
Electric Circuit- and Wiring Harness-Aware Behavioral
Simulation of Model-Based E/E-Architectures at System Level

Harald Bucher, Jürgen Becker
Institute for Information Processing Technologies (ITIV)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
{bucher, becker}@kit.edu

Abstract—To cope with the rising complexity of automotive elec-
tric/electronic architectures (EEA), model-based development at system
level is well-established and typically realized in architecture description
languages (ADLs) and high-level tools. In this paper, we extend a
previously developed approach for automated cross-domain simulation
synthesis of model-based EEA descriptions enabling system-level evalua-
tion by a behavioral specification layer. The key contributions of this work
are modeling extensions applied to a state-of-the-art EEA ADL to refine
specified behavior during synthesis with electric circuits including wiring
harness details modeled at the hardware layer. Preliminary experiments
show that the novel combination of quantization- and SPICE-based
synthesized circuit simulation, conducted in a discrete-event manner and
applied to a buck converter, a typical device in an automotive EEA,
increases simulation efficiency up to a factor of 2.0 compared to other
state-of-the-art tools while preserving accuracy. Finally, another example
EEA hardware network, modeling the dynamic current consumption of
an Electric Power Steering actuator, applied to a realistic vehicle topology
model demonstrates the impact of wiring harness refinements.

Index Terms—Automotive, E/E-Architectures, ADL, Wiring Harness,
MBSE, QSS, Modeling and Simulation, SPICE, Ptolemy II, PREEvision

I. INTRODUCTION

Nowadays the EEA of modern vehicles are a distributed system
of up to 100 Electronic Control Units (ECUs), sensors and actuators
communicating over various bus systems and gateways though there is
a shift towards hierarchical and centralized architectures [1], [2]. The
latest innovations like driver assistance systems and the trend towards
autonomous driving are the main reasons for this development. To
cope with that complexity at system level, model-based architecture
description languages (ADLs) and tools have been established in
recent years such as the EAST-ADL [3], EEA-ADL [4] (realized in
the tool PREEvision [5]) and Vehicle Systems Architect [6] which
are compliant to the AUTOSAR [7] standard methodology. The
ADLs and tools each provide sophisticated modeling capabilities
for several aspects of an EEA such as requirements, functional
network, hardware/software architecture and their mappings to each
other. However, most of the ADLs and system level tools offer
purely static modeling. The major drawback therefore is the lack
of executable behavior specification integrated in the EEA model
which is a fundamental property to perform system evaluation by
means of high-level simulation in an early design stage [8] and
to provide a functional behavior model independent of the running
platform in order to transfer it to other vehicle product lines without
changes (”separation of concerns”) [9]. Consequently, to perform
system level simulation of EEA, there need to be a linkage of the
executable behavior specification to lower layer aspects [10] e.g., the
deployment of functions to ECUs and the utilized network protocol
between them or even ECU internal components.

Particularly, an ECU, sensor or actuator typically not only consist
of one or more micro-controllers or comparable processing units

executing some software functions but also hardware modules
containing electric circuits doing, for instance, input/output signal
conditioning for the processing units or actuators [11]. Its impact on
the specified abstract behavior within the ECU and even on subsequent
ECUs of the EEA therefore needs to be evaluated as early as possible
to detect possible behavioral deviations at system level. Moreover,
another very important part in an EEA is the wiring harness including
its ground network. Due to high currents of several components within
an EEA, they can induce a significant impact on voltage stability
e.g., voltage drops on supply pins of hardware components. Supply
voltages below a certain level may lead to several failures such
as malfunctioning and ECU resets [12]. This is especially critical
for safety-related ECUs. Therefore, the impact of several current
consumers and the wiring harness on conventional or supplying
connections also needs to be considered as early as possible in
terms of the EEA system simulation model. PREEvision, for instance,
provides capabilities to analyze the static current consumption of an
EEA but, due to its static ADL modeling nature, cannot consider
the dynamic current profile of components. Also the wiring harness
and its ground network are neglected during analysis. [5, Sec. 10.3]
Thus, the former and the latter can only be considered by additional
simulation capabilities.

A novel approach was proposed in [13] to address the mentioned
challenges by means of a cross-domain Ptolemy II [14] (PtII)
simulation model synthesis out of an EEA system-level model and
is described in more detail in Sec. III-A. However, ECU internal
components in terms of electric circuits and especially the wiring
harness between hardware components are not yet regarded. Against
this background, this paper delivers the following contributions:

1) Modeling extensions applied to the state-of-the-art EEA-ADL
regarding electric circuit refinement of logical signals specified
at the logical architecture layer as well as static and behaviorally
specified dynamic current consumers.

2) Automatic synthesis of a unified simulation model combining a
behavioral specification refined by ECU internal electric circuits
and especially wiring harness modeling refinements including
its ground network.

3) Discrete-event-based simulation of the electric circuits in a single
model by combining quantization-based integration methods
with SPICE [15] based circuit simulation.

4) Decoupling of the abstract behavior and the refinements by
using aspect-oriented simulation.

5) Preliminary experiments demonstrating simulation accuracy and
efficiency compared to other state-of-the-art tools and the proof-
of-concept of wiring harness impacts using a realistic vehicle
topology model.

Note that the electric circuit refined models are not intended to replace

doi: 10.1109/SysEng.2018.8544434 © 2018 IEEE

detailed small-signal circuit simulation with expert tools, but rather to
support EEA system-level evaluation at an early design stage by large-
signal behavior of circuits interwoven with behavioral specifications.

II. BACKGROUND

A. Quantized-State System Methods

In contrast to classical numerical integration solvers where time
is discretized, quantized-state system (QSS) methods quantize the
state trajectory. Regarding an ordinary differential equation (ODE)
system ẋ(t) = f(x(t), u(t), t) where x(t) is the state vector and
u(t) a known input vector. Classical variable step-size solvers like
Runge-Kutta determine sample times at which the sample values are
computed for all states in the model [16].

The first-order QSS method [17] approximates the ODE equation
with the quantized state vector q(t) resulting in ẋ(t) = f(q(t), u(t), t).
A so called hysteretic quantization function connects each quantized
state variable qi(t) and its corresponding state variable xi(t) by

qi(t) =

{
xi(t) if

∣∣xi(t)− qi(t−)
∣∣ ≥ ∆Qi,

qi(t
−) otherwise.

