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A B S T R A C T

The smart power grid of the future will utilize waveform level monitoring with sampling rates in
the kilohertz range for detailed grid status assessment. To this end, we address the challenge of
handling large raw data amount with its quasi-periodical characteristic via lossless compression.
We compare different freely available algorithms and implementations with regard to com-
pression ratio, computation time and working principle to find the most suitable compression
strategy for this type of data. Algorithms from the audio domain (ALAC, ALS, APE, FLAC &
TrueAudio) and general archiving schemes (LZMA, Delfate, PPMd, BZip2 & Gzip) are tested
against each other. We assemble a dataset from openly available sources (UK-DALE, MIT-REDD,
EDR) and establish dataset independent comparison criteria. This combination is a first detailed
open benchmark to support the development of tailored lossless compression schemes and a
decision support for researchers facing data intensive smart grid measurements.

1. Introduction

The emerging deployment of decentralized power injection devices and smart appliances increases the number of switch-mode
power supplies and the occurrence of incentive based switching actions on the prosumer end of the power line. Therefore the
operational stability of future smart grids will likely depend on monitoring this behavior with high time resolution to correctly assess
the power grid status [1].

While many power grid measurement applications rely on data sampled at frequencies in the kilohertz range, the level of ag-
gregation and the report rate differ. Phasor Measurement Units (PMUs) usually report on basis of 10th of milliseconds1 while smart
meters use rates between seconds for momentary data and one day for accumulated consumption [2]. This aggregation relaxes the
requirements for communication channels and storage space tremendously. For power quality (PQ) monitoring and load dis-
aggregation additional information is needed [3,4]. So far widely used aggregated features like harmonics can only partly provide
this information so that new features are developed [5,6]. Due to ongoing changes in grid operation strategies and demand side
management and due to the increase in decentralized generation, so far unknown combinations of disturbances can appear [7]. This
can result in unreliability of feature-based approaches since information is lost especially during interesting, usually short events.

Commercially available PQ-measurement devices use a threshold-based approach with user-configurable thresholds serving as
event indicators [8,9]. After an event is triggered, raw data are recorded for a short period of time with sampling rates from 10 kHz to
10MHz. For a future smart grid, however, thresholds are hardly definable beforehand [1]. Furthermore, the evaluation of raw data
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from synchronized measurements at different locations may give valuable, additional insights, even and especially in case that not all
distributed devices could classify the event at the same time and thus did not capture the event in high resolution. Data-driven
research aiming for developing better event classification and smart grid analysis techniques would therefore profit from a con-
tinuous storage of raw data. Here, lossless data compression eases the challenge of storing and transmitting large data amount.

Usually, the data stream from a raw data recorder comprises three channels with voltage measurements (from the three phases)
and four current channels (three for the phase currents and one for the neutral conductor). In a three phase power system voltage
curves are nominally sinusoidal and phase shifted by 120°. This results in a strong correlation between the channels. This is also holds
for current channels and utilizing this correlation provides room for significant data reduction. In a real world scenario, however, the
waveforms are individually distorted, reducing the degree of correlation. Especially the current channels are expected to be less
correlated as the individual phase-loads cause different phase-shifts and distortions. With respect to the distortion must be noted, that
wave forms only change when the device connection status or power demand changes. These processes are usually slow compared to
the timespan of one period. In a scenario where few loads are connected to the monitored grid, the waveform changes occur rarely.
When a large number of loads is connected to the monitored section of the grid, changes occur often but are usually small in
amplitude due to the summation of load currents. Both aspects suggest that there is potential for waveform compression. For specific
purposes such as audio and video highly efficient lossless compression algorithms exist [10], however, none could be found that is
especially tailored to exploit the strong periodic behavior and multichannel characteristic of the encountered electrical signals in the
sense of a stream compression.

