem Finden eines Plans weiterhin systematisch Graphenknoten. Da der gefun-
dene Plan währenddessen bereits ausgeführt werden kann, erzeugt dies keine Laufzeit-
nachteile. Im Falle einer Neuplanung stehen so jedoch bereits umfangreichere, nutzbare
Informationen für die Graphensuche zur Verfügung.

Zwei exemplarische Versuche, in denen dynamische Hindernisse einen Plan unausführ-
bar machen, sind in Abb. 8.24 gezeigt. Ein Vergleich der Adaptions- bzw. Neuplanungs-
zeiten mit neuen Umweltinformationen ist in Tab. 8.14 zu sehen. Dabei zeigt sich, dass
die erreichbaren Zeiteinsparungen erwartungsgemäß mit der Länge des neuen Pfades
steigen, auch wenn viele Graphenknoten aktualisiert werden müssen (rote Punkte in den
Grafiken).

Laufzeit [s]

Szenario Kollisionsprüfung Planung

Szenario 4: Neuplanung 0,304 0,605
Szenario 4: Weiterverwendung 0,299 0,567
Szenario 5: Neuplanung 0,763 1,511
Szenario 5: Weiterverwendung 0,362 0,947

Tab. 8.14.: Laufzeitgewinn durch Weiterverwendung von Graphenknoten bei der Pla-
nung mit geänderten Umweltinformationen.

Nach diesen Versuchen in einer ROS-basierten Simulation wurde der Planer auch erfolg-
reich in einer realen Umgebung mit dem Roboter HoLLiE getestet. Ausschnitte aus zwei
Versuchen sind in Abb. 8.22 zu sehen. Im ersten Szenario blockierte eine Person mehrfach
den geplanten Pfad des mobilen Roboters, der um ein statisches Hindernis herum führte,
so das dynamisch neue Lösungen generiert werden mussten. Da dies in weniger als einer
Sekunde möglich war, konnte der Roboter übergangslos zwischen den Trajektorien um-
schalten, ohne dabei komplett zum Halten zu kommen. Dies funktionierte auch im zwei-
ten, wesentlich engeren Szenario. Hier führte der ursprünglich geplante Pfad den Robo-
ter vorwärts gerichtet durch einen engen Korridor. Während der Ausführung wurde der

184

8.7. Experimente mit mobilen Robotern

(a) Szenario 4: Ursprünglich geplante Trajek-
torie. Dynamisches Hindernis wird gerade
wahrgenommen.

(b) Neuer Pfad mit Ausweichbewegung.

(c) Szenario 5: Ursprünglich geplante Trajek-
torie links am statischen Hindernis vor-
bei. Zwei dynamsiche Hindernisse rechts
sind bereits bekannt, dynamisches Hinder-
nis links wird neu wahrgenommen.

(d) Neuer Pfad rechts an allen Hindernissen
vorbei. Das Beispiel zeigt auch die Fähig-
keit des Planers, rückwärts gerichtete Be-
wegungen zu planen, wenn keine Alterna-
tiven bestehen.

Abb. 8.24.: Weiterverwendung von Teilplänen, nachdem neue Hindernisse erkannt wur-
den. Rote Punkte markieren inkonsistente Graphenknoten, deren kürzester
Pfad zum Ziel ungültig wurde. Veröffentlicht in [3].

185

8. Experimentelle Evaluation

Korridor durch ein zusätzliches Hindernis auf Höhe des Ellenbogens versperrt. Der ad-
aptierte Pfad beinhaltete daraufhin eine 90 Grad Drehung, mittels der der Roboter dann
quer zur Fahrtrichtung die neue Hindernissituation passieren konnte. Das Umweltmo-
dell stammte in beiden Versuchen ausschließlich aus Punktwolkendaten aus der im Kopf
von HoLLiE montierten Kinect-Kamera. Da der Roter über keine GPU verfügt, wurden
die Berechnungen auf einem externen Planungscomputer durchgeführt, der die Umwelt-
und Lokalisierungsdaten über eine Netzwerkverbindung erhielt. Berechnete Pläne wur-
den dann wiederum an eine ROS-Komponente auf dem Roboter gesendet, welche zum
passenden Zeitpunkt zwischen altem und neuem Plan wechselte.

Zusammenfassung

Die dargestellten Ergebnisse bestätigen die Laufzeiteinsparungen durch die Verwendung
von Swept-Volumen aus Bitvektor-Voxeln. Das verwendete Planungsverfahren mit Rota-
tionsprimitiven ist ein optimaler Anwendungsfall, nicht nur für kumulative Kollisions-
prüfungen, sondern auch für die versatzbasierte Kollisionsprüfung zwischen Voxellisten
und Voxelkarten. Diese konnte durch hierarchische Prüfung mit unterschiedlichen Auf-
lösungen noch weiter beschleunigt werden.

Durch den D*-Lite Suchalgorithmus können Teilpläne weiterverwendet werden, womit
sich das Verfahren auch gut für dynamische Umgebungen eignet. Da bei der Planung
alle drei Dimensionen des Konfigurationsraums berücksichtigt werden, erzeugt das Ver-
fahren glatte Trajektorien für holonome Plattformen, während dennoch intuitive Fahrbe-
wegungen mit Vorzugsrichtung präferiert werden. Als Erweiterung wurde bereits in Ab-
schnitt 7.2.2 gezeigt, wie sich mit Hilfe von Swept-Volumen des Manipulatorarmes auch
erfolgversprechende Plattformposen für mobile Manipulationsaufgaben bestimmen las-
sen.

Die Ergebnisse dieses Abschnittes wurden in [3] veröffentlicht.

8.7.3. Planung mit generischen Bewegungsprimitiven

Bevor die Planung mittels Bewegungsprimitiven, wie sie in Unterabschnitt 7.2.3 entwi-
ckelt wurde, in einem realen Szenario evaluiert werden konnte, mussten umfangreiche
Tests in der Simulation durchgeführt werden. Geprüft und optimiert wurden hierbei ei-
nerseits die eingesetzten Primitive, so dass am Ende auch lange Pfade in verschachtelten
Umgebungen in wenigen Sekunden erzeugt werden konnten. Zum anderen aber auch
der rechtzeitige Wechsel zwischen Pfaden, der ein mehrstufiges Protokoll erfordert. Hier-
für wurde ein einarmiges Modell der IMMP Plattform verwendet, das mit vier virtuel-
len Tiefenkameras ausgestattet war. Deren Punktwolken wurden anhand der simulierten
Kameraperspektive aus einem gegebenen 2,5D Modell der Umwelt berechnet (siehe Ab-
schnitt 4.7).

Momentaufnahmen aus zwei Simulationsdurchläufen finden sich in Abb. 8.25. In bei-
den Szenarien musste der Roboter durch eine, vorerst unbekannte, Umwelt navigieren
und dabei die geplanten Trajektorien mehrfach aufgrund neu detektierter Hindernis-
se anpassen. Planungszeiten des zweiten Szenarios sind in Tab. 8.15 angegeben. Dabei

186

8.7. Experimente mit mobilen Robotern

spiegelt jede Zeile eine neue Trajektorie wider, wobei sich die Dauer der Planung aus
mehreren Komponenten zusammensetzt: Angegeben sind die durchgeführten Expan-
dierungen des Suchgraphen, für die jeweils die Voxelliste eines kompletten Fächers aus
Bewegungsprimitiven durch eine Kollisionsprüfung mit der Umwelt zu evaluieren ist.
Die verbleibende Zeit ist hauptsächlich dem Aufbau einer neuen Voxelliste zur Ausfüh-
rungsüberwachung aus allen verwendeten Primitiven geschuldet. Deren kontinuierliche
Kollisionsprüfung ist wiederum in Tab. 8.16 aufgeschlüsselt. Angegeben sind hier die
ausgeführten Prüfungen pro Abschnitt, die multipliziert mit den Segmenten die Anzahl
der überwachten Primitive ergeben. Hier zeigt sich, dass die Ausführung im Median mit
33 Hz auf neue Hindernisse hin überwacht werden kann, was sogar über der Kinect-
Bildrate liegt.

Setzt man die gemessenen Zeiten mit der durchschnittlichen Bewegungsgeschwindigkeit
von 0,7 m/s des Roboters in Relation wird klar, dass die Planung im Normalfall schnell
genug abläuft, um statischen Hindernissen im Fahrtkorridor ausweichen zu können, oh-
ne dabei anhalten zu müssen: Da die Sichtweite der Kinect mindestens 4 Meter beträgt,
und die Latenz der Datenverarbeitung vernachlässigbar ist (ca. 60 ms), ergibt sich bis zu
einer Kollision eine verbleibende Fahrtdauer von ca. 7,7 Sekunden. In realistischen Sze-
narien werden dagegen bereits in unter 3 Sekunden alternative Trajektorien berechnet,
was ausreichend Zeit für einen Wechsel in der Ausführung lässt. Selbstverständlich gilt
diese Annahme nicht, wenn bei einer Kurvenfahrt neue Hindernisse direkt hinter einer
Ecke erkannt werden. In diesem Fall muss der Roboter gestoppt werden und kann erst
nach der Planung weiterfahren.

187

8. Experimentelle Evaluation

(a
)S

ta
rt

-u
nd

Z
ie

lp
os

e
si

nd
in

ge
lb

da
rg

es
te

llt
,d

ie
ak

tu
el

le
R

ob
ot

er
po

se
in

ro
t.

(b
)S

ta
rt

-u
nd

Z
ie

lp
os

e,
so

w
ie

di
e

ak
tu

el
le

R
ob

ot
er

po
se

si
nd

in
gr

ün
da

rg
es

te
llt

.

A
bb

.8
.2

5.
:D

yn
am

is
ch

e
A

da
pt

io
n

ei
ne

r
Pl

at
tf

or
m

tr
aj

ek
to

ri
e

de
s

IM
M

P
R

ob
ot

er
s

an
ne

ue
U

m
w

el
ti

nf
or

m
at

io
ne

n
be

i
de

r
Pl

an
un

g
m

it
Be

w
eg

un
gs

pr
im

it
iv

en
.

188

8.7. Experimente mit mobilen Robotern

Ab- Länge Planung Expandierung Dauer pro Prüfung [ms]
schnitt [Primitive] [s] Dauer [ms] Schritte ∅∅∅ Median Min Max

1 4 2,220 8,63 3 2,86 2,36 2,28 3,95
2 8 11,663 9727,53 101 96,30 9,50 2,22 732,58
3 3 2,119 27,09 3 8,99 7,59 2,20 17,18
4 7 2,160 42,47 7 6,06 2,86 2,20 25,51

Tab. 8.15.: Berechnungsdauer der Planung mittels Bewegungsprimitiven in unbekannter
Umgebung aus Abb. 8.25b. Pro Schritt in der Expandierung wird ein vollstän-
diger Bewegungsfächer auf Kollision geprüft.

Ab- Kollisions- Evaluierte Dauer pro Prüfung [ms]
schnitt prüfungen Primitive ∅∅∅ Median Min Max

1 88 352 182,43 9,53 2,21 704,76
2 150 1200 250,91 29,55 2,54 786,85
3 74 222 214,71 16,18 2,18 743,85
4 190 1330 254,78 25,79 2,38 779,71

Tab. 8.16.: Ausführungsüberwachung der geplanten Trajektorienabschnitte aus
Abb. 8.25b.

Nach den erfolgreichen Tests in der Simulation wurde das Verfahren auch mit HoLLiE
in realen Szenarien erfolgreich demonstriert (siehe Abb. 8.26). Der Roboter musste dabei
sowohl um statische, als auch um dynamische Hindernisse navigieren, wobei seine ein-
zigen Datenquellen die Kinect im Kopf, sowie die Radodometrie waren. Auch bei diesen
Versuchen in der Laborumgebung des FZI betrug die Geschwindigkeit ca. 0,7 m/s. Wie
bei der Planung mit Rotations-Swept-Volu-men mussten die Berechnungen auf einem
externen Computer durchgeführt werden.

Die Ergebnisse erfüllen alle Erwartungen und belegen die Vorteile der kontinuierlichen
Trajektorienüberwachung mittels Swept-Volumen. Traten in der Umgebung neue Hin-
dernisse in einem Abstand von mindestens einem Meter vor dem Roboter auf, war kein
Anhalten der Plattform nötig, um auszuweichen, da alternative Pfade schnell genug ge-
plant werden konnten. Andere Hindernisse, auch in direkter Nähe zum Roboter, lösten
hingegen keine Neuplanung aus, so lange sie außerhalb des zu durchquerenden Volu-
mens lagen.

189

8. Experimentelle Evaluation

A
bb

.8
.2

6.
:R

ea
kt

iv
e

Pl
an

un
g

um
ei

ne
Pe

rs
on

m
it

te
ls

Be
w

eg
un

gs
pr

im
it

iv
en

au
f

de
m

R
ob

ot
er

H
oL

Li
E.

D
ie

dy
na

m
is

ch
e

N
eu

pl
an

un
g

er
fo

lg
ts

ch
ne

ll
ge

nu
g,

so
da

ss
de

r
R

ob
ot

er
ni

ch
ts

to
pp

en
m

us
s.

190

8.8. Evaluierung der Bewegungsprädiktion

8.8. Evaluierung der Bewegungsprädiktion

Der folgende Abschnitt untersucht die Praxistauglichkeit der Bewegungsprädiktion aus
Abschnitt 4.6 anhand mehrerer Versuche. Um die angestrebte Verarbeitungsgeschwin-
digkeit von mehreren Berechnungen pro Sekunde zu erreichen, mussten starke Reduk-
tionen der Eingabedaten in Kauf genommen werden. Daher sollen zunächst ihre Aus-
wirkungen betrachtet werden:

8.8.1. Datenbasis

Da die genutzten Algorithmen zunächst pixelweise arbeiten, liegt es nahe, die benötigte
Rechenzeit durch eine Verkleinerung der Eingabebilder zu reduzieren. Hieraus ergeben
sich zwar per se keine qualitativen Einbußen bei den Ergebnissen, jedoch sinkt mit der
Auflösung auch die minimale Größe der detektierbaren Objekte. Dass dies in den un-
tersuchten Szenarien keine praktische Einschränkung darstellt, wurde empirisch anhand
von Hindernissen unterschiedlicher Größe ermittelt.

Wie in der Masterarbeit von Mauch [27] beschrieben, kann weiterhin durch die Redukti-
on der maximalen Durchgänge der Energieoptimierungsfunktion und ihrer inneren SOR-
Optimierungszyklen bei gleichzeitigem Aufweichen der Abbruchkriterien eine Laufzeit-
reduktion um ca. Faktor 7 erreicht werden (siehe Tab. 8.17). Auch hier lassen sich die
Qualitätseinbußen der Änderungen visuell gut beurteilen: Abb. 8.27 zeigt, dass die Ab-
weichungen der berechneten Bewegungsvektoren auf denselben Eingabedaten marginal
ausfallen.

Auflösung Parameter
Laufzeit

∅∅∅ Median Min Max

320× 240 Original 3723 3046 1414 22 665
320× 240 Modifiziert 441 429 390 582
160× 120 Original 1226 1103 405 4111
160× 120 Modifiziert 177 176 162 236

Tab. 8.17.: Vergleich der RGBD-Flow Laufzeiten auf unterschiedlichen Eingabedimensio-
nen mit und ohne Modifikationen. Daten aus [27]. Ermittelt über 83 Bildüber-
gänge.

8.8.2. Experimente

Um die berechneten Bewegungen quantitativ beurteilen zu können, wurden Versuche
durchgeführt, bei denen ein Objekt einerseits anhand eines künstlichen Markers und an-
dererseits mittels der in Abschnitt 4.6 beschriebenen Verarbeitungskette getrackt wurde.
Das Objekt war dafür an einem durchsichtigen Stab befestigt, so dass es damit vor der Ka-
mera bewegt werden konnte. Für die Ermittlung der Referenzdaten kam das ROS-Paket

191

8. Experimentelle Evaluation

(a) RGBD-Flow mit Originalparametern. Lauf-
zeit: 5,649 Sekunden

(b) RGBD-Flow mit modifizierten Parametern.
Laufzeit: 0,594 Sekunden

Abb. 8.27.: Qualitativer Vergleich des RGBD-Flow-Vektorfeldes mit unterschiedlichen
Parametrisierungen. Die rote Färbung der Pfeile symbolisiert eine sich ent-
fernende Bewegung. Bild aus [27].

(a) Prädizierte Kollisi-
on zwischen mo-
bilem Roboter und
Person

(b) Prädizierte Kollisi-
on zwischen mo-
bilem Roboter und
Person

(c) Prädizierte Kollisi-
on zwischen Robo-
terarm und Person

(d) Prädizierte Kollisi-
on zwischen Ro-
boterarm und Per-
son

Abb. 8.28.: Momentaufnahmen aus vier Experimenten zur prädizierten Kollisionserken-
nung zwischen mobilem bzw. stationärem Roboter und einer Person. Die Bil-
der einer Spalte zeigen denselben Zeitpunkt. Oben: Prädiktion des Menschen,
Mitte: Schnitt mit dem Bewegungsplan des Roboters. Unten: In Kollision lie-
gendes Volumen (rot). Veröffentlicht in [7].

192

8.8. Evaluierung der Bewegungsprädiktion

ar_track_alvar4 zum Einsatz, dessen gemessene SE (3)-Posen über den Differenzenquoti-
enten in Geschwindigkeiten umgerechnet wurden.

Die Ergebnisse des Vergleichs, welche in Abb. 8.29 zu sehen sind, wurden in [7] veröffent-
licht. Sie zeigen in Abb. 8.29a für alle drei Dimensionen eine sehr geringe Abweichung
der berechneten Position. Ausnahmen sind kleine Spitzen an den Hoch- / Tief- und Sat-
telpunkten des Graphen. Zu diesen Zeitpunkten sinkt die Objektgeschwindigkeit nahezu
auf null, weswegen der RGBD-Flow einen Großteil der Objektmesspunkte aufgrund ih-
rer zu geringen Geschwindigkeit bereits vor der Segmentierung verwirft. Das Rauschen
in den wenigen verbleibenden Punkten führt dann zu den fehlerhaften Ergebnissen. Die-
se sind für eine weiterführende Verarbeitung allerdings nicht von Belang und wurden
daher auch nicht weiter untersucht.

(a) Ergebnis der Positionsbestimmung (b) Ergebnis der Bewegungsbestimmung

Abb. 8.29.: Evaluation des Objekttrackings mittels 3D-Szenenfluss. Der blaue Graph vi-
sualisiert die Referenzdaten des Marker-Trackings. Rot ist das Messergebnis
aus dem Szenenfluss, grün das Kalman-gefilterte Tracking. Veröffentlicht in
[7].

Das Ergebnis der Bewegungsgeschwindigkeiten aus Abb. 8.29b ist hingegen wesent-
lich stärkeren Abweichungen unterworfen. Die Filterung mittels EKF glättet zwar die
Schwankungen in den Messungen, führt jedoch prinzipbedingt auch zu einer zeitlichen
Verzögerung des Signales. Der grobe Bewegungsverlauf wird allerdings ausreichend gut
wiedergegeben, so dass Experimente mit Objekten einer gewissen Massenträgheit erfolg-
reich durchgeführt werden konnten. Eine statistische Auswertung der Abweichung von
Positions- bzw. Bewegungsschätzung von den Referenzdaten in Tab. 8.18 und Tab. 8.19
zeigt dieselben Ergebnisse im Detail. ē bezeichnet hier das arithmetische Mittel und RMS
das quadratische Mittel des Fehlers.

In einem weiteren Testszenario mit einem bewegten Objekt, das ca. 20% des Kamera-
bildes ausfüllte, wurden Laufzeitmessungen der einzelnen Funktionsblöcke durchge-
führt. Die Ergebnisse in Tab. 8.20 zeigen, dass die Szenenflussberechnung die höchste
Berechnungsdauer aufweist. Da jeder Funktionsblock in einem eigenen Thread abläuft,

4Siehe http://wiki.ros.org/ar_track_alvar

193

http://wiki.ros.org/ar_track_alvar

8. Experimentelle Evaluation

bestimmt somit die Laufzeit der Flussberechnung tflow ≈125 ms die maximal erreichbare
Framerate fflow des Systems, die bei 1

tflow
≈8 Hz liegt. Die Reaktionszeit ergibt sich aus

der Summe aller Verarbeitungsschritte und liegt somit bei ∼200 ms.

Die praktische Anwendbarkeit der Kollisionsprädiktion konnte in zwei Szenarien er-
probt werden: Ein geteilter Mensch-Roboter-Arbeitsplatz aus Abb. 8.30 demonstriert die
Erkennung und Prädiktion menschlicher Gliedmaßen, während ein zweites Szenario die
Prädiktion menschlicher Bewegungen aus größerer Entfernung testete (Abb. 8.32). Als
Roboter kam in beiden Fällen HoLLiE zum Einsatz, die ihren Arbeitsraum mittels der
im Kopf eingebauten Kinect-Kamera überwachte. Die Bewegung des Roboters liegt nach
ihrer Planung bereits als Swept-Volumen vor, welches mit den oben beschriebenen Ver-
fahren auf eine Kollision mit dem Volumen der prädizierten Bewegung des Menschen
überprüft wird. Beide Szenarien wurden mehrfach erfolgreich getestet: Der Roboter un-
terbrach seine Bewegungen bereits lange, bevor es zu einer Kollision kommen konnte.

Abb. 8.30.: Beispielszenario: Geteilter Mensch-Roboter-Arbeitsplatz. Bild aus [27].

8.8.3. Einschränkung und mögliche Erweiterungen

Die Laufzeit des verwendeten Szenenflussverfahrens ist der einschränkende Faktor bei
der Auswertung dynamischer Bewegungen, was Raum für Optimierungen lässt. Weiter-
hin stellen die rein linearen Bewegungsmodelle des EKF eine große Einschränkung dar,
insbesondere bei der Betrachtung menschlicher Armbewegungen. Hier wäre es hilfreich,
auf skelettbasierte Bewegungsmodelle zu wechseln, was jedoch dem ursprünglichen Ge-
danken eines möglichst allgemeingültigen Ansatzes widersprechen würde.

Ohne Widersprüche ließen sich hingegen Strategien entwickeln, die den Roboter im Fal-
le einer prädizierten Kollision proaktiv reagieren ließen. Hier wäre es je nach Szenario
denkbar, die unterbrochene Bewegung rückwärts auszuführen, um Zusammenstöße zu
verhindern, oder den Roboter in eine weiche Impedanzregelung zu versetzen, um ein
Verletzungsrisiko zu minimieren.

Soll das entwickelte Verfahren auf einem mobilen Roboter zum Einsatz kommen, bei
dem die Kamera nicht statisch verbleibt, müssen robuste und exakte Verfahren gefun-
dene werden, um die Eigenbewegung aus dem Vektorfeld des Szenenflusses herauszu-

194

8.8. Evaluierung der Bewegungsprädiktion

ēpos RMSpos,x RMSpos,y RMSpos,z epos,min epos,max

[m] [m] [m] [m] [m] [m]

Nach
Segmentie-
rung

0,0101 0,0121 0,0099 0,0020 0,0091 0,1392

Nach EKF 0,0145 0,0116 0,0100 0,0062 0,0070 0,1773

Tab. 8.18.: Fehler der Positionsschätzung aus [27].

ēmot RMSmot,x RMSmot,y RMSmot,z emot,min emot,max

[m/s] [m/s] [m/s] [m/s] [m/s] [m/s]

Nach
Segmentie-
rung

0,1392 0,1149 0,0683 0,1032 0,0192 0,5292

Tab. 8.19.: Fehler der Bewegungsschätzung aus [27].

