Solutions of ordinary differential equations in closed subsets of a Banach space

Gerd Herzog and Peter Volkmann

Dedicated to Professor Karol Baron on his 70th Birthday

1. Notations and main result. Let *E* be a real Banach space. For $x \in E$ and $\emptyset \neq B \subseteq E$ we write

$$dist(x, B) = inf\{||x - y|| \mid y \in B\}.$$

For bounded sets $B \subseteq E$ we define

$$\operatorname{diam} B = \sup\{\|x - y\| \mid x, y \in B\}$$

(diam $\emptyset = 0$) and furthermore

 $\alpha(B) = \inf\{\delta \ge 0 \mid B \subseteq B_1 \cup \ldots \cup B_n, \operatorname{diam} B_{\nu} \le \delta \ (\nu = 1, \ldots, n), \ n \in \mathbb{N}\},\$

where $\mathbb{N} = \{1, 2, 3, ...\}; \alpha(B)$ is the Kuratowski measure of non-compactness of B (cf. Kuratowski [1]).

Finally we use the notation

$$[x,y]_{-} = \lim_{h \neq 0} \frac{1}{h} \{ \|x + hy\| - \|x\| \} \quad (x,y \in E).$$

Theorem 1 Suppose T > 0 and f = g + k, where $g, k : [0, T] \times E \to E$ are continuous and bounded functions, g satisfying the one-sided Lipschitz condition

$$[x - y, g(t, x) - g(t, y)]_{-} \le L ||x - y|| \quad (0 \le t \le T; \ x, y \in E)$$

and k the α -Lipschitz condition

$$\alpha(k([0,T] \times B)) \le K\alpha(B) \quad (B \subseteq E, B \text{ bounded});$$

here K, L are given non-negative numbers.

Moreover let M be a closed subset of the Banach space E such that

(1)
$$\liminf_{h \searrow 0} \frac{1}{h} \operatorname{dist}(x + hf(t, x), M) = 0 \quad (0 \le t \le T, \ x \in M).$$

Then for every $(\tau, a) \in [0, T[\times M \text{ the initial value problem } (i.v.p.)]$

(2)
$$u(\tau) = a, \quad u'(t) = f(t, u(t)) \quad (\tau \le t \le T)$$

has a solution $u: [\tau, T] \to M$.

Proof. Without loss of generality (w.l.o.g.) we assume L > 0. We choose $l \in [0, T - \tau]$ according to

(3)
$$\frac{1}{L}(e^{Ll}-1) \le \frac{1}{4(2K+1)}.$$

The function $f : [0,T] \times E \to E$ being continuous, bounded and having property (1), there exist C^1 -functions $u_n : [\tau, \tau + l] \to E$ $(n \in \mathbb{N})$ such that

$$u_n(\tau) = a, \quad ||u'_n(t) - f(t, u_n(t))|| \le \frac{1}{n} \quad (\tau \le t \le \tau + l),$$

(4)
$$\operatorname{dist}(u_n(t), M) \le \frac{1}{n} \quad (\tau \le t \le \tau + l);$$

the proof of this will be given in the next section.

Schmidt's proof of her Satz 2.3 in [3] shows that a subsequence of $(u_n)_{n \in \mathbb{N}}$ uniformly converges to a solution $u : [\tau, \tau + l] \to E$ of the i.v.p. given by (2). As a consequence of (4) we also get $u : [\tau, \tau + l] \to M$.

If $\tau + l = T$, then we are done. If $\tau + l < T$, then it is sufficient to repeat the foregoing reasoning finitely many times in a standard way.

Remark. Schmidt's form of inequality (3) is a bit different, but in her Satz 2.3 she rather uses the Hausdorff measure of non-compactness instead of α . The here given inequality (3) is appropriate for applying Schmidt's results to our case.

2. Existence of approximate C^1 -solutions. The existence of the functions u_n $(n \in \mathbb{N})$ in the proof of Theorem 1 is a consequence of the following Theorem 2.

Theorem 2 Let $f : [\tau, T] \times E \to E$ be a bounded continuous function, where E is a Banach space and τ, T are reals, $\tau < T$. Let M be a closed subset of E and suppose

$$\liminf_{h\searrow 0} \frac{1}{h} \operatorname{dist}(x + hf(t, x), M) = 0 \quad (\tau \le t \le T, \ x \in M).$$

Finally let $a \in M$ and $\varepsilon > 0$ be given. Then there exists a C^1 -function $u : [\tau, T] \to E$ such that

(5)
$$u(\tau) = a$$
, $||u'(t) - f(t, u(t))|| \le \varepsilon$, $\operatorname{dist}(u(t), M) \le \varepsilon$ ($\tau \le t \le T$).

