
KITopen (2018), 6 pp.
DOI: 10.5445/IR/1000085437

Solutions of ordinary differential equations in closed
subsets of a Banach space

Gerd Herzog and Peter Volkmann

Dedicated to Professor Karol Baron on his 70th Birthday

1. Notations and main result. Let E be a real Banach space. For x ∈ E
and ∅ 6= B ⊆ E we write

dist(x,B) = inf{‖x− y‖ | y ∈ B}.

For bounded sets B ⊆ E we define

diamB = sup{‖x− y‖ | x, y ∈ B}

(diam ∅ = 0) and furthermore

α(B) = inf{δ ≥ 0 | B ⊆ B1 ∪ . . . ∪Bn, diamBν ≤ δ (ν = 1, . . . , n), n ∈ N},

where N = {1, 2, 3, . . . }; α(B) is the Kuratowski measure of non-compactness
of B (cf. Kuratowski [1]).
Finally we use the notation

[x, y]− = lim
h↗0

1

h
{‖x+ hy‖ − ‖x‖} (x, y ∈ E).

Theorem 1 Suppose T > 0 and f = g + k, where g, k : [0, T ] × E → E
are continuous and bounded functions, g satisfying the one-sided Lipschitz
condition

[x− y, g(t, x)− g(t, y)]− ≤ L‖x− y‖ (0 ≤ t ≤ T ; x, y ∈ E)

and k the α-Lipschitz condition

α(k([0, T ]×B)) ≤ Kα(B) (B ⊆ E, B bounded);

here K,L are given non-negative numbers.
Moreover let M be a closed subset of the Banach space E such that

lim inf
h↘0

1

h
dist(x+ hf(t, x),M) = 0 (0 ≤ t ≤ T, x ∈M).(1)

Then for every (τ, a) ∈ [0, T [×M the initial value problem (i.v.p.)

u(τ) = a, u′(t) = f(t, u(t)) (τ ≤ t ≤ T )(2)

has a solution u : [τ, T ]→M .
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Proof. Without loss of generality (w.l.o.g.) we assume L > 0. We choose
l ∈]0, T − τ ] according to

1

L
(eLl − 1) ≤ 1

4(2K + 1)
.(3)

The function f : [0, T ] × E → E being continuous, bounded and having
property (1), there exist C1-functions un : [τ, τ + l]→ E (n ∈ N) such that

un(τ) = a, ‖u′n(t)− f(t, un(t))‖ ≤ 1

n
(τ ≤ t ≤ τ + l),

dist(un(t),M) ≤ 1

n
(τ ≤ t ≤ τ + l);(4)

the proof of this will be given in the next section.

Schmidt’s proof of her Satz 2.3 in [3] shows that a subsequence of (un)n∈N
uniformly converges to a solution u : [τ, τ + l]→ E of the i.v.p. given by (2).
As a consequence of (4) we also get u : [τ, τ + l]→M .

If τ + l = T , then we are done. If τ + l < T , then it is sufficient to repeat
the foregoing reasoning finitely many times in a standard way.

Remark. Schmidt’s form of inequality (3) is a bit different, but in her Satz
2.3 she rather uses the Hausdorff measure of non-compactness instead of α.
The here given inequality (3) is appropriate for applying Schmidt’s results
to our case.

2. Existence of approximate C1-solutions. The existence of the func-
tions un (n ∈ N) in the proof of Theorem 1 is a consequence of the following
Theorem 2.

Theorem 2 Let f : [τ, T ]×E → E be a bounded continuous function, where
E is a Banach space and τ, T are reals, τ < T . Let M be a closed subset of
E and suppose

lim inf
h↘0

1

h
dist(x+ hf(t, x),M) = 0 (τ ≤ t ≤ T, x ∈M).

Finally let a ∈ M and ε > 0 be given. Then there exists a C1-function
u : [τ, T ]→ E such that

u(τ) = a, ‖u′(t)− f(t, u(t))‖ ≤ ε, dist(u(t),M) ≤ ε (τ ≤ t ≤ T ).(5)

Proof. 1. W.l.o.g. we suppose ε ≤ 1. According to Martin [2] there is a
polygonal line p : [τ, T ]→ E satisfying

p(τ) = a, ‖p′±(t)− f(t, p(t))‖ ≤ ε

4
, dist(p(t),M) ≤ ε

4
(τ ≤ t ≤ T ),(6)
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where p′+, p
′
− mean right- and left-hand derivatives (with the natural excep-

tions of p′−(τ), p′+(T )).

2. Let (s, c) be a corner of p, where τ < s < T, c = p(s). Then in a small
interval ]s − β, s + β[ (where β > 0) there is no second corner of p. We
shall show that for sufficiently small positive η < β

2
there is a C1-function

u : ]s− β, s+ β[→ E which coincides with p on ]s− β, s− η] ∪ [s+ η, s+ β[
and fulfils the inequalities

‖u′(t)− f(t, u(t))‖ ≤ ε, dist(u(t),M) ≤ ε (s− η ≤ t ≤ s+ η).(7)

When changing p in a neighborhood of every corner (s, c) according to the
just given description into a C1-function u, then we get a C1-function u :
[τ, T ]→ E satisfying (5).