(1)

where ∆Qi is called quantum. This means that qi(t) only changes
its value when it differs from xi(t) by more than the quantum and
immediately after the change qi(t) = xi(t) applies. From Eq. (1)
it follows that q(t) is piecewise constant and assuming that u(t) is
also piecewise constant it follows that x(t) follows piecewise linear
trajectories [17]. This shows an important advantage compared to
classical time-step solvers in that each qi is updated individually
and asynchronously at different instants of time dependent on their
specified quantum and the speed of crossing it. Since x(t) is piecewise
linear, the time instants at which the quantum is reached can be
computed analytically without iterations. Therefore QSS methods are
particularly suited to efficiently simulate across discontinuities [16].

Second- and third-order QSS methods (QSS2 [18] and QSS3
[19]) share the same properties and advantages of QSS1 but exhibit
quantized states following piecewise linear and piecewise quadratic
trajectories respectively. They offer better accuracy without signif-
icantly increasing the number of quantization events. Because the
QSS methods can rarely handle stiff systems (simultaneous slow and
fast dynamics), the QSS family was extended by Linear Implicit QSS
methods (LIQSS1-3) [20] since QSS1-QSS3 methods exhibit high
frequency oscillations with most stiff systems. Another important
property of QSS methods is their easy integration into discrete-event
(DE) simulation engines, where changes of the quantized states are
represented by a sequence of discrete events thus enabling hybrid
simulation of continuous dynamics and DE behavior in a single model.
In a DE model a QSS is split into n so called static functions and n
quantized integrators for each quantized state and optionally m event
sources which represent the input vector u(t) [16]. Within higher-order
QSS methods the events do not carry the actual value only but also
the slope (QSS2) and the second derivative (QSS3) of the current
trajectory segment.

B. Modeling and Simulation with Ptolemy II

PtII is an open-source modeling and simulation framework for
heterogeneous embedded systems with focus on concurrent com-
ponents as well as the deterministic use and composition of het-
erogeneous Models of Computation (MoC). PtII follows an actor-
oriented approach. Actors are components that execute concurrently
and communicate with each other via ports. They can be atomic or
composite. Atomic actors cannot be refined whereas composites enable
hierarchical nesting of actors. The semantics for the execution of and

communication between actors is governed by a specific MoC. The
MoC within the model of a composite actor is realized by a component
called Director. Distinct directors can be composed hierarchically in
a single model at each level of the hierarchy. There are a variety of
MoCs supported by PtII including DE, which is especially suitable
to model complex and large-scale discrete systems like hardware
architectures or communication networks. The DE MoC in PtII
supports a sound semantics incorporating a deterministic model of time
called superdense time. Besides DE, there exist several other MoCs
like continuous time, various data flow MoCs for signal processing
and finite state machines. A concrete syntax to represent models in
PtII is the XML-based MoML (Modeling Mark-up Language) and
can be edited in the GUI Vergil. [21]

Recently, QSS methods were integrated into PtII realized by several
components [22]: (1) a QSS Director is an extended version of the
DE Director ensuring the correct processing of events in time stamp
order and provides default parameters for all QSS Integrators. (2) QSS
Integrators realize the quantized integrators as described in Sec. II-A
and provide parameters e.g., for setting the QSS solver or quanta
individually. (3) a special token called Smooth Token is introduced,
which is an extended version of a primitive double valued token. It is
a discrete event that can carry not only the actual real value, but also
one or more (currently up to three) derivative values. Thus, piecewise
smooth signals like piecewise linear or quadratic trajectories can be
exchanged between actors that can either use the real value only or
also the derivative values. This is a prerequisite for higher-order QSS
integrators and actors that serve as static functions (see Sec. II-A).
Downstream actors that receive smooth tokens but require a value
between two consecutive smooth token events - which indicate a
significant change in the piecewise smooth signal - extrapolate the
latest smooth token to the current time using its derivatives. Currently
QSS1-QSS3 methods are supported by PtII but are still experimental.

III. AUTOMATED EEA SIMULATION MODEL SYNTHESIS

In this section we first give a brief introduction to the already
developed baseline methodology [13] shown in Fig. 1. Afterward, we
present in detail the modeling extensions applied to the EEA-ADL to
extend the baseline approach by refined electric circuit simulation in
a DE manner streamlined with the specified behavior.

A. Cross-Domain Simulation Synthesis: Baseline Methodology

The starting point for cross-domain simulation of model-based EEA
is a data model, which captures all relevant information about an EEA.
To handle the complexity of such architectures, this is done in a model-
based fashion e.g., with sophisticated EEA architecture description
languages like the EEA-ADL which is realized in the architecture
design and analysis tool PREEvision. In PREEvision the EEA is
split into seven abstraction layers (without the green extensions) each
having its own viewpoint covering a specific engineering domain as
shown in Fig. 1. They stretch from the requirements specification,
over the functional network (Logical Architecture (LA)), the System
Software Architecture and the Hardware Topology of ECUs and buses
down to detailed models of ECU internal Electric Circuits (EC),
Wiring Harness (WH) artifacts such as wires and splices as well
as geometrical Topology information like installation locations and
branch-offs. Cross-layer mappings establish a seamless traceability
across all layers. The main idea proposed in [13] is to use the already
available EEA data model information in order to synthesize an
integrated, unified and executable high-level simulation model which is
capable of linking the functional network specified at the LA layer with
lower level implementation details e.g., the network communication

E/E-Model Interpreter

System Software Architecture

Requirements and Customer Features

Ptolemy II Cross-Layer Simulation Model

XML

Extracted E/E
Model Meta-Info

Behavioral Logical Architecture Simulation

Aspect-Oriented Domain-Specific Simulation

PtII Actor Lib

Model-Based E/E-ADL: EEA Data-Model

E/E Metrics,
Benchmarks,
Visualising, ...

Function Network,
Signals & Routing

Behavioral Spec.

