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Abstract We present an update of the Mathematica
package SARAH to calculate unitarity constraints in BSM
models. The new functions can perform an analytical and
numerical calculation of the two-particle scattering matrix
of (uncoloured) scalars. We do not make use of the sim-
plifying assumption of a very large scattering energy, but
include all contributions which could become important at
small energies above the weak scale. This allows us to con-
strain trilinear scalar couplings. However, it can also modify
(weakening or strengthening) the constraints on quartic cou-
plings, which we show via the example of a singlet extended
Standard Model.

1 Introduction

In a classic paper, Lee, Quigg and Thacker showed that the
Higgs mass in the Standard Model (SM) must be below 1 TeV
in order to maintain perturbative unitarity [1]. From the mea-
surement of the Higgs mass at the LHC [2,3], we have learned
that the quartic coupling in the SM is even well below 1, i.e.
the scalar sector of the SM has very weak self-couplings.
However, this is not necessarily true if one adds more fun-
damental scalars to the theory. The scalar potential of BSM
models often involve many new parameters which are exper-
imentally barely constrained. Therefore, theoretical condi-
tions like the stability of the potential or the conservation of
unitarity are very important to find physical viable parameter
regions in these models.

The constraints from tree-level perturbativity are often
applied in well studied models such as ones with additional
singlets [4–6], doublets [7–13], or triplets [14–16]. However,
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very often the constraints are derived under the assumption
that the scattering energy is much larger than the involved
masses. In this limit, only point interactions are important,
and all diagrams with propagators are neglected. As a con-
sequence, cubic couplings do not enter the widely used con-
straints at all. However, it was already pointed out long ago
that large cubic couplings of light scalars are dangerous [17],
and also limits for the triple Higgs coupling in the SM were
derived [18,19]. In this work, we shall present a general cal-
culation of unitarity constraints without the assumption of a
very large scattering energy, with the following motivation:

1. We want to place bounds on genuine trilinear couplings.
2. For theories where additional scalars couple to the Higgs,

even if there are no trilinear couplings before electroweak
symmetry breaking, they are generated after the Higgs
takes a vev, and unitarity of scattering at finite s gives
new constraints on these quartic couplings.

3. For theories defined with a low cutoff, scattering may
never be in the regime where the energies are sufficiently
large to neglect the s, t, u–channel processes.

4. Even for theories with a high cutoff, the infinite energy
approximation is rarely justified since the couplings must
run: if we take the energy sufficiently high to be able
to neglect particle masses, the resummed couplings will
typically have completely different values.

For this purpose we have extended the Mathematica
package SARAH [20–24] by routines for the analytical and
numerical study of the full tree-level unitarity constraints.
While the analytical routines are helpful to obtain expressions
for 2 → 2 scattering elements, a symbolic calculation of
the full scalar scattering matrix could become slow and less
illuminating. Therefore, for practical application the Fortran
output for SPheno [25,26] has been also extended to obtain
a numerical prediction for the maximal eigenvalue of the full
scattering matrix.
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We discuss in sect. 2 the underlying calculations to obtain
unitarity constraints in generic BSM models, and the assump-
tions/restrictions that we shall apply. The importance of the
full calculation is demonstrated in sect. 3 via the example of
singlet extensions of the SM. In sect. 4 we show how the new
routines are used. A brief summary is given in sect. 5.

2 Generic calculation of unitarity constraints

2.1 2 → 2 Scattering processes of scalars at finite
momentum

The derivation of unitarity constraints is elementary, but the
derivation for finite momentum is rarely found in the litera-
ture – and there are many common misunderstandings – so
we present a clear exposition in Appendix A. The result is
that the partial wave constraint becomes

−i(aJ − a†
J ) ≤ aJ a

†
J ∀J (1)

where aJ is a normal matrix related to the partial wave
decomposition of 2 → 2 scattering matrix elements Mba

from a scattering of a pair of particles a = {1, 2} with
momenta {p1, p2} to a pair b = {3, 4} with momenta {k3, k4}
as

abaJ ≡ 1

32π

√
4|pb||pa |
2δ12 2δ34 s

∫ 1

−1
d(cos θ)Mba(cos θ)PJ (cos θ).

(2)

The factor δ12(δ34) is 1 if particles {1, 2}({3, 4}) are identical,
and zero otherwise. PJ are the Legendre polynomials, pi

is the centre of mass three-momentum for particle i , and
s = (p1 + p2)

2 is the standard Mandelstam variable.
From the fundamental equation (1) different constraints

can be derived; we shall only consider the zeroth partial wave,
and denoting ai0 as the eigenvalues of a0 we shall apply

Re(ai0) ≤1

2
∀ i. (3)

The diagrams which contribute to 2 → 2 scalar scattering
processes are shown in Fig. 1. For a general field theory
consisting of real scalars φi and couplings

L ⊃ −1

6
κ i jkφiφ jφk − 1

24
λi jklφiφ jφkφl (4)

the matrix elements are

M(1, 2 → 3, 4) = − λ1234 − κ125κ345 1

s − m2
5

− κ135κ245 1

t − m2
5

− κ145κ235 1

u − m2
5

. (5)
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Fig. 1 The four topologies contributing to 2 → 2 scalar scattering
processes at finite

√
s. In the approximation of

√
s � mi , only the

point interaction contributes

The integration over cos θ is trivial for the contact and s-
channel processes, and always straightforward for the others
using

t =m2
1 + m2

3 − 2E1E3 + 2|p1||p3| cos θ

u =m2
1 + m2

4 − 2E1E4 − 2|p1||p3| cos θ, (6)

where Ei are the energies of the particles in the centre of mass
frame, and p1,p3 are the three-momenta. We shall express
the results in terms of the function

λ(s,m2
i ,m

2
j )

≡ 1

s2

[
s2 + m4

i + m4
j − 2m2

i m
2
j − 2sm2

i − 2sm2
j

]
, (7)

so that

|p1| =1

2

√
sλ(s,m2

1,m2
2), |p3| = |p4| = 1

2

√
sλ(s,m2

3,m2
4)

