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Abstract We consider the double-soft limit of a generic
QCD process involving massless partons and integrate ana-
lytically the double-soft eikonal functions over the phase-
space of soft partons (gluons or quarks) allowing for an arbi-
trary relative angle between the three-momenta of two hard
massless radiators. This result provides one of the missing
ingredients for a fully analytic formulation of the nested soft-
collinear subtraction scheme described in Caola et al. (Eur
Phys J C 77(4):248, 2017).

1 Introduction

A precise description of hard processes offers an exciting
opportunity to discover or constrain physics beyond the
Standard Model at the LHC using indirect methods. Such
a description is based on the collinear factorization frame-
work that emphasizes the importance of understanding par-
tonic cross sections in higher orders of perturbative QCD.
Currently, it is possible to compute most processes of phe-
nomenological interest at a fully-differential level at lead-
ing and next-to-leading orders in perturbative QCD, and
2 → 1 and 2 → 2 processes at next-to-next-to-leading order
(NNLO).

An important recent development in the field of preci-
sion collider physics is the start of “mass production” of
NNLO QCD results for major 2 → 2 LHC processes such
as pp → t t̄ [1,2], pp → 2 j [3,4], pp → V + j [5–9],
pp → H + j [5,10–12], the t-channel single top produc-
tion [13,14], Higgs production in weak boson fusion [15,16]
etc. General purpose public numerical codes also became
available recently [17,18]. This progress happened because
a number of computational schemes, both of the slicing type
and the subtraction type [5,15,19–37], have matured enough
to be used in complex realistic calculations.
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Nevertheless, in spite of these successes, it is fair to say
that none of the suggested schemes are fully optimal. This
is unfortunate as it can limit our ability to make precise pre-
dictions for higher multiplicity processes at the LHC in the
future. Hence, further developments of subtraction methods
are welcome. Motivated by these considerations, two of us in
collaboration with R. Röntsch have recently proposed [19]
a modification of the subtraction scheme described in Refs.
[29–31]. A key element in our proposal is the double-soft
limit defined as follows.

We consider the double-real emission contribution to
NNLO QCD corrections to the production of an arbitrary
final state X in hadron collisions. Specifically, we are inter-
ested in the X + f final state, where f are either two gluons
or a quark–antiquark pair. We assign four-momenta k4,5 to
the two additional partons, and consider the double soft con-
figuration k4,5 → 0, with no particular hierarchy between k4

and k5. It is well known that soft emissions factorize. Indeed,
in the soft approximation parton emission does not change
the kinematics of the final state X and does not affect infra-
red safe observables. Moreover, the matrix element squared
of the process i j → X + f factorizes into a color-correlated
emissionless matrix element squared for the process i j → X
and a universal eikonal function that depends on momenta of
hard radiators that are present in either the initial or the final
state, and the momenta k4 and k5 of the soft partons.

An important ingredient of any NNLO subtraction scheme
is the integral of the double-soft eikonal function over the
phase-space of the two extra partons f , subject to kinematic
constraints. In the framework of Ref. [19], the following con-
straints on energies of the soft partons are imposed

k0
4 < Emax, k0

5 < k0
4 . (1)

In Ref. [19], double-soft integrals with constraints as in
Eq. (1) were computed numerically for the case when hard
emittors are back-to-back. Although this is adequate for
the color-singlet production processes considered in [19],
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in more complicated cases the numerical approach becomes
cumbersome, since it requires a non-trivial continuation of
phase-space integrals beyond four space-time dimensions
(see [29–31,38] for details). Moreover, beyond the back-to-
back limit, the double-soft integrals become functions of an
angle between the three-momenta of the hard radiators. Since
these angles change from event to event, the required numer-
ical computations become quite expensive.

In what follows, we show how to overcome these issues
and present an analytic computation of the double-soft inte-
grals required for the description of NNLO real emission
contributions to an arbitrary process. The rest of this paper
is organized as follows. In Sect. 2 we introduce our nota-
tion, present relevant formulas for the double-soft limit and
define the integrals that need to be computed. In Sect. 3 we
discuss how to use differential equations to find the phase-
space integrals. In Sect. 4 we explain how to fix the boundary
conditions needed to fully reconstruct the required integrals
from the differential equations. In Sect. 5 we present our final
results for the integrals of the double-soft eikonal functions.
We conclude in Sect. 6.

2 The double-soft current and its integration

In this section, we consider the double-soft limit of a generic
scattering process. It is well known that soft emissions fac-
torize. We now recall basic features of this factorization, fol-
lowing closely Ref. [39]. Interested readers should consult
Ref. [39] for further details.