Electrical Properties
(circuits, wire res., …)

Hardware Network
(busses, frames, …)

Physical Properties
(wire lengths, …)

Simulation
Results

Iterative
Optimization

Synthesis

Mappings

Baseline Extensions

Generic Simulation
Model Builder

Topology

Behavioral Logical Architecture

Component Architecture &
Hardware Network Topology

Electrical Circuit

Wiring Harness

Logical Architecture

M
ap

pi
ng

s

Sy
nt

he
sis

Model-Based E/E-ADL: Runtime Environment

Fig. 1: Overview of the baseline methodology for cross-domain EEA
simulation model synthesis [13]

of the underlying hardware topology and execution time of functions.
The necessary extensions made to achieve this are shown in Fig. 1.

Because of the lack of support of existing ADLs and tools, including
PREEvision, for modeling executable behavior integrated within the
EEA system model, a new layer called Behavioral Logical Architecture
(BLA) was introduced that refines the static logical blocks (what the
system does) with detailed behavior (how the abstract functions work)
by reusing actors from the PtII Actor Library. The latter is imported as
a separate logical block type library into PREEvision where the types
are used to instantiate actors at the BLA layer. Additional mappings
of LA atomic logical functions to BLA building blocks containing the
actors as well as between their port prototypes are introduced. The
latter enable automatic connection of the BLA top-level blocks thus
their connections need not be modeled. In combination with mappings
from the LA layer to lower layers they provide the connection of the
behavioral blocks of the BLA to domain-specific information at lower
layers enabling the early stage cross-domain simulation.

The E/E-Model Interpreter extracts all necessary information from
the relevant layers of the underlying EEA data model including the
mappings as well as signal routing information. It serves as a front-end
to interpret the underlying EEA data model and stores the meta-info
belonging to the functional network in an internal database. The
Generic Simulation Model Builder serves as a back-end, it maps
EEA meta-model artifacts to the PtII meta-model and synthesizes
the unified cross-domain simulation model in terms of a PtII MoML
description using the specified LA/BLA behavioral network and the
extracted meta-info. Note that due to the layered approach, the target
behavioral model is not limited to PtII but can be extended to another
target language like MATLAB/Simulink by importing its library and
implementing an appropriate back-end. The synthesized PtII Cross-
Domain Simulation Model can either be conducted within PREEvision
or externally by means of the generated MoML file and is twofold:
(1) it contains the behavioral simulation specified at the BLA layer
and (2) it performs the aforementioned lower layer domain-specific
and non-functional simulation. The latter simulations are performed
in an aspect-oriented way along with the behavioral simulation. More
details can be found in [13].

B. Modeling Extensions for EC- and WH-Aware Simulation

In the baseline approach, executable behavior is fully specified at
the BLA layer by means of the PtII actors. ECU internal components

Power
Supply

Building Block

Logical Sense
Logical

Actuation

Building BlockBuilding Block

Actuator
HW-

Module

ECU

HW-Module
µC

Actuator

Sensor
HW-

Module

Ground
Point

Ground
Point

Reference GND = 0V

isCurrentConsumer
max: 2A

HW-
Module

BLA

EC

LA Interface
DataElement1 :
Electrical Current [A]

Current
Source

Voltage
Source

Current Sink

Analog Port Instance Mapping

Block Instance Mapping

Internal Schematic Pin & -Connection

Schematic Ground Connection

Schematic Conventional Connection

V

t

I

t

Zs

),,,,(TfAlfRtotwire

R

Schematic Power Distr. Connection

HW-
Module

Interface
DataElement1 :
Electrical Voltage [V]

Logical
Function

I

t

HW-
Module

Zs
Zs

BLA controlled
Current Sink

Fig. 2: EEA modeling extensions for electric circuit refined simulation
model synthesis

at the EC layer and wiring harness artifacts at the WH layer were
not yet regarded during synthesis. An example EC layer is shown
in Fig. 2. There, a simple voltage divider before the input pin of
a micro-controller (where behavior is mapped to) and a half-way
rectifier after an output pin are shown. In the following we refer to
these components as internal HW components. To identify which
signals of a LA logical function i.e., BLA building block actors, shall
include electric circuits we introduce two EEA modeling extensions:
(1) special LA port interface data types and (2) a new set of cross-layer
port mappings.

1) Logical Port Interface Data Types: A logical port instantiates a
port prototype and is attached to an interface containing data elements.
Data elements are the actual information sent by the logical ports via
signals. Here we specify that a port having exactly one data element
either of type Electrical Voltage or Electrical Current is identified
as an analog port. An actor output at the BLA layer thus is either
interpreted as a voltage or current source during synthesis respectively.
This is illustrated at the top of Fig. 2.

2) Analog Port Mappings: Each logical function is typically
mapped to exactly one internal HW component, which abstracts
the functional behavior by a BLA building block. Individual logical
ports can now serve as an actor-oriented electrical source stimulating
connected successor electrical circuits or can serve as an electrical
sink e.g., if no electric circuits are modeled in a receiving hardware
module. The profile of the latter is then specified by a behavioral
actor network (cf. the Actuator at the bottom in Fig 2). To identify
which intermediate electrical circuits need to be considered between
a logical sender port and one or more connected logical receiving
ports, a source and a destination pin have to be specified at the EC
layer serving as start and end point of the electric circuit parsing

during synthesis. This is necessary, since a processing unit provides
several pins and in case the logical function is mapped to more than
one internal HW component. The mapping is - similar to the port
mappings between LA and BLA layer - accomplished via Analog
Port Mappings between exactly one logical port instance and exactly
one corresponding Internal Schematic Pin. Mapped pins between
two logical functions can be spread across ECUs. The mappings are
illustrated by the dotted blue lines in Fig. 2.

3) Current Sinks: As mentioned, a logical receiver port can serve
as an electrical sink. Two types of sinks are introduced: static and
dynamic current consumers. At the EC layer there already exists
an attribute called isCurrentConsumer annotated on each schematic
pin of a HW component like ECU or actuator. It provides three
parameters Minimum, Maximum and Typical to model a static current
consumer. Besides the analog port mapping we reuse this attribute
as a necessary modeling requirement to identify a logical receiver
port as a current consumer, if the corresponding schematic pin is
connected to the mapped analog internal schematic pin. At the same
time, a set isCurrentConsumer attribute signals an end point in the
electric circuit parsing. In this way, we can include further HW
components which are either not fully modeled with internal devices
to achieve a valid circuit or do not have a corresponding mapped
logical function along the path. The isCurrentConsumer attribute
modeling is illustrated by the top text box at the Actuator in Fig. 2.
To distinguish a dynamic BLA controlled current sink from a static
one, a logical receiver port at the LA layer has - besides the internal
schematic pin mapping - an additional analog port mapping to a
logical sender port of the corresponding mapped BLA building block
(cf. Fig. 2). This is necessary since PtII follows an actor-oriented
approach where each event or token has to be communicated via an
output port to its receivers. The BLA building block serving as a
dynamic current consumer can specify an arbitrary current profile
by its internal actor network. The dynamic current consumer case is
illustrated by the Actuator and text box at the bottom of Fig. 2.

