
838 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Network Layer Aspects of Permissionless
Blockchains

Till Neudecker and Hannes Hartenstein

Abstract—Permissionless blockchains reach decentralized con-
sensus without requiring pre-established identities or trusted
third parties, thus enabling applications such as cryptocurren-
cies and smart contracts. Consensus is agreed on data that is
generated by the application and transmitted by the system’s
(peer-to-peer) network layer. While many attacks on the network
layer were discussed so far, there is no systematic approach that
brings together known attacks, the requirements, and the design
space of the network layer. In this paper, we survey attacks
on the network layer of permissionless blockchains, and derive
five requirements: 1) performance; 2) low cost of participa-
tion; 3) anonymity; 4) DoS resistance; and 5) topology hiding.
Furthermore, we survey the design space of the network layer
and qualitatively show the effect of each design decisions on the
fulfillment of the requirements. Finally, we pick two aspects of
the design space, in-band peer discovery and relay delay, and
demonstrate possible directions of future research by quantita-
tively analyzing and optimizing simplified scenarios. We show
that while most design decisions imply certain tradeoffs, there
is a lack of models that analyze and formalize these tradeoffs.
Such models could aid the design of the network layer of per-
missionless blockchains. One reason for the lack of models is
the deliberately limited observability of deployed blockchains.
We emphasize that simulation based approaches cope with these
limitations and are suited for the analysis of the network layer
of permissionless blockchains.

Index Terms—Network security, peer-to-peer network, permis-
sionless blockchain, anonymity.

I. INTRODUCTION

PERMISSIONLESS blockchain based systems such as
Bitcoin [57], Ethereum [80], and Monero have received

widespread attention from the scientific community primarily
because of their function as a decentralized consensus system,
which can be used to implement, e.g., currency systems or
smart contracts. These applications impose certain require-
ments regarding performance and security on the underlying
consensus system. Much effort has been put into a better
understanding of the properties of blockchain systems’ con-
sensus layer (e.g., [36]). As the consensus layer relies on data

Manuscript received December 2, 2017; revised March 19, 2018 and May
24, 2018; accepted June 28, 2018. Date of publication September 6, 2018;
date of current version February 22, 2019. This work was supported in part
by the German Federal Ministry of Education and Research (BMBF) within
the project KASTEL_IoE in the Competence Center for Applied Security
Technology (KASTEL) and in part by the State of Baden–Württemberg
through bwHPC. (Corresponding author: Till Neudecker.)

The authors are with the Institute of Telematics, Karlsruhe Institute
of Technology, 76131 Karlsruhe, Germany (e-mail: till.neudecker@kit.edu;
hannes.hartenstein@kit.edu).

Digital Object Identifier 10.1109/COMST.2018.2852480

transmitted by the network layer, vulnerabilities in the network
layer also affect the consensus and application layer. Hence,
the security of the overall system also depends on the security
of the network layer. Therefore, a precise understanding of the
properties of the network layer of blockchains is required.

So far, the network layer of blockchains has been analyzed
only with regard to specific attacks such as network based
deanonymization attacks (e.g., [10] and [31]), double spend
attacks (e.g., [46]), or eclipsing attacks (e.g., [4] and [41]),
or in an empirical way (e.g., [19] and [23]). While these
works help in the design of the network layer by pointing
out certain weaknesses and propose countermeasures against
them, they do not show the complete design space of the
network layer and do not point out the inherent tradeoffs for
some design decisions. This coincides with the observation
that many design choices made in the network layer of client
implementations seem ad-hoc and without sufficient reasoning.
This does not make them bad choices, however, knowledge
of which choices are possible and knowledge of the inherent
tradeoffs between design choices could result in better choices
or justified design decisions.

This paper aims at supporting the design of network layer
of permissionless blockchains by reviewing relevant attacks,
by giving a comprehensive survey of the design space, and
by showing which tradeoffs are implied by design decisions.
Furthermore, we demonstrate future research challenges at
the example of two aspects of the design space, i.e., the
in-band peer discovery mechanism and the randomization of
the message relaying. We limit our analysis on the network
layer of permissionless1 blockchains, i.e., neither the under-
lying network stack (e.g., TCP, IP, Ethernet, 5G [5]), nor the
consensus or application layer will be analyzed.

The network layer of blockchain systems is related to two
classes of systems that have been analyzed in the past: unstruc-
tured peer-to-peer (P2P) networks and anonymity providing
networks. Permissionless blockchain systems rely on a pub-
lic P2P network that is used for information dissemination
between participating peers. For a correct functioning of the
consensus layer all peers require knowledge of the set of
information consensus is to be agreed on (e.g., blocks and
transactions). Flooding or gossip protocols are used for the
propagation of the required information to all peers of the
network. This makes the network layer of permissionless

1Permissioned blockchains require pre-established identities of participants,
which significantly changes the design space and suggests more centralized
architectures. Hence, permissioned blockchains are also not covered by this
work.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-0306-4670

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 839

Fig. 1. The network layer of a blockchain system is characterized by the
P2P network topology, the client’s attachment and communication strategies,
and the users’ behaviors. The requirements include performance, low cost
of participation, anonymity and DoS resistance, and the intermediate goal
network topology hiding.

blockchains unstructured P2P networks, which have been used
for decades (e.g., Gnutella [68]) and were extensively analyzed
(e.g., [44] and [52]), however, mostly from a performance per-
spective or with adversary models not matching the threat to
blockchain systems.

Although anonymity providing networks (e.g., Tor [22])
have different requirements regarding information propagation
than blockchain based systems, they are similar in the consid-
ered adversary models and security requirements. Commonly
considered requirements in anonymity providing networks are
high performance, low bandwidth cost, resistance to traf-
fic analysis, and resistance to catastrophic denial of service
(DoS) [8], which we will use as a basis for our analysis.

Fig. 1 gives a high level overview of the aspects, require-
ments and actors affecting the network layer of permissionless
blockchain systems. The system’s P2P network is character-
ized by its network topology and the behavior of its peers,
determined by the client software behavior (i.e., its communi-
cation and attachment strategy) and the user behavior. In addi-
tion to the (non-security) requirements performance and low
cost of participation and the security requirements anonymity
and DoS resistance, we also consider network topology hiding
as an intermediate security requirement, because many attacks
rely on knowledge of the network topology.

The remainder of the paper is structured as follows. After
briefly covering related work in Section II and giving a
short introduction into the fundamentals of permissionless
blockchains in Section III, we describe requirements and sur-
vey known attacks on the network layer of blockchains in
Section IV. In Section V we extensively survey the design
space of the network layer of blockchains. This survey points
out design aspects and their effects on the fulfillment of
requirements and enables us to detail on two aspects of the
design space (peer discovery and randomized message relay-
ing) and present approaches for their quantitative analysis and
optimization in simplified scenarios in Sections VI and VII.
Finally, Section VIII summarizes the insights and highlights
future research directions.

II. RELATED WORK

We will briefly discuss related work that covers network
security in blockchain systems or P2P networks on an abstract

level. Discussion of related works with more focus (e.g.,
specific attacks) is given in Sections IV-C and V.

Gervais et al. [36] give a thorough security analysis of
proof-of-work blockchain systems, however, their focus is
on the consensus layer (i.e., block generation) whereas the
network layer is abstracted. Troncoso et al. [75] show a
broader perspective covering numerous systems apart from
Bitcoin and Tor but also abstract from the network layer. A
recent paper by Delgado-Seguara et al. [20] explores the char-
acteristics of the peer-to-peer network established by Bitcoin,
but abstracts from the design space of the network layer.
Lua et al. [52] focus on file sharing peer to peer networks and
leave out anonymity goals and strong adversary models. There
are several surveys covering Bitcoin in general [12], [76], the
security of Bitcoin [16], and the privacy and anonymity of
permissionless blockchains [48].

III. FUNDAMENTALS: PERMISSIONLESS BLOCKCHAINS

We will now briefly sketch the fundamentals of permis-
sionless blockchains. A comprehensive introduction to the
topic can be found in, e.g., [58] and [76]. Permissionless
blockchains are P2P networks that maintain a state and allow
modification of that state by users of the system. Users formu-
late changes to the state as transactions, which are published
on the network. For instance, a transaction in Bitcoin moves
funds between entities of the system. In order to ensure that
only authorized users change the state (e.g., only the owner of
funds should be able to transfer them), transactions are usu-
ally cryptographically signed. The verification of the signature
can be done using previously stored state (e.g., the previous
reception of funds specifies the public key of the new owner
of the funds).

In an ongoing process a set of new transactions is accu-
mulated into one block, which is also published on the P2P
network. Each generated block contains the hash value of
the previous block. This mining process creates a chain of
blocks, referred to as blockchain. A blockchain has the prop-
erty that any change to an old block (e.g., modifying or
removing a transaction) changes the hash values of all sub-
sequent blocks. Therefore, blockchains are often regarded as
immutable (assuming authenticity of the current block hash).2

The mining process needs to ensure that the maintained
state does not become inconsistent, e.g., by having multiple
chains of blocks that contradict each other. This requires that
the creation of blocks is regulated by a consensus mechanism.
In contrast to permissioned blockchains, the set of participants
allowed to create blocks is not known beforehand in permis-
sionless blockchains. This makes permissionless blockchains
vulnerable to Sybil attacks [24] and prohibits the use of byzan-
tine fault tolerance consensus protocols such as PBFT [14].
Instead, permissionless blockchains usually employ a proof-
of-work mechanism [7], [26], i.e., the creation of valid blocks
requires solving a computationally expensive hash puzzle,

2Strictly speaking, a blockchain does not guarantee immutability because
peers can modify data on the blockchain. However, such modification becomes
evident to other users. Hence, the term tamper-evident is also used to describe
blockchains.

840 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

which limits the ability to contribute to the consensus pro-
cess to the computational resources of the participant. The
high energy consumption of proof-of-work mining [18] gives
also rise to discussions on sustainability [81].

If two blocks are mined at the same time, the blockchain
forks, i.e., there are two chains of equal length, which dif-
fer in the newest block. This implies that the system state is
(temporarily) not consistent. However, the probability of two
chains growing synchronously decreases exponentially over
time. Therefore, one chain will eventually become the longest
chain. Because only the longest chain holds the system state,
the state of the shorter chain is ignored and consistency is
achieved.3

IV. SYSTEM REQUIREMENTS

Based on the sketch given in Fig. 1 we will now character-
ize the network layer of permissionless blockchain systems.
Bitcoin [57] serves as a prototype for the considered sce-
nario. However, we emphasize that our definition also matches
most other permissionless blockchain systems and parts of this
work are also applicable to a wider range of unstructured P2P
networks.

A. Functional Requirements

In contrast to a private blockchain or a permissioned
blockchain, in a permissionless blockchain there is neither
a restriction on the ability to read from the blockchain
(this ensures public verifiability) nor a requirement for pre-
established identities for write access to the blockchain [83].
In order for anyone to join the system, there need to be enough
peers on the network that accept incoming connections. There
may be peers that are not reachable (e.g., because they are
behind a NAT), however, the openness of the system can only
be guaranteed with a sufficiently large share of the reachable
peers. Although unreachable peers can only connect to reach-
able peers, they can still serve the system by increasing the
network’s robustness (see Section V).

In order to provide public verifiability and allow peers to
create blocks, all relevant data must be accessible by peers.
Therefore, the main requirement of the network layer of
blockchains is the dissemination of information among all
participants. Peers need to be able to retrieve historic infor-
mation from the network (e.g., when a new peer initially
joins the network), but also need to stay informed continu-
ously about new information. To ensure a fast dissemination of
new information, a flooding or gossip mechanism is used, that
broadcasts new information to all peers. There may be clients
that are unable to process that amount of data (e.g., because
they are running on a mobile device), which only get a sub-
set of data relayed (e.g., SPV clients in Bitcoin [40]). These
clients, however, put some trust in the peers they connect to
and assume that these peers do not withhold messages.