Thread
Laufzeit [ms]

Durchläufe
∅∅∅ Median Min Max

Vorverarbeitung 9,588 9,113 7,035 14,363 523
RGBD-Flow 125,955 125,623 91,312 184,952 467

SV-Rendering 8,519 8,284 5,518 19,513 441
Kollisionscheck 51,557 50,621 49,121 54,628 523

Gesamtlaufzeit 195,619 193,641 152,986 273,456

Tab. 8.20.: Laufzeiten der einzelnen Threads. Aus der Laufzeit des RGBD-Flow-Threads
ergibt sich eine Framerate von ca. 8 Hz, während die Reaktionszeit im Durch-
schnitt unter 200 ms liegt.

Szenario
Laufzeit Framerate

Median [ms] [Hz]

Kontinuierliche Bewegung mehrerer Objekte 158,149 6,32
25% des Eingangsbildes ohne Bewegung 130,812 7,64

Wakeln der Kamera, 100% Bewegung 166,882 5,99

Tab. 8.21.: Laufzeit der Bewegungsprädiktion, abhängig von der Menge an Bewegungen
im Bild. Gemessen in drei Szenarien über je 400 Bildübergänge, ohne Kollisi-
onsprüfung, aber mit Visualisierung.

195

8. Experimentelle Evaluation

(a) Geplante Roboterbewegung (b) Kollision mit prädizierter mensch-
licher Bewegung

Abb. 8.31.: Geteilter Arbeitsraum: Die Trajektorie des linken Roboterarmes verläuft von
oben nach unten, ihr Swept-Volumen von grün nach magenta. Die prädizierte
menschliche Bewegung verläuft orthogonal dazu und ist von gelb nach blau
eingefärbt. Da zwischen beiden Swept-Volumen eine Kollision herrscht, un-
terbricht der Roboter seine Ausführung, bevor es in der Realität wahrschein-
lich zu einer Kollision gekommen wäre. Bild aus [27].

rechnen. Vielversprechend erscheint hier die Nutzung von visueller Odometrie, um Feh-
lerquellen durch Radodometrie und Sensorsynchronisation zu vermeiden. Hintergründe
dazu wurden in Unterabschnitt 4.6.8 gegeben.

Letztendlich wäre ein probabilistischer Ansatz bei der Generierung des prädizierten Swept-
Volumens denkbar, bei dem die Objektpunktewolke während ihrer Verschiebung entlang
des prädizierten Bewegungsvektors vergrößert wird, um so der zunehmenden Unsicher-
heit gerecht zu werden. Hierfür wären die EDT-Algorithmen aus Abschnitt 5.6 denk-
bar.

8.8.4. Zusammenfassung

In diesem Abschnitt wurde eine vollständige Verarbeitungskette evaluiert, die prädizier-
te Bewegungen zur Kollisionsdetektion nutzt, und somit der Kollisionsprädiktion aus
Definition 4 entspricht.

Die Umsetzung basiert auf einem 3D-Szenenfluss, dessen Ausgabevektorfelder in dyna-
mische, nichtrigide Objekte segmentiert werden. Ein erweiterter Kalmanfilter trackt die
Segmente, so dass ihre Bewegungen in die Zukunft extrapoliert und als Swept-Volumen
gerendert werden können. Die Vorhersagen wurden in praktischen Versuchen erfolgreich
genutzt, um die Sicherheit eines Roboters zu erhöhen, indem dieser seine geplanten Be-
wegungen gegenüber den Vorhersagen prüft, und abbremst, lange bevor ein Mensch sei-
ne Bahnen kreuzt. Das onlinefähige Verfahren läuft mit ca. 8 Hz und weist eine Reakti-
onszeit von ca. 200 ms auf. Es wurde in [7] veröffentlicht.

196

8.9. Experimente zur Onlineberechnung von 3D-Distanzkarten

Abb. 8.32.: Der linke Roboterarm bewegt sich zwischen Regal und Tisch, sein Swept-Vo-
lumen verläuft von grün nach magenta. Die prädizierte menschliche Bewe-
gung ist von gelb nach blau eingefärbt. Da zwischen beiden Swept-Volumen
eine Kollision herrscht, unterbricht der Roboter seine Ausführung (erkenn-
bar an der roten Brust-LED), bevor es in der Realität wahrscheinlich zu einer
Kollision gekommen wäre.

8.9. Experimente zur Onlineberechnung von 3D-Distanzkarten

Bei der Untersuchung von Verfahren zur Erzeugung von Distanzfeldern müssen maß-
geblich zwei Kriterien betrachtet werden: Die Berechnungsdauer und die Genauigkeit
der Ergebnisse. Da es sich beim umgesetzten Verfahren nicht um einen approximativen
Algorithmus handelt, konnten die Messergebnisse mit den Referenzdaten aus einer ka-
nonischen Berechnung (siehe Abschnitt 5.6.3) abgeglichen und für korrekt erklärt wer-
den.

Für eine Beurteilung der Berechnungsdauer standen die Implementierungen von PBA,
JFA und der kanonischen Methode zur Verfügung, also explizit nur „statische“ Verfah-
ren. Dies ist mit ihrer guten Parallelisierbarkeit und der einhergehenden Laufzeit be-
gründet, welche „dynamische“ Verfahren aussticht. Alle Algorithmen arbeiten mit 32 Bit-
Distanz-Voxeln (vgl. Unterabschnitt 5.1.3), die in jedem Voxel eine Referenz zu ihrem
nächstgelegenen Hindernis speichern.

Neben dem reinen Benchmarking der Algorithmen wurden zur praktischen Evaluierung
der Distanzfelder auch zwei reale Szenarien untersucht: Die Navigation einer Flugdroh-
ne und die Berechnung der inversen Kinematik eines mobilen Manipulators unter Opti-
mierung des Freiraumes. Die Umwelt wird hier als Punktwolke wahrgenommen, wobei
als Datenquelle reale oder simulierte Kinect-Kameras eingesetzt wurden. Die 3D-Daten

197

8. Experimentelle Evaluation

Größe
Voxelkarte

Laufzeit [ms] Durchsatz [MVoxel/s]

JFA PBA PBA (orig) JFA PBA PBA (orig)

2563 Voxel 255,7 24,9 10,2 230 673 1315
5123 Voxel 2325,8 101,3 64,1 57 1325 2093

Tab. 8.22.: Laufzeiten und Durchsatz von drei EDT Algorithmen auf dreidimensionalen
Karten. Die kleine Karte (2563) enthält 67 625 Hindernisvoxeln, die große (5123)
89 295 Hindernisvoxel. PBA (orig) bezieht sich auf die Referenzimplementie-
rung zu [54], während PBA und JFA die eigenen Implementierungen darstel-
len. Die Messwerte repräsentieren den Median über 20 Durchläufe.

werden auf der GP-GPU in Weltkoordinaten transformiert und als Hindernisse in die
Distanzkarte eingefügt.

Ausgehend von einer Kartengröße von 5 m × 5 m × 5 m bei einer Auflösung von 2 cm
sind die Distanzen von 2563 (also über 16,7 Millionen) Voxeln zu berechnen. Um die
Daten einer Kinect-Kamera schritthaltend verarbeiten zu können, beträgt die dafür an-
gestrebte Latenz 33 ms. Somit sollte die EDT bei der gegeben Kartengröße einen Berech-
nungsdurchsatz von 500 Millionen Voxeln (MVoxel) pro Sekunde erbringen. Zum Ver-
gleich: Das approximative Verfahren SKW erreicht auf Karten aus 5123 Voxeln laut Cao et
al. [54] auf einer Nvidia Tesla C1060 GPU einen Berechnungsdurchsatz von 134 MVoxel/s.

Laufzeitmessungen

Tab. 8.22 zeigt die Laufzeiten bzw. den Durchsatz unterschiedlicher EDT Implementie-
rungen. JFA liegt hier mit steigender Kartengröße um Faktor 3 bis 23 hinter PBA, wäh-
rend die Referenzimplementierung nochmals nahezu doppelt so performant ist, wie die
Umsetzung in GPU-Voxels. Der Laufzeitnachteil ist durch den Verzicht auf Texturspei-
cher (siehe Abschnitt 3.2.3) zu Gunsten der Codetransparenz begründet, was aber in spä-
teren Programmversionen änderbar ist. Dennoch kann die angestrebte Latenz übertrof-
fen werden.

Wie bereits in [54] beschrieben, haben die Parameterm1 undm2 den größten Einfluss auf
die Berechnungszeiten des PBA, wenn die Dimension der Eingabedaten, verglichen mit
den verfügbaren CUDA Threads, klein ausfällt. Ist dies zum Beispiel bei 2D Problemen
der Fall, können die Bänder durch große m1 und m2 noch weiter aufgeteilt und somit
besser parallelisiert werden. Da die Eingabedaten in dieser Arbeit aber dreidimensional
sind, ist die Parallelisierbarkeit kein Problem, und m1 bzw. m2 haben keinen großen Ein-
fluss (siehe Diagramm in Abb. 8.33). Der Parameter m3 wirkt sich hingegen unterschied-
lich aus, da er auch Speicherzugriffsmuster beeinflusst. Da sich die drei Parameter nicht
gegenseitig beeinflussen, lassen sie sich unabhängig voneinander auf die Eingabedaten
und die verwendete Hardware optimieren.

198

8.9. Experimente zur Onlineberechnung von 3D-Distanzkarten

1 2 4 8

36

38

40

42

44

46

48

50

Parameter Wert

Be
re

ch
nu

ng
sz

ei
t[

m
s]

m1
m2
m3

Abb. 8.33.: PBA Laufzeiten für 2563 Voxel mit unterschiedlichen Parallelisierungspara-
metern. Geändert wird pro Graph nur ein Parameter, während die beiden an-
deren statisch auf 1 gesetzt sind. Diagramm aus [24].

SLAM Pose

3D Punktewolken

Distanz Berechnung Kollisionsfreie Bahnplanung Ausführung
Externe

Komponenten

Probabilistische
Voxelmap

Euklidisches
Distanzfeld

Potentialfeld
Wavefront

 Planer
Flugdrohne

Abb. 8.34.: Systembestandteile der Potentialfeld-Navigation einer Flugdrohne (grün:
GPU, blau CPU). Der Fokus dieser Arbeit liegt auf den dunkel hinterlegten
Teilen.

Navigation einer Flugdrohne

Nachdem sichergestellt ist, dass der Berechnungsdurchsatz mehr als ausreichend ist, las-
sen sich nun praktische Anwendungen betrachten. Dieses erste Beispiel nutzt ein Di-
stanzfeld, um die Flugroute einer Drohne durch ein zunächst unbekanntes Szenario zu
bestimmen (siehe Abb. 8.35). Das Umweltmodell bestand in den Tests aus einer 21 Mio.
Voxel großen probabilistischen Voxelkarte, deren Distanzfeld mit dem Parallel-Banding-
Verfahren aus Abschnitt 5.6 im Schnitt in 22 ms berechnet wurde. Als Kollisionsmodell
der Drohne wurde eine Kugel verwendet. Die komplette Verarbeitungskette ist in Abb. 8.34
dargestellt. Zwei alternative Planungsansätze wurden umgesetzt und in Tab. 8.23 bewer-
tet: Eine Potentialfeld- und eine Wavefront-basierte Navigation. Beide Algorithmen liefen
mit jeder neuen Sensorpunktwolke ab, wobei die Hinderniskarte ständig um alle neuen
Messungen erweitert wurde, und somit auch die Distanzkarte jedes Mal neu aufzubauen
war. Die eigentliche Planung lief auf dem Host ab, wofür es nötig war, die Distanzkarten
von der GPU zu kopieren.

199

8. Experimentelle Evaluation

Im ersten Ansatz folgte die Flugroute dem Gradienten eines Potentialfeldes, welches wie
in Abschnitt 7.1.3 beschrieben, aufgebaut war. Ein abstoßendes Feld wurde mit Hilfe
einer harmonischen Funktion aus dem Distanzfeld abgeleitet, während ein weiteres an-
ziehendes Feld die Drohne in Richtung ihres Zieles führte. Der Einfluss des anziehenden
Potentials konnte durch den Planer inkrementell verstärkt werden, falls die Drohne sich
nicht weiter Richtung Ziel bewegte. Auch wenn diese Strategie über lokale Minima an
Engstellen hinweg führte, war das Ergebnis nicht zufriedenstellend, da das Labyrinth zu
viele konkave Sackgassen aufwies, aus denen sich der Algorithmus nicht befreien konn-
te.

Den zweiten Ansatz bildete eine 3D-Wavefront-Suche, welche direkt auf dem Distanz-
feld arbeitete und den global optimalen inversen Pfad vom Ziel zur aktuellen Positi-
on der Drohne berechnete. Durch einen Schwellwert der Distanzen konnte sichergestellt
werden, dass die Flugroute dabei einen Mindestabstand zu allen Hindernissen aufwies.
Naturgemäß stellten lokale Minima und Sackgassen kein Problem dar, jedoch lag die Be-
rechnungsdauer wesentlich höher als bei der Potentialfeldmethode und variierte mit der
Länge des Pfades.

Planungs- PBA auf Host Pfad Erreichbare
verfahren kopieren [ms] konstruieren [ms] Pfadlänge

Min Max Median ∅∅∅ Min Max Median ∅∅∅

Gradienten-
5,79 11,87 8,48 8,43 0,01 2,5 0,48 0,53 23 Felder

abstieg

Wavefront 22,03 129,63 55,42 65,62 0,02 2,7 0,66 0,70 84 Felder

Tab. 8.23.: Laufzeiten von zwei 3D-Pfadplanungsverfahren für eine Flugdrohne mittels
Distanzfeldern.

Die Verwendung einer schnellen Distantanzfeldberechnung ermöglicht ein reaktives Ver-
halten einer Flugdrohne in einer komplexen dynamischen Umwelt, die erst zur Ausfüh-
rungszeit erkundet wird. Zwar war es nicht möglich, allein auf Basis eines Gradienten-
abstiegs zum Ziel zu gelangen, jedoch war auch eine Wavefront-Suche schnell genug,
um global konsistente Pläne unter lokaler Hindernisvermeidung mehrmals pro Sekunde
zu generieren. Durch eine Portierung des Planers auf die GPU könnte in Zukunft der
Aufwand des Datentransfers zwischen GPU und CPU vermieden werden. Die kugel-
förmige Approximation der Robotergeometrie erlaubt es, die Kollisionsfreiheit mit nur
einem Lesezugriff in der Distanzkarte sicherzustellen. Eine spannende Erweiterung des
Planungsszenarios wäre es, die Distanzkarte mit dem Skelettierungsprozess aus [128] so
weit auszudünnen, bis nur noch ausgewählte Voronoi-Achsen erhalten blieben, die di-
rekt als Navigationsgraph verwendet werden könnten.

200

8.9. Experimente zur Onlineberechnung von 3D-Distanzkarten

Abb. 8.35.: Momentaufnahmen der Navigation einer Flugdrohne in einem unbekannten,
zerklüfteten Szenario mittels Distanzfeldern. Der Pfad wird kontinuierlich mit
15-20 Hz an neue Umweltdaten angepasst.

201

8. Experimentelle Evaluation

Distanz optimierende inverse Kinematik

Der zweite Anwendungsfall nutzt ein Distanzfeld, um den verfügbaren Freiraum um
einen Roboter zu bestimmen und über eine Variation seiner Konfiguration zu maximie-
ren. Ein Roboter könnte mit diesem Verfahren seinen Aufgaben nachkommen und den-
noch einem Menschen aus dem Weg gehen oder die Distanz zu allen Hindernissen ma-
ximieren, um seinen Manipulationsspielraum zu vergrößern.

Für die Berechnung wird eine statische Punktwolke der Umgebungsgeometrie mit den
Punkten einer Kinect-Kamera kombiniert und das gemeinsame Distanzfeld mittels PBA
berechnet. In diesem Distanzfeld lassen sich dann Roboterkonfigurationen bewerten, in-
dem an unterschiedlichen Punkten der kinematischen Kette der verfügbare Freiraum
abgefragt und aufsummiert wird. Dies entspricht sinngemäß einer Menge von virtuel-
len Abstandssensoren, die an den Ecken der mobilen Plattform und an den Gelenken
des Roboters angebracht sind. Der aufsummierte Abstandswert geht dann in eine Me-
trik ein, mit der unterschiedliche IK-Lösungen verglichen werden können. Somit werden
kleine Bewegungsinkremente bevorzugt. Die Metrik bildet die Grundlage einer Partikel-
Schwarm-Optimierung, deren Partikel randomisierte Startwerte einer iterativen inversen
Kinematik darstellen. Als Ziel der inversen Kinematik wurde eine konstante TCP Pose
vorgegeben.

Folgende Notation wird dabei verwendet:

• P : Punktwolke aller Hindernisse, zusammengesetzt aus einem statischen Anteil
und der dynamischen Kamera-Punktwolke: P = PStatisch ∪ PKinect
• EDTP : Distanzfeld der Punktwolke P
• ~ϕ: Gelenkwinkel aller N Freiheitsgrade. ~ϕ ∈ [~ϕmin, ~ϕmax]
• ~ϕt−1: Vorherige Roboterpose
• dk(~ϕ, k): Vorwärtskinematik. Berechnet die Pose des k-ten Elements der Roboterki-

nematik anhand der Gelenkwinkel ~ϕ
• ∆ϕmax: Maximal erlaubte Gelenkwinkelbewegung pro Gelenk
• ∆dmax: Obergrenze für Distanz zu nächstem Hindernis

Folglich sucht man nach einer Roboterpose ~ϕt, welche die Funktion f unter Berück-
sichtigung der vorherigen Roboterpose ~ϕt−1 und dem aktuellen Distanzfeld EDT ma-
ximiert:

arg max
~ϕt

(
f
(
~ϕt−1, ~ϕt,EDTP

))
(8.4)

Die Funktion f setzt sich daher aus zwei gewichteten Teilen a und b zusammen, die die
Gelenkwinkelbewegung und den Freiraum bewerten:

f
(
~ϕt−1, ~ϕt,EDTP

)
=
(
α · a

(
~ϕt−1, ~ϕt

)
+ β · b

(
~ϕt,EDTP

))
· 1

α+ β
(8.5)

Da die Funktionen a und b auf den Wertebereich [0, 1] normiert sind, bewegt sich auch f
in diesem Wertebereich. Die beiden Formeln setzen sich wie folgt zusammen:

a
(
~ϕt−1, ~ϕt

)
=

1

N

N∑
j=0

(
1−min

(
1,
|ϕj(t−1) − ϕj(t)|

∆ϕmax

))
(8.6)

202

8.9. Experimente zur Onlineberechnung von 3D-Distanzkarten

b
(
~ϕt,EDTP

)
=

1

N + 1

N+1∑
k=0

(
min

(
1,

EDTP

(
dk(~ϕt, k)

)
∆dmax

))
(8.7)

EDTP

(
dk(~ϕt, k)

)
entspricht hierbei der Gleichung 5.22 und beschreibt somit den kleins-

ten Abstand zwischen Roboterkinematik und Umweltmodell, gegeben einer Roboterstel-
lung.

Das Verfahren wurde mit Hilfe einer Simulation des mobilen Roboters IMMP in Kom-
bination mit Punktwolken einer realen Umgebung erfolgreich getestet. Abb. 8.36 zeigt
zwei Momentaufnahmen, in denen der TCP des Armes an einer Pose verbleibt, während
alle 10 Freiheitsgrade des Roboters genutzt werden, um den Freiraum zur Punktwol-
ke zu maximieren. Für die Berechnung der inversen Kinematik wurde die besonders
schnelle Trac-IK Bibliothek [44] eingesetzt. Im Test mit 10 Partikeln und 5 Iterationen des
Schwarms konnte eine Wiederholrate von 15 Hz erreicht werden, was für flüssige Aus-
weichbewegungen des Roboters ausreichte. Durch die Beschränkung der Gelenkwinkel-
änderungen pro Schritt mittels ∆ϕmax werden dabei große Sprünge effektiv verhindert.

(a) Roboterarm weicht nach unten aus

(b) Mobile Plattform weicht nach rechts aus

Abb. 8.36.: Interaktive inverse Kinematik für mobilen Manipulator IMMP: Bei vorgege-
bener TCP Pose werden die Freiräume der einzelnen Roboterglieder maxi-
miert (visualisiert durch grüne Kugeln). Basis ist ein online berechnetes Di-
stanzfeld der Kinect Punktwolke.

203

8. Experimentelle Evaluation

Zusammenfassung

Die umgesetzte EDT stellt eine wertvolle Ergänzung zur voxelbasierten Kollisionsdetek-
tion dar, da sie es einem Roboter erlaubt, Abstände gegenüber Hindernissen zu wahren,
auch wenn diese aus Sensordaten gewonnen wurden. Durch die Parallelisierung auf der
GPU lassen sich auch Distanzfelder mit einem großen Volumen mit der Bildrate eines
3D-Sensors komplett neu aufbauen und auswerten. Es müssen folglich keine approxi-
mierenden oder lokal agierenden Verfahren eingesetzt werden.

In zwei sehr unterschiedlichen Robotikanwendungen konnte die Praxistauglichkeit de-
monstriert werden: Die Navigation einer Flugdrohne in einer dynamisch explorierten,
hoch aufgelösten Umgebungskarte und die reaktive inverse Kinematikberechnung eines
mobilen Manipulators, die den Freiraum zu Hindernissen maximiert. Beide Versuche zei-
gen, dass 3D-Daten durch parallelisierte Algorithmen schritthaltend ausgewertet werden
können, um aus ihnen Distanzfelder zu generieren. Darüber hinaus sind auch Anwen-
dungsfälle von Planungsalgorithmen denkbar, die neben einer Kollisionsprüfung auch
Distanzen zu Hindernissen verwerten, um ihre Exploration zu steuern.

8.10. Experimente zur Greifplanung

Abschließend soll ein untypischer Anwendungsbereich der voxelbasierten Kollisiosn-
prüfung betrachtet werden. Wie bereits in Unterabschnitt 7.2.7 gezeigt wurde, benötigt
die Greifplanung in der Robotik eine möglichst performante Simulation von Greifhypo-
thesen, um darüber den erfolgversprechendsten Griff zu bestimmen. Dies ist im Stand
der Technik bisher nicht direkt auf Modellen möglich, die aus Punktwolken gewonnen
wurden, sondern lediglich über abstrakte, a priori bekannte Modelle.

Fortschritte in der Hardwareentwicklung brachten unterschiedliche mechatronische Mul-
ti-Finger-Hände hervor, die das Verfahren motivieren. Beispiele sind die Shadow Hand,
das DLR Hand Arm System und die in dieser Arbeit verwendete SCHUNK SVH Hand.
Diese Hände verfügen über fünf bis hin zu zwanzig aktive und weitere gekoppelte passi-
ve Freiheitsgrade, die für einen erfolgreichen Griff koordiniert werden müssen. Die ent-
wickelte Greifplanung lässt sich aber auch für andere, einfachere Endeffektors verwen-
den, wie z.B. die Dreifingergreifer der Firma Robotiq.

Generell stellt die Berechnung der Gelenkstellungen das Ziel der Greifplanung dar. Bei
der verwendeten SCHUNK SVH sind dies 20 DOF, die über neun Motoren bewegt wer-
den. Ihre kinematische Konfiguration erlaubt die Handhabung einer Vielzahl von un-
terschiedlichen Objekten, wie in [16] beschrieben wurde. Abb. 8.37 zeigt die Hand mit
angebrachten Sensoren.