3. Now we like to prove the statements of the preceding paragraph. So let
(s, c) be a corner of p, w.l.o.g. we assume s = 0. Then in a small interval
[−β, β] the function p has the form

p(t) =

{
c+ tb1 (0 ≤ t ≤ β)
c+ tb2 (−β ≤ t ≤ 0),

where β > 0 and b1, b2 ∈ E. With v = 1
2
(b1 + b2), w = 1

2
(b1 − b2) we get

p(t) =

{
c+ tv + tw (0 ≤ t ≤ β)
c+ tv − tw (−β ≤ t ≤ 0),

p′(t) =

{
v + w (0 < t < β)
v − w (−β < t < 0).

Therefore (6) leads to

‖v + w − f(t, c+ tv + tw)‖ ≤ ε

4
(0 ≤ t ≤ β),

‖v − w − f(t, c+ tv − tw)‖ ≤ ε

4
(−β ≤ t ≤ 0).

Using these inequalities for t = 0 implies

2‖w‖ = ‖v + w − f(0, c)− (v − w − f(0, c))‖ ≤ ε

2
,

hence

‖w‖ ≤ ε

4
, ‖v − f(0, c)‖ ≤ ε

2
.

The continuity of f at (0, c) shows the existence of an η ∈]0,min{1, β
2
}[ such

that

(t, x) ∈ R× E, |t| ≤ η, ‖x‖ ≤ η ⇒ ‖f(t, c+ tv + x)− f(0, c)‖ ≤ ε

4
.
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Hence we have

|t| ≤ η, ‖x‖ ≤ η ⇒ ‖f(t, c+ tv + x)− v‖ ≤ 3ε

4
.(8)

We define u : ]− β, β[→ E by

u(t) =


c+ tv + tw (η ≤ t < β)

c+
(

1
2η
t2 + η

2

)
w + tv (|t| ≤ η)

c+ tv − tw (−β < t ≤ −η).

This u is a C1-function and it coincides with p on ] − β,−η] ∪ [η, β[. We
finally have to verify (7) (with s = 0). For |t| ≤ η we get

u′(t) =
t

η
w + v,

hence

‖u′(t)− v‖ ≤ ‖w‖ ≤ ε

4
.(9)

Furthermore

‖u(t)− c− tv‖ =

(
t2

2η
+
η

2

)
‖w‖ ≤ η‖w‖ ≤ η

ε

4
≤ η.

Using (8), we get

‖f(t, u(t))− v‖ ≤ 3ε

4
.

From this and (9) we derive

‖u′(t)− f(t, u(t))‖ ≤ ε (for |t| ≤ η),

which is the first inequality in (7). Concerning the second one, we observe
for |t| ≤ η that

p(t)− u(t) = |t|w −
(

1

2η
t2 +

η

2

)
w,

hence

‖p(t)− u(t)‖ ≤ 2η‖w‖ ≤ 2η
ε

4
,

and thus

dist(u(t),M) ≤ dist(p(t),M) + ‖p(t)− u(t)‖ ≤ ε

4
+ 2η

ε

4
=
ε

4
(1 + 2η) ≤ ε.

3. A local result. Let us consider Theorem 1 for M = E. Then (1) holds
for every function f : [0, T ]×E → E. In this case Theorem 1 gives a solution
u : [τ, T ] → E of the i.v.p. (2), which means that we find back Satz 2.3 of
Schmidt [3].

As a consequence of Satz 2.3, Schmidt proves a local version of it. Now we
are doing the same with our Theorem 1.
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Theorem 3 Suppose T > 0 and M ⊆ D ⊆ E, where M is a closed and
D an open subset of the Banach space E. Consider f = g + k, where g, k :
[0, T ]×D → E are continuous and such that

[x− y, g(t, x)− g(t, y)]− ≤ L‖x− y‖ (0 ≤ t ≤ T ; x, y ∈ D),

α(k([0, T ]×B)) ≤ Kα(B) (B ⊆ D, B bounded).

Let f satisfy condition (1). Then for every a ∈ M there exists a T̃ ∈]0, T ]
such that the i.v.p.

u(0) = a, u′(t) = f(t, u(t)) (0 ≤ t ≤ T̃ )(10)

has a solution u : [0, T̃ ]→M .

Proof. We simply follow the proof of Satz 2.4 in [3]: We fix a ∈ M and we
choose T0, r > 0 such that g, k are defined and bounded on

[0, T0]× {x | x ∈ E, ‖x− a‖ ≤ r};

let µ be a positive bound for their norms. We take

T̃ = min{T0,
r

4µ
}.

We define p : [0,∞[→ [0, 1] by

p(s) =


1 (0 ≤ s ≤ r

2
)

2− 2
r
s ( r

2
≤ s ≤ r)

0 (s ≥ r).

Then we define f̃ , g̃, k̃ : [0, T̃ ]× E → E by

f̃(t, x) =

{
p(‖x− a‖)f(t, x) (0 ≤ t ≤ T̃ , ‖x− a‖ ≤ r)
0 (‖x− a‖ ≥ r),

(11)

and g̃, k̃ in an analogous way. We can apply Theorem 1 with T, f, g, k replaced
by T̃ , f̃ , g̃, k̃. Especially (1) holds after this replacement also for f̃ , because
in (11) we have p(‖x− a‖) ≥ 0.

We thus get a solution u : [0, T̃ ]→M of the i.v.p.

u(0) = a, u′(t) = f̃(t, u(t)) (0 ≤ t ≤ T̃ ).

Because of ‖u(t)− a‖ ≤ 2µT̃ ≤ r
2
, the function u also solves (10).
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