The use of event data compression methods i.e. the compression of small sections of waveform data from a single channel is
however reported in literature: Although focusing on lossy techniques, [11] provides an overview with technical explanations also for
lossless schemes together with experimental compression rate (CR) values. The compression of PQ-event data is the focused appli-
cation, handling quasi static data is not addressed. Using a delta modulation approach and subsequent Huffman-coding, CRs of 2 are
yielded when averaging over different PQ-event types [12]. Pure Huffman-coding alone results in CRs with a maximal value of 1.1. A
comparison of Huffman, arithmetic and LZ-coding for different PQ-events (flicker, harmonics, impulse, sag and swell) is given in
[13]. CRs are between 1.7 and 1.9 for LZ, 1.18 and 2.78 for arithmetic, 1.23 to 2.81 for Huffman-coding respectively. Thereby the
cited authors use own implementations. A compression of long term raw data is not performed and information on the statistical
evaluation is not available. Gerek and Ece present tests with the ZIP-software and achieve CRs of 5 on average on grid raw data [14].
The authors verified the lossless operation of the codec but halved the vertical resolution of input data to 8 bit before the compression
for compatibility with their own implementation. They also present test results on the compression techniques Free Lossless Audio
Codec (FLAC) and True Audio (TTA) yielding CRs between 4 and 5 on average when using their own set of voltage measurements,
taken in a laboratory environment with a mixture of RL load banks, induction motors and frequency converters. Sample-size and
further statistical aspects are not reported. The effect of the acquisition rate on compression ratio is studied in [15]. The authors also
compare the integer representation AXDR2 with a lightweight derivative of the Lempel-Ziv-Markov chain Algorithm (LZMA) called
LZMH and a differential coding approach called DEGA [16] on waveform data. Both methods were originally developed to compress
aggregated data from smart meters with low computational effort. The CR comparison for raw data, however, includes a format
conversion factor. Comma-separated-value files (probably ANSI) are compared with the binary output of the algorithms. By doing so,
the conversion from a 4 to 7 digit fixed point (” ± 327.68”) ASCII representation to an unsigned 16-bit integer representation is
included in the measurements. This alone accounts for a CR result of 2 to 3.5 which is not caused by actually compressing the
waveform. They therefore report CRs as high as 9 on average for a one-week set of current waveforms from UK-DALE. As qualitative
observations an increase in CR with increasing sample frequency fs roughly proportional to log(fs) from 1 kHz upwards and the
superiority of differential coding combined with an entropy stage over LZMH are reported.

To the best of our knowledge, literature treats existing lossless compression codecs in the application for power gird waveform
data only as a side-issue. No reproducible description of an experiment with sound statistical evaluation is available. The referenced
studies use very specific event data for proving the suitability of algorithmic modifications for their special cases only. Additionally,
data sources are neither referenced nor provided in most cases. Together with the observed scatter of the reported compression ratios
for established methods, we conclude, that there is no reference for researchers to judge on the suitability of compression methods for
grid waveform data - be it existing techniques or new developments.

Therefore, the aim of the present contribution is to explicitly focus on a comparison by testing different open out-of-the-box
lossless compression algorithms and implementations for high-sampling-rate data from the power grid. Using codecs with different
compression principles, we intend to gain insights for future developments that rely on raw time series evaluation. The test data
together with the established comparison criteria serve as a first detailed open benchmark which supports the development of
tailored lossless compression schemes. Furthermore it serves as a decision support for researchers facing data intensive smart grid
measurements.

The remainder of the article is structured as follows. Our test data sources are presented in Section 2, while Section 3 lists the
codecs we use and describes their fundamentals. Section 4 deals with the experimental set-up. Results are presented in Section 5 and
discussed in Section 6. The article closes with conclusions in Section 7.

2 Abstract eXternal Data Representation (AXDR) is an integer encoding rule for distribution automation using line carrier systems, defined by
standard IEC61334-6:2000.
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2. Datasets

The UK Domestic Appliance-Level Electricity Dataset (UK-DALE) [17] includes, inter alia, raw data from current and voltage
measurements taken at the in-feeds of three houses. The acquisition was performed with audio-inspired equipment at a sampling rate
of 16 kHz and 24 bit vertical resolution. From this FLAC-compressed set we chose data from house 1 and randomly selected six files
from the recording period between 2014-8-08 and 2014-05-15, each containing one hour of recording.3

The Energy Disaggregation Dataset MIT-REDD [18] also provides high frequency raw data acquired at the central connection
points of houses. Current and voltage values are recorded at 15 kHz sampling frequency and stored in a proprietary format as four-
byte floating point numbers interleaved with timestamps. From the openly available excerpt we use all 21 files containing voltage
values and all current files from phase 2 of house 5. Each file is 266 s in length.

At KIT, we are performing high rate current and voltage measurements of the power supply grid using our own device, the
Electrical Data Recorder (EDR) [19]. All data are transferred over the network and stored in the Large Scale Database [20] at KIT. The
data amount for raw data storage per day is 8.4 GiB for three phase voltages and 19.35 GiB for three phase currents (plus neutral) and
voltage captures. The transmission requires a bandwidth of 0.8Mbit/s and 1.8Mbit/s, respectively [21]. The present dataset was
acquired at the following locations: The central feed of our institute building, at a power socket in our experimental hall and at a
substation transformer in the city of Karlsruhe, Germany. Sampling rates of 12.8 kS/s and 25 kS/s (four currents and three voltages, 7
channels in total) are used. For the single and dual channel tests, we pick current and/or voltage of one phase. Data are stored in
blocks of 60 s as 16-bit raw values and are available at [22]. Table 1 gives an overview of the data used.