In contrast to (communication) anonymity providing
systems, which ensure confidentiality of the exchanged data

3The consistency model of permissionless blockchains is subject to discus-
sion and is usually referred to as eventual consistency [79], or as a probabilistic
form of strong consistency [73].

between a certain sender-receiver pair, blockchain systems
publish information to all participants. Therefore, the data
is not encrypted, which makes each piece of information
(e.g., a transaction) uniquely identifiable and distinguish-
able. Encryption of the connections between peers was
proposed [72], however, without pre-established identities of
peers, this approach is vulnerable to man in the middle attacks
as authenticity cannot be protected. Authentication of peers,
which requires the out of band exchange of a public key, has
also been proposed for Bitcoin [4], [71], and is implemented
in Ethereum and Tor.

B. Non-Functional Requirements

Back et al. [8] identified two non-functional requirements
for anonymity providing networks: performance and low band-
width cost. Although the network layer of blockchains and
anonymity providing systems differ in many ways, both
requirements still apply. We generalize the goal of a low
bandwidth cost and require a low cost of participation, which
implies low bandwidth costs.

Performance: Information dissemination should be fast. For
a blockchain system, a slow dissemination of information
implies a longer time until consistency on the information
is reached. This can facilitate attacks on the application
layer such as double-spends (see Section IV-C). Furthermore,
the efficiency of proof-of-work blockchains depends on fast
information dissemination [36]. A metric that quantifies the
performance is the delay between the initial sending of a
piece of information until the time that n percent of peers
have received that information.

Low Cost of Participation: As permissionless blockchains
aim to be open for participants to join the network, participants
wishing to run a peer on the network should not be faced with
unbearable costs.4 The costs of running a peer include the
required bandwidth, computation, and storage costs. Reducing
these costs enables more users to run a peer, which improves
the overall reliance of the system. On the other hand, a large
number of peers make the consideration of scalability issues
necessary. Metrics that quantify the cost of participation are
the number of bytes a peer has to send and receive depending
on the application layer load (e.g., the number of transactions)
during a time period, or the required storage.

C. Security Requirements - Attack Survey

In order to understand the security requirements we will first
revisit network based attacks on Bitcoin, visualized in Fig. 2
using the concept of attack trees [70] (with OR nodes only).

One possible goal of an adversary is the deanonymization
of users by associating network layer information (e.g., IP
addresses) to application layer information (e.g., transactions).
Several works show that this is possible by exploiting, e.g.,
Bloom filters used for SPV clients, tunneling protocols or

4While users can participate in the blockchain without running a peer by
delegating the communication with the network to trusted parties, we only
consider the direct communication with the network by running a peer as
participation from a network-level perspective.

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 841

Fig. 2. Known network-based attacks on permissionless blockchains at the example of Bitcoin, visualized as attack trees.

the general message relay behavior. The gathered information
could be further used to identify money flows.

Another goal of an adversary could be to gain a mone-
tary advantage by either earning disproportionally high mining
rewards, by double spending funds, or by performing a
destructive Goldfinger attack.5 Destructive attacks can also be
ideologically or politically motivated without any monetary
incentive. All published attacks have in common that some
form of interruption of information flow between peers on
the network is required. This can be either the eclipsing of
single peers from certain information or the complete parti-
tioning of large parts of the network. Two general methods to
achieve this were proposed: Either to directly attack the con-
nections between peers, i.e., after a successful attack the victim
peer has no connections to other honest peers, or to prevent
communication from and to victim peers, i.e., after a suc-
cessful attack the victim peer has functioning connections to
other peers but does not receive the required information over
them. Preventing communication can be achieved by exploit-
ing client behavior. Cutting connections can also be achieved
by exploiting client behavior, but also by directly attacking the
underlying network stack (e.g., TCP, IP).

Based on the discussed attack tree we can identify two secu-
rity requirements for the network layer: Prevent linkage of IP
addresses to application layer information (anonymity) and
prevent interruption of the information flow by eclipsing (DoS
resistance).

A number of attacks (e.g., [10], [31], and [62]) require the
adversary to know the network topology of the P2P overlay
network. As this information is not publicly known and known

5In a Goldfinger attack the adversary earns money by destruction of the
system, e.g., by going short on the cryptocurrency, or by blackmailing [51].

to be hard to infer [63], an intermediate goal for an adver-
sary could be to approximate the topology of the underlying
P2P network. Although many attacks are still possible without
knowledge of the network topology, lack of such knowledge
causes a less precise attack which generally requires more
resources to be spent by the adversary. Hence, we also consider
topology hiding an intermediate security requirement.

Metrics that quantify topology hiding are the precision and
recall with which a certain adversary can estimate connec-
tions of the network topology. These metrics will be used in
Section VI. Metrics that quantify anonymity are the precision
and recall with which a certain adversary can link network
layer to application layer information. A metric that quantifies
DoS resistance is the required amount of resources required
to execute a DoS attack for a certain adversary.

Fig. 2 does not include attacks without interaction with
the network layer, e.g., selfish mining [28] or address clus-
tering [67]. For a comprehensive survey of such attacks
see [16].

D. Adversary Models

The attacks discussed in the previous section made various
assumptions on the ability of the adversary. Therefore, also
the discussed metrics of the security requirements depend on
the adversary model. We will now discuss several aspects of
adversary models.

For network-based attacks, the most critical aspect is the
network power of the adversary. An adversary can easily run
a peer that connects to all reachable peers in the network.6

Such monitoring peers have been previously shown to be
able to connect to several thousand peers on the Bitcoin P2P

6The number of reachable peers on the Bitcoin network varied between
6,000 and 12,000 in 2017.

842 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

network [63] using standard hardware and requiring a band-
width of less than 100Mbit/s. Adversaries with more resources
could perform a Sybil attack on the network by inserting a
large number of peers to the network. As the cost of running
a network peer should be low (see Section IV-B), the number
of Sybil peers on the network could outnumber the number of
honest network peers. The adversary could run the Sybil peers
on own hardware, use cloud service providers, or use botnet
services. Finally, an adversary with access to core Internet
infrastructure (e.g., ISPs, Internet exchange points, intelli-
gence services) is additionally able to monitor and manipulate
traffic, e.g., by hijacking BGP routes [4] or simply by dropping
packets.

The computation power available to an adversary can be
either modeled to allow the adversary to only run the peers
required for the attack, or the adversary can also have a share
of mining power under control. With mining power avail-
able to the adversary, network based attacks that result in
disproportional mining rewards are possible (e.g., [60]).

An additional variable in the adversary model is the attack
duration. Thanks to cloud services, it may be cheap for an
adversary to spawn several thousand Sybil peers for a short
period of time [61]. However, carrying out such an attack for
a longer period increases the adversary’s costs.

Network power, computation power, and attack duration are
highly specific to each single adversary. In contrast, there are
similarities among all adversaries: Adversaries in permission-
less blockchain systems are always able to create new pieces of
information (e.g., transactions) and insert them to the network.
Furthermore, all adversaries are aware of the complete source
code of all client’s software running on the network. Client
software is usually published open source in order to estab-
lish trust in the implementation and the system. Although it
is possible for single parties to use a modified client with a
deviating behavior, for the majority of users this is not viable.
Hence, adversary models should assume that it is not possi-
ble to hide any behavior from the adversary (see Kerckhoffs’
principle [47]).7

E. Related Requirements and Adversary Models

We will now discuss additional requirements and adver-
sary models that have been considered for permissionless
blockchains or related systems.

1) Requirements: Scalability has been identified as a sepa-
rate non-functional requirement of anonymous communication
systems [38]. We will treat scalability as the dependance of
the overall cost of participation and the performance on the
number of peers.

A high level of decentralization, i.e., the absence of one
or a few authorities that control a large share of the system
components (e.g., network peers, mining power), is also
a requirement of permissionless blockchains [35]. From a
network layer perspective, a low cost of participation is a
requirement for decentralization. Centralization in a system
can be modeled by considering adversary models that have,

7Of course the client can make use of pseudorandom number generators,
the output of which remains unknown to the adversary.

e.g., a large share of mining power or a large number of
(Sybil) peers. Therefore, while decentralization is an impor-
tant requirement, especially on the consensus layer, we do not
treat decentralization as a distinct requirement.

Finally, there can be a lack of incentives to actively par-
ticipate in the P2P network and actually forward transactions
and blocks to other peers [6], [27]. For instance, miners can
increase their revenue by withholding transactions with high
transaction fees from other miners. Hence, incentive com-
patibility can also be regarded as a requirement. While we
acknowledge the importance of incentive compatibility, the
analysis of incentive compatibility requires the common con-
sideration of network, consensus, and application layer aspects
using game theoretic approaches and is therefore out of scope
in this work.

2) Adversary Models: Slightly different adversary models
than the ones discussed before have been used in the field of
rumor source detection (e.g., [30]). In this setting the only goal
of the adversary is the identification of the source of a rumor
that is propagated across the network. This equals the attack
of anonymity by linking network data (the rumor source) to
application data (the rumor). The adversary is either modeled
to obtain a snapshot of the propagation of a rumor at a certain
point in time or to have a number of spy nodes in the network
that gather the time of reception of a rumor as well as all
possibly attached metadata.

One main difference in the considered adversary models is
that the adversary in rumor source detection is usually assumed
to know the topology of the network. Although this assumption
can be valid in certain scenarios, it does not hold in the case
of a peer-to-peer network with dynamically established links.

V. DESIGN SPACE SURVEY

We will now analyze the design space of the network layer
of permissionless blockchains from the perspective of a devel-
oper, who maintains the source code of a client software. As
the network is assumed to be open, users are still free to
use modified client software with deviant behavior. Table I
summarizes the affected requirements and further readings
for each aspect that will be discussed. The second column
shows the requirements that are mainly affected by a certain
design aspect. Tradeoffs between two or more requirements
are marked with the symbol ↔.

There are two strategies that can be modified in the client
that affect the network layer of the system: First, the attach-
ment strategy defines which connections to other peers are
established. Second, the communication strategy defines how
clients communicate with their neighbors.

As all public P2P networks require interconnection between
its peers, the attachment strategies in different P2P networks
are very similar among a wide range of P2P networks includ-
ing permissionless blockchains. This allows the analysis of
the attachment strategy of blockchain systems along with the
attachment strategy of systems like Tor in order to identify
similarities and varying approaches. In contrast, the com-
munication strategy is heavily driven by application layer
requirements and makes a comparison between blockchain

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 843

TABLE I
DESIGN SPACE OF THE NETWORK LAYER OF PERMISSIONLESS BLOCKCHAINS

based systems and systems used for applications such as file
sharing not beneficial.

We will now analyze the design space by covering all
aspects of the attachment and communication strategies, which
either appear in deployed systems, or were proposed or dis-
cussed. Although these aspects characterize the network layer
of known systems, new systems may include aspects that are
not covered in our analysis.

A. Attachment Strategy

The attachment strategy defines how clients establish con-
nections to remote peers. In order to establish outgoing
connections, a client needs to discover the IP addresses of
other peers (peer discovery). Then, the client has to decide
to which peers it establishes connections and how it handles
incoming connections (neighbor selection).

1) Peer Discovery: The main goal of peer discovery is to
establish and maintain a set of reachable IP addresses of other
peers in order to establish connections to them. Peer discovery
can be done using out-of-band communication with one or
more seed nodes) that provide IP addresses of reachable peers.
If a client is connected to at least one peer on the network,
peer discovery can also be performed in-band by requesting
IP addresses of reachable peers from neighbors.

Out-of-band peer discovery with one or more seed nodes
(e.g., DNS server, IP addresses hard coded to the client) is in
general required for bootstrapping.8 Although a large number
of seed nodes can be used, it is still some form of centralization
that can affect the requirements DoS resistance, anonymity,
and topology hiding.

Discussion: Malicious seed nodes might return only IP
addresses of peers under its own control, hence enabling
eclipsing attacks on peers that rely solely on information from
that seed.9 Furthermore, malicious seed nodes could try to

8Another possibility is random address probing [21], where a clients tries to
connect to peers randomly selected from the IP address space. Random address
probing comes with significant drawbacks, especially a high bandwidth cost,
bad performance, and it is practically infeasible in IPv6 address space.