8.10.1. Datenakquise

Das Ziel der umgesetzten Greifplanung ist die Berechnung und Verbesserung von Fin-
gerstellungen, während sich der Greifer des Roboters einem Objekt nähert. Um dabei

204

8.10. Experimente zur Greifplanung

(a) Montierter
LEAP-Motion Sensor.

(b) Montierter
PMD Nano Sensor.

(c) Montierter
Intel RealSense Sensor.

Abb. 8.37.: Unterschiedliche Tiefenkameras, die auf der anthropomorphen SCHUNK
SVH Hand montiert wurden. Die Anbringung wurde so gewählt, dass der
Arbeitsraum der Finger möglichst nicht eingeschränkt wird.

möglichst exakte Messungen zu erhalten, ist es von Vorteil, den Sensor direkt im Grei-
fer zu integrieren. Zwar können mit allen in Abschnitt 4.1 beschriebenen Sensoren kon-
tinuierliche 3D-Datenströme erzeugt werden, wie sie im Fall der Online-Greifplanung
benötigt werden. Allerdings sind nur wenige Sensoren klein genug, um im Endeffektor
verbaut zu werden. Von den in Abb. 8.37 gezeigten Alternativen wies jedoch lediglich die
Intel RealSense Kamera ein ausreichendes Signal/Rausch-Verhältnis auf, um Punktwol-
ken aus mehreren Aufnahmen zu kombinieren. Daher wurde die Datenaufnahme mit
diesem Sensor durchgeführt.

205

8. Experimentelle Evaluation

Abb. 8.38.: Zusammengesetzte Punktwolke
aus acht Einzelaufnahmen.

Abb. 8.39.: Ausgeführter Griff mit einer
SCHUNK SVH.

8.10.2. Implementierung

Online Grasp Evaluation

Grasp
Iterator

GVL
Collision
Detection

Depth
Sensor

TCP Pose Particle Swarm Optimizer with Virtual Object
Online Pointcloud

Processing

CoM, OOBBox

Object Pointcloud

Joint
Interpolator

Tabletop
Segmentation

Stitching /
 SLAM

Colls.
 + Finger

Joint
Angles Object

Transfor-
mation

r
Sweep

Rendering

Offline Sweep
Generation

Precalculated
Swept-

Volumes of
Grasps

Hand Model:
Kinematic +

Geometry

Grasp Definition

S Opt

Particle
Update Grasp Reward Function

Abb. 8.40.: Datenfluss: Alle grünen Komponenten wurden auf der GPU parallelisiert. Al-
le blauen Komponenten sind Eingabe- oder Ausgabedaten, die über das Host-
System laufen. Das obere linke Viertel muss lediglich zur einmaligen Offline-
berechnung der Greif-Swept-Volumen ausgeführt werden.

Wie in Abb. 8.40 zu sehen, gliedert sich die Software in einen offline Vorverarbeitungs-
schritt, in welchem die Swept-Volumen der Griffe generiert werden und zwei online
ablaufenden Algorithmen zur Verarbeitung von Sensordaten und zum Evaluieren der
Greifoptionen. Diese Komponenten werden im Folgenden näher beschrieben.

206

8.10. Experimente zur Greifplanung

Offlineerzeugung von Griff-Swept-Volumen

In einem initialen Schritt müssen zunächst die Swept-Volumen aller ausführbaren Greif-
bewegungen (Kraft-, Präzisionsgriff, usw.) erzeugt werden. Die Griffe sind dabei defi-
niert über die Start- und Endwinkel der Fingergelenke und über spezifische Kopplungs-
faktoren zwischen einzelnen Gelenken. Zur Erzeugung der Volumen werden die Finger
nacheinander von ihrem Start- zum Endwinkel bewegt und währenddessen das überstri-
chene Volumen in einer Voxelliste aus Bitvektor-Voxeln gespeichert. In definierten Win-
kelabständen werden dabei die SSV-IDs inkrementiert, um identifizierbare Abschnitte
der Bewegung zu erhalten. Einzelne Subvolumen eines Griffes sind in Abb. 8.41 farblich
abgegrenzt. Die verfügbaren SSV-IDs müssen auf die aktiven Freiheitsgrade der Hand
aufgeteilt werden. Weiterhin wird vorausgesetzt, dass sich ein Finger während eines Grif-
fes in einer kontinuierlichen Bewegung schließt, auch wenn er über mehrere aktive Frei-
heitsgrade verfügt (wie es bei Mittel- und Ringfinger der SCHUNK SVH der Fall ist). In
diesem Fall werden die Antriebe per Software mit einem griffspezifischen Faktor anein-
ander gekoppelt. Von den neun DOF der SVH wird die Spreizung der Finger und das
Anlegen des Daumens während einem Griff auf einem griffspezifischen Wert gehalten.
Somit blieben N = 5 bewegte Freiheitsgrade, auf welche sich die verwendeten K = 250

SSV-IDs verteilen. Die Winkelintervalle aller Gelenke ~δϕ und somit die Auflösung der
Sub-Volumen lassen sich über

~δϕ = ~ϕmax ·
N

K
(8.8)

berechnen. Bei einem typischen Griff reicht der Bewegungsbereich eines Fingers von 0◦

bis zu ∼90◦, die in 50 Sub-Volumen δ zu je ∼1,8◦ pro SSV-ID aufgeteilt werden.

207

8. Experimentelle Evaluation

(a) Fingerglied in
0.4 mm Voxel-
auflösung

(b) Geöffnete Hand (c) Swept-Volumen ei-
nes einzelnen Fin-
gers

(d) Präzisions-Griff (e) Ausschnitt aus einem Präzi-
sions-Griff

(f) Kraft-Griff

Abb. 8.41.: Volumetrisches Handmodell und vorausberechnete Swept-Volumen unter-
schiedlicher Griffe. Jede Farbe repräsentiert ein Sub-Volumen, das bei einer
Kollisionsprüfung individuell identifizierbar ist.

208

8.10. Experimente zur Greifplanung

Sensordatenverarbeitung

Der verwendete Sensor liefert Wolken aus 640× 480 3D Punkten mit Bildrate von 30 Hz.
Diese Daten müssen zunächst in ein globales Koordinatensystem transformiert werden,
wo sie sich dann per ICP, KinFu oder ähnlichen Fusionierungstechniken in ein konsis-
tentes Modell akkumulieren lassen.

Für die hier beschriebenen Experimente wurden die Aufnahmen lediglich durch eine ex-
akte extrinsische Kalibrierung direkt in einem probabilistischen GPU-Octree gesammelt.
Auch eine rechenintensive Oberflächenrekonstruktion ist für die Verarbeitung der Voxel
nicht nötig.

Für die weiterführende Verarbeitung wird die Punktwolke in das Objekt und die Tisch-
fläche segmentiert. Hierfür kommt eine RANSAC Ebenenschätzung aus der Point Cloud
Library (PCL) zum Einsatz. Das freigeschnittene Objekt und eine darum gebildete Ob-
ject Oriented Bound Box (OOBB) sind der Ausgangspunkt für weitere Berechnungen, bei
denen die Tischfläche zur Kollisionsvermeidung berücksichtigt wird.

Vermeidung unbekannter Regionen

Eine Herausforderung bei der Greifplanung mit unvollständigem Umweltwissen ist es,
zu verhindern, dass die Finger der Hand in nicht eingesehene Regionen bewegt werden,
und dort mit unbekannten Hindernisse kollidieren. Dennoch sind auch bei unvollstän-
digem Wissen erfolgreiche Griffe möglich, wenn zwischen unbekanntem und freiem Raum
unterschieden werden kann. Dies ist bei Dreiecksnetzmodellierungen schwer möglich,
da hier lediglich die Oberflächen der detektierten Objekte repräsentiert sind, wohingegen
es bei einer Volumenmodellierung einfach umzusetzen ist: Wie in Unterabschnitt 4.3.1 be-
schrieben, können mittels Raycasting die Voxel des freien Raumes markiert und so von
unbekanntem Raum unterschieden werden. Dadurch ist es möglich, bei Kollisionsprü-
fungen unbekannten Raum explizit zu berücksichtigen und Griffe, die darin eindringen,
zu verwerfen. Somit können auch Objekte, die lediglich von zwei gegenüberliegenden
Seiten aus gesehen wurden, sicher gegriffen werden, während die nicht bekannten Ob-
jektseiten vermieden werden.

Virtueller Arbeitsraum

Bei der Griffevaluierung ist es effizienter, nicht die offline berechneten Swept-Volumen
relativ zum Objekt zu transformieren, sondern das Objekt in einem virtuellen Arbeits-
raum relativ zu den Griffvolumen zu bewegen. Daher ist eine Reihe von Koordinatensys-
temtransformationen nötig, die in Abb. 8.42 nachzuverfolgen sind und die aus folgenden
Schritten bestehen:

1. Transformation der Sensorpunktwolken (in Kamerakoordinaten) in das globale Ko-
ordinatensystem mit Hilfe der direkten Kinematik des Roboters, um sie zu fusio-
nieren, zu segmentieren und um den Freiraum zu bestimmen.

2. Transformation des Objektes O in den virtuellen Arbeitsraum der vorberechneten
Griffe, um darin alle Partikel via Greifsimulation zu bewerten.

209

8. Experimentelle Evaluation

(a) Anrückbewegung

(b) Objekt gegriffen

Abb. 8.42.: Unterschiedliche Koordinatensysteme während dem Greifprozess: Grün: Ro-
boterursprung zu Hand. Blau gestrichelt: Transformation von virtuellem zu
realem Objekt bzw. Anrückbewegung. Pink: Ursprung des virtuellen Hand-
modells und seines Swept-Volumens. Rot: Zu optimierende Pose des virtuel-
len Objekts. Veröffentlicht in [8].

3. Invertierung der Transformation der besten Objektposition, gegeben im Bezugsko-
ordinatensystem der virtuellen Hand.

4. Bestimmung der Transformation zwischen dem realen Objekt und der Greifpose
der realen Hand, mittels der vorigen, invertierten besten Objektlage.

5. Planung / Berechnung der inversen Kinematik, um die Hand mittels Roboterarm
zur Greifpose zu verfahren.

Hybride Partikelschwarmoptimierung

Wie bereits beschrieben, wird die Greifplanung in dieser Arbeit als komplexes Optimie-
rungsproblem aufgefasst, welches mit einer hybriden PSO gelöst wird. Jeder Partikel
P = (~∆xyz, ~∆αβγ) stellt dabei eine Translation und Rotation des zu greifenden Objektes
relativ zur Hand dar. Während der Optimierung wird in jeder Iteration die Greiffunktion
g aus Gleichung 7.6 für jeden Partikel ausgewertet und das Ergebnis mittels der Bewer-
tungsfunktion f aus Gleichung 7.5 beurteilt. Somit lässt sich das Problem in Form einer

210

8.10. Experimente zur Greifplanung

PSO darstellen als:

arg max
Pi,j

(
f
(
g
(
PSOi,j , O,H

)))
,

mit: i ∈ [1, I], j ∈ [1, J], f(g) < σf

(8.9)

wobei I die Anzahl der verwendeten Partikel, J die maximale Zahl an Iterationen und
σf ein vorgegebenes Abbruchkriterium über die erreichte Greifqualität darstellt.

Bevor die Optimierung gestartet werden kann, müssen die Geometriemodelle des Objek-
tes O und der Hand H zusammen mit den Swept-Volumen des Griffes in den Speicher
der GPU geladen werden. Anschließend sind I initiale Partikel zu erzeugen. Da alle Di-
mensionen des Suchraumes als unkorreliert betrachtet werden, kann eine Gleichvertei-
lung aller Partikelparameter angenommen werden.

Die wichtigste Funktion g wird ausgewertet, indem ein Griff in GPU-Voxels simuliert
wird, um damit die Gelenkwinkel ϕn zu bestimmen, unter denen die Finger gerade das
Objekt O berühren. Gleichzeitig liefert g auch die Anzahl der in Kollision liegenden Vo-
xel:

Vcol = |VO ∩ VH Finger|+ |VO ∩ VH Handfläche| (8.10)

Diese Daten fließen in die Bewertungsfunktion f aus Gleichung 7.5 ein und bestimmen
zusammen mit der Historie des Partikels dessen Neuparametrierung. Hierbei wird das
Partikel gleichermaßen durch das beste Individuum im Schwarm angezogen aber auch
durch das Optimum in seiner eigenen Historie (PSO-Gewichtungsfaktoren α = β = 1.0,
siehe Abschnitt A.6).

Zur Maximierung des Datendurchsatzes bei der Arbeit mit Swept-Volu-men wird auf
die Technik der Translation mittels Basisversatz aus Unterabschnitt 5.3.1 zurückgegrif-
fen, um die Voxelkarte des Objektes relativ zur Voxelliste des Griff-Swept-Volumens zu
verschieben. Durch dieses Implementierungsdetail können Griffe mit variierender Trans-
lation wesentlich schneller geprüft werden, als Griffe mit unterschiedlichen Rotationen.
Daher wurde mit Gleichung 8.11 ein hybrider Ansatz verfolgt, der die PSO mit einer
erschöpfenden Suche verbindet, die die unterschiedlichen Translationen bei fester Orien-
tierung bewertet.

Somit durchläuft jedes Partikel einen lokalen Optimierer, der die Position ~∆xyz innerhalb
eines engen Rahmens variiert, und X , Y und Z auf das lokale Optimum setzt, bevor die
PSO die Partikel neu verteilt und dabei auch die Orientierung α, β und γ festlegt:

Pi,j = arg max
Pi,j

(
f
(
g
(

arg max
Pi,j

f (g (Pxyz, O,H))︸ ︷︷ ︸
Lokale Optimierung

)
, O,H

))
(8.11)

Die lokale Optimierung ist im nächsten Abschnitt erläutert.

211

8. Experimentelle Evaluation

Auswertung der Greiffunktion

Zunächst muss die Art des Griffes festgelegt werden, der zu prüfen ist. Aktuell geschieht
dies manuell, könnte aber über eine Objektklasse oder die Größe der OOBB automatisiert
geschehen. Alternativ werden unterschiedliche Griffe sequentiell evaluiert und die beste
Bewertung gewählt.

Die eigentliche Evaluierung besteht aus zwei Schritten. In der ersten Phase sind einfa-
che Kollisionsprüfungen zwischen der ausgestreckten Hand und dem Objekt nötig: Wie
in Algorithmus 10 im Anhang skizziert, wird die Punktwolke des Objektes zunächst
entsprechend der durch den Partikel vorgegebenen Pose in die Nähe des Handballens
transformiert und dort in Voxel umgewandelt. Danach wird die Y -Koordinate so ver-
schoben, dass das Objekt in der Hand liegt, also mit dieser kollidiert. Ausgehend von
diesem Startzustand variieren zwei Schleifen dann die X und Z Koordinaten, während
eine dritte innere Schleife die Y Koordinate so weit inkrementiert und das Objekt aus der
Hand heraus bewegt, bis keine Kollision mehr vorliegt.

An dieser Stelle beginnt dann die zweite Phase, die aus einer besonderen Kollisionsprü-
fung zwischen dem vorberechneten Greif-Swept-Volumen und dem Objekt O besteht.
Ein CUDA Kernel kann dabei alle Gelenkwinkel aller Finger gleichzeitig in einer einzi-
gen Kollisionsprüfung evaluieren. Das Ergebnis besteht aus einer Liste aller SSV-IDs l,
die in Kollision liegen, sobald die Finger das Objekt berühren. Als zusätzliches Ergebnis
liegt die zugehörige Anzahl an Kollisionen pro Finger vor. Durch die monoton steigen-
den SSV-IDs können anhand der Gleichung 8.8 die Gelenkwinkel ~ϕ bestimmt werden,
unter denen die Finger das Objekt berühren:

ϕn col = min
l

((
lmodulo

N

K

)
· ϕnmax ·N

K

)
,

l ∈
[
n · K

N
, (n+ 1) · K

N

) (8.12)

Das Ergebnistupel aus (~ϕ, Vcol Handfläche, Vcol Finger) wird für jedes Partikel gespeichert, so
dass es für die Bewertungsfunktion f zur Verfügung steht.

Evaluierung

In den beschrieben Experimenten wurden 3D-Daten aus einer Simulation verwendet, da
der Schwerpunkt dieser Evaluation auf der Leistung der Kollisionsprüfung liegt. Für den
Test umkreiste eine virtuelle Kamera das Zielobjekt. Die Punktwolken wurden zunächst
in einem Octree mit einer Auflösung von 1 mm in Voxel umgewandelt und segmentiert.
Das freigestellte Objekt wurde danach in eine Voxelkarte mit 2 mm übertragen. Zwei
Voxellisten mit je 2 mm Auflösung hielten ein Modell der ausgestreckten Hand und das
Griff-Swept-Volumen vor.

Um die Leistungsfähigkeit der Greifplanung zu bestimmen, wurden verschiedene Grif-
fe mit wechselnden PSO Parametrierungen durchgeführt. Die Ergebnisse lassen sich in
Tab. 8.24 ablesen. Zusätzlich listet Tab. 8.25 die Laufzeiten der beiden Hauptfunktionen
und Abb. 8.43 zeigt den Verlauf der Partikelbewertungen während der Optimierung des
Griffes für die Gummiente aus Abb. 8.38.

212

8.10. Experimente zur Greifplanung

Bei der Ausführung der Greifplanung waren durch die Anytime-Charakteristik des An-
satzes erste Griffhypothesen bereits nach 353 ms verfügbar, wenn mit 5 Partikeln gerech-
net wird. Bei 50 Partikeln nach 3,3 s. Die Griffqualität verbessert sich mit der zur Verfü-
gung stehenden Zeit. In verschiedenen Tests zeigte sich, dass bei 10 Partikeln brauchbare
Griffe mit einer Bewertung um 200 meist bereits nach ca. 1 s. gefunden wurden.

Anzahl Anzahl ∅∅∅Laufzeit pro Gesamt- Bewertungs
Partikel Iterationen Iteration [ms] laufzeit [sec] Metrik

5 5 1,8 231
5 10 353,66 2,5 235
5 20 5,6 278

10 5 3,9 205
10 10 715,33 4,5 256
10 20 8,6 282

20 5 6,8 335
20 10 1441,66 9,8 399
20 20 23,1 397

50 5 15,6 387
50 10 3375,00 29,6 405
50 20 49,2 502

Tab. 8.24.: Laufzeiten mehrerer PSO-Iterationen während der Optimierung eines Griffes
mit unterschiedlich vielen Partikeln. Das umgesetzte Verfahren liefert bereits
nach der ersten Iteration einen ausführbaren Griff und fällt somit in die Klasse
der Anytime-Algorithmen. Die gelisteten Belohnungsmetriken sind für abge-
schlossene Durchläufe angegeben.

Funktion Untersuchte Voxel
Laufzeit [ms]

∅∅∅ Median Min Max

Kollisionsprüfung 8 ∗ 106 × 61499 0,103 0,072 0,062 16,357
Griff-Bewertung 8 ∗ 106 × 70622 0,507 0,473 0,445 2,508

Tab. 8.25.: Laufzeiten der beiden wichtigsten Funktionen der Greifplanung, gemittelt
über 50000 Durchläufe: Kollisionsberechnung zwischen einem Objekt und a)
dem statischen Handmodell mit ausgestreckten Fingern. b) dem Swept-Volu-
men einer Greifbewegung.

8.10.3. Zusammenfassung

In diesem Abschnitt wurde ein vollständiger Ansatz zur Greifplanung bewertet, der sich
die Vorteile der raumpartitionierenden Datenstrukturen in mehreren Hinsichten zu Nut-
zen macht: Die explizite Unterscheidung zwischen unbekanntem und freiem Volumen

213

8. Experimentelle Evaluation

0 2 4 6 8 10
Iter_Index

0

50

100

150

200

250

300
Re

w
ar

d

(a) Beispiel der Bewertungsfunktion von
10 Partikeln über 10 Iterationen in einer
Gesamtlaufzeit von 4,5 s.

0 5 10 15 20
Iter_Index

0

50

100

150

200

250

300

350

400

Re
w

ar
d

(b) Beispiel der Bewertungsfunktion von
50 Partikeln über 20 Iterationen in einer
Gesamtlaufzeit von 49,2 s.

Abb. 8.43.: Bewertungsfunktion aller Partikel aufgetragen über die Iterationen. Die grüne
Linie gibt das globale Maximum an. Gute Griffe wurden bereits nach vier bis
fünf Iterationen gefunden.

(a) Präzisionsgriff eines zylindrischen Objektes unter Be-
rücksichtigung der Bodenebene

(b) Kraftgriff einer Gummiente

Abb. 8.44.: Resultierende Griffe für zwei unterschiedliche Objekte nach einer Optimie-
rung von ∼ 2 Sekunden mit zehn Partikeln.

214

8.11. Fazit

im Arbeitsraum erlaubt zum einen eine Greifplanung auch bei unvollständigem Um-
weltwissen. Gleichzeitig arbeiten die Algorithmen, im Gegensatz zu oberflächenbasier-
ten Verfahren, direkt auf 3D-Sensordaten, was es erlaubt, Griffe für vorher unbekannte
Objekte zu finden und zu optimieren. Durch die konsequente Parallelisierung ist die Ver-
arbeitungskette onlinefähig und Griffe können während der Annäherung des Greifers an
ein Objekt kontinuierlich optimiert werden. Das Verfahren lässt sich zusätzlich mittels
taktiler Sensorik erweitern, um Griffe weiter zu stabilisieren oder verformbare Objekte
sicher zu greifen.

8.11. Fazit

Die zahlreichen und sehr heterogenen Experimente dieses Kapitels legen die Praxistaug-
lichkeit der GPU-Voxels Bibliothek dar. Sowohl in virtuellen aber auch in realen Test-
szenarien konnten überzeugende Ergebnisse erreicht werden, die die Fragen aus For-
schungsfrage 5 positiv beantworten können: Die entwickelten hochparallelen Verfahren
sind schnell genug, um eine Planung von Roboterbewegungen in dynamischen Umge-
bungen zu ermöglichen, die durch detaillierte Sensordaten repräsentiert werden. Dies
gilt sowohl für die Planung mittels Bewegungsprimitiven als auch für Verwendung von
samplingbasierten Verfahren. Weiterhin sind die entwickelten Algorithmen so generisch,
dass sich umfangreiche Nutzungsmöglichkeiten ergeben, die über die Trajektorienpla-
nung und -überwachung hinaus gehen, wie das Beispiel der schritthaltenden Greifpla-
nung zeigt. Den Laufzeitvergleich mit oberflächenbasierten Kollisionsprüfungsverfahren
gewinnt der entwickelte Voxelansatz durch den Einsatz von Swept-Volu-men. Aber auch
im direkten Vergleich mit alternativen Punktwolkenverfahren erreicht GPU-Voxels den
höchsten Durchsatz von erkannten Kollisionen pro Zeit.