In QCD, soft emissions involve non-trivial color cor-
relations. It is then convenient to introduce a color basis
|c1, . . . , cn〉, and write a generic scattering amplitude as

Mc1,...,cn (p1, . . . , pn) = 〈c1, . . . , cn |M(p1, . . . , pn)〉 ,

(2)

where ci are the color indices. It is also useful to associate a
color charge Ti with the emission of soft gluons off a parton
i . Its action is defined as

〈c1, . . . , ci , . . . , cm, a|Ti |b1, . . . , bi , . . . bm〉
= δc1b1 . . . T a

ci bi . . . δcmbm , (3)

where a is the gluon color index (a = 1, . . . , N 2
c − 1) and

T a
ci bi

= i faci bi if parton i is a gluon, T a
ci bi

= taci bi if i is a
quark, and T a

ci bi
= t̄ aci bi = −tabi ci if i is an antiquark. Here

fabc and tcab are the generators of the SU(Nc) Lie algebra
in the adjoint and fundamental representations, respectively.
The color charge operators satisfy

T a
i T

a
j = Ti · T j = T j · Ti , T2

i = Ci , (4)

with Ci = CA = Nc if i is a gluon and Ci = CF =
(N 2

c − 1)/(2Nc) if i is a quark or an antiquark. Note also

that each vector |M(p1, . . . , pn)〉 is a color-singlet state,
which implies

n∑

i=1

Ti |M(p1, . . . , pn)〉 = 0. (5)

Using this notation, the matrix element squared for the
process i j → X+ f (k4, k5) in the double-soft limit k4, k5 →
0 can be written as [39]

|M(g4, g5; {p})|2 ≈ [g2
s,bμ

2ε
]2

×
⎡

⎣1

2

n∑

i j,kl

Si j (k4)Skl(k5)|M(i, j)(k,l)({p})|2

−CA

n∑

i< j

S̃i j (k4, k5)|M(i j)({p})|2
⎤

⎦ , (6)

if f (k4, k5) are two gluons, and

|M(q4, q̄5; {p})|2
≈ [g2

s,bμ
2ε
]2
TR
∑

i< j

Ĩi j (k4, k5)|M(i j)({p})|2, (7)

if f (k4, k5) are a quark and an antiquark. In Eqs. (6) and (7),
“≈” means that we only consider the most singular contri-
bution in the double-soft limit, and

|M(i j)(kl)({p})|2 ≡ 〈M(p1, . . . , pn)|
{
Ti · T j ,Tk · Tl

} |
×M(p1, . . . , pn)〉 ,

|M(i j)({p})|2 ≡ 〈M(p1, . . . , pn)|Ti · T j |M(p1, . . . , pn)
〉
.

(8)

We also used gs,b to denote the bare QCD coupling constant
and TR = 1/2. The sums in Eqs. (6) and (7) run over all
pairs of hard color-charged radiators. The functions S̃i j and
Ĩi j read

S̃i j (k4, k5) = 2Si j (k4, k5) − Sii (k4, k5) − S j j (k4, k5),

Ĩi j (k4, k5) = 2Ii j (k4, k5) − Ii i (k4, k5) − I j j (k4, k5). (9)

All other eikonal functions are defined as follows [39]

Si j (k) = pi · p j

(pi · k)(p j · k) ,
Si j (k4, k5) = Sso

i j (k4, k5)

− 2pi · p j

k4 · k5
[
pi · (k4 + k5)

][
p j · (k4 + k5)

]

+ (pi · k4)(p j · k5) + (pi · k5)(p j · k4)[
pi · (k4 + k5)

][
p j · (k4 + k5)

]

×
[

(1 − ε)

(k4 · k5)2 − 1

2
Sso
i j (k4, k5)

]
, (10)
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where ε = (4−d)/2 with d being the space-time dimension-
ality,

Sso
i j (k4, k5) = pi · p j

k4 · k5

×
(

1

(pi · k4)(p j · k5)
+ 1

(pi · k5)(p j · k4)

)

− (pi · p j )
2

(pi · k4)(p j · k4)(pi · k5)(p j · k5)
, (11)

and

Ii j = (pi · k4)(p j · k5) + (pi · k5)(p j · k4) − (pi · p j )(k4 · k5)

(k4 · k5)2
[
pi · (k4 + k5)

][
p j · (k4 + k5)

] .