Proof. 1. W.l.o.g. we suppose $\varepsilon \leq 1$. According to Martin [2] there is a polygonal line $p: [\tau, T] \to E$ satisfying

(6)
$$p(\tau) = a, ||p'_{\pm}(t) - f(t, p(t))|| \le \frac{\varepsilon}{4}, \operatorname{dist}(p(t), M) \le \frac{\varepsilon}{4} \ (\tau \le t \le T),$$

where p'_{+}, p'_{-} mean right- and left-hand derivatives (with the natural exceptions of $p'_{-}(\tau), p'_{+}(T)$).

2. Let (s,c) be a corner of p, where $\tau < s < T$, c = p(s). Then in a small interval $]s - \beta, s + \beta[$ (where $\beta > 0$) there is no second corner of p. We shall show that for sufficiently small positive $\eta < \frac{\beta}{2}$ there is a C^1 -function $u :]s - \beta, s + \beta[\rightarrow E$ which coincides with p on $]s - \beta, s - \eta] \cup [s + \eta, s + \beta[$ and fulfils the inequalities

(7)
$$||u'(t) - f(t, u(t))|| \le \varepsilon, \operatorname{dist}(u(t), M) \le \varepsilon \ (s - \eta \le t \le s + \eta).$$

When changing p in a neighborhood of every corner (s, c) according to the just given description into a C^1 -function u, then we get a C^1 -function u: $[\tau, T] \to E$ satisfying (5).

3. Now we like to prove the statements of the preceding paragraph. So let (s, c) be a corner of p, w.l.o.g. we assume s = 0. Then in a small interval $[-\beta, \beta]$ the function p has the form

$$p(t) = \begin{cases} c + tb_1 & (0 \le t \le \beta) \\ c + tb_2 & (-\beta \le t \le 0) \end{cases}$$

where $\beta > 0$ and $b_1, b_2 \in E$. With $v = \frac{1}{2}(b_1 + b_2), w = \frac{1}{2}(b_1 - b_2)$ we get

$$p(t) = \begin{cases} c + tv + tw & (0 \le t \le \beta) \\ c + tv - tw & (-\beta \le t \le 0), \end{cases}$$

$$p'(t) = \begin{cases} v + w & (0 < t < \beta) \\ v - w & (-\beta < t < 0). \end{cases}$$

Therefore (6) leads to

$$\|v+w-f(t,c+tv+tw)\| \le \frac{\varepsilon}{4} \quad (0 \le t \le \beta),$$

$$\|v-w-f(t,c+tv-tw)\| \le \frac{\varepsilon}{4} \quad (-\beta \le t \le 0).$$

Using these inequalities for t = 0 implies

$$2\|w\| = \|v + w - f(0, c) - (v - w - f(0, c))\| \le \frac{\varepsilon}{2},$$

hence

$$||w|| \le \frac{\varepsilon}{4}, \quad ||v - f(0, c)|| \le \frac{\varepsilon}{2}.$$

The continuity of f at (0, c) shows the existence of an $\eta \in]0, \min\{1, \frac{\beta}{2}\}[$ such that

$$(t,x) \in \mathbb{R} \times E, \ |t| \le \eta, \ ||x|| \le \eta \Rightarrow ||f(t,c+tv+x) - f(0,c)|| \le \frac{\varepsilon}{4}.$$

Hence we have

(8)
$$|t| \le \eta, \ ||x|| \le \eta \Rightarrow ||f(t, c + tv + x) - v|| \le \frac{3\varepsilon}{4}.$$

We define $u:] - \beta, \beta[\rightarrow E$ by

$$u(t) = \begin{cases} c + tv + tw & (\eta \le t < \beta) \\ c + \left(\frac{1}{2\eta}t^2 + \frac{\eta}{2}\right)w + tv & (|t| \le \eta) \\ c + tv - tw & (-\beta < t \le -\eta) \end{cases}$$

This u is a C¹-function and it coincides with p on $] - \beta, -\eta] \cup [\eta, \beta]$. We finally have to verify (7) (with s = 0). For $|t| \le \eta$ we get

$$u'(t) = \frac{t}{\eta}w + v,$$

hence

(9)
$$||u'(t) - v|| \le ||w|| \le \frac{\varepsilon}{4}$$

Furthermore

$$\|u(t) - c - tv\| = \left(\frac{t^2}{2\eta} + \frac{\eta}{2}\right)\|w\| \le \eta\|w\| \le \eta\frac{\varepsilon}{4} \le \eta.$$