9The IP addresses received using in-band communication from that peer
are then also controlled by the adversary.

attack anonymity by linking IP addresses of requesters to
application layer data that is later transmitted via the peer
returned in the seed’s reply. Finally, malicious seed node
operators could try to infer connections by IP addresses
of requesters to IP addresses returned by the seed node.
Adversaries might also try to perform DoS attacks on the seed
nodes itself, making it impossible for peers to connect to the
network.

In order to prevent these attacks, a large number of
seed nodes operated by different parties is required. Clients
should request IP addresses from multiple seed nodes oper-
ated by different parties to minimize chances that all seed
nodes are compromised. Connections should then be estab-
lished to IP addresses received from different parties. To
improve topology hiding, clients should receive a large num-
ber of IP addresses but only connect to a small subset.
Obviously, all measures cause a bandwidth overhead for
clients and seed node operators, thus increasing the cost of
participation.

Examples: Tor uses out-of-band peer discovery with a hard
coded list of directory authorities along with their public
keys.10 The Bitcoin client11 and the Monero client have hard
coded lists of DNS seeds for bootstrapping.12 The communi-
cation to the DNS seeds is not authenticated. Bitcoin has an
operator policy that requests from seed nodes to provide unbi-
ased samples of functioning network peers and to not use data
gathered from operating the seed node to attack the anonymity
of users.13

10https://www.torproject.org/docs/faq#KeyManagement and https://github.
com/torproject/tor/blob/f9615f9d770e035829e1ff238980d6ac6e852150/src/or/
config.c#L992

11When discussing client implementation aspects, we use the term Bitcoin
to refer to the reference client bitcoind (https://github.com/bitcoin/bitcoin).

12Bitcoin: https://github.com/bitcoin/bitcoin/blob/13f53b750dc09cb591
92b2aa4ac8e499ee36e1ca/src/chainparams.cpp#L127, Monero: https://github.
com/monero-project/monero/blob/75563db6e36f044ca0fd08722e2b29a3c950
430a/src/p2p/net_node.h#L133.

13Bitcoin DNS seed operator policy: https://github.com/bitcoin/
bitcoin/blob/57b34599b2deb179ff1bd97ffeab91ec9f904d85/doc/dnsseed-
policy.md.

844 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Ethereum has a list of IP addresses along with the public
keys of the peers hard coded into the client.14 Other methods
for bootstrapping include IRC channels (e.g., used by Gnutella
and formerly used by Bitcoin).

In-band peer discovery can be used once at least one
connection to another peer is established. Clients can either
request IP addresses from their neighbors or clients can
send IP addresses unsolicited to their neighbors. The require-
ments performance and DoS resistance are affected by the
peer discovery, because it determines the speed of estab-
lishing connections. The requirement topology hiding is also
affected, because in-band peer discovery can be used to infer
connections between peers.

Discussion: The announced IP addresses should be reach-
able with substantial probability, i.e., a successful connection
to the announced address should have been made in the past.
However, the announced IP addresses should not indicate the
connections of a peer. If a client naively announced its neigh-
bor’s IP addresses as reachable peers, adversaries could easily
infer the connections of that client. However, as peers join
and leave the network, it is important to distinguish between
peers that are still online and peers that already went offline.
Otherwise, old IP addresses keep being announced on the
network because they were reachable in the past. A detailed
analysis of these tradeoffs is presented in Section VI.

Examples: Bitcoin clients can request IP addresses
from their neighbors by sending GETADDR messages.
Furthermore, clients can send IP addresses unsolicited to
their neighbors. Peer discovery has been successfully used to
infer the network topology of the Bitcoin P2P network [56].
Ethereum uses a Kademlia-like [54] system to discover IP
addresses of peers based on their public key.15 This mecha-
nism was vulnerable to eclipse attacks [53].

2) Neighbor Selection: The main goal of neighbor selec-
tion is the establishment of connections to other peers so that
the requirements of the system (e.g., performance, DoS resis-
tance) are satisfied. Generally speaking, a peer can choose
to which peers it establishes outgoing connections and from
which peers it accepts incoming connections. For this decision,
the following questions need to be answered:

• Which information sources are available for the assess-
ment of remote peers?

• How many outbound connections are established? How
many inbound connections are accepted?

• Does the selection of neighbors aim at creating a certain
network topology?

• Are connections maintained for as long as possible?
• Is the correct functioning of connections monitored?
Information Sources: Once a client has a set of possibly

reachable IP addresses obtained through peer discovery, the
client can either randomly select peers to connect to from
that set, or discriminate remote peers based on information
about that peer. Discriminating remote peers can be advanta-
geous in order to (1) prevent adversaries from monopolizing

14https://github.com/ethereum/go-ethereum/blob/79b11121a7e4beef0d0297
894289200b9842c36c/params/bootnodes.go

15https://github.com/ethereum/devp2p/blob/master/rlpx.md#node-discovery

all connections of a client (i.e., improving DoS resistance),
or (2) enhance the performance or reduce bandwidth cost by
creating certain network topologies.

Discussion: A peer can utilize three types of informa-
tion about foreign peers: (1) only the IP address and static
information associated with it, (2) information based on own
observations in the past, (3) information provided by others.
The IP address of a peer can be used to identify, e.g., from
which IP address ranges, autonomous systems, or geographic
regions other peers come from. It is known to the client even
before a connection is established. On the other hand, using
information based on own observations requires the previous
establishment of connections to that peer.16 Using informa-
tion provided by other peers on the network (i.e., reputation)
is vulnerable to Sybil attacks [24]. Hence, one or more trusted
entities providing that information are required.

Examples: IP address information is used in Bitcoin to limit
the number of outgoing connections per IP address range in
order to improve DoS resistance by preventing the client from
establishing too many connections to adversaries with limited
IP address resources. Furthermore, taking AS level information
into account has been proposed for Bitcoin [4] and Tor [42].
Information based on own observations is used in Bitcoin to
blacklist IP addresses that were misbehaving in the past for a
certain amount of time. Tor uses trusted directory authorities
to provide information such as available bandwidth and avail-
ability (i.e., uptime) to clients in order to mitigate Sybil attacks
with only a short duration and also to enhance performance
by providing information required for load balancing.

Number of Connections: The most basic parameter of the
attachment strategy is the number of connections a peer
establishes, both, inbound and outbound. Typically, a client
establishes a certain number of outgoing connections and
may allow up to a certain number of incoming connections.
The number of connections is mainly a tradeoff between the
cost of participation on the one hand and performance and
DoS-Resistance on the other hand.

Discussion: In a flooding network, the bandwidth cost of a
peer increases in the number of connections. When naively
flooding messages, the increase is linear in the number of
connections as every message will be sent over every link
once. However, using a two-legged process for flooding (see
Section V-B), where new messages are first announced and
only sent on request, can reduce the overall bandwidth cost to
be sublinear in the number of connections. To which peers
a client is connected has no significant effect on the total
bandwidth cost.

A large number of connections per peer can reduce the
propagation delay if the communication strategy makes use of
the connections. Many connections can also lead to a reduc-
tion in the network diameter, improving propagation speed
and enhancing robustness of the network. The required effort
for an adversary to isolate a single peer from the network or
to partition the whole network increases with the number of

16Without any identification mechanism of peers, a peer’s identity can only
be coupled to the IP address it uses. With dynamic IP addresses, this can lead
to false association of information and peers.

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 845

connections the clients establish. Many models for the analy-
sis of the effect of the number of connections on performance
and security properties of the network have been published
(e.g., [1] and [2]).

Examples: The default number of outgoing connections for
Bitcoin is 8. It has been proposed to increase this number in
order to enhance DoS resistance [41].

Incoming Connections are less trustworthy than outgoing
connections, because even a very limited adversary (i.e., a
small number of Sybil peers) can establish a large number
of incoming connections to other peers. The maximum num-
ber of incoming connections is, as with the total number of
connections, a tradeoff between the cost of participation on
the one hand and performance and DoS-Resistance on the
other hand. However, DoS resistance increases less with more
incoming connections than with the same number of outgoing
connections.

Discussion: Allowing a large number of incoming con-
nections enables other peers to establish (more trustworthy)
outgoing connections. Furthermore, it is the only possibility
for clients that are not able or willing to accept incoming con-
nections to establish connections to the network at all. These
peers, although not publicly offering their service, help in con-
necting the network further, and these peers are hard to identify
and attack for adversaries without access to core infrastruc-
ture. Hence, allowing incoming connections to be made also
improves DoS resistance for the peer itself.

The fact that adversaries can easily establish a large num-
ber of incoming connections led to the discussion of several
options. In order to prevent information eclipsing, it was
proposed to not allow incoming connections when accepting
zero confirmation payments in Bitcoin [9]. While certain peers
may opt to establish only outgoing connections, the overall
network requires peers to accept incoming connections.

A primitive but still possibly effective attack is to use up all
incoming connections slot from all peers on the network. This
would prevent honest peers from establishing connections. To
increase the cost of such attacks it has been proposed to require
peers to solve a proof-of-work in order to establish outgoing
connections [3], [10], which would also increase the cost of
participation. Furthermore, it was proposed to limit incoming
connections based on IP address information [41].

Examples: The default number of allowed incoming connec-
tions in Bitcoin is 117. The number of unreachable peers in the
Bitcoin network (i.e., peers behind NATs or peers not allow-
ing incoming connections) has been estimated to be 155,000
or more in May 2017 [78]. With about 5,500 peers reachable
via IPv4 during that time, there are almost 30 unreachable
peers per reachable peer, according to the estimate.

Topology Generation: Based on the information sources
available to the client, the client can decide to which peers
connections are established. This decision affects the result-
ing network topology, which has a strong effect on the
requirements cost of participation, performance, and DoS
resistance.

Discussion: Proposals were made to increase performance
by favoring the establishing of connections to peers in geo-
graphic proximity [29]. Geographic proximity can be easily

deducted using IP address information and freely available
databases, hence, the required information can be easily
obtained. However, although this idea might improve the
network’s performance, it comes at the cost of highly reduced
DoS resistance and robustness against random failure. As the
number of long distance links such as inter-continental links
is reduced, failure of these connections due to random error
or attack can cause the network to partition.17

It might also be desirable to create network topologies with
certain node degree distributions for performance reasons. For
instance, scale free networks result in faster information prop-
agation compared to random Erdős–Rényi (ER) graphs for
larger networks [13]. However, there are several issues with
these approaches: First, in order to create a certain network
topology apart from a random graph, clients need informa-
tion about the node degree of others (e.g., in order to perform
some form of preferential attachment). This information can
only be provided by the peers itself (peer may lie about their
connection count), or by a trusted entity that is able to monitor
connections between peers. Despite their better performance,
scale free networks were shown to have a lower resistance
to targeted attacks, i.e., to an attack where the adversary
knows the network topology and attacks and removes spe-
cific peers [2]. As ER graphs exhibit a high attack tolerance it
is questionable whether it is a good idea at all to change the
network topology to not be a random graph.

Examples: One implemented example of a topology gen-
erating attachment strategy is the load balancing in Tor. A
network wide load balancing is implemented by choosing
the probability to establish a circuit through a certain peer
according to its relative bandwidth share of the whole network.

Stability: Once connections are established, clients can
either try to keep connections for the longest possible dura-
tion (i.e., keep the network topology as static as possible) or
can deliberately disconnect from connected peers after some
period and connect to other peers. The stability of the network
topology affects DoS resistance and topology hiding.

Discussion: On the one hand, a static network topology
makes it harder for adversaries to infiltrate the network with
Sybil peers, because connections between honest peers remain
as long as possible and only cease to exist due to churn or
DoS attacks. On the other hand, a static network topology
makes inferring the network topology easier, which enables
DoS attacks on central peers of the network and also facili-
tates deanonymization attacks that rely on knowledge of the
network topology (e.g., [31]).

Examples: For peers without any incoming connections it
was proposed to establish new outgoing connections between
publishing two transactions in order to avoid deanonymiza-
tion [10]. A beneficial effect of continuous changes to
the network topology has also been suggested against AS

17The distinction between error and attack tolerance of a network implies
that an adversary knows the network topology at least partially and is able
to selectively attack connections or peers. In order to enhance the DoS resis-
tance of a network it is advantageous to hide the network’s topology from an
adversary. An adversary that does not know the network topology has to fall
back to randomly attack peers of the network, which equals random failure
of peers.

