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Outline 

Identification is an essential part of developing virtual models of dynamic 

systems. For nonlinear systems the number of describing parameters per 

degree of freedom and the difficulty of finding the proper describing functions 

increases with the complexity of the underlying nonlinearities. Therefore, 

nonparametric identification approaches have some significant advantages 

over parametric techniques in case of nonlinear systems. 

The present thesis proposes a nonparametric identification method for highly 

nonlinear systems that is able to reconstruct the underlying nonlinearities in 

form of three-dimensional generalized restoring force surfaces between de-

grees of freedom, which are arbitrary functions of two state variables, without a 

priori knowledge of the describing nonlinear functions. There are some known 

methods for this purpose such as the Restoring Force Surface Method (RFSM) 

or techniques that utilise the Hilbert-Huang Transform. The current study 

explores the promising approach of using master-slave synchronisation be-

tween the virtual model and the real system, which to the author’s knowledge 

has not yet been investigated in the literature. The synchronization is realized 

via nonlinear Kalman Filter algorithms, which are optimal observers in a least-

squares sense. Using the well-known state augmentation technique, the Kalman 

Filter can be turned into a dual state and parameter estimator to identify pa-

rameters of a priori characterised nonlinearities. The present study proposes 

an extension of this technique towards nonparametric identification. A general 

nonlinearity model is introduced by describing the restoring forces via time-

variant linear coefficients of the state variables, which are estimated as aug-

mented states. The estimation procedure is followed by an a posteriori proba-

bilistic analysis that reconstructs noisefree restoring force characteristics using 

the estimated states and their estimated covariance matrices. Observability is 



Outline 

ii 

provided using only one measured quantity per degree of freedom, which 

makes this approach less demanding in the number of necessary measurement 

signals compared with other nonparametric solutions such as the RFSM. Due to 

the statistical rigour of the procedure, it successfully addresses signals corrupt-

ed by significant measurement noise. Thanks to the general Kalman Filter 

algorithm, the approach can be integrated in a full identification workflow, 

where the parametric estimation of a priori known functions of the system is 

carried out as well. 

In the present thesis the method is described in detail. This is followed by 

virtual and real-life identification examples of one and three degree of freedom 

nonlinear mechanical systems to demonstrate the effectiveness of the proposed 

technique. Based on these examples several implementation properties of the 

approach are investigated and advantages as well as challenges in comparison 

to state of the art methods are discussed. 
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Abstract  

A nonparametric identification method for highly nonlinear systems is present-

ed that is able to reconstruct the underlying nonlinearities in form of three-

dimensional generalized restoring force surfaces using vibration measure-

ments without a priori knowledge of the describing nonlinear functions. The 

approach is based on nonlinear Kalman Filter algorithms using the well-known 

state augmentation technique that turns the filter into a dual state and parame-

ter estimator, of which an extension towards nonparametric identification is 

proposed in the present thesis. A general nonlinearity model is introduced by 

describing the restoring forces via time-variant linear coefficients of the state 

variables, which are estimated as augmented states. Due to the probabilistic 

rigour of the procedure, noisefree restoring force characteristics are recon-

structed even in the presence of significant measurement noise. Thanks to the 

Kalman Filter algorithm, observability is provided using only one measured 

quantity per degree of freedom, and the approach can be integrated in a full 

identification workflow, where the parametric identification of a priori known 

functions of the system is carried out as well. The effectiveness of the proposed 

technique is demonstrated on virtual and real-life identification examples of 

one and three degree of freedom nonlinear mechanical systems. 
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Kurzfassung  

In der vorliegenden Arbeit wird eine nichtparametrische Identifikationsmetho-

de für stark nichtlineare Systeme entwickelt, welche in der Lage ist, die Nichtli-

nearitäten basierend auf Schwingungsmessungen in Form von allgemeinen 

dreidimensionalen Rückstellkraft-Flächen zu rekonstruieren ohne Vorkennt-

nisse über deren funktionale Form. Die Vorgehensweise basiert auf nichtlinea-

ren Kalman Filter Algorithmen, welche durch Ergänzung des Zustandsvektors 

in Parameterschätzer verwandelt werden können. In dieser Arbeit wird eine 

Methode beschrieben, die diese bekannte parametrische Lösung zu einem 

nichtparametrischen Verfahren weiterentwickelt. Dafür wird ein allgemeines 

Nichtlinearitätsmodell eingeführt, welches die Rückstellkräfte durch zeitvariab-

le Koeffizienten der Zustandsvariablen beschreibt, die als zusätzliche Zu-

standsgrößen geschätzt werden. Aufgrund der probabilistischen Formulierung 

der Methode, können trotz signifikantem Messrauschen störfreie Rückstell-

kraft-Charakteristiken identifiziert werden. Durch den Kalman Filter Algorith-

mus ist die Beobachtbarkeit der Nichtlinearitäten bereits durch eine Messgröße 

pro Systemfreiheitsgrad gegeben. Außerdem ermöglicht diese Beschreibung die 

Durchführung einer vollständigen Identifikation, wobei die restlichen konstan-

ten Parameter des Systems zusätzlich geschätzt werden. Die Leistungsfähigkeit 

des entwickelten Verfahrens wird anhand von virtuellen und realen Identifika-

tionsbeispielen nichtlinearer mechanischen Systeme mit ein und drei Freiheits-

graden demonstriert. 
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Notations 

regular upright mathematical operations and operators (e.g.: sin(...)) 
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bold upright vector or matrix values and functions (e.g.: x or f(x)) 

PX covariance matrix of the random vector variable X 
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Φ𝐡
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L𝐚
𝑖 (ℎ) Lie derivative of order i of the function h with respect 

to the function a 

𝓟 = √𝐏 matrix square-root of the positive definite matrix P 

such that 𝓟𝓟T=P 
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1 Introduction and 
literature overview 

1.1 Motivation 
 

Virtual models and numerical simulation have become crucial parts of the 

development of nearly all human-made structures. Their importance is ever 

growing as the computational power of modern computers is increasing expo-

nentially and the related hardware costs are decreasing rapidly. Software 

development of the past few decades led to a wide variety of simulation envi-

ronments that enable the engineers of today to model complex dynamic sys-

tems (Dresig & Fidlin, 2014). This development makes virtual models highly 

attractive to replace costly physical models and experiments. Such models are 

however not ready to be employed for the prediction of the real system’s 

behaviour until their properties (i.e. parameters and characteristics) have been 

tuned to appropriate values. Therefore, system identification is an essential 

part of developing virtual models (Kerschen, Worden, Vakakis, & Golinval, 

2006), (Kerschen, Worden, Vakakis, & Golinval, 2007). 

For linear systems well-defined frameworks provide straightforward method-

ologies to solve the identification problem (Ljung, 2013), (Okuma & Oho, 1997). 

Linear consideration of dynamic systems is very popular. It is and most certain-

ly will remain an important domain of virtual model development. However, 

"most of everyday life is nonlinear" (Strogatz, 1994), since "the world around 

us and we ourselves are inherently nonlinear" (Fidlin, 2006). Simply-sounding 

properties of dynamic systems such as the presence of friction or end-stop 

(Fidlin, 2006) or time-delay (Stépán, 1989) can lead to extremely complex and 

exotic behaviour. Unfortunately there are no general identification solutions for 
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nonlinear systems. Numerous approaches are available, each of them having 

their advantages and drawbacks depending on the specific system of interest. 

There are some general requirements that should be fulfiled by an identifica-

tion procedure: 

• The necessary measurement setup should be as simple as possible. 

(Decreasing experiment complexity to develop less costly methodol-

ogies for determining system properties is an important trend in test 

rig development (Klöpper, Okuma, & Krüger, 2013).) 

• The procedure should be robust against measurement noise. If possi-

ble the engineer should receive a quantification of the uncertainty of 

the identified properties caused by the noisiness of the measurement 

signal. (Although the accuracy of available experimental equipment is 

increasing rapidly, measurement noise is still unavoidable and in 

most situations can not be neglected.) 

• The procedure should be computationally as fast and simple as pos-

sible. (Although the capacity of today’s computers is increasing fast, 

the demand on fast and flexible product development is increasing as 

well.) 

In comparison to linear systems there are some additional difficulties arising 

from nonlinearities: 

• The number of system describing parameters per DoF increases lead-

ing to higher computational demand and sometimes convergence 

problems during the identification. 

• The recognition of the type of nonlinearities in order to define the 

system parameters prior to the identification procedure is in some 

cases very difficult. 
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• Nonlinear phenomena (such as bifurcations, limit cycles and chaotic 

behaviour) are highly sensitive to model parameters, which leads to 

an increased necessity of identification accuracy. 

Under these conditions nonparametric identification approaches (q.v. Section 

1.4.2) have some significant advantages over parametric techniques (q.v. 

Section 1.4.1), since for a wide class of nonlinearities (q.v. Section 1.2) they do 

not require the a priori definition of the nonlinear functions. Hence, there is a 

great need of nonparametric identification methods that fulfil the aforemen-

tioned requirements. 

1.2 Nonlinearities in dynamic systems 

A general nonlinear system, whose dynamics are governed by ordinary differ-

ential equations (ODEs), is given by two vector functions (a and h) of the state 

vector x and the input vector u that define the system consisting of the process 

equation (1.1) and the measurement equation (1.2) of the form 

𝐱̇ = 𝐚(𝐱, 𝐮, 𝑡), (1.1) 

𝐲 = 𝐡(𝐱, 𝐮), (1.2) 

where y denotes the vector of measured quantities with a size of ny, which 

defines the number of measurement signals. Let the number of states (the size 

of x) and the number of inputs (the size of u) be denoted by n and nu respective-

ly. Processes given by differential-algebraic equations (DAEs) and delay differ-

ential equations (DDEs) (Stépán, 1989) are not considered explicitly at this 

point. However, in Section 1.6.3 and 2.2.3 it is shown that the presented proce-

dure can accommodate DAEs as a general form of nonlinearity and at the end of 

Section 3.4.1 the possibilities of extending the approach towards DDEs are 

briefly discussed. 
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In most cases it is possible to separate a set of time-invariant functions of the 

state variables, denoted by the vector of functions c, inside the system equa-

tions, which are then given as 

𝐱̇ = 𝐚(𝐱, 𝐮, 𝐜(𝐱), 𝑡), (1.3) 

𝐲 = 𝐡(𝐱, 𝐮, 𝐜(𝐱)). (1.4) 

In the special case, when each of these functions, denoted by cj, are two-

dimensional (i.e. their values depend on two independent variables, denoted by 

zj and vj), the vector c has the form 

𝐜 = [𝑐1(𝑧1, 𝑣1),… , 𝑐𝑗(𝑧𝑗 , 𝑣𝑗)]
T
, (1.5) 

where each independent variable is an arbitrary function of the state variables: 

𝑧𝑗 = 𝛽𝑗(𝐱), (1.6) 

𝑣𝑗 = 𝛾𝑗(𝐱). (1.7) 

Such functions can not describe explicitly time-dependent sources of nonlinear-

ities, e.g. parametric excitation (Insperger & Stépán, 2002), however, a huge 

domain of nonlinearities are covered by this formulation. In the physical do-

main of mechanical systems such functions mostly represent general restoring 

forces (force or torque) between DoFs of the system. These functions are called 

force-state maps (Crawley & Aubert, 1986) and their representing three-

dimensional surfaces are called restoring force surfaces (Kerschen, Worden, 

Vakakis, & Golinval, 2006), (Link, Boeswald, Laborde, Weiland, & Calvi, 2011), 

denoted by RFS. If e.g. zj and vj are two relative displacements inside the sys-

tem, then RFSj (defined by cj) represents a nonlinear coupled stiffness charac-

teristic. Such characteristics are used e.g. to model nonlinear clutch compo-

nents (Tikhomolov, 2015). However, the most typical RFSs represent nonlinear 

spring-dampers, where zj is the deformation and vj is the rate of deformation of 
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the spring-damper. A well known example is a Liénard system (Strogatz, 1994), 

where the RFS is of the form 

𝑐(𝑧, 𝑣) = 𝑑(𝑧)𝑣 + 𝑠(𝑧)𝑧. (1.8) 

In this particular RFS a coupled (z- and v-dependent) term is to be found. Such 

RFSs are called a “coupled RFS”, denoted by cRFS. On the other hand if an RFS 

can be given as the sum of a z-dependant “elastic” part and a v-dependant 

“dissipative” part, it is called an additive RFS, denoted by aRFS, which has the 

form 

𝑐(𝑧, 𝑣) = 𝑐𝐸(𝑧) + 𝑐𝐷(𝑣). (1.9) 

Let cE and cD be called elastic and dissipative restoring force curves with the 

abbreviations eRFC and dRFC respectively. If possible, one tries to model 

systems with additive RFSs, since their analytical investigation is less complex. 

Nonlinearities such as progressive and degressive stiffness, backlash, end-stop 

and friction can be described by such models. Many experimental, analytical 

and numerical investigations of such systems can be found in the literature, e.g. 

(Ineichen, 2013), (Tikhomolov, 2015), (Ing, Pavlovskaia, & Wiercigroch, 2011), 

(Viguie & Kerschen, 2010). For an extensive overview of such nonlinearities, 

incl. their advantages and undesirable effects in engineering structures, the 

reader is referred to (Fidlin, 2006), (Dresig & Fidlin, 2014) and (Ibrahim, 

2008). 

The importance of RFSs lies in the fact that they can be identified in a nonpara-

metric way, to which the present study aims to offer a synchronisation-based 

solution. Although the term RFS originates from the physical domain of me-

chanics and the current thesis concentrates on the identification of mechanical 

systems, no restrictions will be made that would not allow one to transfer the 

investigated methods to other physical domains. (E.g. in Section 3.2 the identifi-

cation of a Van der Pol system is taken as an example that originates from 

electronics.) 
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1.3 Problem formulation 

For the derivation of the synchronisation-based nonparametric identification 

procedure a particular class of mechanical structures is considered that repre-

sents a special subclass of the systems defined by (1.3) and (1.4). Except for the 

excitation (input) u the system has no explicit time-dependence. The consid-

ered structures have N DoFs connected via N RFSs in a way that the defor-

mation and the rate of deformation coordinates of these RFSs (i.e. zj and vj) can 

be defined as state variables, which leads to a state vector of length 2N in the 

form 

𝐱 = [
𝐳𝑁×1

𝐯𝑁×1
], (1.10) 

where z is the vector of the deformation coordinates and v the vector of the 

rate of deformation coordinates of the N RFSs respectively. In the current study 

many load cases will be presented, where the excitation u is of kinematic type. 

In such situations the above choice of state space coordinates is advantageous, 

since no integrals or derivatives of the time series of u will appear in the system 

equations. The above assumptions lead to the following particular form of the 

process equation: 

[
𝐳̇𝑁×1

𝐯̇𝑁×1
] = [

𝐯𝑁×1

−𝐌𝑁×𝑁
−1 [

𝑐1(𝑧1, 𝑣1)
⋮

𝑐𝑁(𝑧𝑁 , 𝑣𝑁)
]

𝑁×1

+ 𝐁𝑁×𝑛u
𝐮𝑛u×1

], (1.11) 

where M denotes the inertia matrix. The input matrix B defines how the excita-

tion u is acting on the mechanical system. If the system is excited by forces, 

then the input matrix consists of specific elements of the inverse inertia matrix. 

In case of a kinematic excitation in the form of acceleration the elements of B 

directly assign the components of u to the corresponding rows of equation 

(1.11), i.e. Bij∊{-1,0,1}. 
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The primary aim of the present study is to investigate a nonparametric identifi-

cation method based on (1.4) and (1.11) that reconstructs the N RFSs (i.e. the 

functions cj) based on the time history of u and noisy measurements of y. 

Throughout the derivation of the nonparametric approach in Chapter 2 the 

matrix M (and therefore B also) is assumed to be known. This assumption is 

relaxed later in Chapter 4, where the additional parametric identification of M 

is investigated. 

1.4 Identification methods 
of nonlinear systems 

In (Kerschen, Worden, Vakakis, & Golinval, 2007) the identification of nonline-

arities is defined to consist of three phases: detection, characterisation and 

parameter identification. Possible solutions to the detection problem are out-

side the scope of the current thesis. Answering the question, whether the 

system of interest exhibits a nonlinear behaviour that can not be neglected 

(linearised), i.e. the detection, is considered to be already done. We assume the 

case, where nonlinear identification is necessary. Therefore, only characterisa-

tion and parameter identification are discussed in the present study. Still it can 

be mentioned that also in situations, where detection results are uncertain or 

simply not available, it is safer to start with nonlinear methods, since linear 

behaviour is a special case of nonlinearity. Although the current thesis is dedi-

cated to explore a nonparametric technique that allows the resignation of the 

parameter identification phase, it is important to point out that a method 

containing this phase can by definition still be a nonparametric approach. This 

will become clear later on in this section. 

The characterisation of mechanical systems described by (1.4) and (1.11) 

requires the approximation of the RFSs by a particular function of the form 
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𝑐𝑗(𝑧𝑗 , 𝑣𝑗) ≈ 𝑐̂𝑗(𝑧𝑗 , 𝑣𝑗 , 𝐩𝑗), 
(1.12) 

where pj denotes a vector of parameters that is to be estimated during the 

parameter identification phase. The purpose of system identification is to 

extract the highest possible amount of global information from the measure-

ment signals and to assign the gained information to the local system proper-

ties. This always implies the assumption of an a priori model of the system. The 

procedure is then carried out by fitting this model to the measurements in the 

time- or frequency-domain using least-squares, maximum likelihood, nonlinear 

optimization approaches or explicit formulas. Whether the a priori model 

requires the characterisation of the nonlinearities, i.e. the definition of the 

approximating functions (1.12), or not is an essential property of nonlinear 

identification techniques that leads to their classification into two groups: 

"parametric" or "nonparametric". In the following a brief overview of such 

techniques for nonlinear systems is given in order to place the investigated 

approach in the multitude of existing methods. 

1.4.1 Parametric approaches 

In these techniques, the characterisation of the RFSs is included in the a priori 

model assumptions. In this case, the fusion of the a priori model with the meas-

urement data, i.e. the fitting procedure, directly estimates the best fitting values 

of {p1, p2, … ,pN}. 

Optimisation based approaches 

Possibly the most straightforward way of nonlinear identification is to choose 

an appropriate function of the parameter vectors, denoted by eO, and use a 

suitable optimisation algorithm to find its global minimum. This function is 

called the “objective function” that should represent the error between the real 
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system and the model. Typically the mean square (MS) error is chosen for this 

purpose, which leads to 

𝑒𝑂(𝐩1, 𝐩2, … , 𝐩𝑁) = ∑(𝐲𝑖 − 𝐲̂𝑖)
𝑇(𝐲𝑖 − 𝐲̂𝑖)

𝑛𝑆

𝑖=1

 , (1.13) 

where 𝐲̂ denotes the estimate of the measurement generated by the model and 

nS is the number of measurement samples. This approach is presented in 

(Kunath, Niemeier, Schlegel, & Will, 2014) in its classical form, the so called 

Single Shooting. In this approach a complete simulation of the model is done at 

each iteration step using the whole time series of u and one set of parameters. 

eO is only analysed between the simulation runs. This formulation often results 

in objective functions with several local minima, which implies the use of global 

optimisation techniques such as genetic algorithms (Charbonneau, 2002). Such 

solutions have the drawback that they can easily end up in an enormous num-

ber of iterations, which often leads to unacceptable identification time. Another 

difficulty of single shooting is that the initial error is cumulated throughout the 

whole integration, which can even result in failed simulation runs for “bad” 

parameter sets (Michalik, Hannemann, & Marquardt, 2009). These difficulties 

motivated several techniques that aim to form eO into a function with one 

(global) minimum. In this case much faster local optimisation algorithms can be 

applied such as the derivative based Newton’s method (Nocedal & Wright, 

1999) or the bit slower but derivative free Simplex algorithm (Charbonneau, 

2002), (Lagarias, Reeds, Wright, & Wright, 1998). 

One approach dedicated to avoid several local minima is called Multiple Shoot-

ing (Voss, Timmer, & Kurths, 2004). Here the measurement time is split into 

multiple simulation runs. The initial states of the time segments are introduced 

as additional parameters, which increases the number of parameters to be 

optimised. However, due to small integration periods the estimated measure-

ment is always kept near to the measured signals, which results in a beneficial 
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objective function. The Incremental Single Shooting (ISS), proposed in 

(Michalik, Hannemann, & Marquardt, 2009), aims to combine the advantages of 

both the Single and the Multiple Shooting technique. 

Another solution of this kind is the Homotopy method that modifies the system 

model into an observer of the form 

𝐱̇̂ = 𝐚(𝐱̂, 𝐮, 𝐩1, 𝐩2, … , 𝐩𝑁) + 𝐊(𝐲 − 𝐲̂), (1.14) 

Where the “hat” symbol denotes the estimates of the specific quantities and K 

denotes the so called “synchronisation gain” that recursively forces the model 

to stay near to the measured behaviour. Successful implementation of this 

technique for multiple DoF vehicle models is presented in (Vyasarayani, Uchida, 

Carvalho, & McPhee, 2012) and the application to identify nonlinear oscillators 

and a clutch actuation system with nonlinear characteristics is investigated in 

(Gunnarsson, 2014). In these works a multi-step version of the approach is 

used, where multiple optimisation steps are carried out by reducing the syn-

chronisation gain from step to step until the final result is reached. In (Sun & 

Yang, 2010) and (Carlsson & Nordheim, 2011) a promising single-step version 

of this idea is implemented. For the calculation of K the recursive optimal 

approach of Unscented Kalman Filtering (UKF) is used and the classical eO from 

equation (1.13) is replaced by the maximum likelihood function. These modifi-

cations aim to result in the optimal solution in the first step of the homotopy 

algorithm making the further iteration steps with decreasing K unnecessary. 

Frequency domain parametric approaches 

Frequency domain techniques, such as Experimental Modal Analysis (EMA), 

provide perhaps the most convenient way to identify linear systems. One of 

their important advantages is their ability to reconstruct the complete underly-

ing linear system under specific measurement conditions without the a priori 

knowledge of the inertia matrix M. See e.g. in (Kletschkowski, 2013), where 
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acoustic measurements are used for this purpose or in (Richardson, 1977), 

where the general theory of EMA based linear system identification is summa-

rised. The extension of these techniques towards nonlinear systems motivated 

several investigations with fruitful results. Different approaches are discussed 

in (Worden & Tomlinson, 2001) that aim to adapt the theory of EMA to nonlin-

earities. In (Peeters, 2010) an extensive study on the usefulness of Nonlinear 

Normal Modes (NNM) in the investigation of nonlinear systems is presented. 

The same theory is applied in (Laxalde & Thouverez, 2009) for the modal 

investigation of turbo machinery blades. In (Platten, Wright, Cooper, & Sarmast, 

2002) the underlying multiple DoF linear system is identified at low excitation 

level. Then at high excitation level the nonlinear modes are detected and sub-

sequently excited by appropriate force vectors in order to separately identify 

the nonlinearities of each mode in frequency domain. Mode couplings are also 

identified using the Nonlinear Resonant Decay Method (NL-RDM). Similarly in 

(Zanotti Fragonara, et al., 2012) well separated nonlinear modes of a bridge are 

identified considering one modal DoF at a time. The Frequency-domain Nonlin-

ear Subspace Identification method (FNSI) is successfully applied to a high-

dimensional nonlinear real-life structure in (Noël & Kerschen, 2013). 

Another powerful tool for nonlinear parameter identification in frequency 

domain is the Hilbert-Huang Transform (HHT), which approaches the problem 

from a different point of view than the previous techniques. It can be classified 

as time-frequency method (Kerschen, Worden, Vakakis, & Golinval, 2006), since 

it reconstructs time-varying frequency domain properties of measured signals. 

It is based on the Hilbert Transform (HT) that enables the determination of the 

instantaneous amplitude, phase and frequency of monocomponent oscillatory 

signals as time-series. The HHT extends this algorithm to multicomponent 

signals using the empirical mode decomposition (EMD) to extract the periodic 

components (Barnhart, 2011). Based on the results of the HHT different ap-

proaches have been proposed that allow the parametric identification of multi-
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ple DoF nonlinear systems. One of these algorithms, the so called slow-flow 

model identification (SFMI), is proposed in (Kerschen, Vakakis, Lee, McFarland, 

& Bergman, 2008). 

Time-series analysis 

In time-series analysis the system model is formulated in difference equations 

instead of ODEs. The goal of the procedure is to identify the coefficients of these 

equations by fitting in time domain. In (Gelb, Kasper, Nash, Price, & Sutherland, 

2001) the basic models for linear systems are derived. A very effective exten-

sion of the approach to nonlinear systems, called NARMAX modelling, is pre-

sented in (Kerschen, Worden, Vakakis, & Golinval, 2006). 

Observer-based methods 

Observer-based methods include stochastic approximation discussed in (Gelb, 

Kasper, Nash, Price, & Sutherland, 2001) and optimal estimation algorithms 

such as the Kalman Filter (KF). These methods rely on the modification of the 

process equation into (1.14). The basic idea that enables this state observer to 

be applied for parameter identification is the so called state augmentation 

technique, where unknown parameters are introduced as additional state space 

coordinates, which leads to the so called dual state and parameter estimation. 

This approach requires nonlinear extensions of the Kalman Filter such as the 

Extended KF (EKF), the Unscented KF (UKF) or the Particle Filter (PF). See e.g. 

in (Simon, 2006). Since this approach plays an essential role in the current 

study, a more detailed description of these algorithms is given in Section 1.6. In 

this section the attention is paid to successful applications in the literature. The 

dual state and parameter estimation of mechanical structures is carried out in 

(Wu & Smyth, 2007), (Chatzi & Smyth, 2009) and (Li, Suzuki, & Noori, 2004) to 

estimate coefficients of strongly nonlinear hysteretic characteristics, and in 

(Kolansky & Sandu, 2012) to estimate inertia properties of ground vehicles. In 
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(Bessa, Hackbarth, Kreuzer, & Radisch, 2014) the identification of an electro-

hydraulic servo system is carried out and the implementation of the augmented 

UKF is presented in (Sitz, Schwarz, Kurths, & Voss, 2002) on the example of 

various academic nonlinear systems exhibiting limit cycles and chaotic behav-

iour. A robust modification of the KF, the H∞ filter, is proposed in (Kiriakidis & 

O’Brien Jr., 2004) to handle uncertainties in the a priori model. A globally 

iterated KF can be used to overcome the problem of insufficient convergence of 

parameters e.g. due to short-time measurement signals. This idea is investigat-

ed in (Hoshiya & Saito, 1984) and in (Voss, Timmer, & Kurths, 2004). In the 

latter the performance of the technique is shown to be similar compared to 

Multiple Shooting. 

DoF identification 

A special parametric identification method that should be mentioned is the so 

called Phase Space Reconstruction. Its aim is outside the scope of the problem 

formulated in Chapter 1.3, since it deals with the identification of the funda-

mental system property of the number of DoFs, i.e. N, based on measurements 

of nonlinear attractors of the system. An explanation of the method including 

some academic examples can be found in (Prahs, 2011).  

Estimation of the time history of varying parameters 

Some of the aforementioned methods, namely the ones that give parameter 

estimates for each measurement time step, enable the estimation of the time 

history of varying parameters, i.e. the identification of time-variant systems. 

These methods represent a bridge to nonparametric identification, which is 

discussed in the next section. 

The reconstruction of the excitation time-series acting on the system, denoted 

by u in equation (1.1), based on a priori system models and measured system 

responses is an important field of system monitoring, see e.g. (Sturm, 
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Moorhouse, Kropp, & Alber, 2013). This topic is outside the scope of the current 

study, however, many of the techniques applied to solve this problem can 

straightforwardly be applied to identify time-series of varying parameters as 

well. The previously mentioned KF is often used for this purpose in its aug-

mented form with u introduced as state variable, since it gives an estimate of 

the model states recursively at every time step. This technique is applied in 

(Zeile & Maione, 2015), (Lourens, Reynders, De Roeck, Degrande, & Lombaert, 

2012) and (Lourens, et al., 2012) for monitoring of system loads based on 

response measurements. In such applications of the KF a new challenge arises 

regarding the convergence of the augmented states. In this case it is not enough 

to get a converged parameter value at the end of the measurement sequence. 

The convergence has to be fast enough to track the time-variance, which on the 

other hand leads to increased noisiness of the results, since the observer 

somewhat starts to follow the measurement noise as well. This trade-off be-

tween bias (phase shift) and variance (noisiness) is discussed in (Hansen, 

1992) by means of the L-curve in general mathematical form. The L-curve point 

of view has found its application in the above mentioned papers as well. If a 

priori knowledge about the expected form of the time-variance is available, this 

can be integrated in the estimation procedure in order to reduce the phase shift 

without increasing the noisiness of the estimation results. This idea is used in 

(Jakubek & Fleck, 2009) for the estimation of combustion engine inner torque 

using an augmented Kalman Filter. Here the estimation of rapidly varying time 

signals is replaced by the estimation of constant or slowly varying coefficients 

of specially designed basis functions. If the mentioned a priori knowledge is not 

available one can introduce additional state variables, which represent time 

derivatives of the augmented state that we are actually interested in. This can 

also drastically reduce phase shift, however, on the cost of increasing observer 

complexity. These methods originate from the theory of target tracking and are 

discussed in (Simon, 2006) and (Wu, Lin, Han, & Li, 2010). The resulting dy-
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namic models of the augmented states are often referred to as Random Walk 

(RW) models (Young, 2000). 

The capability of the KF to identify time-varying systems enables its on-line 

(real time) implementation. Such an application is presented in (Garcia & 

Antsaklis, 2009), where an augmented EKF is integrated in the algorithm of a 

model based control circuit in order to update the virtual model parameters in 

real time. 

The aforementioned HHT approach also enables the estimation of time-series 

of system parameters. Such a procedure is investigated in (Hu & Proppe, 2011) 

and (Hu & Proppe, 2012), where nonlinear time-varying 1DoF and 2DoF sys-

tems are identified based on noisy measurements. 

General parametric functions 

An extension of parametric techniques for cases, where a priori characterisa-

tion is not possible due to a lack of information, is the introduction of general 

parametric approximations of the RFSs instead of using physical parameters. 

This can, for instance, require the application of power series polynomials, 

splines, Chebyshev series or Volterra series. An implementation of the latter in 

frequency domain is presented e.g. in (Németh, Kollár, & Schoukens, 2001). 

Confusingly this extension is often called "nonparametric". This is the case in 

(Noël & Kerschen, 2013), where cubic splines are used, and also in (Masri, 

Chassiakos, & Caughey, 1992), where weighting parameters of a neural net-

work are identified. Technically, these solutions are still parametric, since the 

applied general functions are indeed a form of a priori characterisation. Here 

we pay with increased model complexity for not having to deal with the charac-

terisation for specific applications. Because of this, the actual nonparametric 

solutions are called "truly nonparametric" in (Kerschen, Worden, Vakakis, & 

Golinval, 2006) for the sake of distinguishability. 
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Summary of parametric methods 

Although parametric approaches are powerful solutions that can effectively 

address high-dimensional problems, they still have one drawback: an a priori 

knowledge of the nonlinearities is needed to achieve a quality result without 

computational problems. Using general mathematical models that can describe 

arbitrary nonlinearities requires a large number of parameters that can lead to 

difficulties during the identification process. Further specific problems can 

occur in case of strong nonlinearities. If the nonlinear function is e.g. piecewise 

continuous, identifyability problems can arise. Such a difficulty is revealed in 

(Bessa, Hackbarth, Kreuzer, & Radisch, 2014). 

1.4.2 Nonparametric approaches 

In comparison to the previously discussed techniques, in nonparametric ap-

proaches the a priori model assumptions do not include the characterisation of 

the RFSs, i.e. (1.12). While the measurement signals are processed, a point 

cloud of samples is generated that represents the RFSs of the system. Depend-

ing on the specific technique these samples can represent different measure-

ment load cases or different time instances of the same measurement time-

series. For cRFSs the ith sample of the jth RFS is given by a coordinate triplet 

{zj,vj,fj}i with fj denoting the jth restoring force. In case of an aRFS two separate 

coordinate pairs, {zj,fE,j}i and {vj,fD,j}i, are generated representing the jth eRFC 

and dRFC respectively, where fE,j denotes the jth elastic and fD,j the jth dissipa-

tive restoring force. From (1.9) it follows that 

𝑓𝑗,𝑖 = 𝑓𝐸,𝑗,𝑖 + 𝑓𝐷,𝑗,𝑖 . (1.15) 

The local characterisation and parameter estimation can be performed a poste-

riori using the generated sampling points, which is the main practical ad-

vantage of nonparametric methods. During the fusion of the a priori model with 

the measurements only a few fitting parameters are introduced, also known as 
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“instrumental variables”, which represent the coordinates of the RFS samples 

or some other parameters directly related to them (e.g. instantaneous stiffness 

and damping coefficients). 

It is important to distinguish this definition from another wide-spread interpre-

tation of “nonparametric” system representation, where the identification 

consists of capturing frequency response, step response or impulse response 

functions by a set of response coefficients, instead of describing the process in a 

physical form (Wang, Gawthrop, & Young, 2005). 

Frequency domain nonparametric methods 

A group of nonparametric identification methods is based on frequency domain 

a priori models with time-varying or load-case-varying modal parameters. For 

a 1DoF autonomous system this leads to a process equation of the form 

𝑧̈ + 𝛿(𝑖)𝑧̇ + 𝛼2(𝑖)𝑧 = 0, (1.16) 

where δ(i) represents a mass-normalised varying damping coefficient and α(i) 

denotes the varying undamped natural angular frequency of the oscillator. The 

measured time-domain quantities are also transformed into frequency domain 

quantities, such as frequency and amplitude, and so the fitting is carried out in 

the frequency domain. In the 1DoF case the modal parameter samples can be 

transformed a posteriori into RFS samples by explicit formulas. E.g. using the 

mass of the oscillator a sample of α can be transformed into an effective stiff-

ness sample, which can be further transformed into fE using the current vibra-

tion amplitude. From this it follows that such approaches imply the a priori 

knowledge of the oscillating mass. The main restriction of these techniques is 

that for time domain models they can only be applied in case of 1DoF systems. 

It is possible to identify modal RFSs of multiple DoF systems if they only exhibit 

well separated resonance ranges without mode coupling effects. However, 

these modal RFSs can not be transformed to physical coordinates, and there-
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fore only a frequency domain nonlinear model can be established. On the other 

hand working in frequency domain leads to two major advantages. The first 

one is that one measured quantity (e.g. displacement) is enough for the identifi-

cation of an RFS, since the others (e.g. velocity and acceleration) can be calcu-

lated analytically using simple laws of harmonic oscillations. The second one is 

the good robustness against measurement noise. 

In (Link, Boeswald, Laborde, Weiland, & Calvi, 2011) an approach of this kind is 

investigated, where the different RFS samples belong to separate experimental 

modal analysis (EMA) load cases with different vibration amplitudes. The 

method is based on the quasi-linearisation of nonlinear systems in a particular 

operating point. Since the EMA is an experimental methodology for linear 

systems, its application to a strongly nonlinear frequency response is not 

trivial. As a solution to this problem the so called Controlled Response tech-

nique is presented in the above paper. In this technique the excitation signal is 

specially controlled during the experiment, which results in linear resonance 

characteristics. Due to this the nonlinearity is only observable as the shifting of 

the quasi-linear eigenfrequency depending on the different vibration ampli-

tudes between different test runs. The related theory of the so called Describing 

Functions, which approximately describe the transfer characteristics of nonlin-

earities, can be found in (Gelb & Van der Velde, 1968). 