E1 = s + m2
1 − m2

2
2
√
s

, E3 = s + m2
3 − m2

4
2
√
s

(8)

allowing us to define

ft (s,m
2
1,m

2
2,m

2
3,m

2
4,m

2
5)

≡ 1

2

√
4|p1||p3|

s

∫ 1

−1
d cos θ

1

t − m2
5
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= 1

s

1

[λ(s,m2
1,m

2
2)λ(s,m2

3,m
2
4)]1/4

log

(
m2

1 + m2
3 − m2

5 − 2E1E3 + 2|p1||p3|
m2

1 + m2
3 − m2

5 − 2E1E3 − 2|p1||p3|

)

fu(s,m
2
1,m

2
2,m

2
3,m

2
4,m

2
5)

≡ ft (s,m
2
1,m

2
2,m

2
4,m

2
3,m

2
5). (9)

In terms of these, the (modified) zeroth partial waves are

a0 = − 2− 1
2 (δ12+δ34)

16π

{[
λ(s,m2

1,m
2
2)λ(s,m2

3,m
2
4)

]1/4[
λ1234

+ κ125κ345 1

s − m2
5

]

− κ135κ245 ft (s,m
2
1,m

2
2,m

2
3,m

2
4,m

2
5)

− κ145κ235 fu(s,m
2
1,m

2
2,m

2
3,m

2
4,m

2
5)

}
. (10)

2.2 Handling of poles

In the neighbourhood of poles, the tree-level amplitude
diverges which signals that we need to take higher-order
corrections into account (which will effectively modify the
divergent propagator to include the width, cutting off the
divergence). Moreover, since we are only calculating uni-
tarity constraints at tree-level, in the presence of large cou-
plings large quantum corrections to masses may mean that
the physical location of the poles is a long way away from the
tree-level mass parameters. Both of these issues imply that
we should not trust our results in such cases. We therefore
apply the following conditions:

1. s-Channel poles Obviously, s-channel poles are present
if any propagator mass is close to

√
s. In order to cut out

this region, we set the entire irreducible scatteringmatrix
to zero if the condition∣∣∣1 − s

m2

∣∣∣ > CS (11)

is violated. By default, a value of 0.25 is used for the cut
variable CS . CS can also be changed by the user. This
condition is simpler than the one proposed in Ref. [27]
which calculates the width Γ of a particle, and puts the
condition |√s − m| > amΓ (Q = bm) using suitable
coefficients a, b � 1. However, the impact on the scat-
tering amplitude is expected to be small. Only for models
with scalars which have a very large it might be necessary
to adjust CS .

2. t-/u-Channel poles Particles in the t and u channels can
become on-shell. For a t-channel diagram, this can hap-
pen if

m1 > m3 + m5 ∨ m3 > m2 + m5 (12)

holds. Similar conditions exist, for 1 ↔ 2 and 3 ↔ 4.
The conditions for u-channels are obtained by exchang-
ing 3 ↔ 4. These conditions (used in [27]) are only
necessary to have a pole, but not sufficient – they are too
conservative. In fact, the presence of such a pole also
demands that the scattering energy s is smaller than a
given value. The general conditions for the minimal scat-
tering energy smin to avoid poles are

smin,t

= 1

2m5

(√
m2

1 − 2m1(m3 + m5) + (m3 − m5)2

√
m2

2 − 2m2(m4 + m5) + (m4 − m5)2

+ m1(−m2 + m4 + m5) + m2m3 + m2m5

− m3m4 + m3m5 + m4m5 − m2
5

)
(13)

smin,u

= 1

2m5

(√
m2

1 − 2m1(m4 + m5) + (m4 − m5)2

√
m2

2 − 2m2(m3 + m5) + (m3 − m5)2

+ m1(−m2 + m3 + m5) + m2m4

+ m2m5 − m3m4 + m3m5 + m4m5 − m2
5

)
(14)

From this we find that for an often appearing, kinematic
configuration with m3 = m1 and m4 = m2, a t-channel
pole only shows up for

s < m1 + m2 + 1

2

(
−m5 + √

(−4m1 + m5)(−4m2 + m5)
)

(15)

We will include three different treatments of such poles,
which the user can select depending on taste:

(a) Only the matrix element for which such a poles
appears is set to zero, but all other entries of the scat-
tering matrix are kept. This gives the most aggressive
limits.

(b) A partial diagonalisation of the scattering matrix is
performed as proposed in Ref. [27]: assume that X is
the set of all kinematically accesible states at a given
energy

√
s and Y is the subset which involve states

that suffer from a t or u channel pole. In that case, one
can diagonalise the scattering matrix for the set X\Y
with a unitarity matrix U to obtain the eigenvalues
ai,X\Y

0 . The condition equation (3) is changed to

√
Re(ai,X\Y

0 )2 + R2
i <

1

2
(16)
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with

Ri =
∑
h∈Y

|(aJ,Y×X\YU−1)ih |2 (17)

(c) The entire irreducible scattering matrix is set to zero.
This gives the weakest limits.

2.3 The role of the Goldstone boson equivalence theorem

To apply unitarity constraints, in principle we should con-
sider all coupled channels for all particles. However, in prac-
tice there are a large number available, most of which will
not contribute in a meaningful way to constraints, and so in
the interest of computational speed it is necessary to impose
some simplifying assumptions. These are:

1. We can neglect all contributions proportional to gauge
couplings, and scatter at energies well above the mass of
any gauge bosons; clearly for smaller scattering energies
this would mean we would be in the neighbourhood of
an abundance of poles. Furthermore, light bosons medi-
ate infra-red unsafe scattering, so our above formalism
would require modification, and it is therefore reasonable
to eliminate them.

2. We neglect all fermionic contributions. The above
assumption partly justifies this, as the contributions to
scattering from Standard Model fermions should be small
at energies well above their masses.

