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ON LEAP-FROG-CHEBYSHEV SCHEMES∗

MARLIS HOCHBRUCK† AND ANDREAS STURM†

Abstract. This paper is dedicated to the improvement of the efficiency of the leap-frog method
for second order differential equations. In numerous situations the strict CFL condition of the leap-
frog method is the main bottleneck that thwarts its performance. Based on Chebyshev polynomials
new methods have been constructed that exhibit a much weaker CFL condition than the leap-frog
method. However, these methods do not even approximately conserve the energy of the exact solution
which can result in a bad approximation quality.

In this paper we propose two remedies to this drawback. For linear problems we show by
using energy techniques that damping the Chebyshev polynomial leads to approximations which
approximately preserve a discrete energy norm over arbitrary long times. Moreover, with a completely
different approach based on generating functions, we propose to use special starting values that
considerably improve the stability. We show that the new schemes arising from these modifications
are of order two and can be modified to be of order four. These convergence results apply to
semilinear problems. Finally, we discuss the efficient implementation of the new schemes and give
generalizations to fully nonlinear equations.

Key words. time integration, Hamiltonian systems, wave equation, 2nd order ode, leap-frog
method, CFL condition, Chebyshev polynomials, stability analysis, error analysis, energy techniques,
generating functions
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1. Introduction. In this paper we are concerned with the second order differ-
ential equation

(1.1) q̈(t) = −Lq(t)− g
(
q(t)

)
, q(0) = q0, q̇(0) = q̇0,

with a symmetric and positive definite matrix L of large norm and a “nice” func-
tion g. Such equations are used to model a plurality of phenomena. Among others
Hamiltonian problems and (spatially discretized) wave-type problems are described
by (1.1).

The most natural approach to discretize (1.1) is to replace the second order time
derivative by a centered second-order difference quotient — the well-known leap-
frog (LF) scheme. Thanks to a variety of nice features such as symplecticity, time-
reversibility [8] and an easy implementation the LF scheme serves as the standard
time integrator for problems of the type (1.1).

However, its efficiency can be severely limited by the time step size restriction
(CFL condition) arising from the large norm of L. This forces a large number of
evaluations of the nonlinear function g. In many situation such an evaluation is
costly which renders the LF method prohibitively expensive.

The same issue arises for first order parabolic problems and explicit Runge–Kutta
(RK) methods. In this setting Runge–Kutta–Chebyshev (RKC) methods [10, 16, 17,
18] have been found a remedy. First order RKC methods are constructed by using a
scaled and shifted Chebyshev polynomial as stability function. This choice maximizes
the stability region and thus alleviates the CFL condition compared to standard RK
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methods. Based on this idea higher order methods and further extensions, as, e.g.,
the ROCK familiy [1, 2], have been proposed.

In [6, 12] the authors applied analogous ideas to the linear case (g ≡ 0) of (1.1)
and the LF method. In accordance with RKC schemes the resulting methods may
be called leap-frog-Chebyshev (LFC) schemes. Unfortunately, these schemes suffer
from stability problems. As numerical examples indicate they fail to reproduce the
stability behavior of the exact solution. This can result in an energy drift and poor
approximation quality.

The aim of this paper is to improve the LFC methods such that they generate
approximations with the correct stability behavior and a good approximation grade.
In fact, we propose the following two remedies to the aforementioned problem:

• Motivated by stabilized RKC methods [10, 16, 17, 18] we construct a damped
version of the Chebyshev polynomial. Using an energy technique we show
that this modified scheme nearly conserves a discrete energy and leads to
uniformly bounded approximations over arbitrary long times.

• We replace the standard starting values based on a Taylor expansion of the
exact solution by ones involving the Chebyshev polynomial and its derivative.
With this modification we show via a generating functions technique the
stability of the new scheme.

A main feature of the novel schemes emanating from these modifications is that their
CFL condition is alleviated by a factor p compared to the LF method, if p is the
degree of the Chebyshev polynomial.

Having these methods at hand, they can be combined, e.g., with the LF scheme
for g to integrate the semilinear problem (1.1). As we will show in the course of this
paper this multi rate method can be employed with an (approximately) p times larger
time step than the LF method. This renders the method considerably more efficient
than the LF scheme since it requires p times less evaluations of the nonlinearity g.

Our paper is organized as follows: In Section 2 we present a general two-step
time integration method for (1.1) which comprises among others the LF and the LFC
scheme. Section 3 is dedicated to linear problems. Here, we discuss the stability of
the general scheme for g ≡ 0. We derive conditions which guarantee the stability of
the scheme both in the standard and in the energy norm. Moreover, we construct
the special starting value mentioned above and prove the stability of the resulting
scheme. In Section 4 we present the error analysis. We show that the general scheme
is of order two and can be adapted to converge with fourth order. Then, in Section 5
we show that all required assumptions apply for the LFC methods. Subsequently, we
discuss in Section 6 the efficiency and the implementation of the LFC method and
also generalize it to fully nonlinear problems. We conclude our paper in Section 7
with numerical examples. In particular, we look at the problems of the LFC methods
in [6, 12] and show that our modifications overcome them.

2. A general class of two-step schemes. The LF scheme for the semilinear
problem (1.1) is given by

qn+1 − 2qn + qn−1 = −τ2Lqn − τ2g
(
qn
)
,(2.1a)

q0 = q0, q1 =
(
I− 1

2τ
2L
)
q0 − 1

2τ
2g
(
q0
)

+ τ q̇0,(2.1b)

where τ > 0 is the time step size and qn approximates the exact solution q(tn) at
time tn = nτ .

Our aim is to modify the “linear part” of the LF method such that the resulting
scheme remains stable for larger time step sizes than the standard LF method (2.1).
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For this purpose we use a polynomial P satisfying

(2.2) P (0) = 0, P ′(0) = 1,

and propose the scheme

qn+1 − 2qn + qn−1 = −P (τ2L)qn − τ2gn(2.3a)

q0 = q0, q1 =
(
I− 1

2P (τ2L)
)
q0 − 1

2τ
2g0 + τP ′(τ2L)q̇0,(2.3b)

where gn is a suitable approximation to g(q(tn)). The obvious choice is to use gn =
g(qn) but other choices are possible, e.g., filtered versions as in Gautschi-type methods

[8, 9]. For such methods one could set gn = P (τ2L)g
(
P̂ (τ2L)qn

)
with a suitable filter

function P̂ . Then, the scheme could be interpreted as a particular implementation of
Gautschi-type methods, where the trigonometric matrix functions are approximated
by special polynomials P and P̂ , respectively.

In this paper we examine the general scheme (2.3a)–(2.3b) with particular atten-
tion to the choice

(2.3c) P (z) = Pp(z) = 2− 2

Tp(νp)
Tp

(
νp −

z

αp

)
, αp = 2

T ′p(νp)

Tp(νp)
.