It has been mentioned in Section 1.4.1 that the Hilbert Transform (HT) enables 

the identification of the time series of time-varying parameters. This property 

has the fruitful outcome that the HT approach can be formulated in a nonpara-

metric form as well if the time-varying values are linked together to form RFS 

samples. This is proposed in (Feldman, 1994) for forced vibration experiments 

and in (Feldman, 1997) for measurements of free oscillations in a generalised 

form for strong nonlinearities with fastly varying frequency domain character. 

In (Kerschen, Worden, Vakakis, & Golinval, 2006) the basic equations of this 

algorithm are summarised, which are briefly reviewed in the following. Consid-
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er the 1DoF system from (1.16). Suppose that we directly measure the dis-

placement of the system during free oscillation, and that this time series can be 

described in form of a monocomponent harmonic signal with time-varying 

parameters. The oscillation is then defined by 

𝑧(𝑡) = 𝛬(𝑡) cos(𝛹(𝑡))     and    𝑧̃(𝑡) = 𝛬(𝑡) sin(𝛹(𝑡)), (1.17) 

where 𝑧̃(𝑡) is the Hilbert Transform of 𝑧(𝑡). Λ(t) and Ψ(t) denote the instanta-

neous amplitude and instantaneous phase respectively that can both be analyt-

ically calculated using the equations  

𝛬(𝑡) = √𝑧2 + 𝑧̃2    and    𝛹(𝑡) = tan−1 (
𝑧̃

𝑧
). (1.18) 

The instantaneous angular frequency, denoted by ω(t), is defined analytically as 

well by the expression 

𝜔(𝑡) = 𝛹̇(𝑡) =
𝑧𝑧̇̃ − 𝑧̇𝑧̃

𝑧2 + 𝑧̃2
 . 

(1.19) 

Using these quantities the time-varying coefficients from (1.16) can be calculat-

ed by the equations 

𝛿(𝑡) = −2
𝛬̇

𝛬
−

𝜔̇

𝜔
    and    𝛼2(𝑡) = 𝜔2 −

𝛬̈

𝛬
− 𝛿

𝛬̇

𝛬
 . 

(1.20) 

This finally leads to the instantaneous samples of the elastic and dissipative 

restoring force in the form 

𝑓𝐸(𝑡) = 𝛬𝑚𝛼2    and    𝑓𝐷(𝑡) = 𝜔𝛬𝑚𝛿, (1.21) 

where m denotes the mass of the oscillator that, as previously mentioned, has 

to be available a priori. The forced vibration version of the HT approach 

(Feldman, 1994) is in contrast to the above discussed free vibration method 

restricted to symmetric nonlinearities. For general nonlinearities the HT ap-

proach is only applicable if free oscillation measurements are available. 
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Restoring Force Surface Method 

The idea of the Restoring Force Surface Method (RFSM) is very simple and 

intuitive. Based on equation (1.11) the restoring forces, denoted by fj(t) for the 

jth DoF, can explicitly be calculated at every measurement time step using the 

formula 

[𝑓𝑗(𝑡)]𝑁×1
= −𝐌𝐯̇ + 𝐌𝐁𝐮 . (1.22) 

Using the time signal of the state vector x, RFS sampling points can be directly 

generated for every time step. Due to its simplicity and the fact that it introduc-

es no restrictions regarding the RFSs that are identifiable, this method has 

found numerous implementations in the literature. In (Crawley & Aubert, 

1986) and (Peifer, Timmer, & Voss, 2003) the RFSM based identification of 

1DoF structures is presented. The latter paper also addresses the optimal 

choice of smoothing for the a posteriori parametric fitting of the RFS. The 

errors-in-variables (EIV) problem, that arises from the noisiness of the meas-

ured x, is mentioned as well, however, without taking it into account in the 

analysis. The RFSM is used for the identification of a nonlinear wire rope in 

(Kerschen, Lenaerts, & Golinval, 2001). In (Park & Kim, 1994) the performance 

of the RFSM is compared to a frequency domain method based on substructur-

ing for two mechanical structures including Coulomb friction. The method is 

applied for a multiple DoF spacecraft in (Noël, Kerschen, & Newerla, 2012), 

where the underlying linear system is identified prior to the RFSM. The im-

portance of proper experiment load case for the identification of coupled RFSs 

is revealed in (Link, Boeswald, Laborde, Weiland, & Calvi, 2011). Measurements 

of monocomponent harmonic oscillation only cover a single ellipse of the state 

space. To overcome this, sine wave excitation with consequently increased 

magnitude or stochastic excitation are suggested. In (Lenaerts, Kerschen, 

Golinval, Ruzzene, & Giorcelli, 2004) the RFSM is compared to a Wavelet Trans-
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form (WT) based parametric approach for the identification of nonlinear damp-

ing characteristics of a single mass oscillator. 

A more empirical nonparametric representation of the system nonlinearities is 

called the Expanded Phase Space, where the three-dimensional trajectories, 

given by displacement (z), velocity (v) and acceleration (𝐯̇), are considered 

(Volkova, 2013), (Volkova, 2011), (Volkova, 2010). These trajectories are 

strongly related to the RFSs and for the free oscillations of a 1DoF system they 

directly result in a mass-proportional RFS. 

The main challenge of this method is obvious: it implies that time signals of 

both the complete state vector (z and v) and all accelerations (𝐯̇) are available. 

This can be achieved by either measuring all mentioned quantities or by gener-

ating the missing values through numerical integration or differentiation. While 

the latter can cause significant calculation errors, the former leads to complex, 

expensive or, in many cases, technically impossible measurement setups. 

Parallelly measuring all required signals can also cause relative phase shift 

between different quantities due to the necessary application of different 

sensor types. A restriction of the RFSM arises from equation (1.22), namely that 

only one equation per DoF is provided by the algorithm. From this it follows 

that only one RFS per degree of freedom is identifiable, i.e. the approach is only 

applicable to processes, where coupling between DoFs is restricted to the 

inertia matrix M, q.v. equation (1.11). Furthermore, the method implies the a 

priori knowledge of M. Detailed discussions on these difficulties and re-

strictions can be found in the previously cited literature on the RFSM. 

Optimal Transformations 

In (Voss, Rust, Horbelt, & Timmer, 2003) a nonparametric approach based on 

the Optimal Transformations technique is presented. This is a probabilistic 

method, where the RFCs and RFSs are determined in form of so called “optimal 
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transformations” of the states and their derivatives, which are found by the 

maximisation of the correlation between the transformed states. These maxi-

miser functions can be estimated in a nonparametric way using the Alternating 

Conditional Expectation algorithm (ACE). A weakness of this method arises in 

case of strong noise contamination of the measurements (Voss, Rust, Horbelt, & 

Timmer, 2003). This is mainly due to the fact that the nonmeasured state 

derivatives have to be generated numerically, which leads to the same difficul-

ties as in case of the RFSM. The technique is implemented in a two-step algo-

rithm in (Voss & Kurths, 1997) for time-delay systems, where multiple process 

time-delays are determined in addition to the nonlinear RFSs. 

Method of State Dependant Parameters 

The State Dependant Parameter (SDP) technique, which is based on optimal 

recursive estimation, is proposed in (Young, 2000). The method is derived as an 

extension of the technique of Time Variable Parameters (TVP). The restoring 

forces are described by time-varying linear coefficients and their time deriva-

tives, called “instrumental variables”, which are introduced as augmented 

states. Similar to the case of the HHT algorithm the time-varying parameter 

values are linked to the corresponding system state values to form RFS samples 

at every measurement time step. The approach addresses systems, where the 

dynamics can be given by an implicit algebraic equation of the form 

𝐲(𝑖) = 𝐡(𝐲(𝑖 − 1), … , 𝐲(𝑖 − 𝑛𝑆), 𝐮(𝑖 − 1),… , 𝐮(𝑖 − 𝑛𝑆)) , 
(1.23) 

where the system is defined as a relationship between the current and previous 

values of the measurement. Therefore, the only internal states of the a priori 

model are the additionally introduced instrumental variables, which are de-

scribed by a Generalised Random Walk (GRW) model. To avoid the necessity of 

fast parameter convergence, previously discussed in Section 1.4.1, an appropri-

ate iterative sorting of the measurement time series is carried out prior to the 

identification. This solution crucially implies a system model in form of algebra-
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ic equations, i.e. (1.23). In (Young, 2000) the method is implemented for the 

identification of the RFCs of single input single output systems. The capability 

of the technique to identify coupled RFSs is mentioned in (Young & Garnier, 

2006). 

Summary of nonparametric methods 

The main practical advantage of nonparametric approaches can be described as 

follows. On the one hand, if one prefers to determine models to gain insight to 

the underlying mechanisms in the system, the model selection is much easier in 

the case of nonparametric methods. For the selection, one has to answer ques-

tions regarding the nonlinearity, such as "Does it affect the elastic or the dissi-

pative behaviour?", "Is it symmetric or asymmetric?" or "Is it smooth or non-

smooth?". It is much easier to provide answers by looking at a point cloud 

representing the local RFS than by looking at the global system behaviour in the 

form of measurement signals. On the other hand, if one is satisfied with black-

box models given by general mathematical functions, a relatively high number 

of parameters can be used to achieve quality results without computational 

problems because the global parameter estimation is now reduced to separate 

curve or surface fitting problems. As an extreme case one can completely resign 

the a posteriori characterisation, which results in Model on Demand (MOD) 

solutions (Ljung, 2010). During the fusion of the a priori model with the meas-

urements only a few time-varying fitting parameters are introduced. The 

number of these parameters does not depend on the complexity of the nonline-

arities involved in the RFSs that are to be estimated. This results in general a 

priori system models that are typically simpler than the ones needed in para-

metric algorithms. 

There is a risk of over fitting during the a posteriori characterisation of the 

RFSs due to the high resolution and possible noisiness of the RFS point clouds 
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representing them. This can be overcome by applying proper probabilistic 

fitting and smoothing algorithms, which is discussed in Section 2.3. 

1.5 Objective of the thesis 

In the previous sections several aspects of the identification of nonlinear sys-

tems have been discussed. It has been shown that nonparametric methods have 

some noticeable advantages compared to parametric ones especially if no a 

priori knowledge of the system nonlinearities is available. However, from 

Section 1.4.2 it becomes clear that there is no state of the art nonparametric 

approach that is both suitable for the identification problem formulated in 

Section 1.3 without restrictions and fulfils the requirements from Section 1.1 at 

the same time. The frequency domain techniques require specific kinds of 

excitation of the system during the experiments and have difficulties in case of 

multiple DoF systems. The SDP approach is not compatible with dynamic 

systems given by differential equations. The RFSM fits the problem formulation 

from Section 1.3, it can be deployed for arbitrary types of excitation, it can 

identify general coupled RFSs and it is computationally simple at the same time, 

which makes it an extremely powerful technique. Unfortunately, the fact that it 

requires the time series of both the state vector and its derivatives and that it 

offers no possibility for the additional identification of the inertia matrix, 

represents a major drawback. 

Using master-slave synchronisation between the virtual model and the real 

system for parametric identification of nonlinearities (in form of an augmented 

nonlinear Kalman Filter) is a well known technique with several published 

implementations (q.v. Section 1.4.1). However, the potential of this method for 

nonparametric identification, to the author’s knowledge, has not yet been 

investigated in the literature. The current study is dedicated to explore this 

possibility with the objective of establishing an identification framework that 
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exhibits all the advantageous properties of the RFSM but does not suffer from 

its drawbacks described above. 

1.6 Kalman Filter 

The current thesis presents a synchronisation-based nonparametric identifica-

tion framework. It is based on the theory of nonlinear Kalman Filters, which is 

briefly summarised in the current section. It begins with the general theory of 

observers in Subsection 1.6.1, which is followed by a short overview of nonlin-

ear probabilistic transformations in Subsection 1.6.2. These are crucial ele-

ments of nonlinear Kalman Filters that are briefly presented in Subsection 

1.6.3. 

1.6.1 Observers and synchronisation 

The observation of dynamic systems is an important field of control theory. 

Without knowing the initial state, an observer is able to reconstruct the time 

history of a dynamic system’s state vector based on the given system input u 

and the measured output y. An observer realises a master-slave synchronisa-

tion using the system model given by (1.1) as the slave and the measured real 

system as the master. Such observers are essential parts of model predictive 

control and synchronisation algorithms of mechatronic systems (Nijmeijer & 

Angeles, 2003). The crucial relationship between observers and synchronisa-

tion is discussed in (Nijmeijer & Mareels, 1997). In (Santoboni, Pogromsky, & 

Nijmeijer, 2003) similar theory is presented for partially observable systems. 

An observer is generated through the modification of the process equation (1.1) 

by the introduction of the error between the real measurement signal and its 

estimated value given by (1.2). This error is called the synchronisation residual. 

The most convenient way of introducing this residual is using an additive linear 

correction term, which leads to a nonlinear observer of the form 
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𝐱̇̂ = 𝐚(𝐱̂, 𝐮) + 𝐊𝑛×𝑛𝑦
(𝐲 − 𝐲̂), (1.24) 

𝐲̂ = 𝐡(𝐱̂, 𝐮), (1.25) 

where K is the synchronisation gain matrix, and the "hat" symbol denotes 

estimates of the specific values. The gain matrix has to be chosen as a function 

of time in a way that the state estimation error converges to zero over time, i.e. 

𝐊(𝑡) ∋ lim
𝑡→∞

(𝐱(𝑡) − 𝐱̂(𝑡)) = 𝟎 . (1.26) 

The existence of a time sequence of K that fulfils (1.26) implies the observabil-

ity of the system. This is ensured by the observability criterion, which can be 

formulated as a criterion for the rank of the observability matrix O (Hedrick & 

Girard, 2013), (Nijmeijer & Mareels, 1997): 

𝐎𝐱0,𝐮0
≔ [[

∂L𝐚
0(ℎ1)

∂𝐱
, ⋯ ,

∂L𝐚
0 (ℎ𝑛𝑦

)

∂𝐱
] ,⋯ , [

∂L𝐚
𝑛−1(ℎ1)

∂𝐱
,⋯ ,

∂L𝐚
𝑛−1 (ℎ𝑛𝑦

)

∂𝐱
]], (1.27) 

where Lia denotes the Lie derivative of order i with respect to the process 

vector function a (q.v. Appendix A), and hj denotes the jth element of the meas-

urement vector function h. If O has a full rank n, then the system given by (1.1) 

and (1.2) is locally observable at {x0,u0}. According to (Hedrick & Girard, 2013) 

a physical explanation of this criterion is given by the Taylor series 

[

𝐲
𝐲̇
⋮

𝐲(𝑛−1)

]

𝐱,𝐮0

= [

𝐲
𝐲̇
⋮

𝐲(𝑛−1)

]

𝐱0,𝐮0

+ 𝐎𝐱0,𝐮0
T (𝐱 − 𝐱0) + 𝐞HOT , (1.28) 

where eHOT refers to the error due to non-zero higher order terms. Therefore, 

the observability criterion ensures that (1.28) can approximately be solved for 

x in a local neighbourhood of x0. Practically speaking this means that x can be 

extracted from the time history of y. Notice that according to (1.28) the estima-

tion of x is possible using less measurement signals than its dimension, i.e. for 
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n>ny, because an observer takes advantage of the expected dynamic behaviour 

of the system given by (1.1). In case of linear time-invariant (LTI) systems O is a 

constant matrix. Hence, for such systems the local criterion directly ensures 

global observability. 

1.6.2 Probabilistic transformation of random variables 

Since real life’s measured signals are inevitably corrupted by noise (q.v. Section 

2.2.1), the probabilistic variation of the injected measurement y is carried over 

to the estimated state variables and the estimated measurements through the 

observer equations (1.24) and (1.25) respectively. Hence, in order to be able to 

calculate the optimal time sequence of K that takes into account the random 

nature of the observer, the theory of transforming the mean and the variance of 

random variables has to be discussed first. The problem to be solved is the 

calculation of the mean vector y and covariance matrix PY of a random vector Y 

based on the known mean vector x and covariance matrix PX of the random 

vector X, where Y is given by a general nonlinear transformation as Y=h(X). 

(Without the loss of generality the chosen notation corresponds to the meas-

urement equation (1.25).) For the sake of convenience a compact notation is 

proposed in the current thesis that represents a general probabilistic transfor-

mation, denoted by Φ, which gives an approximate solution to the above de-

fined problem: 

[𝐲̂ 𝐏̂𝐘 𝐏̂𝐗𝐘] = Φ𝐡
𝑘(𝐱, 𝐏𝐗). 

(1.29) 

The additional result PXY is the cross-covariance matrix that describes the 

stochastic correlation between X and Y. The superscript k indicates the type of 

the algorithm that is used to carry out the above transformation. A great num-

ber of such algorithms have been developed in the past sixty years. For a gen-

eral function h all of them can only provide an estimate of the exact solution, 

which is indicated by the “hat” symbol in the notation of the resulting quanti-
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ties. In the following the three most widespread algorithms are briefly summa-

rised, two of which play a major role in the current study. 

The most intuitive and general algorithm is the Monte Carlo Transformation, 

denoted by k=MCT. In this technique a finite number nMC of samples, denoted 

by 𝓧𝑗, are generated randomly according to x and PX. These samples are then 

transformed into samples of Y, denoted by 𝓨𝑗, using (1.30). Given these sam-

ples the equations (1.31), (1.32) and (1.33) are used to estimate the quantities 

of interest (Meyer, 2003). 

𝓨𝑗 = 𝐡(𝓧𝑗) (1.30) 

𝐲̂ =
1

𝑛MC

∑ 𝓨𝑗

𝑛MC

𝑗=1

 (1.31) 

𝐏̂𝐘 =
1

𝑛MC − 1
∑(𝓨𝑗 − 𝐲̂)(𝓨𝑗 − 𝐲̂)

T

𝑛MC

𝑗=1

 (1.32) 

𝐏̂𝐗𝐘 =
1

𝑛MC − 1
∑(𝓧𝑗 − 𝐱)(𝓨𝑗 − 𝐲̂)

T

𝑛MC

𝑗=1

 (1.33) 

The MCT is a universal algorithm. The samples of X can be generated from 

arbitrary probability distributions, not only from those that can be approxi-

mately described by x and PX (i.e. approximately Gaussian distributions). As nMC 

increases, the estimates converge to the exact solutions for any kind of h, even 

for those that represent complex black-box algorithms. The only drawback is 

the slow statistical convergence that requires a large number of samples to 

achieve good result quality, which makes this approach computationally expen-

sive. 
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In contrast to the MCT the Linearised Transformation, denoted by k=LinT, is an 

extremely simple algorithm. Using the equations (1.34), (1.35), (1.36) and 

(1.37) it performs a direct transformation without generating random samples 

(Simon, 2006). 

𝐇 =
𝜕𝐡

𝜕𝐗
|
𝐱
 (1.34) 

𝐲̂ = 𝐡(𝐱) (1.35) 

𝐏̂𝐘 = 𝐇𝐏𝐗𝐇
T (1.36) 

𝐏̂𝐗𝐘 = 𝐏𝐗𝐇
T (1.37) 

If h is a linear function and the distribution of X is Gaussian, then this approach 

gives the exact solution to the transformation. The less these two assumptions 

hold, the less accurate the technique becomes, therefore, it is only suitable for 

weak nonlinearities. Supposing that the Jacobian matrix of h, denoted by H, is 

easy to calculate (e.g. can be given analytically instead of being approximated 

via finite differences), then the LinT is computationally very cheap, since the 

function h is only calculated once in contrast to the MCT, where it is calculated 

nMC times. 

The Unscented Transformation (Julier & Uhlmann, 1997), denoted by k=UT, is a 

relatively new approach that managed to fill in the gap between the LinT and 

the MCT. It is suitable for much stronger nonlinearities than the LinT. Similar to 

the MCT it is derivative free (computation of H is not needed) and is also based 

on samples of the distribution of X. However, these samples, the so called 

“sigma points”, are given by the deterministic formula (1.38) instead of being 

generated randomly, which enables a much faster statistical convergence. The 

number of sigma points is fixed to nUT=2n+1, where n is the dimension of X. The 

rest of the algorithm consists of the transformation of the sigma points (1.39) 

and the analysis of the sampled statistics via (1.40), (1.41) and (1.42) similar to 
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the MCT. The coefficients 𝑝𝑖.𝑗
UT are essential tuning parameters. Their calculation 

is summarised in Appendix D. 

[𝓧1 𝓧2 ⋯ 𝓧𝑛UT] ≔ [ 𝐱 𝐱 − 𝑝1
UT√𝐏𝐗 𝐱 + 𝑝1

UT√𝐏𝐗 ] 
(1.38) 

𝓨𝑗 = 𝐡(𝓧𝑗) (1.39) 

 𝐲̂ = ∑ 𝑝2.𝑗
UT ∙ 𝓨𝑗

𝑛UT

𝑗=1

 (1.40) 

𝐏̂𝐘 = ∑ 𝑝3.𝑗
UT(𝓨𝑗 − 𝐲̂)(𝓨𝑗 − 𝐲̂)

T

𝑛UT

𝑗=1

 (1.41) 

𝐏̂𝐗𝐘 = ∑ 𝑝3.𝑗
UT(𝓧𝑗 − 𝐱)(𝓨𝑗 − 𝐲̂)

T

𝑛UT

𝑗=1

 (1.42) 

1.6.3 Kalman Filters for nonlinear systems 

If one has to address measurements corrupted by significant noise, the algo-

rithm of choice for the calculation of the synchronisation gain K is the Kalman 

Filter (KF). This observer takes into account the uncertainty in the measure-

ment equation (1.2) characterised by the measurement covariance matrix of 

size ny×ny, denoted by R, as well as the uncertainty of the process equation (1.1) 

given by the discrete time process covariance matrix Q, which is of size n×n. 

This turns the observer into a stochastic estimator that estimates the state and 

measurement vectors as probabilistic quantities X and Y. These are described 

by their mean values x and y, their covariance matrices PX and PY as well as 

their cross-covariance matrix PXY given as a joint distribution in the compact 

form 
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[𝐗
𝐘
]~ ([

𝐱
𝐲] , [

𝐏𝐗 𝐏𝐗𝐘

𝐏𝐗𝐘
T 𝐏𝐘

]) . (1.43) 

If finding the most probable time sequence of x, i.e. the minimisation of tr(PX), 

is chosen as objective, then the Kalman gain, defined as 

𝐊𝑖 = 𝐏𝐗𝐘,𝑖𝐏𝐘,𝑖
−1 , (1.44) 

is the optimal solution to the estimation problem. The easiest way of deriving 

this elegantly simple formula is from a least squares point of view (Simon, 

2006), however, a dynamic programming formulation is also possible (Cox, 

1964). The so called continuous-time Kalman Filter, also known as the Kalman-

Bucy filter (Kalman & Bucy, 1961), is of the form (1.24). However, due to the 

additive correction term, the observer equations can also be formulated in a 

two-step predictor-corrector form, which is of practical importance. In real life 

applications, the measurement signal is only available at discrete time points. 

To account for this, equation (1.24) is split into two recursively repeated steps. 

The first step is the time update (1.45) (also known as the prediction step), 

where the system state is integrated from the measurement time step i-1 to the 

time step i using equation (1.1) and an appropriate integration scheme. This 

results in the a priori state estimate, denoted by 𝐱̂−. The second step is the 

measurement update (1.48) (also called the correction step), where the current 

synchronisation residual (𝐲𝑖 − 𝐲̂𝑖) is used to correct the predicted state, result-

ing in the a posteriori state estimate 𝐱̂+, which is the final observer result for 

the ith time step. This approach is the so called discrete-time Kalman Filter 

(Kalman, 1960), which (using the notation proposed in Section 1.6.2) is given 

by the following compact recursive algorithm: 

[𝐱̂𝑖
− 𝐏̂𝐗,𝑖

− 𝐏̂𝐗𝐗,𝑖
− ] = Φ

𝐱̂𝑖−1
+ +∫ 𝐚d𝑡

𝑡𝑖
𝑡𝑖−1

𝑘 (𝐱̂𝑖−1
+ , 𝐏̂𝐗,𝑖−1

+ ) + [𝟎 𝐐 𝟎] (1.45) 

[𝐲̂𝑖 𝐏̂𝐘,𝑖 𝐏̂𝐗𝐘,𝑖] = Φ𝐡
𝑘(𝐱̂𝑖

−, 𝐏̂𝐗,𝑖
− ) + [𝟎 𝐑 𝟎] (1.46) 
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𝐊𝑖 = 𝐏̂𝐗𝐘,𝑖𝐏̂𝐘,𝑖
−1 (1.47) 

[𝐱̂𝑖
+ 𝐏̂𝐗,𝑖

+ ] = [𝐱̂𝑖
− + 𝐊𝑖(𝐲𝑖 − 𝐲̂𝑖) 𝐏̂𝐗,𝑖

− − 𝐊𝑖𝐏̂𝐘,𝑖𝐊𝑖
T] (1.48) 

In order to start the algorithm the initial a posteriori distribution of X has to be 

defined via 𝐱̂0
+ and 𝐏̂𝐗,0

+ . Furthermore, Q and R need to be given according to the 

expected uncertainties. The proper choice of these four user defined quantities 

is discussed in Chapter 2.2.4. The recursion is continued until the last meas-

urement time step is processed. Although the main result of the KF is the esti-

mated mean of the state vector 𝐱̂𝑖
+, the additional covariance output 𝐏̂𝐗,𝑖

+  can be 

used as well as an indicator of the expectable error and further statistical 

properties of the estimated state (q.v. Section 2.3.1). 

If the system functions (a and h) are nonlinear, the accuracy of the KF depends 

on the type k of the probabilistic transformation Φ, for which only approximate 

solutions exist for general nonlinearities (q.v. Section 1.6.2). Several different 

solutions to this problem have been developed over the past five decades since 

the Kalman Filter was proposed. In (Gelb, Kasper, Nash, Price, & Sutherland, 

2001), (Simon, 2006) and (Hartikainen, Solin, & Särkkä, 2011) different selec-

tions of these algorithms are derived, discussed and compared and in (Moreno 

& Pigazo, 2009) many advanced application studies and special KF formula-

tions are reported. Due to their simple formulation combined with good estima-

tion accuracy, two specific algorithms have gained notable attention in the 

literature and in practical applications. The first one is the "classical" Extended 

Kalman Filter (EKF) that uses k=LinT. It is, therefore, only suitable for weak 

nonlinearities and approximately Gaussian distributions (q.v. Section 1.6.2). 

The second one is a relatively new technique called the Unscented Kalman 

Filter (UKF) (Julier & Uhlmann, 1997), which is based on k=UT. Hence, it can 

better account for strong system nonlinearities than the EKF, because they do 

not have to be linearised (q.v. Section 1.6.2). It can be formulated in an en-
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hanced square-root form, called the Square-Root Unscented Kalman Filter (SR-

UKF). The algorithm remains the same from the analytical point-of-view, how-

ever, the SR-UKF increases the numerical stability of the UKF and slightly 

reduces its computational time. For an exhaustive yet compact description of 

the algorithm the reader is referred to (van der Merwe & Wan, 2001). Different 

types of Sigma-Point Kalman Filters (SPKF) are presented in (van der Merwe & 

Wan, 2004) as general formulations of the UKF. If the nonlinearities become so 

severe that the accuracy of the UKF is not sufficient anymore, the Particle Filter 

(PF) can be deployed as a universal solution (Simon, 2006), (Chatzi & Smyth, 

2009). This technique basically uses k=MCT (with some additional algorithm 

refinements), which on the one hand can handle arbitrary nonlinearities, but on 

the other hand leads to an enormous increase of computational costs (q.v. 

Section 1.6.2). 

A special offline extension of the KF, the so called Kalman Smoother (KS), can 

be used to enhance result quality by involving not only past and present but 

also future measurement samples in the estimation algorithm for a given time 

step (Hartikainen, Solin, & Särkkä, 2011), (Simon, 2006), (Nicklas, 1989). The 

Fixed-Interval RTS Smoother (named after Rauch, Tung and Striebel) is a 

computationally efficient global form of the KS, which involves the whole 

available measurement time interval to generate an optimal estimate of the 

state vector’s complete time series. It is defined as a backward recursion over 

time that is carried out in addition to the standard KF run based on its results. 

According to (Hartikainen, Solin, & Särkkä, 2011) its algorithm is given as 

𝐊𝑖
S = 𝐏̂𝐗𝐗,𝑖+1

− (𝐏̂𝐗,𝑖+1
− )

−𝟏
 (1.49) 

[𝐱̂𝑖
S 𝐏̂𝐗,𝑖

S ] = [𝐱̂𝑖
+ + 𝐊𝑖

S(𝐱̂𝑖+1
S − 𝐱̂𝑖+1

− ) 𝐏̂𝐗,𝑖
+ + 𝐊𝑖

S(𝐏̂𝐗,𝑖+1
S − 𝐏̂𝐗,𝑖+1

− )(𝐊𝑖
S)

T
] (1.50) 
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The so called smoother gain is thereby denoted by KS, whereas the smoothed 

estimates of the state vector’s mean and covariance are denoted by 𝐱̂𝑖
S and 𝐏𝐗,𝑖

S  

respectively. 

One difficulty with the application of KFs is their sensitivity to model accuracy. 

The rigorous solution to this problem is the introduction of every uncertain 

model parameter as state variable, which has been implemented in the current 

thesis (q.v. Section 2.1.2). Yet, a lot of research has been invested in robustified 

KF algorithms that are designed to handle model errors automatically. Such an 

adaptive KF is discussed in (Pulido Herrera & Kaufmann, 2010) that adjusts Q 

and R based on the statistics of the synchronisation error. The Schmidt-Kalman 

Filter, which can compensate particular model uncertainties, is presented in 

(McBurney, 1990). A more sophisticated way of robust filtering is the H∞ ap-

proach (Simon, 2001), (Simon, 2006). These algorithms offer an easy way of 

compensating model errors, hence, they are very useful in monitoring and 

target tracking applications. However, these techniques do not attempt to 

identify the model’s deviation from the real system, therefore, they are not 

suitable for the present study. 

1.7 Curve and surface fitting 

As discussed in Section 1.4.2, nonparametric identification approaches generate 

a point cloud of samples for each RFS while the measurement signals are pro-

cessed. In most of these techniques, such as the one that is proposed in the 

current thesis, the noisiness of the measured signals is carried over to the RFS 

samples. Therefore, the a posteriori application of curve and surface fitting 

approaches is required to achieve noisefree RFCs and RFSs. In order to clarify 

the advantages and challenges of the fitting algorithms, which are implemented 

in the present study (q.v. Section 2.3.2 and 2.3.3), a brief overview of existing 

approaches is given in the current section. 
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To illustrate the problem let us consider the case of fitting an elastic RFC, i.e. 

cE(z) according to (1.9), using noisy samples given by the coordinate pairs 

{zi,fE,i} (q.v. Section 1.4.2). In general the sample coordinates are corrupted by 

correlated noise, which is described by the noise covariance matrix, denoted by 

PcE. The curve fitting problem can be formulated as the minimisation of the 

Weighted Total Squares error eWTS defined as 

𝐞𝑐𝐸,𝑖 = [
𝑧𝑖

𝑓𝐸,𝑖
] − [

𝑐̂𝐸
−1(𝑓𝐸,𝑖)

𝑐̂𝐸(𝑧𝑖)
] , (1.51) 

𝑒𝑐𝐸
WTS = ∑𝐞𝑐𝐸,𝑖

T𝐏𝑐𝐸,𝑖
−1𝐞𝑐𝐸,𝑖

𝑛𝑠

𝑖=1

 , (1.52) 

where 𝑐̂𝐸 and 𝑐̂𝐸
−1 denote the estimate of the true RFC and its inverse function 

respectively. The function 𝑐̂𝐸 is an optimal estimate in Weighted Total Least 

Squares (WTLS) sense if it is the minimiser of 𝑒𝑐𝐸
WTS. 

The literature offers different solutions to the WTLS estimation problem. It is 

often referred to as the Errors-In-Variables (EIV) problem, which clearly differ-

entiates it from the ordinary Least Squares (LS), where the abscissas (inde-

pendent variables) of the observations are assumed to be noisefree. The first 

group of these methods are parametric. They imply an assumption of the 

analytical form of the function of interest, whose parameters are estimated by 

the procedure. A solution of this kind in a standard TLS form based on Singular 

Value Decomposition (SVD) is proposed in (Golub & Van Loan, 1980), where 

abscissas and ordinates are equally weighted. (Markovsky & Van Huffel, 2007) 

presents a hierarchical comparison of parametric WTLS methods regarding the 

special cases of weighting that they take into account. The general WTLS prob-

lem however has no direct analytical solution. An iterative technique based on a 

modified Recursive Weighted LS (RWLS) formulation is proposed in (Amiri-

Simkooei & Jazaeri, 2012), where the abscissas and the ordinates of the obser-

vations are arbitrary weighted, they cross-covariance (i.e. they correlation) is 
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however not taken into account. The second group of fitting methods carry out 

a nonparametric regression, i.e. they seek an optimally smoothed version of the 

observed dataset without the assumption of a global analytical form of the 

characteristic. This smoothed dataset itself forms the solution to the fitting 

problem, i.e. 𝑐̂𝐸  in the current case, as a piecewise defined function that is given 

in form of a lookup table. An overview of such regression approaches is given in 

(Ljung, 2010). One of them is referred to as Local Polynomial Regression (LPR), 

where the smoothed version of each observation is generated via a polynomial 

regression involving a weighted group of observations in its neighbourhood. A 

local LS formulation of this technique is discussed and compared with smooth-

ing splines in (Fox, 2002) for 2D curves and 3D surfaces. A TLS extension of the 

approach, called the Improved Moving Least Squares (IMLS) method, is pro-

posed in (Zhang, et al., 2013), where however only the special case of uncorre-

lated error is considered. 

1.8 Thesis outline 

Chapter 2 presents the Kalman Filter-based nonparametric method in detail 

that represents an alternative solution to the identification problem defined in 

Section 1.3. This is followed by virtual identification examples of one and three 

DoF nonlinear mechanical systems in Chapter 3 to demonstrate the effective-

ness of the proposed technique. Based on these examples several implementa-

tion properties of the approach are investigated and advantages as well as 

challenges in comparison to state of the art methods are discussed. 

In Chapter 4 the combination of the proposed technique with parametric 

approaches is investigated in order to carry out a full system identification that 

includes the a priori defined uncertain parameters of the system as well. These 

parameters are assumed to be known in Chapter 2 and 3. 
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Finally in Chapter 5 real-life implementation is presented on a 1DoF and a 3DoF 

mechanical system to prove the reliability of the algorithm under realistic 

conditions. The main outcomes of the thesis and open questions are then 

summarised in Chapter 6. 
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2 Nonparametric identification 
of RFSs 

In the following a synchronisation-based nonparametric identification method 

is presented that allows the reconstruction of the noisefree RFSs according to 

the problem formulation in Section 1.3. In this chapter we assume that the 

inertia matrix M and the input matrix B are a priori known. This assumption is 

relaxed later in Chapter 4. The main idea of the current approach was proposed 

in (Kenderi & Fidlin, 2014). This chapter presents the final stage of the com-

plete workflow including the extension towards coupled RFSs, detailed mathe-

matical descriptions and several algorithm refinements. The workflow consists 

of two major steps: 

• The first step is the fusion of the measurement signals with the a pri-

ori system model. It is carried out by means of the Kalman Filter 

based synchronisation of the virtual model to the real system. This 

results in recursive optimal estimates of properly chosen instrumen-

tal variables (augmented states) and their variances, which are di-

rectly related to local RFS samples. The establishment of the particu-

lar nonlinear Kalman Filter is presented Section 2.1 and 2.2. 