215

9. Zusammenfassung und Ausblick

9.1. Zusammenfassung und Beitrag

Eines der großen Ziele der Robotik ist die Einsetzbarkeit von flexiblen Maschinen in un-
strukturierten Umgebungen des alltäglichen Lebens. Auch der Ausgangspunkt dieser
Arbeit liegt in der Verbesserung der Fähigkeit eines Roboters mit beschränktem Wissen
über seine Umgebung und mit dynamischen Änderungen dieser Umgebung umgehen
zu können. Dies soll einerseits zu sicheren und effizienteren geteilten Arbeitsräumen füh-
ren und zum anderen eine schnelle Bewegungsplanung ermöglichen. Der technologische
Kern der vorliegenden Arbeit besteht in der Verknüpfung von Volumenrepräsentatio-
nen, die bereits seit mehreren Jahrzehnten untersucht werden, mit modernen Methoden
der heterogenen Parallelverarbeitung auf CPUs und GPUs. Hierfür mussten zahlreiche
Teilaspekte bearbeitet werden: Zunächst galt es, Datenstrukturen zu definieren, die ei-
nerseits Sensordaten der Umgebung, sowie die Repräsentation des Roboters und seiner
Bewegungen aufnehmen können und die andererseits einen sehr effizienten, parallelen
Zugriff erlauben. Aufbauend darauf mussten Algorithmen implementiert werden, die
parallelisiert die Schnittmenge zweier Datenstrukturen ermitteln können, um eine Kol-
lisionsdetektion zu ermöglichen. Mit Hilfe dieser Operationen konnten dann speziali-
sierte Planungsverfahren entwickelt werden, die die Vorteile der Datenstrukturen aus-
nutzen, und eine hoch performante Erzeugung von kollisionsfreien Trajektorien möglich
machen. Dabei ist es jedoch ineffizient, einzelne Roboterposen zu betrachten. Um mit
diesem Problem umzugehen, wurden an vielen Stellen Swept-Volumen verwendet, die
komplette Bewegungsabläufe repräsentieren können, ohne dabei einen Zusatzaufwand
für ihre Erzeugung zu erfordern, wie es bei etablierten Verfahren mit Oberfächenmodel-
len der Fall ist.

Die drei wichtigsten Beiträge, die diese Arbeit dabei für die Robotik erbringt, lassen sich
wie folgt zusammenfassen:

1. Zunächst arbeiten alle vorgestellten Verfahren direkt auf Punktwolkendaten, wie
sie von 3D-Sensoren erzeugt werden. Somit ist keine zeitaufwendige Konvertie-
rung in Oberflächenmodelle oder sonstige abstraktere Repräsentationen nötig. Dies
vereinfacht alle Verarbeitungsketten und macht die Nutzung unterschiedlicher Mo-
delle für unterschiedliche Teilaufgaben (wie sie in der Robotik häufig anzutreffen
sind) obsolet.

2. Annotierte, voxelbasierte Darstellungen ermöglichen die effiziente Erzeugung und
Handhabung von Swept-Volumen, also der echten volumetrischen Modellierung
von Bewegungsabläufen, ohne dabei Informationen über Zeit oder Zugehörigkeit
aufgeben zu müssen. Im Gegensatz zu Oberflächenmodellen können damit die

217

9. Zusammenfassung und Ausblick

selben generischen Daten sowohl für die Planung, als auch für die Ausführungs-
überwachung herangezogen werden, was eine feingranulare Arbeitsraumanalyse
ermöglicht.

3. Die entwickelten Datenstrukturen und Algorithmen übertreffen den Stand der Tech-
nik in Hinsicht auf ihren Datendurchsatz (insbesondere der Octree). Gleichzeitig ist
sie so generisch gehalten, dass sich vielfältige Nutzungmöglichkeiten auch außer-
halb der bearbeiteten Fragestellungen ergeben. Auch wenn die Implementierung
in CUDA umgesetzt wurde, lassen sich die präsentierten Lösungsansätze auch auf
andere Plattformen zu Parallelverarbeitung übertragen.

Technisch konnte der Einsatz von General Purpose GPUs für die Robotik vorangebracht
werden, indem dynamische Datenstrukturen, die den Programmierparadigmen von Par-
allelprozessoren zunächst widersprechen, hoch performant für die GPU implementiert
wurden. Ein sehr praktischer Beitrag ist dabei die Zusammenstellung und Veröffentli-
chung aller Softwarekomponenten in Form einer Open-Source Bibliothek (www.gpu-
voxels.org), die in das sehr stark verbreitete Robot Operation System (ROS) integrierbar
ist.

Durch die Arbeit ist es möglich, hoch auflösende Punktwolken aus mehreren 3D-Kame-
ras mit 30 FPS in einen Octree einzufügen und den Freiraum darin mittels Raycasting
zu berechnen. Gleichzeitig können mit derselben Framerate die Kollisionen gegen bis
zu 256 Trajektorien oder Roboterposen parallel berechnet werden, was einem Verarbei-
tungsdurchsatz von ∼ 50 GB/s an Voxeldaten entspricht. Basierend auf diesen Ergeb-
nissen konnten mehrere reaktive Planungsverfahren erfolgreich demonstriert werden.
Weitere Werkzeuge, wie die Berechnung von Distanzfeldern oder die Prädiktion der Be-
wegung von nichtrigiden Körpern, erlauben eine vorausschauende Planung. Diese lässt
sich verwenden, um geteilte Mensch-Roboter-Arbeitsräume effizienter auszunutzen.

Eine umfangreiche Evaluation anhand unterschiedlichster Problemstellungen, die ver-
schiedenste geometrische Größenordnungen abdecken, konnte die Skalierbarkeit der An-
sätze unter Beweis stellen.

Mit der Beantwortung der eingangs gestellten Forschungsfragen (siehe Abschnitt 1.3)
zeigt diese Arbeit somit, dass Voxel eine echte Alternative zu etablierten Oberflächenmo-
dellen darstellen. Sie sind diesen sogar weit überlegen, wenn es gilt, auf Punktwolken
aus Sensordaten kollisionsfreie Trajektorien zu planen oder ihre Ausführung feingranu-
lar zu überwachen.

9.2. Diskussion und offene Probleme

Ein wichtiges Ziel der Arbeit war es, eine hohe Generalisierbarkeit durch möglichst mo-
dellfreie Ansätze sicherzustellen. Da dies erreicht wurde, kommen alle vorgestellten Al-
gorithmen ohne abstrakte geometrische und semantische Informationen aus und es müs-
sen somit keine Annahmen über die zu erwartenden Hindernisse oder Umgebungsbe-
schaffenheiten getroffen werden. Dies stellt jedoch auch einen der größten Diskussions-
punkte dar. So kann in Frage gestellt werden, ob dieses Vorgehen immer zielführend ist.
Erwiesenermaßen liefern etablierte, modellbehaftete Ansätze teilweise wesentlich per-
formantere oder qualitativ hochwertigere Ergebnisse. Jedoch stets nur unter Annahme

218

9.3. Ausblick

spezifischer Randbedingungen. Entsprechend lässt sich diese prinzipielle Frage auch nur
anwendungsspezifisch beantworten, weshalb hier keine finale Aussage getroffen werden
soll.

Zu den offenen Punkten, die weitere spannende Fragestellungen aufwerfen, zählt sicher-
lich die Bewegungsplanung mittels Bewegungsprimitiven für serielle Kinematiken. Hier
konnte keine befriedigende Lösung gefunden werden, konkatenierbare Swept-Volumen
vorzuberechnen, um dann effizient mit ihnen zu planen. Eventuell kann hierfür auf ei-
ne Modellierung in Polar- oder Kugelkoordinaten oder einem nichteuklidischen Raum
zurückgegriffen werden, was jedoch viele der vorgestellten Parallelisierungstechniken
verteiteln würde. Die Erforschung wird daher zukünftigen Arbeiten überlassen.

Zwei weitere höchst relevante Fragen ergeben sich, wenn die Kollisionserkennung als
sicherheitskritisches Überwachungssystem eingesetzt werden soll: Wie sieht eine zerti-
fiziert sichere Sensortechnik zur Erzeugung von 3D Punktwolken aus? Sensoren dieser
Klasse wurden zwar bereits 2016 angekündigt, sind jedoch auch 2018 noch immer nicht
am Markt verfügbar. Sind weiterhin die entwickelten GPU Algorithmen formal beweis-
bar korrekt und nachweislich echtzeitfähig? Die Beantwortung dieser Frage erscheint für
die Kollisionsprüfung zwischen zwei Voxelkarten noch durchaus machbar, ist dagegen
für den lastbalancierten Octree eine große Herausforderung. Eventuell ließe sich der Auf-
wand aber durch die Verwendung redundanter Kameras und GPUs vermeiden, so dass
auch eine Zertifizierung in Zukunft möglich werden könnte.

Eine letzte, eher oberflächliche Problematik, die sich aus der Planung von Plattformtra-
jektorien mit Hilfe von Bewegungsprimitiven ableitet, ist die Schwierigkeit, die entwi-
ckelten Verfahren in weit verbreitete Planungsbibliotheken wie MoveIt zu integrieren.
Da dort keine passenden APIs für die Arbeit mit Primitiven zur Verfügung stehen, liegt
die Hürde für die Benutzung durch Dritte etwas höher, als bei samplingbasierten Verfah-
ren. Die enorm überwiegenden Vorteile bei der Planung auf Sensordaten mit GPU-Voxels
rechtfertigen jedoch den leicht höheren Aufwand der Integration, den die Bibliothek er-
fordert.

9.3. Ausblick

Die praktische Relevanz der vorliegenden Arbeit ist allein durch die vielfältigen Anwen-
dungen in der Robotik gegeben. Das allgemeine Interesse an GPU-basierten Technolo-
gien steigt zusammen mit der Leistungsfähigkeit der Hardware kontinuierlich. Daher
werden in Zukunft immer mehr Roboter auch über Parallelprozessoren verfügen, womit
die Voraussetzungen für die Verwendung von GPU-Voxels auch ohne externe Datenver-
arbeitung erfüllt sind. Ein internationales Interesse mehrerer Robotikforscher und Fir-
men an der entwickelten Software lässt vermuten, dass die Bibliothek in naher Zukunft
in zahlreichen Projekten produktiv eingesetzt wird. Es existieren bereits konkrete Pläne
und Partnerschaften, die auch interessante Erweiterungen für neue Anwendungsfälle ab-
decken: Unter anderem interessiert sich das Unternehmen Hivemapper (Silicon Valley) für
Voxel, um damit ihre 3D Kartierung für Flugdrohnen zu erweitern und eine Änderungs-
historie der Umwelt erzeugen zu können. Weit vorangeschritten sind die Implementie-
rungen des SFI Centers für Offshore Mechatronik an University of Agder (Norwegen). Hier

219

9. Zusammenfassung und Ausblick

setzen Professor Geir Hovland und sein Team GPU-Voxels ein, um die Roboter auf zu-
künftigen autonomen Ölbohrplattformen abzusichern (siehe Abb. 9.1). Eine andere Rich-
tung schlägt eine Gruppe am Autonomous Robotic Manipulation (ARM) Lab bei Professor
Dmitry Berenson der University of Michigan ein. Dort helfen probabilistische Voxel bei
der haptischen Exploration und Kartierung eines Roboter-Arbeitsraumes. Weitere Pla-
nungsthemen (Roadmap Motion Planning für Echtzeitanwendungen wie Drohnenflug)
werden von Dr. Hofmann an den Dynamic Object Language Labs (Massachusetts) unter-
sucht. Aber auch aus dem asiatischen Raum stammen zahlreiche Anfragen zu großen
Software-Projekten.

(a) Offshore Anlage mit 3 Indus-
trierobotern im Laboraufbau

(b) Kombinierte Voxel-Darstellung der Daten aus 6 Ki-
nect2 Sensoren

Abb. 9.1.: Szenario am SFI in Norwegen zur Untersuchung von GPU-Voxels in Kombina-
tion mit unterschiedlicher 3D Sensorik für die Offshore-Anwendung.

Abgesehen von Neuigkeiten in der Software entwickeln große Hardwareanbieter mehr
und mehr Embedded GPU Hardware, wodurch höhere 3D-Leistung bei niedrigem Ener-
gieverbrauch auch in kleinen Geräten zur Verfügung steht. Insbesondere der von CPU
und GPU gemeinsam genutzte Speicher dieser Geräteklasse macht sie für neue, intelli-
gente 3D-Kameras attraktiv. Da hierdurch kein Aufwand für den Datentransfer zwischen
Host und Device anfällt, reduziert sich die Latenz bei der Echtzeitverarbeitung enorm.
Denkbar wären dadurch smarte integrierte Sensoren, die durch die Berücksichtigung ei-
nes adaptiven Egomodells den Nutzer direkt vor Kollisionen warnen können. Anwen-
dungen finden sich bspw. in Assistenzsysteme für Gabelstapler oder Baumaschinen, die
eine flexible Geometrie aufweisen und eine 360◦-Überwachung erfordern.

Letztendlich ergibt sich durch das sehr allgemeingültige Konzept der Voxel aber auch
eine Anwendbarkeit außerhalb der Robotik. Beispielsweise werden in der Medizin be-
reits seit der Erfindung der Computertomographie Voxel als Datenformat genutzt. Diese
Daten könnten für eine OP Überwachung oder Planung verwendet werden, indem Tra-
jektorien von Instrumenten mit den Echtzeitdaten wichtiger Gefäße auf Kollision geprüft
werden. Aber auch die Spieleindustrie setzt vermehrt auf Voxelumgebungen, da sich die-
se durch den Spieler realistischer interaktiv verändern oder zerstören lassen, als dies bei
Dreiecksnetzmodellen der Fall ist.

Ebenso ließe sich die Kollisionserkennung gut mit dem großen Forschungsfeld Deep Lear-
ning verknüpfen: Erfolgt die Prädiktion von Hindernissen nicht wie beschrieben, durch
simple, physikalische Modelle, sondern durch eingelernte Bewegungsmodelle, so ließen

220

9.3. Ausblick

sich die Ausgabeneuronen direkt an die probabilistischen Voxel einer GPU-Datenstruk-
tur anschließen. In der Folge könnte eine Ausführungsüberwachung durch neuronale
Prädiktion enorm verbessert werden, falls diese situationsspezifisch reagiert.

221

Anhang

223

A. Appendix

Abb. A.1.: Logo der GPU-Voxels Bibliothek, das die Würfelstruktur andeutet.

Hier werden allgemeingültige Grundlagen und Definitionen aufgelistet, die in der vor-
liegende Arbeit verwendet werden.

A.1. Log-Odd

Um Rundungsfehler bei der Multiplikati-
on von kleinen Wahrscheinlichkeiten zu
vermeiden, können diese in Form ihres
Log-Odds ausgedrückt und somit Ad-
diert werden:

Um aus der Log-Odd Darstellung wieder
die Wahrscheinlichkeit zu berechnen, be-
dient man sich folglich:

l(x) = log
p(x)

1− p(x)
(A.1) p(x) = 1− 1

1 + 10l(x)
(A.2)

A.2. CUDA Intrinsics

Die CUDA-API stellt dem Programmierer viele Befehle zur Verfügung, die komplexe
Funktionen hardwarenah umsetzen und wesentlich effizienter ablaufen, als eine manuel-
le Implementierung. Hier sollen die für diese Arbeit wichtigsten API-Befehle gelistet und
kurz erklärt werden. Dazu zählen in erster Linie Funktionen, die innerhalb eines Warps
Ergebnisse zusammenführen, aber auch mathematische Funktionen oder Synchronisati-
ons-Barrieren für ganze Threadblöcke. Detaillierte Informationen finden sich im CUDA
Programming Guide [154].

225

A. Appendix

Warp Vote Funktionen Diese Gruppe von Funktionen trägt Ergebnisse aller Threads
eines Warps zusammen und stellt diesen ein kombiniertes Ergebnis zur Verfügung.

unsigned int __all (int predicate)
Wird in jedem Thread zu einem Wert ungleich 0 ausgewertet, wenn die Eingabedaten
aller Threads ungleich 0 waren.

unsigned int __any(int predicate)
Wird in jedem Thread zu einem Wert ungleich 0 ausgewertet, wenn die Eingabedaten
mindestens eines Threads ungleich 0 waren.

unsigned int __ballot(int predicate)
Stellt jedem Thread ein Bitmuster aus 32 Bits zur Verfügung, in dem jedes Bit einen
Thread repräsentiert, und auf true steht, wenn die Eingabedaten dieses Threads un-
gleich 0 waren.

Synchronisation Um alle Threads eines Blocks zu koordinieren, können diese über
eine Barriere synchronisiert werden:

void __syncthreads()
Blockiert die Ausführung, bis alle Threads des Blocks diesen Befehlt erreicht haben. Gleich-
zeitig wird Speicherkonsistenz im globalen und geteilten Speicher sichergestellt.

Mathematik Viele Bit-basierten Zählfunktionen sind direkt als Spezialbefehle verfüg-
bar. In Kombination mit den Warp Vote Funktionen können mit ihnen beispielsweise
Prefixsummen effizient umgesetzt werden.

__device__ int __popc(unsigned int x)
Zählt die gesetzten Bits in einem Bitmuster aus 32 Bits.

__device__ int __clzll (long long int x)
Zählt die führenden, aufeinander folgenden, nicht gesetzten Bits in einem 64 Bit Datum,
beginnend bei Bit 63.

A.3. Morton-Codes

Morton-Codes stellen eine Linearisierung einer n-Dimensionalen Adressierung dar und
wurden bereits 1966 vorgestellt [148]. Da ihr Verlauf im zweidimensionalen Z-förmig
ist, spricht man auch von Z-Kurve. Z-Kurven sind raumfüllende Kurven (FASS-Kurven),
decken also rekursiv den kompletten Raum ab, den sie beschrieben. Ihre Berechnung
erfolgt durch einfache Bit-Verschachtelung, wie im Beispiel aus Abb. A.2 gezeigt. Die
Binärwerte der einzelnen Koordinaten werden mit je zwei 0-Bits gespreizt und die ent-
stehenden Worte verodert. Um aus einem Morton-Code die ursprünglichen Koordinaten
zu erhalten, müssen die Operationen invers angewendet werden. Alle Schritte können
durch vorberechnete Nachschlagetabellen stark beschleunigt werden1.

1http://www.forceflow.be/2013/10/07/morton-encodingdecoding-
through-bit-interleaving-implementations/

226

http://www.forceflow.be/2013/10/07/morton-encodingdecoding-
through-bit-interleaving-implementations/

A.3. Morton-Codes

x: 1 1 0 1 0 1 1 0
y: 0 0 1 1 0 0 1 0
z: 1 0 0 0 1 1 0 1

m: 101 001 010 011 100 101 011 100
Abb. A.2.: Beispiel zur Erzeugung des Morton-Codes m = 101001010011100101011100b

einer dreidimensionalen Koordinate P = (x, y, z) = (214, 50, 141)10 =
(11010110, 00110010, 10001101)b. Die Koordinate fällt also in die m =
1082812410. Zelle entlang der Z-Kurve. Beispiel aus [22].Der rekursive Verlauf der Kurve entspricht dem Ablaufen eines 2n-Baumes mittels post-

order Tiefensuche, weshalb jedes n-Tupel aus Bits beim Abstieg im Baum den zu verfol-
genden Kindknoten beschreibt. Zwei Beispiele anhand des Binärbaumes sind in Abb. A.4
gegeben.

Abb. A.3.: Verwendung von Morton Codes in einem Binär-Baum. Die Grafik aus [40] ver-
wendet eine zu dieser Arbeit inverse Numerierung der Baumebenen.

x:			0			1
y:	0			1
m: 00 11

x:			1			0
y:	1			1
m: 11 10{ {{ {

Kind:		0			3 :		3			2Kind

Blatt:	3 Blatt:	14

Abb. A.4.: Beispiele zum Abstieg im Binärbaum aus Abb. A.3 zu Blattknoten 3 und 14
anhand der Morton-Code-Tupel.

227

A. Appendix

Gemeinsamer Elternknoten

Die Eigenschaft des Kurvenverlaufs erlaubt es auch, den kleinsten gemeinsamen Elternk-
noten p zweier Blätter ma und mb mit Hilfe einfacher Bit-Operationen zu bestimmen.
Hierfür ist zunächst dessen Ebene lp im Baum zu finden:

lp = d(64− __clzll(ma XOR mb))/3)e (A.3)

Die Funktion __clzll() zählt in CUDA die führenden Nullen in einer 64 Bit-Zahl.

Der Pfad ist dann der Präfix der Länge 3·(d−1−lp) vonma odermb, wobei d die Tiefe des
Octrees (Anzahl Ebenen) angibt. Dies ist insbesondere Hilfreich, wenn mehrere Traver-
sierungen in dieselben Baumregionen durchgeführt werden müssen. Dabei lassen sich
dann gemeinsame Abschnitte schnell ermitteln und somit die Arbeit mehrerer Threads
zusammenfassen.

Sukzessive Berechnung

Die zugrunde liegenden Eigenschaften des Morton-Codes erlauben die sukzessive Be-
rechnung aus dem Code des Elternknotens (mortonl+1) und der Nummer des zu adres-
sierenden Kindknotens (childl+1) mit folgender effizient umsetzbarer Formel:

mortonl := (mortonl+1 � 3) | childl+1 (A.4)

Dabei gilt für den Wurzelknotenmortonl=0 := 0 sowie für nicht vorhandene Kindknoten
mortonl+1 := 0.

Volumen eines Teilbaumes

Jeder Knoten eines Octrees, der kein Blattknoten ist, repräsentiert einen Teilbaum der
Größe k × k × k mit k := 2l, wobei l die Ebene ist, auf der sich der Knoten befindet.
Das Volumen eines solchen Würfels lässt sich durch die kartesischen Koordinaten seines
minimalen (min) und maximalen (max) Eckpunktes beschreiben. Diese wiederum be-
rechnen sich direkt aus der Kind-ID i | 0 ≤ i < 8 und der minimalen Koordinate c des
Elternknotens:

calcCoords (c, l, i) :=

(
min
max

)
=

(
c+ 2l ·morton−1 (i)
c+ 2l ·

(
morton−1 (i) + 1

)) (A.5)

Die Funktion morton−1(i) erzeugt aus dem Morton Code i die Koordinaten des Kind-
Würfels, also einen Vektor (x, y, z)T | x, y, z ≤ 1. Weiterhin bezeichnet 1 den Vektor
(1, 1, 1)T .

Das folgende Beispiel zur Berechnung der min und max Koordinaten bezieht sich auf
einen Baum mit vier Ebenen, wie in an Abb. A.5 dargestellt. Gesucht werden der dritte
Mortonvoxel auf Baumebene eins, dessen Elternvoxel auf Ebene zwei seinen minimalen
Eckpunkt bei (4, 0, 4)T hat.

228

A.4. Structure-of-Arrays und Arrays-of-Structures

max
(

8
4
6

)
(

8
4
8

)

min
(

6
2
4

)

(
4
0
4

)
X

Y

Z

Abb. A.5.: Subvolumens des dritten Mortonvoxels (rot gefärbt) auf Ebene 1 und dessen
minimale / maximale Koordinaten.

calcCoords
((4

0
4

)
, 1, 3

)
=

(
min
max

)
⇒ min =

(
4
0
4

)
+ 21 ·morton−1 (3) =

(
4
0
4

)
+
(

2 ·
(

1
1
0

))
=
(

6
2
4

)
⇒ max =

(
4
0
4

)
+ 21 ·

(
morton−1 (3) + 1

)
=
(

4
0
4

)
+
(

2 ·
((

1
1
0

)
+ 1

))
=
(

8
4
6

)

A.4. Structure-of-Arrays und Arrays-of-Structures

Sollen mehrere Threads elementweise auf Daten im globalen Speicher der GPU zugrei-
fen, so ist es für die effiziente Nutzung des Speicherbusses und Caches unabdingbar, dass
die Elemente fortlaufend im Speicher angeordnet sind (Memory Coalescing). Die folgen-
den Code-Beispiele demonstrieren dies anhand der Nutzung von Structures of Arrays und
einem Array of Structures.

