# Solutions of ordinary differential equations in closed subsets of a Banach space 

Gerd Herzog and Peter Volkmann<br>Dedicated to Professor Karol Baron on his 70th Birthday

1. Notations and main result. Let $E$ be a real Banach space. For $x \in E$ and $\emptyset \neq B \subseteq E$ we write

$$
\operatorname{dist}(x, B)=\inf \{\|x-y\| \mid y \in B\}
$$

For bounded sets $B \subseteq E$ we define

$$
\operatorname{diam} B=\sup \{\|x-y\| \mid x, y \in B\}
$$

( $\operatorname{diam} \emptyset=0$ ) and furthermore
$\alpha(B)=\inf \left\{\delta \geq 0 \mid B \subseteq B_{1} \cup \ldots \cup B_{n}, \operatorname{diam} B_{\nu} \leq \delta(\nu=1, \ldots, n), n \in \mathbb{N}\right\}$,
where $\mathbb{N}=\{1,2,3, \ldots\} ; \alpha(B)$ is the Kuratowski measure of non-compactness of $B$ (cf. Kuratowski [1]).
Finally we use the notation

$$
[x, y]_{-}=\lim _{h \nearrow 0} \frac{1}{h}\{\|x+h y\|-\|x\|\} \quad(x, y \in E)
$$

Theorem 1 Suppose $T>0$ and $f=g+k$, where $g, k:[0, T] \times E \rightarrow E$ are continuous and bounded functions, $g$ satisfying the one-sided Lipschitz condition

$$
[x-y, g(t, x)-g(t, y)]_{-} \leq L\|x-y\| \quad(0 \leq t \leq T ; x, y \in E)
$$

and $k$ the $\alpha$-Lipschitz condition

$$
\alpha(k([0, T] \times B)) \leq K \alpha(B) \quad(B \subseteq E, B \text { bounded })
$$

here $K, L$ are given non-negative numbers.
Moreover let $M$ be a closed subset of the Banach space $E$ such that

$$
\begin{equation*}
\liminf _{h \searrow 0} \frac{1}{h} \operatorname{dist}(x+h f(t, x), M)=0 \quad(0 \leq t \leq T, x \in M) \tag{1}
\end{equation*}
$$

Then for every $(\tau, a) \in[0, T[\times M$ the initial value problem (i.v.p.)

$$
\begin{equation*}
u(\tau)=a, \quad u^{\prime}(t)=f(t, u(t)) \quad(\tau \leq t \leq T) \tag{2}
\end{equation*}
$$

has a solution $u:[\tau, T] \rightarrow M$.

Proof. Without loss of generality (w.l.o.g.) we assume $L>0$. We choose $l \in] 0, T-\tau]$ according to

$$
\begin{equation*}
\frac{1}{L}\left(e^{L l}-1\right) \leq \frac{1}{4(2 K+1)} \tag{3}
\end{equation*}
$$

The function $f:[0, T] \times E \rightarrow E$ being continuous, bounded and having property (1), there exist $C^{1}$-functions $u_{n}:[\tau, \tau+l] \rightarrow E(n \in \mathbb{N})$ such that

$$
\begin{gathered}
u_{n}(\tau)=a, \quad\left\|u_{n}^{\prime}(t)-f\left(t, u_{n}(t)\right)\right\| \leq \frac{1}{n} \quad(\tau \leq t \leq \tau+l) \\
\quad \operatorname{dist}\left(u_{n}(t), M\right) \leq \frac{1}{n} \quad(\tau \leq t \leq \tau+l)
\end{gathered}
$$

the proof of this will be given in the next section.
Schmidt's proof of her Satz 2.3 in [3] shows that a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$ uniformly converges to a solution $u:[\tau, \tau+l] \rightarrow E$ of the i.v.p. given by (2). As a consequence of (4) we also get $u:[\tau, \tau+l] \rightarrow M$.