• The second step begins with the probabilistic transformation of the 

estimated time series of the augmented states into RFS samples. This 

is followed by optimal nonparametric fitting, which results in 

noisefree RFCs and RFSs. These elements of the approach are derived 

in Section 2.3. 

At the end of the chapter, in Section 2.4, all steps of the presented algorithm are 

summarised in a compact form. 



Nonparametric identification of RFSs 

40 

2.1 Ensuring observability 

2.1.1 Practical aspects 

System identification relies on the close co-operation between virtual model-

ling and experiment design. Therefore, it is inevitable to take some practical 

aspects of vibration testing into account. Displacement, velocity and accelera-

tion (or their corresponding rotational equivalents) are the commonly meas-

ured kinematic quantities in praxis for mechanical structures (Chaurasiya, 

2012). In Section 1.4 it is discussed that identification methods differ in the 

necessary measurement setup. Some methods require all measurement types 

at the same time. Other techniques have the advantage that they allow the use 

of only one of the mentioned quantities. Many of these techniques (e.g. frequen-

cy domain approaches) exhibit the nontrivial property that they are functional 

with one arbitrary measurement type. This chapter presents a synchronisation-

based nonparametric approach that provides the observability of the RFSs 

using only one arbitrary measured kinematic quantity, i.e. it exhibits the men-

tioned advantageous property as well. In order to point out, why this is so 

important, some basic aspects of choosing the proper measurement quantity 

for a vibration experiment are discussed in the following. An overview of these 

aspects can be found e.g. in (Harris & Piersol, 2002). They can be briefly sum-

marised as follows: 

• Displacement or strain measurement is suitable for low frequency 

range, where the magnitude of velocity and acceleration is typically 

low. Such relatively slow motions occur e.g. in civil engineering struc-

tures. This quantity should be chosen if exact positions are particular-

ly important, e.g. possible collision of system components. 

• Velocity measurement is ideal for mid frequency range. It typically re-

sults in a more uniform spectrum than displacement or acceleration. 
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This quantity is preferred for acoustic investigations, since sound 

pressure is proportional to the normal velocity of the vibrating sur-

face. 

• Acceleration measurement is the quantity of choice for high frequency 

range, where the magnitude of displacement or velocity signals is too 

small to be measured accurately. This is the case for most oscillation 

phenomena in mechanical engineering, such as noise issues. Typically 

this measurement type is preferred if a transducer of small size and 

small mass is required, and contactless methods are not deployable, 

since accelerometers are mostly smaller than other transducers. Ad-

ditionally, typical accelerometers do not require a reference point 

and therefore usually lead to simple measurement setups. 

• Force measurement differs from the previous measurement types in 

that it utilises a kinetic quantity. Such sensors have to be placed into 

the force flow of the system. This means that in case of measuring re-

sponse forces inside a structure the transducer itself becomes a part 

of the mechanical system and can significantly alter its behaviour. 

Due to this difficulty, such sensors are mainly used to measure the ex-

ternal excitation force u acting on the structure during the experi-

ment. 

It should be mentioned that in the vibration trajectories of strongly nonlinear 

systems, which are of particular interest in the present study, higher harmonics 

of the main oscillation frequency are present. Due to this, transducers for 

higher frequency domains can be advantageous for the identification of such 

systems even if the dominant vibration frequency is rather low. Therefore, 

accelerometers have specific importance in case of nonlinear mechanical 

structures. However, on the whole it is clear that a flexible identification meth-

od should accommodate all possible kinematic measurement quantities. 
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Another important practical aspect of system identification is the unavoidable 

presence of noise in measured signals. This natural imperfection of measure-

ments has a major influence on the way the estimated system states are to be 

handled in an observer algorithm. This topic is discussed later in Section 2.2.1, 

since it is not directly related to observability. 

2.1.2 The a priori model of choice 

As already proposed in the previous sections the aim of the present work is to 

establish an observer-based approach that solves the identification problem 

formulated in Section 1.3 in a nonparametric form. To achieve this according to 

Section 1.6.1 the process vector function a in equation (1.24) has to be brought 

into a form that provides the observability of RFS coordinate triplets {z,v,f}i for 

all kind of kinematic measurement types. In the following, this observability 

problem is investigated for the 1DoF case. Afterwards, the results are general-

ised for multiple DoF systems. That means, a system of the form 

 [
𝑧̇
𝑣̇
] = [

𝑣
−𝑚−1𝑐(𝑧, 𝑣) + 𝑏𝑢], (2.1) 

𝑦 = ℎ(𝑤, 𝑢), 𝑤 ∈ {𝑧, 𝑣, 𝑣̇}, (2.2) 

is considered first, where z and v are the deformation and rate of deformation 

coordinates of the system’s RFS respectively. The excitation in the form of force 

or acceleration is denoted by u, and b is the input coefficient. The mass of the 

1DoF oscillator is denoted by m, and is assumed to be a priori known through-

out this chapter. A first idea could be to make some assumptions about the form 

of c(z,v) and hope that using (1.24) the system states will synchronise to their 

real values. In that case the missing third coordinate of the RFS sample triplets 

(i.e. f) could be calculated using the RFSM method from Section 1.4.2. Unfortu-

nately this would not be the case, which becomes clear if we take a look at the 

observer equations (1.24) and (1.25) in detail. Notice that the system describ-
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ing functions (a and h) appear in the equations without the “hat” symbol, i.e. 

the basic concept of the observer implies that these functions are assumed 

correctly. Otherwise the state vector can not converge to its real values perfect-

ly. In case of uncertain (unknown) parameters in the system functions, the 

solution to this problem is the so-called state augmentation technique. This 

introduces all uncertain parameters as additional state variables to achieve a 

correct model assumption and to let the observer estimate all the uncertain 

values. Applying this approach, the augmented state vector, denoted by xa, will 

be of size na, where the number of unknown system parameters equals na-n. 

This is a well known technique for parametric system identification and for the 

estimation of time-varying system parameters with many successful implemen-

tations in the literature (q.v. Section 1.4.1). Based on this idea the simplest 

solution is to introduce the restoring force f as a state variable which leads to 

the process equation 

 [
𝑧̇
𝑣̇
𝑓̇
] = [

𝑣
−𝑚−1𝑓 + 𝑏𝑢

0
], (2.3) 

where the augmented state vector directly represents the RFS sample triplets. 

Since no information about the expected time-variation of the new state varia-

ble is available a priori, it is modelled as a constant state. However, via proper 

tuning of the observer, which is discussed later in Section 2.2.4, the estimates of 

such states can be updated fast enough to track their oscillations. But to ensure 

convergence according to (1.27) the observability has to be verified first by 

taking a look at the observability matrices of the system for the three possible 

measurement types: displacement (z), velocity (𝑣) and acceleration (𝑣̇), which 

are of the following form: 

𝐎|𝑦=𝑧 = [

1 0 0
0 1 0

0 0 −
1

𝑚

] , 𝐎|𝑦=𝑣 = [

0 0 0
1 0 0

0 −
1

𝑚
0
] ,𝐎|𝑦=𝑣̇ = [

0 0 0
0 0 0

−
1

𝑚
0 0

]. (2.4) 



Nonparametric identification of RFSs 

44 

Recall from (1.28) that the jth row of O represents a linearised relation be-

tween the jth state variable and the measurement. This means that according to 

(2.4) the restoring force f remains observable for all measurement cases. How-

ever, for y=𝑣 the observability of z is lost, and for y=𝑣̇ both z and v become 

unobservable. Therefore, the following conclusion can be drawn about directly 

introducing the restoring force as state variable: 

• It provides observability of RFS samples for the special case of dis-

placement measurements. 

• It enables the observation of the time history of f for all measurement 

types, which is useful if one is interested in the internal forces of a sys-

tem without directly relating them to phase plane coordinates. 

However, according to the reasoning in Section 2.1.1 this is not a satisfactory 

result in the current case. Therefore, a more advantageous system model is 

needed that introduces no restrictions on the measured kinematic quantity. As 

a solution to the problem the following form of the process equation is pro-

posed: 

[

𝑧̇
𝑣̇
𝑠̇
𝑑̇

] = [

𝑣
−𝑚−1(𝑠𝑧 + 𝑑𝑣) + 𝑏𝑢

0
0

], (2.5) 

where s and d denote time-varying effective stiffness and effective damping 

coefficients respectively with a priori unknown time history, which we intro-

duce as state variables to be estimated by the observer. Due to this modification 

the f coordinate of the RFS samples is not directly observed anymore. So called 

“instrumental variables” (Young, 2000) have been introduced instead that 

allow the a posteriori reconstruction of the actual quantity of interest, in this 

particular case given by (2.6). Notice that the modified formulation even allows 

the direct reconstruction of the separate elastic and dissipative restoring forces 
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(fE and fD respectively) in case of additive RFSs using the equations (2.7). This is 

of practical advantage, which is discussed in detail in Section 2.3. 

𝑓𝑖 = 𝑠𝑖𝑧𝑖 + 𝑑𝑖𝑣𝑖  
(2.6) 

𝑓𝐸,𝑖 = 𝑠𝑖𝑧𝑖    ,   𝑓𝐷,𝑖 = 𝑑𝑖𝑣𝑖    
(2.7) 

In the following further properties of the defined model are discussed in detail, 

which starts with the analysis of the observability matrices. For the three 

measurement types the matrices consist of repeated columns. Therefore, for 

the sake of simplicity their main structure is given in equations (2.8), (2.9) and 

(2.10) for displacement, velocity and acceleration measurements respectively, 

while the analytical expressions of their column vectors oj are listed separately 

in equations (2.11), (2.12) and (2.13). In contrast to (2.4) these matrices exhibit 

a coupled structure with more than one non-zero entries in their rows. This 

makes the investigation of their symbolic rank difficult. However, in the single 

measurement case the observability matrix is quadratic, hence, its non-zero 

determinant can be used as a proof of its full rank. Equations (2.14), (2.15) and 

(2.16) show the symbolic determinants of the matrices (2.8), (2.9) and (2.10) 

respectively. 

𝐎|𝑦=𝑧 = [𝐨1 𝐨2 𝐨3 𝐨4] (2.8) 

𝐎|𝑦=𝑣 = [𝐨2 𝐨3 𝐨4 𝐨5] (2.9) 

 𝐎|𝑦=𝑣̇ = [𝐨3 𝐨4 𝐨5 𝐨6] (2.10) 

𝐨1 = [

1
0
0
0

] , 𝐨2 = [

0
1
0
0

] , 𝐨3 =

[
 
 
 
 
 
 
 −

𝑠

𝑚

−
𝑑

𝑚

−
𝑧

𝑚

−
𝑣

𝑚]
 
 
 
 
 
 
 

, 𝐨4 =

[
 
 
 
 
 
 
 
 

𝑠𝑑

𝑚2

𝑑2 − 𝑠𝑚

𝑚2

𝑑𝑧 − 𝑣𝑚

𝑚2

2𝑑𝑣 + 𝑠𝑧 − 𝑏𝑢𝑚

𝑚2 ]
 
 
 
 
 
 
 
 

 
(2.11) 
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𝐨5 =

[
 
 
 
 
 
 
 
 

𝑠2𝑚 − 𝑠𝑑2

𝑚3

2𝑠𝑚𝑑 − 𝑑3

𝑚3

2𝑑𝑣𝑚 + 2𝑚𝑠𝑧 − 𝑏𝑢𝑚2 − 𝑧𝑑2

𝑚3

2𝑠𝑣𝑚 + 2𝑑𝑏𝑢𝑚 − 3𝑑2𝑣 − 2𝑑𝑠𝑧

𝑚3 ]
 
 
 
 
 
 
 
 

 (2.12) 

𝐨6 =

[
 
 
 
 
 
 
 
 

𝑠𝑑3 − 2𝑠2𝑑𝑚

𝑚4

𝑠2𝑚2 − 3𝑠𝑑2𝑚 + 𝑑4

𝑚4

2𝑚2𝑠𝑣 + 2𝑚2𝑑𝑏𝑢 − 4𝑚𝑑𝑠𝑧 − 3𝑚𝑑2𝑣 + 𝑑3𝑧

𝑚4

2𝑠𝑚2𝑏𝑢 − 2𝑠2𝑧𝑚 − 6𝑑𝑠𝑣𝑚 − 3𝑏𝑢𝑑2𝑚 + 4𝑑3𝑣 + 3𝑑2𝑠𝑧

𝑚4 ]
 
 
 
 
 
 
 
 

 (2.13) 

 

det(𝐎|𝑦=𝑧) = −𝑚−3[𝑠𝑧2 + 𝑚𝑣2 + 𝑑𝑧𝑣 − 𝑧𝑚𝑏𝑢] (2.14) 

det(𝐎|𝑦=𝑣) = −𝑚−5𝑠 [(𝑚𝑏𝑢 − 𝑠𝑧)2 + 𝑚𝑠𝑣2 + 𝑠𝑧𝑑𝑣 − 𝑑𝑣𝑚𝑏𝑢] (2.15) 

 det(𝐎|𝑦=𝑣̇) = −𝑚−7𝑠3[(𝑚𝑏𝑢 − 𝑠𝑧)2 + 𝑚𝑠𝑣2 + 𝑠𝑧𝑑𝑣 − 𝑑𝑣𝑚𝑏𝑢] (2.16) 

Due to the modification of the process model introduced in (2.5), the determi-

nant is symbolically non-zero for all three measurement types, which makes 

observability available in all cases. However, because the process model has 

become nonlinear, the determinants describe local criteria. They are functions 

of variables and hence can become zero at certain variable combinations. The 

right-hand sides of the equations are written as products of a mass- and effec-

tive stiffness-dependent factor and an expression within square brackets. The 

first leads to the criterion that s is not allowed to be zero if velocity or accelera-

tion is measured. The effect of zero effective stiffness becomes clear by taking a 

look at the first row vectors of the observability matrices, i.e. the first entries in 
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the column vectors oj. Except for o1, which only appears in O for y=z, these 

entries become zero for s=0 leading to the loss of the displacement’s observa-

bility. This means that for y=𝑣 and y=𝑣̇ the virtual model can only synchronise 

with the measured system as long as a symbolic connection between the deriv-

ative of the state vector and z exists in the process equation. On the other hand 

this is actually the reason why the introduced model allows observability for 

yϵ{𝑣, 𝑣̇}, because a symbolic relationship between the restoring force and z has 

been introduced. 

Getting back to the determinants of the observability matrices, the expressions 

inside the square brackets still need to be discussed. In order to decide under 

which conditions these expressions can become zero, a few algebraic manipula-

tions are necessary. Let us begin with the case y=z. From the second row of the 

process equation (2.5) the equality (2.17) can be derived. 

𝑚𝑏𝑢 = 𝑚𝑣̇ + 𝑑𝑣 + 𝑠𝑧 (2.17) 

Using (2.17) to replace mbu and carrying out some simplifications the symbolic 

determinant from (1.19) becomes 

det(𝐎|𝑦=𝑧) = −𝑚−3[ 𝑚𝑣2 − 𝑧𝑚𝑣̇ ] . (2.18) 

For further analysis let us assume that the system’s behaviour can be described 

locally as a harmonic oscillation with an instantaneous amplitude Λ and an 

instantaneous angular frequency ω, which leads to 

𝑧 = 𝛬 ∙ sin(𝜔𝑡), (2.19) 

𝑣 = 𝜔 ∙ 𝛬 ∙ cos(𝜔𝑡), (2.20) 

𝑣̇ = −𝜔2 ∙ 𝛬 ∙ sin(𝜔𝑡). (2.21) 

This assumption is only reasonable for s>0. Therefore, from this point on the 

symbolic investigation of observability is restricted to the subclass of RFSs that 
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have locally positive effective stiffness over the phase plane range of interest. 

According to the locally harmonic assumption (2.18) turns into 

det(𝐎|𝑦=𝑧) = −𝑚−3[ 𝑚𝜔2𝛬2{sin2(𝜔𝑡) + cos2(𝜔𝑡)} ] , (2.22) 

which is apparently never equal to zero as long as the system is in motion. 

Therefore, the system (including its RFS) is always observable for y=z. This 

actually satisfies a natural requirement, since the unmodified process model 

(2.3) already exhibited this property. 

The other two measurement cases, i.e. yϵ{𝑣, 𝑣̇}, can be analysed together, since 

the expressions inside the square brackets in (2.15) and (2.16) are the same. To 

do so, we take advantage of the following two equality expressions. To get the 

equality (2.23) the square of the second row of the process equation (2.5) is 

taken and then rearranged. The equality (2.24) follows from the same equation 

after the multiplication of both sides by dv and subsequential rearrangement of 

its terms. 

(𝑚𝑏𝑢 − 𝑠𝑧)2 = 𝑚2𝑣̇2 + 2𝑑𝑣𝑚𝑏𝑢 − 2𝑠𝑧𝑑𝑣 − 𝑑2𝑣2 (2.23) 

𝑑𝑣𝑚𝑏𝑢 − 𝑠𝑧𝑑𝑣 − 𝑑2𝑣2 = 𝑑𝑣𝑚𝑣̇ (2.24) 

After successive substitution of the right-hand sides of (2.23) and (2.24) for 

their left-hand sides in the expression inside the square bracket in the symbolic 

observability determinants for yϵ{𝑣, 𝑣̇}, it becomes 

𝑚2𝑣̇2 + 𝑚𝑠𝑣2 + 𝑑𝑣𝑚𝑣̇ . (2.25) 

Applying again the locally harmonic system description using (2.20) and (2.21), 

the expression (2.25) turns into 

𝑚𝜔2𝛬2{ 𝑚𝜔2sin2(𝜔𝑡) + 𝑠 cos2(𝜔𝑡) − 𝑑𝜔 cos(𝜔𝑡) sin(𝜔𝑡) } . (2.26) 

Only the part inside the curly bracket is discussed further, since the multipliers 

outside the bracket never become zero as long as the system is in motion. After 
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deploying some trigonometric equalities (q.v. Appendix A) and carrying out 

some symbolic simplifications, the expression within the curly bracket becomes 

1

2
(𝑠 + 𝑚𝜔2) −

1

2
√(𝑠 − 𝑚𝜔2)2 + (𝑑𝜔)2 sin(2𝜔𝑡 + 𝜃) . (2.27) 

Since we consider the case of s>0, the expression (2.27) can not become zero as 

long as the positive constant term is greater than the amplitude of the harmonic 

term, i.e. as long as (2.28) holds, which after some algebraic manipulations 

reduces to the criterion (2.29). 

√𝑠2 − 2𝑠𝑚𝜔2 + 𝑚2𝜔4 + 𝑑2𝜔2 < 𝑠 + 𝑚𝜔2 
(2.28) 

𝑑2

4𝑚
< 𝑠 (2.29) 

This means that for yϵ{𝑣, 𝑣̇} the instantaneous effective stiffness is not only not 

allowed to be zero, but it has to be higher than a certain level, which is defined 

by (2.29). The formula can also be rearranged into a criterion for the instanta-

neous effective damping as 

|𝑑|

2√𝑠𝑚
< 1 . (2.30) 

Notice that the left-hand side of (2.30) is the linearised damping ratio and its 

maximum allowed value is exactly the “critical damping” (Harris & Piersol, 

2002), which means that in case of yϵ{𝑣, 𝑣̇} observability is only provided if the 

locally linearised system can exhibit free oscillation. 

Now that the form of the general a priori model has been established for the 

1DoF case, it can be generalised for the multiple DoF system from Section 1.3, 

which leads to an observable (and hence by synchronisation identifiable) form 

of the NDoF process equation: 
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[
 
 
 
𝐳̇𝑁×1

𝐯̇𝑁×1

𝐬̇𝑁×1

𝐝̇𝑁×1]
 
 
 
= [

𝐯𝑁×1

−𝐌𝑁×𝑁
−1 [diag(𝐬𝑁×1)𝐳𝑁×1 + diag(𝐝𝑁×1)𝐯𝑁×1] + 𝐁𝑁×𝑛𝑢

𝐮𝑛𝑢×1

𝟎𝑁×1

𝟎𝑁×1

]. (2.31) 

The entries s and d are the vectors of the N time-varying effective stiffness and 

damping coefficients respectively, therefore, the augmented state vector, 

denoted by xa, is of size na=2n. Because observability is a property of the system 

and not of the process equation alone, the measurement equation also has to be 

defined in a way that allows the observation of the augmented states. Since the 

effective stiffness and damping coefficients are unknown states, the a priori 

model has no information about the oscillatory modes of the system. Due to this 

the process equation does not carry a clear connection between DoFs, hence, 

the necessary measurement setup can be formulated as 

𝐰𝑁×1 ≔ [𝑤1 , … ,𝑤𝑁]T ∋ 𝑤𝑗 ∈ {𝑧𝑗 , 𝑣𝑗, 𝑣̇𝑗}, 
(2.32) 

𝐲𝑁×1 = 𝐡(𝐰,𝐮) ∋ rank (
∂𝐡

∂𝐰
) = 𝑁, (2.33) 

where w is an N element vector consisting of wj, which can arbitrarily be cho-

sen to be the 0th, 1st or 2nd time derivative of the jth element of the displace-

ment (deformation) vector z. The measurement vector y is of size ny=N, which 

indicates that the necessary number of measurement signals that ensures the 

observability of the augmented state vector is equal to the number of DoFs in 

the mechanical structure. Additionally, the measurement equation has to be 

solvable for w, which is guaranteed by the rank criterion included in (2.33). 

2.1.3 Discussion on the chosen model 

Considering the aspects from Section 2.1.1 the a priori system model intro-

duced in Section 2.1.2 is suitable for the nonparametric identification of RFSs. It 

has a very simple structure that provides observability using one measured 
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arbitrary mechanical quantity per DoF. Compared to directly observing the 

restoring force (2.3) the introduced model (2.5) provides observability for 

velocity and acceleration measurements as well. The only price to be paid for 

this property is that the system equations become nonlinear functions of the 

augmented states. The introduced bilinear structure c(z,v):=sz+dv however can 

be considered as a weak nonlinearity, which remains in the same form regard-

less of the complexity of the RFS that is to be identified. Despite of all these 

fruitful properties the following three minor drawbacks still remain: 

(1) The loss of observability for velocity and acceleration measurements in 

case of effective stiffness values that does not satisfy (2.29) requires 

additional state constraints in the observer (q.v. Section 2.2.5), and 

causes complications for some rare types of RFSs, where the effective 

stiffness changes its sign at some points of the phase plane. 

(2) In case of the identification of coupled RFSs two instrumental variables 

(s and d) are used to estimate one quantity of interest (f). 

(3) The fact that s and d are assumed as constant states in the process 

equation requires fast convergence of the observer over time. 

Since the present model choice seems rather intuitive, the question arises from 

natural suspicion, whether there is a better model formulation that can get rid 

of the mentioned difficulties. This topic is discussed briefly in the following. 

(1) Is it possible to provide observability for zero effective stiffness in case of 

velocity and acceleration measurements? 

The difficulty with s=0 is not a specific property of the current approach. It is a 

consequence of the fact that a state (in this case z) can not be directly observed 

from the measurement of its time derivatives (in this case 𝑣 or 𝑣̇). Therefore, it 

can be concluded that a symbolic connection between the time derivative of the 

state vector and z is always required for yϵ{𝑣, 𝑣̇} in order for z to be observable. 
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Since in the current problem formulation (q.v. Section 1.3) the RFSs carry the 

only connection between the internal forces and the displacements, it is not 

possible to find another form of the a priori model that would overcome this 

restriction, because the connection is always lost if the elastic restoring force 

becomes zero. It might be possible to find a model structure that would allow 

the effective stiffness to get nearer to zero than (2.29). However, numerical 

investigations (q.v. Chapter 3) show that this criterion can successfully be 

accounted for by adding constraints to the observer algorithm. Considering the 

1DoF case, the following practical formula can be derived from (2.29) to ap-

proximate the lowest observable value of the instantaneous stiffness s based on 

the approximated value of the system’s average linearised stiffness E(s) and its 

effective linearised damping ratio, denoted by 𝒟: 

𝒟2 ∙ E(𝑠) < 𝑠 . (2.34) 

The dynamic behaviour of typical machines and machine components corre-

sponds to averaged damping ratios between 0.01 and 0.1 (Dresig & Fidlin, 

2014), (Schlecht, 2009). This means according to (2.34) that in case of typical 

engineering structures the lowest allowed local effective stiffness s of the 

nonlinear RFS is about 0.012 to 0.12 times the average stiffness of the system. 

This enables that even a system including backlash, which indicates zero stiff-

ness in a significant amplitude range, can be identified with good accuracy 

using the constrained observer technique (q.v. Section 3.1.2). Furthermore if 

such minor drawbacks are not affordable, one can still use displacement meas-

urements as an alternative for even better result quality without restrictions on 

the effective stiffness. 

(2) Is it possible to reduce the number of instrumental variables? 

Although the initial a priori process model (2.3) only provides observability for 

displacement measurement, it seems to have an advantage in comparison to 

the final model structure (2.5): It needs only one augmented state f to generate 
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samples of coupled RFSs. This property would indeed reduce the computational 

costs of the identification algorithm. To discuss this topic let us consider the 

following three alternative exploratory RFS models with only one augmented 

state: 

𝑐(𝑧, 𝑣) ≔ 𝑠𝑧 , (2.35) 

𝑐(𝑧, 𝑣) ≔ 𝑠𝑣 , (2.36) 

𝑐(𝑧, 𝑣) ≔ 𝑠(𝑧2 + 𝜏2𝑣2) , (2.37) 

where τ is a positive time constant that is necessary to match the units of z and 

v. In this case s does not represent an effective stiffness any more. It is an in-

strumental variable that relates the restoring force to the other state variables 

of the system. The models (2.35) and (2.36) are of the simplest form one can 

think about. Unfortunately they suffer from a major drawback: As already 

mentioned in Section 2.1.2, the main challenge of the presented nonparametric 

approach is that the observer algorithm has to track the fast variation of the 

augmented states over time caused by the nonlinearities of the observed sys-

tem. Considering mechanical structures with both elastic and dissipative prop-

erties in case of c(z,v):=sz the value of s approaches infinity every time z ap-

proaches zero in order to compensate the missing dissipative force. The same 

holds for c(z,v):=sv as v approaches zero while the elastic force is not equal to 

zero. This behaviour introduces undesirable artificial oscillations in s, which 

makes it impossible for the observer to track its value with acceptable accuracy. 

In fact even the direct estimation of the restoring force, i.e. c(z,v):=f, is disad-

vantageous in this regard, since, while the oscillations of s and d in (2.5) arise 

solely from nonlinearities, the time history of f is already oscillatory for a 

vibrating linear system. To avoid this problem one can take the RFS model 

(2.37), where s never approaches infinity, since the square of the distance from 

the origin of the phase plane, i.e. z2+v2, remains positive as long as the system is 

in motion. However, the observability investigation of this a priori model 
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structure shows that the system is technically unobservable for yϵ{𝑣, 𝑣̇}. A 

detailed symbolic observability analysis of all three exploratory models can be 

found in Appendix C, which reveals that actually all of them suffer from major 

observability issues. There might be some more complex RFS model structures 

that can solve these issues. However, complex (strongly nonlinear) a priori 

models cause significantly increasing computational time of observer algo-

rithms, which makes a simple model such as (2.5) highly attractive. This im-

portant aspect is discussed in Section 1.6.3 and 2.2.3. 

(3) Is it possible to support the observer convergence by a better model? 

The chosen a priori process model (2.5) assumes constant effective stiffness 

and effective damping. This assumption is obviously not true, since the aim of 

the current thesis is to identify nonlinear systems. This means that the conver-

gence of the augmented states to their real values has to be achieved complete-

ly via the correction term of the observer equation (1.24), which requires 

proper tuning of the observer algorithm (q.v. Section 2.2.4). Although this is the 

typical model choice for the augmented states if no a priori information about 

their variation over time is available (Lourens, Reynders, De Roeck, Degrande, 

& Lombaert, 2012), the literature on target tracking offers an alternative ap-

proach that can enhance observer convergence. The main idea of this approach 

is to introduce higher order time derivatives of the existing augmented states 

as additional instrumental variables (Simon, 2006), (Wu, Lin, Han, & Li, 2010), 

(Young, 2000). Therefore, it needs to be clarified why the current model does 

not utilise this option. The idea of introducing time derivatives of the augment-

ed states is based on the expectation that the higher the order of the derivative 

is, the smoother its time variation gets, and therefore the easier it becomes to 

track its values. This is a justified expectation for approximately polynomial 

time variations. However, the current augmented states (s and d) exhibit 

oscillatory behaviour in case of vibrating systems including nonlinear RFSs. The 

introduction of additional time derivatives is obviously not useful for oscillato-
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ry variables, since differentiation does not result in smoother characteristics in 

such cases. 

The above reasoning aims to justify the author’s choice of the a priori model. 

2.2 Observer design for 
nonparametric estimation 

In Section 2.1 an appropriate form of the system equations, i.e. (2.31) and 

(2.33), has been derived that ensures the observability of the augmented state 

vector. The current section presents the observer algorithm that is able to 

synchronise the derived system model to the measurement signals in order to 

generate RFS samples. This mainly consists of generating a time sequence of 

the synchronisation gain K that satisfies (1.26) using a nonlinear observer (q.v. 

Section 2.2.3 and 2.2.4), but also includes some further algorithm refinements 

(q.v. Section 2.2.5 and 2.2.6). Since the synchronisation of a virtual model to 

noisy real-life measurements essentially changes the way the state space model 

needs to be treated, some supplementary discussions (q.v. Section 2.2.1 and 

2.2.2) are necessary prior to the investigation of the observer algorithm itself. 

These discussions explain the author’s choice of the implemented type of 

observer, the Extended Kalman Filter, and they introduce the probabilistic 

point-of-view that plays a crucial role throughout the rest of the thesis. 

2.2.1 Probabilistic aspects 

Recall from equation (1.24) that due to the correction term in the observer 

equation the measurement signal y is embedded into the modified equation of 

the virtual system, which leads to two main effects. On the one hand, the pro-

cess model is recursively corrected by the information about the real system 

that is carried in y. Unfortunately, on the other hand, the once deterministic 
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virtual model is also affected by the undesired part of y, which is called the 

measurement noise vector, denoted by r. This undesired signal component is 

caused by a chain of deterministic processes that arise from the experiment 

setup and are in most cases unknown and extremely complex. Therefore, it is 

justified (and also convenient) to consider them as one overall random white 

noise process that is described by its bias vector and its covariance matrix. 

Significantly biased measurements can not be handled by the synchronisation 

algorithm. They can drastically decrease result quality or even cause observer 

divergence. In most situations y can be kept unbiased by proper experiment 

setup. If it is not the case, then if the bias of the noise is known (or detectable 

based on a priori expectations on the measurement signals), then it can be 

compensated before y is injected into the observer. Unfortunately this does not 

hold for the covariance, that is practically speaking the actual noisiness of the 

signal. A priori noise-filtering the signal can alter the useful higher harmonic 

components, which one investigating strongly nonlinear systems is especially 

interested in. Hence, unbiased noise is an inevitable part of every measured 

signal and has to be accounted for in the observer algorithm. Since today’s 

equipment record digitally sampled signals, the superimposed noise compo-

nent is considered as a discrete-time process defined by its discrete-time 

covariance matrix, denoted by R. In most cases it is sufficient to assume a so 

called “white noise”, which implies two main properties of the noise process: 

The spatial distribution of its samples has to be unbiased and normal (Gaussi-

an), denoted as r~N(0,R), whereas the sequence of its samples has to be uncor-

related over time. Noise processes with certain correlation over time, so called 

“coloured noise”, can also be handled by the observer algorithm (Simon, 2006), 

however, this topic is not considered in the current thesis. 

The presence of noise implies a crucial change in the way state variables are 

handled. The probabilistic variation of the injected measurement is carried 

over to the virtual system, hence, the augmented state vector itself becomes a 
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probabilistic (random) vector X, described by its mean vector x and its covari-

ance matrix PX. One single observed value of X at a certain time point i is only a 

sample of its probability distribution, denoted by 𝓧𝑖. The mean and the covari-

ance can only be estimated based on a finite number ns of these samples using 

the following two formulas (Meyer, 2003). 

𝐱 ≈
1

𝑛𝑠

∑𝓧𝑖

𝑛𝑠

𝑖=1

 (2.38) 

𝐏𝐗 ≈
1

𝑛𝑠 − 1
∑(𝓧𝑖 − 𝐱)(𝓧𝑖 − 𝐱)T

𝑛𝑠

𝑖=1

 (2.39) 

The so called statistical convergence of such a sampling procedure is illustrated 

in Figure 2.1 for a normally distributed scalar state X with a mean value of 1 

and different variance values PX, denoted as X~N(1,PX). It can be seen that the 

eRS% error (q.v. Appendix B) of the mean value strongly depends on the true 

value of the variance. 

 

Figure 2.1: Statistical convergence of the mean (left) and variance (right) of the normal-

ly distributed scalar variable X for different variance values. Convergence is assessed by 

the eRS% deviation (q.v. Appendix B) from the true values averaged over 30 sampling 

runs. 
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The error of the variance is independent from its true value, however, its con-

vergence is much slower than that of the mean value. But for all that, the most 

important message of Figure 2.1 is that regardless of the performance of the 

observer algorithm itself the expectable result quality (e.g. of the identified 

RFS) has a natural lower bound that increases as the number of available 

samples decreases. As a rule of thumb at least 1000 samples are necessary to 

reach an error level of an estimated mean value at the order of magnitude of 

1 %. 

2.2.2 Comparison of probabilistic transformations 

In order to properly account for noisy measurement signals according to the 

requirements from Section 1.1, the Kalman Filter (KF) is chosen in the present 

thesis to synchronise the a priori virtual model (derived in Section 2.1.2) to the 

real system. As discussed in Section 1.6.2 and 1.6.3, the choice of the imple-

mented probabilistic transformation Φ crucially determines the accuracy of the 

KF in case of nonlinear models, such as the derived a priori model. The current 

section presents a short comparison of the three types of Φ from Section 1.6.2 

to justify the author’s choice of type LinT for nonparametric identification in 

Section 2.2.3. To do so, let us consider a particular random vector X with the 

following properties: 

𝐗 = [
𝑋1

𝑋2

𝑋3

]~N(𝐱 = [
1
2
2
] , 𝐏𝐗 = [

0.15 0.15 0.15
0.15 0.3 0.2
0.15 0.2 0.3

]) (2.40) 

The performance of the three algorithms is compared in Figure 2.2 and Figure 

2.3 for the bilinear Y=X1X2 and trilinear Y=X1X2X3 nonlinear transformations 

respectively based on the mean y and the variance PY of the transformed ran-

dom variable Y. The MCT curves represent the averaged results of 30 inde-

pendent Monte Carlo sampling runs. 
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Figure 2.2: Estimation error of the mean (left) and variance (right) of the random 

variable Y, given by the transformation Y=X1X2. A MCT with 3∙105 samples is taken as the 

reference for the eRS% deviation (q.v. Appendix B). 

 

Figure 2.3: Estimation error of the mean (left) and variance (right) of the random 

variable Y, given by the transformation Y=X1X2X3. A MCT with 3∙105 samples is taken as 

the reference for the eRS% deviation (q.v. Appendix B). 