2.1. Preparation of data

As input data format for our study we chose the RIFF WAV format with 16-bit signed integer representation for the following
reasons: (1) It allows the seamless testing of audio codecs; (2) It is the most basic and common format for waveform data with only
very little overhead and no additional redundancy; (3) It is very close to the typical output of analog-to-digital converters.

With respect to UK-DALE data we used SoX4 for the conversion and to separate the current and voltage channels (left and right
audio channel of the file). Preprocessing the MIT REDD involved deleting the time stamps, normalizing the amplitudes for each file
and a float-to-integer conversion so that the absolute maximum gets mapped to −2 115 or − 2 ,15 respectively. EDR data only needed
the addition of the RIFF WAV-header.

3. Codecs and algorithms

In this section we give an overview on the used algorithms and implementations. We choose free software from the general
purpose domain and the lossless audio compression domain.

3.1. FLAC

FLAC is an acronym for Free Lossless Audio Codec and it may be the first fully free audio codec [10]. The input stream is divided
into blocks of user-defined sizes on which the further processing is performed. For multichannel signals (up to eight channels are
supported), each block contains one sub-block for each channel without interleaving. Two different signal approximation methods
are available. The fixed linear predictor fits a Lagrange polynomial up to the 4th order to the audio samples of a block. A 3-bit number
is then added to the stream for encoding the chosen order of prediction [10].

The more advanced FIR (finite impulse response) predictor also called LPC (Linear Predictive Coding) is of variable order with the
maximum ≤ 32 specified by the user [23]. Coefficients are calculated using the Levinson–Durbin algorithm and added to the stream.
LPC yields 5–10% smaller files than the simple predictor when used on audio data.

Residuals are then encoded using Rice codes with the encoder estimating the shape of the Laplace distribution to define the
optimal Rice parameter. To handle changing distributions, the encoder may split up a sub block into 2m partitions and determines the
Rice parameter and the partition size for each part. In an iterative process, the partitioning scheme (m) is selected so that the size of
the sub-block is minimized. The format specific meta-data is stored in each frame and allows for sample accurate searching, streaming
(no further data required) and error resistance. This can be complemented by user-defined meta-data models. Sampling rates from
1 Hz to 1,048,570 Hz (in 1-Hz increments) are supported [23].

In the tests we compare two different implementations of FLAC: The reference from Xiph.org [23] version 1.3.2 and the one
bundled with FFmpeg-version 3.3 alias ”Hilbert”.5

3.2. MPEG-4 ALS

ALS uses the following steps: Block partitioning, prediction (short and long term), joint channel coding and entropy coding of the

3 The names of the used files end on: 340892, 300677, 430750, 753990, 948996, 162008.
4 SoX - Sound eXchange Homepage: http://sox.sourceforge.net Accessed 13 June 2017.
5 FFmpeg-Project: http://ffmpeg.org Accessed 30 June 2017.
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residuals [10,24]. A feature however is, that every step is designed to be adaptive to the signal.
For the linear FIR-predictor, coefficients are calculated with the Levinson-Durbin (LD) algorithm as in FLAC. The algorithm’s

recursive nature (each run increases the FIR-order) allows to optimize the predictor’s complexity iteratively and independently for
each block by minimizing the total bit rate of residuals and the FIR-coefficients. Instead of adding these very quantization-sensitive
coefficients to the bit stream, interim results of the LD algorithm, namely the partial correlation coefficients (Parcor), are used. After
quantizing, the Parcors are compressed using Rice codes.

For residual encoding two modes are available. In simple mode only Rice codes are used while the encoder may split one block
into four to use the best Rice parameter for each block. In advanced mode, the encoder analyses the distribution of residuals and
codes the most significant ones with a special version of block Gilbert-Moore codes, while the distributions tails are encoded in Rice
codes [10].

While the user has to select the frame-size in advance, each frame may have a varying number of blocks. The ALS standard [25]
does not set a decision rule for switching block-sizes. It does, however, define that a frame may only be split in blocks by the power of
2s from N/2 to N/32. This information can be stored with no more than 31 bits as information for the decoder. ALS is said to
outperform FLAC on correlated time series data (like stereo audio) [26].