Algorithmus 2 Non Coalesced

1 int N = 100;
2 struct {
3 float x, y, z;
4 } AoS;

7 __device__ pnt_cloud = AoS[N];

9 __device__
10 void scale(float factor){
11 int tid = blockIdx.x*blockDim.x +

threadIdx.x;
12 if (tid < N){
13 pnt_cloud[tid].x *= factor;
14 pnt_cloud[tid].y *= factor;
15 pnt_cloud[tid].z *= factor;
16 }
17 }

Algorithmus 3 Coalesced

1 int N = 100;
2 struct {
3 float x[N];
4 float y[N];
5 float z[N];
6 } SoA;
7 __device__ SoA pnt_cloud;

9 __device__
10 void scale(float factor){
11 int tid = blockIdx.x*blockDim.x +

threadIdx.x;
12 if (tid < N){
13 pnt_cloud.x[tid] *= factor;
14 pnt_cloud.y[tid] *= factor;
15 pnt_cloud.z[tid] *= factor;
16 }
17 }

229

A. Appendix

In Algorithmus 2 können mit einer Speichertransaktion lediglich 10 bis 11 Threads eine
Koordinate lesen, da diese mit 12 Bytes Abstand im Speicher liegen (3 floats zu 4 Bytes)
und nicht an 128 Byte Grenzen ausgerichtet sind. Somit benötigt der Warp insgesamt 9
Transfers: 11+11+10 Threads lesen x, 11+10+11 lesen y, 10+11+11 lesen z. Dagegen kön-
nen in Algorithmus 3 alle 32 Threads des Warps gleichzeitig eine Koordinate pro Spei-
cherzugriff lesen (32 floats zu 4 Bytes = 128 Byte) und es werden insgesamt nur genau
3 Speichertransfers pro Warp (alle Threads lesen x, dann y, dann z) gebraucht.

A.5. Primitive der Parallelverarbeitung

Weit verbreitete Primitive der datenparallelen Verarbeitung sind: Transformation, Sor-
tierung (Radix, Bitonic), Reduzierung / Verdichtung, Aufteilung. In dieser Arbeit wird
häufig auf die Präfixsumme und die Radix-Sortierung zurückgegriffen, weshalb diese
hier näher beschrieben werden:

A.5.1. Präfixsummen auf Threadebene

Die Problemstellung liegt in der Verdichtung (Compaction) von Daten anhand einer Ent-
scheidungsfunktion (Prädikat p(e) ∈ [1, 0]), die auf jedes Datum angewendet wird. Nur
wenn das Prädikat zu 1 ausgewertet wird, soll das Datum in die Ausgabedaten über-
nommen werden. Dabei dürfen keine Lücken entstehen und die Reihenfolge der Daten
soll beibehalten werden. Bei einem seriellen oder schwach parallelen Ansatz wäre die
Verwendung eines atomaren gemeinsamen Zählers, der den Zeiger in die Ausgabeda-
ten inkrementiert, die naheliegendste Lösung. Bei einer massiven Parallelisierung auf
der GPU wäre dies aus zwei Gründen nicht effizient: Zunächst weisen atomare Ope-
rationen eine hohe Latenz auf, zum anderen ist zusätzlicher Aufwand nötig, um die
Reihenfolge der Daten aufrechtzuerhalten (sortieren nach Thread ID, da CUDA Threads
keine deterministischer Reihenfolge besitzen). CUDA bietet jedoch hardwarenahe Funk-
tionen an, um diese Aufgabe gegenüber der kanonischen Implementierung 32-fach zu
beschleunigen. Grundlage ist der Befehl __ballot(bool), der boolsche Variablen al-
ler 32 Threads eines Warps zu einem Bitvektor der Länge 32 zusammenfasst, ohne dabei
geteilten Speicher nutzen zu müssen. Die Anzahl der Einsen im Bitvektor kann mittels
__popc() gezählt und über geteilten Speicher mit anderen Warps ausgetauscht werden.
Algorithmus 4 zeigt die Nutzung dieser Funktionen zur Berechnung der Präfixsumme
auf Thread-Ebene.

A.5.2. Parallelsierte Reduktion

Ziel einer Reduktion ist das Zusammenführen einer Menge von Eingabedaten zu einem
einzelnen Wert durch die wiederholte Anwendung eines binären Operators. Ein einfa-
ches Beispiel ist die Aufsummierung einer Menge aus Zahlen.

Wie Mark Harris in [96] schreibt, ist eine prinzipielle Umsetzung der Reduktion in CUDA
zwar problemlos möglich, die performante Umsetzung jedoch mit zahlreichen Tücken
versehen: Eine Baum-ähnliche Zusammenführung über Block-Grenzen hinweg birgt das

230

A.5. Primitive der Parallelverarbeitung

Problem einer Synchronisation zwischen den Blöcken, die zu Lasten der Laufzeit geht.
Daher sollte eine Implementierung schrittweise über mehrere Kernel-Aufrufe (mit je-
weils halbierter Anzahl an Blöcken) vorgehen und diese als Synchronisationspunkte nut-
zen. Lädt nun jeder Thread ein Element aus dem Globalen Speicher in den schnellen ge-
teilten Speicher, darf nur jeder zweite Thread eine Zusammenführung berechnen. Diese
Divergenz bedeutet eine niedrige Auslastung der Hardware. Daher sollten die zu fusio-
nierenden Daten so über die Thread-ID ausgewählt werden, dass jeder Thread arbeiten
kann, was bei einer falschen Strategie jedoch schnell zu Bank-Konflikte im geteilten Spei-
cher führt. Harris beschreibt Lösungen dieser Punkte und präsentiert weitere Verbesse-
rungen, die den Durchsatz und die Bandbreite der Reduktion nahe an die theoretischen
Obergrenzen der Hardware bringen. In dieser Arbeit wird der Reduktionsalgorithmus
aus Thrust genutzt, der die von Harris vorgeschlagenen Techniken umsetzt.

A.5.3. Parallelsierte Radix-Sortierung

Für die parallele Sortierung von Daten bietet sich eine Radix-Sortierung an, da diese kei-
nen vergleichenden, sondern einen Zählenden Charakter aufweist. Radix besteht aus drei
Phasen, die im Falle von Dezimalzahlen für die einzelne Stellen der zu sortierenden Wer-
te ausgeführt werden, und die sich gut parallelisieren lassen:

1. Zählen: Hier wird das Vorkommen einzelner Werte einer Stelle gezählt, was sich
effizient parallelisieren und mittels Reduktion zusammenfassen lässt.

2. Bestimmung der Schreibposition: Hier wird die Schreibposition jedes Eingabe-
wertes anhand einer parallelen exklusiven Präfixsumme berechnet.

3. Schreiben: Nach dem die Positionen bekannt sind, werden auch diese sortiert. So-
mit kann das eigentliche Schreiben der neu geordneten Eingabedaten einen Memo-
ry Coalescing Effekt erzielen.

Da der Prozess stabil ist (also die Reihenfolge von Elemente mit gleichen Werten an der
Sortierstelle nicht ändert), kann problemlos mehrfach sortiert werden, beginnend von
der niederwertigsten Stelle.

Im Falle von Binär-Repräsentationen muss die Zahl der pro Durchlauf sortierten Bits
(Stellen) an die Wortbreite der Hardware angepasst sein. Eine extrem performante Im-
plementierung unter Ausnutzung von Dynamic Parallelism stellen Merrill et al. in [144]
vor. Im dieser Arbeit wurde jedoch aus praktischen Gründen die Implementierung aus
Thrust genutzt.

231

A. Appendix

Algorithmus 4 Präfixsumme auf Thread-Ebene.

1 template<int NUM_WARPS, int WARP_SIZE>
2 __device__ int thread_prefix(uint32_t* shr_sum, uint32_t tid, bool pred) {
3 uint32_t warp_votes = __ballot(pred); // warp vote
4 if (tid % WARP_SIZE == tid / WARP_SIZE)
5 shr_sum[tid / WARP_SIZE] = __popc(warp_votes); // population count
6 __syncthreads();

8 // exclusive sequential prefix sum
9 if (tid == 0) {

10 uint32_t sum = 0;
11 #pragma unroll
12 for (int i = 0; i < NUM_WARPS; ++i) {
13 uint32_t tmp = shr_sum[i];
14 shr_sum[i] = sum;
15 sum += tmp;
16 }
17 }
18 __syncthreads();

20 int index = shr_sum[tid / WARP_SIZE];
21 return index + __popc(warp_votes << (WARP_SIZE - (tid % WARP_SIZE)));
22 }

A.6. Partikelschwarmoptimierung

Die Partikelschwarmoptimierung ist ein biologisch motiviertes Optimierungsverfahren,
das 1995 durch Kennedy et al. vorgestellt [115] wurde. Es bildet das Verhalten eines
Schwarmes nach, dessen Individuen bzw. Partikel n einerseits eigenständig nach einem
Optimum suchen, und andererseits durch das Verhalten des erfolgreichsten Schwarm-
Individuums b beeinflusst werden. Dabei wandert jedes Partikel mit einer sich verän-
dernden Geschwindigkeit ~vn durch den Suchraum X des Optimierungsproblems und
speichert dabei seine bisher beste erreichte Position ~xn best. Da der Schwarm ein rando-
misiert exploratives Verhalten aufweist, können lokale Minima bei passender Parame-
trierung vermieden werden. In dieser Arbeit wird die PSO dafür genutzt, nichtlineare
Optimierungsprobleme anzugehen. Dafür gilt:

Maximiere die Bewertungsfunktion f(~x) unter der Nebenbedingung ~x ∈ X mit f : W →
R eine reellwertige Funktion und X ⊆ W . Die zulässige Menge X ist durch ihren kon-
kreten Wertebereich beschrieben.

Die Implementierung iteriert nach einer Initialisierung durch drei Phasen, bis ein Maxi-
mum an Iterationen erreicht ist, oder ein Abbruchkriterium für das Ergebnis von f(~x)
erreicht wurde.

Zunächst wird ein Schwarm mit einer festen AnzahlN an Partikeln erzeugt, indem jedem
Individuum n ∈ N ein randomisierter Startwert ~xn zugewiesen wird. Danach startet die
Optimierung:

1. Bewerte: Berechne f(~xn) für alle n und setze ~xn best, falls f(~xn) > ~xn best

2. Ermittle Schwarm-Besten ~xb = arg maxn∈N (f(~xn)) aus allen N Partikeln

232

A.7. Octree

3. Berechne neue Partikel-Geschwindigkeit:
~vn = ~vn +

(
α · p1 · (~xn best − ~xn)

)
+
(
β · p2 · (~xb − ~xn)

)
mit Zufallsvariablen p1, p2 ∈ [0, 1]

4. Verschiebe Partikel: ~xn = ~xn · ~vn
Dabei kann über die Faktoren α und β gesteuert werden, wie stark Partikel von ihrem
eigenen Optimum ~xn best oder dem Schwarm Optimum ~b angezogen werden. Durch die
Zufallsvariablen p1 und p2 streut der Schwarm und konvergiert nicht direkt gegen ein
einziges Maximum. Analog kann über entsprechende Umstellungen max → min auch
ein Minimierungsproblem gelöst werden.

A.7. Octree

Hier werden einige Details und Datenstrukturen der Octree-Implementierung gelistet:

Abb. A.6.: UML Diagramme des Octree und von dessen Knoten.

233

A. Appendix

A.7.1. Lastbalancierung (Balance Work)

Algorithmus 5 ist der grundlegende Algorithmus zur Lastbalancierung bei der Verarbei-
tung unterschiedlich aufwendiger Berechnungselemente mit mehreren Threads. Der Al-
gorithmus berechnet die Umverteilung der Elemente auf die Arbeitsstapel der Threads,
unter Aufrechterhaltung der Stapel-Invariante.

Algorithmus 5 Balance Work

Require: Sin[n] : WorkItem, each Stack Sin[i] fulfills invariant 5.21
Ensure: Sout[n] : WorkItem, each Stack Sout[i] fulfills invariant 5.21
\\ count step

1: C[0 : #level − 1][0 : n− 1]← {0 . . . 0}, I[0 : n− 1][0 : #level − 1]← {0 . . . 0}
2: for i← 0, n− 1 do \\ in parallel
3: S ← Sin[i], S[0 : #level − 1]← {0 . . . 0}
4: for j ← tid, size(S)− 1, j ← j + #threads do \\ in parallel
5: S[level(S[j])] += 1 \\ atomic increment
6: end for
7: for j ← tid,#level − 1, j ← j + #threads do \\ in parallel
8: C[#level − l − 1][i]← S[j]
9: end for

10: I[i]← suffixSum(S)
11: end for
12: C ← prefixSum(C) \\ in parallel
\\move step

13: for i← 0, n− 1 do \\ in parallel
14: S ← Sin[i]
15: for j ← tid, size(S)− 1, j ← j + #threads do \\ in parallel
16: l← level(S[j])
17: p← C[#level − l − 1][i] + (j − I[i][l]) \\ compute target position
18: Sout[p mod n][p/n] = S[j]
19: end for
20: end for

Die folgenden Algorithmen nutzen die beschriebene Lastbalancierung als Grundlage. Ih-
re Arbeitselemente, die zwischen den Arbeitsstapeln umverteilt werden, sind in Abb. A.7
zu sehen.

(a) Arbeitselement von Inter-
sect Octrees

(b) Arbeitselement von Inter-
sect Voxelmap

(c) Arbeitselement von Load
Balancing Propagate

Abb. A.7.: Elemente der Arbeitsstapel aller Lastbalancierten Algorithmen.

234

A.7. Octree

A.7.2. Schneiden von zwei Octrees (Intersect Octrees)

Modifizierte Tiefensuche zur Kollisionsprüfung zwischen zwei Octrees. Nutzt den vor-
herigen Lastausgleich, wenn zu viele Threads untätig sind.

Algorithmus 6 Intersect Octrees

Require: S[n] : WorkItemIntersect, fulfills stack invariant 5.21
Ensure: S[m] : WorkItemIntersect, fulfills stack invariant 5.21

1: #collisions← 0
2: while n > 0 and #idle < MAX_IDLE do
3: n← n−min(#threads/8, n)
4: w ← S[n+ tid/8] \\ w ←⊥ if no item available
5: (nodea, nodeb)← (a_nodes(w), b_nodes(w))
6: if a_active(w) then nodea ← a_nodes(w)[tid mod 8] end if
7: if b_active(w) then nodeb ← b_nodes(w)[tid mod 8] end if
8: (pa, pb, c)← (isPart (nodea) , isPart (nodeb) , areInConflict(nodea, nodeb))
9: if c and ((¬pa and ¬pb) or level(w) > LEV ELstop) then \\ handle inner nodes

10: #collisions← #collisions+ 8level(w)

11: if a_active(w) then setCollision(nodea)
12: else setCollision(nodeb) end if
13: end if
14: if level(w) = 1 and (aactive or bactive) and LEV ELstop < 1 then \\ handle leaf

nodes
15: #collisions← #collisions+ countCollisions(nodea, nodeb)
16: end if
17: inserttid ← c and (pa or pb) and level(w) > max(1, LEV ELstop)

18: off ←∑tid−1
i=0 inserti \ \ prefix sum of inserti ∈ {0, 1}

19: if inserttid then \\ add new work items
20: (aa, ab, ca, cb)← (a_active(w) and pa, b_active(w) and pb, nodea, nodeb)
21: if aa then ca ← childPtr(nodea) end if
22: if ab then cb ← childPtr(nodeb) end if
23: S[n+ off]←WorkItemIntersect(ca, cb, level(w)− 1, aa, ab)
24: end if
25: end while
26: (#idle,m)← (#idle+ 1, n)

Umformung zur Aufwandsabschätzung des Abstiegs in einem voll ausgeprägten Octree.
Durch die Verwendung der geometrischen Reihe lässt sich zeigen, dass der Aufwand
lediglich 1/7 höher als bei der Traversierung zweier Voxelkarten liegt.

235

A. Appendix

Aoct(s) = 2

k +

log8
s
p∑

i=1

8i

 (A.6)

z=log8
s
p

= 2

(
k − 1 +

s

p

z∑
i=0

8−z8i

)
(A.7)

= 2

(
k − 1 +

s

p

z∑
i=0

1

8z−i

)
(A.8)

= 2

(
k − 1 +

s

p

z∑
i=0

(
1

8

)i)
(A.9)

≤ 2

(
k − 1 +

s

p

∞∑
i=0

(
1

8

)i)
geom. Reihe

= 2

(
k − 1 +

s

p
· 8

7

)
(A.10)

2 1 0 1

Level 3 Level 2

1 03 0 0 1 0 1

Level 1

2 0 0 0

Level 0

0 2 3 3 4 85 8 8 8 9 9 10 12 12 12

Abb. A.8.: Array C aus Algorithmus 5 vor und nach Berechnung der Präfixsumme über
C. Beispiel nutzt Eingabedaten aus Abb. 5.12.

A.7.3. Eingeschränkte Zwei-Phasen-Tiefensuche mit Lastausgleich

In Algorithmus 7 (Load-Balancing Propagate) führt jeder CUDA Block mehrere Tiefen-
suchen für die Elemente (siehe Abb. A.7c) auf seinem Arbeitsstapel durch. Auch wenn
die Anzahl der Arbeitsstapel-Elemente durch den Algorithmus verändert werden kann,
so gilt vor und nach der Abarbeitung die Stapel-Invariante (siehe Gleichung 5.21), wel-
che die Voraussetzung für den effizienten Lastausgleich und für eine Abschätzung des
Aufwandes des gesamten Arbeitsstapels ist. Zu Beginn nehmen sich immer acht Threads
dasselbe Arbeitselement w vom Arbeitsstapel (sind nicht ausreichend Elemente vorhan-
den, werden leere Elemente w ←⊥ und bearbeiten gemeinsam die acht Kindknoten.
Zunächst wird geprüft, ob neue Arbeitselemente (insert↓ bzw. insert↑) entstehen. Um
mehrfache Bearbeitungen zu verhindern, kann nur einer der acht Threads neue Bottom-
Up Elemente generieren. An dieser Stelle wird auch abgebrochen, wenn der betrachtete
Knoten nicht im relevanten Sektor des Baumes liegt (updateFlag), oder keine Kindknoten
vorhanden sind (isPart). Zeile 9 und 10 initialisieren neu erstellte Knoten mit dem Status
ihres Elternknotens. Die eigentlich Herstellung der Baum-Invariante beginnt in Zeile 16:
Nachdem sichergestellt ist, dass alle benötigten Konten bereits aktualisiert sind (upda-
teFlag), wird der Zustand des neuen Elternknotens als ‖ -Verknüpfung der Kindknoten
gesetzt und sein updateFlag entsprechend entfernt. Ist die Datenabhängigkeit nicht auf-
gelöst, wird das Arbeitselement durch den ersten Thread wieder auf den Arbeitsstapel

236

A.7. Octree

gelegt, und über das makeProgress-Flag gespeichert, dass kein Fortschritt erzielt wurde.
Die ‖ -Verknüpfung ist effizient über die WARP-Funktion __ballot() umgesetzt. Der Algo-
rithmus profitiert von Memory Coalescing, da auf Knotenelemente immer geordnet über
die Thread-ID zugegriffen wird. Weiterhin wird die letzte Baumebene zur Optimierung
ohne Arbeitsstapel abgearbeitet (ab Zeile 12), wobei analog zum beschriebenen Vorgehen
verfahren wird.

Am Ende jeden Durchlaufs müssen die generierten Elemente auf den Arbeitsstapel gelegt
werden, und dabei die Stapel-Invariante erfüllen. Dafür sind in der computeOffset(insert↓, insert↑)
Funktion die folgenden Summen implementiert:

off tid↓ :=

tid−1∑
i=0

inserti↓ +

max
k

(levelk=leveltid)∑
i=0

inserti↑

off tid↑ :=
tid−1∑
i=0

inserti↑ +

min
k

(levelk=leveltid)−1∑
i=0

inserti↓

(A.11)

Sie berechnen aus den Flags insert↓ und insert↑ der einzelnen Threads die relativen Posi-
tionen off↓ und off↑ der neuen Elemente im Arbeitsstapel, so dass diese parallel zurück-
geschrieben werden können. Implementiert sind sie als effiziente Prefixsumme mittels
__ballot() und __popc(), bzw. als zur Laufzeit erzeugte Lookup-Tabelle für die min/max
Ausdrücke.

237

A. Appendix

Algorithmus 7 Load Balancing Propagate

Require: S[n] : WorkItemPropagate, fulfills stack invariant 5.21
Ensure: S[m] : WorkItemPropagate, fulfills stack invariant 5.21

1: makeProgress← true
2: while n > 0 do
3: n← n - min(#threads/8, n)
4: w ← S[n+ tid/8] \\ w ←⊥ if no item available
5: node← node(w)[tid mod 8]
6: makeProgresstid ← w 6=⊥
7: insert↑ ← isTopDown(w) and level(w) 6= 1 and tid mod 8 = 0
8: insert↓ ← isTopDown(w) and level(w) 6= 1 and updateFlag(node) and isPart(node)

\\ process work items
9: if isTopDown(w) and hasInvalidState(node) then \\ propagate↓

10: setState(node, parentState(node))
11: end if
12: if isBottomUp(w) and level(w) = 1 and isPart(node) then \\ handle without stack
13: leaf_propagate↓()
14: leaf_propagate↑()
15: end if
16: if isBottomUp(w) then \\ propagate↑
17: children← node(w)
18: if ∀0 < i < 8 | updateFlag(children[i]) = false then \\ assure children are

up-to-date
19: newState← OR0<i<8 state(children[i]) \\ disjunction of children
20: setState(parentNode(w), newState)
21: setUpdateFlag(parentNode(w), false)
22: else
23: insert↑ ← tid mod 8 = 0 \\ back on stack
24: makeProgresstid ← false
25: end if
26: end if

\\ push work items on stack
27: (off↓, off↑, #insert↓, #insert↑)← computeOffset(insert↓, insert↑)
28: if insert↓ then \\WorkItemPropagate(node, parent_node, level, state)
29: S[n + off↓] ← WorkItemPropagate↓(childPtr(node), node, level(node) −1,

state(node))
30: end if
31: if insert↑ then S[n+ off↑]←WorkItemPropagate↑(w) end if
32: n← n+ #insert↓ + #insert↑
33: makeProgress← OR0<i<#threads makeProgressi = true
34: if ¬makeProgress or #idle ≥MAX_IDLE then break end if
35: end while
36: if makeProgress then #idle← #idle+ 1 end if
37: m← n

238

A.7. Octree

A.7.4. Verwendete Hard- und Software

Um die Laufzeitangaben in Kapitel 8 in Relation setzen zu können, ist hier die verwen-
dete Hardware aufgelistet:

Host-System Workstation PC

• Prozessor: Intel R© CoreTM i7-4770 4-Kern CPU
• Hauptspeicher: 8 GB DDR3 RAM

Grafikkarte NVIDIA R© GeForce R© TITAN

• Kepler Architektur (GK110)
• 2688 Kerne (4,709 GFLOPS)
• 14 Streaming Multiprozessoren zu je 192 Threads (= 6 Warps)
• 6144 MB GDDR5-Hauptspeicher (384 Bit Speicherinterface, 6 GHz: 288.4 GB/s

Speicherdurchsatz)
• Host-Anbindung über eine 16× PCI-Express 3.0 Schnittstelle

Software Ubuntu 16.04 LTS

• CUDA 7.5
• GCC 4.9 (Optimierungsstufe -O3)

239

A. Appendix

A.7.5. Unscharfe Prüfung von Bitvektor-Voxeln mittels Zeitfenster

Der gelistete Code iteriert in Byte Schritten über alle SSV-IDs von Vektor v2 und prüft da-
bei in einer inneren Schleife alle im Fenster liegenden IDs aus Vektor v1. Dafür wird das
entsprechende Byte aus v2 in den Puffer geladen und dort bitweise um die Fensterbreite
geshifted. In jedem Durchlauf der inneren Schleife erfolgt eine Bitweise &-Operation mit
dem betrachteten Byte aus v1 und dem verschobenen Byte aus v2.