4) Wiring Harness: So far, we have regarded the internal HW
components’ electrical circuits as refinement of the abstract behavior
and neglected the Conventional Connections and Power Distribution
Connections between them as well as their Ground Connections. At
the EC layer they are abstracted through plain connections. However,
at the WH layer they are represented by a set of wires, splices, wiring
harness connectors etc. and the schematic pins are refined by wire and
header pins. This is shown by the example of a ground connection in
Fig. 2. As introduced in Sec. I the voltage stability at supply pins of
ECUs influenced by the wiring harness is very critical. In the EEA
model each wire has a specific wire type which offers electrical and
physical properties like the specific resistance ρ and cross-section A.
Via cross-layer mappings to the topology, the total length ltot of a
wire is obtained which consists of several Topology Segments each
having an individual length. If this information is available along the
path between electric circuit refined logical functions, wire resistances
are calculated with the formula Rtot

wire = ρ ltot
A

and included in the
netlist.

The circuits as well as the current consumers discussed so far were
assumed to have a ground reference equals to 0V . However, HW
components have ground connections to a specific Ground Point in
the chassis of the vehicle body and therefore cause additional voltage
drops until the reference ground of the power supplying component
is reached. This can cause, for instance, undesired DC offsets in
the signals of the modeled electric circuits which could significantly
influence the overall circuit behavior. For these reasons, we include
the ground network in our electric circuit simulations to enable this

E/E-Model Interpreter

Electrical Properties

Physical Properties

Mappings

Behavioral Spec.

Interpreted EEA
Model

XML

SPICE
Builder

Generic Sim. Model Builder

EC
Builder

Beh. Model
Builder

SPICE
Builder

EC Aspect Config
EC Netlist

N
e

tl
is

t
F

il
e

Beh. LA Config

PtII MoML
Builder

SPICE Aspect

CompositeComposite
Generated

Current Sink
Dummy

LA Behavioral Simulation

Composite

Source 1
Source n

Active Load

QSS
Director

DE
Director

Ptolemy II Cross-Domain
Simulation Model

Capacitor QSS Integrators

∫i iC
1

Inductor QSS Integrators
+
-i

iL

1∫i

QSS-based SPICE Actor

Param: <SPICE Netlist File>

Sources &
Active Loads

Output Nodes &
Device Currents

I(Ci)
L+

i

L-
i

VCi

ILi

Fig. 3: Electric circuit aspect synthesis

analysis as early as possible. For the sake of simplicity, only the
power supply connection to the sensor is shown. However, in order
to get a valid circuit, each HW component must have a connection
to a supplying component. Otherwise, the ground network cannot be
considered. Note that a wire actually exhibits a frequency dependent
wire impedance ZS rather than a resistance only. In future work
we plan to provide further generic modeling extensions to support
wire impedance at least for supplying connections, since several
simplifications can be made concerning frequency dependency and
the RLC wire model without a significant accuracy loss [12].

C. Aspect-Oriented Electric Circuit Synthesis

The foundations of the EC synthesis are the components E/E-Model
Interpreter, the Generic Simulation Model Builder and the aspect-
oriented approach of the baseline methodology. In Fig. 3 the further
realized components are shown. In the baseline approach, aspects
are also used to refine behavior via so called communication aspects.
A token arriving at a receiving port which is decorated with such
an aspect is rerouted to a sub-model which processes/delays these
tokens and finally sends them back to the originating rerouted receiver
port. The structure of the behavioral model is not touched. The same
approach is used for electric circuit simulation, where tokens from
analog ports are rerouted to a composite aspect performing the electric
circuit simulation. The rerouting is illustrated by the circles around
the analog receiving ports in Fig. 3.

1) E/E-Model Interpreter: The E/E-Model Interpreter aggregates
the behavior specified at the BLA layer with the introduced modeling
extensions from the EC, WH and Topology layer to synthesize the PtII
model. It fulfills three main tasks: (1) Parsing the modeled electric
circuits as well as its connecting wiring harness and generating an
EC netlist; (2) generating a BLA configuration data structure used to
synthesize the behavioral simulation decorated with the electric circuit
aspect refinement and (3) generating a EC Aspect configuration data
structure used to synthesize the electric circuit aspect itself. To include
the ground network into the EC netlist, the following methodology is
applied: For each external ground schematic pin of a HW component,
the shortest path over Ground Point components and its connecting
ground wires is traced back until its energy source (cf. Fig. 2). The
latter is assumed to be the reference ground of 0V .

2) Generic Simulation Model Builder: The behavioral simulation
model is synthesized directly as modeled at the BLA layer by
the engineer. This is shown in Fig. 3 where each PtII composite
corresponds to a BLA building block. To increase productivity and the
reuse of BLA building blocks, analog sender ports which should serve
as dynamic current consumers and its corresponding receiving BLA

building blocks are generated automatically based on the provided
configuration data (cf. Fig. 3). The top-level director of the PtII model
is DE, since the used aspects rely on timed events. Consequently, the
user is responsible for modeling a sufficiently high sampled signal
or a sequence of smooth tokens specifying piecewise smooth signals
at analog output ports in order to achieve accurate input signals
to the electric circuit aspect simulations. The electric circuit aspect
is synthesized by means of the generated EC netlist and the EC
Aspect configuration data. The EC Builder shown in Fig. 3 provides
generic interfaces to build a specific electric circuit netlist. In this
work, we implemented a SPICE [15] netlist builder which outputs a
SPICE-based netlist file used by the behavioral model builder finally
generating the SPICE aspect. The latter is illustrated together with its
main components in Fig. 3 and is outlined in the following.