846 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

hijacking based DoS attacks [4]. A detailed discussion of this
aspect is presented in Section VI.

Connection Anomaly Detection: In order to avoid being
eclipsed, a peer relies on its neighbors to relay relevant infor-
mation. Clients can monitor their connections and terminate
connections to peers that do not behave as expected. This can
improve DoS resistance but can also enable DoS attacks.

Discussion: One scenario in eclipsing attacks is that the
adversary tries to monopolize all connections of a peer by
inserting Sybil peers that stop relaying messages to the peer
at some point in time. In order to counter such attacks a client
could monitor the rate at which neighbors relay messages. If
that rate is significantly lower than the rate observed in the past
(or by other neighbors), the client should establish additional
connections to avoid being eclipsed. Obviously, the message
rate varies over time so that false positives and false negatives
can occur. However, as the cost of temporarily establishing
more connections is low, clients at risk of being eclipsed
should employ this measure to enhance DoS resistance.

In case a client observes a significantly lower message rate
from a certain peer, the client could choose to terminate the
connection to that peer. On the one hand this would make
monitor and Sybil attacks more expensive as the peers of the
adversary are then required to relay messages to their neigh-
bors. On the other hand, such a measure would detain users
with minimal resources to passively participate in the system.

Examples: Bitcoin monitors connections in the sense that
neighbors which send messages not compliant with the pro-
tocol are disconnected and blacklisted. This mechanism has
been exploited to disconnect Tor exit nodes from the Bitcoin
network [11], i.e., exploiting an anti-DoS mechanism for a
DoS attack. Anomaly detection was also proposed to include
metrics such as the round-trip time to neighbors in order to
detect other kinds of attacks (e.g., attacks on routing) [4].

Although anomaly detection has been proposed in the past,
there is a lack of models that actually can be used for mon-
itoring and detection. Such models should reliably predict
message rates and provide configuration options for balancing
the affected tradeoffs.

B. Communication Strategy

Whenever a client creates a new message (e.g., a transaction
or block in Bitcoin), that message needs to be disseminated to
all other peers on the network. As the creating client is only
connected to a small number of peers, it relies on other peers
that relay the message to all other peers. The communication
strategy of a client decides at runtime for all messages received
in the past, which of these messages are relayed to which
neighbors at which point in time and how this relaying is
implemented.

For this decision, the following questions need to be
answered:

• Which information sources are available?
• Are messages pushed or announced and pulled?
• To which neighbor are messages relayed?
• When are messages relayed?
• Is each message treated separately or are messages

aggregated?

Information Sources: The client can either treat each mes-
sage equally, or adapt the communication strategy according
to additional information on the message.

Discussion: Strategies might use the content of the message
in order to decide relaying times and peers. In contrast to the
message content, which serves the actual application, addi-
tional meta information can be sent along with the message
to provide information to the communication strategy of other
peers. Finally, side-channel information can be any informa-
tion transmitted via the network or collected locally that can
be used by the client.

Examples: One example for using the content of the mes-
sage is the different treatment of blocks and transactions in
Bitcoin, where blocks are immediately relayed whereas ran-
dom delays are applied before relaying transactions. Another
use of the message’s content can be to treat own messages
(e.g., transactions created by the user of the client) differently
from relayed messages. That way, a dissemination strategy that
enhances anonymity (at the cost of other goals) can be used
for initial sending of a message only. Further relaying of the
message can then utilize strategies with better performance.

Dandelion [77] proposes to use a two phase communication
strategy and to indicate the current phase via metainformation
attached to the message. Clients can then apply the currently
selected phase of the communication strategy in order to
enhance anonymity.

Meta information could also be used as a general means for
users to express their personal tradeoff between anonymity
and performance for a certain message by setting a sug-
gested mean message delay value. As the meta information
is relayed to a client’s neighbors, even for the weakest
adversary models the adversary learns of this information.
Hence, the use of meta information only makes sense if
the advantages in a better communication strategy outweigh
the disadvantages of an additional information source for the
adversary.

Side-channel information is used when Bitcoin SPV clients
tell their neighbors which transactions should be relayed by
sending a bloom filter. Because bloom filters can be used to
attack the anonymity of users, the design of privacy-preserving
bloom filters [45] should be considered. Other proposals to
use side-channel information include to send Canary status
messages upon detection of double spends [65].

Push vs. Announce and Request: A protocol can be designed
to directly relay (push) new messages to neighbors, or it can
be designed to use a two-legged process where new messages
are first announced to neighbors using some form of ID (e.g.,
the messages hash value). The neighboring client can then
check whether the message has already been received and can
request the message if necessary (announce-and-request). This
aspect is mainly a tradeoff between performance and cost of
participation.

Discussion: Push results in a faster propagation than
announce-and-request. When pushing a message, only one
latency between peers elapses until the message is delivered,
with announce-and-request three latencies elapse.

The average bandwidth cost of both approaches can be cal-
culated given the average size of messages (sm), the size of

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 847

the ID (sh), and the probability of request (pr). The aver-
age bandwidth cost per message per connection is sm for
a push strategy, and sh + pr (sh + sm) for an announce-
and-request strategy. The relative bandwidth saving can be
calculated as sh/sm(1 + pr) + pr . For instance, assuming
sh = 32Bytes, sm = 500Bytes and pr = 1/16, which is a
very rough estimate of the parameters for Bitcoin transactions,
announce-and-request only consumes 13 % of the bandwidth
of push.

Only in cases where the additional latency is significant,
or where the messages are very small compared to their ID
and the probability of request is very high (i.e., in sparsely
connected networks), a push protocol is favorable. Even in
these systems, peers still need to provide a mechanism for
other peers to request messages. For instance, new participants
in blockchain systems need to access historic data in order to
verify new messages.

Examples: When using announce-and-request, clients need
to keep track of requested messages and monitor whether the
message is in fact delivered by the remote peer. The timeout
mechanism used in Bitcoin for that purpose was vulnerable
to a DoS attack where an adversary announces new blocks
to the victim, but does not deliver the blocks [37]. The block
synchronization mechanism in ethereum was also vulnerable
to an attack that delayed the reception of valid blocks at remote
peers [82]. Proposed countermeasures include using dynamic
timeouts, penalizing non-responding peers or requesting the
message from multiple peers [37].

For the transmission of blocks in Bitcoin it has been
proposed to announce a new block by sending the block
header, which is only 80 Bytes. Furthermore, an extension to
the Bitcoin protocol reduces the required bandwidth of block
propagation by replacing complete transactions in blocks by
short transaction IDs [17]. This is possible because most trans-
actions have been previously received by peers through the
transaction propagation process. Transactions that have not
been previously received can be requested subsequently from
the remote peer.

Flooding vs. Gossip: When a message has been received
or created, the client has to decide to which of its neigh-
bors the message is relayed. Messages can be relayed either
to all neighbors (flooding), or to a (randomly selected) sub-
set of neighbors. This decision mainly affects the requirements
performance, cost of participation, and DoS resistance, but can
also affect anonymity.

Discussion: Flooding has a higher bandwidth cost compared
to gossiping. However, when using an announce-and-request
protocol, the bandwidth cost does not increase linearly in the
number of selected neighbors. With an increasing number of
selected neighbors the probability that these neighbors already
have received the message increases, thus eliminating the need
to relay the message itself.

Not relaying messages to certain neighbors has the same
effect as not having a connection to these neighbors. Therefore,
it has the same negative effect on DoS resistance as a small
number of connections in a very dynamic network (i.e., with
quickly changing connections). As the subset of neighbors is
randomly selected (e.g., for each message), there is a risk that

certain messages do not propagate through the whole network.
How large that probability is, given a certain network topology
and relay probability has been analyzed for decades in the field
of epidemic spreading (e.g., [66]).

Examples: The Bitcoin client uses flooding. The first phase
of the proposed Dandelion strategy relays messages to one
neighbor peer only, which can be seen as a gossip strat-
egy [77]. It was also proposed to route messages along certain
paths to miners [27].

Relay Delay: Clients can not only decide to which neigh-
bors they relay messages, but also when. This decision
mainly affects the requirements performance, anonymity, and
topology hiding.

Discussion: The decision when to relay a message can be
deterministic or probabilistic. An example for a deterministic
approach would be a time-slotted system which rebroadcasts
all messages received within a certain time slot at the end of
that slot. An example for a probabilistic approach would be
a system where upon reception of a message a random delay
according to some probability distribution is used to calculate
the sending time.

Deterministic decisions might be better from a performance
perspective in cases where strict bounds on the information
propagation delay are required. For these cases (e.g., real-
time requirements), however, the considered systems are in
general unsuitable. Indeterminism can be beneficial for topol-
ogy hiding and anonymity as the attacker has incomplete
knowledge of the probabilistic process and can only model
the used probability distribution and not the outcome of each
single decision. Obviously, deliberately delaying messages
reduces the propagation speed, i.e., there is an inherent trade-
off between performance on the one side and topology hiding
and anonymity on the other side. A more detailed analysis is
presented in Section VII.

Examples: Bitcoin delays the relaying of messages accord-
ing to an exponential distribution.

Message Accumulation: So far, we have only considered one
message at a time and considered several messages and their
relaying times and neighbors to be independent. However, a
client could aggregate multiple messages so that they are sent
at the same time, which can reduce bandwidth costs by reduc-
ing the required control data (e.g., packet header). It can also
affect the requirements performance, anonymity, and topology
hiding.

Discussion: Message accumulation only makes sense when
clients do not rebroadcast messages immediately, because only
then the collection of messages is possible. Besides reducing
bandwidth costs, it can be more efficient from a software engi-
neering perspective to maintain only one queue per neighbor
with one potential sending time instead of maintaining one
sending time per message.

Message accumulation can reduce the average relay delay
depending on the number of aggregated messages: messages
that enter a queue that already contains many messages may
be sent early because their time of sending has already
been scheduled before they have been received by the client.
Message accumulation might improve topology hiding and
anonymity because it adds more entropy that is unknown to

848 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Fig. 3. Exemplary design choices and their effects (solid green = positive, dashed red = negative) on the fulfillment of requirements. For each shown aspect
two possible choices are given (e.g., a short and a long relay delay). Redundant effects (e.g., if a short relay delay has a positive effect on performance, a
long relay delay obviously has a negative effect on performance) are omitted for the sake of better readability.

the attacker as sending times depend on message receptions
the attacker does not know about. However, the accumulation
of messages might also enable new fingerprinting possibili-
ties. Active adversaries can, for example, regularly send new
messages to a remote peer and can infer the time the remote
peer received a certain message from another peer based on
the other messages that are within the same aggregated set.
No extensive analysis of these fingerprinting possibilities has
been published so far.

Examples: Bitcoin uses message accumulation by maintain-
ing one queue of outgoing messages per neighbor. Messages
to be relayed to that neighbor are appended to the queue and
the sending time of all messages in the queue is determined
when the queue was previously flushed.

C. Remarks

Based on the implementation of real-world permissionless
blockchains we structured the design space of the network
layer into several aspects. Fig. 3 sketches the effects of exem-
plary design choices on the fulfillment of requirements. Fig. 3
can be read in several ways: First, assuming a fixed set of
design decisions (e.g., taken from an existing system), one
can qualitatively assess the fulfillment of each requirement.
Secondly, assuming a fixed importance of each requirement
(e.g., based on the envisioned application during the design
of the network layer), one can derive design decisions that
support the important requirements. Furthermore, the figure
shows which design options can be enabled by relaxing cer-
tain requirements. For instance, if anonymity is not required
in a certain scenario, the relay delay might be shorter, which
enhances performance and DoS resistance.