3.3. True Audio (TTA)

True Audio is a compression codec similar to FLAC and ALS as it shares the canonical stages of most modern audio compression
techniques. While inter-channel decorrelation and blocking use standard procedures, prediction is performed with so called adaptive
filters of IIR-type (infinite impulse response). For optimal prediction performance with IIR filters, blocks are chosen to be around one
second of audio which is usually more than a factor of 10 longer compared to FLAC or ALS. Minimization of the residue is performed
with the Widrow–Hoff’s LMS (least mean square error) algorithm [27]. TTA supports samples of 8, 16 and 24 bits with up to two
channels. This codec does not offer stream support. In the tests we compare two different implementations of TTA: The reference from
tausoft.org version 2.3 and the one bundled with FFmpeg-version 3.3 alias ”Hilbert”.

3.4. Monkey’s Audio Codec (APE)

Monkey’s Audio Codec is a free lossless compression algorithm by Matt Ashland [28]. If applied on a stereo stream, the first step
transforms the signal into a mid ( = +m L R( )/2) and a difference channel ( = −d L R) and drops the restorable least-significant bit
(LSB) of m.

The subsequent prediction step uses a fixed first-order linear predictor together with a multi-stage so called adaptive offset filter
based on a neuronal network. The difference between the signal and the prediction is then processed with a range coder and is finally
organized in frames. For failure detection, the whole file includes the MD5 checksum of the original stream. Each frame holds its 31-
bit CRC checksum. This way the decoder can efficiently isolate a faulty frame within a file.

3.5. Alac

Although Alac codec has been licensed under an Apache License on October 27, 2011, only few detailed information about its
structure has been published due to its former proprietary nature. From secondary sources it is known that it follows the basic
principle of linear prediction and encoding of the residue with a modified version of Golomb-Rice codes.6 In the tests we use the
implementation distributed with FFmpeg-version 3.3.

Table 1
Data sources and properties.

Identifier Files Length per file

EDR_7CH_12.8 60 60 s
EDR_2CH_12.8 60 60 s
EDR_U_25.0 120 60 s
EDR_U_12.8 120 60 s
EDR_I_25.0 120 60 s
EDR_I_12.8 120 60 s
Dale_U 6 3600 s
Dale_I 6 3600 s
REDD_H5_I 21 266 s
REDD_H5_U 21 266 s

6 https://en.wikipedia.org/Apple_Lossless Accessed 7 August 2017.
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3.6. 7zPPMd

PPMd is the 7zip implementation of Dimitri Shakarin’s PPMdH variant [10]. Prediction by Partial Matching (PPM) uses arithmetic
coding where the probabilities of symbols are determined by the context in which they appear. The principle of arithmetic coding is
to assign a non-integral number of bits to a symbol in order to exactly match its information content log2(ps), where ps is the
respective probability of occurrence of each symbol [10]. The PPM algorithms use Markov models of different, adaptive order for
context modeling. PPM variants (A,B,P,X & D) mainly differ in the way zero frequency symbols – i.e. symbol combinations that have
not been seen so far – are handled. Thereby PPMd uses a technique called information inheritance [29]. Memory requirements and
speed are the same for compression and decompression. We use PPMd with a memory size of 16 MB and an 8th-order model.

3.7. BZip2

BZip2 makes use of the Burrow-Wheeler method [10]. The idea is to rearrange symbols for a more efficient subsequent com-
pression. A block of input data (S) is cyclically shifted by one symbol and these rotations are temporarily sorted in a table - each row
being one rotation. Rows are then lexicographically sorted with an index I that points to the original. The last column of the table is
then taken as the output data together with I. This concentrates the occurrence of same symbols based on the context i.e. the previous
symbols [30].

The output is then compressed with run-length coding, move-to-front coding and Huffman coding. Depending on the data,
compression can be up to one bit per byte [10]. The multi-stage-approach together with required sorting makes Bzip2 comparatively
slow but efficient. To further increase compression ratio, multiple runs can be used. We use the 7zip-implementation in ”Ultra”-mode
with a block size (dictionary) of 900 k and 7 consecutive runs with the multiprocessor switch disabled.

3.8. DEFLATE, DEFLATE64 and Gzip

DEFLATE and DEFLATE64 are based on LZ77 and combine it with Huffman codes [10]. The LZ77 searches a look-ahead buffer (so
called ”fast bytes”) for matches with the latest part of the stream seen so far (the search buffer). This sliding search window has as
length of up to 32 kB with DEFLATE and 64 kB with DEFLATE64. Matches are then identified by tokens (length of the match and
distance) and these tokens are Huffman-coded and written to the output stream. In case no match is found, the symbol itself is
Huffman-coded and reported. DEFLATE uses two Huffman-Tables, one for length and symbols, the other for distances. Depending on
selected options a fixed code table is used or individual tables are generated. Gzip is a software package that utilizes the zlib library
by Jean-Loup Gailly and Mark Alder, that implements the .gzip-file format and the DEFLATE algorithm [10]. All three algorithms are
used in 7Zip-implementation in ”Ultra”-mode with a 128-byte look-ahead-buffer and 10 passes.