3. To avoid an abundance of group structures of the scatter-
ing pairs, we do not consider any particles that transform
under any unbroken symmetries except for the electric
charge. In particular, this excludes any strongly coupled
particles (such as top partners).

Assumption (1) is the most reasonable, and also most pow-
erful: since amplitudes involving transverse gauge bosons
are always proportional to gauge couplings, we can neglect
them. For longitudinal gauge bosons of mass mV , whose
polarisation vectors can be taken to be

εμ = 1

mV

(
|p|, E p

|p|
)

,

the scattering amplitudes contain factors of 1/mV and hence
inverse powers of the gauge couplings, so that they can have a
finite amplitude as the gauge couplings are taken to zero. On
the other hand, since we scatter at energies well above their
masses, the Goldstone Boson equivalence theorem allows
us to instead replace all external longitudinal gauge bosons
with the Goldstone boson, with the important proviso that
it has a physical mass equal to the gauge boson mass (so
not equal to ξmV ). It then turns out that, since we neglect
contributions proportional to the gauge couplings, we can

also neglect gauge boson propagators – but only if we work
in Feynman gauge; we discuss in appendix B why this is so
and what happens in other gauges.

Taken together, then, the above assumptions, and working
in Feynman gauge, enable us to consider scattering ampli-
tudes where all states are scalars. While it would be an inter-
esting if time-consuming task to relax some of these assump-
tions (which we leave to future work), they are already very
powerful and allow us to study a wide range of theories.

3 Examples: singlet extentions of the Standard Model

We want to demonstrate the importance of the unitarity con-
straints beyond the large s approximation by a brief example.

3.1 Pure singlet model

First we shall consider the simplest possible BSM model:
the SM extended by a real singlet S. To illustrate point (1) in
the introduction, if we just consider the singlet and assume
that its couplings to the Higgs sector are small relative to its
self-couplings, we can take the Lagrangian:

L ⊃ − 1

2
m2

S S
2 − 1

3
κS3 − 1

2
λS S

4. (18)

There are two additional minima away from the origin if

κ2 > 8m2
SλS,

but the origin remains the true minimum if

κ2 < 12m2
SλS ± κ

√
κ2 − 8m2

SλS −→ |κ/mS| < 3
√

λS .

(19)

As a probe of genuine trilinear couplings, taking the mini-
mum at the origin is most interesting, because once the singlet
obtains an expectation value, stability constraints the trilin-
ears to be rather small compared to the physical mass.

It is simple to derive a0 for this case:

a0 = − 1

32π

[√
1 − 4m2

S

s

(
12λS + 4κ2

s − m2
S

)

+ 8κ2√
s(s − 4m2

S)

log
m2

S

s − 3m2
S

]
. (20)

We show the constraints on this for
√
s = 4000 GeV, mS =

500 and 1000 GeV (or other arbitrary units) in Fig. 2. Clearly
the constraint from s → ∞ would give λS < 4π

3 , and this is
shown as the green vertical dashed line of the left-hand plot.
To understand the role of the scattering energy, we show the

123
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Fig. 2 Unitarity constraints on the pure singlet model (18). Left: the
solid red and dashed purple lines correspond to mS = 500, 1000 GeV
respectively (or other arbitrary units relative to

√
s ≤ 4000 GeV). The

blue shaded regions are excluded by stability of the vacuum. Right: |a0|
vs

√
s/mS for different values of the couplings λS, κ/mS

behaviour of |a0| as
√
s is varied above threshold on the

right-hand plot: there is always a rapid increase followed by
logarithmic behaviour.

The finite s constraints clearly consist of two different
regimes that intersect, and come from the fact that the t/u
channel contribution has opposite sign to the s-channel and
quartic term. As a function of s, a0 grows sharply from 0 at
s = 4m2

S , before decreasing again and tending to the large
s value. So the constraints come both from the maximum
allowed s, and around s = 6m2

S ; for λS = 0 it occurs at
s  5.6m2

S . From the maximum s, we obtain the curved
regions in the plot that have a minimum value for λS as it
passes through κ = 0. These therefore show a difference
when we change mS . On the other hand, the overlapping
curves that pass into the unstable region |κ/mS| > 3

√
λS

come from taking s near 6m2
S . Note that the value s = 5.6m2

S
is not near any pole value, and the corrections to the singlet
mass are well under control; at one loop they are

δm2
S = 2κ2

16π2 B0(p
2,m2

S,m
2
S) + 6λS

16π2 A0(m
2
S), (21)

so for κ = 5mS , we have δm2
S ∼ 0.3m2

S . Moreover, the scat-
tering energy is sufficiently large that the produced particles
are relativistic, so we are not in a regime where e.g. Som-
merfeld enhancements would play a significant role. Hence
the enhancement to the partial wave amplitude is an effect
that we can use to constrain the couplings of the theory. In
particular, it gives an upper bound on κ for which trustworthy

results are calculable, independent of vacuum stability con-
siderations – especially for larger values of λS . We expect
this to be a general feature: from an inspection of the right-
hand plot of Fig. 2 we see that the strongest limits (away from
poles) to a given model will either come from near-threshold
production or at large s.

This model also allows us to simply illustrate our points
(3) and (4) in the introduction. What we are interested in
constraining are the values of κ/mS and λS at low ener-
gies. However, the partial waves receive quantum correc-
tions which can be very significant for large couplings, and
if the scattering energy is large, we should certainly resum
the logarithms and place constraints only on couplings eval-
uated at a renormalisation scale of

√
s (see e.g. [28]). In this

model, the one-loop β-function for the quartic coupling gives

dλS

d log μ
= 36λ2

S

16π2 , (22)

which can be solved exactly, and gives a Landau pole at

μ =mS exp

[
4π2

9λS(mS)

]
. (23)

For λS(500 GeV) = 4, this is at 1500 GeV! Hence we cannot
apply the infinite-energy scattering limit to this coupling. Put
another way, since we must understand the limits in Fig. 2
to be evaluated at μ = √

s, if λmax
S (4000 GeV) = 4, then

λmax
S (500 GeV) = 1.4.