Here, Tp denotes the pth Chebyshev polynomial of first kind, so that Pp is a polynomial
of degree p ≥ 1, and νp ≥ 1 is a damping parameter whose choice will be discussed
later.

We note that (2.3c) is motivated by the construction of RKC methods [10, 16, 17,
18] and accordingly we name methods from the class (2.3a)–(2.3c) leap-frog-Chebyshev
schemes. In particular, we discuss in this paper the method with g ≡ 0 and the multi
rate case with gn = g(qn).

Let us remark that for p = 1 the LFC method (2.3a)–(2.3c) reduces to the stan-
dard LF method, i.e., P (z) = P1(z) = z for any choice of νp ≥ 1.

As already indicated above the general scheme (2.3a)–(2.3b) comprises the LF
but also (for g ≡ 0) the modified equation leap-frog (modified LF) [15] method with

PLF(z) = z, PmodLF(z) = z − 1
12z

2.(2.4)

For p > 1, νp = 1, g ≡ 0 and standard starting values (2.1b) the method (2.3a),
(2.3c) has been constructed in [6, 12]. Unfortunately, as we will show in the next
section, these methods suffer from stability issues. In particular, they are not suited
to construct a stable multi rate method. We propose to remedy these problems by
using the starting values (2.3b) which also involve Pp and its derivative P ′p. A second
crucial modification is the use of a damping parameter νp > 1. This approach follows
the idea of damped RKC methods [10, 16, 17, 18]. In the next section, we show that
these modifications lead to a stable scheme.

3. Linear stability. In this section we consider the associated linear homoge-
neous problem to (1.1), i.e.,

(3.1) q̈(t) = −Lq(t), q(0) = q0, q̇(0) = q̇0.

Recall that L ∈ Rd×d is a symmetric, positive definite matrix w.r.t. a given inner
product

(
·, ·
)
, i.e., L satisfies(

Lq, q̂
)

=
(
q,Lq̂

)
,

(
Lq,q

)
> 0, for all q, q̂ ∈ Rd.
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The solution

q(t) = cos(tL1/2)q0 + t sinc(tL1/2)q̇0, sinc(ζ) =
sin ζ

ζ
,

of (3.1) satisfies

(3.2) ‖q(t)‖ ≤ ‖q0‖+ t‖q̇0‖ and ‖|q(t)|‖ = ‖|q(0)|‖

for all t ≥ 0. Here, we denoted the standard norm by ‖ · ‖2 =
(
·, ·
)

and the energy
norm by

(3.3) ‖|q(t)|‖2 = ‖q̇(t)‖2 + ‖q(t)‖2L, ‖q‖2L =
(
Lq,q

)
.

We show stability and error bounds in these norms by two completely different
techniques, namely energy techniques and generating functions.

3.1. Stability in the energy norm. Before we start to study the stability of
the recursion (2.3a), we introduce a short notation for differences and means:

[qn+ 1
2
] = qn+1 − qn, {qn+ 1

2
} = 1

2 (qn+1 + qn),

[[qn]] = qn+1 − 2qn + qn−1, {{qn}} = 1
4

(
qn+1 + 2qn + qn−1

)
.

Using the identity

(3.5) qn = {{qn}} − 1
4 [[qn]],

we can write the recursion (2.3a) in the equivalent form

(3.6)
(
I− 1

4P
)
[[qn]] + P{{qn}} = 0, P = P (τ2L).

From this form it is easy to see that this recursion has a preserved quantity.

Lemma 3.1. The iterates (qn)n obtained from the recursion (2.3a) with g ≡ 0
satisfy

(3.7a) Mq,n+ 1
2
≡Mq, 12

for all n = 1, 2, . . . ,

where

(3.7b) Mq,n+ 1
2

=
((

I− 1
4P
)
[qn+ 1

2
], [qn+ 1

2
]
)

+
(
P{qn+ 1

2
}, {qn+ 1

2
}
)
.

Proof. The statement follows directly by taking the inner product of (3.6) with
qn+1 − qn−1.

Motivated by (3.3) we define the discrete energy norm

(3.8) ‖|qn+ 1
2
|‖2τ =

∥∥∥∥ [qn+ 1
2
]

τ

∥∥∥∥2

+
∥∥{qn+ 1

2
}
∥∥2

L
≈ ‖|q(tn+ 1

2
)|‖2.

It is easy to see that if Mq,n+ 1
2

is equivalent to the energy norm ‖|qn+ 1
2
|‖2τ then the

recursion (2.3a) yields stable approximations for arbitrary starting values in the sense
that there exists a constant Cstb such that

(3.9) ‖|qn+ 1
2
|‖τ ≤ Cstb‖|q 1

2
|‖τ , n = 1, 2, . . . .
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Moreover, we will show in Theorem 4.5 below that (under suitable assumptions)
1
τ2Mq,n+ 1

2
coincides with ‖|qn+ 1

2
|‖2τ up to a second order pertubation, i.e., the recur-

sion (2.3a) approximately preserves the discrete energy. This reflects the behavior of
the exact solution which is also energy conserving, see (3.2).

The aforementioned of equivalence Mq,n+ 1
2

to ‖|qn+ 1
2
|‖2τ requires the following

assumption.

Assumption 3.2. We assume that there exist constants τCFL,m1,m2 > 0 such
that for all

(3.10) 0 < τ ≤ τCFL

we have

(3.11) m1

∥∥∥∥ [qn+ 1
2
]

τ

∥∥∥∥2

+m2

∥∥{qn+ 1
2
}
∥∥2

L
≤
Mq,n+ 1

2

τ2
≤
∥∥∥∥ [qn+ 1

2
]

τ

∥∥∥∥2

+
∥∥{qn+ 1

2
}
∥∥2

L
.

The restriction (3.10) on the time step size is usually called a CFL condition.

Theorem 3.3. Let Assumption 3.2 be satisfied. Then, for all τ ≤ τCFL the
method consisting of the recursion (2.3a) and arbitrary starting values is stable. In
fact, for all n = 1, 2, . . . the iterates of this scheme are bounded by (3.9) with Cstb =
min{m1,m2}−1/2.

Proof. This follows directly from (3.7) and (3.11).

In the next lemma we give conditions on P that ensure Assumption 3.2.

Lemma 3.4. Assumption 3.2 is satisfied if

(3.12) m1 ≤ 1− 1
4P (z) ≤ 1, m2z ≤ P (z) ≤ z, for all z ∈

[
0, β2

]
,

with

(3.13) τ2
CFL =

β2

‖L‖
.

Proof. This follows by considering Mq,n+ 1
2

in the orthonormal eigenbasis of the
matrix L.