Notice that the mean value of Y determined by LinT deviates from its true value. 

Since the calculation of the mean value is completely deterministic in case of 

LinT, q.v. Equation (1.35), this shows that simply ignoring the noisiness of 
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measurement signals can cause systematic error of the identified system prop-

erties in case of nonlinear models. Regarding the comparison of the different 

algorithms it can be seen that for the particular nonlinearities the MCT requires 

approximately 104 samples to reach the performance of the UT, whereas the UT 

requires less than 10 sigma points due to the low dimension of X. Hence, it can 

be concluded that for problems of small and middle dimension (dim(X)<100) 

with moderate nonlinearities (and approximately Gaussian distributions) the 

UT is superior over the MCT. Furthermore, it can be observed that, though the 

UT always provides better results than the LinT, in case of the bilinear function 

the LinT shows good performance as well. This is a very important conclusion, 

since the a priori system model introduced in Section 2.1.2 includes solely 

bilinear nonlinear terms. 

2.2.3 Implementation of the Kalman Filter 

In this section the implementation of the KF (q.v. Section 1.6.3) for the general 

system model, proposed in Section 2.1.2, is presented. The procedure estimates 

the probabilistic augmented state vector Xa at every measurement time step 

with the following structure: 

𝐗𝑎 = [

𝐙
𝐕
𝐒
𝐃

]~(𝐱𝑎 = [

𝐳
𝐯
𝐬
𝐝

] , 𝐏𝐗𝑎 = [

𝐏𝐙 𝐏𝐙𝐕 𝐏𝐙𝐒 𝐏𝐙𝐃

∙ 𝐏𝐕 𝐏𝐕𝐒 𝐏𝐕𝐃

∙ ∙ 𝐏𝐒 𝐏𝐒𝐃

∙ ∙ ∙ 𝐏𝐃

]) , (2.41) 

where xa and PXa denotes the mean vector and the covariance matrix of Xa 

respectively. The recursive algorithm is based on the general KF formulation 

given by the equations (1.45), (1.46), (1.47) and (1.48). Therefore, arbitrary 

types of the probabilistic transformation Φ can be deployed. Of course the 

choice of Φ has to be made carefully according to the complexity of the a priori 

system model. In the present study the EKF (i.e. type LinT) and the SR-UKF (i.e. 

type UT) have been tested. It is shown in further chapters, that the proposed 

approach is designed to enable the use of the EKF regardless of the nonlineari-
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ties involved in the RFSs that are to be identified, as long as the measurement 

equation (2.33) is linear. This is explained by Section 2.2.2, where it is shown 

that the bilinear nonlinearity of the process model (2.31) can be described with 

good accuracy using Φ of type LinT. Deploying the EKF results in a computa-

tionally efficient algorithm, which is in accordance with the requirements from 

Section 1.1. The SR-UKF is only used as a reference for the EKF in order to 

prove its sufficiency. Nevertheless, the SR-UKF should still be kept in mind as 

an alternative for the cases, when: 

• the measurement function (h) is significantly nonlinear; 

• the a priori model (2.31) has to be extended with additional strongly 

nonlinear terms; 

• the system model is given in form of a black-box code (generated, e.g., 

by some software for dynamic simulation), which does not allow the 

symbolic calculation of the Jacobians that are needed for the EKF; 

• the model development is in exploratory phase, where the ease of 

model changes is more important than computational time. 

Technically the complete recursive algorithm of the EKF is presented in Section 

1.6.2 and 1.6.3. However, one step of the recursion, namely the time update 

(1.45), needs some extra discussion. Carrying out the probabilistic transfor-

mation of the augmented state vector through the integral of the process equa-

tion (2.31) has to be treated carefully. The first non-trivial task is the transfor-

mation of the mean vector (1.35), i.e. the time-integration itself. This integral in 

general can not be given in an explicit form and therefore has to be approxi-

mated using a proper integration scheme. Though the chosen general model is 

linear between measurement time steps (since s and d are only changed in the 

correction step), in order to keep the algorithm flexible and consistent with the 

simulation of the numerically generated measurements of nonlinear systems 

(q.v. Chapter 3 and 4), it is reasonable to apply an integration strategy that is 

designed for nonlinear systems. A huge number of such integration algorithms 
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are available, and the optimal choice depends crucially on the structure of the 

system model (Walter, 2014). As long as the process model is given by relative-

ly simple ODEs, which holds for (2.31), a simple explicit Runge-Kutta (RK) 

algorithm is sufficient in most cases. Normally the higher the order of the RK, 

the larger the affordable integration step size becomes, and one is able to find 

an optimal order that results in the shortest possible integration time. This 

principle can not be applied for the KF, since the maximum allowed integration 

time step size is given by the sampling frequency of the measurement signals. If 

an experiment is carried out with the purpose of system identification, a fine 

resolution of the oscillations is advantageous, which typically leads to a meas-

urement sampling rate that is about ten to twenty times the highest expected 

frequency in the signal. Due to this, in most cases a relatively low order RK is 

sufficient to achieve good integration quality. Additionally it should be kept in 

mind that, since we attempt to observe nonlinear systems, the true value of s 

and d will change over time. This means that the a priori model diverges from 

reality during the integration time step, which reduces the value of a precise 

integration algorithm. Therefore, throughout the current study a third-order 

explicit Runge-Kutta integration scheme (RK3) is used, which leads to the 

following formula for the time update of the state vector’s mean in the EKF 

algorithm: 

𝐱̂𝑎,𝑖
− = 𝐱̂𝑎,𝑖−1

+ + ∫ 𝐚(𝐱̂𝑎 , 𝐮)d𝑡
𝑡𝑖

𝑡𝑖−1

≈ 𝐱̂𝑎,𝑖−1
+ +

∆𝑡(𝐚𝐼 + 4𝐚𝐼𝐼 + 𝐚𝐼𝐼𝐼)

6
 , (2.42) 

where Δt denotes the measurement sampling time and the terms aj are given as 

𝐚𝐼 ≔ 𝐚(𝐱̂𝑎,𝑖−1
+  , 𝐮𝑖−1) , (2.43) 

𝐚𝐼𝐼 ≔ 𝐚(𝐱̂𝑎,𝑖−1
+ + (∆𝑡𝐚𝐼)/2 , (𝐮𝑖−1 + 𝐮𝑖)/2) , (2.44) 

𝐚𝐼𝐼𝐼 ≔ 𝐚(𝐱̂𝑎,𝑖−1
+ − ∆𝑡𝐚𝐼 + 2∆𝑡𝐚𝐼𝐼 , 𝐮𝑖) . (2.45) 
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The second nontrivial task during the time update step of the EKF is the ap-

proximation of the transformed covariance matrix of the augmented state, 

which requires the Jacobian of the time integral of the process equation that 

(similar to the integral itself) in general can not be given exactly and therefore 

has to be approximated. To do so, an explicit algorithm based on the Jacobian of 

the process function, denoted by A, is deployed. According to the current a 

priori process model (2.31), A is of the form (2.46). It is apparently not a con-

stant matrix. Therefore, a trapezoidal formula of the form (2.47) has been 

introduced in the present study, which allows a good approximation of the 

Jacobian of the process function’s time integral. This Jacobian is then used for 

the transformation of the state covariance matrix during the time update in the 

EKF according to the linearised formula (1.36). 

𝐀𝑖 = [

𝟎 𝐈 𝟎 𝟎
−𝐌−𝟏diag(𝐬𝑖) −𝐌−𝟏diag(𝐝𝑖) −𝐌−𝟏diag(𝐳𝑖) −𝐌−𝟏diag(𝐯𝑖)

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

] (2.46) 

𝜕 (𝐱̂𝑎,𝑖−1
+ + ∫ 𝐚(𝐱̂𝑎 , 𝐮)d𝑡

𝑡𝑖
𝑡𝑖−1

)

𝜕𝐱𝑎

|

𝑖−1

≈ 𝐈 +
∆𝑡 (𝐀(𝐱̂𝑎,𝑖−1

+ ) + 𝐀(𝐱̂𝑎,𝑖
− ))

2
 (2.47) 

If the general process equation (2.31) has to be extended with strong nonline-

arities or additional algebraic equations (i.e. if one has to deviate from the 

problem formulation from Section 1.3) then the integration over time might 

require more sophisticated algorithms. These for e.g. can include event-

handling (Stamm, 2011) or can accommodate DAEs (Fischer, 2013). In such 

cases it is convenient to use the SR-UKF (instead of the EKF) in combination 

with a black-box system model that includes the appropriate integrator as well. 

Such models can be generated by most of the state of the art dynamic simula-

tion software. 
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2.2.4 Tuning for nonparametric identification 

So far the adaption of the general EKF equations to the particular a priori model 

has been presented (q.v. Section 2.2.3). As mentioned in Section 1.6.3, in order 

to run the EKF the initial a posteriori distribution of Xa has to be characterised 

via 𝐱̂𝑎,0
+  and 𝐏̂𝐗𝑎,0

+ , and the process and measurement discrete-time covariance 

matrices, i.e. Q and R, have to be defined as well. Let us start with the latter, 

which is a determinable property of the measurement signal. Ideally R should 

be available from specific noise analysis tests that have been carried out on the 

particular test rig. Since it is not always the case, the identification procedure 

has to be prepared for the determination of R from the same measurements 

that are used for the identification itself, i.e. y. To do so, in the current study the 

three-point Central Moving Average (q.v. Appendix E) of y, denoted by yCMA3, 

has been subtracted from its original values to generate an approximation of 

the noise sequence. This is then statistically analysed using the formula 

𝐑 ≈
3

2𝑛𝑠

∑(𝐲𝑖 − 𝐲𝑖
CMA3)(𝐲𝑖 − 𝐲𝑖

CMA3)
T

𝑛𝑠

𝑖=1

. (2.48) 

Although this is a quick and dirty solution, it proved to deliver sufficiently 

accurate estimates. The initial guess of the state vector, i.e. 𝐱̂𝑎,0
+ , can be used to 

involve any a priori knowledge about the states, therefore, it is defined as 

(2.49), where E(…) denotes the expectation operator. Especially the expected 

average stiffness and damping values, i.e. E(S) and E(D), can be advantageous 

to increase the initial convergence of the synchronisation. In case of oscillatory 

system behaviour, where the time average of displacements and velocities is 

approximately zero, it is reasonable to define E(Z0) and E(V0) as zero vectors. 

Since the initial correlation between the state variables is typically unknown, 

𝐏̂𝐗𝑎,0
+  can be defined as a diagonal matrix with variance values representing the 

range in which the specific initial state values are expected to be located. If the 

initial state is completely unknown, assuming a standard deviation of 100% of 
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the expected initial mean values proved to be a good choice. This leads to an 

initial state covariance matrix of the form (2.50), where the square operation 

denotes taking the square of each vector coordinate element-wise. Notice that 

even for symmetrical oscillatory behaviour E(Z2) and E(V2) will not be zero. 

This is important first, because the state covariance matrix is per definition 

always positive definite (and symmetric), and second, because zero variance 

would mean completely certain initial values of the corresponding states. 

𝐱̂𝑎,0
+ ≔ [ E(𝐙0)

T E(𝐕0)
T E(𝐒)T E(𝐃)T ]T (2.49) 

𝐏̂𝐗𝑎,0
+ ≔ diag([ E(𝐙2)T E(𝐕2)T E(𝐒2)T E(𝐃2)T ]) (2.50) 

Finally the process covariance matrix Q has to be defined. It remains as the only 

real tuning factor of the KF that has a crucial influence on the convergence of 

the synchronisation. It is a symmetric matrix of size na×na that describes the 

uncertainty of the corresponding na equations of the process model with re-

spect to their symbolic structure and constant parameters. The classical pur-

pose of an observer (and therefore of the KF as well) is to compensate the error 

between 𝐱̂𝑎,0
+  and the a priori unknown real initial state 𝐱𝑎,0. It implies a system 

model that is at least expected to be correct (regarding its structure and pa-

rameters). Under such conditions Q can theoretically be set to zero, and the 

virtual model’s behaviour, represented by the estimated measurement signal, 

will converge to the real system’s behaviour. Small non-zero diagonal values in 

Q can be used to “keep the KF alive”, i.e. to force the algorithm to keep on 

compensate deviations that are caused by unexpected modelling errors and 

measurement disturbances. These classical conditions are not satisfied in the 

current case. The instrumental variables, i.e. s and d, are expected to vary very 

quickly over time, which is however not described by the process model due to 

the a priori unknown dynamics. Therefore, an unusual tuning strategy has to be 

introduced in the present thesis, where the diagonal values of Q related to the 

augmented part of the state vector are set to high values to indicate the uncer-
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tainty of the corresponding rows of the process model. These diagonal values 

are tuned by the exponents qs and qd that allow the separate convergence 

adjustment of the instantaneous effective stiffness and damping respectively. In 

order to make the increase rate of the process uncertainty independent of the 

measurement sampling frequency, Q is set proportional to the sampling time 

step Δt. This leads to the following formula for the discrete time process covari-

ance matrix: 

𝐐 ≔ ∆𝑡 ∙ diag([ 𝟎1×𝑁 𝟎1×𝑁 10𝑞𝑠 ∙ E(𝐒2)T 10𝑞𝑑 ∙ E(𝐃2)T ]) . (2.51) 

In order to carry out the tuning, a filter convergence plot is proposed in the 

current study as a helpful tool for finding the proper values of qs and qd. To 

evaluate the convergence of the KF, the synchronisation residual is calculated 

over time in a normalised mean square (eMS) form. Due to the predictor-

corrector formulation of the KF, two different residuals with different results 

can be evaluated. The “prediction error”, denoted by ep, is calculated using the a 

priori estimate of the measurement 𝐲̂, whereas the “synchronisation error”, 

denoted by es, is determined by the a posteriori measurement estimate 𝐲̂+. As a 

reference, these errors are compared to the eMS form of R, called “measure-

ment error”, denoted by em. The precise definition of these error quantities 

according to Appendix B is given as 

𝑒𝑚 ≔ 𝑒𝑀𝑆
(𝐲−𝐲CMA3),𝐲

0,𝑖𝑚𝑎𝑥  , 𝑒𝑝 ≔ 𝑒𝑀𝑆𝐲̂,𝐲
𝑖−𝑛𝑠,𝑖  , 𝑒𝑠 ≔ 𝑒𝑀𝑆

𝐲̂+,𝐲

𝑖−𝑛𝑠,𝑖  . (2.52) 

The measurement error is calculated a priori using the complete measurement 

signal, whereas ep and es are calculated during the KF run as moving errors with 

a sample window size of ns, which should be set wide enough to average over 

all dominant oscillation frequencies of the measurement signal. The calculation 

of the vector 𝐲̂+ is not a standard component of the KF algorithm. It is carried 

out via an extra call of the measurement equation after the correction step 

(1.48), which has been implemented in the present study in order to enable 

some useful analysis features that are presented in the following. 
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If the system model is non-augmented or the state augmentation technique is 

used for the identification of constant or slowly varying parameters, the typical 

tuning of the KF is sufficient. It results in the synchronisation error converging 

to the measurement error, which provides a smooth noisefree estimate of the 

augmented states (q.v. Figure 2.4). The prediction error also converges to the 

measurement error, since the model is corrected over successive iterations and 

hence predicts accurate noisefree measurement values. This practice can be 

observed in (Wu & Smyth, 2007), (Chatzi & Smyth, 2009) and (Kolansky & 

Sandu, 2012), where constant parameters of mechanical systems are estimated 

using different types of nonlinear KFs. 

 

Figure 2.4: Classical tuning of the KF for the estimation of constant augmented states on 

the example of a virtual frequency sweep measurement of a 1DoF oscillator with con-

stant stiffness and damping. qs and qd have been set to -2. 

To demonstrate the necessity of an alternative tuning strategy for the current 

nonparametric problem formulation let us take the numerical example of the 

1DoF nonlinear oscillator from Section 3.1.1. Figure 2.5 depicts the result of 

applying the classical approach, i.e. tuning the synchronisation error to the 

level of the measurement error. Due to a priori unknown time-variation of the 

augmented states, the model is invalid at every time step of the KF run, and 
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therefore the prediction error remains higher than the measurement error. 

This strategy works as a low-pass filter acting on the estimated augmented 

states. In the present case this not only filters the measurement noise but also 

useful high-frequency information about the instantaneous stiffness and damp-

ing (q.v. Figure 2.5 right). Therefore, in the current study an optimised tuning is 

proposed to handle the oscillations of the augmented states. The KF is tuned to 

the highest stable synchronisation gain possible, which results in the synchro-

nisation error reaching a much lower level than the measurement error (q.v. 

Figure 2.6 left). This leads on the one hand to the synchronisation of the model 

to the measurement noise, on the other hand to a significant reduction of the 

instrumental variables’ bias (q.v. Figure 2.6 right). 

In praxis, increasing qs and qd over a limit leads to an unstable observer as a 

result of the following two effects. First, it leads to a bad conditioning of PXa, 

which can cause numerical problems. This can be improved using square-root 

forms of the KF (such as the SR-UKF) or by scaling the augmented states by 

their expected mean values and estimating their normalised coefficients. The 

latter has been implemented in the current study (q.v. Chapter 3). Second, 

extremely high values of Q lead to a complete neglect of the process model, 

which causes the numerical loss of observability. This forms a physical limit of 

the convergence speed. Figure 2.7 shows how the bias and the variance of s(t) 

changes as the values of qs and qd are increased. It is interesting that there is not 

only an upper bound of the convergent region, but there is also an additional 

divergent region in the middle range of the covariance exponents. This phe-

nomenon however has not been deeper investigated in the present study, since 

it has no influence on the preferred tuning strategy. 

During the current investigations (q.v. Chapter 3 and 5) finding the highest 

possible qs and qd was carried out by setting their values to a level, where the 

synchronisation error becomes lower than the measurement error. This was 

followed by successively increasing the values until the threshold of instability 
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is reached. For systems with oscillations of interest in the range of 50 Hz to 

500 Hz the chosen values were between 2 and 4. 

 

Figure 2.5: Classical tuning of the KF in case of quickly varying augmented states on the 

example of the virtual 1DoF nonlinear oscillator from Section 3.1.1. qs and qd have been 

set to 1. 

 

Figure 2.6: Optimised tuning of the KF for quickly varying augmented states on the 

example of the virtual 1DoF nonlinear oscillator from Section 3.1.1. qs and qd have been 

set to 3. 
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Figure 2.7: Bias and variance of s(t) (based on eM% and eRMS% according to Appendix 

B) on the example of the virtual 1DoF nonlinear oscillator from Section 3.1.1 using the 

EKF. qs and qd have been increased simultaneously. 

Although the introduced tuning strategy enables the observation of fast oscilla-

tions of the instrumental variables (s and d), it also causes the estimates to be 

significantly corrupted by noise (q.v. Figure 2.6 and Figure 2.7). This makes an 

a posteriori statistical analysis of the observed data necessary, which is pro-

posed in Section 2.3. 

2.2.5 Constraints 

It has been shown in Section 2.1.2 that in case of velocity and acceleration 

measurements the system loses its observability if the estimated values of the 

effective stiffness cross a certain lower bound, which is given by (2.29) for a 

1DoF system. In order to guarantee the convergence of the KF even in case of 

small instantaneous stiffness values, additional inequality constraints have to 

be implemented in the algorithm. The current general a priori process model 

(2.31), which has been defined according to the problem formulation from 

Section 1.3, is given by a set of unconstrained ODEs. Once this model is extend-

ed by additional state constraints, the formulation of the KF from Section 2.2.3 
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needs to be reviewed. It has been mentioned in Section 2.2.3 that the most 

general and convenient way of applying a KF for constrained systems is the 

direct implementation of the constraints in the process equation in combina-

tion with the SR-UKF algorithm. There are two reasons, why this solution is 

disadvantageous in the current case. First, according to the requirements from 

Section 1.1, this study aims to establish a computationally fast algorithm, 

therefore, the EKF should remain deployable. Second, the necessity of con-

strained instrumental variables does not arise from the physical model directly. 

It is related to the chosen identification algorithm, and therefore should be 

treated separately without the modification of the process model. Fortunately 

there are some techniques that allow the incorporation of simple equality and 

inequality constraints in the KF (Simon, 2006). One of these techniques, the so 

called Density Function Truncation, is especially remarkable due to its proba-

bilistic manner of treating inequality constraints. In this method the probability 

distribution of the concerned states is truncated between the lower and the 

upper bounds instead of deterministically applying the constraints to the mean 

value of the state variables. This is much more appropriate in case of stochastic 

estimation, since the state covariance matrix is adjusted properly as well. An 

exact formula of this approach for Gaussian distributions is presented in 

(Simon & Simon, 2006). The constraining strategy that has been implemented 

in the present thesis follows this idea. It is however formulated by means of the 

Unscented Transformation (q.v. Section 1.6.2) in order to keep the algorithm 

general and more flexible. 

Considering the EKF, the only step of the recursive algorithm, where the in-

strumental variables (s and d) can change their values, is the correction step 

(1.48), since the a priori system model assumes them to be constant. Therefore, 

it is reasonable to include the constraint step in the recursion between the 

correction step (1.48) and the subsequential prediction step (1.45). The uncou-
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pled inequality constraint of the a posteriori state estimate 𝐱̂+ with lower 

bound xL and upper bound xU is given by the vector function κ as 

𝐱̂∗ = 𝛋(𝐱̂+, 𝐱L, 𝐱U) ≔ [{

𝑥1
U  , 𝑥1

+ ≥ 𝑥1
U

𝑥1
+   , 𝑥1

L < 𝑥1
+ < 𝑥1

U

𝑥1
L  , 𝑥1

+ ≤ 𝑥1
L

, … , {

𝑥𝑛𝑎
U   , 𝑥𝑛𝑎

+ ≥ 𝑥𝑛𝑎
U

𝑥𝑛𝑎
+   , 𝑥𝑛𝑎

L < 𝑥𝑛𝑎
+ < 𝑥𝑛𝑎

U

𝑥𝑛𝑎
L   , 𝑥𝑛𝑎

+ ≤ 𝑥𝑛𝑎
L

]

T

, (2.53) 

where 𝐱̂∗ denotes the constrained state estimate. Applying this constraint in a 

probabilistic manner can be formulated as the probabilistic transformation Φ 

of the mean and variance of the a posteriori augmented state (𝐱̂𝑎
+ and 𝐏̂𝐗𝑎

+ ) 

through the function κ. Since this function can not be linearised properly, the 

UT approach is deployed for the transformation, which is then given as 

[𝐱̂𝑎
∗ 𝐏̂𝐗𝑎

∗ 𝐏̂𝐗𝑎
+𝐗𝑎

∗ ] = Φ𝛋
UT(𝐱̂𝑎

+ , 𝐏̂𝐗𝑎
+ ) , (2.54) 

where 𝐱̂𝑎
∗  and 𝐏̂𝐗𝑎

∗  denote the mean and variance of the constrained augmented 

state respectively. These constrained values replace the a posteriori ones in the 

prediction step (1.45) in the modified KF algorithm. At those points of the 

following chapters, where the SR-UKF is used as a reference for the EKF, the 

constraint equation (2.53) is directly implemented in the process model. This 

means that κ is applied in a deterministic way to each a priori sigma point of 

the state vector, i.e. 𝓧𝑗
−, during the time update step (1.45). 

Throughout the current thesis (if not explicitly stated otherwise) the lower and 

upper bounds are defined as 

𝐱L = [−∞1×𝑁 −∞1×𝑁 𝐬1×𝑁
L −∞1×𝑁]T , 𝐱U = ∞𝑛𝑎×1 , (2.55) 

where –∞ (and ∞) denote vectors with entries low (and high) enough for the 

corresponding states to remain unconstrained. sL denotes the lower bound 

vector of the instantaneous stiffness vector s that is necessary in order to 

maintain observability in case of velocity and acceleration measurements. Its 

values can be determined according to (2.34). 
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2.2.6 Convergence monitoring 

The convergence plot has been proposed in Section 2.2.4 as a helpful tool for 

finding the proper values of qs and qd, i.e. for the tuning of the KF. It is however 

not its only possible application. It is used for two further important purposes 

in the present study, which are briefly discussed in this section. 

In case of complex systems, long measurement sequences or large parameter 

studies live monitoring of the KF during the estimation is essential. This possi-

bility enables the reduction of unnecessary computation time by terminating 

the process as soon as convergence issues occur. The convergence plot is 

perfectly suitable for this purpose, since the prediction error ep and the syn-

chronisation error es can be processed and plotted recursively during the KF 

run. Let us take the virtual frequency sweep measurement of the 1DoF oscilla-

tor from Section 3.1.3 to demonstrate this capability. This system makes it is 

easy to induce typical convergence problems, due to its strong nonlinearities 

involving asymmetric stiffness and Coulomb friction. One possible reason of KF 

divergence is the wrong choice of the covariance exponents (qs and qd), which 

has already been mentioned in Section 2.2.4. Such a situation is depicted in 

Figure 2.8, where setting the exponents to qs=qd=5 results in a divergent KF, 

which can be detected easily by taking a look at the convergence plot. 

Even if the covariance exponents are set to proper values (in this case qs=qd=3), 

such a strongly nonlinear system can lead to further undesired behaviour. This 

is the case e.g. if the lower bound constraint sL of the instantaneous stiffness is 

deactivated. Such a situation is depicted in Figure 2.9. It can be seen that, 

though the synchronisation is convergent, the KF becomes inconsistent due to 

the loss of observability. The stiffness converges to incorrect values around 

zero. Again the malfunction is indicated clearly on the convergence plot by the 

unrealistically low level of the synchronisation error es. 
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Figure 2.8: Convergence plot (left) and the time sequence of the instantaneous stiffness 

(right) in case of KF divergence due to improper tuning. Virtual frequency sweep meas-

urement of the strongly nonlinear 1DoF oscillator from Section 3.1.3. 

 

Figure 2.9: Convergence plot (left) and the time sequence of the instantaneous stiffness 

(right) in case of the inconsistence of the KF caused by the deactivation of the lower 

bound constraint of the stiffness. Virtual frequency sweep measurement of the strongly 

nonlinear 1DoF oscillator from Section 3.1.3. 

The other important purpose of the convergence plot is its essential role in the 

a posteriori analysis of the estimated time sequences of the augmented states. 
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In case of the particular nonlinear system the KF exhibits several short-time 

convergence issues, even if it is properly tuned, which is depicted in Figure 

2.10. The estimated stiffness values show high deviations from the true values 

in those time ranges, where the synchronisation error es reaches high levels. 

Major deviations occur especially in those regions, where es becomes larger 

than the measurement error em. The convergence plot can be used to discard 

the low quality parts of the estimation results from the postprocessing by 

setting a properly chosen threshold for es. Discarding all state estimates that 

correspond to es>0.5em proved to be sufficient for the identification examples 

that are presented in the following chapters. In this particular example the 

defined threshold results in the exclusion of approximately the first 0.5 s of the 

estimated time sequence. Notice that in the time ranges tϵ[0.5,1] and tϵ[1.5,2] 

the observed stiffness still deviates significantly from the true values. This error 

is however nearly unbiased and can be accounted for a posteriori using a 

proper probabilistic fitting approach, which is proposed in Section 2.3. 

 

Figure 2.10: Convergence plot (left) and the time sequence of the instantaneous stiff-

ness (right) according to the virtual frequency sweep measurement of the strongly 

nonlinear 1DoF oscillator from Section 3.1.3. 
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2.3 Reconstruction of noisefree RFSs 

In Section 2.1 an NDoF a priori system model (given by (2.31), (2.32) and 

(2.33)) has been proposed that enables the indirect observation of RFS samples 

via instrumental variables (s and d) in order to carry out the nonparametric 

identification according to the problem formulation from Section 1.3. The 

implementation of this model in a nonlinear KF algorithm has been presented 

in Section 2.2, which generates an estimated time sequence of the augmented 

state’s mean vector xa and covariance matrix PXa in the form (2.41) based on 

the excitation signal u and the measured global behaviour of the real system 

given by y. The elements of the estimated time series can now be assigned to 

the N RFSs, which results in the jth local mean vector xC,j and covariance matrix 

PC,j of the form 

𝐗𝐶,𝑗 ≔

[
 
 
 
 
𝑍𝑗

𝑉𝑗
𝑆𝑗
𝐷𝑗]

 
 
 
 

~

(

 
 

𝐱𝐶,𝑗 ≔ [

𝑧𝑗
𝑣𝑗

𝑠𝑗
𝑑𝑗

] , 𝐏𝐶,𝑗 ≔

[
 
 
 
𝑃𝑍,𝑗,𝑗 𝑃𝑍𝑉,𝑗,𝑗 𝑃𝑍𝑆,𝑗,𝑗 𝑃𝑍𝐷,𝑗,𝑗

∙ 𝑃𝑉,𝑗,𝑗 𝑃𝑉𝑆,𝑗,𝑗 𝑃𝑉𝐷,𝑗,𝑗

∙ ∙ 𝑃𝑆,𝑗,𝑗 𝑃𝑆𝐷,𝑗,𝑗

∙ ∙ ∙ 𝑃𝐷,𝑗,𝑗 ]
 
 
 

)

 
 

 , (2.56) 

where the mean and variance elements correspond to the jth and j,jth element 

of the mean vector and covariance matrix in (2.41). Notice that, though the 

“hat” symbol has been dropped, all quantities in (2.56) represent estimated 

values. Throughout Section 2.3 this simplified notation is used. Due the assign-

ment of the KF results to local RFSs, the rest of the identification algorithm can 

be split into N independent RFS fitting problems. Therefore, for the rest of the 

current section the indices “j” and “j,j” are dropped for the ease of notation. In 

general the deformation z and rate of deformation v of the RFS do not neces-

sarily equal to particular coordinates of the chosen state-space of the system, 

but can be given by arbitrary functions of the state vector as z=β(x) and v=γ(x) 

(q.v. (1.6) and (1.7)). In such cases (that deviate from the current problem 

formulation from Section 1.3) z, v and their variances can be generated using a 
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properly chosen type of probabilistic transformation of x (q.v. Section 1.6.2) 

through the functions β and γ. 

In Subsection 2.3.1 the reconstruction of probabilistic RFS samples based on 

the local augmented state vector is presented. This is followed by the derivation 

of an optimal curve fitting algorithm in Subsection 2.3.2 to generate noisefree 

RFCs to describe additive RFSs. Finally the optimal surface fitting of the sam-

ples is discussed in Subsection 2.3.3 that allows the reconstruction of noisefree 

coupled RFSs. 

2.3.1 Reconstruction of RFS samples 

Recall from Section 1.4.2 that the ith sample of eRFCs, dRFCs and RFSs are 

given by the coordinate sets {z,fE}i, {v,fD}i and {z,v,f}i respectively, to which the 

following notation is introduced: 

𝛔𝐸,𝑖 ≔ [
𝑧𝑖

𝑓𝐸,𝑖
]  ,   𝛔𝐷,𝑖 ≔ [

𝑣𝑖

𝑓𝐷,𝑖
]   ,   𝛔𝑖 ≔ [

𝑧𝑖

𝑣𝑖

𝑓𝑖

] . (2.57) 

According to the a priori process model (2.31), the force coordinates (fE, fD and 

f) are not estimated directly by the KF. They are nonlinear functions of the local 

random state vector XC, which is defined by (2.6) and (2.7). The calculation of 

the force coordinates has to be treated as the probabilistic transformation of XC 

through these functions, since the estimated state vector is expected to be 

significantly corrupted by noise (as discussed in Section 2.2.4). Section 1.6.2 

presented some flexible approximate solutions to this problem. However, since 

the particular transformation is based on functions, which are basic elements of 

the presented identification method that remain unchanged regardless of the 

system model, it is worth deriving an exact solution that is fast and accurate. 
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Let us start with the calculation of the probabilistic samples of eRFCs and 

dRFCs as a combined four-dimensional vector, denoted by XRFC, defined by the 

vector function 

𝐗RFC ≔ [

𝑍
𝐹𝐸

𝑉
𝐹𝐷

] = 𝛌RFC(𝐗𝐶) = [

𝑍
𝑆 ∙ 𝑍
𝑉

𝐷 ∙ 𝑉

] , (2.58) 

where capital notation indicates probability distributions of the related varia-

bles. The mean vector xRFC and the covariance matrix PRFC of the random vector 

variable XRFC can be expressed based on the Taylor series expansion of λRFC 

around the mean value of XC, which is of the form 

𝛌RFC(𝐗𝐶) =

[
 
 
 

𝑧 + (𝑍 − 𝑧)

𝑠 ∙ 𝑧 + 𝑠(𝑍 − 𝑧) + (𝑆 − 𝑠)𝑧 + (𝑆 − 𝑠)(𝑍 − 𝑧)
𝑣 + (𝑉 − 𝑣)

𝑑 ∙ 𝑣 + 𝑑(𝑉 − 𝑣) + (𝐷 − 𝑑)𝑣 + (𝐷 − 𝑑)(𝑉 − 𝑣)]
 
 
 
 , (2.59) 

𝐱RFC = E(𝛌RFC(𝐗𝐶)) , (2.60) 

𝐏RFC = E([𝛌RFC(𝐗𝐶) − 𝐱RFC][𝛌RFC(𝐗𝐶) − 𝐱RFC]T) . (2.61) 

In case of λRFC, the Taylor series expansion (2.59) gives an exact formula, since 

after the third term of the series all additional terms equal zero. The aim of the 

current derivation is to define xRFC and PRFC as functions of xC and PC to obtain 

explicit formulas for the RFC samples. Assuming that the local state vector is 

represented by a symmetric distribution and carrying out the algebraic opera-

tions defined by (2.60) and (2.61), the following exact formulas are derived: 

𝐱RFC ≔ [
𝛔𝐸

𝛔𝐷
] = [

𝑧
𝑓𝐸
𝑣
𝑓𝐷

] = [

𝑧
𝑠 ∙ 𝑧 + 𝑃𝑍𝑆

𝑣
𝑑 ∙ 𝑣 + 𝑃𝑉𝐷

] , (2.62) 

𝐏RFC ≔ [
𝐏𝜎𝐸 𝐏𝜎𝐸𝜎𝐷

𝐏𝜎𝐸𝜎𝐷
T 𝐏𝜎𝐷

] , 
(2.63) 



Reconstruction of noisefree RFSs 

79 

 𝐏𝜎𝐸 = [
𝑃𝑍 𝑠𝑃𝑍 + 𝑧𝑃𝑍𝑆

⋯ 𝑠2𝑃𝑍 + 2𝑧𝑠𝑃𝑍𝑆 + 𝑧2𝑃𝑆 + 𝑃𝑍𝑃𝑆 + 𝑃𝑍𝑆
2 ] , (2.64) 

𝐏𝜎𝐷 = [
𝑃𝑉 𝑑𝑃𝑉 + 𝑣𝑃𝑉𝐷

⋯ 𝑑2𝑃𝑉 + 2𝑣𝑑𝑃𝑉𝐷 + 𝑣2𝑃𝐷 + 𝑃𝑉𝑃𝐷 + 𝑃𝑉𝐷
2 ] , (2.65) 

𝐏𝜎𝐸𝜎𝐷 = [
𝑃𝑍𝑉 𝑑𝑃𝑍𝑉 + 𝑣𝑃𝑍𝐷

𝑠𝑃𝑍𝑉 + 𝑧𝑃𝑉𝑆 𝑠𝑑𝑃𝑍𝑉 + 𝑣𝑠𝑃𝑍𝐷 + 𝑧𝑑𝑃𝑉𝑆 + 𝑧𝑣𝑃𝑆𝐷 + 𝑃𝑍𝑉𝑃𝑆𝐷 + 𝑃𝑉𝑆𝑃𝑍𝐷
] , (2.66) 

where PσE, PσD and PσEσD denote the covariance matrices of σE and σD and their 

cross-covariance matrix respectively. The detailed derivation of these formulas 

is summarised in Appendix F. Notice that the mean values of the force coordi-

nates in (2.62) are influenced by covariance values. Neglecting this fact (i.e. the 

deterministic calculation of the RFC samples) would produce a systematic error 

of the sample coordinates.  