3.9. 7z and LZMA

The Lempel-Ziv-Markov-chain-Algorithm is the main technique used by the free windows software package 7-Zip, both by Igor
Pavlov [10]. The algorithm itself is an extension of LZ77. It is similar to DEFLATE but uses range-coding instead of Huffman-coding to
compress data near the entropy limit. Range coding is the integer variant of arithmetic coding. LZMA uses only integer operations.

Like DEFLATE, LZMA also outputs length and distance of a match between preview and search buffer, but keeps a four entry
history of the distances. This way a 2-bit number is enough output instead of the potentially very long distance if the current distance
is in the history [10].

As a test for the subsequent evaluation we ran the 7z-package (referenced as 7zip) and LZMA separately, each with ”Ultra”-mode
settings, which should yield same results. The settings are in detail: 64 fast bytes, 64 MB dictionary size, 48 passes, binary-tree-
matching, 3 literal context bits and 2 low-bits at current position.

4. Experimental set-up

Each codec is applied to all test datasets one after the other (single threaded). The codecs are run on a standard Windows 8.1 x64
PC (Intel(R) Core(TM) i5-2500 CPU @ 3.30 GHz 3.29 GHz). File reading and storage is performed on a SSD drive, which has a
sequential read benchmark of 282.376MB/s and a sequential write benchmark of 239.351MB/s (values determined by Chrystal Disc
mark 5.2.1). We use the out-of-the-box command line implementations of ffmpeg (version 3.3 Hilbert),7 7zip (version 17.00),8 FLAC
(version 1.3.2) [23], TTA (version 2.3) [27], APE (version 4.25) [28] and MPEG4 ALS (version 2.3) [24]. The general purpose
compression methods are run with the highest possible CR setting. The audio codecs were run using default settings. We use the
commands from Table 2 for compression.

The computation times of a single conversion (CT) and reconversion (DCT) are calculated by the difference of the computer
system time before and after the command line tool execution. The codec is run for each input test file of each source for compression
and decompression. We compared the decompressed files with the input on byte-level to verify the lossless operation. Sources are as

7 FFmpeg-Project: http://ffmpeg.org Accessed 30 June 2017.
8 7-Zip.de: http://www.7-zip.de Accessed 30 June 2017.
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shown in Table 1, where _U denotes voltage and _I denotes current waveforms. The compression ratios (CR) are calculated as quotient
of the size of the input files and the size of the output files. The 36-Byte RIFF WAV header (RIFF and fmt part) is included in both
measures and causes overhead error. However, its size is very small compared to the data section that is at least 1.46 MiB in our
experiments. Mean source performance values are derived from the average of the single file measurements for each source. Overall
performance results are the averaged codec values over all sources. We keep maximum and minimum times and ratios from each
single file conversion in order to depict the range of scatter of the measurements by the error indicators in the figures. For some
compression runs the execution times were rather small i.e. in the range of some hundreds of a second, which is close to system
performance delays. In these cases, the standard deviation was high, which may not correlate with the real causes. Thus, we decided
not to show error indication with the calculated standard deviations.

Runtime variations between datasets (e.g. due to different file sizes) result in unbalanced averaged over all runtimes (long times
have larger impact than shorter ones). Therefore we decided to normalize CT and DCT by the mean CT and DCT of the DEFLATE code
for each dataset. We picked the DEFLATE results for their consistently small standard deviation within the datasets. As a file size
independent general execution speed measurement we included the throughput in MiB/s. For better over-all visualization we in-
troduce the following ranking scheme: For the mean values of relative CT, relative DCT and CR we perform a min-max normalization
and calculate the equally weighted average from this three parameters as performance indicator. CT and DCT values are inverted
( − x1 ) so that shorter times result in higher ranking.

5. Results

Some of the conversions failed systematically, out of reasons still not clarifyable to the best of our knowledge. Although we
converted all signals to RIFF WAVE format, the REDD dataset was not able to be compressed successfully with MP4 ALS and TTA 2.3.
Additionally, FLAC 1.3.2, TTA 2.3 and APE did not succeed with the 7 channel dataset. Thus, we just skipped these evaluations.

Table 2
Command line options used.