Algorithmus 8 Bitshifting in der gefensterten Kollisionsprüfung.

1 uint64_t buffer = 0;
2 const size_t buffer_half = 4*8; // middle of uint64_t
3 if (m_type_range > buffer_half)
4 {
5 printf("ERROR: Window size for SV collision check must be smaller than %lu\n",

buffer_half);
6 }

8 // Fill buffer with first 4 bytes. We start at byte 1 and not 0 because we’re only
interested in SV IDs

9 for (size_t byte_nr = 1; byte_nr < 5; ++byte_nr)
10 {
11 buffer += static_cast<uint64_t>(v2.bitVector().getByte(byte_nr * 8)) << (3*8 +

byte_nr*8);
12 }

14 // We start at bit 8 and not 0 because we’re only interested in SV IDs
15 for (uint32_t i = 8; i < eVT_SWEPT_VOLUME_END; i+=8)
16 {

18 uint8_t byte = 0;
19 uint64_t byte_1 = static_cast<uint64_t>(v1.bitVector().getByte(i)) << (buffer_half

-m_type_range);

21 // Check range for collision
22 for (size_t bitshift_size=0; bitshift_size <= 2*m_type_range; ++bitshift_size)
23 {
24 byte |= (byte_1 & buffer) >> (buffer_half - m_type_range + bitshift_size);
25 // if ((byte_1 & buffer) != 0)
26 // {
27 // printf("Byte_1 step %u is %lu, buffer is %lu, Overlapping: %u\n", i/8,

byte_1, buffer, byte);
28 // }
29 byte_1 = byte_1 << 1;
30 }

32 collisions->setByte(i, byte);

34 // Move buffer along bitvector
35 buffer = buffer >> 8;
36 if (i < length - buffer_half)
37 {
38 buffer += static_cast<uint64_t>(v2.bitVector().getByte(i + buffer_half)) << 56;
39 }
40 }
41 return !collisions->isZero();

240

A.7. Octree

A.7.6. Backtracking für Scheduling

Verwendeter Algorithmus zur Bestimmung einer kollisionsfreien Ausführungsfolge bei
der Verwendung mehrerer Roboter:

Algorithmus 9 Backtracking für Scheduling.

1 fitMotions(Robot[] robots)
2 {
3 result = Result.emptyResult();
4 if(recursiveFit(result, 0, robots.first))
5 return result;
6 else
7 return Result.emptyResult();
8 }

10 recursiveFit(Result result, int timeIndex, Robot currentRobot))
11 {
12 if(timeIndex >= getNumSlots())
13 {
14 if(currentRobot.hasNext())
15 return recursiveFit(result, 0, currentRobot.next());
16 else
17 return true;
18 }
19 foreach(movement in currentRobot.movements)
20 {
21 if(result.collides(movement, timeIndex))
22 continue;
23 solution.get(currentRobot).push_back(movement);
24 if(recursiveFit(result, timeIndex + 1, currentRobot))
25 return true;
26 solution.get(currentRobot).pop_back(movement);
27 }
28 return false;
29 }

241

A. Appendix

A
.8

.
V

is
ua

lis
ie

ru
ng

Pr
im
it
iv
e

Sp
he
re

C
ub
o
id

V
o
xe
lM

ap
V
is
ua
liz
e
r

0.
.*

1

1

V
is
ua
liz
er
C
on

te
xt

1

1

V
is
ua
liz
er
-W

ra
p
pe
r

X
M
L-
In
te
rp
re
te
r

1
ic
l_
co
re
::
co
nf
ig

<<
us
es
>
>

<<
u
se
s>
>

C
am

er
a

1
2

1

1

C
am

er
aC
on

te
xt

D
at
aC
o
nt
ex
t

V
o
xe
lM

ap
C
o
n
te
xt V

o
xe
lM

ap

11

C
ub
e

0.
.*1

0.
.*

O
ct
re
e
C
on

te
xt

0.
.*

1

C
ub
e

0.
.*1

V
ox
e
lli
st
C
o
n
te
x
t

0.
.*

A
bb

.A
.9

.:
K

la
ss

en
di

ag
ra

m
m

de
r

V
is

ua
lis

ie
ru

ng

242

A.9. Greifplanung

A.9. Greifplanung

Algorithmus zur lokalen Optimierung der Objektpose innerhalb der Hand während der
Greifplanung:

Algorithmus 10 Local Grasp Optimizer

Require:
O : Pointcloud of object surface
H : Swept-Volume of grasp
P : Particle defining initial (x, y), (α, β, γ) pose of the object in hand

Ensure:
~ϕbest : Finger joint angles for best grasp
P: Contains object pose for best grasp

1: O← transform(O, P) \\ Place object at initial pose
2: O← transform(O, y-start) \\ Stick object into hand
3: for xz-shift← -max-shift to max-shift do
4: for y-shift← 0 mm to 200 mm do \\Move object out of hand
5: offset← xz-shift + y-shift
6: #colls← collisionCheckOffset(O, H, offset)
7: if #colls == 0 then
8: ~ϕ, #colls← sweptCollisionCheck(O, H, offset)
9: if #colls > #collsbest then

10: #collsbest ← #colls \\ Local optimum found
11: posebest ← offset
12: ~ϕbest← ~ϕ
13: end if
14: end if
15: end for
16: end for
17: return P, ~ϕbest

243

Abbildungsverzeichnis

1.1. Stufen der Zusammenarbeit zwischen Mensch und Roboter. 2
1.2. Aktuelle Kollisionserkennungsverfahren 2
1.3. Zwei Voxel-Datenstrukturen und das Ergebnis des Vereinigungs- und Schnitt-

Operators zur Kollisionsdetektion. 3
1.4. Einordnung der bearbeiten Themengebiete in den Sense-Plan-Act-Zyklus. 7
1.5. Übersicht über die grundlegenden Software-Module 8
1.6. Übersicht über die aufeinander aufbauenden Kapitel. 10

2.1. Reaktives Verhalten zur Vermeidung von Kollisionen 13
2.2. Taxonomie zur Einordnung der kollisionsfreien Bahnplanung in verwand-

te Themengebiete. 15

3.1. Arbeitsaufteilung bei mehreren GPU Prozessen 21
3.2. Parallelisierung und Datenabhängigkeit . 22
3.3. Vergleich des theoretisch möglichen Datendurchsatzes von Intel CPUs und

Nvidia GPUs . 24
3.4. Vergleich der theoretisch möglichen Speicherbandbreite von Intel CPUs

und Nvidia GPUs . 25
3.5. Erhöhte Laufzeit durch Divergenz der Threads eines Warps 25
3.6. CUDA Kernels, Threads, Blöcke und Grids 27
3.7. Zugriffsmuster auf Speicherbänke des geteilten GPU-Speichers 28
3.8. Blockdiagramm der CUDA-Speicherarchitektur. Entnommen aus [154]. . . 29
3.9. Physische Aufteilung des Host- und Device-Speichers 30
3.10. Beispiel für den Speicherzugriff eines Warps 31

4.1. Vergleich des Funktionsprinzips und des Bauraumes unterschiedlicher Tie-
fenkameras . 35

4.2. Beispiel der Komponenten einer RGBD-Aufnahme 37
4.3. Verarbeitungskette zur Umwandlung von Tiefenbildern in Voxel 39
4.4. Stanford Bunny in unterschiedlichen Modellierungen 42
4.5. Unterschiedliche 2,5D Repräsentationen einer Punktwolke 43
4.6. Freiraumberechnung mittels Raycasting . 48
4.7. Beispiel der Freiraumberechnung . 49
4.8. Aufbau des Umweltmodells aus zusammengeführten Punktwolken 49
4.9. Voxelumwandlung eines einzelnen Roboter-Gliedes am Beispiel des Ober-

armes. 51
4.10. Beispiele für potentielle Falschdetektion von Eigenkollisionen, die durch

manuell modellierte Kollisionspaare auszuschließen sind. 52
4.11. Swept-Volumen einer Ganzkörperbewegung des Roboters HoLLiE 53
4.12. Abtastung eines Swept-Volumen . 53
4.13. Swept-Volumen einer Roboterbewegung 54

245

Abbildungsverzeichnis

4.14. Schritte der Bewegungssegmentierung und Prädiktion 55
4.15. Visualisierung der Ergebnisse der untersuchten Szenenfluss-Algorithmen 56
4.16. Mittels RGBD-Flow berechneter Szenenfluss 57
4.17. Körpersegmentierung anhand der Bewegungen. 58
4.18. Beispiel des Trackings und der Prädiktion von zwei Personen. 60
4.19. Programmablauf der Kollisionsprüfung mit Bewegungsprädiktion 61
4.20. Eine Rotation des Roboters um θ wirkt sich je nach Distanz unterschiedlich

auf wahrgenommene Objekte aus. 62

5.1. Aufbau eines Bitvektors in GPU-Voxels . 69
5.2. Anforderungen unterschiedlicher Datenquellen bei der Planung 70
5.3. Translation der Voxelliste einer umgewandelten Punktwolke 72
5.4. Hierarchische, bedarfsgesteuerte Kollisionsprüfung 73
5.5. Beispiele zur Verdeutlichung des Octree-Prinzips. 76
5.6. Speicherlayout von inneren Knoten und Blattknoten 77
5.7. Zyklischer Neuaufbau des Octrees als Kompromiss zur Umsetzung einer

dynamischen Datenstruktur auf der GPU. 78
5.8. Z-Kurve der 3D-Morton-Adressierung . 78
5.9. Octree Aufbau aus einer unsortierten Punktwolke in vier Schritten. 79
5.10. Berechnung von Knotenpositionen und Zeigern auf Kindknoten 81
5.11. Paralleles traversieren des Baumes mit heuristischem Lastausgleich. . . . 81
5.12. Lastausgleich unter Berücksichtigung des geschätzten Arbeitsaufwandes. 82
5.13. Distanzfeld einer Laborumgebung . 86
5.14. Beispiel eines Pfades entlang des Gradienten in einem kombinierten Po-

tentialfeld . 87
5.15. Aktualisierung von 2D-Distanzfeldern . 90
5.16. Vergleich von Strategien zur Informationsverbreitung bei Flood Fill und

Jump Flooding . 92
5.17. Vereinfachter Ablauf des Parallel-Banding-Algorithmus. 92
5.18. Spärlich abgetastete Punktwolke einer Wand mit Tür 93
5.19. Prinzipieller Datenfluss zur Visualisierung von Ergebnissen aus GP-GPU-

Berechnungen . 95
5.20. Benchmarkszene zur Supervoxelgröße . 97
5.21. CUDA Kernel zum Erzeugen von Geometrie-Daten aus Voxeln und an-

schließender sortierter Ablage im OpenGL Vertex-Buffer Object. 97
5.22. Testszene mit und ohne Einschränkung des Sichtbereiches 99
5.23. Gebäudekarte in unterschiedlichen Darstellungsmodi 101
5.24. Vergleich der Anforderungen mit den implementierten Datenstrukturen . 102

6.1. Roboter mit großem Arbeitsraum und variabler Geometrie durch ausla-
dende Kinematik. 104

6.2. Dynamische Beispielszene zur Verdeutlichung von SSV-IDs 108
6.3. Die ersten beiden Bytes aus dem Bitvektors eines Voxels 110
6.4. Beispiel der Kollisionserkennung . 110
6.5. Erkannte Kollision bei Abbruch der Octree-Prüfung 113
6.6. Gemeinsamer Pfad der Tiefensuche. 115
6.7. Effizienzsteigerung durch Kommutation der Datenstrukturen bei einer Kol-

lisionsprüfung . 115

246

Abbildungsverzeichnis

7.1. Vergleich der Hindernisformation im Arbeits- und Konfigurationsraum . 121
7.2. Wavefront Beispiel . 124
7.3. Kostenfunktionen aus kombinierten Potentialfeldern 125
7.4. Ein neues Hindernis, das nicht am Ende eines Primitives liegt, wird über-

sehen. 130
7.5. Bewegung der Schachfigur Pferd als Beispiel für die Planung mit konkate-

nierten Bewegungsprimitiven . 131
7.6. Sicherer Korridor durch virtuellen Roboter 133
7.7. Planung einer Trajektorie für einen mobilen Roboter anhand eines Swept-

Volumens seiner Rotation . 134
7.8. Rotatives Swept-Volumen des IMMP Roboters, das mit einer einzelnen

Kollisionsprüfung ausgewertet wird. 135
7.9. Überführen der möglichen Rotationen in einen Planungsgraphen 135
7.10. Optimierung der suboptimalen Pfade eines A*-Planers, die bedingt durch

die Diskretisierung entstehen. 137
7.11. Bestandteile der Kostenfunktion. 139
7.12. Unterschiedliche Möglichkeiten zur Wahl der Plattformorientierung . . . 139
7.13. Rotierte Swept-Volumen zur effizienten Evaluierung von Plattformposen

bei Manipulationsaufgaben . 140
7.14. Bewegungsprimitive des IMMP Roboters, die bei der Planung auf Kollisi-

onsfreiheit geprüft werden. 142
7.15. Bewegungspfade der Primitive für 45 bzw. 90 Grad Startorientierungen

und ihren möglichen Konkatenationen. 143

8.1. Experimente aus drei Problemklassen . 149
8.2. Empirische Ermittlung der optimal Anzahl an Blöcken und Threads für

den Octree-Aufbau anhand der benötigten Laufzeit in Millisekunden. . . 151
8.3. Ausschnitt einer sehr großen Punktwolke 153
8.4. Nahezu lineares Laufzeitverhalten für den Aufbau eines Octrees 154
8.5. Laufzeit der Kollisionsprüfung zwischen zwei Octrees 155
8.6. Laufzeit der Kollisionsprüfung zwischen unterschiedlichen Datentypen . 156
8.7. Laufzeit zum Aufbau eines Octrees aus Sensordaten 157
8.8. Laufzeitvergleich zwischen GPU-Octree und der CPU-Implementierung

OctoMap . 160
8.9. Szenario zum Vergleich der Mesh-basierten Kollisionsdetektion mit GPU-

Voxels . 163
8.10. Szenario zum samplingbasierten Planen in Voxel- und Mesh-Darstellung.

Das Robotermodell ist in rot dargestellt. 163
8.11. Vergleich der drei umgesetzten Visualisierungs-Verfahren 165
8.12. Anstieg der Bildrate bei Einschränkung des Sichtbereiches 166
8.13. Erreichte Bildraten bei der Visualisierung umfangreicher Daten 167
8.14. Kalibrierung und Swept-Volumen der auszuführenden Trajektorien. . . . 168
8.15. Überwachter, geteilter Arbeitsraum zur Autotürenmontage 170
8.16. Beispiel einer Trajektorienplanung durch einen engen Korridor. Die durch-

schnittliche Planungszeit liegt bei 2 Sekunden. 171
8.17. Planungsergebnisse in dynamischer Szene 171
8.18. Beispieltrajektorien für das Scheduling von Roboterbewegungen 174
8.19. Entwickelte Roboter als Demonstratorsysteme 175

247

Abbildungsverzeichnis

8.20. Tests im Rahmens des ISABEL-Projektes im Reinraum bei Infineon Re-
gensburg . 177

8.21. Ergebnisse des implementierten Plattformplaners auf drei Testszenarien . 178
8.22. Planung mit rotierenden Bewegungsprimitiven auf dem Roboter HoLLiE 182
8.23. Vergleich des Plattform Planers dieser Arbeit mit RRT-Connect aus der

OMPL Bibliothek. 183
8.24. Weiterverwendung von Teilplänen . 185
8.25. Dynamische Adaption einer Plattformtrajektorie des IMMP Roboters . . . 188
8.26. Reaktive Planung um eine Person mittels Bewegungsprimitiven auf dem

Roboter HoLLiE . 190
8.27. Qualitativer Vergleich des RGBD-Flow-Vektorfeldes 192
8.28. Momentaufnahmen aus vier Experimenten zur prädizierten Kollisionser-

kennung . 192
8.29. Evaluation des Objekttrackings mittels 3D-Szenenfluss 193
8.30. Beispielszenario: Geteilter Mensch-Roboter-Arbeitsplatz. 194
8.31. Kollisionsprädiktion in geteiltem Arbeitsraum 196
8.32. Kollisionsprädiktion für sich nähernde Person 197
8.33. PBA Berechnungszeiten mit unterschiedlichen Parallelisierungsparametern 199
8.34. Systembestandteile der Potentialfeld-Navigation einer Flugdrohne 199
8.35. Navigation einer Flugdrohne mittels Distanzfeldern 201
8.36. Interaktive inverse Kinematik für mobilen Manipulator IMMP 203
8.37. Unterschiedliche Tiefenkameras auf der anthropomorphen SCHUNK SVH

Hand . 205
8.38. Zusammengesetzte Punktwolke aus acht Einzelaufnahmen. 206
8.39. Ausgeführter Griff mit einer SCHUNK SVH. 206
8.40. Datenfluss bei der Greiplanung . 206
8.41. Volumetrisches Handmodell und vorausberechnete Swept-Volumen . . . 208
8.42. Unterschiedliche Koordinatensysteme während dem Greifprozess 210
8.43. Bewertungsfunktion aller Partikel aufgetragen über die Iterationen 214
8.44. Resultierende Griffe für zwei unterschiedliche Objekte nach einer Opti-

mierung von ∼ 2 Sekunden mit zehn Partikeln. 214

9.1. Szenario am SFI in Norwegen zur Untersuchung von GPU-Voxels in Kom-
bination mit unterschiedlicher 3D Sensorik für die Offshore-Anwendung. 220

A.1. Logo der GPU-Voxels Bibliothek, das die Würfelstruktur andeutet. 225
A.2. Beispiel zur Erzeugung des Morton-Codes 227
A.3. Verendung von Morton Codes in einem Binär-Baum 227
A.4. Beispiele zum Abstieg im Binärbaum . 227
A.5. Subvolumens des dritten Mortonvoxels (rot gefärbt) auf Ebene 1 und des-

sen minimale / maximale Koordinaten. 229
A.6. UML Diagramme des Octree und von dessen Knoten. 233
A.7. Elemente der Arbeitsstapel aller Lastbalancierten Algorithmen. 234
A.8. Berechnung der Präfixsumme über C . 236
A.9. Klassendiagramm der Visualisierung . 242

248

Tabellenverzeichnis

3.1. CPU und GPU Vergleich . 17
3.2. Übersicht der wichtigsten Eigenschaften der Speichertypen. 31

4.1. Hardwarespezifikation des ersten Kinect-Modells aus [37]. 38

5.1. Speicherbedarf der verschiedenen Knotentypen des Octrees 77
5.2. Vergleich unterschiedlicher Verfahren zur Berechnung von Distanzfeldern. 94
5.3. Vergleich der implementierten Datenstrukturen in GPU-Voxels. 102

8.1. Zeitaufwand für Kollisionschecks bei varierender Auflösung 152
8.2. Median-Laufzeiten über 100 Kollisionsprüfungen 157
8.3. Median-Laufzeiten über 100 Kollisionsprüfungen 158
8.4. Vergleich des Berechnungsdurchsatzes mit anderen Arbeiten 159
8.5. Vergleich der Berechnungsdauer von Mesh-basierter Kollisionsdetektion

mit GPU-Voxels . 163
8.6. Vergleich der Berechnungsdauer von Mesh-basierter Kollisionsdetektion

mit GPU-Voxels . 164
8.7. Berechnungsdauer der samplingbasierten Planung eines Roboterarmes . . 172
8.8. Berechnungsdauer der Kollisionstests bei samplingbasierter Planung . . . 173
8.9. Unterschiedliche Kombinationen aus Roboteranzahl bzw. Bewegungsanzahl174
8.10. Resultate der Planung mit Rotationsprimitiven: Szenario 1 179
8.11. Resultate der Planung mit Rotationsprimitiven: Szenario 2 179
8.12. Resultate der Planung mit Rotationsprimitiven: Szenario 3 180
8.13. Laufzeitgewinn durch hierarchische Kollisionsprüfung 181
8.14. Laufzeitgewinn durch Weiterverwendung von Graphenknoten bei der Pla-

nung mit geänderten Umweltinformationen. 184
8.15. Berechnungsdauer der Planung mittels Bewegungsprimitiven 189
8.16. Ausführungsüberwachung der geplanten Trajektorienabschnitte 189
8.17. Vergleich der RGBD-Flow Laufzeiten . 191
8.18. Fehler der Positionsschätzung bei der Kollisionsprädiktion 195
8.19. Fehler der Bewegungsschätzung bei der Kollisionsprädiktion 195
8.20. Laufzeiten der einzelnen Threads bei der Kollisionsprädiktion 195
8.21. Laufzeit der Bewegungsprädiktion . 195
8.22. EDT Laufzeiten . 198
8.23. Laufzeiten von zwei 3D-Pfadplanungsverfahren für eine Flugdrohne mit-

tels Distanzfeldern. 200
8.24. Laufzeiten mehrerer PSO-Iterationen während der Griffoptimierung . . . 213
8.25. Laufzeiten der beiden wichtigsten Funktionen der Greifplanung 213

249

Eigene Veröffentlichungen

Dieses Verzeichnis listet alle Publikationen, bei denen der Autor dieser Dissertation ent-
weder der Erstautor ist, oder als Co-Autor maßgeblich zu der Veröffentlichung beigetra-
gen hat (in Form von Problemstellung, -lösung, Diskussion oder experimenteller Evalua-
tion).

[1] Uwe Herbst, Steffen W. Rühl, Andreas Hermann, Zhixing Xue, and Klaus Bengler.
Ergonomic 6d interaction technologies for a flexible and transportable robot system:
A comparison. In 12th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design, and Eva-
luation of Human-Machine Systems, IFAC HMS 2013, pages 58–63, 2013.

[2] Andreas Hermann. Industrie 4.0 –Use Cases aus Forschung und Unternehmenspra-
xis: viEMA: Schwankenden Stückzahlen in Industrie 4.0 durch flexiblen Wechsel zwischen
Hand- und Automatenmontage begegnen, pages 133–246. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016.

[3] Andreas Hermann, Jörg Bauer, Sebastian Klemm, and Ruediger Dillmann. Mobi-
le manipulation planning optimized for GPGPU Voxel-Collision detection in high
resolution live 3d-maps. In Conference ISR ROBOTIK 2014, Munich, Germany, June
2014.

[4] Andreas Hermann, Florian Drews, Joerg Bauer, Sebastian Klemm, Arne Roennau,
and Ruediger Dillmann. Unified GPU voxel collision detection for mobile manipu-
lation planning. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Interna-
tional Conference on, pages 4154–4160, Sept 2014.

[5] Andreas Hermann, Sebastian Klemm, Zhixing Xue, Arne Roennau, and Ruediger
Dillmann. Ergonomic Rating of Interaction Technologies for A Mobile Robot Sys-
tem. In Human-Computer Interaction (HCI 2013), 15th International Conference on, jul.
2013.

[6] Andreas Hermann, Sebastian Klemm, Zhixing Xue, Arne Roennau, and Ruediger
Dillmann. GPU-based Real-Time Collision Detection for Motion Execution in Mobi-
le Manipulation Planning. In 16th International Conference on Advanced Robotics, ICAR
2013, 2013.

[7] Andreas Hermann, Felix Mauch, Klaus Fischnaller, Sebastian Klemm, Arne Roen-
nau, and Ruediger Dillmann. Anticipate your surroundings: Predictive collision
detection between dynamic obstacles and planned robot trajectories on the GPU. In
Mobile Robots (ECMR), 2015 European Conference on, pages 1–8, Sept 2015.