(12)

According to the computational scheme described in Ref.
[19], the double-soft matrix elements in Eqs. (6) and (7)
should be integrated over the three-momenta of soft par-
tons, subject to the constraints in Eq. (1). It follows that a
double-soft contribution to any differential cross section can
be constructed if the following integrals are known

SSi j,kl =
∫

[dk4][dk5]θ(Emax − k0
4)θ(k0

4 − k0
5)Si j (k4) Skl(k5),

SS(gg)
i j =

∫
[dk4][dk5]θ(Emax − k0

4)θ(k0
4 − k0

5)S̃i j (k4, k5),

SS(qq̄)
i j = −2

∫
[dk4][dk5]θ(Emax − k0

4)θ(k0
4 − k0

5)Ĩi j (k4, k5),

(13)

where the factor -2 in SS(qq̄)
i j is introduced for convenience. In

Eq. (13) we introduced the short-hand notation

[dki ] = d(d−1)ki
2k0

i (2π)d−1
. (14)

As explained in Ref. [19], the energy ordering E4 > E5

accounts for the 1/2! symmetry factor relevant for gg emis-
sion. We find it convenient to use the same phase-space
parametrization for qq̄ emission as well. Since Ĩi j (k4, k5) =
Ĩi j (k5, k4), the full result in the qq̄ case is twice the result
that is obtained by imposing the E4 > E5 ordering.

We satisfy constraints in Eqs. (1) and (13) by choosing
the following parametrization of the energies of the two soft
partons

k0
4 = Emax ξ, k0

5 = Emax ξ z, 0 < ξ < 1, 0 < z < 1.

(15)

We note that integrals in Eq. (13) depend on the relative
angles between the three-momenta of the hard partons but
not on their energies. The first integral SSi j,kl in Eq. (13) is
easy to compute since it is a product of two single-gluon
eikonal functions. For further convenience, we introduce the
following notation

pi = Ei (1, �ni ), k4 = Emax ξ (1, �n4),

k5 = Emax ξ z (1, �n5), (16)

where �n2
i = 1. Moreover, we will use

ρi j = 1 − �ni · �n j . (17)

in what follows.
To compute SSi j,kl , we integrate over ξ and z and obtain

SSi j,kl = E−4ε
max

8ε2

∫
d�4

2(2π)d−1

ρi j

ρi4ρ j4

∫
d�5

2(2π)d−1

ρkl

ρk5ρl5
.

(18)

The angular integrals over the emission angles of the gluons
g4 and g5 completely factorize and can be easily performed.
One obtains [40]

∫
d�4

2(2π)d−1

ρi j

ρi4ρ j4
= −2

ε

[
1

8π2

(4π)ε

	(1 − ε)

]
(2ρi j )

−εFi j ,

(19)

where

Fi j =
[

	(1 − ε)2

	(1 − 2ε)

] (ρi j

2

)1+ε

F21

(
1, 1, 1 − ε, 1 − ρi j

2

)

= 1 + ε2
[
Li2
(ρi j

2

)
− ζ2

]
+ O(ε3). (20)

Finally, we obtain

SSi j,kl = (2Emax)
−4ε

2ε4

[
1

8π2

(4π)ε

	(1 − ε)

]2 (ρi j

2

)−ε

×
(ρkl

2

)−ε Fi jFkl . (21)

It is straightforward to obtain the expansion of the hyper-
geometric function through O(ε4) using existing computer
algebra packages [41].

The non-trivial part of the computation requires the calcu-
lation of the correlated emission terms SS(gg/qq̄)

i j as a function
of the scattering angle between the two hard partons. We
describe such a calculation in the next section.

3 Double soft integrals

In this section, we describe the calculation of the corre-
lated contributions to the eikonal integrals SS(gg/qq̄)

i j defined

in Eq. (13). For definiteness, we focus on the SS(gg)
i j computa-

tion. The calculation of SS(qq̄)
i j proceeds in a similar fashion.

We use the fact that S̃i j (k4, k5) is a homogeneous func-
tion of the soft momenta k4,5 and of the hard momenta pi, j .
This implies that if we use the parametrization of the four-
momenta as in Eq. (16), we can integrate over the variable

123
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ξ . After the ξ integration, we separate the integration over z
and write

SS(gg)
i j = − (2Emax)

−4ε

ε

1∫

0

dz Gi j (z). (22)

The function Gi j (z) is defined as

Gi j =
∫

[dk4][dk5]S̃i j (k4, k5)δ(2P · k4 − 1)

× δ(2P · k5 − z), (23)

and the four-momentum P is a time-like vector P = (1, �0).
Although the final result for double soft integrals does not
depend on the normalization of the four-momenta of hard
radiators, when computing individual contributions we will
use pi, j = 1/2(1, �ni, j ). The two δ-functions in Eq. (23)
provide constraints on the energies of the two gluons k4,5;
their arguments are chosen to make them “propagator-like”
for reasons that will become clear later.