3) SPICE Aspect: The key components of this composite aspect are
the QSS-based SPICE Actor, composites containing QSS Integrators
for capacitors and inductors as stored in the EC Aspect configuration
and the QSS Director governing the DE-based SPICE simulation of
the EC netlist. The basic simulation principle is to perform a transient
analysis of the EC netlist stimulated by the voltage/current sources
and current sinks as modeled in the composites. Every time an event
is sent to the aspect or an event is received by the QSS integrators,
the QSS-based SPICE actor calculates a single transient analysis step
by solving the DC operating point (DCOP) of the EC netlist until the
SPICE engine converges i.e., the results of two successive DCOPs
deviate by less than a parametrizable tolerance.

a) QSS-based SPICE Actor: The SPICE engine used for the
new actor is JSpice [23], an extensible SPICE-based circuit simulator
implemented in Java and focusing on rapid prototyping by using simple
linear companion models of non-linear circuit devices like MOSFETs
and diodes. The fact that the simulator is implemented in Java enables
the easy integration of circuit simulation into PtII as a separate actor
with only slight changes to the engine’s interface and without the need
to perform co-simulation with external tools. The main parameter
of the actor is the SPICE Netlist File to be simulated as shown in
Fig. 3. The circuit system equation formulation of JSpice is based
on the Modified Nodal Analysis (MNA), the commonly used method
in many circuit simulators. Each circuit device’s contribution to the
MNA called stamp is done after [24]. Dependent on the parametrized
QSS solver, smooth tokens with no derivative (QSS1) up to the second
derivative (QSS3) are produced at the node voltage/device current
outputs of the actor.

b) QSS Integrators: In transient analysis, capacitors and induc-
tors are typically piecewise linearized around a DCOP through an
equivalent voltage and current source with an equivalent series and
parallel resistance respectively. The equivalent circuit and its values
are obtained by classical time-discretized numerical integration of
their I − V relationship. For this reason, the system matrix stamps
of the equivalent linear elements depend on the current time-step
of the applied time-discretized numerical solver [24]. To eliminate
the time-step dependency, we extract the frequency dependent parts
IC(t) = C dVC(t)

dt
and VL(t) = L dIL(t)

dt
of the MNA equation and

solve them by QSS integrators individually. This approach has several
advantages: only a frequency independent linear equation system is to
be solved by the SPICE actor every time a source or QSS integrator
generates an event. Thus there is no need to have knowledge about
the present signal frequencies in the model, but the SPICE actor is
triggered asynchronously in a DE manner. Finally, a distinct director
for solving algebraic loops as proposed in [22] is not necessary, since
they are implicitly broken by the SPICE actor by only producing an
event if the DCOP is converged.

IV. EXPERIMENTAL SIMULATION RESULTS

This section presents and discusses the simulation results obtained
by our approach. Two scenarios are pursued: (1) evaluation of the
accuracy and run-time efficiency of the automatically synthesized
model by simulating a buck converter, a DC/DC voltage switching
circuit converting an input DC voltage to a lower one; (2) simulation of
electric circuit refined behavior regarding wiring harness and current
consumers. All experiments were conducted on a 64 bit Windows 8.1
machine running an Intel Core i5-4300U at 2.49GHz and providing
12GB RAM and a SSD hard drive.

A. Benchmark Setup

Regarding the evaluation of the accuracy and run-time performance,
the buck converter circuit simulation is compared to several state-
of-the-art tools namely MATLAB/Simscape Power Systems R2015b
[25], PowerDEVS [26] and LTSpice [27]. MATLAB Simscape Power
Systems is widely used in industry for modeling and simulation
of control systems and electrical power systems using sophisticated
classical ODE solvers; PowerDEVS is a tool focusing on hybrid system
simulation of power systems implementing the complete family of
QSS solvers; LTSpice is a SPICE derivative with focus on power
switching regulators like DC/DC converters.

Concerning MATLAB and PowerDEVS we reused their buck
converter demo example and adapted them to meet our applied
parameters. For LTSpice, we used our generated SPICE netlist
and adapted it by simply searching and replacing the QSS related
voltage/current sources with corresponding capacitors and inductors.
To evaluate the accuracy we simulated two reference trajectories of
the capacitor and inductor state variables using the MATLAB ode23tb
solver and the PowerDEVS LIQSS3 solver with a tight relative error
tolerance of 1e−9. The simulated trajectories exhibited unequally
spaced sample points where the LIQSS3 solution produced about
55000 points and the MATLAB solution about 11800 points. In
order to calculate the error between the two reference trajectories, we
linearly interpolated the MATLAB trajectories and compared them at
the time points chosen for LIQSS3 trajectories. Since the resulting
relative errors between the reference trajectories were in the order of
10−5 and 10−6 for the inductor and capacitor respectively, we only
report the error of the remaining solutions compared to the LIQSS3
solution. For all buck converter simulations we applied the following
parameters: (1) QSS3 was used for all QSS integrators in PowerDEVS
and PtII. (2) The relative error tolerance as well as the absolute and
relative quanta ∆Qi related to QSS solutions are set to 1e−3. (3) A
simulation time of 0.01s is conducted and the simulation run-time
is reported while suppressing all plots and outputs. (4) The mean
absolute error and the relative error compared to the reference are
reported by the following formulas:

MAE =
1

|ts|

|ts|∑
i=1

abs
(
yrefi − ysimi

)
and

NMAE =
MAE

mean (abs (yref))

(2)

B. Buck Converter

In order to simulate switched circuits, we added models for both
externally (voltage-controlled) and internally controlled switches into
JSpice by implementing the models proposed in [28]. The latter
provide better run-times in the order of one magnitude compared
to conventional SPICE switch models. For both types of switches,
a switch is represented by a resistor RS with a low value RON or
high value ROFF depending on its state. Diodes are implemented

VCC=24V
C=100µF

L=100µH

D RL=1Ω

S

Fig. 4: Buck converter circuit

TABLE I: Additional buck converter circuit parameters

Parameter Value

RDiode
ON = RSwitch

ON 10e−6Ω
RDiode

OFF = RSwitch
OFF 10e6Ω

Switching Frequency 10kHz
V Switch
ctrl 1V

V Switch
thres 0.5V

as internal switches according to [29]. The circuit’s schematic and
device values are shown in Fig. 4. Further applied parameters are
summarized in Tab. I. Power switching circuits exhibit high frequency
discontinuities as well as stiff system properties and thus are a good
choice to benchmark the QSS performance [29], [30]. The DC voltage
source and the switch control signal were modeled according to
Sec. III-B in a BLA building block with two analog ports spread over
two internal HW components and a BLA block receiving the output
voltage with its HW counterpart within one ECU.

