

Use of Mesh based Variance Reduction Technique for Shielding Calculations of the Stellarator Power Reactor HELIAS

¹A. Häußler, ¹U. Fischer, ²F. Warmer

andre.haeussler@kit.edu

¹Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), 76344 Eggenstein-Leopoldshafen, Germany ²Max Planck Institute for Plasma Physics (IPP), 17491 Greifswald, Germany

Motivation and Objective

- Helical-Axis Advanced Stellarator (HELIAS) is a demonstration power reactor with 3000 MW D-T fusion power.
- First thorough neutronic investigation of HELIAS with DAG-MCNP (DAG = Direct Accelerated Geometry) approach.
- Shielding capability needs to be assessed for the stellarator by applying mesh based weight window variance reduction method.
- Nuclear responses in a critical area: high neutron wall load (~1.4 MW/m²) and reduced material thickness (~103 cm).
- Evaluation of the obtained results according to the EU DEMO tokamak recommended radiation design limits.

HELIAS Geometry

Blanket modules incl. Vacuum vessel – HELIAS CAD inner shell support structure and shield model Non-planar including ield coils material layers Vacuum vessel – and plasma distribution Plasma: Last Closed Vacuum vessel – Elux Surface

Flux Surface		outer shell
Radial Structure	Thickness [cm]	Material Composition
Tungsten Armor	0.2	100% Tungsten
First Wall	2.5	70% Eurofer, 30% Helium
Breeder Zone	50	HCPB with 60% Li-6 enrichment
Back Support Structure (BSS)	~10 – 40	75% Eurofer, 25% Helium
Vacuum Vessel (VV) inner shell	6	100% Steel (SS-316)
VV shield	20	60% Steel (SS-316), 40% Water
VV outer shell	6	100% Steel (SS-316)

Weight Window Generation

- Mesh based weight window generation with ADVANTG (ORNL).
- Two different mesh setups: uniform with 20x20x20 cm³ (optimized for neutrons) and nonuniform with 5x5x5 cm³ (optimized for neutrons and photons) in target region (blue box).
- Relative statistical error determined inside the target region, with a mesh tally, for neutrons and photons.
- Statistical error is significantly decreased → non-uniform WW mesh is used.

Computation and Results

- Radial profiles of nuclear responses in critical area, evaluated against radiation design requirements specified for EU DEMO tokamak.
- Nuclear responses of interest:

shield

- "Maximum neutron fluence to epoxy insulator" > target: 10° cm⁻²s⁻¹ to coils.
- "Peak nuclear heating in winding pack" -> limit: 50 W/m³ to coils.
- "Lifetime criteria in order to ensure that the fracture toughness is reduced by no more than 30%" → limit: **2.75 dpa/lifetime** to VV.
- Shielding requirements for superconducting magnets not met in critical area
 - → shielding performance need to be improved.
- Displacement damage at VV_inn: ~0.11 → lifetime of 25 years guaranteed to reach EU DEMO design limit.

Conclusion and Outlook

- Variance reduction: Mesh based weight window method suitable for HELIAS.
- Calculations: Statistical reliable radial profiles of relevant nuclear responses from first wall to magnetic field coil.
- Shielding performance: Requirements for superconducting magnets not fulfilled in critical area.
- Recommended design improvements: Larger shielding layer and/or more efficient shielding materials.