A more general observation can be made regarding the pre-
vailing tradeoffs between requirements: With the exception

Fig. 4. Qualitative effect of the number of connections on the requirements
performance, DoS resistance and cost of participation (CoP).

of the aspect topology generation, all sketched design deci-
sions either benefit the requirements performance and DoS
resistance or the requirements topology hiding, cost of partic-
ipation, and anonymity. This also implies that there are only
few tradeoffs between performance and DoS resistance and
between topology hiding, cost of participation, and anonymity.
Roughly speaking, achieving performance and DoS resis-
tance requires peers to send more data, whereas achieving
anonymity, a low cost of participation, and topology hiding
requires peers to send less data.

While only two design choices per aspect are sketched in
Fig. 3, design choices are typically not binary. For instance,
the number of connections can be anywhere between one
and the total number of reachable peers. Fig. 4 depicts the
effect of the number of connections on the fulfillment of
the requirements performance, DoS resistance, and cost of
participation. Because a minimum number of connections is
required for the network to be connected (i.e., to have a path

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 849

between any two peers), any design with less than that num-
ber becomes unusable (i.e., performance and DoS resistance
are not sufficient). While increasing the number of connec-
tions substantially enhances performance for a small number
of connections, the effect diminishes with a higher number
of connections. On the other hand, the cost of participation
increases linearly with each new connection. Therefore, there
is a certain range in which the inherent tradeoff should be
adjusted to satisfy the requirements.

While we discussed each aspect individually, there are inter-
dependencies between certain aspects. Obvious dependencies
are the available information sources and how the informa-
tion is used (e.g., increasing the number of connections based
on anomaly detection, increasing the relay delay based on
network statistics). In order to comprehensively assess the
fulfillment of a requirement in a certain design, all aspects
that affect a requirement (see Table I and Fig. 3) need to be
considered.

Finally, the design of the network layer is, with few excep-
tions, only limited by the creativity of the designer. Hence,
while covering a wide range of aspects, no claim of com-
pleteness can be made. Having described the design space
and implications of design decisions facilitates the detailed,
quantitative analysis of certain aspects as demonstrated in the
following sections.

VI. IN-BAND PEER DISCOVERY

In the previous section we discussed a large number of
aspects and qualitatively discussed tradeoffs associated with
each aspect. For most aspects, no models exist in the literature
that allow a quantitative analysis of the effect of certain design
decision on the requirements. Motivated by this lack of mod-
els, we pick two aspects to demonstrate directions of future
research. In this section, we explore how the design of the in-
band peer discovery strategy affects the requirements topology
hiding, DoS resistance, and performance of a network, and
demonstrate a method for quantitatively assessing the quality
of a peer discovery strategy.

A. Strategy Requirements & Tradeoffs

It is important that a client is able to quickly establish out-
going connections, not only from a performance perspective
but also for DoS resistance. In the event of an eclipse attack
a client should be able to react on the loss of connections
caused by the attack by the establishment of new connec-
tions. Metrics that reflect this ability are the total number of IP
addresses and the number of reachable addresses in a client’s
address list. The total number of reachable addresses gives
an upper bound on the number of successful connections a
client can establish, the share of reachable addresses indicates
the probability of successfully establishing a connection per
connection attempt, assuming the client tries to connect to
randomly chosen addresses.

Another requirement that is affected by the peer discovery
strategy is topology hiding as an adversary can infer con-
nections between peers based on the address messages peers
send to their neighbors [56]. Metrics that indicate the success

of an adversary are precision and recall for the classification
problem of whether a direct connection between two peers
exists.

Intuitively we expect that the choice of parameters of the
peer discovery strategy has an oppositional effect on the two
requirements. For instance, a configuration that sends a large
number of IP addresses at short time intervals with precise
timestamps of connected IP addresses will result in a good
DoS resistance, but will also make it easy for adversaries to
infer the network topology. We will quantitatively analyze the
tradeoff between these two requirements in the next sections.

Finally, adversaries should be unable to eclipse peers by
filling their address list with IP addresses under the adver-
sary’s control and making the victim peer connect exclusively
to attacker’s peers [41]. We will discuss this requirement in
Section VI-F.

B. Strategy Description

We analyze a basic in-band peer discovery strategy that peri-
odically exchanges reachable IP addresses between connected
peers.

Every client maintains an address list l containing tuples
consisting of an IP address ai and an associated timestamp ti
(l = {(a1, t1), (a2, t2), . . .}). Every δs seconds a client sends
an address message containing n randomly (uniform) selected
entries of its address list to each neighbor. On reception of such
a message from a neighbor a client updates its own address list:
new addresses (and their timestamp) are added to the list, and
the timestamp of known addresses is updated if a newer times-
tamp than the one stored is received. When a new connection
is established to or from a client, the client adds the foreign IP
address to its address list l and randomly selects a timestamp
for that IP address from a uniform distribution U [t − δd , t]
where t is the current time and δd a configured value. When
the timestamp of a connected peer becomes smaller than t−δd ,
a new timestamp is set according to the same uniform distri-
bution (U [t−δd , t]). This strategy ensures that the timestamps
of all connected peers are always newer than the current time
minus δd , hence δd represents the maximum age of connected
IP addresses in a peer’s address list. Finally, addresses with
timestamps smaller than t − δx are removed from a client’s
address list, with δx being a configurable parameter.

The described strategy is very simple and can be config-
ured using only the parameters n, δs , δd , δx . However, there
are many more changes possible, e.g., the timestamp of con-
nections could follow other probability distributions than the
used uniform distribution, the subset of addresses to be sent to
neighbors could be biased based on the timestamp, or the num-
ber of addresses to be sent could depend on the total number
of entries in a client’s address list or the connection duration.
However, we will limit our analysis to the described strategy
with its parameters and leave a more detailed assessment as
future work.

C. Adversary Model

The adversary wants to infer the topology of the network
based on information leaked by the peer discovery mechanism.

850 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

For now we will assume a passive monitor adversary that
establishes connections to peers and receives the announced
addresses from its neighbors. A discussion of other adversary
models is made in Section VI-F. We assume that the adversary
knows all chosen parameters as well as all required parame-
ters of the network (e.g., node degree distribution). Consider
the example of an adversary that wants to know whether two
peers, p1 and p2, are directly connected. Let us consider the
case that the adversary is connected to p1 only. One observa-
tion o ∈ O by the adversary is the reception of one address
message from p1 containing a subset of p1’s address list. One
observation can be either the age of the IP address of p2 or
the fact that the IP address of p2 is not contained in the sent
list, i.e., o ∈ R+ ∪ {⊥} (o = ⊥ implying that the IP address
of p2 is not contained in the sent list).

Let C be the random variable modeling the existence of a
connection between two peers (i.e., C = 1 if both peers are
directly connected, C = 0 otherwise). The maximum likeli-
hood estimator (MLE) for a set of observations O maximizes
the likelihood function

L(C = c|O) = P(C = c) ·
∏

o∈O
P(o|C = c)

for c ∈ {0, 1}. In order to utilize the MLE, an adversary
requires knowledge of the probability distributions P(C = c)
(i.e., the a-priori probabilities of two peers being connected)
and P(o|C = c) (i.e., the probability of making a specific
observation o conditional to both peers being connected or
not connected, respectively). Combining knowledge about the
client source code with statistic properties of the network into
a simulation model allows approximation of both probability
distributions for real-world systems.18

D. Methodology

In order to analyze the discussed peer discovery strategy,
we implemented a model of a P2P network as a discrete event
simulation.19 The simulation model has three types of events:
a peer joins the network, a peer leaves the network, and a
peer sends an address message to a neighbor. The churn of
the network (i.e., join and leave events) was taken from a real-
world measurement on the Bitcoin network: our monitor peer
establishes connections to all reachable peers on the Bitcoin
network. Every new connection to the monitor peer translates
to a join event, every disconnect translates to a leave event. The
simulation was performed with a one week snapshot from May
29th, 2017 until June 5th, 2017. During that period, our moni-
tor peer established connections to 35,000 unique IP addresses.
On average around 9,000 peers were concurrently reachable
during that period, which is also the size of the simulated

18P(o = ⊥|C = 1) is calculated by dividing the parameter n (the number
of IP addresses a client sends) by the total number of addresses in the client’s
address list. Both values can be approximated by the adversary from the client
source code. P(o = ⊥|C = 0) is calculated as P(o = ⊥|C = 1) multiplied
by the probability that a client has the IP address in question in its list.
An adversary with knowledge of the client source code and basic statistic
properties of the network (e.g., number of nodes, churn) can approximate
that probability by simulation. That way, an adversary can also derive P(o |
C = 1) and P(o | C = 0) for o �= ⊥.

19https://github.com/tillneu/peerdiscovery-sim

Fig. 5. Measured number of unique IP addresses of the Bitcoin P2P network
to which connections were established per day during the year 2017.

network. All simulations were performed for the duration of
one simulated week.

Although the use of a specific snapshot from the Bitcoin
network for parametrization of the simulation reduces gen-
erality of the obtained results, the selected snapshot is a
representative sample of the Bitcoin network in 2017: Fig. 5
shows the number of unique IP addresses to which connections
were established per day during the year 2017. While there
were anomalous events during that year (e.g., several thousand
Sybil peers on August 1st), no such event occurred during the
considered time frame. Furthermore, the observed connection
duration distribution during that time frame is consistent with
the distributions observed during most of the year. Finally,
other measurements of the Bitcoin network20 are in corre-
spondence to our measurements. We will discuss whether the
results can be generalized to other networks in Section VI-F4.

When a peer joins the network in the simulation, it estab-
lishes 8 outgoing connections to randomly selected peers.
When a peer leaves the network, other peers that established
an outgoing connection to the leaving peer establish new out-
going connections to other randomly selected peers so that the
total number of outgoing connections remains 8. This behavior
matches the behavior of the Bitcoin client.

The address send event implements the described strat-
egy. The simulation does not account for latencies between
peers because these are typically in the milliseconds range
and, therefore, irrelevant for our analysis. We also ignored
unreachable peers during the simulation but will discuss the
effect of unreachable peers on the results later. The simulation
also allows us to directly observe all probability distributions
(see Section VI-C) required for the adversary. We simulate the
adversary by providing all these probability distributions and
observations to the simulated adversary and letting the adver-
sary guess whether peers are connected or not. This implies
that our adversary has perfect knowledge, which is almost
impossible to achieve in reality.

E. Results

We will now first discuss simulation results regarding DoS
resistance and then discuss results regarding topology hiding.
We fixed the address send interval δs to one hour and the
address deletion age δx to 24 hours for all simulation runs.

20Publicly available data sources include https://bitnodes.earn.com/ and
http://bitcoinstats.com/network/propagation/.

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 851

Fig. 6. Average number of IP addresses in all client’s address lists.

Fig. 7. Average recall depending on the number of observations |O|.

Parameters that were varied were the number of addresses to
send n and the maximum age of connected IP addresses δd .

Fig. 6 shows the average number of IP addresses (total and
reachable only) in all client’s address lists for n ∈ {10, 100}
depending on δd . For n = 100 the average total number of IP
addresses is around 5,500 for δd < 100 minutes. The aver-
age number of reachable IP addresses is around 3,700 for
δd < 100 minutes. For very large choices of δd , the total
and reachable number of IP addresses decline. With n = 10
a similar behavior can be seen, although the overall numbers
are much smaller (less then 1,000).

The results indicate that the discussed peer discovery strat-
egy works well over a wide range of parameter choices. Even
when configured to sending only 10 addresses per hour per
neighbor (n = 10), the address list of peers still contains
around 600 reachable IP addresses on average. Furthermore,
the effect of the choice of δd is negligible for δd < 100 min-
utes. Please note that the given values are averages over all
peers after one week of simulated time. Peers that remain in
the network for a long time and have established many con-
nections have more entries in their address list than peers that
joined the network just a short time ago. Furthermore, the
session length distribution of peers affects the share of reach-
able IP addresses: a large number of short living peers would
increase the total number of IP addresses but would contribute
less to the number of reachable IP addresses.

Based on these results we chose three parameter sets for
analysis of a topology inference attack. We fixed the number
of addresses to send to n = 100 and simulated a topology infer-
ence attack for δd ∈ {0.16min, 85min, 683min}. δd = 0.16min

Fig. 8. Average precision depending on the number of observations |O|.

and δd = 683min represent extreme choices (corresponding to
the outermost points in Fig. 6), δd = 85min corresponds to a
choice where, based on the results from Fig. 6, no significant
deterioration of DoS resistance can be expected.