The relative error of the inductor current is plotted in Fig. 5. Tab. II
compares results obtained with the different tools and the run-time
necessary to simulate them. Regarding the LTSpice solution one
can observe that the error of the capacitor trajectory significantly
deviates from the other solutions, while the inductor trajectory is
acceptable. PowerDEVS provides the best accuracy with one order of
magnitude less than all other solutions coming at the cost of a higher
run-time. Despite we can observe a few outliers in the relative error
of the inductor current of our synthesized model, overall it meets the
specified relative quantum of 10−3 though, having a mean relative
error one order of magnitude below the specified quantum like the
MATLAB and LTSpice solution. Especially in the beginning, their
errors reach its maximum due to the high current gradient. However,
for rapid prototyping purposes at system level, our resulting error is
still acceptable while simulation performance is enhanced.

Considering the comparison of the run-time performance we report
two types of simulation run-time for our approach: SPICE simulation
with and without aspect. The latter means that the analog composite,
SPICE actor and QSS integrators are directly governed by a QSS
Director and located at the same hierarchy level without rerouting to
an aspect composite. This provides a fairer comparison to the other
tools, since they do not offer an aspect mechanism. Though we also

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time [s]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
10-3

Relative Inductor Current Error, Q=10-3

Fig. 5: Relative error of the inductor trajectory of the synthesized
buck converter

Reference GND = 0V

Ground
Point

ADAS
Generator

HW-
Module isCurrentConsumer

max: 10A

EPS
HW-

Module

Bat_Gnd_Wire_EPS_2 Bat_Gnd_Wire_EPS_2 Gnd_Wire_EPS_2 Gnd_Wire_EPS_1

EPS_Supply_Wire_1 EPS_Supply_Wire_2

ADAS_Supply
_Wire Splice

Logical Energy
Source

Logical EPS

Building Block

V

t

Building Block 2

I

t

BLA controlled
Current Sink

Wiring Harness
Layer

Fig. 6: Wiring harness and dynamic current consumer setup of an
EPS actuator network

compare the aspect solution, since it is an essential part of our work.
An interesting result is that the MATLAB and PowerDEVS solutions
perform nearly equally fast, despite PowerDEVS uses a QSS3 solver.
This can be explained by the fact that QSS3 actually is an explicit
non-stiff solver while the buck converter exhibits stiff properties,
where LIQSS methods would perform much more efficiently [29].
However, even without LIQSS our synthesized PtII model performs
faster than MATLAB and PowerDEVS by a factor of 2.0 without
SPICE aspect and about 1.19 and 1.17 respectively with SPICE aspect
while preserving accuracy. This shows the efficiency of our QSS- and
SPICE-based approach by means of the asynchronous calculation of
the SPICE circuit while embedding the static functions of the QSS
integrators into it. This significantly reduces the number of actors and
therefore event traffic between actors and the coordinating director.
The aspect reduces performance, since it infers additional rerouting
overhead but increases modularity and reuse by separation of concerns.

C. Wiring Harness and Current Consumers

Given the correct and accurate simulation of our synthesized electric
circuit refined model shown in Sec. IV-B, we want to demonstrate the
correct simulation of wiring harness parts as well as static and dynamic
BLA controlled current consumers. The considered EEA model is
shown in Fig. 6. It models an Electric Power Steering (EPS) actuator
supplied over a conventional 12V generator assuming an internal
resistance of 1mΩ. Both are connected to the same ground point. At
the LA layer, two logical functions are modeled which are mapped to
their corresponding HW counterparts. Here, the Logical EPS consumes
a specific current profile which is deposited and realized within the
EPS Current Profile building block at the BLA layer. Similarly, the
generator is modeled as a constant supply voltage of 12V . Analog
port mappings are performed according to Sec. III-B. In addition, at
the EC layer the wiring harness refinements with the represented wire
names of the conventional and ground connections are shown. The
ADAS ECU is modeled as a static current consumer sinking 10A and
not mapped to a logical function. For the sake of simplicity, all wires
are assigned to the same wire type AWG4 (American Wire Gauge).

The described model is embedded into a complete demo EEA model
within PREEvision, which provides a realistic vehicle topology model
to which the hardware and wiring harness artifacts are mapped. Since
the topology layer model is large and complex, it is not shown in Fig. 6
for space reasons. After mapping our EPS sub-model extensions to

TABLE II: Simulation results comparison of the buck converter circuit

Integration Method MAE NMAE Simulation run-time [ms]
V(C) [V] I(L) [A] V(C) I(L)

PtII QSS3 (∆Qi = 10−3) 5.55e−3 4.51e−3 4.69e−4 3.75e−4 211 (w/o SPICE aspect)
5.55e−3 4.51e−3 4.69e−4 3.75e−4 355 (with SPICE aspect)

PowerDEVS QSS3 (∆Qi = 10−3) 4.45e−4 6.64e−4 3.77e−5 5.61e−5 416
MATLAB ode23tb (rel. tol. = 10−3) 3.69e−3 4.07e−3 3.15e−4 3.42e−4 422
LTSpice mod. trap. (rel. tol. = 10−3) 8.46e−3 2.95e−3 7.13e−4 2.47e−4 205

0 1 2 3 4 5 6 7 8 9 10 11
Time [s]

0
20
40
60
80

100
120
140
160
180
200

C
ur

re
nt

 [A
]

EPS_Supply_Wire_1
EPS_Supply_Wire_2
ADAS_Supply_Wire
Gnd_Wire_EPS_1

Fig. 7: Currents through EPS supply and ground wires

0 2 4 6 8 10 12
Time [s]

11.65

11.7

11.75

11.8

11.85

11.9

11.95

12

E
P

S
 S

up
pl

y
P

in
 V

ol
ta

ge
 [V

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
E

P
S

 G
nd

 P
in

 V
ol

ta
ge

 [V
]