123
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3.2 Singlet extended SM with conserved Z2

While the above model is trivial, it contains most of the ingre-
dients that we find in more complicated models, in particular
the partial cancellation between the channels. Now we will
turn to a more physical example: a singlet that couples to
the Higgs, but with a Z2 symmetry which stabilises it and
prevents mixing with the Higgs. The potential reads

V = 1

2
λH |H |4 + 1

2
λHS |H |2S2 + 1

2
λS S

4 + m2
H |H |2 + 1

2
m2
S S

2

(24)

This theory contains no trilinear scalar couplings before elec-
troweak symmetry breaking. As such, it is a useful prototype
of popular extensions of the SM such as the Two Higgs Dou-
blet Model, NMSSM, etc, as well as being phenomenolog-
ically interesting in its own right (for example, it provides
a dark matter candidate). However, once the Higgs obains
an expectation value so that we can write the neutral Higgs
boson H0 = 1√

2
(v + h + iG), a trilinear coupling

L ⊃ −1

2
vλHShS

2

is generated. Thus we will have s, t, u-channel scattering
processes in the scalar sector which will modify the unitarity
constraints!

In the large s limit we have

Max

{
|λHS| , |λH | , 1

2
|6λS + 3λH

±
√

4λ2
HS + 36λ2

S + 9λ2
H − 36λSλH

∣∣∣∣
}

< 8π (25)

We want to compare this with the full calculation. Results
for the scattering processes are already given in literature
[4,5], but we disagree with both references in different chan-
nels. Therefore, we list all matrix elements in appendix C.
In the following, analytical discussion, we concentrate only
on the parts involving CP-even states. The scattering matrix
involving only the the Higgs and the singlet is

⎛
⎝hh → hh hh → SS 0
SS → hh SS → SS 0

0 0 hS → hS

⎞
⎠ (26)

If we assume for the moment λHS � λ, λS , the dominant
contribution is the hS → hS scattering.

The result reads

16πa0(hS → hS)

= − λHS

16πs
(
s − m2

S

) √
m4

h − 2m2
h

(
m2

S + s
) + (

m2
S − s

)2

×
[

−
(
m4

h − 2m2
h

(
m2

S + s
) + (

m2
S − s

)2
) (−λHSv

2

+m2
S − s

)
+ λHSsv

2 (
s − m2

S

)
log

(
m4

h − 2m2
hm

2
S + m4

S − m2
Ss

s
(
2m2

h + m2
S − s

)
)

+ 3m2
hs

(
s − m2

S

)
log

(
m2

hs

m4
h − m2

h

(
2m2

S + s
) + (

m2
S − s

)2

) ]
(27)

In order to simplify this expression we consider the limit of
small mS and large v2λ2

HS � m2
h � m2

S . This results in

16πa0(hS → hS)

 − λ2
HSv

2

s2
(
s − m2

h

) ((
m2

h − s
)2

+s2 log

(
m4

h − 2m2
hm

2
S − m2

Ss

2m2
hs − s2

))
(28)

Thus, for s ∼ m2
h , this scales as

16πa0(hS → hS) ∼ λ2
HSv

2

m2
h

(29)

which can be significantly larger than the limit from point
interactions only. This is also confirmed by our numerical
calculation with SPheno. In Fig. 3 we compare the limits
from including point interaction only with the full calculation
in the (λS, λHS) plane for different singlet masses. We see
that the unitarity limits on λHS become much stronger for
mS < mh and small λS . However, even for larger masses a
pronounced effect is visible. Even for mS = 500 GeV, the
limits are stronger by a factor of two.

This brief example demonstrates the importance of going
beyond the large s approximation when considering unitarity
constraints in BSM models. Detailed discussions of these
effects in other, phenomenologically more interesting models
will be given elsewhere [29,30].

4 Implementation in SARAH

We have extended theMathematica package by the results
and procedures summarised in the previous sections; in
particular, the restrictions/assumptions that we apply are
described in section 2.3. The user has two possibilities to use
the new functionality: (i) during the Mathematica session
analytical expressions for specific scattering processes or the
full scattering matrix are available; (ii) the necessary rou-
tines for a numerical calculation of the unitarity constraints

123
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Fig. 3 Unitarity constraints for the singlet extended SM. The dashed
purple line gives the limit when using only point interactions in the
large s limit. The red lines give the constraints for the full calculation
for different singlet masses

are included in the SPheno output. Below, we give some
details how to work with both methods.

4.1 Interactive session in mathematica

4.1.1 Commands

In order to obtain analytical expressions for 2 → 2 scattering
processes or the entire scattering matrix new commands are
available in SARAH with version 4.13.0.

1. Initialisation: in order to initialise the calculation of the
unitarity constraints, one needs to run
� �

In[1] InitUnitarity [{ assumptions
}]

� �

This command calculates all necessary (scalar) vertices.
In addition, a list with assumptions can be given which
is used to modify the appearance of the vertices. Possible
assumptions are:

– Some parameters are neglected, e.g.
� �

In[1] InitUnitarity [{LambdaS
->0,LambdaH ->0}]

� �

– Mixing between scalars are neglected by replacing
rotation matrices with a Kronecker Delta, e.g.
� �

In[1] InitUnitarity [{ZH ->Delta
}]

� �

– Some couplings are expressed in terms of other
parameters, e.g.
� �

In[1] InitUnitarity [{Lambda ->mh
^2/v^2}]

� �

2. Scattering processes: once the vertices are initialised,
specific scattering processes are obtained via
� �

In[1] GetScatteringDiagrams [{
incoming1 , incoming2} ->
{outgoing1 , outgoing2 }]

� �

Here, incoming1, incoming2 are the incoming
particles and outgoing1, outgoing2 the outgoing
ones. One needs to use for these variables the names of
fields in SARAH. Optionally, a generation index can also
be given.