Codec Command

7Zip 7z.exe a -t7z -mx=9 -aoa %o.7z %i
DEFLATE 7z.exe a -t7z -m0=Deflate -mx=9 -aoa %o.7z %i
DEFLATE64 7z.exe a -t7z -m0=Deflate64 -mx=9 -aoa %o.7z %i
Bzip 7z.exe a -t7z -m0=BZip2 -mx=9 -aoa %o.7z %i
LZMA 7z.exe a -t7z -m0=LZMA -mx=9 -aoa %o.7z %i
PPMd 7z.exe a -t7z -m0=PPMd -mx=9 -aoa %o.7z %i
Gzip 7z.exe a -tgzip -mx=9 -aoa %o.gz %i
FLAC (ffmpeg) ffmpeg.exe -i %i -y -acodec flac %o.flac
FLAC 2.3 flac.exe %i -o %o.flac
MP4 ALS mp4alsRM23.exe %i %o.als
Alac (ffmpeg) ffmpeg -i %i -y -acodec alac %o.m4a
TTA (ffmpeg) ffmpeg -i %i -y -acodec tta %o.tta
TTA 2.3 tta_2.3.exe -e %i %o.tta
APE mac.exe %i %o.ape -c2000

Fig. 1. Mean compression times. Values are relative to DELFLATE in %.
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In Fig. 1 the relative compression time results of all used codecs is shown as a bar chart, scaled logarithmically in percent. The bar
length corresponds to the mean value of each codec related to the DEFLATE-methods averages and the error indicators show the
minimum and the maximum single run relative results.

In Fig. 1 can be seen, that audio codecs clearly outperform the non-audio codecs regarding mean compression times (CT). Thereby
the audio-codecs TTA 2.3 and FLAC 1.3.2 showed best compression times. However, the variability between the compression runs
was very high. The standard deviation of the compression ratios of one dataset per compression method was generally below 15 % of
the mean values, in most cases below 5 %. However, some conversion runs of the same input source showed standard deviations up to
85 % (especially, both FLAC codecs and in some cases MP4 ALS). In addition, differences between the implementation of the FLAC
and the TTA codecs are visible. When applying the respective ffmpeg instance, the conversion took more time. Considering non-audio
codecs only, the LZMA method was found to perform fastest on average and it was able to compress as the quickest (especially on
EDR_I_12.8 [kHz] current values).

In Fig. 2, the mean compression ratios of all used codecs are shown as a bar chart on a linear scale. The error indicators depict the
maximum and minimum single run results. All compression ratios of all codecs are found between 1.06 and 4.44. A slight difference
towards higher ratios can be observed with audio-codecs. The highest ratio of a single run coding was conducted with the MP4 ALS
compressing EDR_I_25 [kHz] current values. Among the non-audio codecs, PPMd showed the best compression ratio on average.
Again, the range between minimum and maximum results was large, but the standard deviation of the compression ratios of one
dataset type per compression method was generally below 12 % of the mean values, in most cases below 4 %. Hence, the variations
result from differences between the dataset types.

While the average CRs of the audio codecs differ only moderately, the general purpose schemes show larger differences and
clustering. PPMd, LZMA, 7Zip and Bzip2 all yield better results than both DEFLATE methods and gzip. For the three latter ones also
the variation is significantly smaller compared to PPMd, LZMA, 7Zip and Bzip2.

In Fig. 3 the mean decompression time results are shown, each again related to the DEFLATE mean decompression time of the
respective dataset type. Similar to the compression time results, decompression times are considerably shorter with audio codecs than
using non-audio codecs. Thereby FLAC and TTA perform best. The standard deviation of the decompression ratios of one dataset per
compression method was generally below 10 % of the mean values, in most cases below 5 %. As like the compression time results, the
FLAC-methods showed higher standard deviations for decompression. Interestingly, the PPMd codec is the worst codec regarding
decompression time.

Fig. 4 shows a comparison between current and voltage signal compression. Mean compression ratios (CR) mean, relative
compression times (CT) and decompression times are illustrated for each audio compression codec. The compression ratios of current
waveforms are always higher than those of voltage waveforms. However, voltage time series compression is always faster than
packing current time series. Almost the same applies to decompression duration, except TTA (ffmpeg).

In order to look at dataset-dependencies, we do a split analysis of CR, CT and DCT for each codec on all of the datasets. For reasons
of clarity we do not plot min-max bars in the following figures. The mean compression bit rate results are compared in Fig. 5. In this
chart, major differences are visible between the datasets and between the codecs, applied on the same time series source. The
compression bit rate is best for FLAC 1.3.2 to almost all datasets. TTA and the FLAC (ffmpeg) implementations are among the top
performers. MP4 ALS, Alac (ffmpeg) and APE are performing worse.