EPS_Supply_Pin
EPS_Gnd_Pin

Fig. 8: Voltage at the EPS supply pin resulting from generator and
wire voltage drops and at the EPS ground pin

the topology layer, the Wiring Harness Router of PREEvision [5, Sec.
10.4] was used to obtain the shortest wire paths and thus realistic wire
lengths for our simulation synthesis. The obtained wire resistances lie
in the range of several hundred µΩ. Wire and connector pin resistances
are neglected but can also be incorporated during synthesis from the
EEA model. The simulation results of the synthesized model are
shown in Fig. 7 and Fig. 8. The current through EPS Supply Wire 2
represents the EPS current profile as specified at the BLA layer.
Among others, the profile is gathered from an EPS specification
document regarding the vehicle power network and is based on real-
world driving maneuvers and measurements of a German OEM. The
profile represents a parking scenario. This raised a requirement of a
max. current of 185A. ADAS Supply Wire illustrates the correctly
synthesized static current consumption of 10A of the ADAS ECU
related to reference ground 0V (since no ground network is modeled).
Fig. 8 shows the voltage drops caused by the wiring harness at the
EPS supply pin and the voltage at the ground pin. For the applied
wire type AWG4 (A = 21.15mm2) and since the signal frequency
is below 11Hz, a RDC wire model is appropriate according to [12]
without a significant accuracy loss.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a set of modeling extensions applied
to the state-of-the-art EEA-ADL and its EEA design and analysis

tool PREEvision. They connect abstract behavioral blocks mapped
to ECUs or similar hardware components with internal electric
circuits. Especially, a unique feature is the consideration of wiring
harness modeling refinements between ECUs including their ground
network as well as static and dynamic current consumers. The
presented modeling extension concepts can be transferred to other
EEA ADLs provided that they offer a comparable level of detail for the
necessary electrical and physical properties such as hardware devices,
wiring harness, wire or pin resistances. The synthesized simulation
is capable of performing DE-based hybrid simulation of abstract
behavior specified at the logical layer enhanced by the hardware
layer details. Preliminary experiments show that for simple examples
the novel combination of QSS methods and the QSS-based SPICE
actor performs up to a factor of 2.0 faster than comparable tools
like MATLAB and PowerDEVS while preserving accuracy. Even
with rerouting overhead induced by aspects it performs about 16%
and 15% faster respectively while offering separation of concerns.
LTSpice performs slightly faster than our approach without aspects
which can be explained by its highly optimized solver for power
switching circuits. However, it is limited to circuit simulation and
does not offer integration into system-level modeling with aspect-
oriented decoupling like in our approach. Nevertheless, the generated
SPICE netlist additionally increases reuse and modularity since it can
be exchanged with any SPICE compatible circuit simulator with only
slight adaptations as done with LTSpice. Furthermore, an EC Builder
software component offers abstract interfaces to implement other EC
target simulation models which could be investigated.

Finally, an example logical and hardware network of an EPS
actuator, applied to a realistic vehicle topology model, demonstrated
the consideration of the wiring harness and current consumers. Its
impact in terms of voltage drops on supplying ECU pins and voltages
at ground pins as well as currents through individual wires was
shown, which is important for voltage stability and wire dimensioning
analysis respectively. Of course the power distribution within a real
EEA is much more complex containing e.g., fuse-relay-boxes and
further power conditioning and balancing components. However,
the simulations demonstrated the proof-of-concept of the basic
functionality to include the wiring harness and arbitrary current
consumers. More complex models can be incorporated and evaluated
based on this foundation.

Future work includes the implementation of LIQSS3 methods to
increase simulation efficiency and stability for more stiff systems,
modeling extensions to consider wire impedance, and the evaluation
of more complex EEA models regarding scalability and simulation
efficiency.

VI. RELATED WORK

A review of system modeling tools can be found in [8]. The
tool System Desk from dSpace can model software architectures and
functional networks. Simulation and verification of functions and
component diagrams has to be performed offline and it does not

offer linkage to lower layer EEA artifacts. Volcano Vehicle Systems
Architect from Mentor is similar to PREEvision and offers design
and management of hardware and software systems according to
AUTOSAR and EAST-ADL and provides cross-layer artifacts mapping
capabilities. However, requirements and lower layers such as the
wiring harness or topology are not captured and thus is not suitable
for our approach. In addition, functional behavior simulation has to
be exported to another external tool format. Rhapsody Designer from
IBM is a well-established tool to design UML-based system models
and provides simulation and code generation capabilities for activity
and state diagrams but only captures functional behavior.

Works dealing with simulation model synthesis from EAST-
ADL models are, for instance, [31]–[33]. In all approaches, the
FunctionalBehavior or HWComponentType blocks from the EAST-
ADL specification are referenced to externally deposited (outside
the EAST-ADL system model) simulation model counterparts and
are not embedded within the EEA model description. The target
simulation models are either SystemC-based or Simulink models
combined with Functional Mock-up Units (FMUs). The import of the
latter is also supported by PtII [22]. Particularly, the authors in [32]
leverage SystemC-AMS enabling analog/mixed-signal modeling and
simulation. Unfortunately, its capabilities cannot be fully exploited
since the EAST-ADL does not provide the level of detail to synthesize
hardware internal circuits and wiring harness details such as splices
or wire resistances. Moreover, SystemC-AMS does not incorporate
QSS solver methods compared to our approach. Further references
and more detailed descriptions of the mentioned works can be found
in [13].

Concerning systems engineering in actor-oriented models, the
work in [34] briefly reviews existing aspect-oriented approaches
and provides a detailed evaluation of various aspects applied to a
robotic swarm. It includes network fabrics, robot dynamics, abstract
CPU models, fault models and error handling, contract modeling and
logging aspects. Aspects for electric circuit simulation, especially
combined with QSS methods, are not mentioned. Our approach of
simulating electric circuits with QSS methods was inspired by Lee et
al. [22]. In our work, however, circuits are generated automatically
as SPICE netlist from naturally non-causal representations within the
EEA model and not in terms of an actor network. The encapsulation
in a composite aspect also differentiates our approach.