In order to reconstruct general RFSs (that can even describe coupled nonlinear-

ities), formulas for the mean vector σ and the covariance matrix Pσ of the 

probabilistic RFS samples have to be derived as well. According to (1.15) the 

total restoring force f is the sum of the elastic and the dissipative restoring 

force components (fE and fD). Therefore, the probability distribution of σ can be 

defined as a function of XRFC in the form 

[
𝑍
𝑉
𝐹
] = 𝛌RFS(𝐗RFC) = [

𝑍
𝑉

𝐹𝐸 + 𝐹𝐷

] . (2.67) 

Since λRFS is a linear function, the probabilistic transformation Φ of type LinT of 

the form (2.68) can be deployed to get the exact formulas (2.69) and (2.70). 

[𝛔 𝐏𝜎 ⋯] = Φ
𝛌RFS
LinT(𝐱RFC , 𝐏RFC) (2.68) 

𝛔 = [

𝑧
𝑣

𝑠 ∙ 𝑧 + 𝑑 ∙ 𝑣 + 𝑃𝑍𝑆 + 𝑃𝑉𝐷

] (2.69) 
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𝐏𝜎 = [

𝑃𝑍 𝑃𝑍𝑉 𝑠𝑃𝑍 + 𝑧𝑃𝑍𝑆 + 𝑑𝑃𝑍𝑉 + 𝑣𝑃𝑍𝐷

⋯ 𝑃𝑉 𝑠𝑃𝑍𝑉 + 𝑧𝑃𝑉𝑆 + 𝑑𝑃𝑉 + 𝑣𝑃𝑉𝐷

⋯ ⋯ 𝑃RFC,2,2 + 2 ∙ 𝑃RFC,2,4 + 𝑃RFC,4,4

] (2.70) 

The generated probabilistic sample datasets {σE,PσE}i, {σD,PσD}i and {σ,Pσ}i can 

now be used for the optimal fitting of the jth eRFC, dRFC and cRFS respectively. 

2.3.2 Optimal nonparametric RFC fitting 

The current section deals with the reconstruction of the noisefree eRFC and 

dRFC, i.e. cE(z) and cD(v), based on the noisy datasets {σE,PσE}i and {σD,PσD}i 

respectively that have been derived in Section 2.3.1. These two curves define an 

additive RFS according to (1.9). They can be calculated separately using the 

same algorithm. Therefore, the technique that is derived in the following for the 

elastic curve cE can straightforwardly be applied to the dissipative curve cD as 

well. The dataset {σE,PσE}i can be treated as a noisy virtual measurement of the 

real eRFC in the form 

𝛔𝐸,𝑖 ≔ [
𝑧𝑖

𝑓𝐸,𝑖
] = [

𝑧true,𝑖

𝑐𝐸(𝑧true,𝑖)
] + 𝐫𝜎𝐸,𝑖 , 

(2.71) 

𝐫𝜎𝐸 ~ (E(𝐫𝜎𝐸),𝐏𝜎𝐸) , (2.72) 

where rσE denotes the random noise process that is corrupting the virtual 

measurement. Although the formulas derived in Section 2.3.1 ensure the unbi-

ased transformation of the estimated state vector xC into eRFC samples σE, the 

noise process rσE still includes bias caused by the estimation error of the KF, i.e. 

by the deviation of xC from its true values. Though the tuning strategy present-

ed in Section 2.2.4 aims to minimise this error (for the price of increased noisi-

ness of the state estimates), the results of the KF will not be perfect, therefore, 

the bias of rσE, i.e. E(rσE), will not be zero. This bias is however unknown, hence, 

it has to be neglected in the curve fitting algorithm. Notice that (in contrast to 

the usual noise vector of real measurements) rσE is essentially correlated, i.e. 



Reconstruction of noisefree RFSs 

81 

PσE is not a diagonal matrix, since all its coordinates originate from the same 

noise process, namely that of the real measurement vector y. Therefore, the 

curve fitting problem can be formulated as the minimisation of the Weighted 

Total Squares error eWTS defined as 

𝐞𝑐𝐸,𝑖 = 𝛔𝐸,𝑖 − [
𝑐̂𝐸

−1(𝑓𝐸,𝑖)

𝑐̂𝐸(𝑧𝑖)
] , (2.73) 

𝑒𝑐𝐸
WTS = ∑𝐞𝑐𝐸,𝑖

T𝐏𝜎𝐸,𝑖
−1 𝐞𝑐𝐸,𝑖

𝑛𝑠

𝑖=1

 , (2.74) 

where 𝑐̂𝐸 and 𝑐̂𝐸
−1 denote the estimate of the true RFC, i.e. cE, and its inverse 

function respectively. The function 𝑐̂𝐸 is an optimal estimate in Weighted Total 

Least Squares (WTLS) sense if it is the minimiser of 𝑒𝑐𝐸
WTS. An RFC of a physical 

system is per definition always a unique function. This however not necessarily 

holds for its inverse function. Hence, the calculation of the total error vector ecE 

can easily become a nontrivial task, which is however efficiently handled by the 

technique that is proposed in the current section. 

In the present thesis a nonparametric regression is applied to the WTLS fitting 

problem of the RFCs in order to keep the developed identification method 

completely nonparametric. To do so, an alternative approach is proposed that 

has two advantages compared to existing solutions that have been summarised 

in Section 1.7. First, it is suitable for general correlated noise, i.e. for non-

diagonal PσE. Second, compared to other nonparametric algorithms, such as the 

LPR (q.v. Section 1.7), it is a computationally cheaper algorithm, because it is 

based on a smaller number of calls per dataset sample. It is not a general WTLS 

approach, because it crucially implies that the dataset {σE,PσE}i is given in form 

of time signals. This however always holds in case of the RFC samples, there-

fore, it does not represent any restriction to the presented identification meth-

od. 
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Our aim is to generate a smoothed (noisefree) version of this observed dataset, 

denoted by 𝛔𝐸,𝑖
S , which represents the optimal estimate of the eRFC, i.e. 𝑐̂𝐸(𝑧), 

that is a minimiser of 𝑒𝑐𝐸
WTS. To do so, the task is considered as a two-

dimensional target tracking problem, where the non-smooth dataset is consid-

ered as the noisy measurement of a target’s movement on the plane of the eRFC 

coordinates from one end of the true curve cE to the other end, i.e. from 

min(ztrue,i) to max(ztrue,i), with a priori known correlated measurement error 

PσE. In order to make the sample dataset “look like” such a measurement, the 

samples are sorted in ascending order of the coordinate z (i.e. the deformation 

of the eRFC). This idea is proposed in (Young, 2000) as a part of the method of 

State Dependant Parameters (SDP). The smoothed path of the imaginary target 

is then estimated using a recursive 0th order random walk estimator (Young, 

2000), also known as the α-filter (Simon, 2006). This is actually a special case of 

the EKF with two state variables (z and fE), therefore, the formulas presented in 

Section 1.6.2 and Section 1.6.3 can directly be applied after defining the process 

function and the measurement function, i.e. a and h, as 

𝐚𝑐𝐸(𝑧, 𝑓𝐸) ≔ [0
0
] , 𝐡𝑐𝐸(𝑧, 𝑓𝐸) ≔ [

𝑧
𝑓𝐸

]. (2.75) 

The sequence of recursion is now defined by the spatial coordinate z instead of 

time. The measurement covariance matrix R is replaced by PσE,i that in this case 

has different values at each recursion step. Due to this, the estimation quality 

feedback of the KF is directly taken into account in the fitting process, which 

provides a higher weighting of reliable samples. The choice of the discrete time 

(precisely speaking “discrete spatial step”) process covariance matrix Q, here 

denoted by QcE, is discussed in detail later on in this section. The a posteriori 

state estimates of this modified KF form the smoothed dataset 𝛔𝐸,𝑖
S . The a poste-

riori covariance matrix of the state estimation error, denoted in this particular 

case by 𝐏𝜎𝐸,𝑖
S , which is a standard result of the KF, provides a quantification of 

the estimated eRFC’s uncertainty. It is generated as a nonparametric function of 
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the deformation coordinate z and provides a useful feedback on the estimation 

quality, which is given separately for the two coordinates (z and fE) of the eRFCs 

nodes. This satisfies the corresponding requirement from Section 1.1. 

Notice that the two ends of the spatial recursion have been defined previously 

as min(ztrue,i) and max(ztrue,i), although the true values of z are not known prior 

to the curve fitting. This is a key point of the proposed algorithm. Actually, in 

order to achieve a WTLS fit, not only the two ends of the recursion but the 

whole sorting of the dataset and the subsequential recursion has to be carried 

out over the true values of z. This can not be realised perfectly, but a sufficiently 

accurate approximation of ztrue can be given by the Central Moving Average (q.v. 

Appendix E) of the noisy z, denoted by zCMA. Thereby some level of smoothness 

of the noisefree ztrue is assumed. This is the point, where the current approach 

implies the observed dataset to be given by realistic time signals, which auto-

matically ensures some natural smoothness. Due to this solution, the procedure 

has a slightly iterative manner, since a first guess of the smoothed dataset’s first 

coordinates is generated in order to initiate the main fitting algorithm. The 

procedure has been implemented without additional iteration cycles of the 

main fitting step, which is (as the following examples show) sufficient to 

achieve good results. 

To illustrate the necessity of the discussed kind of sorting, let us take a synthet-

ic example of a highly nonlinear eRFC, where the time series {σE,PσE}i is directly 

generated and corrupted by artificial correlated noise. This avoids the possible 

effect of the previously mentioned bias of the results of the first KF run, i.e. it 

ensures E(rσE)=0. The true and the noisy values of the two eRFC coordinates 

are depicted in Figure 2.11, which shows a 0.01 s time segment of the dataset 

that has been observed with 10 kHz sampling rate over 1 s. The true defor-

mation is defined as a two-component (173 Hz and 633 Hz) harmonic oscilla-

tion. Its observations are corrupted by stationary zero-mean Gaussian white 

noise with a covariance matrix of 
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𝐏𝜎𝐸,𝑖 ≔ [ 5 ∙ 10−12 1.5 ∙ 10−5

1.5 ∙ 10−5 75
] . (2.76) 

This represents a higher noise level than what can be expected under realistic 

conditions (q.v. Chapter 3 and 5), which is ideal as an extreme test of the pre-

sented technique. The five-point CMA of the observed signals (denoted by 

CMA5) is shown in Figure 2.11 as well to illustrate that (though zCMA is suitable 

as recursion coordinate) these signals could not be directly used as noisefree 

sample coordinates due to their deviation from the true values. 

 

Figure 2.11: Synthetic (directly generated) example of the sample dataset of a highly 

nonlinear eRFC generated at 10 kHz observation sampling rate and corrupted by corre-

lated Gaussian white noise. 

The effect of the proper choice of the recursion coordinate becomes clearer by 

taking a look at Figure 2.12 that illustrates the simple sorting over z in compar-

ison with the enhanced sorting over zCMA based on the defined numerical exam-

ple. Notice that the observed samples represent a much better image of the true 

signal’s statistics in case of the enhanced sorting, which is a crucial requirement 

for the target tracking approach described above. 
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Figure 2.12: Sorted samples of a highly nonlinear eRFC based on synthetic correlated 

noisy observations. Sorting over the observed deformation (top) is compared to the 

sorting over the CMA5 moving averaged deformation (bottom). 

Now that the samples are prepared for the modified KF (q.v. (2.75)), the last 

missing element of the technique is the proper choice of the process covariance 

matrix QcE, that controls the smoothness of the identified RFC. As follows, a 

simple formula is suggested for choosing its values. To do so, let us first consid-

er a one dimensional tracking problem, where only the force coordinate fE is 

observed. The resulting formula is then extended to the two dimensional case 

at the end. The spatial recursion axis zCMA is treated as if it was time regarding 

its nomenclature throughout this short derivation in order to keep the context 

clearer. This means that it is denoted by t and derivatives with respect to it are 

indicated by the “dot” symbol. Let us describe the true characteristic of the 

elastic force by an average slope over the recursion axis, denoted by ΔfE/Δt. 

This can be determined as the slope of the rectangle’s diagonal that envelopes 

the observed samples in the {zCMA,fE} plane. 
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Given a constant continuous-time process covariance of 𝑄cont
𝑐𝐸  the dynamics of 

the smoothed elastic force, denoted by 𝑓𝐸
S , are approximately governed by the 

differential equation (2.77) except for a short initial transient phase (Simon, 

2006). The average of the continuous-time measurement covariance is thereby 

denoted by 𝑅cont
𝑐𝐸 . Equation (2.77) can be transformed into the error equation 

(2.79) by defining the normed instantaneous curve estimation error ec as 

(2.78). By reformulating the stationary solution of the error equation, given by 

(2.80), the value of 𝑄cont
𝑐𝐸  is found as a function of the normed stationary curve 

estimation error, denoted by ec,∞, given as (2.81). 

𝑓̇𝐸
S = √

𝑄cont
𝑐𝐸

𝑅cont
𝑐𝐸 (

∆𝑓𝐸
∆𝑡

𝑡 − 𝑓𝐸
S) (2.77) 

𝑒𝑐 ≔
𝑡

∆𝑡
−

𝑓𝐸
S

∆𝑓𝐸
 (2.78) 

 𝑒̇𝑐 =
1

∆𝑡
− √

𝑄cont
𝑐𝐸

𝑅cont
𝑐𝐸 𝑒𝑐 (2.79) 

𝑒𝑐,∞ =
1

∆𝑡
√

𝑅𝑐𝑜𝑛𝑡
𝑐𝐸

𝑄𝑐𝑜𝑛𝑡
𝑐𝐸  (2.80) 

𝑄𝑐𝑜𝑛𝑡
𝑐𝐸 =

𝑅𝑐𝑜𝑛𝑡
𝑐𝐸

𝑒𝑐,∞
2 ∙ ∆𝑡2

 (2.81) 

Using the rules (2.82) (Simon, 2006) for the transformation of the continuous-

time variances into their discrete-time counterparts, denoted by QcE and RcE, the 

formula (2.81) becomes (2.83), where QcE is a function of the recursion step size 

dt and is therefore not constant over the recursion. 

𝑄cont
𝑐𝐸 = 𝑄𝑐𝐸/𝑑𝑡 , 𝑅cont

𝑐𝐸 = 𝑅𝑐𝐸𝑑𝑡 (2.82) 
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𝑄𝑖
𝑐𝐸 =

𝑑𝑡𝑖
2 ∙ 𝑅𝑐𝐸

𝑒𝑐,∞
2 ∙ ∆𝑡2

 (2.83) 

Extending this result to the correlated two dimensional case of the RFC fitting 

problem and switching back to the notation zCMA instead of t, the final formula 

for the tuning matrix QcE is given for the ith recursion step as (2.84), which 

provides a uniform smoothing of the identified RFC. 

𝐐𝑖
𝑐𝐸 ≔

(𝑑𝑧𝑖
CMA)

2
∙ E(𝐏𝜎𝐸)

𝑒𝑐,∞
2 ∙ (∆𝑧𝑖

CMA)
2  (2.84) 

Accordingly, the proposed nonparametric curve fitting algorithm is tuned by 

the averaging window size of the CMA and the normed error ec,∞. The optimisa-

tion of these two tuning factors regarding the identified RFC’s eRMS error based 

on a group of curve examples (q.v. Figure 2.15) yielded a CMA window size of 5 

samples (i.e. CMA5) in combination with ec,∞=0.01 as the best choice. These 

settings are used for RFC fitting throughout the rest of the current thesis. The 

smoothed dataset of the nonlinear eRFC from the previously defined numerical 

example is depicted in Figure 2.13 showing the significant increase of result 

quality due to the choice of zCMA5 instead of z as the coordinate of recursion. The 

presented procedure obviously does not reduce the number of samples. How-

ever, since a noisefree dataset has been identified, the number of characteristic 

points can now easily be reduced by resampling without significant loss of 

information in order to generate compact lookup tables that are practical for 

simulation purposes or other types of system analyses. 

In order to indicate the local uncertainty of the smoothed dataset, the a posteri-

ori variance 𝐏𝜎𝐸
S  of the eRFC samples can be used to generate lower and upper 

uncertainty curves given by the datasets 𝛒𝐸,𝑖
L  and 𝛒𝐸,𝑖

U  respectively as 
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𝛒𝐸,𝑖
L ≔ 𝛔𝐸,𝑖

S + 𝑝plot

[
 
 
 +√𝑃𝜎𝐸,1,1

S

−√𝑃𝜎𝐸,2,2
S

]
 
 
 

𝑖

 , (2.85) 

𝛒𝐸,𝑖
U ≔ 𝛔𝐸,𝑖

S + 𝑝plot

[
 
 
 −√𝑃𝜎𝐸,1,1

S

+√𝑃𝜎𝐸,2,2
S

]
 
 
 

𝑖

 , (2.86) 

where 𝑃𝜎𝐸,𝑗,𝑗
S  denote corresponding diagonal elements of 𝐏𝜎𝐸

S  and pplot serves as 

an optical tuning factor for the visualisation of the uncertainty curves together 

with the fitted eRFC. Notice that the formulas (2.85) and (2.86) are given for 

RFCs with positive slope. The signs of the variance dependent offset terms have 

to be switched in case of negative slope. For the special case of non-monotonic 

RFCs a more complex formulation is necessary. 

As the final step of the presented procedure the unreliable samples, which 

typically occur at the two ends of the smoothed dataset, are discarded from the 

results. The introduced uncertainty curves are perfectly suitable for this pur-

pose, which can be seen in Figure 2.14, where an illustrated summary of the 

whole curve fitting algorithm is given from the noisy RFC samples to the final 

smoothed, trimmed and resampled RFC (based on the previously defined 

numerical example). 

Further numerical examples of four different RFCs are depicted in Figure 2.15, 

which aims to prove the flexibility of the proposed technique. 
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Figure 2.13: The true curve of a highly nonlinear eRFC is compared to the WTLS 

smoothed samples based on synthetic correlated noisy observations. Sorting over the 

observed deformation (left) is compared to the sorting over the CMA5 moving averaged 

deformation (right). 

 

 

Figure 2.14: Illustrated summary of the proposed nonparametric WTLS curve fitting 

algorithm based on the synthetic correlated noisy samples of a highly nonlinear eRFC. 
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Figure 2.15: Different RFC fitting examples carried out using the proposed nonparamet-

ric WTLS approach based on synthetic correlated noisy observations. 

2.3.3 Optimal nonparametric RFS fitting 

The current section deals with the direct reconstruction of a noisefree RFS, i.e. 

c(z,v), based on the noisy dataset {σ,Pσ}i that has been derived in Section 2.3.1. 

This surface defines a general coupled RFS (cRFS) that is useful in situations, 

where the assumption of an additive nonlinearity according to (1.9) is not 

justified. The fitting of an RFS follows the same logic as the fitting of the RFCs, 

therefore, at many points of the current section it is referred to Section 2.3.2 

instead of repeating the same reasoning. The dataset {σ,Pσ}i can be treated as a 

noisy virtual measurement of the real RFS in the form 

𝛔𝑖 ≔ [

𝑧𝑖

𝑣𝑖

𝑓𝑖

] = [

𝑧true,𝑖

𝑣true,𝑖

𝑐(𝑧true,𝑖 , 𝑣true,𝑖)
] + 𝐫𝜎,𝑖 , 

(2.87) 
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𝐫𝜎 ~ (E(𝐫𝜎),𝐏𝜎) , (2.88) 

where rσ denotes the random noise process that is corrupting the virtual meas-

urement. As discussed in Section 2.3.2, the results of the augmented KF (q.v. 

Section 2.2) will not be perfect, therefore, the bias of rσ, i.e. E(rσ), will not be 

zero. This bias however has to be neglected in the fitting algorithm, since it is of 

unknown nature. As in the case of the RFCs, rσ is essentially correlated, i.e. Pσ is 

not a diagonal matrix. Therefore, the surface fitting problem can be formulated 

as the minimisation of the Weighted Total Squares error eWTS defined as 

𝐞𝑐,𝑖 = 𝛔𝑖 − [

𝑐̂𝑣,𝑓(𝑣𝑖 , 𝑓𝑖)

𝑐̂𝑧,𝑓(𝑧𝑖 , 𝑓𝑖)
𝑐̂(𝑧𝑖 , 𝑣𝑖)

] , (2.89) 

𝑒𝑐
WTS = ∑𝐞𝑐,𝑖

T𝐏𝜎,𝑖
−1𝐞𝑐,𝑖

𝑛𝑠

𝑖=1

 , (2.90) 

where 𝑐̂, 𝑐̂𝑧,𝑓  and 𝑐̂𝑣,𝑓 denote the estimate of the true RFS, i.e. c(z,v), and its two 

reformulated versions that accommodate {zi,fi} and {vi,fi} as independent varia-

ble pairs respectively. The function 𝑐̂ is an optimal estimate in Weighted Total 

Least Squares (WTLS) sense if it is the minimiser of 𝑒𝑐
WTS. The values of the 

reformulated functions 𝑐̂𝑧,𝑓 and 𝑐̂𝑣,𝑓 are not necessarily unique in general, 

hence, the direct calculation of the total error vector ec can cause difficulties. 

This problem is efficiently handled by the technique that is proposed in the 

following. 

The brief literature overview in Section 1.7 discusses state of the art fitting 

approaches that can handle surface fitting as well. One can conclude in compact 

form that there are powerful nonparametric surface fitting solutions that are 

based on Local Polynomial Regression (Fox, 2002), (Zhang, et al., 2013), which 

however do not consider samples corrupted by fully correlated noise. Unfortu-

nately the idea of considering the WTLS regression problem as target tracking, 
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as it is applied for curve fitting in Section 2.3.2, can not be applied for surfaces, 

since they do not represent a path, therefore, the definition of an appropriate 

recursion coordinate is not possible. Accordingly, an alternative strategy has 

been implemented in the present thesis that is also nonparametric in order to 

completely avoid functional assumptions in the developed identification meth-

od. The approach has the following two-step structure: 

• Step 1 is a local WTLS point fitting, where the observed RFS samples 

are sorted into groups based on a predefined segmenting of the {z,v} 

plane. Each of these sample groups are replaced by one fitted point, 

denoted by 𝛔𝑗
WTLS, which represents their mean value in the {z,v,f} 

space in WTLS sense (q.v. Figure 2.16 left and Figure 2.17 left). This 

simple case of WTLS fitting has an explicit solution for correlated noise. 

• Step 2 is a quadratic Local Polynomial Regression (LPR) of the WTLS 

points, i.e. of the results of step 1, over a predefined uniform grid of the 

{z,v} plane. It provides the final identified RFS in form of a lookup table 

of its smoothed nodes, denoted by 𝛔𝑘
S , (q.v. Figure 2.16 right and Figure 

2.17 right). This additional regression is necessary due to two reasons. 

First, in step 1 a fitting in all three dimensions of the RFS is carried out, 

therefore, the resulting points are not arranged on a uniform grid in 

the {z,v} plane, which is disadvantageous for the further use of the RFS 

as a lookup table. Second, in case of insufficient number of observed 

samples further smoothing of the WTLS points is reasonable, due to 

the slow statistical convergence of nonparametric surface fitting (q.v. 

Section 3.4.2). 

A detailed description of these two steps is presented in the following including 

the illustration of the approach based on virtually generated examples. 
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Step 1: local WTLS point fitting 

The local point fitting generates a reduced number of samples, denoted by 

𝛔𝑗
WTLS, which are calculated in WTLS sense. The index j denotes the jth segment 

of the {z,v} plane that includes the jth group of the original samples, each of 

which are replaced by one fitted point (q.v. Figure 2.16 left). In order to create a 

better image of the original samples’ statistics, the sorting of the samples into 

the predefined segments of the {z,v} plane is carried out based on their CMA5 

averaged coordinates (zCMA5 and vCMA5). This explains, why the jth group of 

samples in Figure 2.16 (left) is not bounded by a rectangle in the {z,v} plane. 

This solution is driven by the same logic as in Section 2.3.2 in case of the sorting 

of RFC samples. The reason of applying the first step in this form is that the 

special case of fitting a single point in WTLS sense has an exact solution, which 

according to (Simon, 2006) can be formulated in a recursive algorithm as: 

𝛔𝑗,1
WTLS ≔ 𝛔1 , 𝐏𝜎,𝑗,1

WTLS ≔ 𝐏𝜎,1 (2.91) 

𝐊𝑖+1
WTLS ≔ 𝐏𝜎,𝑗,𝑖

WTLS(𝐏𝜎,𝑗,𝑖
WTLS + 𝐏𝜎,𝑖+1)

−1
 (2.92) 

𝐏𝜎,𝑗,𝑖+1
WTLS ≔ (𝐈 − 𝐊𝑖+1

WTLS)𝐏𝜎,𝑗,𝑖
WTLS(𝐈 − 𝐊𝑖+1

WTLS)
T

+ 𝐊𝑖+1
WTLS𝐏𝜎,𝑖+1(𝐊𝑖+1

WTLS)
T

 (2.93) 

𝛔𝑗,𝑖+1
WTLS ≔ 𝛔𝑗,𝑖

WTLS + 𝐊𝑖+1
WTLS(𝛔𝑖+1 − 𝛔𝑗,𝑖

WTLS) (2.94) 

The jth recursion is carried out for iϵ{1,…,nj–1}, where the number of noisy 

samples in the jth group is denoted by nj. The last values of the jth recursion 

represent the jth fitted WTLS point. These points build the dataset 

{𝛔𝑗
WTLS, 𝐏𝜎,𝑗

WTLS}, which forms the result of the fitting algorithm’s first step. The 

reason of implementing this recursive formulation is that the also available 

explicit algorithm turned out to be computationally expensive due to the inver-

sion of matrices of size 3nj×3nj. The WTLS point fitting is illustrated in Figure 

2.17 (left) based on the synthetic correlated noisy samples of a paraboloid 
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surface. The observations are based on the two-component harmonic defor-

mation time series z from the numerical example in Section 2.3.2 and its analyt-

ical time derivative as the rate of deformation v. The signals are corrupted by 

zero-mean Gaussian white noise with a covariance matrix of 

𝐏𝜎,𝑖 ≔ [
10−12 10−10 10−6

10−10 10−6 10−4

10−6 10−4 30

] . (2.95) 

Step 2: Local Polynomial Regression 

During the present study it turned out that the dataset 𝛔𝑗
WTLS can not be direct-

ly used as a nonparametric RFS due to its insufficient smoothness. The reason 

for this originates from the statistical aspects that have been discussed in 

Section 2.2.1, which leads to a slow statistical convergence of nonparametric 

surface fitting (q.v. Section 3.4.2). To overcome this problem, the current ap-

proach is extended by a quadratic Local Polynomial Regression (LPR) in stand-

ard Weighted Least Squares (WLS) sense in order to achieve the smoothed and 

uniformly resampled set of surface points, denoted by 𝛔𝑘
S . These form the end 

result of the RFS fitting in form of a lookup table. To do so, the desired resolu-

tion of the result is defined by generating a uniform grid of size √𝑛𝑧×√𝑛𝑧 in the 

{z,v} plane that is given by a set of coordinate pairs as 

𝓩 ≔ [
𝑧1 ⋯ 𝑧𝑛𝑧

𝑣1 ⋯ 𝑣𝑛𝑧
]
2×𝑛𝑧

T

 , (2.96) 

to which the nz smoothed force coordinates, denoted by fS, are to be determined 

by the fitting algorithm. Based on the theory presented in (Fox, 2002) the WLS 

quadratic LPR can be formulated as follows: 

𝐑𝑝,𝑘 = diag([𝑃𝜎,1,𝑓,𝑓
WTLS ⋯ 𝑃𝜎,𝑛𝑘,𝑓,𝑓

WTLS ]
1×𝑛𝑘

) (2.97) 
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𝐇𝑝,𝑘 = [
1 𝜎1,𝑧

WTLS 𝜎1,𝑣
WTLS 𝜎1,𝑧

WTLS𝜎1,𝑣
WTLS (𝜎1,𝑧

WTLS)
𝟐

(𝜎1,𝑣
WTLS)

𝟐

⋮

1 𝜎𝑛𝑘,𝑧
WTLS 𝜎𝑛𝑘,𝑣

WTLS 𝜎𝑛𝑘,𝑧
WTLS𝜎𝑛𝑘,𝑣

WTLS (𝜎𝑛𝑘,𝑧
WTLS)

𝟐
(𝜎𝑛𝑘,𝑣

WTLS)
𝟐
]

𝑛𝑘×6

 (2.98) 

𝐏𝜎,𝑘
𝑝

= (𝐇𝑝,𝑘
T 𝐑𝑝,𝑘

−1 𝐇𝑝,𝑘)
−1

 (2.99) 

𝐩𝜎,𝑘 = 𝐏𝜎,𝑘
𝑝

𝐇𝑝,𝑘
T 𝐑𝑝,𝑘

−1 [𝜎1,𝑓
WTLS ⋯ 𝜎𝑛𝑘,𝑓

WTLS]
T

 (2.100) 

Thereby the number of WTLS points in the kth segment (q.v. Figure 2.16 right) 

is denoted by nk, and the specific elements of vectors and matrices have been 

indexed using {z,v,f} instead of {1,2,3} in order to keep the notation clearer. The 

dataset {𝐩𝜎,𝑘 , 𝐏𝜎,𝑘
𝑝

} represents the parameters of the kth locally fitted quadratic 

polynomial surface. These are then transformed into the locally smoothed RFS 

points over the predefined grid as follows: 

𝐇𝜎,𝑘 = [1 𝒵𝑘,𝑧 𝒵𝑘,𝑣 𝒵𝑘,𝑧𝒵𝑘,𝑣 𝒵𝑘,𝑧
2 𝒵𝑘,𝑣

2 ]
1×6

 (2.101) 

𝛔𝑘
S = [𝒵𝑘,𝑧 𝒵𝑘,𝑧 𝐇𝜎,𝑘𝐩𝜎,𝑘]T (2.102) 

𝑃𝜎,𝑘
S = 𝐇𝜎,𝑘𝐏𝜎,𝑘

𝑝
𝐇𝜎,𝑘

T  (2.103) 

This second step of the procedure is illustrated in Figure 2.17 (right) for the 

previously introduced paraboloid example. The dataset {𝛔S, 𝑃𝜎
S}k forms the final 

nonparametric result of the presented approach. 

The variance values 𝑃𝜎
S provide useful information about the uncertainty of the 

fitted RFS’s nodes, i.e. σS. Plotted as a function over z and v, they can be used as 

a quality feedback of the identified surface. This is illustrated on two nonlinear 

RFS examples in Figure 2.18 that have been generated based on synthetic 

correlated noisy samples. 
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Figure 2.16: Illustration of the two steps of the presented nonparametric surface fitting 

approach in the {z,v} plane. Intermediate samples are generated using local WTLS point 

fitting (left). The intermediate samples are then used in a subsequential quadratic Local 

Polynomial Regression (right). 

 

Figure 2.17: The two steps of the presented nonparametric surface fitting approach 

based on the synthetic correlated noisy samples of a paraboloid RFS. Intermediate 

samples are generated using local WTLS point fitting (left). The intermediate samples 

are then used in a subsequential quadratic Local Polynomial Regression (right). 
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Figure 2.18: Comparison of the true and the identified surfaces of two nonlinear RFSs. 

Fitting was carried out using the presented two-step nonparametric approach based on 

synthetic correlated noisy samples. 

Notice that the three coordinates (z, v and f) of typical RFSs of mechanical 

engineering systems (with high characteristic frequencies) strongly differ in 

their order of magnitude, which would lead to bad conditioning of the surface 

fitting formulas. To account for this, an appropriate scaling of the dataset {σ,Pσ}i 

is carried out prior to the fitting of the RFS (using a proper probabilistic trans-

formation of type LinT from Section 1.6.2). The algorithm is however presented 

without scaling in the current section, in order to keep the notations as simple 

as possible. 

2.3.4 Conclusion of the proposed fitting approach 

In Section 2.3 a nonparametric (approximately) WTLS fitting approach has 

been proposed that allows the reconstruction of arbitrary noisefree RFCs and 

RFSs based on the results of the augmented KF given as (2.56). In accordance 

with the requirements formulated in Section 1.1 the presented technique 

exhibits the following important properties: 
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• The fitted curves (RFCs) and surfaces (RFSs) are given nonparametri-

cally in form of lookup tables. No assumptions about their functional 

form are required. 

• Throughout the definition of the procedure great attention was paid to 

keep the algorithm computationally as simple as possible. 

• Additional feedback is given about the quality (uncertainty) of the fit-

ted results in form of uncertainty plots (q.v. Figure 2.14 and Figure 

2.18). 

Since state of the art modelling is mostly carried out virtually on computers, it 

should be of no practical disadvantage that the identified model’s RFSs are 

given in form of lookup tables. Most available virtual simulation environments 

directly support this kind of definition of nonlinearities. Should such a defini-

tion be disadvantageous for some reason, one can easily fit a parametric func-

tion on the smoothed noisefree dataset using a simple parametric Least 

Squares Estimator (LSE). The choice of the proper analytical form of the RFSs at 

this point should not be a challenge anymore. 

2.4 Summary of the 
nonparametric

 
identification 

The current section aims to give a structural summary of the nonparametric 

identification method that has been proposed in Chapter 2, which can be con-

sidered as the core of the present thesis. The summary is given as a list of the 

main steps that are necessary to carry out the proposed procedure, which is 

supported by an illustrated overview of the workflow in Figure 2.19. 

In order to deploy the proposed synchronisation-based nonparametric identifi-

cation method for nonlinear dynamic systems, carry out the following steps: 
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• Define the NDoF process model (i.e. the DEs that govern the dynamics 

of the system of interest). According to the subclass of mechanical sys-

tems defined in Section 1.3, which are given by (1.11), this means the 

definition of the inertia matrix M and the input matrix B. (Chapter 4 of-

fers a solution to identify these matrices in case they would not be 

known a priori.) 

• Define the measurement setup (i.e. the measurement function h) in-

volving at least N measurement signals that satisfy (2.32) and (2.33). 

• Carry out the measurements to generate time sequences of the input 

vector u and the measurement vector y. 

• Calculate the quantities R, xa,0, PXa,0 and Q using the formulas (2.48), 

(2.49), (2.50) and (2.51) respectively, which are necessary to run the 

Kalman Filter (KF). 

• Determine the lower bound vector sL of the instantaneous effective 

stiffnesses according to (2.34) or set it to the general value of 10–2E(s) 

to parametrise the constraints of the KF defined in Section 2.2.5. The 

lower bound can be set to –∞ in case of displacement measurements. 

• Run the nonlinear KF algorithm as defined in Section 1.6.3 and 2.2.3 to 

obtain the time series of the estimates of the augmented state vector xa 

and its covariance matrix PXa. It is discussed in Section 2.2.3 under 

which conditions an Extended Kalman Filter (EKF) is deployable. 

• Assign the global results of the KF to the N local Restoring Force Sur-

faces (RFS) of the system according to (2.56). 