Fig. 7 shows the expected recall depending on the number
of observations |O|. Recall is defined as the quotient of true
positives and relevant elements, i.e., the share of existing con-
nections the adversary infers. As expected, the recall rises in
the number of observations and also rises with decreasing δd .

Fig. 8 shows the expected precision depending on the num-
ber of observations |O|. Precision is defined as the quotient
of true positives and all inferred elements, i.e., the share of
inferred connections that actually exist. For δd = 0.16min the
precision is close to 1 regardless of the number of observa-
tions. For the other δd , the precision increases with the number
of observations.

F. Lessons Learned, Discussion & Open Issues

We will first discuss the implications of the shown results
before we address various aspects of the adversary model
and the discussed strategy. Finally, we discuss the used
methodology in general.

1) Results: Assume a configuration with δd = 85min and
n = 100. Our results then show that an adversary that is able to
obtain 100 observations from a certain peer is able to identify
55 % of the neighbors of that peer with very high precision
(i.e., almost no false positives). With the setting of δs to one
hour, an adversary that only connects to that peer would have
to wait 100 hours. A monitor adversary that connects to all
reachable peers would only need to wait 50 hours to obtain
100 observations for each pair of peers because he receives one
address message per hour from every peer. By using more than
one monitor peer an adversary can easily reduce the required
time to collect the desired number of address messages.

One important requirement for the adversary is that the
network topology does not change while making observations.
Measurements on the Bitcoin network show that roughly 40 %
of all connections exist for periods longer than one week.21

In these cases even an adversary with one monitor peer would

21https://dsn.tm.kit.edu/bitcoin

852 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

be able to collect enough address messages to identify a
substantial share of connections of peers.22

2) Adversary Model: The adversary model we considered
in this analysis is in some aspects stronger than what we expect
a real adversary to be (e.g., perfect knowledge of all relevant
parameters and distributions), however, there are other aspects
where a stronger adversary model might be appropriate. First,
we assumed the adversary to be passive. In reality, an adver-
sary can easily actively transmit its own address messages to
other peers.

A very simple attack is to flood unreachable IP addresses
to other peers so that the share of reachable IP addresses
decreases. The number of IP addresses an adversary can send
per connection is limited by the choice of n/δs and the expi-
ration duration δx . For instance, with δs and δx as before
and n = 100, an adversary can send up to 2400 unreach-
able IP addresses per connection in 24 hours. Even with 100
adversarial connections, the share of reachable IP addresses
would still be around 1.5 %, implying that a connection can
be established within a few minutes or less. Furthermore, the
required memory to store all addresses would be less than
10 MB. Hence, this attack is not viable for most scenarios.

A known attack is to eclipse peers by filling their address
list with IP addresses under the adversary’s control and mak-
ing the victim peer connect exclusively to attacker’s peers [41].
If a client selects IP addresses from its address list randomly
for establishing connections, the adversary has no other option
than to announce the IP addresses of his peers and hope that
the victim peer connects exclusively to his peers. In the ana-
lyzed case, an adversary has to spawn more than 40,000 peers
and announce their IP addresses in order to eclipse a peer with
8 outgoing connections with a probability of 50 %.23

Furthermore, the considered MLE is only optimal assum-
ing independence between several observations. Adversaries
could exploit further information such as the differences in
timestamps of certain IP addresses between several observa-
tions. Also, partial knowledge of the network topology might
enable an adversary to not only exploit information received
from peers p1 and p2 in order to infer whether a connection
between p1 and p2 exists, but also to facilitate information
sent by other peers (e.g., the neighbors of p1 and p2).

3) Strategy: Although the analyzed peer discovery strat-
egy is very simple, the results indicate that an adequate
parametrization of the strategy could already satisfy the con-
sidered requirements to a reasonable extend. In scenarios with
stronger requirements, several changes to the strategy are pos-
sible: In order to prevent too many connections to peers
from small IP ranges or the same AS, simple checks can be
implemented after the random selection of IP addresses from
the address list. Selecting IP addresses biased towards new
addresses might improve performance, however, it can be eas-
ily exploited by adversaries to increase chances of connections

22Although some parameters were chosen in accordance with those in
Bitcoin, our results are not directly applicable to the Bitcoin network because
neither the discussed peer discovery strategy nor the network topology
matches the ones in Bitcoin.

23Calculated as: (number of adversarial peers / total number of reachable
IP addresses in l)8 = 0.5: 40000/437008 ≈ 0.49.

to its own peers. Therefore, a random selection is prefer-
able. A possibility to improve performance and DoS resistance
at the cost of higher bandwidth cost proposed in [41] and
implemented in Bitcoin24 is to continuously check whether IP
addresses are reachable. This drastically reduces the share of
unreachable IP addresses.

The fact that the topology of a changing network is harder
to infer suggests the idea to deliberately disconnect from
neighbors after a certain period and regularly establish new
connections to other peers.25 If topology hiding is considered
extremely important in a certain system, clients could apply
a notion similar to the privacy budget known from differen-
tial privacy [25] to its own connections. Sending messages
that allow an adversary to infer that connection decreases the
budget of the connection. When the budget is exceeded, the
connection is terminated. One drawback of this approach is,
however, that an instable network topology not only increases
bandwidth cost, but also reduces DoS resistance against short
term Sybil attacks. An adversary that enters the network with
a large number of Sybil peers is able to thin out connec-
tions between honest peers much faster in a changing network,
as peers will establish connections to the Sybil peers faster.
Therefore, a thorough analysis of all implications of such an
approach is required.

4) Methodology & Lessons Learned: The used simulation
based methodology enables a precise analysis of highly irreg-
ular systems with possibly complex strategies. However, the
results we obtained are valid only for the considered model,
which consists of a network parametrization obtained from
snapshots of the Bitcoin P2P network, and a basic in-band peer
discovery strategy. If the results should be applicable to a real-
world system, the simulation model has to be parametrized so
that it matches the real system. For instance, if the real-world
system has a much higher churn with peers being reachable
for much shorter durations than peers on the Bitcoin network,
this parameter has to be modeled accordingly. Obviously, the
results for such a network can differ vastly from the results
presented here.

One typical challenge in the process of modeling real-world
systems is the lack of precise estimations for certain parame-
ters. Even though some parameters are known (e.g., behavior
from the client source code) and others can be easily mea-
sured (e.g., number of reachable peers), other parameters are
hard to measure and need to be estimated (e.g., the num-
ber of unreachable peers). Actually, the networks created by
permissionless blockchains are designed to hide certain param-
eters in order to enhance anonymity and topology hiding. We
emphasize that the lack of a precise estimation for a parameter
does generally not prevent meaningful simulation results. First,
the effect of an unknown parameter on the results might be
small. Simulations enable straightforward sensitivity analysis
by variation of the parameter in question [43]. Furthermore,
often reasonable assumptions can be made that make a precise
estimation of a parameter not required. For instance, in our

24https://github.com/bitcoin/bitcoin/blob/5114f8113627791b871c88998bd/
src/net.cpp/#L1756

25This idea has been proposed for structured P2P networks [15].

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 853

analysis we chose to set the number of unreachable peers to
zero for two reasons. First, a client could check whether a
neighbor is actually reachable before adding the neighbor’s
IP address to the local address list. This would completely
eliminate any effect of unreachable peers on any of the ana-
lyzed metrics. Secondly, even if clients do not perform such a
check, only the average total number of IP addresses in client’s
address lists would increase (see Fig. 6). This would reduce
the share of reachable IP addresses linearly in the number of
unreachable peers.

Another observation, which can be made from the analy-
sis of the peer discovery mechanism, is that often more than
one modeling approach is required in order to model the
system. For instance, the main model we use is a discrete
event simulation model which captures the behavior of peers.
However, we also have to model the adversary (within the sim-
ulation), which is done using a maximum likelihood estimator,
which requires a closed form stochastic model. During such a
research process, errors can be made using any chosen method
(e.g., implementation errors in the simulation, making false
independence assumptions in stochastic models). One advan-
tage of applying multiple methods is the possibility to cross
validate each model (and implementation) with the other mod-
els. While this can be challenging, if the methods are at vastly
different abstraction levels, one can reduce this abstraction gap
by using additional methods. For instance, simple Monte Carlo
simulations turned out to be very effective at detecting errors
in realistic discrete-event simulations, as well as in analytical
models.

VII. COMMUNICATION STRATEGY: RELAY DELAY

We already emphasized the lack of quantitative models for
the analysis of most of the aspects discussed in Section V.
While quantitative models can be used for the analysis of
existing strategies, such models can also be utilized to find
optimal parametrizations for certain strategies. In this section
we give an example that shows how the relay delay of the
communication strategy can be optimized for topology hid-
ing and performance. Our approach optimizes the relay delay
in a simplified scenario, and serves as an example for the
underlying optimization problem.

A. Strategy Requirements & Tradeoffs

It is important that messages are disseminated quickly
through the network, in order to reach consensus on the
transmitted information. Therefore, any deliberate delay of
messages negatively affects performance. On the other hand,
immediately rebroadcasting messages enables attacks on the
anonymity of users and also allows inference of the network
topology. Therefore, the chosen relay delay should balance the
system’s requirements regarding performance on the one hand,
and anonymity and topology hiding on the other hand.

B. Strategy Description

We consider a simple relay delay strategy that delays
every message independently using a given delay function d.
Messages are not accumulated, messages are directly pushed,

Fig. 9. Considered scenario: The adversary M wants to infer whether S
and T are directly connected (left side), or whether S and T are not directly
connected (right side).

and no changes to the delay function d are made during run-
time. All notation in this section is discrete, hence d is a
probability mass function (PMF) that defines the probability
that a message is delayed by a certain duration. The duration
is a discretized representation of time, e.g., time slots of mil-
lisecond precision. In this section we are interested in finding
a delay function d that optimizes topology hiding while still
providing a certain performance.

C. Adversary Model

We consider the simplified scenario sketched in Fig. 9: An
adversary M is connected to two peers S and T and wants
to infer, whether S and T are directly connected or not. The
adversary creates a message (e.g., a transaction) and sends it to
S so that S receives the message at time 0. The adversary then
waits and measures the duration δ until T sends the message
to M. δ is therefore the delay from S receiving the message
until T sends the message to M.

Consider the case that the latency between any two peers
is one time unit, i.e., the transmission of a message over one
link takes one time unit, and each peer immediately rebroad-
casts each message to its neighbors. Then, the adversary knows
that if δ = 2 then S and T are directly connected, if δ = 3
then S and T are not directly connected. In reality, the latency
between two peers is not constant but follows a probabil-
ity distribution. We assume that the latency between any two
peers follows the same distribution λ(t), which is known to
the adversary.

We will now formulate a maximum likelihood estimator that
can be used by the adversary to infer whether a direct connec-
tion between two peers exists. Let f ∗ g denote the convolution
of the (discrete) functions f and g, and let f ∗n denote the n-
th convolution power of a function f. Let H ∈ {1, 2} be the
random variable modeling the hop-distance between S and T.
H = 1 if S and T are directly connected, H = 2 if there is
one hop between S and T. The resulting distribution for the
overall delay δ equals time t conditional to the hop distance
H is then given by

P(δ = t |H = h) = (λ∗h ∗ d∗(h+1))(t). (1)

For example, if S and T are directly connected (H = 1), the
message is delayed by one link latency (the link between S
and T) and two relay delays according to d (at peers S and T).

The probability that the distance between S and T is h, given
an observed time difference of t, is given by

P(H = h|δ = t) =
P(δ = t |H = h) · P(H = h)

P(δ = t)
. (2)

854 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

P(δ = t|H = h) can be calculated using equation (1), P(δ = t)
can be calculated using the law of total probability, P(H = h) is
assumed to be known to the adversary based on statistic prop-
erties of the network. The MLE maximizes P(H = h|δ = t),
i.e., the adversary guesses the hop-distance H that is most
likely based on the observation δ.