In the following we call the largest interval [0, β2] such that (3.12) holds true the
stability interval of the method given by the recursion (2.3a) with arbitrary starting
values.

Example 3.5. The LF method satisfies the second condition in (3.12) withm2 = 1.
However, the first condition requires z ∈ [0, 4), i.e., the stability interval is [0, 4ϑ2]
with a ϑ < 1. Then, we obtain m1 = 1 − ϑ2 under the CFL condition (3.13) with
β2 = β2

LF = 4ϑ2.
The modified LF scheme fulfills the first condition in (3.12) for all z ∈ [0, 12] with

m1 = 1
4 . However, the second condition requires that z ∈ [0, 12), i.e., the stability

interval is [0, 12ϑ2] with ϑ < 1. Then, we have m2 = 1−ϑ2 and β2
mLF = 12ϑ2 = 3β2

LF.
This means the modified LF method allows a

√
3 ≈ 1.732 times larger time step size

than the LF method.

3.2. Stability in the standard norm. In this section we prove the stability of
schemes relying on the recursion (2.3a) in the standard norm ‖ · ‖ with the generating
functions technique. Our analysis shows that the choice (2.3b) of the starting value
q1 yields a stable scheme even if (3.12) is only satisfied with m1 = m2 = 0.
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Theorem 3.6. Assume P satisfies (3.12) with m1 = m2 = 0. Then, the scheme
(2.3a), (2.3b) is stable for τ ≤ τCFL with τCFL given in (3.13). The iterates are
bounded by

(3.14) ‖qn‖ ≤ ‖q0‖+ P ′maxtn‖q̇
0‖, P ′max = max

z∈[0,β2]
|P ′(z)|.

Proof. Following the generating functions technique we define the formal power
series

q(ζ) =

∞∑
n=0

qnζ
n.

Multiplying the recursion (2.3a) by ζn+1 and summing over n ≥ 1 we obtain

(3.15) %(ζ)q(ζ) = q0 + ζq1 − ζ
(
2I−P

)
q0, %(ζ) = ζ2I− ζ(2I−P) + I.

The matrix-valued roots ζ± of % are given by

ζ± = I− 1
2P± i 1

2

√
P(4I−P),

where i =
√
−1 is the imaginary unit. By (3.12), we have ‖ζ±‖ = 1 so that we can

write ζ± = e±iΦ with a matrix Φ whose spectrum is contained in [0, π]. Clearly, this

yields ζ+ = ζ−1
− and thus

%(ζ) = (ζI− ζ+)(ζI− ζ−) = (I− ζζ−)(I− ζζ+) = (I− ζe−iΦ)(I− ζeiΦ).

Using the Neumann series and the Cauchy product we have for |ζ| < 1

%(ζ)−1 =

∞∑
n=0

e−inΦζn
n∑
`=0

e2i`Φ =

∞∑
n=0

sin
(
(n+ 1)Φ

)
sin Φ

ζn.

Here, the second equality follows with the geometric sum identity. Using this in (3.15)
we deduce by comparing the coefficients of ζn that

(3.16) qn =
sin
(
(n+ 1)Φ

)
sin Φ

q0 +
sin
(
nΦ
)

sin Φ

(
q1 − 2(I− 1

2P)q0
)
,

where we further used q0 = q(0) = q0. For the second starting value q1, we employ
the ansatz

(3.17) q1 = a(τ2L)q0 + τb(τ2L)q̇0,

where a, b : [0,∞) → R are suitable analytic functions satisfying the consistency
conditions a(0) = b(0) = 1 and a′(0) = − 1

2 . Using I− 1
2P = cos Φ and a trigonometric

identity, we infer

qn = cos(nΦ)q0 +
sin
(
nΦ
)

sin Φ

((
a(τ2L)− cos Φ

)
q0 + τb(τ2L)q̇0

)
.

This motivates the choice a(z) = 1 − 1
2P (z) in (2.3b) since then a(τ2L) = cos Φ.

The choice b(z) = N ′(z) is not so obvious. It is based on the observation that
|N ′(z)/

√
N(z)(4−N(z))| ≤ C for all z ∈ (0, β2) since by assumption the points z
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where N(z) ∈ {0, 4} are stationary points of N , i.e., N ′(z) = 0. For this choice the
expression simplifies to

qn = cos
(
nΦ
)
q0 + τ

sin
(
nΦ
)

sin Φ
P′q̇0.

Now, using that for all Φ ∈ R we have | cos Φ| ≤ 1 and
∣∣ sinnΦ

sin Φ

∣∣ ≤ n completes the
proof.

In summary, we have seen that the recursion (2.3a) is stable under the CFL
condition τ ≤ τCFL with τCFL given in (3.13), both in the standard and in the en-
ergy norm, if the polynomial P satisfies the conditions (3.12) with positive constants
m1,m2. However, for m1 = 0 or m2 = 0 this requires special starting values, e.g.,
(2.3b).

4. Error analysis. In the previous section we established the stability of the
general scheme (2.3a), (2.3b). The aim of this section is to provide its error analysis.
The outcome will be a convergence result in the energy norm ‖|·|‖τ for the linear
problem and a convergence result in the standard norm ‖ · ‖ for the semilinear case.

Let us denote the error of the scheme (2.3a), (2.3b) with

(4.1) en = q̃n − qn, q̃n = q(tn),

where q(t) is the exact solution of (1.1). We denote bounds on derivatives of q(t) by

(4.2) B(k)
n = max

0≤t≤tn
‖q(k)(t)‖, k = 1, 2, . . . .

Our error analysis requires the following additional assumption.

Assumption 4.1. There exist constants m3,m4,m
′
3 and m′4 such that for all z ∈

[0, β2] it holds∣∣P (z)− z
∣∣ ≤ m3z

2,
∣∣P (z)− z +m3z

2
∣∣ ≤ m4z

3,(4.3a) ∣∣P ′(z)− 1
∣∣ ≤ m′3z, ∣∣P ′(z)− 1 +m′3z

∣∣ ≤ m′4z2.(4.3b)

This assumption implies that

|Q(z)| ≤ m4, Q(z) =
P (z)− z +m3z

2

z3
,(4.4a)

|Q̂(z)| ≤ m′4, Q̂(z) =
P ′(z)− 1 +m′3z

z2
,(4.4b)

for all z ∈
[
0, β2

]
.

4.1. Error analysis in the energy norm for linear problems. In this sec-
tion we restrict ourselves to linear problems (3.1). Then, we can prove the following
error recursion.