[8] Andreas Hermann, Felix Mauch, Sebastian Klemm, Arne Roennau, and Ruediger
Dillmann. Eye in hand: Towards GPU accelerated online grasp planning based on
pointclouds from in-hand sensor. In Humanoid Robots, International Conference on,
Nov 2016.

251

Eigene Veröffentlichungen

[9] Andreas Hermann, Jian Sun, Xue Zhixing, Steffen W. Ruehl, Jan Oberlaender, Ar-
ne Roennau, J. Marius Zoellner, and Ruediger Dillmann. Hardware and Software
Architecture of the Bimanual Mobile Manipulation Robot HoLLiE and its Actuated
Upper Body. In Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME Internatio-
nal Conference on, pages 286 –292, jul. 2013.

[10] Andreas Hermann, Zhixing Xue, Steffen W. Ruehl, and Ruediger Dillmann. Hard-
ware and software architecture of a bimanual mobile manipulator for industrial ap-
plication. In Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on,
pages 2282 –2288, dec. 2011.

[11] Sebastian Klemm, Jan Oberländer, Andreas Hermann, Arne Roennau, Thomas
Schamm, J. Marius Zollner, and Ruediger Dillmann. Rrt star-connect: Faster, asym-
ptotically optimal motion planning. In 2015 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pages 1670–1677, Dec 2015.

[12] Jan Oberländer, Tanja Harbaum, Gerhard Kurz, Nadia Ahmed, Tomislav Kos-
Grabar, Andreas Hermann, Arne Rönnau, and Rüdiger Dillmann. A student-built
ball-throwing robotic companion for hands-on robotics education. In Proceedings of
the 14th International Conference on Climbing and Walking Robots and the Support Techno-
logies for Mobile Machines (CLAWAR), pages 233–240, Paris, France, September 2011.

[13] Lars Pfotzer, Martin Staehler, Andreas Hermann, Arne Roennau, and Ruediger Dill-
mann. Kairo 3: Moving over stairs amp; unknown obstacles with reconfigurable
snake-like robots. In Mobile Robots (ECMR), 2015 European Conference on, pages 1–6,
Sept 2015.

[14] Steffen W. Ruehl, Andreas Hermann, Zhixing Xue, Thilo Kerscher, and Ruediger
Dillmann. Generating a symbolic scene description for robot manipulation using
physics simulation. In Multibody Dynamics, Brussels, Belgium, July 2011.

[15] Steffen W. Ruehl, Andreas Hermann, Zhixing Xue, Thilo Kerscher, and Ruediger
Dillmann. Graspability: A description of work surfaces for planning of robot mani-
pulation sequences. In ICRA, Shanghai, China, May 2011.

[16] Steffen W. Ruehl, Christopher Parlitz, Georg Heppner, Andreas Hermann, Arne Ro-
ennau, and Ruediger Dillmann. Experimental evaluation of the schunk 5-Finger
gripping hand for grasping tasks. In Robotics and Biomimetics (ROBIO), 2014 IEEE
International Conference on, pages 2465–2470, Dec 2014.

[17] Zhixing Xue, Steffen W. Ruehl, Andreas Hermann, Thilo Kerscher, and Ruediger
Dillmann. Autonomous grasp and manipulation planning using a tof camera. In
IROS, Shanghai, China, October 2010.

[18] Zhixing Xue, Steffen W. Ruehl, Andreas Hermann, Thilo Kerscher, and Ruediger
Dillmann. An autonomous ice-cream serving robot. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 3451–3452, May 2011.

[19] Zhixing Xue, Steffen W. Ruehl, Andreas Hermann, Thilo Kerscher, and Ruediger
Dillmann. Autonomous grasp and manipulation planning using a tof camera. Ro-
botics and Autonomous Systems, 60(3):387 – 395, 2012. Autonomous Grasping.

252

Studentische Arbeiten

Dieses Verzeichnis listet studentische Arbeiten, die durch den Autor dieser Dissertation
im Rahmen seiner Forschung ausgeschrieben und betreut wurden. Dies beinhaltet die
maßgebliche Vorgabe der Problemstellung, Diskussion der Arbeit, sowie Randvorgaben
zur Lösung, Visualisierung und experimentellen Evaluation.

[20] Jörg Bauer and Andreas Hermann. Dynamic Mobile Manipulation Planning based
on GPU Voxel-Swept-Volume Collision Detection. Diplomarbeit, KIT Karlsruher
Institut für Technologie, Karlsruhe, Germany, 2013.

[21] Tobias Cichos and Andreas Hermann. Greifpunktsynthese für Stoffstücke anhand
von 3D-Punktwolken. Studienarbeit, KIT Karlsruher Institut für Technologie, Karls-
ruhe, Germany, 2013.

[22] Florian Drews and Andreas Hermann. GPU-optimierter Octree mit Algorithmen
zur effizienten geometrischen Modellierung in der Robotik. Masterarbeit, KIT Karls-
ruher Institut für Technologie, Karlsruhe, Germany, 2014.

[23] Klaus Fischnaller and Andreas Hermann. GPU-basierte Evaluierung von Swept-
Volumes zur Trajektorienplanung mit Bewegungsprimitiven. Masterarbeit, KIT
Karlsruher Institut für Technologie, Karlsruhe, Germany, 2015.

[24] Christian Jülg and Andreas Hermann. Fast online collision avoidance for mobile
service robots through potential fields on 3D environment data processed on GPUs.
Diplomarbeit, KIT Karlsruher Institut für Technologie, Karlsruhe, Germany, 2016.

[25] Sebastian Klemm and Andreas Hermann. Autonome Kamera- und Hand-Auge-
Kalibrierung eines zweiarmigen Robotersystems. Studienarbeit, KIT Karlsruher In-
stitut für Technologie, Karlsruhe, Germany, 2010.

[26] Sebastian Klemm and Andreas Hermann. GPU-basierte 3D-Kollisionserkennung
zur Online-Evaluierung von Bewegungstrajektorien. Diplomarbeit, KIT Karlsruher
Institut für Technologie, Karlsruhe, Germany, 2013.

[27] Felix Mauch and Andreas Hermann. GPU-basierte Bewegungsprädiktion von Ob-
jekten in 3D-Punktwolken zur Kollisionsvermeidung. Masterarbeit, KIT Karlsruher
Institut für Technologie, Karlsruhe, Germany, 2015.

[28] Herbert Pietrzyk and Andreas Hermann. Onlinefähige GPU-basierte Segmentie-
rung und Klassifikation von Objekten in Punktwolkendaten aus urbanen Umgebun-
gen. Bachelorarbeit, KIT Karlsruher Institut für Technologie, Karlsruhe, Germany,
2016.

[29] Tim Pollert and Andreas Hermann. Fehlerreduktion in KinFu Large Scale Raummo-
dellen mit Hilfe von SLAM-Algorithmen. Bachelorarbeit, KIT Karlsruher Institut für
Technologie, Karlsruhe, Germany, 2014.

253

Studentische Arbeiten

[30] David Ruscheweyh and Andreas Hermann. Evaluierung von Algorithmen zur reak-
tiven Berechnung der inversen Kinematik für überaktuierte Roboter. Masterarbeit,
KIT Karlsruher Institut für Technologie, Karlsruhe, Germany, 2013.

[31] Jian Sun and Andreas Hermann. Konstruktion und Aufbau eines Servicerobo-
ters mit passivem Gewichtsausgleich durch eine federgespannte Parallelogramm-
Struktur. Diplomarbeit, KIT Karlsruher Institut für Technologie, Karlsruhe, Germa-
ny, 2013.

[32] Matthias Wagner and Andreas Hermann. Echtzeit OpenGL-Visualisierung von um-
fangreichen CUDA-Datenstrukturen mittels Shared Memory. Bachelorarbeit, KIT
Karlsruher Institut für Technologie, Karlsruhe, Germany, 2014.

254

Literaturverzeichnis

[33] Steven Abrams and Peter K Allen. Computing swept volumes. The Journal of Vi-
sualization and Computer Animation, 11(2):69–82, 2000.

[34] M Acuña and Takayuki Aoki. Real-time tsunami simulation on multi-node gpu
cluster. In ACM/IEEE conference on supercomputing, 2009.

[35] James S Albus, H McCain, and Ronald Lumia. Nasa/nbs standard reference model
for telerobot control system architecture (nasrem). Technical Note (NIST TN)-1235,
1989.

[36] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 483–485. ACM, 1967.

[37] Michael Riis Andersen, Thomas Jensen, Pavel Lisouski, Anders Krogh Mortensen,
Mikkel Kragh Hansen, Torben Gregersen, and Peter Ahrendt. Kinect depth sensor
evaluation for computer vision applications. Technical report, Århus Universitet,
2012.

[38] Oliver Armbruster. Kollisionsbestimmung mittels Swept-Volumes zur effizienten
Bewegungsplanung, March 2013.

[39] Asma Azim and Olivier Aycard. Detection, classification and tracking of moving
objects in a 3D environment. In Intelligent Vehicles Symposium, pages 802–807. IEEE,
2012.

[40] Jeroen Baert, Ares Lagae, and Ph Dutré. Out-of-core construction of sparse vo-
xel octrees. In Computer Graphics Forum, volume 33, pages 220–227. Wiley Online
Library, 2014.

[41] Jérôme Barraquand, Lydia Kavraki, Jean-Claude Latombe, Tsai-Yen Li, Rajeev Mot-
wani, and Prabhakar Raghavan. A Random Sampling Scheme for Path Planning, pages
249–264. Springer London, London, 1996.

[42] Jennifer Barry, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. A hierarchical ap-
proach to manipulation with diverse actions. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, pages 1799–1806. IEEE, 2013.

[43] J. Baumgartl, T. Werner, P. Kaminsky, and D. Henrich. A fast, GPU-based geometri-
cal placement planner for unknown sensor-modelled objects and placement areas.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 1552–
1559, May 2014.

255

Literaturverzeichnis

[44] Patrick Beeson and Barrett Ames. TRAC-IK: An open-source library for improved
solving of generic inverse kinematics. In Proceedings of the IEEE RAS Humanoids
Conference, Seoul, Korea, November 2015.

[45] D Berenson, S S Srinivasa, and J J Kuffner. Addressing pose uncertainty in mani-
pulation planning using Task Space Regions. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pages 1419–1425, 2009.

[46] J. Bialkowski, S. Karaman, and E. Frazzoli. Massively parallelizing the RRT and
the RRT*. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3513–3518, Sept 2011.

[47] J. Będkowski, K. Majek, and A. Nüchter. General Purpose Computing on Graphics
Processing Units for Robotic Applications. volume 4, pages 23–33, 2013.

[48] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal, N. Bergström, D. Kragic,
and A. Morales. Mind the gap - robotic grasping under incomplete observation.
In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 686–
693, 5 2011.

[49] Dorit Borrmann, Jan Elseberg, Kai Lingemann, Andreas Nüchter, and Joachim
Hertzberg. Globally consistent 3d mapping with scan matching. Robotics and Auto-
nomous Systems, 56(2):130–142, 2008.

[50] Michael Boyer, David Tarjan, Scott T Acton, and Kevin Skadron. Accelerating leu-
kocyte tracking using CUDA: A case study in leveraging manycore coprocessors.
In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, pages 1–12. IEEE, 2009.

[51] Jack E Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
journal, 4(1):25–30, 1965.

[52] Oliver Brock, Oussama Khatib, and S. Viji. Task-consistent obstacle avoidance and
motion behavior for mobile manipulation. Proceedings 2002 IEEE International Con-
ference on Robotics and Automation (Cat. No.02CH37292), (May):388–393, 2002.

[53] John Canny. The complexity of robot motion planning. MIT press, 1988.

[54] Thanh-Tung Cao, Ke Tang, Anis Mohamed, and Tiow-Seng Tan. Parallel Banding
Algorithm to Compute Exact Distance Transform with the GPU. In Proceedings of
the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10,
pages 83–90, New York, NY, USA, 2010. ACM.

[55] Daniel Cederman and Philippas Tsigas. Dynamic Load Balancing Using Work-
Stealing. GPU Computing Gems Jade Edition, pages 485–499, 2011.

[56] Vipin Chaudhary, K. Kamath, P. Arunachalam, and J. K. Aggarwal. Parallel ma-
nipulations of octrees and quadtrees. In Akira Nakamura, Maurice Nivat, Ahmed
Saoudi, Patrick S. P. Wang, and Katsushi Inoue, editors, Parallel Image Analysis, pa-
ges 69–86, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[57] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao. Dynamic load
balancing on single-and multi-GPU systems. In Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1–12. IEEE, 2010.

256

Literaturverzeichnis

[58] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA C Programming.
John Wiley & Sons, 2014.

[59] Jaebum Choi, Simon Ulbrich, Bernd Lichte, and Markus Maurer. Multi-Target
Tracking using a 3D-Lidar sensor for autonomous vehicles. In Intelligent Trans-
portation Systems - (ITSC), 2013 16th International IEEE Conference on, 2013.

[60] Benjamin Choo, Michael Landau, Michael DeVore, and Peter A Beling. Statisti-
cal analysis-based error models for the microsoft kinecttm depth sensor. Sensors,
14(9):17430–17450, 2014.

[61] P. Cignoni. DeWall: A fast divide and conquer Delaunay triangulation algorithm
in Ed. Computer-Aided Design, 30(5):333–341, April 1998.

[62] James H Clark. Hierarchical geometric models for visible surface algorithms. Com-
munications of the ACM, 19(10):547–554, 1976.

[63] T. T. Cociaş, S. M. Grigorescu, and F. Moldoveanu. Multiple-superquadrics based
object surface estimation for grasping in service robotics. In Optimization of Elec-
trical and Electronic Equipment (OPTIM), 2012 13th International Conference on, pages
1471–1477, 5 2012.

[64] Benjamin J Cohen, Gokul Subramania, Sachin Chitta, and Maxim Likhachev. Plan-
ning for manipulation with adaptive motion primitives. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 5478–5485. IEEE, 2011.

[65] NVIDIA Corporation. CUDA Toolkit Documentation, 2015.

[66] Nicolas Cuntz and Andreas Kolb. Fast Hierarchical 3D Distance Transforms on the
GPU. In Eurographics 2007 (short paper), pages 93–96, September 2007.

[67] Marija Dakulovic, Christoph Sprunk, Luciano Spinello, Ivan Petrovic, and Wolfram
Burgard. Efficient navigation for anyshape holonomic mobile robots in dynamic
environments. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pages 2644–2649. IEEE, 2013.

[68] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms
based on matrices. Trans. ASME, Journal of Applied Mechanism, 22(2):215 – 221, 1955.

[69] D. Devaurs, T. Simeon, and J. Cortes. Parallelizing rrt on distributed-memory ar-
chitectures. In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 2261 –2266, may 2011.

[70] Balázs Dezső, Alpár Jüttner, and Péter Kovács. Lemon–an open source c++ graph
template library. Electronic Notes in Theoretical Computer Science, 264(5):23–45, 2011.

[71] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[72] N. Duffy, D. Allan, and J. T. Herd. Real-time collision avoidance system for multiple
robots operating in shared work-space. IEE Proceedings E - Computers and Digital
Techniques, 136(6):478–484, Nov 1989.

257

Literaturverzeichnis

[73] Erick Dupuis, Ioannis Rekleitis, Jean-Luc Bedwani, Tom Lamarche, Pierre Allard,
and Wen-Hong Zhu. Over-the-horizon autonomous rover navigation: experimen-
tal results. In International Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space (i-SAIRAS), Los Angeles, CA, 2008.

[74] S. El-Khoury, A. Sahbani, and V. Perdereau. Learning the natural grasping compo-
nent of an unknown object. In 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2957–2962, Oct 2007.

[75] Jan Elseberg, Stéphane Magnenat, Roland Siegwart, and Andreas Nüchter. Compa-
rison of nearest-neighbor-search strategies and implementations for efficient shape
registration. Journal of Software Engineering for Robotics, 3(1):2–12, 2012.

[76] Christer Ericson. Real-Time Collision Detection. CRC Press, Inc., Boca Raton, FL,
USA, 2004.

[77] Ricardo Fabbri, Luciano Da F. Costa, Julio C. Torelli, and Odemir M. Bruno. 2d
euclidean distance transform algorithms: A comparative survey. ACM Computing
Surveys (CSUR), 40(1):2:1–2:44, February 2008.

[78] Farbod Fahimi. Autonomous robots: modeling, path planning, and control, volume 107.
Springer Science & Business Media, 2008.

[79] B. Faverjon. Obstacle avoidance using an octree in the configuration space of a
manipulator. In Proceedings. 1984 IEEE International Conference on Robotics and Au-
tomation, volume 1, pages 504–512, Mar 1984.

[80] Fabrizio Flacco, Torsten Kröger, Alessandro De Luca, and Oussama Khatib. A
depth space approach to human-robot collision avoidance. In Robotics and Auto-
mation (ICRA), 2012 IEEE International Conference on, pages 338–345. IEEE, 2012.

[81] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions
on Computers, C-21(9):948–960, Sept 1972.

[82] Uwe Franke, Clemens Rabe, Hernán Badino, and Stefan K. Gehrig. 6D-Vision: Fu-
sion of Stereo and Motion for Robust Environment Perception. In Walter G. Kro-
patsch, Robert Sablatnig, and Allan Hanbury, editors, DAGM-Symposium, volume
3663 of Lecture Notes in Computer Science, pages 216–223. Springer, September 2005.

[83] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile au-
tonomous vehicles. In Proceedings of the 2001 American Control Conference. (Cat.
No.01CH37148), volume 1, pages 43–49 vol.1, 2001.

[84] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface generation
by a priori tree structures. SIGGRAPH Comput. Graph., 14(3):124–133, July 1980.

[85] Andre K. Gaschler. Efficient Geometric Predicates for Integrated Task and Motion Plan-
ning. Dissertation, Technische Universität München, Munich, Germany, 2016.

[86] J. J. Gibson. The Perception of the Visual World. Houghton Mifflin, Boston, 1950.

[87] Sarah F Frisken Gibson. Beyond volume rendering: visualization, haptic explo-
ration, and physical modeling of voxel-based objects. In Visualization in Scientific
Computing’95, pages 10–24. Springer, 1995.

258

Literaturverzeichnis

[88] PROVISIO GmbH. egomo - the smart wireless visual sensor for robots, 2016.

[89] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Planning with adaptive di-
mensionality for mobile manipulation. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 2944–2951. IEEE, 2012.

[90] M. Greenspan and N. Burtnyk. Obstacle count independent real-time collision
avoidance. In Proceedings of IEEE International Conference on Robotics and Automa-
tion, volume 2, pages 1073–1080 vol.2, Apr 1996.

[91] C. Gregg and K. Hazelwood. Where is the data? Why you cannot debate CPU vs.
GPU performance without the answer. In (IEEE ISPASS) IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pages 134–144, April 2011.

[92] M. Gridseth, K. Hertkorn, and M. Jagersand. On visual servoing to improve perfor-
mance of robotic grasping. In Computer and Robot Vision (CRV), 2015 12th Conference
on, pages 245–252, June 2015.

[93] S. Hadfield and R. Bowden. Scene Particles: Unregularized Particle-Based Scene
Flow Estimation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
36(3):564–576, March 2014.

[94] Tianyi David Han and Tarek S Abdelrahman. Reducing branch divergence in GPU
programs. In Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, page 3. ACM, 2011.

[95] Adam Harmat, Gil E. Jones, Kai M. Wurm, and Armin Hornung. ROS Collider
Package.

[96] Mark Harris. Optimizing parallel reduction in cuda. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC ’07. ACM/IEEE, 2007.

[97] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[98] Taosong He and Arie Kaufman. Collision detection for volumetric objects. In Pro-
ceedings of the 8th conference on Visualization’97, pages 27–ff. IEEE Computer Society
Press, 1997.

[99] Evan Herbst, Xiaofeng Ren, and Dieter Fox. RGB-D flow: Dense 3-D motion esti-
mation using color and depth. In Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on, pages 2276–2282. IEEE, 2013.

[100] M. Herman. Fast, three-dimensional, collision-free motion planning. In Proceedings.
1986 IEEE International Conference on Robotics and Automation, volume 3, pages 1056–
1063, Apr 1986.

[101] M. Hornacek, A. Fitzgibbon, and C. Rother. SphereFlow: 6 DoF Scene Flow from
RGB-D Pairs. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Confe-
rence on, pages 3526–3533, June 2014.

259

Literaturverzeichnis

[102] A. Hornung, M. Phillips, E. Gil Jones, M. Bennewitz, M. Likhachev, and S. Chit-
ta. Navigation in three-dimensional cluttered environments for mobile manipulati-
on. In 2012 IEEE International Conference on Robotics and Automation, pages 423–429,
May 2012.

[103] Armin Hornung. 3D Collision Avoidance for Navigation in Unstructured Environ-
ments, August 2011.

[104] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots, 34(3):189–206, April 2013.

[105] Chris L. Jackins and Steven L. Tanimoto. Oct-trees and their use in representing
three-dimensional objects. Computer Graphics and Image Processing, 14(3):249–270,
1980.

[106] Mark W. Jones, J. Andreas Baerentzen, and Milos Sramek. 3D Distance Fields: A
Survey of Techniques and Applications. IEEE Transactions on Visualization and Com-
puter Graphics, 12(4):581–599, July 2006.

[107] D. Jung and K. K. Gupta. Octree-based hierarchical distance maps for collision
detection. In Proceedings of IEEE International Conference on Robotics and Automation,
volume 1, pages 454–459 vol.1, Apr 1996.

[108] Derek Jung and Kamal K Gupta. Octree-based hierarchical distance maps for colli-
sion detection. Journal of Field Robotics, 14(11):789–806, Nov 1997.

[109] Knut B Kaldestad, Sami Haddadin, Rico Belder, Geir Hovland, David Anisi, et al.
Collision avoidance with potential fields based on parallel processing of 3D-point
cloud data on the GPU. In Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 3250–3257. IEEE, 2014.

[110] Tero Karras. Maximizing parallelism in the construction of BVHs, octrees, and k-d
trees. In Proceedings of the Fourth ACM SIGGRAPH/Eurographics conference on High-
Performance Graphics, pages 33–37. Eurographics Association, 2012.

[111] Arie Kaufman. Efficient algorithms for 3d scan-conversion of parametric curves,
surfaces, and volumes. ACM SIGGRAPH Computer Graphics, 21(4):171–179, 1987.

[112] Arie Kaufman and Reuven Bakalash. Memory and processing architecture for 3d
voxel-based imagery. IEEE Computer Graphics and Applications, 8(6):10–23, 1988.

[113] Lydia Kavraki, Petr Svestka, Jean claude Latombe, and Mark Overmars. Probabili-
stic roadmaps for path planning in high-dimensional configuration spaces. In IEEE
International Conference on Robotics and Automation, pages 566–580, 1996.

[114] W. Ke-ke, Z. Han-qing, L. Qiang, and Z. Wei. A motion planning algorithm for
autonomous land vehicle based on virtual tentacles. In 2011 Chinese Control and
Decision Conference (CCDC), pages 2431–2435, May 2011.

[115] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.
Proceedings., IEEE International Conference on, volume 4, pages 1942–1948 vol.4, Nov
1995.

260

Literaturverzeichnis

[116] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The
International Journal of Robotics Research, 5(1):90–98, 1986.

[117] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and Resolution of Ki-
nect Depth Data for Indoor Mapping Applications. Sensors, 12(2):1437–1454, 2012.