If $\tau+l=T$, then we are done. If $\tau+l<T$, then it is sufficient to repeat the foregoing reasoning finitely many times in a standard way.

Remark. Schmidt's form of inequality (3) is a bit different, but in her Satz 2.3 she rather uses the Hausdorff measure of non-compactness instead of $\alpha$. The here given inequality (3) is appropriate for applying Schmidt's results to our case.
2. Existence of approximate $C^{1}$-solutions. The existence of the functions $u_{n}(n \in \mathbb{N})$ in the proof of Theorem 1 is a consequence of the following Theorem 2.

Theorem 2 Let $f:[\tau, T] \times E \rightarrow E$ be a bounded continuous function, where $E$ is a Banach space and $\tau, T$ are reals, $\tau<T$. Let $M$ be a closed subset of E and suppose

$$
\liminf _{h \searrow 0} \frac{1}{h} \operatorname{dist}(x+h f(t, x), M)=0 \quad(\tau \leq t \leq T, x \in M)
$$

Finally let $a \in M$ and $\varepsilon>0$ be given. Then there exists a $C^{1}$-function $u:[\tau, T] \rightarrow E$ such that
(5) $u(\tau)=a,\left\|u^{\prime}(t)-f(t, u(t))\right\| \leq \varepsilon, \operatorname{dist}(u(t), M) \leq \varepsilon(\tau \leq t \leq T)$.

Proof. 1. W.l.o.g. we suppose $\varepsilon \leq 1$. According to Martin [2] there is a polygonal line $p:[\tau, T] \rightarrow E$ satisfying

$$
\begin{equation*}
p(\tau)=a,\left\|p_{ \pm}^{\prime}(t)-f(t, p(t))\right\| \leq \frac{\varepsilon}{4}, \operatorname{dist}(p(t), M) \leq \frac{\varepsilon}{4}(\tau \leq t \leq T) \tag{6}
\end{equation*}
$$

where $p_{+}^{\prime}, p_{-}^{\prime}$ mean right- and left-hand derivatives (with the natural exceptions of $\left.p_{-}^{\prime}(\tau), p_{+}^{\prime}(T)\right)$.
2. Let $(s, c)$ be a corner of $p$, where $\tau<s<T, c=p(s)$. Then in a small interval $] s-\beta, s+\beta[($ where $\beta>0)$ there is no second corner of $p$. We shall show that for sufficiently small positive $\eta<\frac{\beta}{2}$ there is a $C^{1}$-function $u:] s-\beta, s+\beta[\rightarrow E$ which coincides with $p$ on $] s-\beta, s-\eta] \cup[s+\eta, s+\beta[$ and fulfils the inequalities

$$
\begin{equation*}
\left\|u^{\prime}(t)-f(t, u(t))\right\| \leq \varepsilon, \operatorname{dist}(u(t), M) \leq \varepsilon(s-\eta \leq t \leq s+\eta) \tag{7}
\end{equation*}
$$

When changing $p$ in a neighborhood of every corner $(s, c)$ according to the just given description into a $C^{1}$-function $u$, then we get a $C^{1}$-function $u$ : $[\tau, T] \rightarrow E$ satisfying (5).
3. Now we like to prove the statements of the preceding paragraph. So let $(s, c)$ be a corner of $p$, w.l.o.g. we assume $s=0$. Then in a small interval $[-\beta, \beta]$ the function $p$ has the form

$$
p(t)= \begin{cases}c+t b_{1} & (0 \leq t \leq \beta) \\ c+t b_{2} & (-\beta \leq t \leq 0)\end{cases}
$$

where $\beta>0$ and $b_{1}, b_{2} \in E$. With $v=\frac{1}{2}\left(b_{1}+b_{2}\right), w=\frac{1}{2}\left(b_{1}-b_{2}\right)$ we get

$$
\begin{aligned}
p(t) & = \begin{cases}c+t v+t w & (0 \leq t \leq \beta) \\
c+t v-t w & (-\beta \leq t \leq 0),\end{cases} \\
p^{\prime}(t) & = \begin{cases}v+w & (0<t<\beta) \\
v-w & (-\beta<t<0)\end{cases}
\end{aligned}
$$