• Transform the local KF results of the jth RFS into probabilistic elastic 

and dissipative Restoring Force Curve (RFC) datasets, i.e. {σE,PσE}i and 
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{σD,PσD}i, using (2.62), (2.64) and (2.65). Or generate the jth probabilis-

tic coupled RFS dataset {σ,Pσ}i using (2.69) and (2.70). 

• To identify the jth RFS as an additive nonlinearity use the procedure 

described in Section 2.3.2 to generate the jth noisefree elastic and dis-

sipative RFCs in form of the data vectors (lookup tables) 𝛔𝐸,𝑘
S  and 𝛔𝐷,𝑘

S  

based on the datasets {σE,PσE}i and {σD,PσD}i. Use the formula (2.84) to 

tune the smoothness of the characteristics. Use the uncertainty curves 

(2.85) and (2.86) to indicate the quality of the identified RFCs. 

• To identify the jth RFS as a coupled nonlinearity use the procedure de-

scribed in Section 2.3.3 to generate the jth noisefree RFS in form of the 

data vector (lookup table) 𝛔𝑘
S  based on the dataset {σ,Pσ}i. Use 𝑃𝜎,𝑘

S  de-

fined as (2.103) to indicate the quality of the identified RFS. 
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Figure 2.19: Workflow of the proposed synchronisation-based nonparametric identifi-

cation method for nonlinear dynamic systems: Based on the measurement signals the 

Kalman Filter estimates the states and the instrumental variables (i.e. the instantaneous 

stiffness and damping). These are transformed into noisy samples of the RFCs and RFSs. 

Noisefree RFCs and RFSs are generated via optimal curve and surface fitting based on 

the noisy samples. 
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3 Virtual examples and the 
properties of the approach 

The current chapter presents the nonparametric identification of several 

strongly nonlinear dynamic systems using the synchronisation based approach 

that has been proposed in Chapter 2. Each one of the chosen examples aims to 

point out some particular properties and aspects of the derived algorithm. 

Systems with 1DoF are investigated involving additive and coupled nonlineari-

ties in Section 3.1 and 3.2 respectively, which are followed by a 3DoF mechani-

cal structure in Section 3.3. The requirements of the technique on the meas-

urement signals and its robustness against possible experiment issues is inves-

tigated in Section 3.4, followed by a brief analysis of the method’s 

computational performance in Section 3.5. 

The experiments are simulated virtually throughout this chapter. As long as it is 

not explicitly stated otherwise, the measurement signals are generated at a 

sampling rate of 10 kHz and are subsequently corrupted by 5 % RMS (q.v. 

eRMS% from Appendix B) uncorrelated Gaussian white noise, which represents 

typical realistic conditions for state-of-the-art test rigs in mechanical engineer-

ing. The excitation signal u is of kinematic type, i.e. it corresponds to the case 

Bij∊{-1,0,1} (q.v. Section 1.3). 

The entire identification algorithm including the numerically generated meas-

urement examples has been implemented in the MATLAB software environ-

ment (MathWorks, www.mathworks.com). The necessary analytical expres-

sions have been derived using Maple (Maplesoft, www.maplesoft.com). 
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3.1 Additive restoring force surfaces 

The present section investigates the identification of three strongly nonlinear 

1DoF oscillators involving additive RFSs. The motion of the vibrating mass m is 

captured via noisy acceleration measurements. The true system equations are 

therefore of the form 

[𝑧̇
𝑣̇
] = [

𝑣
−𝑚−1(𝑐𝐸(𝑧) + 𝑐𝐷(𝑣)) − 𝑢] , (3.1) 

𝑦 = −𝑚−1(𝑐𝐸(𝑧) + 𝑐𝐷(𝑣)) . (3.2) 

Notice that the state variables (z and v) are chosen as the deformation and the 

rate of deformation of the system’s RFS according to Section 1.3. The measure-

ment equation (3.2) however corresponds to the acceleration of the body in the 

global coordinate system, which represents a real-life accelerometer. The a 

priori system model for the KF is defined as 

[

𝑧̇
𝑣̇
𝑠̇
𝑑̇

] = [

𝑣
−𝑚−1𝑝𝑐(𝑠𝑧 + 𝑑𝑣) − 𝑢

0
0

] , (3.3) 

𝑦 = −𝑚−1𝑝𝑐(𝑠𝑧 + 𝑑𝑣) , (3.4) 

which is of the form (2.31) and (2.33) with one modification: The total restor-

ing force is scaled using the constant coefficient pc (according to Section 2.2.4) 

in order to improve the conditioning of the state estimation error variance 

matrix PXa, which improves the numerical stability of the KF. This modification 

influences the process function’s Jacobian from equation (2.46) as well, as pc 

appears in the derivatives of 𝑣̇. The constant is chosen based on the expected 

average stiffness of the RFS. At the end of the identification procedure the 

smoothed RFCs are rescaled using the same coefficient. The kinematic excita-

tion of the system, given by u, is carried out using a forward frequency sweep 

with constant amplitude of 5 ms–2. The frequency range of the sweep is 100 Hz 
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to 400 Hz in Subsection 3.1.1 and 3.1.3. It is slightly reduced in Subsection 3.1.2 

to the range of 30 Hz to 250 Hz. The constant parameters are set to m=4 kg and 

pc=5∙106. The tuning of the KF (i.e. the choice of 𝐱̂𝑎,0
+ , 𝐏̂𝐗𝑎,0

+ , Q and R) is carried 

out according to Section 2.2.4. 

3.1.1 Comparison of additive and coupled identification 

Since the current section includes the first identification example in the present 

thesis, its major aim is to prove the functionality of the nonparametric ap-

proach proposed in Chapter 2. Additionally the particular virtual example is 

used to compare the result quality of additive and coupled identification and to 

carry out a brief investigation of possible fine tuning of the KF. The true RFCs of 

the considered system are given by the following continuous symmetric non-

linear functions: 

𝑐𝐸(𝑧) = 5 ∙ 105 ∙ 𝑧 + 45 ∙ tanh(4 ∙ 105 ∙ 𝑧) (3.5) 

𝑐𝐷(𝑣) = 50 ∙ 𝑣 + 25 ∙ (100 ∙ 𝑣)3 (3.6) 

The initial augmented state vector is set to 𝐱̂𝑎,0
+ =[0,0,2 Nm–1,4∙10–4 Nsm–1]T, 

where the scaled initial stiffness and damping values are chosen in order to 

represent a linearisation of the true system in the particular load case based on 

the measurement signal. A direct simulation of the a priori model with the 

initial values of the augmented states, from here on referred to as the “initial 

model”, is compared to the true system in Figure 3.1 by means of the corre-

sponding RFSs and measurement time series. The nonparametric identification 

of the system is carried out using the EKF. The lower bound constraint of the 

time-varying stiffness is chosen based on the initial model that has a damping 

ratio of 𝒟=0.158, which leads to sL=0.05 Nm–1 according to the formula (2.34). 

The derived approach allows the estimation of the system’s nonlinear charac-

teristics either as an additive RFS (as the sum of an eRFC and a dRFC) or as a 

coupled RFS. Accordingly, the identified system is compared to the true one 
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based on the corresponding RFSs and measurement time series in Figure 3.2 

and Figure 3.3 for the additive and the coupled identification case respectively. 

The frequency response of the identified system is simulated using the meas-

ured excitation signal u. 

 

Figure 3.1: Comparison of the initial model and the true system based on the corre-

sponding RFSs (left) and frequency sweep response time series (right). 

 

Figure 3.2: Comparison of the true and the identified system based on the correspond-

ing RFSs (left) and frequency sweep response time series (right). The identification has 

been carried out assuming an additive nonlinearity (aRFS). 
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Figure 3.3: Comparison of the true and the identified system based on the correspond-

ing RFSs (left) and frequency sweep response time series (right). The identification has 

been carried out assuming a coupled nonlinearity (cRFS). 

By looking at the frequency sweep responses of the identified systems it can be 

observed that both approaches, i.e. the aRFS and the cRFS, deliver good identi-

fication quality, which is the main conclusion of the present section. Comparing 

the two results the following can be stated: On the one hand, only the cRFS 

managed to reconstruct the superharmonic resonance at the beginning of the 

frequency sweep. On the other hand, the aRFS results in much smoother system 

response. The eRFCs and dRFCs generated by the two approaches are depicted 

in Figure 3.4 in order to allow for a more precise comparison. Thereby two 

different techniques have been used to reduce the cRFS into an additive model. 

In the first case, referred to as “cRFS slice”, simple sections of the cRFS are 

calculated at v=0 and z=0 to generate the eRFC and the dRFC respectively. In 

the second technique, referred to as “averaged cRFS slice”, multiple sections at 

uniformly distributed v and z levels are calculated and subsequently debiased 

by the force values at z=0 and v=0 respectively. The average of these slices’ 

force coordinates forms the final RFCs. It can be seen that the cRFS provides a 
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the slice averaging technique is necessary to achieve sufficient smoothness of 

the characteristic. 

 

Figure 3.4: Comparison of additive and coupled identification based on the eRFCs (left) 

and dRFCs (right) of a 1DoF nonlinear system involving additive nonlinearity. 
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ward RFS” and “backward RFS” respectively. The response time series of the 

two identified systems are compared to the measured responses for both 

sweep directions in Figure 3.5. It can be observed that the forward response 

strongly differs from the backward response. This is a well known property of 

systems with nonlinear eRFCs, which has a significant influence on the validity 

range of the two identified RFSs. The comparison of the results reveals that the 

“forward RFS” is not completely valid for the backward sweep load case, be-

cause the latter covers a larger domain of the state space than the forward 

sweep. The “backward RFS” is however suitable to reconstruct both load cases 

with good accuracy. 

 

Figure 3.5: Measured forward (left) and backward (right) frequency sweep response 

time series of a 1DoF nonlinear system compared to the responses of two identified 

models. The first (top) has been identified during the forward sweep, while the second 

(bottom) is based on the backward sweep. Both sweeps has been carried out in the same 

frequency range of 200 Hz to 400 Hz. 
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Therefore, it can be concluded that the proper choice of the excitation plays an 

essential role in the resulting RFSs’ applicability. This topic is further discussed 

on an example involving coupled nonlinearity in Section 3.2. 

During the calculation of the presented results the process covariance expo-

nents (q.v. Section 2.2.4) were set to qs=3 and qd=1. In order to investigate the 

influence of fine tuning on the EKF, a parameter study has been carried out, 

where the exponents have been varied in the range of qsϵ[2,3.5] and qdϵ[0,5.5] 

with a step size of 0.5. The effect of simultaneously increasing qs and qd has 

already been presented in Section 2.2.4 (q.v. Figure 2.7). In the current section 

the balance between the eRFC’s and the dRFC’s accuracy is of particular inter-

est. Therefore, the results of the parameter study are depicted over the differ-

ence between the two exponents in Figure 3.6 in form of the eRMS% error of 

the RFCs. 

 

Figure 3.6: Results of the parameter study of qs and qd using the virtual frequency 

sweep measurement of a 1DoF system with additive nonlinearity. Additive identification 

(„direct RFC“) is compared to coupled identification („averaged cRFS slice“) based on the 

eRMS% error (q.v. Appendix B) of the identified eRFC (left) and dRFC (right). 
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It can be concluded that setting qd to smaller values than qs is advantageous in 

general. It is however interesting that in case of additive identification (referred 

to as “direct RFC”) the related quality increase is restricted to the eRFC. Where-

as, in case of coupled identification the quality of the dRFC increases as well. 

3.1.2 Identification of backlash 

The aim of the current subsection is to demonstrate that the implemented 

constrained KF algorithm (q.v. Section 2.2.5) allows the identification of strong-

ly nonlinear vibro-impact systems involving backlash based on acceleration 

measurements. The only difference of the considered virtual measurement 

setup from the one in Subsection 3.1.1 lies in its RFCs. They are defined in form 

of lookup tables and are depicted in Figure 3.8, which shows zero effective 

stiffness of the eRFC in a significant deformation range. The initial augmented 

state vector is set to 𝐱̂𝑎,0
+ =[0,0,1 Nm–1,2∙10–4 Nsm–1]T, which, similar to Subsec-

tion 3.1.1, represents an approximate linearisation of the true system in the 

particular load case. The initial model is compared to the true system in Figure 

3.7. The identification is carried out using the EKF, where the lower bound 

constraint of s is set to sL=0.0125 Nm–1 according to the formula (2.34) based 

on the initial model’s damping ratio of 𝒟=0.112. The identified RFCs are depict-

ed in Figure 3.8, which includes the results of an additional simulation as well, 

where the displacement has been chosen as the measured quantity. The con-

straint sL was set to –∞ in this case, since according to Section 2.1.2 it is not 

needed for y=z. 

It can be observed in Figure 3.8 that despite the observability problem of zero 

effective stiffness in case of yϵ{𝑣, 𝑣̇} (q.v. Section 2.1.2), the quality of the identi-

fied RFCs based on acceleration measurement is comparable to the one that is 

identified using the displacement signal. In fact the accuracy of the eRFC within 

the backlash is even higher in case of y=𝑣̇. To better point out the high quality of 

the identified characteristics, several time segments of the frequency sweep 
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measurement are plotted in Figure 3.9. It compares the noisy measured signal 

to the reconstructed one, which was simulated using the RFCs that were identi-

fied from acceleration measurement. 

In order to deeper understand how the constraint of the time-varying stiffness 

influences the estimation accuracy of the KF, the bias (offset) and the variance 

(noisiness) of the estimated time series of z and s (with respect to the true time 

series) are plotted in Figure 3.10 and Figure 3.11 for both acceleration (left) 

and displacement (right) measurements. It can be observed that the conver-

gence of the displacement z(t) is indeed lost if sL is set to insufficiently low 

levels in case of y=𝑣̇. It is however apparent that the chosen value of sL is ideal 

in the sense that it provides approximately the smallest possible bias of the 

instantaneous stiffness s(t) for acceleration measurement. Furthermore, the 

figures explain the similar result quality of the RFCs in case of the two different 

measurement types, since the low bias of s(t) for y=z is compensated by its 

significantly higher variance compared to the case of y=𝑣̇. Although the curve 

fitting algorithm from Section 2.3.2 is designed to accommodate noisy samples, 

it has been shown in Section 2.2.1 that the highest achievable accuracy always 

remains connected to the variance of the samples. 

Notice that negative values of sL still influence the results, although the true 

values of s never become negative in the current example. The first reason for 

this is the significant variance of the estimated time-varying stiffness that can 

lead to negative values of the unconstrained estimates. The second reason lies 

in the probabilistic nature of the implemented constraining algorithm (q.v. 

Section 2.2.5), which results in the truncation of the augmented state vector’s 

probability distribution even if the unconstrained mean value satisfies the 

constraint. 
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Figure 3.7: Comparison of the initial model and the true system based on the corre-

sponding RFSs (left) and frequency sweep response time series (right). 
 

 

Figure 3.8: Comparison of the true and the identified eRFC (left) and dRFC (right) of a 

1DoF nonlinear dynamic system involving backlash. The identification results for the 

two measurement types, displacement and acceleration, are compared. 
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Figure 3.9: Comparison of the true and the identified system based on four different 

time segments of the corresponding frequency sweep response time series. The identifi-

cation has been carried out using acceleration measurement. 

 

Figure 3.10: Bias (eM, q.v. Appendix B) of the time series of z(t) and s(t) with respect to 

their true values for different lower bound levels of the effective stiffness in case of 

acceleration (left) and displacement (right) measurement. 
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Figure 3.11: Variance (eRMS–eM, q.v. Appendix B) of the time series of z(t) and s(t) with 

respect to their true values for different lower bound levels of the effective stiffness in 

case of acceleration (left) and displacement (right) measurement. 
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accuracy of the characteristics. Regardless of the type of the deployed KF it can 

be observed that the quality of the identified dRFC is much lower than in case of 

the two previous examples from Subsections 3.1.1 and 3.1.2. A possible expla-

nation for this is that the dissipative forces are much lower compared to the 

elastic forces in the current case than they were in case of the other two sys-

tems. Notice that the absolute force deviation of the characteristics is of the 

same order of magnitude for the eRFC and the dRFC. 

Further comparison of the two different KFs’ accuracy is given by the frequency 

sweep response time series of the identified systems compared to the noisy 

measurement signal in Figure 3.14 for the EKF (left) and the SR-UKF (right). It 

can be seen that the EKF in fact provides slightly better result quality than the 

SR-UKF in this particular example. 

 

 

Figure 3.12: Comparison of the true and the identified eRFC (left) and dRFC (right) of a 

1DoF dynamic system including the corresponding uncertainty curves ρL and ρU. The 

identification was carried out based on acceleration measurement using the EKF. 
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Figure 3.13: Comparison of the true and the identified eRFC (left) and dRFC (right) of a 

1DoF dynamic system including the corresponding uncertainty curves ρL and ρU. The 

identification was carried out based on acceleration measurement using the SR-UKF. 

 

 

Figure 3.14: Comparison of the identified 1DoF system’s frequency sweep response 

time series to the true measured response. The identification was carried out using the 

two KF types: EKF (left) and SR-UKF (right). 
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3.2 Coupled restoring force surfaces 

Section 3.1 presented the nonparametric identification of three 1DoF dynamic 

systems involving strongly nonlinear additive RFSs. Although coupled identifi-

cation has also been tested on some of these examples, the capability of the 

presented approach to identify coupled nonlinearities has not been presented 

so far. Therefore, the current section investigates the nonparametric identifica-

tion of the Van der Pol oscillator, which is well known for its limit cycle that 

arises from its crucially coupled nonlinear nature (Strogatz, 1994). The recon-

struction of such a system’s characteristics from vibration measurements has 

already received some attention in the literature. (Sitz, Schwarz, Kurths, & Voss, 

2002) can be mentioned as an example, where the parametric identification of 

a Van der Pol system is carried out using an augmented UKF. 

Compared to Section 3.1 the only change in the virtual measurement setup is 

the replacement of the two RFCs by one cRFS in the system equations, which 

are therefore of the form 

[𝑧̇
𝑣̇
] = [

𝑣
−𝑚−1𝑐(𝑧, 𝑣) − 𝑢] , (3.7) 

𝑦 = −𝑚−1𝑐(𝑧, 𝑣) , (3.8) 

where the considered particular nonlinearity is given by the analytical function 

𝑐(𝑧, 𝑣) = 5 ∙ 106 ∙ 𝑧 + 1500 ∙ ((7 ∙ 104 ∙ 𝑧)2 − 1) ∙ 𝑣 . (3.9) 

The classical academic investigation considers the free system that exhibits 

self-excited oscillation, which converges to a stable limit cycle. This situation, 

i.e. u(t)=0, is investigated as the first load case. In contrast to the examples from 

Section 3.1 it is not possible to create an approximate linearisation of the 

system based on the available measurement. The EKF is therefore initialised 

with 𝐱̂𝑎,0
+ =[0,0,1 Nm–1,10–4 Nsm–1]T, where the scaled stiffness and damping 

values represent typical initial guesses. The lower bound constraint of s is 
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simply set to sL=0.01 Nm–1, which proved to be a good rule of thumb during the 

present study. The identified cRFS and the true state space trajectory of the 

system during the measurement are depicted in Figure 3.15. 

After the identification the adapted model has been used to reconstruct the 

measured behaviour. The initial state was thereby set to the small nonzero 

values of z0=10–6 m and v0=10–3 ms–1 in order to introduce a disturbance that 

aims to initiate the expected free oscillations. Although the accuracy of the 

reconstructed cRFS is very good, the free oscillations of the identified system 

deviate significantly from the measured behaviour, which can be observed in 

Figure 3.17 (left). The reason for this is the general property of nonparametric 

cRFSs that they are only valid over the state space domain, where the system 

spent sufficient time during the measurement. The proper choice of the exper-

iment load case, as discussed e.g. in (Link, Boeswald, Laborde, Weiland, & Calvi, 

2011), is therefore crucial for the nonparametric identification of such systems. 

The forced vibrations of the Van der Pol oscillator are investigated in 

(Mohamed, Karim, & Belghith, 2013), where the external excitation is shown to 

have significant influence on the system’s behaviour. Accordingly, a harmonic 

excitation with an amplitude of 15 ms–2 and a constant frequency of 100 Hz has 

been introduced as a modified load case in the current study in order to reach a 

much wider range of the {z,v} plane. The true state space trajectory of the 

forced system during the measurement and the identified cRFS are depicted in 

Figure 3.16. The system that was identified based on the modified load case is 

now able to reconstruct the true trajectories of the measured system’s free 

oscillations with good accuracy, which is depicted in Figure 3.17 (right). 
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Figure 3.15: True and identified cRFS (left) of the Van der Pol oscillator and the state 

space trajectory (right) of the measured virtual system during a load case without 

external excitation, i.e. u(t)=0. 

 

 

Figure 3.16: True and identified cRFS (left) of the Van der Pol oscillator and the state 

space trajectory (right) of the measured virtual system during a load case with an 

external excitation of u(t)=15sin(2π100t) ms–2. 
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Figure 3.17: Comparison of the identified Van der Pol system’s free oscillation to the 

true limit cycle for the two different identification load cases: free oscillation (left) and 

forced vibration (right). 
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and the oscillation of clutch components (Tikhomolov, 2015), just to mention a 

few of the possible applications. The virtual measurement setup of such a 

system is illustrated in Figure 3.18, on which the identification example is 

based in the following subsection. The three DoFs of the depicted rigid plate are 

translation in ζ direction and rotation around the coordinate axes ξ and η, 

denoted by φξ and φη, assuming small tilting angles. The body is mounted to the 

ground via three nonlinear bipolar spring elements, whose behaviour is de-

scribed by their RFSs given by the functions cj(zj,vj). The connection points of 

the springs to the plate are given by the coordinate triplets {ξ1,η1,0}, {ξ2,η2,0} 

and {ξ3,η3,0}. The inertia properties of the plate in the (ζ,φξ,φη) coordinate 

system are given by its diagonal inertia matrix of the form 

𝐌(𝜁,𝜑𝜉,𝜑𝜂) = [

𝑚 0 0
∙ 𝐽𝜉 0

∙ ∙ 𝐽𝜂

] , (3.10) 

where m is the mass of the body and Jξ and Jη denote the mass moment of 

inertia around the axes ξ and η respectively. The structure is excited via the 

vibration of the ground given by the acceleration signal u. According to Section 

1.3 the deformation and the rate of deformation of the spring elements, i.e. zj 

and vj, are chosen as the state space coordinates of the a priori system model 

for the identification. This results in an a priori process model of the form 

(2.31) with 12 state variables, i.e. na=12. The inverse inertia matrix M–1 and the 

input matrix B are given as 

𝐌(𝑧1 ,𝑧2,𝑧3)
−1 =

1

𝑚
[
1 1 1
∙ 1 1
∙ ∙ 1

] +
1

𝐽𝜉
[

𝜂1
2 𝜂1𝜂2 𝜂1𝜂3

∙ 𝜂2
2 𝜂2𝜂3

∙ ∙ 𝜂3
2

] +
1

𝐽𝜂
[

𝜉1
2 𝜉1𝜉2 𝜉1𝜉3

∙ 𝜉2
2 𝜉2𝜉3

∙ ∙ 𝜉3
2

], (3.11) 

𝐁(𝑧1 ,𝑧2 ,𝑧3) = [
−1
−1
−1

] . (3.12) 
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The measurement vector y consists of the acceleration signals of the connection 

points of the spring elements in ζ direction, denoted yj, which leads to the 

measurement equation 

𝐲 = [

𝑦1

𝑦2

𝑦3

] = [
𝑣̇1 + 𝑢
𝑣̇2 + 𝑢
𝑣̇3 + 𝑢

] . (3.13) 

This set of signals satisfies the necessary measurement conditions defined by 

(2.32) and (2.33) as long as there are no coinciding sensor points. Notice that 

for the sake of clarity equation (3.13) is given as a function of state derivatives, 

which however need to be replaced by the corresponding rows of the process 

equation (2.31) prior to the implementation in the KF algorithm. 

 

Figure 3.18: Virtual experiment setup of a rigid plate on elastic foundation with one 

translational DoF in ζ direction and two tilting DoFs around the ξ and η coordinate axes. 

The three bipolar spring elements represent general nonlinear RFSs between the 

ground and the body. 

3.3.2 Identification of mounting preload 

The current subsection presents the nonparametric identification of a 3DoF 

plate using the virtual experiment setup introduced in Subsection 3.3.1. To give 
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this example a practical meaning, let us consider the realistic situation, where 

the three spring elements represent the mounting of the body to the vibrating 

ground. Let us suppose that the plate is a rigid body model of a machine that is 

not allowed to lift off from the ground under some expected vibration condi-

tions. In this case one can use high level excitation of the system to identify the 

effective preload in each of the three mounting segments. To do so, a backward 

frequency sweep input has been applied to the virtual structure with constant 

amplitude of 7 ms–2 in a frequency range of 500 Hz to 100 Hz. The properties of 

the system were set to: 

𝐌(𝑧1 ,𝑧2,𝑧3)
−1 = [

0.408 0.046 0.046
∙ 0.408 0.046
∙ ∙ 0.408

] [kg−1] , (3.14) 

[
𝜉1 𝜉2 𝜉3

𝜂1 𝜂2 𝜂3
] = 0.13 ∙ [

cos(0°) cos(120°) cos(240°)
sin(0°) sin(120°) sin(240°)

] [m] . (3.15) 

Instead of the approximate linearization of the system in the particular load 

case (q.v. Section 3.1) the EKF was simply initialised with the typical guess 

(3.16). The scaling coefficient of the RFSs (q.v. Section 3.1) was set to pc=107. 

Since the formula (2.34) is not convenient for multiple DoF systems, the lower 

bound constraint of s was defined with general entries as (3.17), which proved 

to be a good rule of thumb throughout the current thesis. 

𝐱̂𝑎,0
+ ≔

[
 
 
 
 
[   0       0       0    ]T

[   0       0       0    ]T

[   1       1       1    ]T

[10−4 10−4 10−4]T

 [m]       

 [ms−1] 

 [Nm−1]

   [Nsm−1]]
 
 
 
 

 (3.16) 

𝐬L = [10−2 10−2 10−2]  [Nm−1] . (3.17) 

The additive identification of the three nonlinear RFSs (including single-sided 

preload) has been carried out using the measurement time series y corrupted 

by 5 % RMS (q.v. eRMS% from Appendix B) zero mean white noise. The results 

are depicted in Figure 3.19. Apparently there is a very good agreement between 
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the true characteristics and the identified RFSs. Hence, it can be stated that the 

estimated eRFCs are suitable for the determination of the effective local preload 

in the three mounting segments. Furthermore, it can be observed in Figure 3.20 

that the identified model is able to reconstruct the measured system’s complex 

nonlinear response with good accuracy. 

 

Figure 3.19: Comparison of the true and the identified RFSs of the 3DoF mechanical 

structure. The identification was carried out in its additive form using the EKF. 

 

Figure 3.20: Comparison of the measured behaviour of the 3DoF mechanical system to 

the reconstructed frequency sweep response using the identified model. 
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3.4 Requirements on the measurement 

In order for an identification technique to be suitable for real-life application, 

its stability under realistic measurement conditions is of high importance. The 

current section therefore investigates the robustness of the proposed approach 

against typical experiment issues such as high noise level (q.v. Subsection 

3.4.1), poor sampling rate (q.v. Subsection 3.4.2) and model uncertainties (q.v. 

Subsection 3.4.3). 

3.4.1 Noise level 

It has been discussed in Section 2.2.1 that noise is an inevitable component of 

every measured signal, which in most cases can not be neglected. It can be 

described by its bias vector and its discrete-time covariance matrix R. Signifi-

cantly biased measurements can not be handled by the presented technique. 

They can drastically decrease result quality or even cause observer divergence. 

Fortunately in most situations the bias can either be avoided or detected and 

compensated. It is however important to mention that the correction of the 

signal drift of frequency sweep measurements of nonlinear systems has to be 

treated carefully. It is shown e.g. in (Tikhomolov, 2015) that such signals exhib-

it a natural drift of their time average in case of strongly asymmetric elastic 

characteristics, which should not be altered by the signal correction. In contrast 

to bias, the a priori correction of the noise covariance, which is practically 

speaking the actual noisiness of the signal, always corrupts the higher harmonic 

components of nonlinear oscillations. That is the reason why the KF has been 

chosen as the synchronisation algorithm in the present study, since it can 

accommodate noisy signals in a proper probabilistic manner. 

To show the resilience of the technique to noise, the identification of the virtual 

measurement example from Section 3.1.1 has been carried out at different RMS 

levels of the zero mean Gaussian white noise that is added to the signal y. The 
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noisy measurements and the eRFCs, reconstructed using the EKF in combina-

tion with additive identification, are depicted in Figure 3.21. The comparison of 

the results for different noise levels highlights the advantage of the probabilis-

tic manner of the presented approach. It can be observed that even for an 

extremely high noise level of 50 % (q.v. eRMS% from Appendix B), the tech-

nique still yields useful results. 

 

Figure 3.21: Comparison of the reconstructed eRFCs (right) of a 1DoF nonlinear system. 

The additive identification has been carried out based on frequency sweep measure-

ments (left) at different eRMS% (q.v. Appendix B) noise levels using the EKF. 

In order to gain deeper insight into the algorithm’s behaviour in the presence of 

noise, a comparison of different subtypes of the approach is presented in Figure 

3.22 based on the estimation error of the identified RFS of the 1DoF system 

from Section 3.1.1. The subfigure on the left shows the results as a function of 

the noise level applied to the measurement signal y. It can be seen that in case 

of additive identification, referred to as aRFS, the noise has a relatively weak 

influence on the accuracy. However, the quality of the RFS based on coupled 

identification, referred to as cRFS, is much stronger affected. It can be observed 

that the cRFS technique delivers better results for moderate noise levels, which 

has already been investigated in Section 3.1.1. On the other hand, the cRFS 

0 1 2

-20

-10

0

10

20

time [s]

ac
ce

le
ra

ti
o

n
 [

m
 s

-2
]

 

 

noisy frequency sweep measurement

50% noise

20% noise

  5% noise

0 3.5 7
0

10

20

30

40

50

z [m]

f E
 [

N
]

 

 

elastic RFC

true eRFC

identified, 50% noise

identified, 20% noise

identified,   5% noise



Virtual examples and the properties of the approach 

128 

solution becomes less accurate than the aRFS for high noise levels. This can be 

explained by the slower statistical convergence of the cRFS, which is discussed 

later in detail in Subsection 3.4.2. Furthermore, it can be observed that the SR-

UKF exhibits approximately the same dependence on the noise of y as the EKF. 

The effect of the input signal’s noisiness is depicted in the right subfigure of 

Figure 3.22. It is to be seen that the EKF has a much weaker resistance to this 

kind of disturbance compared to the noise of the measurement signal. The 

reason for this lies in the main concept of the proposed tuning of the EKF. 

Recall from Section 2.2.4 that, in order to achieve fast convergence of the in-

strumental variables’ estimates (s and d) over time, all the entries of Q that are 

not related to their derivatives has been set to zero, q.v. formula (2.51). Hence, 

the non-augmented part of the a priori process model, i.e. the describing ODEs 

of the mechanical system, are assumed to be correct, which tends to ignore any 

error of the input signal. It is interesting however that the SR-UKF is able to 

compensate the noisiness of u nearly as good as it accounts for the noise in y. 

This is probably a result of the fact that in this technique (in contrast to the 

EKF) the input signal has a direct effect on the calculated covariance matrices 

through the sigma points of the state vector. This shows that, though the SR-

UKF is computationally more expensive than the EKF, it is a much more sophis-

ticated algorithm. Fortunately the noise content of the excitation (input) signal 

is in most cases relatively low, since it is a characteristic that is typically direct-

ly controlled during the measurement. Furthermore, in case of frequency 

sweep input the precise filtering of the noise from the signal is possible, since 

the expected form of the noisefree time series is well known. 

The above investigation considered zero mean Gaussian white noise. This is a 

justified assumption in most real-life situations. More general formulations of 

the KF that can account for noise processes with certain correlation over time, 

so called “coloured noise”, also exist (Simon, 2006). This topic is however 

outside the scope of the present thesis. 
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Figure 3.22: Comparison of different subtypes of the proposed nonparametric identifi-

cation algorithm based on the estimation error of the identified RFS of the 1DoF system 

from Section 3.1.1 as a function of the noise level applied to the measurement signal y 

(left) and to the input signal u (right). 

Before the investigation of further measurement related aspects, let us briefly 

discuss the possible application of the presented nonparametric approach to 

time-delay systems, since (as described in the following) this topic is closely 

related to the noisiness of the input signal. The complex dynamics of such 

systems received notable attention in the past decades (Stépán, Szalai, & Hogan, 

2005), (Insperger & Stépán, 2002), (Stépán, 1989). They can be described via 

delay differential equations (DDEs), which in case of a 1DoF nonlinear oscillator 

with a single time delay, denoted by τD, are of the form 

[
𝑧̇(𝑡)
𝑣̇(𝑡)

] = [
𝑣(𝑡)

−𝑚−1𝑐(𝑧(𝑡), 𝑣(𝑡)) + 𝑏𝑧(𝑡 − 𝜏D)
]. (3.18) 

The literature already offers some identification techniques that can estimate 

both the time delay and further nonlinearities of such systems (Voss & Kurths, 

1997). The method that is explored in the present study is not able to identify 

τD. However, the question arises, whether it can be deployed to identify the RFS, 

i.e. c(z,v), of such a system supposing that the time delay is known a priori. If we 
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consider z(t–τD) as the input signal u, then the structure of the system is cov-

ered by the problem formulation from Section 1.3. Let us assume that a good 

initial guess of the time series of z is available for the time period tϵ[–τD,0] in 

order to initialise the KF. In this case the only remaining critical aspect is that 

instead of the exact signal of u only its noisy estimate is provided, which is 

generated by the KF itself. Notice that this leads to the same problem that has 

been discussed previously in the current section, i.e. the noisiness of u, as long 

as the estimates of z remain approximately unbiased. Though this topic is not 

further investigated in the current thesis, it can be stated based on the results 

depicted in Figure 3.22 that the application of the presented nonparametric 

identification approach to time-delay systems seems possible. Finally, it should 

be mentioned that a special extension of the KF, the so called Fixed-Lag 

Smoother (Simon, 2006), could be implemented to enhance the stability of the 

algorithm. This technique allows the recursive refinement of the estimate of 

z(ti–τD) based on the measurements in the time interval tϵ[ti–τD,ti). 

3.4.2 Sampling 

Measurement signals of today are always digitally sampled. The three most 

important consequences of this fact are the following: 

• The value of each sample has a finite numerical precision. 

• The signal has a finite sampling rate over time. 

• There are only a finite number of measured samples available. 

The first can typically be accounted for via proper calibration of the sensors 

during the experiment. It can therefore be treated as an effect without potential 

risks regarding the identification procedure. The second, i.e. the finite sampling 

rate, however plays an important role in the accuracy and stability of synchro-

nisation based methods especially in the current case of nonparametric identi-

fication. Due to the time-varying stiffness and damping coefficients, the a priori 
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system model diverges from the true system between the correction steps of 

the KF, i.e. between measurement sampling times (q.v. Section 2.2.3 and 2.2.4). 