In Fig. 6, the mean compression ratios of the audio-codecs are compared for each input dataset type. The codecs are roughly
sorted by best values. Apparently, the differences between the codecs applied to one dataset type is rather small compared to the
differences between the datasets. The compression ratio strongly depends on the sampling rate of the input source. For a clear
example, the EDR_I_25.0 [kHz] dataset was compressed at almost double the size reduction of EDR_I_12.8 [kHz]. Multichannel data

Fig. 2. Mean compression ratios.
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from EDR are compressed at rates between those of the single channel runs with current and voltage data at the same sampling rate.
In Fig. 7 the compression ratios of the non-audio methods are compared by dataset type. Using non-audio-codecs, the reached

maximum compression ratios are slightly lower than using audio-compression techniques. PPMd, Bzip2 and 7zip/LZMA form a
winning-cluster as they all reach similar and higher reduction rates than DEFLATE/64 and gzip on every dataset. The difference
among the winners is always smaller than the distance to DEFLATE/64. Also, towards the lower performance end the stacking is
constant: gzip (always loosing), DEFLATE and DEFLATE64. As with the audio codecs, ratios are strongly dataset-dependent but the
difference between ratios of the non-audio-codecs is also greater.

Fig. 3. Mean decompression times. Values are relative to DELFLATE in %.

Fig. 4. Comparing audio codecs on voltage vs. current time series. CT and DCT are relative to DEFLATE [%].

Fig. 5. Mean compression bit rates [MiB/s] of audio codecs.
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To allow better judgment on the dataset dependency we looked at the influence of data source characteristics. Without analyzing
the datasets, we assume that data from different measurement locations has systematical differences that affects its compressibility.
Therefore we ran all codecs on a re-assembled set of EDR data: We picked data from two different locations and for every location
files recorded at different times (seven days between 01/2017 and 04/2018, six one-minute-files per day recorded at 0:00, 4:00, 8:00
and so on). Time stamps are UTC and identical for both locations.

On this reduced set, we found that CR variation between locations is significantly larger than the variation between files from
different times. Also the variation between files from different times and the variation between codecs is in the same order of
magnitude for all audio codecs and for the quadruple of 7Zip, Bzip2, LZMA and PPMd. Both DEFLATE-variants and gzip show very
little variation of CR with regard to location and time but also much smaller absolute CRs.

Fig. 8 shows the ranking based on CT, DCT and CR with equal weights. The length of the stacked bars show the contribution of
each parameter. Audio-codecs show higher overall performance mostly due to the short CTs and DCTs. By the score, LZMA/7zip and
PPMd are the best suitable non-audio-codecs in the study.

6. Discussion

As the present paper includes a phenomenological comparison, we derive recommendations without tracing the results back to
the details of the algorithms. However, the compressor codecs are available as exchangeable black boxes with few parameters to the
end-user choice level. This decision is a crucial step for future large-scale data or metering applications.

At a first glance, the high min-max deviation of CR and the large min-max range of run times seems to question the validity of the
results. Indeed, it is impossible to make any useful prediction on CR, CT and DCT for a particular file. However, when it comes to the
application of compressing large datasets with many files, the average is of highest importance. Therefore, the results strengthen our
initial point that a large and diverse dataset is needed for benchmarking.

For the general purpose codecs, the formation of a best compressing “cluster” with PPMd LZMA (7zip) and Bzip2 and the fairly
large CR advantage over DEFLATE and gzip may systematically result from different algorithmic principles. The LZMA and DEFLATE
differ by the use of range encoding in LZMA and the use of Huffman coding in DEFLATE. So, the performance difference is likely
caused by the use of an encoding with a non-integral number of bits per symbol, which is apparently advantageous. PPMd also uses
this form of data representation but together with a Markov model of adaptive order and a special zero-frequency-symbol handling.
We assume that this combination cause the slightly improved CR of PPMd over LZMA.

Fig. 6. Mean compression ratios of audio codecs.

Fig. 7. Mean compression ratios of non-audio codecs.
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Apart from Bzip2, all codecs use some kind of model for the data source together with subsequent entropy coding. Interestingly,
Bzip2 yields CRs similar to LZMA without using this technique by applying a block-wise symbol sorting approach. Although using
Hoffman-coding in its last step, the preprocessing allows matching the information content of symbols closely. As expected, Bzip is
much slower than LZMA due to the computationally expensive pre-sorting of input data.