– No explicit generation indices, e.g.
� �

In[1] GetScatteringDiagrams [{hh
,hh} -> {Ah , Ah}]

� �

This returns the scattering element for hh → AA. If
the scalar h and pseudo-scalar Ah appears in several
generations in the given model, the indices in1, in2,
out1, out2 are used.

– Explicit generation indices, e.g.
� �

In[1] GetScatteringDiagrams [{hh
[1],hh[1]} -> {Ah[2],
Ah [2]}]

� �

This sets the generation indices of the incoming fields
to 1 and of the outgoing fields to 2.

The result ofGetScatteringDiagrams is a function
of the couplings and masses in the model. In addition, key-
words are introduced to make it possible to trace back the
origin of the different terms: s, t and u-channel diagrams
as well as point interactions are multiplied with a variable:

– sChan for a s-channel diagram
– tChan for a t-channel diagram
– uChan for a u-channel diagram
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– qChan for quartic interactions

Thus, one can easily remove specific diagrams in order to
check their impact by setting the corresponding variables
to zero.

3. Scattering matrix: the full scattering matrix is return by
running
� �

In[1] BuildScatteringMatrix
� �

All generation indices of the external fields are explicitly
inserted.

4.1.2 Example

We show via the example of the SM how the new commands
are used in practice. First, SARAH needs to be loaded and the
SM be initialised:
� �

In[1] << SARAH -4.13.0/ SARAH.m.
In[2] Start["SM"];
� �

Afterwards, one can start to play with the unitarity con-
straints. Here, we want to replace the quartic coupling λ,
which is usually used in the vertices, by the Higgs mass.
That’s done during the initialisation process of the unitarity
constraints.
� �

In[1] InitUnitarity [{ Lambda -> mh2/
v^2}]

� �

Now, we can take a look at the different scattering processes.
The scattering with only the CP even Higgs as external par-
ticle is returned by
� �

In[1] a0hhhh = Simplify[
GetScatteringDiagrams [{hh ,
hh} -> {hh , hh}]]

� �

The result is rather lengthy:
� �

Out[1] -((3 mh2 (3 mh2 s^2 (tChan
+ uChan)

Log[(s^2-2 s pmass
[hh]^2-Sqrt[s^2(s-4
pmass[hh]^2) ^2])

(s^2-2 s
pmass[hh]^2+ Sqrt[s^2(s

-4 pmass[hh]^2) ^2])]
+ (qChan s +

3 mh2 sChan) Sqrt[s^2 (

s - 4 pmass[hh]^2) ^2]
- pmass

[hh]^2 (3 mh2 s (tChan +
uChan)

Log[(s^2-2 s pmass[hh
]^2-Sqrt[s^2(s-4 pmass[
hh]^2) ^2])/

(s^2-2 s pmass[
hh]^2+ Sqrt[s^2(s-4 pmass
[hh]^2) ^2])]
+ qChan Sqrt[s^2 (s

- 4 pmass[hh]^2) ^2]))) /

(32 Pi s v^2 (s^2 (s
- 4 pmass[hh]^2) ^2)
^(1/4) (s - pmass[hh]^2)
))

� �

We can simplify it by introducing a short form of the mass
and by setting all filters to 1:
� �

In[1] Simplify[a0hhhh /. pmass[hh]
-> Sqrt[mh2] /. {tChan ->
1, uChan -> 1, qChan -> 1,
sChan -> 1}, {s > 0, s >

4 mh2}]
� �

The obtained expression is just the one which was already
given by Lee, Quigg and Thacker []:
� �

Out[1] (3 mh2 (-8 mh2^2 - 2 mh2 s
+ s^2 - 6 mh2 (mh2 - s)
Log[mh2/(-3 mh2 + s)]))

/(32 Pi (mh2 - s)
Sqrt[s (-4 mh2 + s)] v
^2)

� �

We can now go one step further and calculate the entire scat-
tering matrix. In the case of the SM this is a 10×10 matrix.
� �

In[1] Simplify[
BuildScatteringMatrix /. {
pmass[hh] -> Sqrt[mh2],
pmass[_] -> 0} /. {tChan
-> 1, uChan -> 1, qChan ->
1, sChan -> 1}, {s > 0,

s > mh2}]
� �

Here, we make here the same assumptions as above. More-
over, we set all masses but the one of the CP even Higgs to
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zero, i.e. we take the limit mZ = mH+ = 0. The outcome
is:
� �

Out[1] {{( mh2 ((2 mh2 -3s)s + 2 mh2
(mh -s) Log[mh2/(mh2+s)

]))/(32Pi s (-mh2+s) v
^2), 0, 0, 0, (mh2 (s
^(5/2) Sqrt[-4 mh2 + s]
+ 2 mh2 Sqrt[s^3 (-4 mh2
+ s)] + 2 mh2 s (s

-mh2) Log[(-2 mh2 s+s^2
- Sqrt[s^3(-4mh2+s)])
/(-2 mh2 s+s^2 + Sqrt
[s^3 (-4 mh2+s)])]))/(32
Pi (mh2 -s) s^(7/4) (-4
mh2+s)^(1/4)v^2), 0, 0,
0, (mh2 s)/(Sqrt [2] (16
mh2 Pi v^2 - 16 Pi s v
^2)), 0}, {0, (
mh2 ((mh2 - s)^2 (mh2 +
s) + mh2 s^2 (Log[mh2

^2/(2 mh2 s - s^2)] +
3 Log[(mh2 s)/(mh2^2 -

mh2 s + s^2)])))/( 16
Pi (mh2 - s) s^2 v^2),

0, 0, 0, 0, 0,
0, 0, 0},

{...
� �

where we only have shown the first two rows. In order to see
the basis in which the matrix is given, one can check
� �

In[1] scatteringPairs
� �

which reads in our case
� �

Out[1] {{Ah , Ah}, {Ah , hh}, {Ah ,
Hp}, {Ah , conj[Hp]}, {hh
, hh}, {hh , Hp}, {hh ,
conj[Hp]}, {Hp , Hp}, {Hp
, conj[Hp]}, {conj[Hp],
conj[Hp]}}

� �

4.2 Including the unitarity constraints in the SPheno
Output

While it might be helpful to obtain analytical expressions for
some specific channels, in practice a numerical calculation is
often more useful. However, Mathematica is not the pre-
ferred environment for exhaustive, numerical calculations.