To calculate Gi j (z) we need to integrate S̃i j (k4, k5) over
the phase-space of the two gluons with energy constraints
shown in Eq. (23). We do this by mapping these phase-space
integrals onto loop integrals following Ref. [42]. After defin-
ing integral families, we apply the integration-by-part identi-
ties to reduce the number of independent integrals that need
to be computed and to derive differential equations that these
integrals satisfy.

We identify 19 master integrals to be calculated. To display
them, we introduce seven propagator-like structures

D1 = 2p1 · k4, D2 = 2p2 · k4, D3 = 2p1 · k5,

D4 = 2p2 · k5, D5 = p1 · (k4 + k5) ,

D6 = p2 · (k4 + k5) , D7 = 2k4 · k5, (24)

and define
〈

1∏
i D

αi
i

〉
=
∫ [dk4][dk5]δ(2P · k4 − 1)δ(2P · k5 − z)∏

i D
αi
i

.

(25)

With this notation, we require the following integrals1

I1 = 〈1〉 , I2 =
〈

1

D5

〉
, I3 =

〈
1

D2
5

〉
, I4 =

〈
1

D4D5

〉
,

I5 =
〈

1

D4D2
5

〉
, I6 =

〈
1

D4D5D7

〉
, I7 =

〈
D1

D4D5D7

〉
,

I8 =
〈

1

D1D6

〉
, I9 =

〈
1

D1D2
6

〉
, I10 =

〈
1

D1D6D7

〉
,

I11 =
〈

D4

D1D6D7

〉
, I12 =

〈
1

D5D6

〉
, I13 =

〈
1

D2
5 D6

〉
,

1 In the qq̄ case, only the integrals I1−3 and I12−14 contribute.

I14 =
〈

D4

D2
5 D6

〉
, I15 =

〈
1

D1D5D6

〉
, I16 =

〈
1

D4D5D6

〉
,

I17 =
〈

1

D1D4D5D6

〉
, I18 =

〈
1

D1D4D7

〉
,

I19 =
〈

1

D2
1 D4D7

〉
. (26)

These master integrals are functions of the energy fraction z
and of the relative angle θ between the two hard radiators i
and j . To compute them, we use differential equations.

In principle, we can write differential equations for master
integrals in both z and θ . As it is easy to see from their
definition, the two integrals I18 and I19 are homogeneous in z;
this implies that the z-differential equation does not give any
non-trivial information in this case. Therefore, we computed
these two integrals by solving the differential equation with
respect to the scattering angle. The boundary conditions for
these differential equations were determined from the values
of I18,19 computed in a situation when the three-momenta
of the radiators are back-to-back, i.e. θ = π . We find the
following results

I18 = Nε

xz1+2ε
×
{

3

ε2 − 1

ε

[
12 + 6G0(x)

]

+ [12 + π2 + 24G0(x) + 12G0,0(x) − 8G1,0(x)
]

+ ε

[
−4π2 − 24G0(x) − 2π2G0(x) + 4π2

3
G1(x)

− 48G0,0(x) + 32G1,0(x) − 24G0,0,0(x)

+ 16G0,1,0(x) + 16G1,0,0(x) − 8G1,1,0(x) − 18ζ3

]

+ ε2
[

4π2 − π4

10
+ 8π2G0(x) − 16π2

3
G1(x)

+ 48G0,0(x) + 4π2G0,0(x) − 8π2

3
G0,1(x)

− 32G1,0(x) − 8π2

3
G1,0(x) + 4π2

3
G1,1(x)

+ 96G0,0,0(x) − 64G0,1,0(x) − 64G1,0,0(x)

+ 32G1,1,0(x) + 48G0,0,0,0(x) − 32G0,0,1,0(x)

− 32G0,1,0,0(x) + 16G0,1,1,0(x) − 32G1,0,0,0(x)

+ 24G1,0,1,0(x) + 16G1,1,0,0(x) − 8G1,1,1,0(x)

+ 72ζ3 + 36ζ3G0(x) − 24ζ3G1(x)

]}
,

I19 = Nε

x2z1+2ε
×
{

3

ε2 − 1

ε

[
6x + G0(x)

]

+ [14x + π2 − 30 + 4xG0(x) + 12G0,0(x) − 8G1,0(x)
]

+ ε

[
26x + 18 − 2π2

3
x + 60G0(x) − 2π2G0(x)