[118] J. T. Kider, M. Henderson, M. Likhachev, and A. Safonova. High-dimensional plan-
ning on the gpu. In 2010 IEEE International Conference on Robotics and Automation,
pages 2515–2522, May 2010.

[119] Young J. Kim, Gokul Varadhan, Ming C. Lin, and Dinesh Manocha. Fast swept
volume approximation of complex polyhedral models. Computer-Aided Design,
36(11):1013 – 1027, 2004.

[120] Y. Kitamura, T. Tanaka, F. Kishino, and M. Yachida. 3-d path planning in a dynamic
environment using an octree and an artificial potential field. In Intelligent Robots
and Systems 95. ’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995
IEEE/RSJ International Conference on, volume 2, pages 474 –481 vol.2, August 1995.

[121] S. Koenig and M. Likhachev. Fast replanning for navigation in unknown terrain.
IEEE Transactions on Robotics, 21(3):354–363, June 2005.

[122] Petr Kotas, Roberto Croce, Valentina Poletti, Vit Vondrak, and Rolf Krause. A Massi-
ve Parallel Fast Marching Method, pages 311–318. Springer International Publishing,
Cham, 2016.

[123] Wojciech Kowalczyk, Mateusz Przybyla, and Krzysztof Kozlowski. Set-point con-
trol of mobile robot with obstacle detection and avoidance using navigation func-
tion - experimental verification. Journal of Intelligent & Robotic Systems, pages 1–14,
2016.

[124] T. De Laet, S. Bellens, H. Bruyninckx, and J. De Schutter. Geometric relations bet-
ween rigid bodies (part 2): From semantics to software. IEEE Robotics Automation
Magazine, 20(2):91–102, June 2013.

[125] T. De Laet, S. Bellens, R. Smits, E. Aertbelien, H. Bruyninckx, and J. De Schutter.
Geometric relations between rigid bodies (part 1): Semantics for standardization.
IEEE Robotics Automation Magazine, 20(1):84–93, March 2013.

[126] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Nor-
well, MA, USA, 1991.

[127] B. Lau, C. Sprunk, and W. Burgard. Improved updating of euclidean distance maps
and voronoi diagrams. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 281–286, October 2010.

[128] Boris Lau. Techniques for Robot Navigation in Dynamic Real-world Environments. PhD
thesis, Albert-Ludwigs-Universität, Freiburg im Breisgau, Deutschland, December
2013.

[129] Boris Lau, Christoph Sprunk, and Wolfram Burgard. Incremental updates of con-
figuration space representations for non-circular mobile robots with 2d 2.5 d or 3d
obstacle models. In European Conference on Mobile Robotics (ECMR), pages 49–54,
2011.

261

Literaturverzeichnis

[130] Christian Lauterbach, Qi Mo, and Dinesh Manocha. gProximity: Hierarchical GPU-
based operations for collision and distance queries. In Computer Graphics Forum,
volume 29. Wiley Online Library, 2010.

[131] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998.

[132] Leng-Feng Lee. Decentralized Motion Planning Within An Artificial Potential Fra-
mework (APF) For Cooperative Payload Transport By Multi-Robot Collectives.
Master’s thesis, State University of New York at Buffalo, Department of Mecha-
nical and Aerospace Engineering, Buffalo, New York, 2004.

[133] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, et al. Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In ACM SIGARCH Computer Architecture
News, pages 451–460. ACM, 2010.

[134] F. Leymarie and M. D. Levine. Fast raster scan distance propagation on the discrete
rectangular lattice. CVGIP: Image Understanding, 55(1):84–94, January 1992.

[135] Yi Li, Cornelia Fermüller, J. Aloimonos, and Hui Ji. Learning shift-invariant sparse
representation of actions. In 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2630 – 2637. IEEE, IEEE, 2010/06/13/18 2010.

[136] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible ma-
neuvers for autonomous vehicles. The International Journal of Robotics Research,
28(8):933–945, 2009.

[137] Chien-Chou Lin and Jen-Hui Chuang. Potential-based path planning for robot
manipulators in 3-d workspace. In 2003 IEEE International Conference on Robotics
and Automation (Cat. No.03CH37422), volume 3, pages 3353–3358 vol.3, Sept 2003.

[138] F. Lingelbach. Path planning using probabilistic cell decomposition. In Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
volume 1, pages 467–472 Vol.1, April 2004.

[139] V. Lippiello, F. Ruggiero, B. Siciliano, and L. Villani. Visual grasp planning for
unknown objects using a multifingered robotic hand. IEEE/ASME Transactions on
Mechatronics, 18(3):1050–1059, June 2013.

[140] A. Mahendran and A. Vedaldi. Understanding deep image representations by in-
verting them. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5188–5196, June 2015.

[141] C. R. Maurer, Rensheng Qi, and V. Raghavan. A linear time algorithm for com-
puting exact euclidean distance transforms of binary images in arbitrary dimen-
sions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):265–270,
Feb 2003.

[142] W.A. McNeely, K.D. Puterbaugh, and J.J. Troy. Six Degree-of-Freedom Haptic Ren-
dering Using Voxel Sampling. In Proceedings of ACM SIGGRAPH 99, pages 401–408,
1999.

262

Literaturverzeichnis

[143] Donald JR Meagher. Octree encoding: A new technique for the representation, mani-
pulation and display of arbitrary 3-d objects by computer. Electrical and Systems Engi-
neering Department Rensseiaer Polytechnic Institute Image Processing Laboratory,
1980.

[144] Duane Merrill and Andrew Grimshaw. High performance and scalable radix sor-
ting: A case study of implementing dynamic parallelism for GPU computing. Par-
allel Processing Letters, 21(02):245–272, 2011.

[145] John Michalakes and Manish Vachharajani. Gpu acceleration of numerical weather
prediction. Parallel Processing Letters, 18(04):531–548, 2008.

[146] Hans Moravec and A. E. Elfes. High resolution maps from wide angle sonar. In Pro-
ceedings of the 1985 IEEE International Conference on Robotics and Automation, pages
116 – 121, March 1985.

[147] M. Mori. The uncanny valley. Energy, 7(4):33–35, 1970.

[148] Guy M Morton. A computer oriented geodetic data base and a new technique in
file sequencing. Technical report, IBM Company New York, 1966.

[149] Alex Nash. Any-Angle Path Planning. PhD thesis, UNIVERSITY OF SOUTHERN
CALIFORNIA, 2012.

[150] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and An-
drew Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking.
In Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on,
pages 127–136. IEEE, 2011.

[151] Chuong V Nguyen, Shahram Izadi, and David Lovell. Modeling kinect sensor noi-
se for improved 3d reconstruction and tracking. In 3D Imaging, Modeling, Proces-
sing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference
on, pages 524–530. IEEE, 2012.

[152] Fakir S Nooruddin and Greg Turk. Simplification and repair of polygonal models
using volumetric techniques. Visualization and Computer Graphics, IEEE Transactions
on, 9(2):191–205, 2003.

[153] Illah Reza Nourbakhsh. Interleaving planning and execution for autonomous robots,
volume 385. Springer Science & Business Media, 2012.

[154] NVIDIA Corporation. CUDA C Programming Guide v8.0, June 2017.

[155] Jon Olick. Current generation parallelism in games. In SIGGRAPH, volume 8,
pages 1–120, 2008.

[156] Jia Pan, S. Chitta, and D. Manocha. FCL: A general purpose library for collision
and proximity queries. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 3859–3866, 2012.

[157] Jia Pan, Sachin Chitta, and Dinesh Manocha. Probabilistic collision detection bet-
ween noisy point clouds using robust classification. In International Symposium on
Robotics Research, Flagstaff, Arizona, August 2011.

263

Literaturverzeichnis

[158] Jia Pan, Christian Lauterbach, and Dinesh Manocha. g-planner: Real-time moti-
on planning and global navigation using GPUs. In AAAI Conference on Artificial
Intelligence (AAAI), 2010.

[159] Jia Pan and Dinesh Manocha. Efficient configuration space construction and opti-
mization for motion planning. Engineering, 1(1):046–057, 2015.

[160] A. A. Paranjape, K. C. Meier, X. Shi, S. J. Chung, and S. Hutchinson. Motion pri-
mitives and 3-d path planning for fast flight through a forest. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2940–2947, Nov 2013.

[161] Chonhyon Park, Jia Pan, and Dinesh Manocha. Real-time optimization-based plan-
ning in dynamic environments using GPUs. In Daniel Borrajo, Ariel Felner, Ri-
chard E. Korf, Maxim Likhachev, Carlos Linares López, Wheeler Ruml, and Na-
than R. Sturtevant, editors, SOCS. AAAI Press, 2012.

[162] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation (Gpu Gems). Addison-Wesley
Professional, 2005.

[163] Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. Auto splats: Dynamic
point cloud visualization on the gpu. In H. Childs and T. Kuhlen, editors, Procee-
dings of Eurographics Symposium on Parallel Graphics and Visualization, pages 139–148.
Eurographics Association 2012, May 2012.

[164] M. Przybylski, T. Asfour, and R. Dillmann. Unions of balls for shape approximation
in robot grasping. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 1592–1599, Oct 2010.

[165] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control.
In [1993] Proceedings IEEE International Conference on Robotics and Automation, pages
802–807 vol.2, May 1993.

[166] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James Crowley. Dense Semi-
rigid Scene Flow Estimation from RGBD Images. In David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, volu-
me 8695 of Lecture Notes in Computer Science, pages 567–582. Springer International
Publishing, 2014.

[167] J. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In 26th
Annual Symposium on Foundations of Computer Science (sfcs 1985), pages 144–154, Oct
1985.

[168] John H Reif. Complexity of the mover’s problem and generalizations. In Foun-
dations of Computer Science, 1979., 20th Annual Symposium on, pages 421–427. IEEE,
1979.

[169] Alexander Reinefeld and Volker Schnecke. Work-load balancing in highly parallel
depth-first search. In Scalable High-Performance Computing Conference, 1994., Procee-
dings of the, pages 773–780. IEEE, 1994.

264

Literaturverzeichnis

[170] Ulrich Rembold and Rüdiger Dillmann. The Control System of the Autonomous
Mobile Robot KAMRO of the University of Karlsruhe. In Intelligent Autonomous
Systems 2, An International Conference, pages 565–575, Amsterdam, The Nether-
lands, The Netherlands, 1989. IOS Press.

[171] Matthias Renz, Carsten Preusche, Marco Pötke, Hans-Peter Kriegel, and Gerd Hir-
zinger. Stable haptic interaction with virtual environments using an adapted
voxmap-pointshell algorithm. In In Proc. Eurohaptics. Citeseer, 2001.

[172] A Roennau, G Liebel, T Schamm, T Kerscher, R Dillmann, and Interactive Diagno-
sis. Robust 3D Scan Segmentation for Teleoperation Tasks in Areas Contaminated
by Radiation. pages 2419–2424, 2010.

[173] Guodong Rong and Tiow-Seng Tan. Jump Flooding in GPU with Applications to
Voronoi Diagram and Distance Transform. In Proceedings of the 2006 Symposium
on Interactive 3D Graphics and Games, I3D ’06, pages 109–116, New York, NY, USA,
2006. ACM.

[174] Guodong Rong and Tiow-Seng Tan. Variants of jump flooding algorithm for com-
puting discrete Voronoi diagrams. In Voronoi Diagrams in Science and Engineering,
2007. ISVD’07. 4th International Symposium on, pages 176–181. IEEE, 2007.

[175] Waldir L. Roque and Dionísio Doering. Trajectory planning for lab robots based on
global vision and voronoi roadmaps. Robotica, 23(4):467–477, 2005.

[176] S. W. Rühl, Z. Xue, J. M. Zöllner, and R. Dillmann. Integration of a loop based
and an event based framework for control of a bimanual dextrous service robot. In
2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 110–
116, Dec 2009.

[177] M. Sagardia, T. Hulin, Preusche C., and G. Hirzinger. Improvements of the
voxmap-pointshell algorithm – fast generation of haptic data structures. In 53rd
Internationales Wissenschaftliches Kolloquium, Ilmenau, Germany, 2007.

[178] M. Saha, G. Sanchez, and J.C. Latombe. Planning multi-goal tours for robot arms.
In International Conference on Robotics and Automation, Taipei, Taiwan, 2003.

[179] Richard Satherley and Mark W. Jones. Vector-City Vector Distance Transform. Com-
puter Vision and Image Understanding, 82(3):238 – 254, 2001.

[180] Johannes Schauer, Janusz Bedkowski, Karol Majek, and Andreas Nüchter. Perfor-
mance comparison between state-of-the-art point-cloud based collision detection
approaches on the CPU and GPU. IFAC-PapersOnLine, 49(30):54–59, 2016.

[181] Johannes Schauer and Andreas Nüchter. Collision detection between point clouds
using an efficient k-d tree implementation. Advanced Engineering Informatics,
29(3):440–458, 2015.

[182] Jens Schneider, Martin Kraus, and Rüdiger Westermann. GPU-based real-time dis-
crete euclidean distance transforms with precise error bounds. In International Con-
ference on Computer Vision Theory and Applications (VISAPP), pages 435–442, 2009.

265

Literaturverzeichnis

[183] Jonathan Scholz, Sachin Chitta, Bhaskara Marthi, and Maxim Likhachev. Cart pu-
shing with a mobile manipulation system: Towards navigation with moveable ob-
jects. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages
6115–6120. IEEE, 2011.

[184] Henrik Schumann-Olsen, Marianne Bakken, O(y)stein Hov Holhjem, and Petter
Risholm. Parallel dynamic roadmaps for real-time motion planning in complex
dynamic scenes. In 3rd Workshop on Robots in Clutter, IEEE, 2014.

[185] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid voxelizati-
on on GPUs. ACM Transactions on Graphics, 29(6 (Proceedings of SIGGRAPH Asia
2010)):179:1–179:9, December 2010.

[186] J. A. Sethian. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences of the United States of America,
93(4):1591–1595, 1996.

[187] Peter Shirley and Steve Marschner. Fundamentals of Computer Graphics. A. K. Peters,
Ltd., Natick, MA, USA, 3rd edition, 2009.

[188] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. Nature, 529(7587):484–489, 2016.

[189] Jan Smisek, Michal Jancosek, and Tomas Pajdla. 3D with Kinect. In Consumer Depth
Cameras for Computer Vision, pages 3–25. Springer, 2013.

[190] Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dok-
ter, and Dieter Schmalstieg. Whippletree: Task-based scheduling of dynamic
workloads on the GPU. ACM Trans. Graph., 33(6):228:1–228:11, November 2014.

[191] A. Stentz. Optimal and efficient path planning for partially-known environments.
In Proceedings of the 1994 IEEE International Conference on Robotics and Automation,
pages 3310–3317 vol.4, May 1994.

[192] Jörg Stückler and Sven Behnke. Efficient Dense Rigid-Body Motion Segmentation
and Estimation in RGB-D Video. International Journal of Computer Vision, pages 1–13,
2015.

[193] Freek Stulp, Andreas Fedrizzi, Lorenz Mösenlechner, and Michael Beetz. Learning
and Reasoning with Action-Related Places for Robust Mobile Manipulation. Journal
of Artificial Intelligence Research (JAIR), 43:1–42, 2012.

[194] Ioan A Şucan and Lydia E Kavraki. Kinodynamic motion planning by interior-
exterior cell exploration. In Algorithmic Foundation of Robotics VIII, pages 449–464.
Springer, 2009.

[195] H Taubig, B Bauml, and Udo Frese. Real-time swept volume and distance compu-
tation for self collision detection. Intelligent Robots and Systems, pages 1585–1592,
2011.

[196] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

266

Literaturverzeichnis

[197] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. School of
Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991.

[198] N. Vahrenkamp, C. Scheurer, T. Asfour, J. Kuffner, and R. Dillmann. Adaptive
motion planning for humanoid robots. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2127–2132, Sept 2008.

[199] K. M. Varadarajan and M. Vincze. Object part segmentation and classification in
range images for grasping. In Advanced Robotics (ICAR), 2011 15th International
Conference on, pages 21–27, June 2011.

[200] Sundar Vedula, Simon Baker, Peter Rander, Robert T. Collins, and Takeo Kanade.
Three-Dimensional Scene Flow. In ICCV, pages 722–729, 1999.

[201] Yunfeng Wang and G. S. Chirikjian. A new potential field method for robot path
planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Con-
ference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), volu-
me 2, pages 977–982 vol.2, 2000.

[202] Andreas Wedel, Clemens Rabe, Tobi Vaudrey, Thomas Brox, Uwe Franke, and Da-
niel Cremers. Efficient Dense Scene Flow from Sparse or Dense Stereo Data. In
David A. Forsyth, Philip H. S. Torr, and Andrew Zisserman, editors, ECCV (1), vo-
lume 5302 of Lecture Notes in Computer Science, pages 739–751. Springer, October
2008.

[203] Kai M. Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: A probabilistic, flexible, and compact 3d map representation
for robotic systems. In In Proc. of the ICRA 2010 workshop, 2010.

[204] Zhe Xu, T Deyle, and C C Kemp. 1000 Trials: An empirically validated end effector
that robustly grasps objects from the floor. In Robotics and Automation, 2009. ICRA
’09. IEEE International Conference on, pages 2160–2167, 2009.

[205] Z. Xue, A. Kasper, J. M. Zoellner, and R. Dillmann. An automatic grasp planning
system for service robots. In Advanced Robotics, 2009. ICAR 2009. International Con-
ference on, pages 1–6, June 2009.

[206] Jianming Yang and Frederick Stern. A highly scalable massively parallel fast mar-
ching method for the eikonal equation. Journal of Computational Physics, 2016.

[207] Jing Yang, Patrick Dymond, and Michael Jenkin. Hierarchical probabilistic estima-
tion of robot reachable workspace. In Proceedings of the 6th International Conference
on Informatics in Control, Automation and Robotics (ICINCO-RA), pages 60–66, 2009.

[208] W. Zhang, F. Sun, C. Liu, C. Gao, and W. Su. Torque control for grasping by learning
experience and tactile feedback. In 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 212–218, Dec 2015.

[209] Yichao Zhou and Jianyang Zeng. Massively parallel a* search on a gpu. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

267

	Akronyme
	Glossar
	Symbolverzeichnis
	Einführung
	Kurzfassung
	Begriffsbildung
	Zielsetzung und Problemstellung
	Einordnung und Wissenschaftlicher Beitrag
	Aufbau der Arbeit

	Stand der Technik
	Heterogene Parallelverarbeitung
	Grundlagen
	Flynn's Taxonomie
	Parallelisierung auf Aufgaben- und Datenbasis
	Programmsynchronisation: Daten- und Ressourcenabhängigkeit
	Multithreading
	Zusammenfassung

	CUDA Praxis
	CUDA-Kernel
	Grids, Blöcke, Warps und Threads in CUDA
	Speicherarchitektur
	CUDA Intrinsics
	Weitere Konzepte der Parallelverarbeitung

	Fazit

	Perzeption und Modellierung
	Visuelle Sensorik
	Registrierung von Farb- und Tiefendaten
	Untersuchte Tiefenkameras
	Sensordatenverarbeitung
	Sensormodell

	Umweltmodell
	Oberflächen beschreibende Modelle
	Zusammengesetzte Primitive und generative Beschreibungen
	Raumpartitionierende Modelle
	Truncated Signed Distance Functions (TSDFs)
	Auswahl der geeignetsten Modellierung

	Voxelumwandlung
	Freiraumbestimmung

	Roboter-Modell
	Artikulierte Robotermodelle
	Voxelmodelle
	Selbstausblendung und Eigenkollisionen

	Swept-Volumen
	Bewegungsprädiktion
	Vorverarbeitung
	RGBD-Flow
	Segmentierung bewegter Objekte
	Tracking
	Prädiktion in Form eines Swept-Volumens
	Unscharfe Kollisionsprüfung
	Implementierung
	Kamerabewegung
	Zusammenfassung

	Simulierte Umgebung
	Fazit

	Voxel-Datenstrukturen auf der GPU
	Voxeltypen
	Deterministische Voxel
	Probabilistische Voxel
	Distanz-Voxel
	Bitvektor-Voxel

	Anforderungsanalyse Datenstrukturen
	Voxelkarten
	Translation mittels Basisversatz
	Voxelkarten mit mehrstufiger Auflösung

	Voxelliste
	Octree
	Stand der Technik
	Umsetzung

	Distanzkarten
	Zielstellung
	Verwandte Arbeiten
	Umsetzung
	Zusammenfassung und Vergleich

	Visualisierung
	Geometriegenerierung aus Voxeldaten
	Umsetzung
	Zusammenfassung

	Fazit

	Kollisionsdetektion
	Taxonomie Kollisionserkennungsverfahren
	Voxelbasierte Kollisionsdetektion
	Semantik der Kollisionsprüfung
	Kollisionsprüfung Voxelkarte Voxelkarte
	Kollisionsprüfung Voxelliste Voxelliste
	Kollisionsprüfung Voxelliste Voxelkarte
	Kollisionsprüfung Octree Octree
	Kollisionsprüfung Octree Voxelliste
	Kollisionsprüfung Octree Voxelkarte
	Kollisionsprüfung Distanzkarte Voxelliste

	Fazit

	Bewegungsplanung
	Grundlagen
	Arbeitsraum, Konfigurationsraum und Planungsraum
	Graphensuche
	Taxonomie der Planungsverfahren
	Zusammenfassung

	Umgesetzte Planungsverfahren
	Überwachung der Planausführung
	Planung mit Rotations-Swept-Volumen
	Plattformplanung mit generischen Bewegungsprimitiven
	Manipulatorarm Planung mit Bewegungsprimitiven
	Manipulatorarm Planung mit samplingbasierten Verfahren
	Ganzkörperplanung
	Greifplanung

	Fazit

	Experimentelle Evaluation
	CUDA Laufzeitparametrierung
	Voxelkarte
	Octree
	Aufbau eines Octrees
	Kollisionsprüfung

	Vergleich von Voxel- und Mesh-basierter Kollisionsdetektion
	Voxel-Swept-Volumen
	Prüfung einzelner Posen

	Visualisierung
	Experimente mit stationärem Roboter
	Geteilter Arbeitsraum
	Samplingbasiertes Planen
	Ablaufplanung von mehreren Robotern

	Experimente mit mobilen Robotern
	Demonstrationssysteme
	Planung mit Rotations-Swept-Volumen
	Planung mit generischen Bewegungsprimitiven

	Evaluierung der Bewegungsprädiktion
	Datenbasis
	Experimente
	Einschränkung und mögliche Erweiterungen
	Zusammenfassung

	Experimente zur Onlineberechnung von 3D-Distanzkarten
	Experimente zur Greifplanung
	Datenakquise
	Implementierung
	Zusammenfassung

	Fazit

	Zusammenfassung und Ausblick
	Zusammenfassung und Beitrag
	Diskussion und offene Probleme
	Ausblick

	Anhang
	Appendix
	Log-Odd
	CUDA Intrinsics
	Morton-Codes
	Structure-of-Arrays und Arrays-of-Structures
	Primitive der Parallelverarbeitung
	Präfixsummen auf Threadebene
	Parallelsierte Reduktion
	Parallelsierte Radix-Sortierung

	Partikelschwarmoptimierung
	Octree
	Lastbalancierung (Balance Work)
	Schneiden von zwei Octrees (Intersect Octrees)
	Eingeschränkte Zwei-Phasen-Tiefensuche mit Lastausgleich
	Verwendete Hard- und Software
	Unscharfe Prüfung von Bitvektor-Voxeln mittels Zeitfenster
	Backtracking für Scheduling

	Visualisierung
	Greifplanung