Therefore, it was natural to extend the existing SPheno out-
put of SARAH by the new function. So far, SARAH is already
producing Fortran source code which can be compiled
withSPheno. This provides the possibility to calculate many
things for a given model very quickly, e.g. two-loop RGEs,
one- and two-loop masses [31–33], flavour and precision con-
straints [34], two- and three-body decays at tree-level, loop
corrections to two-body decays [35], and so on.

4.2.1 Generating the Fortran code

The properties of the new spectrum generator based on
SPheno are defined within SARAH by using the input file
SPheno.m. SPheno.m contains for instance the infor-
mation about the free input parameters expected from the
user, the boundary conditions at different scales, choices
for involved scales and several other settings. With SARAH
4.13.0 the following settings are supported:

SPheno.m
� �

1 AddTreeLevelUnitarityLimits=True;
� �

This enables the output of all routines to calculate the tree-
level unitarity constraints. By default, this generates the full
scattering matrix involving all scalar fields in the model
which are colourless. In the case that some particles should
not be included, they can be explicitly removed via

SPheno.m
� �

1 RemoveParticlesFromScattering={Se,Sv};
� �

Here, we have for instance decided not to include charged
and neutral sleptons in the case of a supersymmetric model.
Once SPheno.m for a given model has been edited, one can
proceed as usual to obtain the source code and compile:

1. Run
� �

In[1] MakeSPheno []
� �

to obtain the source code
2. Copy the code to a new SPheno sub-directory

> cp −r SARAH−4.13.0/Output /$ M O D E L / E W S
B / SPheno SPheno−4.0.2/$ M O D E L

3. Compile the code

> cd SPheno−4.0.2
> make Model=$ M O D E L

4. Run SPheno

> . / bin /SPheno−4.0.2
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For the last step, a Les Houches input file must be provided
which includes the numerical values for the input parameters
as well as settings for SPheno.

4.2.2 Configuring the unitarity calculations

If the unitarity constraints are turned on the in the SPheno
output, several new settings in the Les Houches input file are
available:

LesHouches.in.MODEL
� �

1 BLOCK SPhenoInput #
2 440 1 # Tree-level unitarity

constraints (limit s->infinity)
3 441 1 # Full tree-level unitarity

constraints
4 442 1000. # sqrt(s_min)
5 443 2000. # sqrt(s_max)
6 444 5 # steps
7 445 0 # running
8 445 2 # Cut-Level for T/U poles

� �

440 : the tree-level unitarity constraints in the limit of
large

√
s can be turned on/off. Those include only the

point interactions
441 : the full tree-level calculations including propagator
diagrams can be turned on/off.
442 : the minimal scattering energy

√
smin is set

443 : the maximal scattering energy
√
smax is set

444 : the number of steps in which SPheno should vary
the scattering energy between

√
smin and

√
smax is set.

SPheno will store the maximal eigenvalue. For positive
values, a linear distribution is used, for negative values a
logarithmic one.
445 : RGE running can be included to give an estimate
of the higher order corrections
446 : How shall t and u-channel poles be treated:

0 : no cut at all
1 : only the matrix element with a potential pole is
dropped
2 : partial diagonalisation
3 : entire irreducible sub-matrix is dropped

447 : The condition to cut out s-channel poles

4.2.3 The SPheno output

If the unitarity calculations are switched on, the two new
blocks appear in the spectrum file written by SPheno:

SPheno.spc.MODEL
� �

1 Block TREELEVELUNITARITY #
2 0 1.00000000E+00 # Tree-level unitarity

limits fulfilled or not

3 1 7.32883464E+00 # Maximal scattering
eigenvalue

4 Block TREELEVELUNITARITYwTRILINEARS #
5 0 1.00000000E+00 # Tree-level unitarity

limits fulfilled or not
6 1 1.14400778E+01 # Maximal scattering

eigenvalue
7 2 1.92105263E+03 # best scattering energy
8 11 5.00000000E+02 # min scattering energy
9 12 5.00000000E+03 # max scattering energy

10 13 2.00000000E+01 # steps
� �

Thus, SPheno gives two results for the unitarity constrains:

1. TREELEVELUNITARITY: this block contains the old
calculation using only point interactions and the large s
limit

2. TREELEVELUNITARITYwTRILINEARS: this block
gives the result for finite s including also propagator dia-
grams

Both blocks contain the following two elements:

0 : this is overall result and shows if the point is ruled out
(0) or not (1) by the unitarity constraints. The condition
for this is that the maximal eigenvalue of the scattering
matrix is smaller than 1/2.

1 : this entry contains the value of the maximal eigenvalue

In addition, the block for the s-dependent scattering shows:

2 : what is the value for
√
s at which the scattering is

maximised
11–13 : this repeats the input for

√
smin,

√
smax and the

number of steps.

5 Summary

We have presented an extension of theMathematica pack-
age SARAH to calculate unitarity constraints in BSM mod-
els. It is now possible to obtain predictions for the maximal
element of the scattering matrix in a wide range of models
without making use of the large s approximation. We have
provided generic expressions for the calculations, along with
pedagogical derivations, and clarified some technical issues
concerning additional gauge bosons and the choice of gauge.
We have briefly shown the importance of these improved
constraints in the example of the real singlet extended SM.
More detailed discussions of the effects of the new constraints
in doublet and triplet extensions will be given elsewhere
[29,30].
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A: Derivation of the partial wave unitarity constraint

In this appendix we will present an elementary derivation of
unitarity constraints, retaining finite momentum factors that
are less widely known (and absent from e.g. [5]).