− 12xG0(x) + 4π2

3
G1(x) − 8xG0,0(x) + 8xG1,0(x)

123
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− 24G0,0,0(x) + 16G0,1,0(x) + 16G1,0,0(x)

− 8G1,1,0(x) − 18ζ3

]
+ ε2

[
54 − 10π2 − π4

10

− 90x + 2π2x − 36G0(x) − 4xG0(x)

+ 4π2

3
xG0(x) − 4π2

3
xG1(x) − 120G0,0(x)

+ 4π2G0,0(x) + 24xG0,0(x) − 8π2

3
G0,1(x)

+ 80G1,0(x) − 8π2

3
G1,0(x) − 24xG1,0(x) + 4π2

3
G1,1(x)

+ 16xG0,0,0(x) − 8xG0,1,0(x) − 16xG1,0,0(x)

+ 8xG1,1,0(x) + 48G0,0,0,0(x) − 32G0,0,1,0(x)

−32G0,1,0,0(x) + 16G0,1,1,0(x) − 32G1,0,0,0(x)

+ 24G1,0,1,0(x) + 16G1,1,0,0(x) − 8G1,1,1,0(x) + 12ζ3x

+ 36ζ3G0(x) −24ζ3G1(x)

]}
. (27)

In writing the expressions for I18,19, we used the following
expression for the normalization factor

Nε =
[

�(d−1)

(2π)d−122−2ε

]2

=
[

1

8π2

(4π)ε

(1 − 2ε)

	(1 − ε)

	(1 − 2ε)

]2

.

(28)

Also, x is the sine squared of half the relative angle between
the three-momenta of hard radiators x = sin2 δ, δ = θ/2, and
Ga1,a2,...,am (x) are the standard Goncharov polylogarithms.

The situation with the remaining seventeen integrals is
rather different. Indeed, many of them couple to each other
and the majority of them are not homogeneous functions of
z. Although it is possible to use differential equations w.r.t.
the relative energy and angle to determine the integrals also
in this case, we found it more convenient to consider the
differential equation in the energy fraction z and to determine
the full dependence on the angle between the hard radiators
by computing boundary conditions as functions of θ . We did
not use a canonical form [43] for the z differential equation.
In fact, it is relatively straightforward to achieve a canonical
form for the first eleven integrals but after that it becomes
much more difficult to do so. However, we managed to re-
write the system of differential equations in such a way that
integrating it by expanding master integrals order-by-order in
ε becomes possible. In principle, this is absolutely sufficient
for solving the system of differential equations. A possible
drawback of this approach is that intermediate results tend
to be quite cumbersome. This is, however, easy to deal with
once all the expressions for the integrals are substituted to
obtain the physical result.

The differential equations in z are of the following form

∂

∂z
�I (z, δ) = Â(ε, z, δ) �I , (29)

where Â(0, z, δ) is a triangular matrix with vanishing diag-
onal elements. To integrate these differential equations, it
is important to expose the dependence of the matrix Â on
inverse powers of the monomials of z. This dependence is
characterized by elements of the list shown below

{
z, (1 + z), (sin2 δ + z), (1 + z sin2 δ),

√
(1 − z)2 sin2 δ + 4z

}
.

(30)

The integration of the system of differential equations is
greatly simplified if its coefficients are rational functions of
the integration variables. To achieve this, we rationalize the
square root in Eq. (30) using the following change of vari-
ables

z = (1 − cos δ t) (cos δ − t)

t sin2 δ
. (31)

It leads to
√

(1 − z)2 sin2 δ + 4z = cos δ

sin δ

(1 − t)(1 + t)

t
. (32)

In addition to making the square root rational, the vari-
able transformation Eq. (31) also maps all other z-dependent
monomials in Eq. (30) onto rational functions of t . We obtain

1 + z = cos δ

t sin2 δ
(t − eiδ)(t − e−iδ),

sin2 δ + z = cos δ

t sin2 δ
(t − a+) (t − a−) ,

1 + z sin2 δ = cos δ

t
(t − b+) (t − b−) ,

(33)

where

a± = cos δ

(
1 + sin2 δ

2

)
± i

√

1 − cos2 δ

(
1 + sin2 δ

2

)2

,

b± = cos δ

2
± i

√

1 − cos2 δ

4
.

(34)

As the result of the z → t mapping, we obtain a system of
linear differential equations for the seventeen integrals with
rational coefficients

∂

∂t
�I (t) = B̂(δ, t, ε) �I . (35)

Since the matrix B is a rational function of t , integration over
t can be performed in terms of Goncharov polylogarithms
in a straightforward manner. This gives the result up to an
integration constant that must be determined by matching to
appropriate boundary conditions. We discuss the computa-
tion of the latter in the next section.