D. Methodology

Based on the adversary model we will now derive a
delay function d that maximizes the expected error of the
adversary, i.e., which makes topology inference as hard as
possible. The expected error ed of the guess of the adversary
depends on the delay function d, and can be calculated using
equation (2) as

ed =
∑

t

[P(δ = t) · (1−max
h

P(H = h|δ = t))]. (3)

The expected error is the objective function that should be
maximized. The variable in the optimization problem is not a
scalar, but the delay function d. The optimization has to ensure
that d is a PMF (i.e., d(t) ≥ 0∀t ,∑t d(t) = 1). Furthermore,
we want to limit the expected value E(d) of d to be less
than some constant μ. The choice of the parameter μ reflects
performance constraints in the system: A small choice of μ
ensures fast message propagation, a large μ allows for slower
message propagation. The resulting optimization problem is

maximize
d

ed

subject to E(d) < μ

d is a PMF. (4)

Because d is a discrete function, (4) is a multidimensional
optimization problem, where each time step of the delay
function d is one dimension (i.e., one free variable) of
the optimization problem. The optimization problem is also
constrained (E(d) < μ and d is a PMF). However, the
optimization problem with both constraints can be trans-
formed into an unconstrained optimization problem (e.g., using
gradient projection [69]). The optimal solution to the trans-
formed problem can be approximated using common software
for optimization (e.g., we used the BFGS search algorithm
implemented in the Dlib toolkit [49]).

E. Results

We assume a scenario with a fixed latency of one time
unit between all directly connected peers (λ(1) = 1, ∀t 	=
1 : λ(t) = 0), equal a priori probabilities (P(H = 1) =
P(H = 2) = 0.5), and a maximum expected value of 10.
The top part of Fig. 10 shows the approximated optimal delay
function d̂(t). For a delay of 0 the probability peaks at around
0.42 and rapidly declines to less than 0.02, where it stays until
t = 39. The expected value of d̂ is 10, e

d̂
is 0.41. Please note

that d̂ does not decrease monotonically over time and d̂ does
not resemble any common PMF (e.g., the PMF of a binomial
distribution).

The bottom part of Fig. 10 shows P(δ = t| H = h) for the
same scenario with the optimal function d̂ for h ∈ {1, 2}.

Fig. 10. Top: Optimal d̂ . Bottom: Resulting P(δ = t| H = h) for h ∈ {1, 2}.
Parameters: μ = 0, λ(1) = 1 (0 else), P(H = 1) = P(H = 2) = 0.5.

Fig. 11. Recall depending on the number of observations for d ∈
{d̂ ,Exp(1/10),U(0, 20)}.

P(δ = t| H = h) is used by the MLE to derive the probability
for H = 1 and H = 2, based on the observed time difference
δ. We can see that P(δ = t| H=1) and P(δ = t| H = 2) are
exactly congruent between δ = 2 and δ = 19. This implies
that an observation within that range is completely useless
for the adversary. However, if the adversary observes δ = 1,
he can be sure that H = 1 because P(δ = 1|H = 2) = 0
and P(δ = 1|H = 1) > 0. If the adversary observes δ ≥ 40,
he learns that H = 2 is more likely than H = 1 because
P(δ = t |H = 2) > P(δ = t |H = 1).

Especially the observation of δ = 1 is valuable for topology
inference, because it allows the definite conclusion that both
remote peers are directly connected. While P(δ =1|H = 1) is
only around 17 % for one single observation, the probability
that at least one out of ten observations for two directly con-
nected peers is δ = 1, is already at 85 %. This property makes
d̂ a non-optimal delay function when the adversary combines
multiple observations.

Fig. 11 shows the recall (i.e., the probability that an exist-
ing connection is correctly inferred) depending on the number
of observations for d being d̂ , a uniform distribution, and an
exponential distribution (all with a mean of 10), obtained by
simulation. Although d̂ results in the lowest recall for a small

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 855

number of observations, for large numbers of observations
other distributions are better for topology hiding.

All shown delay functions result in a recall of more than
95 % for 20 observations. However, these values are a result
of the strong adversary model with perfect knowledge of all
network properties (e.g., latency, node degree distribution).
Imperfect estimation of these properties causes a decline in
inference quality [63].

F. Lessons Learned, Discussion & Open Issues

Although this example is very limited, it shows the poten-
tial of a formalization of a design decision’s tradeoffs as
an optimization problem and also indicates future research
possibilities. Finding optimal solutions for larger number
of observations requires a reformulation of the optimization
problem so that the objective function accounts for the larger
number of observations (e.g., minimize the expected recall
after n observations). Because a numerical calculation of
the expected recall is intractable even for small numbers of
observations, the optimization problem might be formulated
continuously and solved analytically, e.g., using calculus of
variations [33].

Furthermore, the considered scenario does not account for
realistic latency distributions and network topologies. Finally,
the optimization problem only covers the tradeoff between
performance and topology hiding, but does not incorporate
the requirement anonymity. With clearly formulated require-
ments, a multicriterial optimization problem could result in
design decisions that are optimal with regard to all affected
requirements.

We will now discuss possible alternatives to the used
research method and insights gained from the execution of
the approach. Many methods could be used to optimize the
relay delay mechanism, ranging from machine learning to
completely analytical approaches. For instance, we considered
the use of simulation based optimization [39], i.e., use simula-
tions to calculate the objective function. This would enable us
to consider scenarios with more complex network topologies
and multiple messages. However, we had to discard the idea,
because in the considered optimization problem, changes to
the parameters have a very small effect on the objective func-
tion. This is not a problem when the objective function can
be calculated accurately, however, it becomes a problem when
the objective function is approximated by probabilistic simula-
tions. In that case, the error induced by the probabilistic nature
of the simulations becomes greater than the changes caused by
the change of the parameters by the optimization algorithm.
This impedes the optimization, because the algorithm relies
on accurate measures of the effect of parameter changes on
the objective function. In order to improve the accuracy, the
simulation run time would have to be increased to unbearable
time spans for the considered scenario.

With the use of an analytical method comes the need for
more abstraction and tighter system boundaries. Fig. 12 visu-
alizes this relationship between the degree of abstraction of
research methods and the need for parameter and behavior

Fig. 12. Research methodology for the analysis of the network layer of
permissionless blockchains.

assumptions. For instance, in Section VI a discrete event sim-
ulation is used, which requires a parametrization based on
measurements of the real-world Bitcoin network. Furthermore,
the adversary in Section VI is modeled analytically, and used
within the simulation. Contrary, the behavior model used in
this section is purely analytical, and the parametrization is
based on simplifying assumptions (e.g., latencies are assumed
to be constant).

VIII. CONCLUSION & DIRECTIONS OF RESEARCH

The systematization of a large number of attacks showed
that many aspects of the network layer of deployed
blockchains were vulnerable in the past. Based on these threats
we identified the security requirements anonymity, DoS resis-
tance, and topology hiding, and the requirements performance
and low cost of participation. Furthermore, we surveyed the
design space of the network layer and qualitatively analyzed
the effect of design decisions on requirements. On the one
hand, this survey enables designers of blockchains to come
to more justified design decisions, which balance the require-
ments of the application. On the other hand, this survey reveals
future research directions. The analysis of the in-band peer
discovery and the relay delay mechanisms indicated that the
presence of inherent tradeoffs does not prevent designs that
sufficiently balance the affected requirements.

Most of the discussed network layer aspects are far
from being well understood. For some aspects, the design
options seem clear, but the effect of each option cannot be
given quantitatively, e.g., the effects of message accumulation
on topology hiding and anonymity are not clear. For other
aspects, the design space should be further explored, e.g.,
exploiting additional information sources (e.g., sidechannel
information from other clients, connection anomaly detection)
might improve DoS resistance and performance.

Despite the large number of known attacks on the network
layer, only few quantitative models exist that describe the
effect of design decisions and adversary capabilities on the
fulfillment of requirements. In order to parametrize such mod-
els, more measurements of real-world systems and estimations
of parameters are required. Furthermore, the (semiautomatic)
generation of behavior models based on client implementa-
tions (e.g., [55]) could simplify and accelerate performing
simulation based research. Finally, reusable and composable

856 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

network models could enable the joint analysis of multiple
aspects of the network layer.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

REFERENCES

[1] R. Albert and A.-L. Barabási, “Statistical mechanics of complex
networks,” Rev. Mod. Phys., vol. 74, no. 1, p. 47, 2002.

[2] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of
complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, 2000.

[3] K.-J. Alm. Rate Limiting via Peer Specified Challenges (BIP 154).
Accessed: May 24, 2018. [Online]. Available: https://github.com/
bitcoin/bips/blob/master/bip-0154.mediawiki

[4] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking Bitcoin: Routing
attacks on cryptocurrencies,” in Proc. IEEE Symp. Security Privacy (SP),
San Jose, CA, USA, 2017, pp. 375–392.

[5] R. Atat et al., “Enabling cyber-physical communication in 5G cellular
networks: Challenges, spatial spectrum sensing, and cyber-security,” IET
Cyber Phys. Syst. Theory Appl., vol. 2, no. 1, pp. 49–54, Apr. 2017.

[6] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar, “On Bitcoin and
red balloons,” in Proc. 13th ACM Conf. Electron. Commerce, Valencia,
Spain, 2012, pp. 56–73.

[7] A. Back, “Hashcash—A denial of service counter-measure,” Rep.,
Aug. 2002. [Online]. Available: http://www.hashcash.org/papers/
hashcash.pdf

[8] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks and
trade-offs in anonymity providing systems,” in Information Hiding.
Heidelberg, Germany: Springer, 2001, pp. 245–257.

[9] T. Bamert, C. Decker, L. Elsen, R. Wattenhofer, and S. Welten, “Have
a snack, pay with Bitcoins,” in Proc. IEEE 13th Int. Conf. Peer Peer
Comput. (P2P), Trento, Italy, 2013, pp. 1–5.

[10] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of
clients in Bitcoin P2P network,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, Scottsdale, AZ, USA, 2014, pp. 15–29.

[11] A. Biryukov and I. Pustogarov, “Bitcoin over Tor isn’t a good idea,”
in Proc. 36th IEEE Symp. Security Privacy (SP), San Jose, CA, USA,
May 2015, pp. 122–134.

[12] J. Bonneau et al., “SoK: Research perspectives and challenges for
Bitcoin and cryptocurrencies,” in Proc. IEEE Symp. Security Privacy
(SP), San Jose, CA, USA, 2015, pp. 104–121.

[13] F. Caccioli, G. Livan, and T. Aste, “Scalability and egalitarianism in
peer-to-peer networks,” in Banking Beyond Banks and Money. Cham,
Switzerland: Springer, 2016, pp. 197–212.

[14] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc.
OSDI, vol. 99, 1999, pp. 173–186.

[15] T. Condie, V. Kacholia, S. Sank, J. M. Hellerstein, and P. Maniatis,
“Induced churn as shelter from routing-table poisoning,” in Proc. NDSS,
2006.

[16] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and
privacy issues of Bitcoin,” IEEE Commun. Surveys Tuts., 2018.

[17] M. Corallo. (2016). Compact Block Relay (BIP 152). [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki

[18] A. de Vries, “Bitcoin’s growing energy problem,” Joule, vol. 2, no. 5,
pp. 801–805, May 2018.

[19] C. Decker and R. Wattenhofer, “Information propagation in the Bitcoin
network,” in Proc. IEEE 13th Int. Conf. Peer Peer Comput. (P2P), 2013,
pp. 1–10.

[20] S. Delgado-Segura, C. Pérez-Solà, J. Herrera-Joancomartí,
G. Navarro-Arribas, and J. Borrell, “Cryptocurrency networks: A
new P2P paradigm,” Mobile Inf. Syst., vol. 2018, p. 16, Mar. 2018.

[21] J. Dinger and O. P. Waldhorst, “Decentralized bootstrapping of P2P
systems: A practical view,” in Proc. NETWORKING, Aachen, Germany,
2009, pp. 703–715.

[22] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. Usenix Security, 2004, p. 21.