First, we define the S-matrix in terms of the interaction
matrix T as S = 1+ iT . Then in terms of matrix elements of
scattering from (multiparticle) states a with a set of momen-
tum {p} to a set of states b with a set of momenta {k} we have

Tba ≡ out〈{k, b}|iT |{p, a}〉in

≡ iM({p, a} → {k, b})(2π)4δ4({k} − {p})
≡ iMba(2π)4δ4({k} − {p}), (A.1)

and so

M†({k, b} → {p, a}) =M∗({p, a} → {k, b}). (A.2)

Now S must be a unitary matrix, and so the the constraints
from unitarity come from

SS† = 1 −→ T †T + i(T − T †) = T T † + i(T − T †) = 0.

(A.3)

Then we insert a complete set of states to evaluate T †T :

〈{k, b}|T †T |{p, a}〉
=

∑
n

dΠn〈{k, b}|T †|{qn, cn}〉〈{qn, cn}|T |{p, a}〉. (A.4)

Now specialising to the case of 2 → 2 scattering, we can
rewrite the equation as

− i(M2→2
ba − (M2→2

ba )†)

=
∑
c

1

2δc

|pc|
16π2

√
s

∫
dΩM2→2

ca M2→2
cb

+
∑
n>2

dΠndΩM2→n
ca M2→n

cb︸ ︷︷ ︸
≥0

. (A.5)

Here δc = 0 if the particles in c are not identical, and 1 if they
are identical, to allow us to keep the same phase space region

of integration (otherwise we double count), and pc is the
three-momentum in the centre of mass frame for the pair c.

Now for the partial wave analysis, we define the three-
vectors vectors pa,kb,pc to lie along the unit vectors

k̂a = (1, 0, 0)

k̂b = (zb, sin θb, 0)

k̂c = (zc, sin θc cos φc, sin θc sin φc), (A.6)

where

zb ≡ cos θb, zc ≡ cos θc.

We decompose the matrices into partial waves:

Mca = 16π
∑

(2J + 1)PJ (zc)âJ (s)

Mcb = 16π
∑

(2J + 1)PJ (k̂b · k̂c)âJ (s), (A.7)

where PJ are the Legendre polynomials, satisfying

∫ 1

−1
dzPJ (z)PJ ′(z) = 2

2J + 1
δJ J ′, P0(z) = 1, (A.8)

to write

− 2π i(âJ − â†
J )

ba

≤
∑
c

2−δc |pc|√
s

(2J ′ + 1)(2J ′′ + 1)

∫
dφcdzcdzb PJ (zb)PJ ′(zc)PJ ′′(k̂b · k̂c)âJ ′ âJ ′′ . (A.9)

Next we require the identity

PJ (k̂b · k̂c) = 4π

2J + 1

J∑
m=−J

YJm(θb, φb)Y
∗
Jm(θc, φc)

(A.10)

where the spherical harmonics satisfy

YJm ∝ eimφPm
J (cos θ), YJ0 =

√
2J + 1

4π
PJ (cos θ).

(A.11)

In our case we have φb = 0 so

− 2π i(âJ − â†
J )

≤
∑
c

2−δc |pc|√
s

(2J ′ + 1)(2J ′′ + 1)

∫
dφcdzcdzb PJ (zb)PJ ′(zc)â

J ′
caâ

J ′′
cb

4π

2J ′′ + 1

×
∑
m

eimφPm
J ′′(zb)P

m
J ′′(zc) (A.12)
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and thus finally

− i

2
(âJ − â†

J )ba ≤
∑
c

2−δc |2pc|√
s

â J
caâ

J
cb. (A.13)

This is true for each partial wave separately.
Now we make the definition:

abaJ ≡
√

4|pb||pa |
2δa2δb s

âbaJ . (A.14)

Then we have

− i

2
(aJ − a†

J )
ba =acaJ acbJ = acbJ acaJ . (A.15)

Now, since we could have done this in either order, the matrix
aJ
ba is normal, and thus both it and a† can be diagonalised

with the same unitary matrix, meaning that we can write for
the eigenvalues (aiJ ):

Im(aiJ ) ≤ |aiJ |2. (A.16)

B: Scattering amplitudes and partial waves from gauge
boson propagators

In this appendix we will clarify the fate of scattering ampli-
tudes among scalars where there is a gauge boson propagator.
We neglect all contributions to the final amplitude that are
proportional to gauge couplings, but if we work away from
the Feynman gauge (it may be desirable to define a theory in
that way) then the vector propagators have factors of 1/m2

V
where mV is the vector boson mass – which is proportional
to the gauge couplings. In which case we would necessar-
ily need to included gauge boson amplitudes as well as the
Goldstone bosons.

We write the couplings of a massive gauge boson to real
scalars φi as

L ⊃ −1

2
gV i j AV

μφi∂
μφ j = −1

2

∑
i> j

gV i j AV
μ (φi∂

μφ j − φ j∂
μφi ),

(B.17)

where V now becomes an index. Then the matrix elements
for scalar processes {1, 2} → {3, 4} considering only the
gauge boson propagators are

Mba(Vector propagators)

= −gV 12gV 34 t − u

s − m2
V

− gV 12gV 34 (m2
1 − m2

2)(m
2
3 − m2

4)

m2
V

(
1

s − m2
V

− 1

s − ξm2
V

)

+
(

(2 ↔ 3), (s ↔ t)

)
+

(
(2 ↔ 4), (s ↔ u)

)
. (B.18)

To these, we should add the contributions from the Goldstone
bosons. In [35] it was shown that, for scalars coupling to the
corresponding golstone boson with the same index V

L ⊃ −1

2
κV i jGVφiφ j (B.19)

that the couplings are related by

κV i j = m2
i − m2

j

mV
gV i j . (B.20)

Hence when we add the contribution from the Goldstone
bosons, we just obtain

Mba(Vector propagators + Goldstones)

= −gV 12gV34 t − u

s − m2
V

− κV 12κV34 1

s − m2
V

+
(

(2 ↔ 3), (s ↔ t)

)
+

(
(2 ↔ 4), (s ↔ u)

)
.