123
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4 Boundary conditions

As explained in the previous section, we only integrate the t
differential equation, without considering a differential equa-
tion in the scattering angle θ . We then need to compute the
master integrals at a given value of t (or z) as a function of
θ . It is natural to consider the boundary condition at z = 0,
which corresponds to the situation where one of the two soft
particles is much softer than the other. Not only is this the
simplest kinematic point where such a computation can be
performed, but it is also very useful for the subsequent inte-
gration over z in Eq. (22) since that integration is, in fact,
singular at z = 0.

The computation of boundary conditions is relatively
straightforward for the majority of the master integrals but
there are a few of them that require some effort. We will
illustrate the relevant techniques by considering two repre-
sentative examples.

The simplest master integral is the phase-space itself. It
can be computed in a straightforward way by first integrating
over energies and then over emission angles. The result reads

I1 =
∫

[dk4][dk5]δ(2k4 · P−1)δ(2k5 · P − z)=Nεz
1−2ε,

(36)

where the normalization factor Nε is defined in Eq. (28). A
significantly more complex integral is I13, which reads (cf.
Eqs. (26), (24))

I13 =
∫ [dk4][dk5]δ(2k4 · P − 1)δ(2k5 · P − z)

[
pi · (k4 + k5)

]2[
p j · (k4 + k5)

] . (37)

Upon integrating over gluon energies, we obtain

I13 = 64Nεz
1−2ε

∫ [d�4][d�5]
(ρi4 + zρi5)2(ρ j4 + zρ j5)

, (38)

where we introduced the normalized solid angle integration
measure as

[d�i ] = d�
(d−1)
i

�(d−1)
,

∫
[d�i ] = 1. (39)

By inspecting Eq. (38), it is easy to see that, at small z, the
master integral I13 scales as z−1. Therefore, we need to com-
pute it to first subleading power to determine the integration
constant. To accomplish this, we first combine denominators
using Feynman parameters

1

(ρi4 + zρi5)2(ρ j4 + zρ j5)
= 2

1∫

0

dx x

(ρ4η + zρ5η)3 , (40)

where ρ4,5 η = 1 − �n4,5 · �η and �η = �ni x + (1 − x)�n j . We
then use this representation in Eq. (38) and integrate over
directions of the gluon g4. We obtain

∫ [d�4]
(1 − �n4 · �η + z(1 − �n5 · �η))3

=
F21(3, 1 − ε, 2 − 2ε,

2η
1+η+zρ5η

)

(1 + zρ5η − η)3 , (41)

with η = √�η · �η =
√

1 − 4x(1 − x) sin2 δ. We still need to
integrate the right hand side of Eq. (41) over x and direction
of the vector �n5 to obtain I13, i.e.

I13 = 64Nεz
1−2ε

1∫

0

2xdx
∫ [d�5]

(1 + η + zρ5η)3

× F21

(
3, 1 − ε, 2 − 2ε,

2η

1 + η + zρ5η

)
. (42)

It is quite obvious that such computations simplify dramat-
ically if the expansion in small z is possible at early stages
of the computation. Unfortunately, the hypergeometric func-
tion in Eq. (42) can not be expanded in powers of z because
the maximal value of its argument in the z → 0 limit is one
and the hypergeometric function in Eq. (42) is non-analytic
there. To transform the integrand in Eq. (42) to a suitable
form, we use the standard transformation for hypergeomet-
ric functions that connects F21(. . . , y) with F21(. . . , 1 − y).
We also note that since η is invariant under the replacement
x ↔ (1 − x), one can replace 2x with 1 in the integrand in
Eq. (42) without affecting the value of the integral I13. Split-
ting the integral into two contributions as the consequence of
the hypergeometric transformation, we write

I13 = 64Nεz
1−2ε

(
(−2 + 8ε2)

(1 + ε)(2 + ε)
T (a)

13

+ 	(2 − 2ε)	(2 + ε)

2	(1 − ε)
T (b)

13

)
, (43)

with

T (a)
13 =

1∫

0

dx
∫ [d�5]

(1 + η + κ)3 F21

×
(

3, 1 − ε, 3 + ε,
1 − η + κ

1 + η + κ

)
,

T (b)
13 =

1∫

0

dx
∫ [d�5]