Lemma 4.2. For q ∈ C6(0, T ) the error en satisfies the recursion

(4.5a) [[en]] + Pen = dn, dn = ∆n + δ(6)
n ,

where

∆n =
(

1
12 −m3

)
τ4q(4)(tn)− τ6Q(τ2L)q(6)(tn),(4.5b)

δ(k)
n = τk−1

∫ tn+1

tn

κ
(k−1)
n,+ (t)q(k)(t) dt− τk−1

∫ tn

tn−1

κ
(k−1)
n,− (t)q(k)(t) dt,(4.5c)
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with κ
(`)
n,±(t) = (tn±1 − t)`/(`!τ `). The defect is bounded by

(4.6) ‖dn‖ ≤M3B
(4)
n τ4 +

(
m4 + 1

60

)
B

(6)
n+1τ

6, M3 =
∣∣ 1

12 −m3

∣∣.
Proof. We insert the exact solution q̃n into the scheme (2.3a)

[[q̃n]] + Pq̃n = dn,

which yields (4.5a) with a defect dn. In order to determine dn we use Taylor expansion
and (3.1) to obtain

[[q̃n]] = τ2q̈(tn) + 1
12τ

4q(4)(tn) + δ(6)
n = −τ2Lq̃n + 1

12τ
4q(4)(tn) + δ(6)

n .

This implies

dn =
(
P− τ2L

)
q̃n + 1

12τ
4q(4)(tn) + δ(6)

n ,

which shows (4.5) by definition (4.4a) of Q. The bound follows directly from Assump-
tion 4.1.

From the error recursion (4.5) we can derive an error bound in the energy norm.

Theorem 4.3. Let q ∈ C6(0, T ) be the solution of (3.1) and let Assumptions 3.2
and 4.1 be satisfied. Then, for all τ ≤ τCFL and tn+1 ≤ T we have

(4.7)
1

Cstb
‖|en+ 1

2
|‖τ ≤ C2τ

2 + C3τ
3 + C4τ

4,

where

C2 = M ′3B
(3)
0 +

tn√
m1

M3B
(4)
n , C3 = 1

2M3B
(4)
0 , M ′3 =

∣∣ 1
6 −m

′
3

∣∣,
and where Cstb is defined in Theorem 3.3. The constant C4 only depends on tn, the

bounds B
(5)
n , B

(6)
n+1, and the constants in Assumption 4.1.

Proof. This first part of the proof is inspired by [4, Lemma 2.6] and [11, Sec-
tion 2.4].

Using (3.5), we write (4.5a) in the equivalent form

(4.8)
(
I− 1

4P
)
[[en]] + P{{en}} = dn.

Taking the inner product of (4.8) with en+1 − en−1 we obtain

Me,n+ 1
2
−Me,n− 1

2
=
(
dn, en+1 − en−1

)
≤ ‖dn‖

(
‖[qn+ 1

2
]‖+ ‖[qn− 1

2
]‖
)

≤ 1
√
m1
‖dn‖

(√
Me,n+ 1

2
+
√
Me,n− 1

2

)
,

where Me,n+ 1
2

was defined in (3.7b) and where we used (3.11) for the last estimate.
This is equivalent to √

Me,n+ 1
2
−
√
Me,n− 1

2
≤ 1
√
m1
‖dn‖.
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Summing this inequality and again applying (3.11) yields

(4.9)
1

Cstb
‖|en+ 1

2
|‖τ ≤

1

τ
‖e1‖+

1√
m1

1

τ

n∑
`=1

‖d`‖.

Here, we further used that that by q0 = q0 we have e0 = 0 and thus Me, 12
= ‖e1‖2.

It remains to bound ‖e1‖. A Taylor expansion of q(τ) shows

e1 = 1
2

(
P− τ2L + 1

12τ
4L2

)
q(0) + τ

(
I− 1

6τ
2L−P′

)
q̇(0) + τ4

∫ τ

0

κ
(4)
0,+(t)q(5)(t) dt.

By (4.4), we find

e1 = 1
2

(
1
12 −m3

)
τ4q(4)(0) +

(
1
6 −m

′
3

)
τ3q(3)(0)

− 1
2Q(τ2L)τ6q(6)(0)− Q̂(τ2L)τ5q(5)(0) + τ4

∫ τ

0

κ
(4)
0,+(t)q(5)(t) dt.

Using the bounds in (4.4) we obtain

‖e1‖ ≤M ′3B
(3)
0 τ3 + 1

2M3B
(4)
0 τ4 +m′4B

(5)
0 τ5 + 1

24B
(5)
1 τ5 + 1

2m4B
(6)
0 τ6.

Inserting this bound and (4.6) into (4.9) completes the proof.

Theorem 4.3 shows that in general the scheme (2.3a), (2.3b) with a polynomial P
satisfying (3.12) and (4.3) is of order two and how the error constants depend on the
assumptions on P . In particular, we see that if the polynomial P satisfies (4.3) with

(4.10) m3 =
1

12
and m′3 =

1

6

we have error constants M3 = M ′3 = 0. Then, the resulting scheme satisfies the bound
(4.7) with constants C2 = C3 = 0 and thus is a fourth order scheme. Moreover, for
0 < m3 <

1
6 and 0 < m′3 <

1
3 , the error constants M3 and M ′3 are smaller than the

ones of the LF scheme, where M3 = 1
12 and M ′3 = 1

6 . This results in smaller errors,
as will be confirmed in our numerical examples in Section 7.

The second order error bound can also be proved under the weaker regularity
conditions q ∈ C4(0, T ).

Corollary 4.4. Let the assumptions of Theorem 4.3 be fulfilled for q ∈ C4(0, T ).
Then, for all τ ≤ τCFL and tn+1 ≤ T we have

(4.11)
1

Cstb
‖|en+ 1

2
|‖τ ≤ Ĉ2τ

2 + Ĉ3τ
3,

where

Ĉ2 = m′3B
(3)
0 +

tn√
m1

(
m3 + 1

3

)
B

(4)
n+1

and Ĉ3 only depends on m3 and on the bounds B
(3)
1 and B

(4)
0 .

Proof. The statement follows as in the proof of Theorem 4.3 with two minor
changes. We write the defect in (4.5) as

dn =
(
P− τ2L

)
q̃n + δ(4)

n ,
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and the error e1 as

e1 = 1
2 (P− τ2L)q0 + τ(I−P′)q̇0 + τ2

∫ τ

0

κ
(2)
0,+q(3)(t) dt.

By (4.3) this yields ‖dn‖ ≤
(
m3 + 1

3

)
B

(4)
n+1τ

4 and ‖e1‖ ≤ m′3B
(3)
0 τ3 + 1

2m3B
(4)
0 τ4 +

1
2B

(3)
1 τ3. Inserting these bounds in (4.9) proves the error bound.

Let us end this section on the linear error analysis by proving that the recursion
(2.3a) nearly preserves the discrete energy by showing that it is order two close to the
preserved quantity Mq, 12

=Mq,n+ 1
2
.