(B.21)

This result is manifestly gauge invariant. Setting the gauge
couplings gV 12 to zero, we have a remaining piece which
is just equal to the contribution from the Goldstone bosons
in Feynman gauge! However, we should note that in other
gauges it is necessary to include the gauge boson propagators;
for example, if we work in unitary gauge then there are no
Goldstone boson propagators!

As an aside, if we want to include the contributions from
heavy gauge bosons (i.e. not neglect their couplings), it is
simple to perform the angular integrations for these contri-
butions, using:

M2 ≡ m2
1 + m2

2 + m2
a + m2

b = s + t + u

s − u

t − m2
V

= 2s − M2 − m2
V

t − m2
V

− 1 (B.22)

∫ 1

−1
dz

t − u

s − m2
V

= 2

s − m2
V

(m2
3 − m2

4)(2s − m2
1 + m2

2)

2s
.

(B.23)

We find

Δa0 = 1

16π
√

2δ12 2δ34

×
{
gV 12gV 34

s − m2
V

√
4|p1||p3|

s

(m2
3 − m2

4)(2s − m2
1 + m2

2)

2s

+ gV 13gV 24
[
(2s − M2 − m2

V ) ft (s,m
2
1,m2

2,m2
3,m2

4,m2
V ) − 1

]

+ gV 14gV 23
[
(2s − M2 − m2

V ) ft (s,m
2
1,m2

2,m2
4,m2

3,m2
V ) − 1

]}
.

(B.24)
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C: Scattering Elements in the real singlet extended SM

a0(hh → hh) = −
3m2

h

(
−8m4

h − 2m2
hs − 6

(
m4

h − m2
hs

)
log

(
m2
h

s−3m2
h

)
+ s2

)

32πv2
√
s
(
s − 4m2

h

) (
s − m2

h

) (C.25)

a0(hh → SS) = −
λHS

(
2λHSv

2
(
s − m2

h

)
log

(
−

√(
s−4m2

h

)(
s−4m2

S

)−2m2
h+s√(

s−4m2
h

)(
s−4m2

S

)−2m2
h+s

)
+ (

2m2
h + s

) √(
s − 4m2

h

) (
s − 4m2

S

))

32π
(
s − m2

h

)
4
√
s2

(
s − 4m2

h

) (
s − 4m2

S

)
(C.26)

a0(hS → hS) = − λHS

16πs
(
s − m2

S

)√
m4

h − 2m2
h

(
m2

S + s
) + (

m2
S − s

)2

×
[
−

(
m4

h − 2m2
h

(
m2

S + s
)

+
(
m2

S − s
)2

) (
−λHSv

2+m2
S − s

)
+ λHSsv

2
(
s − m2

S

)
log

(
m4

h − 2m2
hm

2
S + m4

S − m2
Ss

s
(
2m2

h + m2
S − s

)
)

+ 3m2
hs

(
s − m2

S

)
log

(
m2

hs

m4
h − m2

h

(
2m2

S + s
) + (

m2
S − s

)2

) ]
(C.27)

a0(SS → SS) =
(
4m2

S − s
) (

λ2
HSv

2 − 12λS
(
m2

h − s
)) + 2λ2

HSv
2
(
m2

h − s
)

log

(
m2
h

m2
h−4m2

S+s

)

32π
(
s − m2

h

) √
s
(
s − 4m2

S

) (C.28)

a0(hh → Z Z) =
2

(
m6

h − m4
hs

)
log

(
−

√(
s−4m2

h

)(
s−4m2

Z

)−2m2
h+s√(

s−4m2
h

)(
s−4m2

Z

)−2m2
h+s

)
− m2

h

(
2m2

h + s
) √(

s − 4m2
h

) (
s − 4m2

Z

)
32πv2

(
s − m2

h

)
4
√
s2

(
s − 4m2

h

) (
s − 4m2

Z

) (C.29)

a0(hZ → hZ) = m2
h

16πsv2
(
s − m2

Z

) √
m4

h − 2m2
h

(
m2

Z + s
) + (

m2
Z − s

)2

[
m2

hs
(
m2

Z − s
) (

log

((
m2

h − m2
Z

)2 − m2
Z s

s
(
2m2

h + m2
Z − s

)
)

+3 log

(
m2

hs

m4
h − m2

h

(
2m2

Z + s
) + (

m2
Z − s

)2

))
−

(
(mh − mZ )2 − s

) (
(mh + mZ )2 − s

) (
m2

h − m2
Z + s

) ]
(C.30)

a0(SS → Z Z) =
λHS

√
s 4
√(

s − 4m2
S

) (
s − 4m2

Z

)
32πm2

h − 32πs
(C.31)

a0(Z Z → Z Z) =
m2

h

((
2m2

h − 3s
) (
s − 4m2

Z

) + 2
(
m4

h − m2
hs

)
log

(
m2
h

m2
h−4m2

Z+s

))

32πv2
(
s − m2

h

)√
s
(
s − 4m2

Z

) (C.32)

a0(hh → WW ) = √
2(a0(hh → Z Z)|mZ → mW ) (C.33)

a0(hW → hW ) = (a0(hZ → hZ)|mZ → mW ) (C.34)

a0(SS → WW ) = √
2(a0(SS → Z Z)|mZ → mW ) (C.35)

a0(WW → WW ) =
m2

h

((
m2

h − 2s
) (
s − 4m2

W

) + (
m4

h − m2
hs

)
log

(
m2
h

m2
h−4m2

W+s

))

16πv2
(
s − m2

h

) √
s
(
s − 4m2

W

) (C.36)
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