Therefore (6) leads to

$$
\begin{array}{r}
\|v+w-f(t, c+t v+t w)\| \leq \frac{\varepsilon}{4} \quad(0 \leq t \leq \beta) \\
\|v-w-f(t, c+t v-t w)\| \leq \frac{\varepsilon}{4} \quad(-\beta \leq t \leq 0)
\end{array}
$$

Using these inequalities for $t=0$ implies

$$
2\|w\|=\|v+w-f(0, c)-(v-w-f(0, c))\| \leq \frac{\varepsilon}{2}
$$

hence

$$
\|w\| \leq \frac{\varepsilon}{4}, \quad\|v-f(0, c)\| \leq \frac{\varepsilon}{2}
$$

The continuity of $f$ at $(0, c)$ shows the existence of an $\eta \in] 0, \min \left\{1, \frac{\beta}{2}\right\}[$ such that

$$
(t, x) \in \mathbb{R} \times E,|t| \leq \eta, \quad\|x\| \leq \eta \Rightarrow\|f(t, c+t v+x)-f(0, c)\| \leq \frac{\varepsilon}{4}
$$

Hence we have

$$
\begin{equation*}
|t| \leq \eta, \quad\|x\| \leq \eta \Rightarrow\|f(t, c+t v+x)-v\| \leq \frac{3 \varepsilon}{4} \tag{8}
\end{equation*}
$$

We define $u:]-\beta, \beta[\rightarrow E$ by

$$
u(t)= \begin{cases}c+t v+t w & (\eta \leq t<\beta) \\ c+\left(\frac{1}{2 \eta} t^{2}+\frac{\eta}{2}\right) w+t v & (|t| \leq \eta) \\ c+t v-t w & (-\beta<t \leq-\eta)\end{cases}
$$

This $u$ is a $C^{1}$-function and it coincides with $p$ on $\left.]-\beta,-\eta\right] \cup[\eta, \beta[$. We finally have to verify (7) (with $s=0$ ). For $|t| \leq \eta$ we get

$$
u^{\prime}(t)=\frac{t}{\eta} w+v
$$

hence

$$
\begin{equation*}
\left\|u^{\prime}(t)-v\right\| \leq\|w\| \leq \frac{\varepsilon}{4} \tag{9}
\end{equation*}
$$

Furthermore

$$
\|u(t)-c-t v\|=\left(\frac{t^{2}}{2 \eta}+\frac{\eta}{2}\right)\|w\| \leq \eta\|w\| \leq \eta \frac{\varepsilon}{4} \leq \eta .
$$

Using (8), we get

$$
\|f(t, u(t))-v\| \leq \frac{3 \varepsilon}{4}
$$

From this and (9) we derive

$$
\left\|u^{\prime}(t)-f(t, u(t))\right\| \leq \varepsilon \quad(\text { for }|t| \leq \eta)
$$

which is the first inequality in (7). Concerning the second one, we observe for $|t| \leq \eta$ that

$$
p(t)-u(t)=|t| w-\left(\frac{1}{2 \eta} t^{2}+\frac{\eta}{2}\right) w
$$

hence

$$
\|p(t)-u(t)\| \leq 2 \eta\|w\| \leq 2 \eta \frac{\varepsilon}{4}
$$

and thus

$$
\operatorname{dist}(u(t), M) \leq \operatorname{dist}(p(t), M)+\|p(t)-u(t)\| \leq \frac{\varepsilon}{4}+2 \eta \frac{\varepsilon}{4}=\frac{\varepsilon}{4}(1+2 \eta) \leq \varepsilon
$$

3. A local result. Let us consider Theorem 1 for $M=E$. Then (1) holds for every function $f:[0, T] \times E \rightarrow E$. In this case Theorem 1 gives a solution $u:[\tau, T] \rightarrow E$ of the i.v.p. (2), which means that we find back Satz 2.3 of Schmidt [3].

