

Thermal Fluctuations in Low-Prandtl Fluid Flows over a Backward Facing Step

Jožef Stefan Institute (JSI), Ljubljana, Slovenia

Karlsruhe Institute of Technology (NRG), Karlsruhe, Germany

Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands

Outline

- Introduction
- Description of experiment
- DNS results, flow structure
- Comparison with RANS simulation

Backward facing step

- representative geometry for sudden expansions
- expand reference database
- penetration of thermal fluctuations into solid walls

DITEFA 2 – Facility description

- 30 liters of GaInSn (*Pr* = 0.025 at 50°*C*)
- Temperature range: 20 80°C
- Max. flow rate = $1.5 \frac{l}{s}$
- 2 flow meters (turbine and inductive flow meter)
- 2 hole plates for flow correction
- 3 wide angle diffusers with vanes and screens at inlet and outlet
- Settling chamber with honeycomb and 3 screen stages
- Contraction with 5:1 contraction ratio
- 7 Measurement probes for local velocity and temperature measurement
- Heating plate with 20800 [W/m²]
- Pressure difference measurement in test section

Manufacturing currently in its final stage

5 09.05.2019

DITEFA 2 – BFS parameters

- Forced and mixed-convection regimes
- BFS aspect ratio = 2
- BFS expansion ratio = 2
- Low turbulence intensity and nearly constant velocity profile at inlet
- Trip-wire for forcing transition from laminarto-turbulent boundary layer
- 120 thermocouples mounted in heating plate for wall-temperature profile measurement
- Double-walled test section required (metal+plastic)

	Expected minimum value	Expected maximum value	Comments
T _{inlet}	20° <i>C</i>	80° <i>C</i>	$\Delta T_{max} = \frac{\dot{q}h}{k_{ref}} \sim 30 \ [^{\circ}C]$
Re _h	4 500	54 000	$Re_h = \frac{U_b h}{v}, v = v(T = 50^\circ C)$
Pr	0.019	0.031	
Peh	115	1 400	$Pr = Pr(T = 50^{\circ}C)$
Ri _h	0.005	0.892	$Ri_h = \frac{g\beta\Delta Th}{U_h^2}$

y∢

DITEFA 2 – Time line

- Manufacturing of facility: ~ 05.19
- Manufacturing of PMP: ~ 06.19
- Commissioning: ~ 08.19
- Preliminary results ~ 10.19
- Final results ~ 12.19

- Walls (for fluid) at all sides except inflow/outflow
- Expansion ratio 2.25
- Thickness of solid walls is 0.25 everywhere
- Recycling inflow boundary condition
 - Imposed average volumetric flux $\langle u_x \rangle = 1$, Re = 3200, Re_h = 6400, Re_D = 7089, Re_t = 207
- Outflow pressure zero (with some corrections to eliminate backflow)
- $\frac{\lambda_f}{\lambda_w} = 3, \frac{\alpha_f}{\alpha_w} = 10, \text{Pr} = 0.005, \text{Pr} = 0.1$

→ NEK5000 (open source, developed by Argonne

- Total of $\sim 154 \times 10^3$ elements, 11×10^3 solid elements
- 7 collocation points in each direction
- $\sim 49 \times 10^6$ points, $\sim 31 \times 10^6$ unique points
- CFL ~ 0.1 ($\Delta t = 4 \times 10^{-4}$), $y^+ < 0.8$

Kolmogorov length scale

- Maximum diagonal distance between points divided by Kolmogorov length scale
- Ideal $\frac{\Delta x}{\delta}$ < 2 but comparable to Moser, Kim, Mansour DNS of channel flow
- Scale: [0.83,10.84]
- First points in the channel upstream of step: $y^+ = 0.77$, $z^+ = 0.83$
- Through domain based on friction Reynolds number in channel upstream of the step $(\text{Re}_{\tau} = 207)$:
 - $x^+ \in [4.39, 12.13]$
 - $y^+ \in [0.77, 5.56]$
 - $z^+ \in [0.83, 10.20]$

Average Flow Structure

Average temperature (middle)

Thermal fluctuations (middle)

Average temperature at heater

16

SESAME, Petten, March 2019

r4.ijs.si 17

RANS simulation

- Identical domain to DNS (including solid parts)
- 6 meshes ranging from 440k to 24.5M elements (4.4M element mesh selected)
- $y^+ < 1$ in whole domain
- Linear $k \varepsilon$ model
- AHFM-NRG model

Jožef Stefan Institute R4 Reactor Engineering Division NRG Comparison (streamwise velocity)

Comparison ($\langle u'v' \rangle$)

Jožef Stefan Institute R4 Reactor Engineering Division NRG Comparison (temperature)

Summary

- Experimental data by end of year
- DNS data available
- More complicated flow structure than in unconfined BFS
- Thermal fluctuations found penetrating into the walls
- Good agreement in first order statistics between DNS and RANS simulation