Theorem 4.5. We consider the method (2.3a), (2.3b) with a polynomial P sat-
isfying (3.12) and (4.3a). Then, we have∣∣∣ ‖|qn+ 1

2
|‖τ −

Mq,n+ 1
2

τ2

∣∣∣ ≤ Cτ2.

Proof. We have

τ2‖|qn+ 1
2
|‖2τ −Mq,n+ 1

2
= 1

4

(
P[qn+ 1

2
], [qn+ 1

2
]
)
−
(
(P− τ2L){qn+ 1

2
}, {qn+ 1

2
}
)
.

Using (3.12) and (4.3a) we can bound this by

0 ≤ ‖|qn+ 1
2
|‖2τ −

Mq,n+ 1
2

τ2
≤ 1

4τ
2

∥∥∥∥ [qn+ 1
2
]

τ

∥∥∥∥2

+m3τ
2
∥∥L{qn+ 1

2
}
∥∥2
,

which proves the result.

4.2. Error analysis in the standard norm for semilinear problems. In
this section we prove an error bound for the scheme (2.3a), (2.3b) for semilinear
problems (1.1). We assume that g : Rd → Rd is a Lipschitz-continuous function with

(4.12) ‖g(q)− g(q̂)‖ ≤ Lg‖q− q̂‖, for all q, q̂ ∈ Rd.

Theorem 4.6. Let q ∈ C4(0, T ) and let Assumptions 3.2 and 4.1 be satisfied.
Then, for all τ ≤ τCFL and tn ≤ T we have

(4.13) ‖en‖ ≤ (C1tn + Cdt
2
n)eLgt

2
nτ2.

The constants C1, Cd are independent of L, n, and τ .

Proof. Analogously to Lemma 4.2 and Corollary 4.4 the error en satisfies the
recursion

(4.14) en+1 − (2I−P)en + en−1 = dn + rn, rn = −τ2(g(q̃n)− (qn)),

with

(4.15) e0 = 0, ‖e1‖ ≤ C1τ
3, ‖dn‖ ≤ Cdτ4, ‖rn‖ ≤ τ2Lg‖en‖.

By the same procedure as for the proof of Theorem 3.6 we have

en =
sin(nΦ)

sin Φ
e1 +

n−1∑
`=0

sin
(
(n− `− 1)Φ

)
sin Φ

(
d` + r`

)
.
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Since
∣∣ sinnΦ

sin Φ

∣∣ ≤ n for all Φ ∈ R and using the bounds (4.15) we obtain

(4.16) ‖en‖ ≤ (C1tn + Cdt
2
n)τ2 + Lgtnτ

n−1∑
`=0

‖e`‖.

The statement now follows from a discrete Gronwall lemma.

Corollary 4.7. For linear problems (g ≡ 0), we have ‖en‖ ≤ (C1tn + Cdt
2
n)τ2,

so that the error only grows quadratically in tn.

5. Error and stability analysis of LFC methods. In this section we show
that the LFC method (2.3a)–(2.3c) satisfies the assumptions of Sections 3 and 4.

Theorem 5.1. Let p > 1 and νp > 1. The polynomial Pp defined in (2.3c)
satisfies Assumptions 3.2 and 4.1 with

m1 =
1

2

(
1− 1

Tp(νp)

)
, m2 = 4

m1

β2
p

, β2 = β2
p = αp(νp + 1),(5.1a)

m3 =
T ′′p (νp)

α2
pTp(νp)

, m4 =
T ′′′p (νp)

3α3
pTp(νp)

,(5.1b)

m′3 = 2m3, m′4 = 3m4.(5.1c)

Remark 5.2. (i) For p = 2, . . . , 5 the following choices of νp fulfill (4.10):

ν2 =

√
6

2
≈ 1.224745, ν3 ≈ 1.029086, ν4 ≈ 1.008261, ν5 ≈ 1.003233,

and thus give a fourth order scheme. In the case of p = 2 and ν2 =
√

6
2 we retrieve

the modified LF method, see (2.4).
(ii) We have the following limits,

lim
νp→1

αp = 2p2, lim
νp→∞

αp = 0, lim
νp→1

β2
p = 4p2, lim

νp→∞
β2
p = 2p,

lim
νp→1

m1 = 0, lim
νp→∞

m1 =
1

2
, lim

νp→1
m2 = 0, lim

νp→∞
m2 =

1

p
,

and

lim
νp→1

m3 =
p2 − 1

12p2
, lim

νp→∞
m3 =

p− 1

4p
,

lim
νp→1

m4 =
(p2 − 1)(p2 − 4)

360p4
, lim

νp→∞
m4 =

(p− 1)(p− 2)

24p2
,

see also Figure 5.1. This means the stability constants m1, m2 improve and the
CFL condition degrades with larger νp. Moreover, we see that the error constant M3

defined in (4.6) depends on the size of νp.

Proof. Throughout this proof we change between the coordinates

x = νp −
z

αp
∈ [−1, νp] and z = αp(νp − x) ∈

[
0, β2

p

]
.

(a) We have to prove that the inequalities (3.12) hold true with constants (5.1a):
(i) First inequality: It is well-known that for νp ≥ 1 we have

−1 ≤ Tp(x) ≤ Tp(νp), for x ∈ [−1, νp],
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1 1.05 1.1

50

100

0
νp

β2
p

1 1.05 1.1

0.25

0.5

0
νp

m1

1 1.05 1.1

0.05

0
νp

m2

1 1.05

0.025

0.05

0
νp

M3

Fig. 5.1: Dependence of β2
p , m1, m2 and M3 = | 1

12 −m3| on νp for p = 3, 4, 5 (dotted,
dashed, solid).

see also Figures 5.2a and 5.2b. This is equivalent to

1

2

(
1− 1

Tp(νp)

)
≤ 1− 1

4
Pp(x) ≤ 1, for x ∈ [−1, νp],

which is the desired bound with m1 given in (5.1a).
(ii) Second inequality: For the lower bound note that Tp is bounded by the line `T
through (−1, 1) and (νp, Tp(νp)) (the blue line in Figures 5.2a and 5.2b), i.e., for
x ∈ [−1, νp], we have

Tp(x) ≤ `T (x) = Tp(νp) +
1− Tp(νp)

1 + νp
(νp − x)

= Tp(νp) +
1− Tp(νp)

β2
p

α(νp − x).

From this we obtain

Pp(z) ≥
2

β2
p

(
1− 1

Tp(νp)

)
z = `P (z), for z ∈ [0, β2

p ],

which is the claimed bound (see also the blue line in Figures 5.2c and 5.2d).
For the upper bound we use that

T ′p(x) ≤ T ′p(1), for x ∈ [−1, 1],

see, e.g., [7, Thm 2.1] or the original work [13]. Because T ′p is monotonically increasing
on [1,∞) we deduce that

T ′p(x) ≤ T ′p(νp), for x ∈ [−1, νp].