Using (8), we get

$$\|f(t, u(t)) - v\| \le \frac{3\varepsilon}{4}.$$

From this and (9) we derive

$$||u'(t) - f(t, u(t))|| \le \varepsilon \quad (\text{for } |t| \le \eta),$$

which is the first inequality in (7). Concerning the second one, we observe for $|t| \leq \eta$ that

$$p(t) - u(t) = |t|w - \left(\frac{1}{2\eta}t^2 + \frac{\eta}{2}\right)w,$$

hence

$$\|p(t) - u(t)\| \le 2\eta \|w\| \le 2\eta \frac{\varepsilon}{4},$$

and thus

$$\operatorname{dist}(u(t), M) \le \operatorname{dist}(p(t), M) + \|p(t) - u(t)\| \le \frac{\varepsilon}{4} + 2\eta \frac{\varepsilon}{4} = \frac{\varepsilon}{4}(1 + 2\eta) \le \varepsilon.$$

3. A local result. Let us consider Theorem 1 for M = E. Then (1) holds for every function $f : [0, T] \times E \to E$. In this case Theorem 1 gives a solution $u : [\tau, T] \to E$ of the i.v.p. (2), which means that we find back Satz 2.3 of Schmidt [3].

As a consequence of Satz 2.3, Schmidt proves a local version of it. Now we are doing the same with our Theorem 1.

Theorem 3 Suppose T > 0 and $M \subseteq D \subseteq E$, where M is a closed and D an open subset of the Banach space E. Consider f = g + k, where $g, k : [0, T] \times D \rightarrow E$ are continuous and such that

$$[x - y, g(t, x) - g(t, y)]_{-} \le L ||x - y|| \quad (0 \le t \le T; \ x, y \in D),$$

$$\alpha(k([0, T] \times B)) \le K\alpha(B) \quad (B \subseteq D, \ B \text{ bounded}).$$

Let f satisfy condition (1). Then for every $a \in M$ there exists a $\widetilde{T} \in]0,T]$ such that the i.v.p.

(10)
$$u(0) = a, \ u'(t) = f(t, u(t)) \quad (0 \le t \le \widetilde{T})$$

has a solution $u: [0, \widetilde{T}] \to M$.

Proof. We simply follow the proof of Satz 2.4 in [3]: We fix $a \in M$ and we choose $T_0, r > 0$ such that g, k are defined and bounded on

$$[0, T_0] \times \{ x \mid x \in E, \ \|x - a\| \le r \};\$$

let μ be a positive bound for their norms. We take

$$\widetilde{T} = \min\{T_0, \frac{r}{4\mu}\}.$$

We define $p: [0, \infty[\rightarrow [0, 1]]$ by

$$p(s) = \begin{cases} 1 & (0 \le s \le \frac{r}{2}) \\ 2 - \frac{2}{r}s & (\frac{r}{2} \le s \le r) \\ 0 & (s \ge r). \end{cases}$$

Then we define $\tilde{f}, \tilde{g}, \tilde{k} : [0, \tilde{T}] \times E \to E$ by

(11)
$$\tilde{f}(t,x) = \begin{cases} p(\|x-a\|)f(t,x) & (0 \le t \le T, \|x-a\| \le r) \\ 0 & (\|x-a\| \ge r), \end{cases}$$

and \tilde{g}, \tilde{k} in an analogous way. We can apply Theorem 1 with T, f, g, k replaced by $\tilde{T}, \tilde{f}, \tilde{g}, \tilde{k}$. Especially (1) holds after this replacement also for \tilde{f} , because in (11) we have $p(||x - a||) \ge 0$.

We thus get a solution $u: [0, \widetilde{T}] \to M$ of the i.v.p.

$$u(0) = a, \ u'(t) = \tilde{f}(t, u(t)) \quad (0 \le t \le \tilde{T}).$$

Because of $||u(t) - a|| \le 2\mu \widetilde{T} \le \frac{r}{2}$, the function u also solves (10).

References

- Casimir Kuratowski: Sur les espaces complets. Fundamenta Math. 15, 301-309 (1930).
- [2] Robert H. Martin, Jr.: Differential equations on closed subsets of a Banach space. Trans. Amer. Math. Soc. 179, 399-414 (1973).
- [3] Sabina Schmidt: Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen. Diss. Univ. Karlsruhe 1989; has appeared in Funkcialaj Ekvac. 35, 199-222 (1992).

Authors' address: Institut für Analysis, KIT, 76128 Karlsruhe, Germany

First author's e-mail: gerd.herzog2@kit.edu