[23] J. A. Donet, C. Pérez-Sola, and J. Herrera-Joancomartí, “The Bitcoin
P2P network,” in Proc. Int. Conf. Financ. Cryptography Data Security,
2014, pp. 87–102.

[24] J. R. Douceur, “The Sybil attack,” in Proc. Int. Workshop Peer Peer
Syst., 2002, pp. 251–260.

[25] C. Dwork, “Differential privacy: A survey of results,” in Proc. Int. Conf.
Theory Appl. Models Comput., 2008, pp. 1–19.

[26] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Proc. Annu. Int. Cryptol. Conf., 1992, pp. 139–147.

[27] O. Ersoy, Z. Ren, Z. Erkin, and R. L. Lagendijk, “Information propaga-
tion on permissionless blockchains,” arXiv preprint arXiv:1712.07564,
2017.

[28] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Proc. Int. Conf. Financ. Cryptography Data Security,
2014, pp. 436–454.

[29] M. Fadhil, G. Owenson, and M. Adda, “Locality based approach to
improve propagation delay on the Bitcoin peer-to-peer network,” in Proc.
IFIP/IEEE Symp. Integr. Netw. Service Manag. (IM), 2017, pp. 556–559.

[30] G. Fanti, P. Kairouz, S. Oh, K. Ramchandran, and P. Viswanath,
“Hiding the rumor source,” IEEE Trans. Inf. Theory, vol. 63, no. 10,
pp. 6679–6713, Oct. 2017.

[31] G. Fanti and P. Viswanath, “Anonymity properties of the Bitcoin P2P
network,” arXiv preprint arXiv:1703.08761, 2017.

[32] H. Finney. The Finney Attack. Accessed: May 24, 2018.
[Online]. Available: https://bitcointalk.org/index.php?topic=3441.msg
48384#msg48384

[33] I. M. Gelfand et al., Calculus of Variations. Englewood Cliffs, NJ, USA:
Courier Corporat., 2000.

[34] A. Gervais, S. Capkun, G. O. Karame, and D. Gruber, “On the privacy
provisions of bloom filters in lightweight Bitcoin clients,” in Proc. 30th
Annu. Comput. Security Appl. Conf., New Orleans, LA, USA, 2014,
pp. 326–335.

[35] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun, “Is Bitcoin
a decentralized currency?” IEEE Security Privacy, vol. 12, no. 3,
pp. 54–60, May/Jun. 2014.

[36] A. Gervais et al., “On the security and performance of proof of work
blockchains,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
Vienna, Austria, 2016, pp. 3–16.

[37] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with
the delivery of blocks and transactions in Bitcoin,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Security, Denver, CO, USA, 2015,
pp. 692–705.

[38] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A scalable and
efficient protocol for anonymous communication,” Dept. Comput. Sci.,
Cornell Univ., Ithaca, NY, USA, Rep. 2003-1890, 2003.

[39] A. Gosavi, “Simulation-based optimization,” in Parametric Optimization
Techniques and Reinforcement Learning. New York, NY, USA: Springer,
2003.

[40] M. Hearn and M. Corallo. Connection Bloom Filtering (BIP 37).
[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-
0037.mediawiki

[41] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
Bitcoin’s peer-to-peer network,” in Proc. 24th USENIX Security Symp.
(USENIX Security), 2015, pp. 129–144.

[42] M. Imani, A. Barton, and M. Wright, “Forming guard sets using as
relationships,” arXiv preprint arXiv:1706.05592, 2017.

[43] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
New York, NY, USA: Wiley, 1991.

[44] X. Jin and S.-H. G. Chan, “Unstructured peer-to-peer network archi-
tectures,” in Handbook of Peer-to-Peer Networking. Boston, MA, USA:
Springer, 2010, pp. 117–142.

[45] K. Kanemura, K. Toyoda, and T. Ohtsuki, “Design of privacy-preserving
mobile Bitcoin client based on γ-deniability enabled bloom filter,”
in Proc. IEEE 18th Int. Symp. Pers. Indoor Mobile Radio Commun.
(PIMRC), Montreal, QC, Canada, 2017, pp. 1–6.

[46] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in Bitcoin,” in Proc. ACM Conf. Comput. Commun. Security,
Raleigh, NC, USA, 2012, pp. 906–917.

[47] J. Katz and Y. Lindell, Introduction to Modern Cryptography.
Boca Raton, FL, USA: CRC Press, 2014.

[48] M. C. K. Khalilov and A. Levi, “A survey on anonymity and pri-
vacy in Bitcoin-like digital cash systems,” IEEE Commun. Surveys
Tuts., to be published. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/8325269/

[49] D. E. King, “Dlib-ml: A machine learning toolkit,” J. Mach. Learn. Res.,
vol. 10, pp. 1755–1758, Jul. 2009.

[50] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity in
Bitcoin using P2P network traffic,” in Financial Cryptography and
Data Security (LNCS 8437). Heidelberg, Germany: Springer, 2014,
pp. 469–485.

NEUDECKER AND HARTENSTEIN: NETWORK LAYER ASPECTS OF PERMISSIONLESS BLOCKCHAINS 857

[51] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of Bitcoin
mining, or Bitcoin in the presence of adversaries,” in Proc. WEIS,
vol. 2013, 2013.

[52] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Commun.
Surveys Tuts., vol. 7, no. 2, pp. 72–93, 2nd Quart., 2005.

[53] Y. Marcus, E. Heilman, and S. Goldberg. (2018). Low-Resource Eclipse
Attacks on Ethereum’s Peer-to-Peer Network. [Online]. Available:
http://www.cs.bu.edu/ goldbe/projects/eclipseEth.pdf

[54] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in Proc. Int. Workshop Peer Peer
Syst., Cambridge, MA, USA, 2002, pp. 53–65.

[55] A. Miller and R. Jansen, “Shadow-Bitcoin: Scalable simulation via direct
execution of multi-threaded applications,” IACR Cryptol. ePrint Archive,
vol. 2015, p. 469, Aug. 2015.

[56] A. Miller et al. (2015). Discovering Bitcoin’s Public Topology
and Influential Nodes. [Online]. Available: https://cs.umd.edu/
projects/coinscope/coinscope.pdf

[57] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[58] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,

Bitcoin and Cryptocurrency Technologies: A Comprehensive
Introduction. Princeton, NJ, USA: Princeton Univ. Press, 2016.

[59] C. Natoli and V. Gramoli, “The balance attack against proof-of-
work blockchains: The R3 testbed as an example,” arXiv preprint
arXiv:1612.09426, 2016.

[60] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining:
Generalizing selfish mining and combining with an eclipse attack,”
in Proc. IEEE Eur. Symp. Security Privacy (EuroS P), Saarbrücken,
Germany, 2016, pp. 305–320.

[61] T. Neudecker. Bitcoin Cash (BCH) Sybil Nodes on the Bitcoin
Peer-to-Peer Network. Accessed: May 24, 2018. [Online]. Available:
http://dsn.tm.kit.edu/publications/files/332/bch_sybil.pdf

[62] T. Neudecker, P. Andelfinger, and H. Hartenstein, “A simulation model
for analysis of attacks on the Bitcoin peer-to-peer network,” in Proc.
IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), Ottawa, ON, Canada,
May 2015, pp. 1327–1332.

[63] T. Neudecker, P. Andelfinger, and H. Hartenstein, “Timing analysis for
inferring the topology of the Bitcoin peer-to-peer network,” in Proc. Int.
IEEE Conf. Adv. Trusted Comput. (ATC), Toulouse, France, Jul. 2016,
pp. 358–367.

[64] T. Neudecker and H. Hartenstein, “Could network information facil-
itate address clustering in Bitcoin?” in Proc. 4th Workshop Bitcoin
Blockchain Res. Financ. Cryptography Data Security, Sliema, Malta,
2017, pp. 155–169.

[65] A. P. Ozisik, G. Andresen, G. Bissias, A. Houmansadr, and B. N. Levine,
“A secure, efficient, and transparent network architecture for Bitcoin,”
Dept. Comput. Sci., Univ. Massachusetts Amherst, Amherst, MA, USA,
Rep. UM-CS-2016-006, 2016.

[66] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani,
“Epidemic processes in complex networks,” Rev. Mod. Phys., vol. 87,
no. 3, p. 925, 2015.

[67] F. Reid and M. Harrigan, “An analysis of anonymity in the Bitcoin
system,” in Security and Privacy in Social Networks. New York, NY,
USA: Springer, 2013, pp. 197–223.

[68] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,”
in Proc. 1st Int. Conf. Peer Peer Comput., Linköping, Sweden, 2001,
pp. 99–100.

[69] J. B. Rosen, “The gradient projection method for nonlinear program-
ming. Part I. Linear constraints,” J. Soc. Ind. Appl. Math., vol. 8, no. 1,
pp. 181–217, 1960.

[70] B. Schneier, “Attack trees,” Dr. Dobb’s J., vol. 24, no. 12, pp. 21–29,
1999.

[71] J. Schnelli. Peer Authentication (BIP 150). Accessed: May 24, 2018.
[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-
0150.mediawiki

[72] J. Schnelli. Peer-to-Peer Communication Encryption (BIP 151).
Accessed: May 24, 2018. [Online]. Available: https://github.com/
bitcoin/bips/blob/master/bip-0151.mediawiki

[73] E. G. Sirer. Bitcoin Guarantees Strong, Not Eventual,
Consistency. Accessed: May 24, 2018. [Online]. Available: http://
hackingdistributed.com/2016/03/01/bitcoin-guarantees-strong-not-event
ual-consistency/

[74] Y. Sompolinsky and A. Zohar, “Bitcoin’s security model revisited,” arXiv
preprint arXiv:1605.09193, 2016.

[75] C. Troncoso, M. Isaakidis, G. Danezis, and H. Halpin, “Systematizing
decentralization and privacy: Lessons from 15 years of research and
deployments,” in Proc. Privacy Enhanc. Technol., vol. 2017, 2017,
pp. 404–426.

[76] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical sur-
vey on decentralized digital currencies,” IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084–2123, 3rd Quart., 2016.

[77] S. Venkatakrishnan, G. Fanti, and P. Viswanath, “Dandelion:
Redesigning the Bitcoin network for anonymity,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 1, no. 1, p. 22, 2017.

[78] L. Wang and I. Pustogarov, “Towards better understanding of Bitcoin
unreachable peers,” arXiv preprint arXiv:1709.06837, 2017.

[79] R. Wattenhofer, The Science of the Blockchain. North Charleston, SC,
USA: CreateSpace Independent, 2016.

[80] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project, Yellow Paper, 2014.

[81] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, “Information
and communications technologies for sustainable develop-
ment goals: State-of-the-art, needs and perspectives,” IEEE
Commun. Surveys Tuts., to be published. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8306870/

[82] K. Wüst and A. Gervais, “Ethereum eclipse attacks,” ETH Zurich,
Zürich, Switzerland, Rep., 2016, doi: 10.3929/ethz-a-010724205.

[83] K. Wüst and A. Gervais, “Do you need a blockchain?” IACR Cryptol.
ePrint Archive, vol. 2017, p. 375, Apr. 2017.

Till Neudecker received the Diploma degree in
computer science from the Department of Computer
Science, Karlsruhe Institute of Technology in
2013. Since 2013, he has been a Researcher
with the Institute for Telematics, Decentralized
Systems and Network Services Research Group
and the Competence Center for Applied Security
Technology. His research interests include secu-
rity in peer-to-peer networks and blockchain-based
systems.

Hannes Hartenstein received the Diploma degree
in mathematics and the Ph.D. degree in computer
science from Albert Ludwigs University, Freiburg,
Germany. He was a Senior Research Staff Member
with NEC Europe. He is a Professor of computer
science with the Karlsruhe Institute of Technology,
Karlsruhe, Germany. His research interests include
decentralized and distributed systems, information
security, and information technology management.
He is a Principal Investigator in the Competence
Center for Applied Security Technology, one of three

competence centers for cyber security in Germany initiated by the Federal
Ministry of Education and Research.

https://doi.org/10.3929/ethz-a-010724205

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