Integrating from x to νp gives

Tp(νp)− Tp(x) ≤ T ′p(νp)(νp − x),

and from this we obtain

Pp(z) ≤
T ′p(νp)

Tp(νp)
(νp − x) = αp(νp − x) = z.

(b) We have to show the inequalities (4.3a) with constants (5.1b): Markov broth-
ers’ inequality, see, e.g., [7, Thm 2.2] or the original work [14], states that

(5.2) T (n)
p (x) ≤ T (n)

p (νp) for x ∈ [−1, νp], n ∈ N.
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Using n = 2 in this inequality and integrating it twice from x to νp we obtain

Tp(νp)− Tp(x) ≥ T ′p(νp)(νp − x)−
T ′′p (νp)

2
(νp − x)2.

Choosing n = 3 and integrating three times we get

Tp(νp)− Tp(x) ≤ T ′p(νp)(νp − x)−
T ′′p (νp)

2
(νp − x)2 +

T ′′′p (νp)

6
(νp − x)3.

From these two inequalities we conclude

Pp(z) ≥ z −m3z
2, Pp(z) ≤ z −m3z

2 +m4z
3,

and together with the second bound of (3.12)

0 ≥ Pp(z)− z ≥ −m3z
2, 0 ≤ Pp(z)− z +m3z

2 ≤ m4z
3.

(c) It remains to show (4.3b) with constants (5.1c): We have

P ′p(z) =
2

αpTp(νp)
T ′p(x) =

1

T ′p(νp)
T ′p(x).

By (5.2) with n = 1 it holds P ′p(z)− 1 ≤ 0. Integrating (5.2) with n = 2 once from x
to νp we obtain

T ′p(νp)− T ′p(x) ≤ T ′′p (νp)(νp − x).

Moreover, by integrating (5.2) with n = 3 twice we get

T ′p(νp)− T ′p(x) ≥ T ′′p (νp)(νp − x)−
T ′′′p (νp)

2
(νp − x)2.

So, we can conlcude

2m3z ≤ P ′p(z)− 1 ≤ 0, 0 ≤ P ′p(z)− 1 + 2m3z ≤ 3m4z
2.

This finishes the proof.

In the next corollary we show the convergence of the LFC scheme.

Corollary 5.3. For p > 1 and νp > 1, we consider the LFC scheme (2.3a)–
(2.3c).

(a) If the exact solution of (3.1) satisfies q ∈ C4(0, T ), then the error is bounded
by (4.11).

(b) If the exact solution of (3.1) satisfies q ∈ C6(0, T ), then the error is bounded
by (4.7).

(c) Let g fulfill (4.12). If the exact solution of (1.1) satisfies q ∈ C4(0, T ), then
the error is bounded by (4.13).

The constants are given in Theorem 5.1.

Proof. Theorem 5.1 shows that the assumptions of Theorem 4.3 and Corollary 4.4
are satisfied.

Let us end this section by remarking that it is possible to slightly increase the
stability bound β2

p given in (5.1a). However, this degrades either m1 or m2 depending
on whether the polynomial degree p is odd or even. The next lemma gives the details.



14 MARLIS HOCHBRUCK AND ANDREAS STURM

1 νp−1
•••

◦

◦ •1

•−1

•Tp(νp)

x

(a) T4(x) and `T (x).

1 νp−1
•••

◦

◦ •1

•−1

•Tp(νp)

x

(b) T5(x) and `T (x).

0 β2
p

•

•4

•0

◦
z

(c) P4(z) and `P (z).

0 β2
p

•

•4

•0

◦
z

(d) P5(z) and `P (z).

Fig. 5.2: Illustration of the Chebyshev polynomial Tp(x) and the line `T (x) (top) and
of the LFC polynomial Pp(z) and the line `P (z) (bottom) for p = 4, 5.

Lemma 5.4. Let p > 1, νp > 1 and θ ∈
(

1
νp
, 1
)
. Moreover, let

(5.3) m̂1 =
1

2

(
1− Tp(θνp)

Tp(νp)

)
, m̂2 = 4

m̂1

β̂2
p

, β̂2
p = αpνp(1 + θ).

Then, Pp satisfies Assumption 3.2 with β̂2
p, m1 and m̂2 if p is even, and β̂2

p, m̂1

and m2 if p is odd, respectively. The bounds from Assumption 4.1 stay true with the
constants (5.1b), (5.1c) for z ∈ [0, β̂2

p ].

Remark 5.5. (i) For θ = 1
νp

we obtain m̂1 = m1, m̂2 = m2 and β̂2
p = β2

p .

(ii) For θ = 1 we get m̂1 = m̂2 = 0.

Proof. We show how the proof of Theorem 5.1 has to be adapted. For θ ∈
[

1
νp
, 1
)

we define ν̂p = θνp ∈ [1, νp), so that we have the coordinates

x = νp −
z

αp
∈ [−ν̂p, νp] and z = αp(νp − x) ∈

[
0, β̂2

p

]
.

Modifications of part (a)(i): For p even the considerations for the lower bound
hold true fro x ∈ [−ν̂p, νp] while for p odd we have

−Tp(ν̂p) ≤ Tp(x) ≤ Tp(νp), for x ∈ [−ν̂p, νp].

This yields (3.12) with m̂1.
Modifications of part (a)(ii): For p odd all considerations for the lower and the

upper bound hold true for x ∈ [−ν̂p, νp]. For p even, Tp is bounded by the line ̂̀
through (−ν̂p, Tp(ν̂p)) and (νp, Tp(νp)), whence

Tp(x) ≤ ̂̀T (x) = Tp(νp) +
Tp(ν̂p)− Tp(νp)

β̂2
p

α(νp − x), for x ∈ [−ν̂p, νp],
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and thus

Pp(z) ≥
2

β̂2
p

(
1− Tp(ν̂p)

Tp(νp)

)
z, for z ∈ [0, β̂2

p ].

This is the desired bound. The proof for the upper bound holds true for x ∈ [−ν̂p, νp].
Parts (b) and (c) remain unchanged since (5.2) stays true for x ∈ [−ν̂p, νp].

6. Efficiency, implementation, and generalizations of the LFC method.
In this section we discuss the efficiency and the implementation of the LFC method
(2.3a)–(2.3c) for semilinear differential equations and we generalize it to fully nonlinear
problems.

6.1. Semilinear LFC method. In Algorithm 6.1 we present an efficient im-
plementation of the nth time step of the LFC method (2.3a)–(2.3c) to integrate the
semilinear problem (1.1).

Algorithm 6.1 Leap-frog-Chebyshev scheme for (1.1).