As a consequence of Satz 2.3, Schmidt proves a local version of it. Now we are doing the same with our Theorem 1.

Theorem 3 Suppose $T>0$ and $M \subseteq D \subseteq E$, where $M$ is a closed and $D$ an open subset of the Banach space E. Consider $f=g+k$, where $g, k$ : $[0, T] \times D \rightarrow E$ are continuous and such that

$$
\begin{aligned}
& {[x-y, g(t, x)-g(t, y)]_{-} \leq L\|x-y\| \quad(0 \leq t \leq T ; x, y \in D)} \\
& \alpha(k([0, T] \times B)) \leq K \alpha(B) \quad(B \subseteq D, \quad B \text { bounded })
\end{aligned}
$$

Let $f$ satisfy condition (1). Then for every $a \in M$ there exists a $\widetilde{T} \in] 0, T]$ such that the i.v.p.

$$
\begin{equation*}
u(0)=a, u^{\prime}(t)=f(t, u(t)) \quad(0 \leq t \leq \widetilde{T}) \tag{10}
\end{equation*}
$$

has a solution $u:[0, \widetilde{T}] \rightarrow M$.
Proof. We simply follow the proof of Satz 2.4 in [3]: We fix $a \in M$ and we choose $T_{0}, r>0$ such that $g, k$ are defined and bounded on

$$
\left[0, T_{0}\right] \times\{x \mid x \in E,\|x-a\| \leq r\}
$$

let $\mu$ be a positive bound for their norms. We take

$$
\widetilde{T}=\min \left\{T_{0}, \frac{r}{4 \mu}\right\}
$$

We define $p:[0, \infty[\rightarrow[0,1]$ by

$$
p(s)= \begin{cases}1 & \left(0 \leq s \leq \frac{r}{2}\right) \\ 2-\frac{2}{r} s & \left(\frac{r}{2} \leq s \leq r\right) \\ 0 & (s \geq r)\end{cases}
$$

Then we define $\tilde{f}, \tilde{g}, \tilde{k}:[0, \widetilde{T}] \times E \rightarrow E$ by

$$
\tilde{f}(t, x)= \begin{cases}p(\|x-a\|) f(t, x) & (0 \leq t \leq \widetilde{T},\|x-a\| \leq r)  \tag{11}\\ 0 & (\|x-a\| \geq r)\end{cases}
$$

and $\tilde{g}, \tilde{k}$ in an analogous way. We can apply Theorem 1 with $T, f, g, k$ replaced by $\widetilde{T}, \tilde{f}, \tilde{g}, \tilde{k}$. Especially (1) holds after this replacement also for $\tilde{f}$, because in (11) we have $p(\|x-a\|) \geq 0$.
We thus get a solution $u:[0, \widetilde{T}] \rightarrow M$ of the i.v.p.

$$
u(0)=a, u^{\prime}(t)=\tilde{f}(t, u(t)) \quad(0 \leq t \leq \widetilde{T})
$$

Because of $\|u(t)-a\| \leq 2 \mu \widetilde{T} \leq \frac{r}{2}$, the function $u$ also solves (10).

## References

[1] Casimir Kuratowski: Sur les espaces complets. Fundamenta Math. 15, 301-309 (1930).
[2] Robert H. Martin, Jr.: Differential equations on closed subsets of a Banach space. Trans. Amer. Math. Soc. 179, 399-414 (1973).
[3] Sabina Schmidt: Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen. Diss. Univ. Karlsruhe 1989; has appeared in Funkcialaj Ekvac. 35, 199-222 (1992).

Authors' address: Institut für Analysis, KIT, 76128 Karlsruhe, Germany
First author's e-mail: gerd.herzog2@kit.edu