(1 + η + κ)1−ε(1 − η + κ)2+ε

×F21

(
−1 − 2ε, 1 − ε,−1 − ε,

1 − η + κ

1 + η + κ

)
, (44)

where κ = zρ5η.
In principle, the hypergeometric functions in Eq. (44) can

be directly expanded in powers of z, since the goal of the
transformations described above has already been achieved.
However, the remaining integrations over x and the direc-
tions of the vector �n5 would have been quite difficult in this
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case. Fortunately, there exists another transformation of the
hypergeometric function that reduces the complexity of the
remaining integrations dramatically. It reads

F21(a, b, a − b + 1, y) = (1 + y)−a F21

×
(
a

2
,
a

2
+ 1

2
, a − b + 1,

4y

(1 + y)2

)
. (45)

As we will see, this transformation completely removes
square roots from the computation of the boundary condi-
tions.

We begin by applying this relation to the computation of
T (a)

13 . We note that T (a)
13 ∼ O(1) in the z → 0 limit, so

that it contributes directly to the subleading term in the z-
expansion of I13. Therefore, we are allowed to set z = 0 in
the computation of T (a)

13 . We find

lim
z→0

T (a)
13 = 1

8

1∫

0

dx F21

(
3

2
, 2, 3 + ε, 1 − η2

)
. (46)

To compute this integral, we write the function F21 as
hypergeometric series and integrate over x using 1 − η2 =
4x(1 − x) sin2 δ. We find a very simple result

T (a)
13 = 1

8
F21

(
1, 2, 3 + ε, sin2 δ

)
+ O(z). (47)

The computation of T (b)
13 is somewhat more complex, pri-

marily because the z → 0 limit can not be taken directly.
Using the transformation Eq. (45), we obtain

T (b)
13 =

1∫

0

dx
∫

[d�5] 21+2ε(1 + κ)1+2ε

(1 − η2 + 2κ + κ2)2+ε

× F21

(
−1

2
− ε,−ε,−1 − ε,

1 − η2 + 2κ + κ2

(1 + κ)2

)
.

(48)

To proceed further we note that if we write the hypergeo-
metric function in Eq. (48) as the standard hypergeometric
series, we can take the z → 0 limit in all but the first two
terms of the expansion. Hence, we consider the contribution
of these two terms separately. We write

T (b)
13 = T (b),1

13 + T (b),2
13 + T (b),�

13 . (49)

We begin with the computation of T (b),�
13 . We use the series

representation of the hypergeometric function in Eq. (48), set
z to zero, integrate over x and �n5 and obtain

T (b),�
13 = 	2(−1 − ε)	(2 − ε)

16	(−2 − 2ε)	(−ε)
(sin δ)−2ε

× F21(1, 2 − ε, 3, sin2 δ) + O(z). (50)

Next, we compute the contribution T (b),2
13 that arises if

we take the second term in the series representation of the

hypergeometric function in Eq. (48). This term can be written
as

T (b),2
13 = −ε(1 + 2ε)

(1 + ε)
22εW (b),2

W (b),2 =
∫

[d�5]
1∫

0

dx
(1 + κ)−1+2ε

(1 − η2 + 2κ + κ2)1+ε
.

(51)

Since 1 − η2 = 4x(1 − x) sin2 δ and κ ∼ O(z), it is impos-
sible to expand the integrand in Eq. (42) in Taylor series in z.
Nevertheless, to obtain an approximation to W (b),2 at small
values of z by expanding the integrand, we can follow ideas
about asymptotic expansions of Feynman diagrams known
as the “strategy of regions” [44].

The integral in Eq. (51) has, obviously, three regions: (i)
x ∼ O(z), (ii) (1 − x) ∼ O(z) and (iii) x ∼ (1 − x) ∼ 1.
The first two (soft) regions give identical contributions; we
consider one of them and multiply the result by two. We refer
to the third region as the “hard region”. We therefore write

W (b),2 = W (b),2
H + 2W (b),2

S + O(z). (52)

The contribution of the hard region is obtained upon expand-
ing the integrand in Eq. (51) in Taylor series in powers of z.
Since we are interested in the O(z0) term only, we obtain

W (b),2
H =

∫
[d�5]

1∫

0

dx
(
4x(1 − x) sin2 δ

)1+ε

= (4 sin2 δ)−1−ε 	2(−ε)

	(−2ε)
. (53)

To compute the soft contribution, we focus on the region
x ∼ z. We expand the integrand assuming x ∼ z 
 1 and
extend the upper x integration boundary to infinity [44]. We
obtain

W (b),2
S = ∫ [d�5]

∞∫

0

dx(
4x sin2 δ+2z(1−cos θ5)

)1+ε

= z−ε

21+2εε sin2 δ

	(1−2ε)	(2−2ε)
	(2−3ε)	(1−ε)

. (54)

The calculation of T (b),1
13 proceeds along the same lines.