1: P̃0 = 0, P̃1 = 2
αpνp

τ2Lqn
2: for k = 2, . . . , p do

3: P̃k = 2νp
Tk−1(νp)
Tk(νp) P̃k−1 + 2

αp

Tk−1(νp)
Tk(νp) τ2L

(
2qn − P̃k−1

)
− Tk−2(νp)

Tk(νp) P̃k−2

4: end for
5: qn+1 = 2qn − qn−1 − P̃p − τ2g(qn)

The parameters αp and T0(νp), . . . , Tp(νp) have to be precomputed only once by
means of the Chebyshev recursions. Hence, each time step requires p matrix-vector
multiplications with L and one evaluation of g. As we show below this makes the
algorithm attractive in applications where on the one hand the evaluation of g is
expensive compared to a matrix-vector multiplication by L but on the other hand the
time step is restricted by a CFL condition dominated by L.

We compare the CFL conditions of the standard LF scheme and the general
recursion (2.3a) for the special case of a linear function g, i.e., g(q) = Gq, where G
is a symmetric and positive semidefinite matrix with ‖G‖ � ‖L‖.

Lemma 6.1. Let g(q) = Gq and assume that the CFL conditions

(6.1) τ2‖L‖ ≤ β2, τ2‖G‖ ≤ 4ϑ2, ϑ2 ∈ (0,m1),

are satisfied. Then, the recursion (2.3a) with P satisfying Assumption 3.2 is stable
with bound

(6.2) min{m1 − ϑ2,m2}‖|qn+ 1
2
|‖2τ ≤

∥∥∥∥ [q 1
2
]

τ2

∥∥∥∥2

+ ‖{q 1
2
}‖2L+G.

Remark 6.2. Note that the CFL conditions (6.1) can only be satisfied if m1 > 0.
For LFC methods this requires a sufficiently large damping parameter νp > 1 to allow
for a reasonable ϑ.

Proof. For the scheme (2.3) we have

Mq,n+ 1
2

=
((

I− 1
4P
)
[qn+ 1

2
], [qn+ 1

2
]
)

+
(
P{qn+ 1

2
}, {qn+ 1

2
}
)

− 1
4

(
τ2G[qn+ 1

2
], [qn+ 1

2
]
)

+
(
τ2G{qn+ 1

2
}, {qn+ 1

2
}
)
.
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The first two terms can be treated with Assumption 3.2 using the first CFL condition
in (6.1) and for the last two terms we can use the second CFL condition in (6.1) and
the fact that G is positive semidefinite to obtain

(m1 − ϑ2)

∥∥∥∥ [qn+ 1
2
]

τ2

∥∥∥∥2

+m2‖{qn+ 1
2
}‖2L ≤

Mq,n+ 1
2

τ2
≤
∥∥∥∥ [qn+ 1

2
]

τ2

∥∥∥∥2

+ ‖{qn+ 1
2
}‖2L+G.

The assertion follows similar to the proof of Theorem 3.3.

Let ‖L‖ = r‖G‖ with a factor r � 1. For p2 . r the first CFL condition in (6.1)
limits the time step size, whereas for p2 & r the second CFL condition applies. This
means that a larger polynomial degree p of P in (2.3a) improves the CFL condition
until p ≈

√
r. A further increase of the polynomial degree does not alleviate the CFL

condition anymore.
So, let p2 . r. Then, the CFL condition of the recursion (2.3a) and of the LF

method are

τ2 .
4p2

r‖G‖
and τ2 .

4

(r + 1)‖G‖
,

respectively. The fraction is r+1
r p2 ∼ p2 since we assume r � 1. Thus, the recursion

(2.3a) allows an (approximately) p times larger time step than the LF method.
In summary, we conclude that N time steps of the LFC method (via Algo-

rithm 6.1) cost

pN matrix vector multiplications with L +N evaluations of g.

Due to its stricter CFL condition the LF method has to perform pN time steps with
costs

pN matrix vector multiplications with L + pN evaluations of g.

We see that the effort on the “linear part” are equal for the LFC and the LF method,
but the evaluations of the nonlinearity g can be (considerably) reduced by using the
LFC method.

6.2. Nonlinear LFC method. In this section we derive the LFC method for
the nonlinear problem

(6.3) q̈(t) = −f(q), q(0) = q0, q̇(0) = q̇0.

This requires a recursion for Pp inspired by RKC methods [16] which we provide in
the next lemma.

Lemma 6.3. The polynomial

Pk,p(z) = 2− 2

Tk(νp)
Tk

(
νp −

z

αp

)
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satisfies the recursion

P0,p(z) = 0,

P1,p(z) =
2

αpνp
z,

Tk(νp)Pk,p(z) = 2νpTk−1(νp)Pk−1,p(z)

+
2

αp
Tk−1(νp)z

(
2− Pk−1,p(z)

)
− Tk−2(νp)Pk−2,p(z),

for k = 2, . . . , p.

Proof. The result follows easily from the recursion of Chebyshev polynomials.

Lemma 6.3 and Pp(z) = Pp,p(z) imply the following algorithm to implement one time-
step of the LFC scheme for nonlinear ordinary differential equations (6.3). One time
step requires p evaluations of f as the main cost.

Algorithm 6.2 Leap-frog-Chebyshev scheme for (6.3).

1: P̃0 = 0, P̃1 = 2
αpνp

τ2f(qn)

2: for k = 2, . . . , p do

3: P̃k = 2νp
Tk−1(νp)
Tk(νp) P̃k−1 + 2

αp

Tk−1(νp)
Tk(νp)

(
2τ2f(qn)− τ2f(P̃k−1)

)
− Tk−2(νp)

Tk(νp) P̃k−2

4: end for
5: qn+1 = 2qn − qn−1 − P̃p

7. Numerical examples. In our last section we illustrate our theoretical find-
ings on LFC schemes by numerical examples. It turns out that already the most
simple examples show the lack of stability for general starting values or for the un-
damped case νp = 1. All implementations have been performed in Python. The codes
will be made available by the authors on request.

7.1. Harmonic oscillator. We consider the harmonic oscillator

(7.1) q̈(t) = −ω2q(t), q(0) = q0, q̇(0) = q̇0,

where ω > 0 is a fixed frequency. Recall that the solution q satisfies (3.2) and in
particular it preserves the energy.

Now, we examine the LFC method (2.3a), (2.3c) with the standard starting values
(2.1b) obtained from Taylor expansion and the new ones we proposed in (2.3b).

In Figure 7.1 we present the results for ω2 = 4, q0 = 2 and q̇0 = 1. We used the
fifth order polynomial P5 in (2.3c) without damping (ν = 1) and employ a range of
time steps τ so that the product 0 ≤ τ2ω2 ≤ β2

5 = 100. In Figure 7.1a we depict the
(discrete) energy norm of the approximations qn obtained with starting value (2.3b).
For this choice the energy norm stays bounded independent of the simulation time. In
contrary, for the standard choice (2.1b) illustrated in Figure 7.1b we observe resonance
effects appearing at z = τ2ω2 where Pp(z) = 4 or Pp(z) = 0. This fits perfectly to
our analysis because these values force m1 = 0 or m2 = 0 in (3.12), respectively, and
thus prevent a stability result as obtained in Theorem 3.3.