The longer the time step between two measurement samples, the less accurate 

the algorithm becomes. To investigate this effect, the 1DoF oscillator from 

Section 3.1 was considered with an additive nonlinearity of the form 

𝑐(𝑧, 𝑣) = 2 ∙ 106 ∙ 𝑧 + 2 ∙ 1017 ∙ 𝑧3 + 1250 ∙ 𝑣 . (3.19) 

The virtual system has been excited using a harmonic input signal with con-

stant amplitude of 5 ms–2 and constant frequency of 250 Hz. The acceleration of 

the oscillating mass has been measured using different sampling rates and 

subsequently corrupted by 5 % (q.v. eRMS% from Appendix B) zero mean white 

noise. The duration of the measurement variants has been adapted to maintain 

104 time steps in order to separate this investigation from the topic of the 

number of samples. The estimation error of the identified RFSs (using additive 

identification) is depicted in the left subfigure of Figure 3.23 comparing the 

accuracy of the EKF and the SR-UKF. The results are illustrated as a function of 

the sampling frequency divided by the main oscillation frequency (i.e. 250 Hz), 

which is referred to as the “normed sampling rate”. It can be concluded that 

decreasing sampling frequency leads to lower identification quality. Drastic 

increase of error can be observed if the normed sampling rate becomes signifi-

cantly lower than 20. Furthermore, the results show that there is no clear 

difference between the accuracy of the EKF compared to the SR-UKF. However, 

the SR-UKF remains convergent for such low sampling rates, where the EKF 

already exhibits synchronisation divergence. 

The third consequence of digital sampling, i.e. the finite number of samples, is 

also essential in case of nonparametric identification. Although it does not 

affect the estimation quality of the KF, it does however influence the accuracy of 

the subsequential RFS fitting. To explore this influence, the virtual measure-

ment of the previous investigation has been carried out with different dura-
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tions at fixed sampling rate of 10 kHz in order to vary the number of samples. 

The excitation has been changed to a forward frequency sweep from 100 Hz to 

400 Hz to enable coupled identification as well (q.v. Section 3.2). Special syn-

thetic KF results have been generated to allow the separate analysis of the RFS 

fitting procedure. This means that the synchronisation bias of the KF has been 

artificially eliminated from the time series of the augmented state vector. 

Furthermore, the estimates of the deformation and the rate of deformation (z 

and v) have been completely freed from noise to enable the comparison of the 

proposed approach to parametric Least Squares (LS) fitting (Amiri-Simkooei & 

Jazaeri, 2012), which can not take the noisiness of the RFS’s independent 

variables into account. The fitting quality of the derived additive and coupled 

nonparametric approaches is compared to the accuracy of polynomial paramet-

ric LS fitting in the right subfigure of Figure 3.23 as a function of the number of 

incorporated samples. The resolution of the estimated RFS’s lookup table was 

set to 20 segments for both the z and the v coordinate. 

The results clearly point out an important difficulty of nonparametric fitting, 

which can be summarised as follows. In contrast to global regression (based on 

an assumed parametric function) each node of the generated nonparametric 

lookup table is mainly defined by a reduced local group of observed samples. 

This increases the influence of the slow statistical convergence of such a “natu-

ral Monte Carlo sampling” (q.v. Section 2.2.1). In case of the additive fitting of 

RFCs the number of the mainly influencing points for one local fitted node 

reduces in linear relation with the increase of the resulting lookup table’s 

resolution. This relation becomes quadratic in case of coupled surface fitting of 

RFSs, which further amplifies the undesirable effect of slow statistical conver-

gence. Of course the gap between the different fitting techniques’ accuracy 

reduces proportionally to the noise level of the samples. The resolution of the 

lookup table is also an important influencing factor, which has a problem 

specific optimum regarding the bias and the variance of the results. As a simple 
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guideline it can be concluded, that the necessary number of samples to achieve 

good fitting quality is about 103 for additive and about 2∙104 for coupled non-

parametric fitting for a resolution of 10 to 20 segments per dimension. This 

means a measurement duration of at least 2 to 3 seconds for typical measure-

ments of high frequency oscillations for coupled fitting. Finally, it is important 

to notice that this difficulty has nothing to do with the estimation of the RFS 

sample point clouds using the KF. These sample sets enable an easy characteri-

sation of the RFSs for parametric fitting in case of insufficient number of sam-

ples. 

 

Figure 3.23: Investigation of the influence of measurement sampling rate (left) and the 

number of measured samples (right) on the estimation error of the identified RFS based 

on the noisy (5 % RMS) virtual measurement of a 1DoF nonlinear oscillator. The resolu-

tion of the reconstructed RFS’s lookup table was set to 20 segments per dimension. 
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It has been discussed in Section 1.6.3 that synchronisation algorithms (and 
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the stability of such techniques. The current subsection briefly investigates this 

effect in the particular case of nonparametric identification using the virtual 

3DoF example from Section 3.3.2. To do so, let us introduce the following 

notation for the entries of the inverse inertia matrix M–1 given in the coordinate 

system of the deformation of the RFSs, i.e. zj: 

𝐌(𝑧1 ,𝑧2,𝑧3)
−1 ≔ [

𝜇11 𝜇12 𝜇13

∙ 𝜇22 𝜇23

∙ ∙ 𝜇33

] . (3.20) 

Different kinds of errors of the assumed values of μij have been introduced in 

the numerical example to analyse their influence on result quality. The corre-

sponding identified eRFCs of the system are depicted in Figure 3.24 and Figure 

3.25, which show a clear decrease of estimation accuracy due to the artificial 

modelling errors. 

There are several further possibilities of how the a priori model can deviate 

from reality. The unexpected noisiness of the input signal (q.v. Section 3.4.1) is 

one of these possibilities. An issue that can be even more critical than parame-

ter uncertainty is the incorrect choice of the number of DoFs. Such errors can 

lead to completely unrealistic identification results or even to synchronisation 

divergence. This fact increases the importance of developing computationally 

efficient identification algorithms, which was one of the primary aims of the 

present thesis (q.v. Section 1.1). Short computation time is essential, because it 

allows the implementation of the algorithm inside a higher level iteration 

procedure that successively eliminates modelling errors. The investigation of 

this topic in general is outside the scope of the current study. Nevertheless, the 

particular problem of uncertain model parameters, which is probably the most 

typical modelling error, is briefly investigated in Chapter 4, which offers a 

possible solution for the identification of the inverse inertia matrix M–1. 
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Figure 3.24: Influence of the incorrect values of the inverse inertia matrix’s diagonal 

entries on the estimation accuracy of the 3DoF virtual system‘s three eRFCs from Section 

3.3.2. 

 

 

Figure 3.25: Influence of the incorrect values of the inverse inertia matrix’s off-diagonal 

entries on the estimation accuracy of the 3DoF virtual system‘s three eRFCs from Section 

3.3.2. 
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3.5 Computational performance 

A major motivation to the proposed nonparametric identification technique 

was to achieve a computationally efficient algorithm (q.v. Section 1.1). As 

discussed in Section 1.4, there are available parametric identification methods 

that in general can identify nonlinear systems of arbitrary complexity. This 

however can lead to enormous computation times in case of missing a priori 

knowledge on the nonlinearities of the system of interest. Hence, numerical 

simplicity due to simple general models, such as the one proposed in Section 

2.1.2, represents the main advantage of nonparametric methods. Therefore, the 

current section presents a brief analysis of this topic, in order to point out the 

presented algorithm’s computational performance. 

There are several possibilities of accelerating a numerical procedure that are 

not directly related to the algorithm itself. The most trivial one is the deploy-

ment of faster computers. But there are also more sophisticated solutions such 

as parallel computing or the generation of symbolically optimised codes. In 

order to separate the current performance evaluation from these topics and to 

enable easier comparison to other methods, the “normed CPU time”, denoted by 

TNC, is introduced as a measure of the computation’s duration. It is defined as 

the ratio between the specific procedures CPU time and the duration of a single 

simulation run of the initial a priori model under the given experiment condi-

tions. E.g. in case of an optimisation process, every call of the objective function 

corresponds to a normed CPU time of 1. This quantity is used in Figure 3.26 to 

illustrate the computational efficiency of separate steps of the proposed non-

parametric approach based on the virtual examples from Section 3.1 and 3.3. 

The indicated values are thereby independent from both the sampling rate and 

the duration of the available measurement signals, since the CPU time of all 

steps and of the initial model run are both proportional to the number of pro-

cessed samples. 
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Figure 3.26: Computational efficiency of the proposed nonparametric technique’s 

separate steps based on the identification examples from Section 3.1 and 3.3. 
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parison of the proposed approach to such methods. Let us first consider the KF 

based dual state and parameter estimation (q.v. Section 1.4.1). In this method 

every describing parameter of the a priori characterised RFS is introduced as 

an additional augmented state variable. Accordingly, as soon as the nonlinear 

function requires more than two parameters, the corresponding KF algorithm 

will necessarily be slower then the presented one, which uses only s and d for 

one RFS. The computation gets even more complex if general functions (e.g. 

polynomial series) have to be deployed due to the lack of a priori characterisa-

tion of the RFSs. Furthermore, the introduced functions of the augmented states 

are as nonlinear as the RFSs that they describe, which automatically leads to 

the necessity of computationally expensive KF methods such as the SR-UKF. 

This can be observed e.g. in (Wu & Smyth, 2007). The comparison to optimisa-

tion based methods (q.v. Section 1.4.1) is also straightforward. In these tech-

niques the objective function of the optimisation is based on the simulation 

results of the virtual model, whose parameters are to be identified. Therefore, 

each function call during the optimisation increases the TNC level by 1. 

(Vyasarayani, Uchida, Carvalho, & McPhee, 2012) and (Gunnarsson, 2014) can 

be mentioned as successful applications of the Homotopy optimisation method. 

In the first a necessary number of 50 and 250 iterations have been reported to 

reach convergent identification results for dynamic systems with two and three 

parameters respectively. In the latter 1400 iterations of the optimiser were 

needed to identify the four coefficients of the describing third-order polynomial 

of a dynamic system’s nonlinear spring. The required number of function calls 

per iteration depends on the specific optimisation algorithm. However, even if 

we assume a TNC increase of 1 per iteration, such approaches still show to be 

computationally more expensive than nonparametric identification. A more 

detailed comparison of optimisation based techniques to observer based recur-

sive methods can be found in (Voss, Timmer, & Kurths, 2004). 
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4 Parametric identification of the a 
priori model 

The previous two chapters presented the synchronisation based nonparametric 

identification of a particular subclass of dynamic systems given by the process 

equation (1.11). Throughout these chapters all constant parameters of the 

system, i.e. the entries of the inertia matrix M and the input matrix B, has been 

assumed to be known a priori. In real-life implementation such constants 

always exhibit a certain level of uncertainty. According to Section 1.6.3 and 

3.4.3, errors in the assumptions of these parameters can lead to drastic de-

crease of the identified RFS’s accuracy. Hence, it is of practical importance to 

provide proper estimates of these constants. One way to achieve this is the 

coupling of the proposed nonparametric approach with parametric identifica-

tion techniques. This possibility is briefly investigated in Section 4.1 for the 

particular 3DoF virtual experiment from Section 3.3.2. 

In situations, where the virtual model is thought of as an image of the true 

system’s behaviour in the particular experiment load case, the determination of 

the structure’s initial state, i.e. z0 and v0, is a part of the identification problem. 

This gains more importance e.g. for the measurements of free oscillations, 

where the reproduction of the measured behaviour using the adapted model is 

impossible without the proper initial state vector. This topic has been neglected 

so far in the previous chapters, since the KF (in contrast to optimisation based 

methods) automatically compensates the initial deviations of the state space 

coordinates. In Section 4.2 a modification of the KF is applied to the virtual 

example from Section 3.3.2, which allows the identification of the system’s 

initial state. 
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The presented solutions throughout this chapter point out an important ad-

vantage of using the KF algorithm for synchronisation. Due to its potential and 

popularity, several extensions and special formulations have been developed 

throughout the last more than fifty years (q.v. Section 1.6.3). The choice of the 

KF makes all these features available, which leads to a more general and flexi-

ble identification procedure. 

4.1 Estimation of inertia properties 

Let us consider dynamic processes given by (1.11) and suppose that only rough 

guesses of M and B are available prior to the measurement. According to the 

problem formulation from Section 1.3, the input matrix B either consists of 

specific entries of M–1 (if u is a force signal) or Bij∊{-1,0,1} holds for its elements 

(if u is an acceleration signal). Hence, the identification of M instantly deter-

mines B as well. Therefore, it is sufficient to concentrate on the estimation of 

the inertia matrix. Notice that the proposed nonparametric system model 

(2.31) can not be fitted to the measured signals by simply adapting M using a 

parametric approach. Only those methods can be considered as possible exten-

sions that can accommodate the complete nonparametric KF algorithm (de-

rived in Chapter 2). This is crucial in order to ensure the simultaneous syn-

chronisation of s and d, while the parametric algorithm successively deter-

mines the entries of M. 

One parametric technique that fulfils this criterion is the Homotopy optimisa-

tion approach (q.v. Section 1.4.1). Though successful applications in the litera-

ture show its good reliability (Gunnarsson, 2014), (Vyasarayani, Uchida, 

Carvalho, & McPhee, 2012), (Carlsson & Nordheim, 2011), (Sun & Yang, 2010), 

it is a computationally rather expensive method due to its optimisation based 

algorithm (q.v. Section 3.5). Therefore, another suitable technique, the dual 

state and parameter estimation (q.v. Section 1.4.1), has been chosen in the 
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present study, which has a higher potential for computational efficiency. It is 

based on the augmentation of the a priori model’s state vector by the vector of 

unknown (uncertain) parameters, denoted by p. Notice that this is the same 

solution, which has been applied to enable the identification of RFSs in Chap-

ter 2 with the difference that p does not consist of instrumental variables but 

physical model parameters, and that its true values are not expected to vary 

over time. Accordingly, the general a priori system model, proposed in Section 

2.1.2, is now modified to 

[
 
 
 
 
𝐳̇
𝐯̇
𝐬̇
𝐝̇
𝐩̇]
 
 
 
 

=

[
 
 
 
 

𝐯
−𝐌−1(𝐩)[diag(𝐬)𝐳 + diag(𝐝)𝐯]+ 𝐁(𝐩)𝐮

𝟎
𝟎
𝟎 ]

 
 
 
 

 , (4.1) 

𝐰𝑁×1 ≔ [𝑤1 , … ,𝑤𝑁]T ∋ 𝑤𝑗 ∈ {𝑧𝑗 , 𝑣𝑗, 𝑣̇𝑗}, 
(4.2) 

𝐲𝑁×1 = 𝐡(𝐰,𝐮) ∋ rank (
∂𝐡

∂𝐰
) = 𝑁. (4.3) 

Hence, the structure of the KF’s estimates of the state vector’s probability 

distribution properties also changes from (2.41) to 

𝐗𝑎 =

[
 
 
 
 
𝐙
𝐕
𝐒
𝐃
𝐏]
 
 
 
 

~

(

 
 

𝐱𝑎 =

[
 
 
 
 
𝐳
𝐯
𝐬
𝐝
𝐩]
 
 
 
 

, 𝐏𝐗𝑎 =

[
 
 
 
 
𝐏𝐙 𝐏𝐙𝐕 𝐏𝐙𝐒 𝐏𝐙𝐃 𝐏𝐙𝐏

∙ 𝐏𝐕 𝐏𝐕𝐒 𝐏𝐕𝐃 𝐏𝐕𝐏

∙ ∙ 𝐏𝐒 𝐏𝐒𝐃 𝐏𝐒𝐏

∙ ∙ ∙ 𝐏𝐃 𝐏𝐃𝐏

∙ ∙ ∙ ∙ 𝐏𝐏 ]
 
 
 
 

)

 
 

 , (4.4) 

where P denotes the probability distribution of p. Furthermore, the initialisa-

tion and the tuning of the KF also have to be extended. These modifications 

follow the same logic that has been discussed in Section 2.2.4, which leads to 

the formulas: 

𝐱̂𝑎,0
+ ≔ [ E(𝐙0)

T E(𝐕0)
T E(𝐒)T E(𝐃)T E(𝐏)T ]T, (4.5) 

𝐏̂𝐗𝑎,0
+ ≔ diag([ E(𝐙2)T E(𝐕2)T E(𝐒2)T E(𝐃2)T E(𝐏2)T ]), 

(4.6) 
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𝐐 ≔ ∆𝑡 ∙ diag([ 𝟎1×𝑁 𝟎1×𝑁 10𝑞𝑠E(𝐒2)T 10𝑞𝑑E(𝐃2)T 10𝑞𝑝E(𝐏2)T ]), (4.7) 

where qp is an additional covariance exponent that allows the separate conver-

gence tuning of the estimates of p. Considering the particular case from Section 

3.3.2 the entries of the inverse inertia matrix M–1 are defined as the elements of 

p, which using the notation from Section 3.4.3 leads to 

𝐩 ≔ [ 𝜇12 𝜇13 𝜇22 𝜇23 𝜇33 ]T . (4.8) 

The first diagonal entry of M–1, i.e. μ11, has not been defined as state variable. 

The reason for this is that the excitation is of kinematical type (acceleration) in 

the given virtual experiment setup. Under such conditions the inertia matrix of 

a mechanical system is only identifiable up to an unknown coefficient. This 

means that an endless number of systems exist that can reproduce the given 

measurement signals, which are therefore not distinguishable based on the 

particular experiment setup. In the current case μ11 has been set to its true 

value and has been kept constant, in order to enable the convergence of the 

other parameters to their correct values. In real-life one can achieve convergent 

results using the above model, but these will not necessarily be consistent. 

However, the missing coefficient of M–1 can be determined e.g. by measuring 

the weight of the rigid body. Further discussions on similar distinguishability 

issues can be found in (Dresig & Fidlin, 2014), (Bessa, Hackbarth, Kreuzer, & 

Radisch, 2014), and (Hoshiya & Saito, 1984). 

It is important to mention that the defined form of the a priori system model 

from Section 3.3 is optimal for the handling of possible model uncertainties. 

The following aspects have been taken into account during its design, which can 

be considered as general guidelines for the modelling of multiple DoF systems 

for identification: Though the system has only 3 DOFs, the complete description 

of the experiment setup includes a relatively large number of parameters. The 

rigid body’s three inertia properties (m, Jξ, Jη) and one {ξ,η} coordinate pair for 

the position of each sensor and each spring element adds up to 15 describing 
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constants, all of which can be affected by some errors. Due to the choice of the 

spring elements’ deformations and rate of deformations as state space coordi-

nates and due to the positioning of the sensors at the spring elements’ connec-

tion points, all possible parameter uncertainties, i.e. all 15 constants, have been 

“compressed” into the 6 entries of M. First, this leads to a drastic decrease of 

model complexity. Second, the fact that this “compression” is possible shows 

that the 15 original constants are not distinguishable and would therefore lead 

to convergence issues in the synchronisation algorithm. Of course, placing the 

sensors at the spring positions might not always be possible in real-life. Or, to 

go further, there might be cases, when there are more spring elements than 

DoFs, which automatically leads to indistinguishability. A simple and pragmatic 

solution for these situations is the assumption of N spring elements at the N 

sensor positions (q.v. Section 5.2.2). This leads to a virtual system that is at 

least able to reconstruct the measured behaviour. The problem of transforming 

the determined RFSs into properties of the real spring elements can be treated 

separately after the identification. The second important aspect that influenced 

the design of the model was the aim to avoid strong nonlinearities in the KF to 

allow the deployment of computationally simpler algorithms, i.e. the EKF 

instead of the SR-UKF (q.v. Section 2.2.2). The choice of the entries of M–1 

instead of the elements of M as augmented states avoids the introduction of 

strong hyperbolic nonlinearities (e.g. zjsjm–1) in the model and leads to less 

critical trilinear expressions (e.g. zjsjμij) instead. 

Unfortunately it turned out that both the EKF and the SR-UKF are not able to 

achieve sufficient convergence of p in a single KF run due to the nonlinearity of 

the model and the large number of 17 state variables (zj, vj, sj, dj, μij). To over-

come this difficulty, the global iteration of the KF has been implemented in the 

present study. This is a well known technique with successful implementation 

examples in the literature (Voss, Timmer, & Kurths, 2004), (Hoshiya & Saito, 

1984). The main idea is to iterate the complete KF algorithm by setting the last 
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estimate of the state vector from the previous KF run as the initial state of the 

next run. This procedure only makes sense in case of dual state and parameter 

estimation and should not be confused with the locally iterated EKF (Simon, 

2006), which iterates the model’s Jacobians inside the recursion loop. Using the 

notations from expression (4.4), the precise definition of the implemented 

iteration is given by the following simple algorithm: 

𝐱̂𝑎,0,𝑘+1
+ =

[
 
 
 
 

𝐳0,1

𝐯0,1

𝐬,end,𝑘

𝐝,end,𝑘

𝐩,end,𝑘]
 
 
 
 

 , (4.9) 

𝐏̂𝐗𝑎,0,𝑘+1
+ =

[
 
 
 
 
 
𝐏𝐙,0,1 𝐏𝐙𝐕,0,1 𝟎 𝟎 𝟎

∙ 𝐏𝐕,0,1 𝟎 𝟎 𝟎

∙ ∙ 𝐏𝐒,end,𝑘 𝐏𝐒𝐃,end,𝑘 𝐏𝐒𝐏,end,𝑘

∙ ∙ ∙ 𝐏𝐃,end,𝑘 𝐏𝐃𝐏,end,𝑘

∙ ∙ ∙ ∙ 𝐏𝐏,end,𝑘 ]
 
 
 
 
 

 , (4.10) 

where k denotes the index of the global iteration, and the recursion index of the 

last measurement time step is indicated by “end”. Notice that the initial guesses 

of z and v remain unchanged throughout the global iteration, since their values 

are not getting refined by the KF. 

The final step in the preparation of the parameter estimation algorithm is the 

choice of the KF’s tuning coefficients. An extensive parameter analysis has been 

carried out using the given measurement setup, which yielded the set of tuning 

exponents [qs,qd,qp]=[–4,–6,–4] as the optimal choice. These optimised settings 

can be treated as a rough general guideline, since the introduced KF tuning 

strategy (4.7) is based on a normed formula. Recall from Figure 2.7 that such 

settings lead to a high bias of the estimates of s and d, since they are fastly 

varying. This however represents no difficulty, because the only aim of this 

identification step is the estimation of the parameter vector p. The identifica-
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tion of the RFSs is carried out in a second step using suitable tuning strategy 

according to Section 2.2.4. 

Since M–1 is a constant linear property, its elements do not depend on the 

oscillation amplitude of the system. Therefore, it is reasonable to introduce an 

additional load case with low excitation level and compare the corresponding 

estimation results with the ones that are achieved using the original load case 

from Section 3.3.2. It can be expected that the low excitation level leads to 

better convergence of the parameter vector p due to the reduced oscillation of s 

and d over time. The response of the 3DoF plate to frequency sweep excitation 

is depicted in Figure 4.1 for the two load cases. 

 

Figure 4.1: Noisy measurement signals of the virtual 3DoF system from Section 3.3.2 

with logarithmic scaling in case of frequency sweep at two different excitation levels. 

The global iteration procedure has been carried out using both the EKF and the 

SR-UKF, in order to compare their performance. The initial guess of the param-

eter vector has been set to p=[0,0,0.3 kg–1,0,0.3 kg–1]T. The convergence of μij 

over the number of global iterations is illustrated in Figure 4.2 and Figure 4.3 

for the low level (linear) and the high level (nonlinear) load case respectively. 
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Figure 4.2: Convergence of the virtual 3DoF system‘s inertia properties from Section 

3.3.2. The global iteration of the KF has been carried out based on the „linear“ load case 

with low excitation level. 

 

Figure 4.3: Convergence of the virtual 3DoF system‘s inertia properties from Section 

3.3.2. The global iteration of the KF has been carried out based on the „nonlinear“ load 

case with high excitation level. 
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First of all, it can be seen that the global iteration converges to stable results in 

10 to 15 steps in all cases. The SR-UKF exhibits significantly faster convergence 

than the EKF, which can be explained by the trilinear nonlinearities in the 

model functions (q.v. Section 2.2.2). Furthermore, excellent estimation accuracy 

of the approach can be observed in case of low excitation level for both the EKF 

and the SR-UKF. Unfortunately this can not be stated about the original load 

case with high excitation level, where the converged parameters show signifi-

cant deviation from their true values. For this measurement case the SR-UKF 

shows better average accuracy than the EKF. Therefore, the initial parameter 

guesses and the parameter estimates of the iterated SR-UKF from the load case 

with high excitation level has been used in a subsequent nonparametric RFS 

identification (according to Chapter 2) in order to assess, how critical the 

observed error of the identified constants really is. The comparison of the 

second spring element’s RFCs, depicted in Figure 4.4, reveals that despite the 

seemingly large deviation of the estimated inertia properties a significant 

increase in the RFS identification quality could be achieved with the identified 

M compared to using its initial guess. Furthermore, the adapted model (involv-

ing the identified M and the identified RFSs) has been used to reconstruct the 

true system’s response signals at high excitation level. Different zooms of these 

signals are compared to the true noisy (5 % RMS) measurement time series in 

Figure 4.5. A very good agreement between the depicted signals can be ob-

served, which is a positive though rather unexpected result. A possible explana-

tion to this phenomenon is that the high level excitation somehow weakens the 

distinguishability of the parameter vector’s elements. Expanding the frequency 

range of the sweep did not reveal any hidden nonlinear resonances. Therefore, 

it can be concluded that for both low (linear) and high (nonlinear) excitation 

levels the globally iterated KF technique delivers adapted models that can 

reconstruct the true system’s measured behaviour with good accuracy. If 

however the consistent identification of the model parameters is of high im-
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portance, then it is advised to carry out the iteration procedure based on low 

amplitude measurements. 

 

Figure 4.4: Identified eRFCs and dRFCs of the virtual 3DoF system’s (q.v. Section 3.3.2) 

second spring element using the initial guess of M in comparison to using the identified 

M based on the high amplitude measurement with the iterated SR-UKF. 

 

Figure 4.5: Noisy (5 % RMS) high amplitude response of the virtual 3DoF system (q.v. 

Section 3.3.2) compared to the adapted model’s response using the identified RFSs and 

the estimated M based on the high amplitude measurement with the iterated SR-UKF. 
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Finally, it has to be mentioned that the convergence plots in Figure 4.2 and 

Figure 4.3 are slightly misleading regarding the computational performance of 

the EKF compared to the SR-UKF, since there is a significant difference in the 

CPU time of one iteration in case of the two different algorithms. Figure 4.6 

aims to clarify this comparison using the normed CPU time (q.v. Section 3.5) of 

the iteration instead of the number of iteration steps. The estimation error 

curves of the inertia properties reveal that the EKF provides much faster con-

vergence of the iteration than the SR-UKF. Hence, it turns out to be superior 

over the SR-UKF in the low excitation level case, where it exhibits the same 

estimation accuracy. Therefore, it can be concluded that the invested effort of 

keeping the model equations as weakly nonlinear as possible pays out both in 

result quality and in computational efficiency. 

 

Figure 4.6: Average estimation error of the 3DoF system’s (q.v. Section 3.3.2) inertia 

properties over the normed CPU time (q.v. Section 3.5) of the iterated EKF and the 

iterated SR-UKF based on the low amplitude (left) and the high amplitude (right) load 

case. 
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4.2 Estimation of the initial state 

Recall from Section 3.3.2 that the proposed nonparametric identification ap-

proach yielded very good estimates of the 3DoF system’s RFSs. This resulted in 

an adapted model that proved to be a good image of the true structure based on 

the comparison of their measurement responses. However, looking at Figure 

3.20 in detail reveals significant deviation of the measurement signals in the 

initial phase of the frequency sweep. The reason for this is that the virtual 

system’s true response begins with realistic steady state oscillatory conditions, 

just as in real-life, where one might start recording the measurement signals 

after switching on the excitation of the structure. The initial state of the adapted 

system however remained [z0,v0]=[0,0], since the KF only compensates but not 

adapts such initial errors. In this particular case this deviation of the adapted 

model can be neglected, since the influence of the initial state on the system’s 

response vanishes relatively fast in case of stable mechanical structures with 

typical damping levels. However, in situations, where purely transient respons-

es are measured or instable systems are to be identified, determining the 

proper values of z0 and v0 can gain notable importance. 

A possible solution to this problem is the implementation of the Kalman 

Smoother (KS), whose special case, the Fixed-Interval RTS Smoother, has been 

presented in Section 1.6.3. It enhances the accuracy of the state estimates by 

involving not only past and present but also future measurement samples in the 

estimation of the state vector’s time series. Since no past samples are available 

for the initial state, this extension of the KF is necessary to allow its adaption. In 

the current example the EKF in combination with the RTS Smoother, referred to 

as EKS, has been deployed for a short initial time period of the 3DoF systems 

high amplitude frequency response from Section 3.3.2. Similar to the case of the 

identification of M in Section 4.1, it turned out that the iteration of the algo-

rithm with successively updated initial states leads to significant further in-
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crease of result quality, which is depicted in Figure 4.7. Thereby a very fast and 

accurate convergence of the initial velocity coordinates is to be observed. 

Though, the relative accuracy of the identified initial displacements is rather 

poor, it has to be mentioned that their absolute values were extremely small in 

the particular example. 

 

Figure 4.7: Convergence of the virtual 3DoF system’s (q.v. Section 3.3.2) initial states 

based on the beginning interval of its noisy high amplitude measurement using the 

iterated EKS. 

The initial time interval of the virtual system’s measurement signals is com-

pared to the adapted model’s response in Figure 4.8. Apparently, the deploy-

ment of the iteratively identified initial state vector yields a drastic increase in 

the agreement of the depicted time series. 

Finally, it is worth mentioning that the KS technique is dedicated to refine state 

variables, whose variation over time is symbolically described by the model 

equations. Therefore, it is not able to properly smooth states that are varying 

over time but assumed to be constant in the system model (Simon, 2006), such 

as s and d. This is the reason, why the exploratory implementation of the EKS in 

-0.3

0.0

0.3

d
is

p
la

ce
m

en
t 

[ 
m

]

 

 

z
1,0

true

EKS

z
2,0

z
3,0

0 25 50

0.0

2.0

4.0

v
1,0

iteration no. [-]

v
el

o
ci

ty
 [

m
m

 s
-1

]

0 25 50

v
2,0

iteration no. [-]
0 25 50

v
3,0

iteration no. [-]



Parametric identification of the a priori model 

152 

the proposed nonparametric identification approach did not show notable 

increase of accuracy. It could slightly refine the estimated time series of z and v, 

but unfortunately the main source of the identified RFS’s bias lies in the finite 

synchronisation convergence of s and d. 

 

Figure 4.8: Initial time interval of the virtual 3DoF system‘s (q.v. Section 3.3.2) response 

signals. The true noisy time series (black) are compared to the adapted model’s re-

sponse involving initial states set to zero (grey) in comparison to initial states adapted 

using the iterated EKS (green). 
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5 Real-life implementation 

The two identification case studies that are presented in this chapter investi-

gate the complex properties of a Dual Mass Flywheel (DMF). A DMF is an im-

portant part of combustion engine drive trains. Its main purpose is the shifting 

of the system’s rotational eigenfrequencies in order to avoid undesired noise 

phenomena such as gear box rattle or boom in the inside area of passenger 

cars. However, in order to produce DMFs of high quality, several further as-

pects, such as the axial dynamics of the flywheel, have to be taken into account 

as well. As the pioneer of the DMF, LuK GmbH & Co. KG, a member of the 

Schaeffler Group, has a great know-how in its design, simulation and produc-

tion. This also includes sophisticated dynamic models that allow the considera-

tion of the structure’s behaviour under high level axial excitation (induced by 

the crank shaft of the combustion engine) in the early stage of product devel-

opment. The experiments that are discussed in the following were carried out 

at LuK GmbH & Co. KG with the major purpose of determining damping ratios 

under realistic high level excitation in order to parametrise these simulation 

models. It is important to point out that the experiments were not specially 

designed to verify the proposed nonparametric identification approach. It has 

been deployed additionally to gain deeper insight into the structure’s complex 

dynamics. This means that the test rig was not optimised to deliver ideal signals 

to support nonparametric identification, which proves the applicability of the 

approach under realistic conditions. 
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5.1 A 1DoF strongly nonlinear system 

5.1.1 Experiment setup 

The general structure of a DMF is illustrated in Figure 5.1 left. It mainly consists 

of the primary flywheel (PFW) and the secondary flywheel (SFW), which are 

coaxially linked together by a set of arc springs that define the rotational spring 

characteristic of the DMF. All further relative DoFs between the PFW and the 

SFW are blocked by a bearing, which is in the investigated particular design a 

compact combination of a plain bearing and an axial end-stop. The experiment 

test rig, depicted in Figure 5.1 right, consists of a high performance shaker 

platform, on which the PFW side of the DMF is rigidly mounted, which repre-

sents its designed mounting conditions. The arc springs have been rotationally 

prestressed, in order to attain realistic damping values. Both the applied excita-

tion and the structure’s response are recorded via accelerometers. 

 

Figure 5.1: Basic components of a dual mass flywheel (left, source: http: 

//blog.motoringassist.com/ motoring-advice/wp-content/uploads/2013/12 /dual .jpg, 

Accessed: 3rd March 2016). The experiment setup on the shaker platform (right) with 

adjustable axial preload of the secondary flywheel. 
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The axial end-stop of the plain bearing acts only for pressing load. Therefore, it 

does not block against pulling the SFW and PFW apart. This is however not 

necessary, since under realistic operating conditions the SFW is always pressed 

against the PFW through the clutch system. To realise this condition, the test rig 

includes an adjustable axial preload unit, q.v. Figure 5.1 right. However, in 

order to generate an exotic load case, one can remove the axial preload, which 

allows the SFW to lift off from the PFW if a sufficient level of excitation is 

reached. This is exactly what has been carried out in the current example, 

which resulted in highly nonlinear behaviour of the system that is depicted in 

Figure 5.2. 

 

Figure 5.2: Measured axial vibration of the SFW during a forward frequency sweep 

from 200 Hz to 400 Hz without axial preload. Both u and y were measured via accel-

erometers. The signals were captured at a sampling rate of 20 kHz. Average RMS noise 

levels of 8 % and 19 % (eRMS%, q.v. Appendix B) have been determined for u and y 

respectively. 

5.1.2 Nonparametric identification 

The identification of the experiment setup, presented in Section 5.1.1, has been 

carried out using the proposed approach from Chapter 2. The vibration of the 
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SFW relative to the PFW is approximately one-dimensional due to the plain 

bearing. Therefore, its dynamics can be described by the 1DoF model, present-

ed in Section 3.1. The only constant parameter of the system is the mass of the 

SFW. It can not be identified based the available measurement, since the excita-

tion is given in form of acceleration. Therefore, the nominal mass of 4.96 kg has 

been used. The measured signals are highly corrupted by noise due to the 

impacts occurring at the end-stop of the plain bearing and at the other end of 

the SFW’s axial backlash. This affects both the excitation u and the response 

signal y. Average RMS noise levels of 8 % and 19 % (eRMS%, q.v. Appendix B) 

have been determined for u and y respectively. Recall from Section 3.4.1 that 

the SR-UKF is superior over the EKF under such extreme conditions, which has 

been confirmed by the current application. First an additive identification of the 

structure’s RFS has been carried out using the SR-UKF. The reconstructed RFCs 

are depicted in Figure 5.3. First of all, it can be seen that the system’s character-

istics are strongly nonlinear. Based on the a priori knowledge of the structure 

and the form of the measured response, the elastic RFC is expected to include 

backlash. Though the character of the identified eRFC is indeed progressive, the 

distribution of its samples and the high relative level of uncertainty for positive 

deformations reveal that the particular RFS can not be approximated by an 

additive model. Accordingly, the simulated response of the adapted additive 

system did not correlate with the measured response. 