DE simulation of hybrid systems in general and electric circuits
specifically using QSS methods has been studied in recent works
such as [26], [29]. The authors in [30] generate DE models for the
tool PowerDEVS [26] from Modelica models. In [35] the authors
developed a stand-alone QSS solver from a Modelica language subset
called µ-Modelica significantly improving the run-time efficiency of
QSS simulations. However, the textual, equation-based µ-Modelica
modeling is neither applicable to EEA ADLs nor to our actor-oriented
behavioral specification.

REFERENCES

[1] C. Buckl et al., “The software car: Building ict architectures for future
electric vehicles,” in Electric Vehicle Conference (IEVC), 2012 IEEE
International, Mar. 2012, pp. 1–8.

[2] W. Stolz et al., “Domain control units - the solution for future e/e
architectures?” in SAE Technical Paper 2010-01-0686. SAE International,
Apr. 2010.

[3] EAST-ADL Association. (2016) East-adl domain model specification
v2.1.12. [online; http://www.east-adl.info/Specification, last accessed
19.07.2018].

[4] J. Matheis, “Abstraktionsebenenübergreifende Darstellung von
Elektrik/Elektronik-Architekturen in Kraftfahrzeugen zur Ableitung von
Sicherheitszielen nach ISO 26262.” Ph.D. dissertation, 2010.

[5] Vector Informatik GmbH, PREEvision Version 8.5 Manual, 2017.

[6] Mentor Graphics. (2018) Volcano vehicle systems architect. [online;
https://www.mentor.com/products/vnd/, last accessed 07.01.2018.

[7] AUTOSAR Consortium. (2018) Autosar 4.3 (automotive open system
architecture) specifications. [online; https://www.autosar.org, last accessed
07.01.2018].

[8] P. Waszecki et al., “How to engineer tool-chains for automotive e/e
architectures?” SIGBED Rev., vol. 10, no. 4, pp. 6–15, Dec. 2013.

[9] A. Sangiovanni-Vincentelli et al., “Embedded system design for automo-
tive applications,” Computer, vol. 40, no. 10, pp. 42–51, 2007.

[10] P. Derler et al., “Modeling cyber-physical systems,” Proceedings of the
IEEE (special issue on CPS), vol. 100, no. 1, pp. 13 – 28, Jan. 2012.

[11] H. Eki et al., Fail-operational EPS by distributed architecture. Wies-
baden: Springer Fachmedien Wiesbaden, 2014, pp. 421–441.

[12] R. Gehring et al., “Modeling of the automotive 14 v power net for
voltage stability analysis,” in 2009 IEEE Vehicle Power and Propulsion
Conference, Sep. 2009, pp. 71–77.

[13] H. Bucher et al., “An integrated approach enabling cross-domain
simulation of model-based e/e-architectures,” in SAE Technical Paper
2017-01-0006. SAE International, 2017.

[14] J. Eker et al., “Taming heterogeneity - the Ptolemy approach,” Proceed-
ings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[15] P. W. Tuinenga, SPICE: A Guide to Circuit Simulation and Analysis
Using PSpice. Prentice Hall, 1995.

[16] E. Kofman, “Discrete event simulation of hybrid systems,” SIAM Journal
on Scientific Computing, vol. 25, no. 5, pp. 1771–1797, 2004.

[17] E. Kofman et al., “Quantized-state systems: A devs approach for
continuous system simulation,” Trans. Soc. Comput. Simul. Int., vol. 18,
no. 3, pp. 123–132, Sep. 2001.

[18] E. Kofman, “A second-order approximation for devs simulation of
continuous systems,” Simulation, vol. 78, no. 2, pp. 76–89, 2002.

[19] ——, “A third order discrete event simulation method for continuous
system simulation,” Latin American Applied Research, vol. 36, no. 2, pp.
101–108, 2006.

[20] G. Migoni et al., “Linearly implicit quantization-based integration
methods for stiff ordinary differential equations,” Simulation Modelling
Practice and Theory, vol. 35, no. Supplement C, pp. 118 – 136, 2013.

[21] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation using
Ptolemy II. Ptolemy.org, 2014.

[22] E. A. Lee et al., “Modeling and simulating cyber-physical systems using
cyphysim,” in 2015 International Conference on Embedded Software,
Oct. 2015, pp. 115–124.

[23] T. Molter. (2017) Jspice. [online; https://github.com/knowm/jspice, last
accessed 02.01.2018].

[24] J. Vlach et al., Computer Methods for Circuit Analysis and Design,
2nd ed. Springer, 1993.

[25] Mathworks. (2015) Simscape power systems r2015b. [online; https://
www.mathworks.com/products/simpower.html, last accessed 04.01.2018].

[26] F. Bergero et al., “Powerdevs: a tool for hybrid system modeling and
real-time simulation,” SIMULATION, vol. 87, no. 1-2, pp. 113–132, 2011.

[27] Linear Technology. (2017) Ltspice xvii. [online; http://www.linear.com/
designtools/software/\#LTspice, last accessed 04.01.2018].

[28] V. Litovski et al., “Ideal switch model cuts simulation time,” IEEE
Circuits and Devices Magazine, vol. 22, no. 4, pp. 16–22, 2006.

[29] G. Migoni et al., “Quantization-based simulation of switched mode power
supplies,” SIMULATION, vol. 91, no. 4, pp. 320–336, 2015.

[30] X. Floros et al., “Automated simulation of modelica models with qss
methods - the discontinuous case -,” in 8th International Modelica
Conference, Mar. 2011, pp. 657–667.

[31] G. Weiss et al., “Approach for iterative validation of automotive embedded
systems,” in Models 2010 ACES-MB Workshop Proceedings, 2010, pp.
69–83.

[32] R. Weissnegger et al., “Simulation-based verification of automotive safety-
critical systems based on east-adl,” Procedia Computer Science, vol. 83,
pp. 245–252, 2016.

[33] R. Marinescu et al., “Analyzing industrial architectural models by
simulation and model-checking,” in Formal Techniques for Safety-Critical
Systems. Springer International Publishing, 2015, pp. 189–205.

[34] I. Akkaya et al., “Systems engineering for industrial cyber-physical
systems using aspects,” Proceedings of the IEEE, vol. 104, no. 5, pp.
997–1012, May 2016.

[35] J. Fernandez et al., “A stand-alone quantized state system solver for
continuous system simulation,” Simulation: Transactions of the Society
for Modeling and Simulation International, vol. 90, no. 7, pp. 782–799,
2014.