18 MARLIS HOCHBRUCK AND ANDREAS STURM

0 20 40 60 80 100
0

10

20

30

τ2ω2

m
a
x
n
‖|q

n
+

1 2
|‖ τ

(a) Starting values (2.3b).
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Fig. 7.1: Time integration of the harmonic oscillator with the LFC recursion (2.3a),
(2.3c) and different starting values q1. We ran the simultion for N = 5, 10, 15 and 20
time steps.

7.2. Wave equation. Next, we consider the homogeneous wave equation with
homogeneous Dirichlet boundary conditions in the unit square Ω = (0, 1)2,

(7.2a)

q̈(t, x, y) = ∆q(t, x, y)− dq(t, x, y), (x, y) ∈ Ω, t ∈ [0, T ],

q(t, x, y) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ],

q(0, x, y) = q0(x, y), q̇(0, x, y) = q̇0(x, y), (x, y) ∈ Ω,

with a parameter d ≥ 0. As initial data we choose

(7.2b) q0(x, y) = sin(πx) sin(πy), q̇0(x, y) =
√

2π2 + d sin(πx) sin(πy).

Then, the solution of (7.2) is given by

(7.3) q(t, x, y) = sin(πx) sin(πy)
(
cos(t

√
2π2 + d ) + sin(t

√
2π2 + d )

)
.

We discretize (7.2) with a symmetric interior penalty discontinuous Galerkin
method [3], [5, Chapter 4] using piecewise polynomials of degree three on an un-
structured mesh with 312 triangles with smallest and largest diameter 0.0301 and
0.0744, respectively. This results in the following system if odes

(7.4) Mq̈(t) = −Aq(t)− dMq(t) q(0) = q0, q̇(0) = q̇0.

The block diagonal mass matrix M and the stiffness matrix A are symmetric (w.r.t.
the standard Euclidean inner-product) and positive definite. The boundary condition
in (7.2a) is enforced through A.

Because the mass matrix is block-diagonal it can be inverted at low costs. Thus,
(7.2) can be written in the form (1.1) with L = −M−1A and g(q) = dq. Note that
L is symmetric w.r.t. the inner-product

(
q, q̂

)
= qTMq̂.

In the following, we integrate (7.4) with the LFC method (2.3a)–(2.3c) until the
final time T = 4.2 and consider the error

(7.5) eh,n = qh(tn)− qn
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Fig. 7.2: Error of the LFC method (2.3a), (2.3c) plotted over time steps τ for starting
values (2.3b) (top) and starting values (2.1b) (bottom). The polynomial degree p is
3, 4 and 5 (left to right). For νp we used the following choices: νp = 1, νp = 1.0001,
νp = 1.001, νp = 1.01, νp = 1.1, νp from Remark 5.2 (4th order scheme). The solid
black line stems from the LF method. The black dashed lines represent 25τ2 and
8000τ4. The dotted lines correspond to integer multiples of the maximum stable time
step size τLF of the LF method, i.e., mτLF, with m = 1, . . . , 5.

between the L2(Ω)-orthogonal projection qh(t) of the exact solution onto the discon-
tinuous Galerkin space and the LFC iterate qn. We distinguish the cases d = 0 and
d > 0.

7.2.1. Wave equation with d = 0. We are in the situation of Section 4.1 and
in particular of Theorem 4.3. To show the validity of these elaborations we plot in
Figure 7.2a–Figure 7.2c the error (7.5) of the LFC method for polynomial degrees
p = 3, 4, 5 and different choices of the damping parameter νp.

We observe that the LFC method allows us to choose an approximately p times
larger time step compared to the LF method (see the dashed lines which mark integer
multiples of the maximum stable time step of the LF method). If we use more damping
the maximum stable time step gets smaller since β2

p is a monotonically decreasing
function of the damping parameter νp, see also Figure 5.1. Moreover, one can clearly
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Fig. 7.3: Error of the LFC method (2.3a)–(2.3c) plotted over time steps τ for dif-
ferent values of d. We used polynomial degree p = 5 and damping parameters
νp = 1, νp = 1.00001, νp = 1.00005, νp = 1.0001, νp = 1.00025, νp ≈ 1.003233 (4th
order scheme). The solid black line stems from the LF method and the black dashed
line represent 25τ2. The dotted lines correspond to integer multiples of the maximum
stable time step size τLF of the LF method, i.e., mτLF, with m = 1, . . . , 5.

see the effects of the value of νp on the error constant. In particular, we observe
that a choice of νp near the value which gives a fourth order scheme (see (4.10) and
Remark 5.2) yields a remarkably better error constant compared to the LF method
and consequently clearly smaller errors.

We can confirm the second order convergence rate of the general LFC method.
However, the fourth order achieved via (4.10) cannot is not visible in this example
since the time discretization error is so small that it is already dominated by the space
discretization error.

As comparison we give in Figure 7.2d–Figure 7.2f the error of the LFC recursion
(2.3a), (2.3c) supplemented with the standard fifth order starting starting value

(7.6) q1 = q0 + τ q̇0 − 1
2τ

2Lq0 − 1
6τ

3Lq̇0 + 1
24τ

4L2q0.

We clearly see larger errors compared to the LFC method (2.3a)–(2.3c). In particular,
the undamped case νp = 1 suffers from stability problems. However, with enough
damping this can be controlled and we even can confirm the fourth order convergence
rate achieved by the choice (4.10) of νp.

7.2.2. Wave equation with d > 0. Last, we consider the case d > 0 as a model
problem for the semilinear equation (1.1) to show the effects of the LFC method
(2.3a)–(2.3c) discussed in Section 6.1. In Figure 7.3 we plotted the error (7.5) for
d = 10, 25, 50, polynomial degree p = 5 and different values of νp. As stated in
Lemma 6.1 and Remark 6.2 we observe that without enough damping the LFC method
cannot achieve a p times larger time than the LF scheme. The larger d is the more
damping we have to use. However, if νp is sufficiently large we observe an almost p
times larger maximum stable time step size and second order convergence.
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[12] P. Joly and J. Rodŕıguez, Optimized higher order time discretization of second order hyper-
bolic problems: construction and numerical study, J. Comput. Appl. Math., 234 (2010),
pp. 1953–1961, https://doi.org/10.1016/j.cam.2009.08.046.

[13] A. A. Markov, On a problem of D. I. Mendeleev, Zapiski Imp. Akad. Nauk, 62 (1889), pp. 1–
24.
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