Running 7Zip and LZMA yielded similar results throughout the whole comparison, as it was expected for them being the same
implementation. While CR values matched exactly, compression and decompression times varied slightly in average (2 %) and
stronger in standard deviation (18 %). This result provides an estimation for the expectable accuracy of runtime results. Especially the
values of the absolute extrema can only be rough estimates of the expected maximum and minimum run times in application.

For audio codecs the overall differences in CR are smaller than for the general schemes which only allows less distinct re-
commendations. Results reflect that the codecs in the test all use the same basic principle as it is shown in Section 3. The overall CR
comparison also shows that variations are similar for all algorithms.

We see that Alac, with some distance has the lowest average CR which is also true for the application on seven of the ten
individual datasets. However in case where Alac does not “loose”, CR average scattering between all codecs is very small (0.1).
Unfortunately, no detailed description of Alac is available.

On the winning end, ALS, TTA2.3 and APE show slight CR advantages in average (on the complete dataset) although their
performance and ranking is not the same for all individual datasets. As the three schemes use slightly different prediction methods the
suitability of the used predictors is obviously dataset dependent. Still, predicting the signal with high accuracy yields better com-
pression results. In this test ALS wins the overall competition in terms of CR, due to its very adaptive design. It also copes best with
the increased redundancy in both 25 kHz datasets. TTA is the only codec that uses IIR filters in the prediction stage and a block size
defined by time, not by samples. Its very good CR performance may result from the long signal representation, which is spanning
multiple periods of the 50 Hz energy metering signal.

The average speed advantage of the audio codecs over the general schemes is clearly due to the optimization for fast processing as
it is necessary in their usual applications i.e. real-time multimedia playback. In terms of a figure of merit, audio codecs clearly win as
CR is similar but CT and DCT are in average roughly smaller by a factor of ten.

In this test, we expected the audio codecs to clearly outperform the general purpose compression schemes due to their design for
wave form data. Interestingly the observed CR differences between the best codecs of each class are rather small. This suggests, that in
our case, one of the following statements is true: 1) Knowledge about the temporal structure of the data is not advantageous or
already fully exploited for compression; 2) The audio codecs did not succeed in utilizing the temporal structure. Further in-
vestigations are necessary to this end.

The correlation in multichannel data is not successfully exploited by the codecs as no significant CR-increase could be found using
combined current and voltage data or multichannel data in general. Usually, audio codecs utilize correlations between channels that
are only shifted by microseconds. The 120° phase shift (ca. 6.7 ms for 50 Hz systems) is therefore beyond their capabilities in
temporal domain. Our results confirm that calculating channel differences for correlation exploitation is naturally unsuitable for
three phase systems. As smart grid data usually incorporate multiple phases there is potential for development.

As we did not explicitly study the dependency between CR and sampling rate, no clear-cut statements can be made to this end.
However, the observed increase in CR is in line with a reduced information density of the sources with higher sampling rates.

Fig. 8. Ranking of codecs based on normalized relative CT, relative DCT and CR results.
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7. Conclusions

Fourteen implementations of audio and general purpose compression schemes have been tested on high resolution time series
data from the power grid in order to assess their performance and to gain understanding of their suitability for periodic waveform
compression on method level. Only openly available implementations were used. We formulated file independent comparison criteria
for compression ratio (CR), runtimes (CT and DCT) and an overall score. For the experiment, we assembled a representative dataset
from open data sources. The individual results (CT, DCT and CR) show a strong dependency between the type of the datasets, the
sampling rate and the individual file properties. This study is therefore limited to comparative statements only and predictions about
the compression performance for a particular file cannot be provided. Based on our results, we can recommend TTA 2.3. and MP4 ALS
as well-performing audio codecs for compressing energy waveform data. If very fast decompression is needed, FLAC 1.3.2. can be
used, but large performance variations have to be expected. With respect to compression ratio, PPMd is very close to its audio
counterparts and can be used without performing a data conversion to RIFF-WAV. If slow decompression is acceptable, we therefore
favor PPMd. Elsewise we recommend LZMA/7zip, which compresses nearly as compact but works much faster. The use of DEFLATE
(64), Bzip2 and gzip is not advisable in the given context. With respect to compression methodology, results suggest that longer (in
temporal sense) signal representations are advantageous because they allow a partial exploitation of the quasi-periodic behavior of
waveform data. None of the investigated algorithms succeeded in utilizing similarities between different channels due to the temporal
shift (phase shift). At this point we see potential for development e.g. by using a phasor-like data representation model. To this end
the present article provides a first detailed open benchmark as a reference and puts researchers in the position to conduct a
meaningful comparison between existing methods and potential novel tailored algorithms.
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