To overcome this problem, the derived coupled identification technique from 

Section 2.3.3 has been deployed. It led to a complex strongly nonlinear coupled 

RFS, which is depicted in Figure 5.4 left. The separation of single components of 

this complex characteristic is far from trivial. It represents the sum of the 

restoring forces that arise from the arc springs, the plain bearing and further 

contacts between the PFW and the SFW. Using this cRFS to reconstruct the 

measured oscillations showed a much better agreement with the true signal, 

q.v. Figure 5.4 right. It is well known that such nonlinear frequency responses 
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exhibit multiple stable orbits at a given frequency. The collapse of a nonlinear 

resonance, i.e. the “jump” between these orbits, is extremely sensitive to damp-

ing. Accordingly, the identified cRFS has been slightly modified a posteriori via 

the application of an additional linear damping in order to tune the time point 

of the resonance’s collapse. It is interesting to mention that due to noise dis-

turbances in the measured excitation signal, this collapse tends to occur at 

certain impulse events in the virtual model. Therefore, it was not possible to 

perfectly tune this time point. To ensure that the adapted model’s trajectory is 

initiated on the correct orbit, the iterated EKS (q.v. Section 4.2) has been used 

to identify proper entries of the initial state vector. 

Compared to the virtual examples from Chapter 3, the current result in Figure 

5.4 (right) might look unsatisfactory at first glance. However, this is an impres-

sion that is distorted by the high noise level of the true signal. Taking a look at 

the reconstructed time series in detail, depicted in Figure 5.5, reveals that the 

adapted system is indeed able to reconstruct the considered system’s strongly 

nonlinear behaviour with good accuracy. 

 

Figure 5.3: Identified eRFC (left) and dRFC (right) of the restoring force between the 

secondary flywheel and the shaker platform. ρU and ρL denote the estimated uncertainty 

curves according to Section 2.3.2. 
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Figure 5.4: Identified cRFS of the secondary flywheel (left) and the adapted model’s 

response time series compared to the real system’s noisy measurement (right). 

 

Figure 5.5: The adapted model’s response time series compared to the real system’s 

noisy measurement based on the zoom of the complete measurement at several time 

ranges. 
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5.2 A 3DoF weakly nonlinear system 

5.2.1 Experiment setup 

The 3DoF identification example is carried out based on the same experiment 

setup that was described in Section 5.1.1. However, in the current example 

realistic conditions are considered instead of an artificial load case. This means 

that the SFW is axially preloaded. This allows the undisturbed investigation of 

the PFW’s properties. In contrast to the thick form of the cast iron SFW, the 

PFW is a rather thin structure formed from sheet steel. Its dynamics are mainly 

defined by its own elasticity, which typically leads to three elastic eigenmodes 

in the frequency range of approximately 100 Hz to 500 Hz. Three accelerome-

ters on the outer diameter of the PFW that measure in axial direction are suffi-

cient to distinguish these modes. Therefore, the experiment setup consists of 

the acceleration of the shaker platform as the input u, and the three response 

acceleration signals of the PFW, denoted by y1, y2 and y3, at the angular posi-

tions 0°, 120° and 240° respectively in the {ξ,η} plane, q.v. Figure 5.6. 

 

Figure 5.6: Experiment setup of the 3DoF identification case of the PFW. 
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The excitation signal and the system’s three response signals are depicted in 

Figure 5.7 for the considered load case of a forward frequency sweep. Notice 

that the system seemingly exhibits only two resonances, although three 

eigenmodes are expected. The reason for this is not the improper frequency 

range of the sweep. This will be discussed in detail in Section 5.2.3. 

 

Figure 5.7: Measured axial vibration of the DMF’s PFW during a forward frequency 

sweep with axially preloaded SFW. Both u and yj were measured via accelerometers. The 

signals were captured at a sampling rate of 10 kHz. The time axis is replaced by the 

corresponding frequency of the excitation signal. 

5.2.2 Full system identification 

The current section presents the full identification of the PFW’s given setup 

based on the frequency sweep measurement depicted in Figure 5.7. Although 

the observed dynamics are defined by elastic eigenmodes, it is shown in the 

following that the 3DoF rigid body model, which has been presented in Section 

3.3.1 and been extended in Section 4.1, can be efficiently used to approximate 

the system. Therefore, the model given by Figure 3.18 is considered. According 

to Chapter 4 the first step is the identification of the structure’s inertia proper-

ties using the iterated KF. The axial preload of the SFW led to a drastic reduc-
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tion of the measured signals’ noise level compared to Section 5.1.1. Accordingly, 

the computationally efficient EKF algorithm proved to be sufficient in the 

current case. The convergence of the inverse inertia matrix’s entries over the 

iterations of the EKF is depicted in Figure 5.8. The initial values were chosen 

based on Finite Element simulations of the PFW. Notice that the choice of these 

inertia properties is not trivial, since the real structure exhibits continuum 

vibrations. 

 

Figure 5.8: Convergence of the PFW’s inertia properties over the iterations of the EKF. 

Using the determined inverse inertia matrix M–1 a subsequential additive 

nonparametric identification of the model’s three RFSs has been carried out 

using the EKF algorithm. The reconstructed elastic and dissipative RFCs are 

depicted in Figure 5.9 and Figure 5.10 respectively. It can be observed that the 

eRFCs of the system are approximately linear. This however can not be said 

about the dRFCs that reveal significant nonlinearities. Due to the high uncer-
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priori model probably neglects some dominant dissipative property of the real 

system at the first spring element, i.e. c1 (q.v. Figure 3.18). Therefore, dRFC1 

has been manually tuned in order to achieve the best possible agreement 

between the measured signals and the adapted model’s response, which is 

depicted in Figure 5.11. Notice that the possibility of such separate characteri-

sation of a multiple DoF system’s RFSs is a major advantage of nonparametric 

identification. 

 

Figure 5.9: Identified elastic RFCs of the PFW’s 3DoF model. 

 

Figure 5.10: Identified dissipative RFCs of the PFW’s 3DoF model. 

-0.2 0 0.2

-4

-2

0

2

4

identified eRFC2

deformation [mm]
-0.2 0 0.2

-2

0

2

4

deformation [mm]

el
as

ti
c 

fo
rc

e 
[k

N
]

 

 

identified eRFC1

samples


L


U

eRFC

-0.2 0 0.2

-4

-2

0

2

4

identified eRFC3

deformation [mm]

-0.4 0 0.4

-200

-100

0

100

200

identified dRFC2

velocity [m s-1]
-0.4 0 0.4

-100

0

100

200

velocity [m s-1]

d
is

si
p

at
iv

e 
fo

rc
e 

[N
]

 

 

identified dRFC1

samples


L


U

dRFC

-0.4 0 0.4

identified dRFC3

velocity [m s-1]



A 3DoF weakly nonlinear system 

163 

 

Figure 5.11: Comparison of the adapted 3DoF rigid body model’s response to the 

measured continuum vibrations of the PFW during the frequency sweep experiment. 

The time axis is replaced by the corresponding frequency of the excitation signal. 
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noisefree RFCs’ nodes using simple Least Squares (LS) estimation. The calcula-

tion of the eigenvalues and eigenvectors of the first 2N×2N elements of the a 

priori model’s Jacobian (2.46) results in the three linearised eigenfrequencies 

and the corresponding mode shapes of the structure, which are depicted in 

Figure 5.12. First of all, it can be seen that the two tilting modes and the so 

called “potting mode”, which are expected in case of such elastic plates, seem to 

be physically correct. Considering the modal displacement of the first tilting 

mode at the excitation position instantly explains, why this first mode was hard 

to see in the time signals of the frequency sweep measurement. It is now clear 

that the position of the excitation is near to the line of nonvibrating points of 

the particular mode shape. Furthermore, a relatively large difference between 

the frequencies of the two tilting modes can be observed, which is rather unex-

pected in case of such nearly rotational symmetric structures. Analysing the 

gradient lines of the mode shapes (indicated by red dashed lines in Figure 5.12) 

and reviewing the experiment setup leads to an obvious explanation of this 

phenomenon. Taking a look at the mounting of the DMF in Figure 5.6 (left), it 

can be observed that the seven mounting screws are not uniformly distributed. 

It can be seen in Figure 5.12 that the gradient line of the identified first tilting 

mode shape crosses between two screws, which are separated by a larger gap 

than the distance between the other screws. This explains the shifting of the 

first eigenfrequency to this unexpectedly low level, which is a result of the 

decreased mounting stiffness at the larger gap. It is easy to imagine that in case 

of a uniform mounting none of the tilting modes could be excited properly with 

the particular shaker platform, since it is only capable of axial excitation. How-

ever, the current non-uniform mounting allowed the observation of tilting 

vibrations as well. Though, it only led to the proper excitation of one tilting 

mode, thanks to the proposed identification algorithm both tilting eigenmodes 

of the system could be analysed. 
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Figure 5.12: Eigenmodes of the measured primary flywheel based on the linearisation 

of its identified RFCs. Mode shapes (blue) are plotted including the modal displacement 

at the excitation position (green) and the gradient of the mode shape plane (red dashed 

line). The positions of the mounting screws are indicated by small black circles. 
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6 Conclusion 

The present thesis explored the possibility of using Kalman Filter based master-

slave synchronisation for the nonparametric identification of a subclass of 

strongly nonlinear dynamic systems, which, to the author’s knowledge, has not 

yet been investigated in the literature. The core of the developed workflow 

consists of the synchronisation of a general nonparametric a priori model to the 

real system using noisy measurement signals to generate sample clouds of the 

system’s restoring force characteristics. This is followed by optimal nonpara-

metric fitting to generate noisefree elastic and dissipative Restoring Force 

Curves or coupled Restoring Force Surfaces. Additionally, the main algorithm 

has been coupled with well-known parametric identification techniques. As a 

result a full identification workflow of the defined subclass of systems has been 

proposed that allows the identification of their constant parameters as well. 

The detailed description of the algorithm was followed by several identification 

examples of one and three degree of freedom nonlinear systems, which allowed 

the extensive investigation of the derived technique’s properties. 

The following major advantages of the proposed approach have been revealed: 

• It is nonparametric with respect to the system’s restoring force char-

acteristics, which therefore do not need to be characterised prior to 

the identification. 

• It requires only one measured mechanical quantity per degree of 

freedom and provides identifiability using displacement, velocity and 

acceleration signals as well. 

• The probabilistic manner of the procedure can accommodate signals 

highly corrupted by measurement noise without the application of 

frequency domain filters. Hence, it simultaneously filters the noise 

and preserves the high frequency nonlinear information. 
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• It provides a quantification of the identified restoring force character-

istic’s uncertainty. 

• Due to the weakly nonlinear structure of the introduced general 

model equations, it allows the deployment of the fastest nonlinear 

Kalman Filter algorithm, the Extended Kalman Filter, under typical 

measurement conditions regardless of the type of nonlinearities that 

are to be identified. This results in a computationally efficient algo-

rithm. 

• It is a flexible approach due to the implementation of the Kalman Fil-

ter, which allows its extension by parametric methods to identify 

constant system properties as well. 

Despite the above mentioned numerous advantages there are also some chal-

lenging aspects of the presented technique, which should be mentioned as well: 

• A certain lower bound of the observable effective stiffness has been 

revealed, which introduces a restriction to the form of identifiable 

nonlinearities in case of velocity and acceleration measurements. Ar-

bitrary restoring force surfaces can only be identified based on dis-

placement signals. 

• The approach is sensitive to modelling errors due to its synchronisa-

tion based nature. The additional parametric identification of uncer-

tain model parameters has been investigated as a possible solution to 

overcome this difficulty. 

On the whole it can be concluded that the investigated technique turned out to 

be a powerful approach for the identification of strongly nonlinear systems. 

Possible future work could consider the identification of structures with more 

than three degrees of freedom and could extend the considered class of dynam-

ic systems. 
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Appendix 

A Mathematical apparatus 

The current appendix describes some of the mathematical formulas that are 

used in the present thesis. 

Lie derivatives 

The ith order Lie derivative of the scalar function h(x) with respect to the 

vector function a(x) is denoted by Lia(h), where a is a symbolic expression of 

the time derivative of x, i.e. dx/dt=a(x). It is defined by an implicit formula, 

where the 0th order derivative is h(x) itself, i.e. L0a(h)≔h. The further deriva-

tives are given as 

L𝐚
𝑖+1(ℎ) ≔ (∇L𝐚

𝑖 (ℎ))
T

𝐚(𝐱) ≔ (
𝜕L𝐚

𝑖 (ℎ)

𝜕𝐱
)

T

𝐚(𝐱) (A.1) 

Trigonometric equalities 

sin2(𝜑) + cos2(𝜑) = 1 (A.2) 

sin2(𝜑) = 1
2⁄ − 1

2⁄ cos(2𝜑) (A.3) 

cos2(𝜑) = 1
2⁄ + 1

2⁄ cos(2𝜑) (A.4) 

sin(𝜑)cos(𝜑) = 1
2⁄ sin(2𝜑) (A.5) 

Statistical equalities 

Consider four scalar random variables A, B, C and D, which are described by 

their mean values a, b, c, d and their variances PA, PB, PC and PD respectively. 
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Their cross-covariances are given by PAB, PAC, PAD, PBC, PBD and PCD, i.e. their joint 

probability distribution is of the form 

[

𝐴
𝐵
𝐶
𝐷

]~([

𝑎
𝑏
𝑐
𝑑

] , [

𝑃𝐴 𝑃𝐴𝐵 𝑃𝐴𝐶 𝑃𝐴𝐷

∙ 𝑃𝐵 𝑃𝐵𝐶 𝑃𝐵𝐷

∙ ∙ 𝑃𝐶 𝑃𝐶𝐷

∙ ∙ ∙ 𝑃𝐷

]). (A.6) 

If the joint distribution around the mean vector is symmetric, then according to 

(Simon, 2006) the following equalities hold: 

E(𝐴 − 𝑎) = 0 , (A.7) 

E((𝐴 − 𝑎)2) = 𝑃𝐴  , (A.8) 

E((𝐴 − 𝑎)(𝐵 − 𝑏)) = 𝑃𝐴𝐵  , (A.9) 

E((𝐴 − 𝑎)(𝐵 − 𝑏)(𝐶 − 𝑐)) = E((𝐴 − 𝑎)2(𝐵 − 𝑏)) = E((𝐴 − 𝑎)3) = 0 , (A.10) 

where E(…) denotes the expectation operator. Furthermore, if the joint distri-

bution is not only symmetric but also Gaussian, then according to (Gelb, Kasper, 

Nash, Price, & Sutherland, 2001) the following equalities are also true: 

E((𝐴 − 𝑎)4) = 3𝑃𝐴
2 , (A.11) 

E((𝐴 − 𝑎)2(𝐵 − 𝑏)2) = 𝑃𝐴𝑃𝐵 + 2𝑃𝐴𝐵
2  , (A.12) 

E((𝐴 − 𝑎)(𝐵 − 𝑏)(𝐶 − 𝑐)(𝐷 − 𝑑)) = 𝑃𝐴𝐵𝑃𝐶𝐷 + 𝑃𝐴𝐶𝑃𝐵𝐷 + 𝑃𝐴𝐷𝑃𝐵𝐶  . (A.13) 
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B Error assessment 

The comparison of the virtual model to the real system regarding its properties 

and dynamic behaviour is a frequently occurring task in system identification. 

The quantification of estimation accuracy, the convergence monitoring of the 

identification algorithm and the comparison of different identification tech-

niques require appropriate quality factors. In the following the necessary error 

definitions are introduced, which are consistently used throughout the current 

thesis. 

Consider two vector series xi and yi, which are of the same dimension nx. To 

quantify the error of yi with respect to the reference series xi on the interval 

iϵ{i0,i0+1,…,i0+ns–1} the normalised Mean Square Error (eMS) is introduced in 

the following form: 

𝑒𝑀𝑆𝐲,𝐱
𝑖0,𝑛𝑠 ≔

1

𝑛𝑥

∑( ∑ (𝑥𝑗,𝑖 − 𝑦𝑗,𝑖)
2

𝑖0+𝑛𝑠−1

𝑖=𝑖0

[ ∑ (𝑥𝑗,𝑖 − 𝑥̅𝑗)
2

𝑖0+𝑛𝑠−1

𝑖=𝑖0

]

−1

)

𝑛𝑥

𝑗=1

 , (B.1) 

where 𝑥̅𝑗 denotes the average of 𝑥𝑗,𝑖  over i. In most cases yi is the estimate of xi, 

but it can also be e.g. a noise-corrupted version of xi. The simplified notation 

eMS is used without sub- and superscript if the latter are clear from the context. 

This definition defers from the simple mean square error in that it is normal-

ised by the variance of the reference series, which enables the direct compari-

son of eMS values between completely different {xi,yi} data pairs. Its relation to 

the Coefficient of Determination, denoted by R2, which is commonly used in 

regression analysis (Yan & Su, 2009), is given by 

𝑒𝑀𝑆 = 1 − 𝑅2 . (B.2) 

In order to directly compare the error to the analysed data, quality factors of 

compatible unit are defined in form of the normalised Root Mean Square Error 
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(eRMS) and the normalised Percental Root Mean Square Error (eRMS%), which 

are given by the simple formula 

𝑒𝑅𝑀𝑆% ≔ 100 ∙ 𝑒𝑅𝑀𝑆 ≔ 100 ∙ √𝑒𝑀𝑆 . (B.3) 

For the scalar case, where y is compared to x, the above definitions reduce to 

the normalised Root Square Error (eRS) and the normalised Percental Root 

Square Error (eRS%), which are given as 

𝑒𝑅𝑆% ≔ 100 ∙ 𝑒𝑅𝑆 ≔ 100 ∙ √(𝑥 − 𝑦)2/𝑥2 . (B.4) 

Notice that eRMS is based on a quadratic error summation, and therefore it 

expresses both the bias (offset) and the variance (noisiness) of yi compared to 

xi. In order to distinguish these two error components, an additional quality 

factor, the normalised Mean Error (eM), is introduced as 

𝑒𝑀𝐲,𝐱
𝑖0,𝑛𝑠 ≔

1

𝑛𝑥

∑||
1

𝑛𝑠

∑ (𝑥𝑗,𝑖 − 𝑦𝑗,𝑖)

𝑖0+𝑛𝑠−1

𝑖=𝑖0

[
1

𝑛𝑠

∑ (𝑥𝑗,𝑖 − 𝑥̅𝑗)
2

𝑖0+𝑛𝑠−1

𝑖=𝑖0

]

−
1

2

||

𝑛𝑥

𝑗=1

 . (B.5) 

Since eM is based on linear error summation, it filters out symmetric error, i.e. 

variance. Therefore, the bigger the difference between eRMS and eM, the more 

dominant is the variance component of the error. The normalised Percental 

Mean Error (eM%) is defined as 

𝑒𝑀% ≔ 100 ∙ 𝑒𝑀 . (B.6) 
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C Observability of the exploratory 
system models 

Finding an a priori process model that ensures observability for all kinematic 

measurement types is investigated in Section 2.1, which results in the RFS 

model c(z,v)≔sz+dv. Thereby the properties of three additional exploratory 

models are discussed in Section 2.1.3 in order to justify the chosen model. The 

observability investigation of these additional models is summarised in the 

following. The first exploratory RFS model is of the form 

𝑐(𝑧, 𝑣) ≔ 𝑠𝑧 . (C.1) 

The corresponding observability matrices of the system for the three meas-

urement types, displacement (z), velocity (𝑣) and acceleration (𝑣̇), are: 

𝐎|𝑦=𝑧 = [
1 0 −𝑚−1𝑠
0 1 0
0 0 −𝑚−1𝑧

] , (C.2) 

𝐎|𝑦=𝑣 = [
0 −𝑚−1𝑠 0
1 0 −𝑚−1𝑠
0 −𝑚−1𝑧 −𝑚−1𝑣

] , (C.3) 

𝐎|𝑦=𝑣̇ = [
−𝑚−1𝑠 0 𝑚−2𝑠2

0 −𝑚−1𝑠 0
−𝑚−1𝑧 −𝑚−1𝑣 𝑚−2𝑠𝑧 + 𝑚−2(𝑠𝑧 − 𝑚𝑏𝑢)

] . (C.4) 

Apparently all columns of these matrices are symbolically independent, which 

means that the model in general allows observability for all kinematic meas-

urement types. However, it can be seen that symbolically zero rows appear for 

s=0 in case of yϵ{𝑣, 𝑣̇}. Furthermore, it can be seen that for each measurement 

type the first and the third columns of O become linearly dependent if the 

particular measured quantity equals zero. In order to come to this conclusion 

for y=𝑣̇, it has to be recognised that sz–mbu=–m𝑣̇. Such situation occurs at least 
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twice a period in case of typical vibration measurements, which leads to local 

observer divergencies for all three measurement types. 

The second exploratory RFS model is of the form 

𝑐(𝑧, 𝑣) ≔ 𝑠𝑣 . (C.5) 

The corresponding observability matrices of the system for the three meas-

urement types, displacement (z), velocity (𝑣) and acceleration (𝑣̇), are: 

𝐎|𝑦=𝑧 = [
1 0 0
0 1 −𝑚−1𝑠
0 0 −𝑚−1𝑣

] , (C.6) 

𝐎|𝑦=𝑣 = [
0 0 0
1 −𝑚−1𝑠 𝑚−2𝑠2

0 −𝑚−1𝑣 𝑚−2(2𝑠𝑣 − 𝑚𝑏𝑢)
] , (C.7) 

 𝐎|𝑦=𝑣̇ = [
0 0 0

−𝑚−1𝑠 𝑚−2𝑠2 −𝑚−3𝑠3

−𝑚−1𝑣 𝑚−2(2𝑠𝑣 − 𝑚𝑏𝑢) 𝑚−3(2𝑚𝑠𝑏𝑢 − 3𝑠2𝑣)
] , (C.8) 

The system is apparently not observable in case of yϵ{𝑣, 𝑣̇}, because the corre-

sponding O matrices contain a zero row vector. This confirms the reasoning in 

Section 2.1.3, since the model (C.5) does not establish any symbolic connection 

between z and the measured quantity. Additionally in case of y=z the third row 

vector of O becomes zero for zero velocity, which similar to model (C.1) leads to 

local observer divergencies during vibration measurements. 

The third exploratory RFS model is of the form 

𝑐(𝑧, 𝑣) ≔ 𝑠(𝑧2 + 𝜏2𝑣2) , (C.9) 

where τ is a positive time constant that is necessary to match the units of z and 

v. Because of the complexity of the corresponding observability matrices, only 

their determinants are given in the following. As discussed in Section 2.1.2 

these determinants are directly related to the observability criterion for single 
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measurement systems. The symbolic determinants of O for the three measure-

ment types, displacement (z), velocity (𝑣) and acceleration (𝑣̇), are: 

det(𝐎|𝑦=𝑧) = −𝑚−1[ 𝑧2 + 𝜏2𝑣2 ] (C.10) 

det(𝐎|𝑦=𝑣) = −𝑚−3𝑠𝑣[ 2𝑧2𝑚 − 𝜏2(2𝑣2𝑚 − 4𝑧𝑚𝑏𝑢 + 4𝑠𝑧3 + 4𝑠𝜏2𝑧𝑣2) ] (C.11) 

 det(𝐎|𝑦=𝑣̇) = −𝑚−6𝑠2[ ⋯ ] (C.12) 

It can be seen that similar to model (2.5) the determinant is symbolically zero 

for s=0 in case of yϵ{𝑣, 𝑣̇}. However, in this situation it is a major problem, since 

in the particular model s is not an effective stiffness but a direct coefficient of 

the restoring force, hence, it crosses zero and changes its sign at least twice a 

period for every typical oscillatory system, which results in local observer 

divergencies. Additionally in case of y=v the determinant becomes zero for v=0 

as well. Nevertheless, for displacement measurement the specific model as-

sures observability without restrictions, which however also holds for the 

model (2.5) that at the same time introduces a significantly weaker nonlinearity 

in the a priori process equation. 
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D Coefficients of the 
Unscented Transformation 

Section 1.6.2 briefly describes the Unscented Transformation (UT) that is tuned 

by the coefficients 𝑝𝑖.𝑗
UT. According to (van der Merwe & Wan, 2001) these 

tuning coefficients are defined as follows. 

𝑝1
UT ≔ √(𝑛 + 𝑝𝜆) (D.1) 

𝑝𝜆 ≔ 𝑝𝛼
2(𝑛 + 𝑝𝜅) − 𝑛 (D.2) 

𝑝2.𝑗
UT ≔

𝑝𝜆

𝑛 + 𝑝𝜆

 , 𝑗 = 1 (D.3) 

𝑝3.𝑗
UT ≔

𝑝𝜆

𝑛 + 𝑝𝜆

− 𝑝𝛼
2 + 𝑝𝛽 + 1 , 𝑗 = 1 (D.4) 

𝑝2.𝑗
UT ≔ 𝑝3.𝑗

UT ≔
1

2(𝑛 + 𝑝𝜆)
 , 𝑗𝜖{2,… ,2𝑛 + 1} (D.5) 

Thereby n denotes the size of the vector that is being transformed, which is the 

vector x in Section 1.6.2. The scaling factor pα controls the spread of the sigma 

points and is to be chosen from the range of pαϵ[10-4,1]. The parameter pβ 

allows the incorporation of a priori knowledge about the distribution that is 

being transformed. For a Gaussian distribution pβ=2 is the optimal choice. The 

secondary scaling factor pκ is set to pκ=0 if the UT is used in a Kalman Filter (i.e. 

in the UKF). If the UT is deployed in recursive nonlinear parameter estimation, 

then it should be set to pκ=(3-n). 
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E Central Moving Average 

The Central Moving Average (CMA) is a simple off-line algorithm that generates 

a phase-shift-free moving average of the discretely sampled time series y, 

denoted by yCMA. The averaged (smoothed) value for the jth sample is deter-

mined by the formula: 

𝑦𝑗
CMA𝑘 ≔

1

𝑘
∑ 𝑦𝑖

𝑗+
𝑘−1

2

𝑖=𝑗−
𝑘−1

2

 (E.1) 

where k denotes the window size of the averaging, which is necessarily an odd 

integer. It should be set to at least 3, since k=1 results in the original signal. The 

“k-point” CMA of y is denoted by yCMAk. The first and last (k-1)/2 samples of the 

time series are smoothed using a reasonably reduced sample window. 

This simple formulation implies an equidistant sampling over time, which is 

fulfiled in the examples throughout the current thesis. For a more general 

solution one can deploy MATLAB’s “smooth” algorithm (MathWorks, 

www.mathworks.com), of which the CMA represents a simplified version. 
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F Derivation of the 
RFC sample formulas 

The detailed derivation of the formulas for the mean vector and the covariance 

matrix of the probabilistic RFC samples, i.e. xRFC and PRFC, as functions of xC and 

PC is presented in the following. This means the algebraic evaluation of the 

formulas (2.60) and (2.61) in order to achieve (2.62) and (2.63) respectively. 

The evaluation is based on the mathematical apparatus of statistical equalities 

from Appendix A. These rely on the general assumption that the considered 

probability distributions are symmetric. Furthermore, during the derivation of 

PRFC, i.e. (2.63), formulas for fourth order stochastic moments are deployed, 

which imply the additional assumption that the considered distribution is 

Gaussian. The formula (2.60) for xRFC is the direct expected value of the Taylor 

series (2.59). Hence, no detailed derivation of (2.62) is necessary, since the 

statistical equalities can be applied directly without intermediate algebraic 

steps. Therefore, only the derivation of (2.63) from the formula (2.61) needs to 

be discussed, which results in the analytical expressions for PRFC. The substitu-

tion of (2.59) and (2.62) into (2.61) leads to the following expressions: 

𝑃RFC,1,1 = (𝑍 − 𝑧)2 (F.1) 

𝑃RFC,1,2 = (𝑆 − 𝑠)(𝑍 − 𝑧)2 + (𝑆 − 𝑠)(𝑍 − 𝑧)𝑧 + (𝑍 − 𝑧)2𝑠 − 𝑃𝑍𝑆(𝑍 − 𝑧) (F.2) 

𝑃RFC,1,3 = (𝑍 − 𝑧)(𝑉 − 𝑣) (F.3) 

𝑃RFC,1,4 = 𝑑(𝑉 − 𝑣)(𝑍 − 𝑧) + (𝐷 − 𝑑)(𝑉 − 𝑣)(𝑍 − 𝑧) + (𝐷 − 𝑑)(𝑍 − 𝑧)𝑣

− 𝑃𝑉𝐷(𝑍 − 𝑧) 
(F.4) 
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𝑃RFC,2,2 = (𝑆 − 𝑠)2(𝑍 − 𝑧)2 + 2(𝑆 − 𝑠)2(𝑍 − 𝑧)𝑧 + (𝑆 − 𝑠)2𝑧2

+ 2(𝑆 − 𝑠)(𝑍 − 𝑧)2𝑠 + 2(𝑆 − 𝑠)(𝑍 − 𝑧)𝑠𝑧 + (𝑍 − 𝑧)2𝑠2

− 2𝑃𝑍𝑆(𝑆 − 𝑠)(𝑍 − 𝑧) − 2𝑃𝑍𝑆(𝑆 − 𝑠)𝑧 − 2𝑃𝑍𝑆(𝑍 − 𝑧)𝑠

+ 𝑃𝑍𝑆
2  

(F.5) 

𝑃RFC,2,3 = (𝑆 − 𝑠)(𝑉 − 𝑣)(𝑍 − 𝑧) + (𝑆 − 𝑠)(𝑉 − 𝑣)𝑧 + (𝑉 − 𝑣)(𝑍 − 𝑧)𝑠

− 𝑃𝑍𝑆(𝑉 − 𝑣) 
(F.6)  

𝑃RFC,2,4 = 𝑑(𝑆 − 𝑠)(𝑉 − 𝑣)(𝑍 − 𝑧) + 𝑑(𝑆 − 𝑠)(𝑉 − 𝑣)𝑧 + 𝑑(𝑉 − 𝑣)(𝑍

− 𝑧)𝑠 + (𝐷 − 𝑑)(𝑆 − 𝑠)(𝑉 − 𝑣)(𝑍 − 𝑧)

+ (𝐷 − 𝑑)(𝑆 − 𝑠)(𝑉 − 𝑣)𝑧 + (𝐷 − 𝑑)(𝑆 − 𝑠)(𝑍 − 𝑧)𝑣

+ (𝐷 − 𝑑)(𝑆 − 𝑠)𝑣𝑧 + (𝐷 − 𝑑)(𝑉 − 𝑣)(𝑍 − 𝑧)𝑠

+ (𝐷 − 𝑑)(𝑍 − 𝑧)𝑠𝑣 − 𝑃𝑉𝐷(𝑆 − 𝑠)(𝑍 − 𝑧) − 𝑃𝑉𝐷(𝑆 − 𝑠)𝑧

− 𝑃𝑉𝐷(𝑍 − 𝑧)𝑠 − 𝑃𝑍𝑆𝑑(𝑉 − 𝑣) − 𝑃𝑍𝑆(𝐷 − 𝑑)(𝑉 − 𝑣)

− 𝑃𝑍𝑆(𝐷 − 𝑑)𝑣 + 𝑃𝑉𝐷𝑃𝑍𝑆  

(F.7) 

𝑃RFC,3,3 = (𝑉 − 𝑣)2 (F.8) 

𝑃RFC,3,4 = 𝑑(𝑉 − 𝑣)2 + (𝐷 − 𝑑)(𝑉 − 𝑣)2 + (𝐷 − 𝑑)(𝑉 − 𝑣)𝑣 − 𝑃𝑉𝐷(𝑉 − 𝑣) (F.9) 

𝑃RFC,4,4 = 𝑑2(𝑉 − 𝑣)2 + 2𝑑(𝐷 − 𝑑)(𝑉 − 𝑣)2 + 2𝑑(𝐷 − 𝑑)(𝑉 − 𝑣)𝑣

+ (𝐷 − 𝑑)2(𝑉 − 𝑣)2 + 2(𝐷 − 𝑑)2(𝑉 − 𝑣)𝑣 + (𝐷 − 𝑑)2𝑣2

− 2𝑃𝑉𝐷𝑑(𝑉 − 𝑣) − 2𝑃𝑉𝐷(𝐷 − 𝑑)(𝑉 − 𝑣) − 2𝑃𝑉𝐷(𝐷 − 𝑑)𝑣

+ 𝑃𝑉𝐷
2  

(F.10) 

Applying the statistical equalities from Appendix A to the above expressions 

yields the following formulas for the entries of PRFC, i.e. for (2.63): 
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𝑃RFC,1,1 = 𝑃𝑍  (F.11) 

𝑃RFC,1,2 = 𝑃𝑍𝑠 + 𝑃𝑍𝑆𝑧 (F.12) 

𝑃RFC,1,3 = 𝑃𝑍𝑉  (F.13) 

𝑃RFC,1,4 = 𝑃𝑍𝐷𝑣 + 𝑃𝑍𝑉𝑑 (F.14) 

𝑃RFC,2,2 = 𝑃𝑆𝑧
2 + 𝑃𝑍𝑠2 + 2𝑃𝑍𝑆𝑠𝑧 + 𝑃𝑆𝑃𝑍 − 𝑃𝑍𝑆

2 + 2𝑃𝑍𝑆
2  (F.15) 

𝑃RFC,2,3 = 𝑃𝑉𝑆𝑧 + 𝑃𝑍𝑉𝑠 (F.16)  

𝑃RFC,2,4 = 𝑃𝑆𝐷𝑣𝑧 + 𝑃𝑉𝑆𝑑𝑧 + 𝑃𝑍𝐷𝑠𝑣 + 𝑃𝑍𝑉𝑑𝑠 + 𝑃𝑆𝐷𝑃𝑍𝑉 + 𝑃𝑉𝑆𝑃𝑍𝐷  (F.17) 

𝑃RFC,3,3 = 𝑃𝑉  (F.18) 

𝑃RFC,3,4 = 𝑃𝑉𝑑 + 𝑃𝑉𝐷𝑣 (F.19) 

𝑃RFC,4,4 = 𝑃𝐷𝑣2 + 𝑃𝑉𝑑2 + 2𝑃𝑉𝐷𝑑𝑣 + 𝑃𝐷𝑃𝑉 − 𝑃𝑉𝐷
2 + 2𝑃𝑉𝐷

2  (F.20) 
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A nonparametric identification method for high-
ly nonlinear systems is presented that is able to 
reconstruct the underlying nonlinearities in form 
of three-dimensional generalized restoring force 
surfaces using vibration measurements without a 
priori knowledge of the describing nonlinear func-
tions. The approach is based on nonlinear Kalman 
Filter algorithms using the well-known state aug-
mentation technique that turns the filter into a 
dual state and parameter estimator, of which an 
extension towards nonparametric identification is 
proposed in the present work. A general nonlin-
earity model is introduced by describing the restor-
ing forces via time-variant linear coefficients of the 
state variables, which are estimated as augmented 
states. Due to the probabilistic rigour of the proce-
dure, noisefree restoring force characteristics are 
reconstructed even in the presence of significant 
measurement noise. Thanks to the Kalman Filter 
algorithm, observability is provided using only one 
measured quantity per degree of freedom, and 
the approach can be integrated in a full identifica-
tion workflow, where the parametric identification 
of a priori known functions of the system is car-
ried out as well. The effectiveness of the proposed 
technique is demonstrated on virtual and real-life 
identification examples of one and three degree of 
freedom nonlinear mechanical systems.
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