The only complication is that, since T (b),1
13 ∼ O(z−1), we

need to expand the soft contribution in Taylor series in
x ∼ z 
 1 to first subleading term. Apart from additional
algebraic complexity, this does not lead to any conceptual
complications. We provide the results of the calculation for
completeness. We write

T (b),1 = T (b),1
H + 2T (b),1

S + O(z), (55)

where

T (b),1
H = 21+2ε

(
4 sin2 δ

)2+ε

	2(−1 − ε)

	(−2 − 2ε)
, (56)
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and

T (b),1
S = z−1−ε

4(1 + ε) sin2 δ
(1 − z)

	(−2ε)	(2 − 2ε)

	(1 − 3ε)	(1 − ε)

+ z−ε(2 + 3ε(1 + ε) sin2 δ)

4ε(1 + ε) sin4 δ

	(1 − 2ε)	(2 − 2ε)

	(2 − 3ε)	(1 − ε)
.

(57)

Finally, we assemble the full result for the boundary condition
of the integral I13 using Eqs. (43), (47), (49)–(57).

We note that the computation of the other boundary inte-
grals is performed following similar steps; in fact, the manip-
ulations of the hypergeometric functions and the “expansion
by regions” are similar for all complicated master integrals
that one has to compute. We believe that the discussion of
the boundary condition of the integral I13 provides enough
insight into how to deal with them and we do not discuss
other integrals for that reason. We note that boundary condi-
tions for all the seventeen integrals I1,...,17 are given in the
Appendix.

5 Final results

With the boundary conditions known and the system of lin-
ear equations rationalized, it is straightforward to integrate
the equations in terms of Goncharov polylogarithms and to
match the result of the integration to the boundary conditions.
This allows us to write the function Gi j (z) in Eq. (22) as a
linear combination of master integrals

Gi j (z) =
∑

R(k)
i j (z)Ik(z), (58)

where R(k)
i j (z) are the reduction coefficients to master inte-

grals. The integration over z in Eq. (22) is straightforward
– we change variables z → t using Eq. (31) and integrate
from t = (1 − sin δ)/ cos δ, that corresponds to z = 1, to
t = cos δ that corresponds to z = 0. The only subtlety is that
the integration over z diverges at z = 0. To overcome this
problem, we write

1∫

0

dz Gi j (z) =
1∫

0

dz
(
Gi j (z) − G̃i j (z)

)
+

1∫

0

dz G̃i j (z),

(59)

where G̃i j (z) ∼ z−1−2ε describes the non-integrable behav-
ior of the function Gi j (z) at small z. This function can be
extracted from the computed boundary conditions for the
master integrals and the small-z expansion of the reduction
coefficients R(k)

i j (z). Finally, since G̃i j (z) ∼ z−1−2ε , the last
term in Eq. (59) can be trivially integrated over z and, since
the first term is not singular at z = 0, the integrand can be
expanded in ε and, after changing variables from z to t , the

integration over t can be performed in a relatively straight-
forward way.

We note that after performing this final z (or, rather, t)
integration, we obtain the result given by a linear combination
of Goncharov polylogarithms up to weight four with indices
drawn from the following set

{
a±, b±, e±iδ, cos δ,

1

cos δ
, 0,−1, 1

}
, (60)

where a±, b± are given in Eq. (34). The arguments of these
Goncharov polylogarithms are either (1 − sin δ)/ cos δ or
cos δ. The result of the z integration (or rather t integration)
appears to be very large and complex. However, it can be
simplified using the (by now standard ) symbol techniques
[45–47]. Computing the symbol of the result, simplifying it
and integrating the result back, we arrive at the following
expressions for the double-eikonal integrals

SS(gg)
i j = (2Emax)

−4ε

[
1

8π2

(4π)ε

	(1 − ε)

]2

×
{

1

2ε4 + 1

ε3

[
11

12
− ln(s2)

]
+ 1

ε2

[
2Li2(c

2) + ln2(s2)

− 11

6
ln(s2) + 11

3
ln 2 − π2

4
− 16

9

]

+1

ε

[
6Li3(s

2) + 2Li3(c
2) +

(
2 ln(s2) + 11

3

)
Li2(c

2)

− 2

3
ln3(s2) +

(
3 ln(c2) + 11

6

)
ln2(s2)

−
(

22

3
ln 2 + π2

2
− 32

9

)
ln(s2)

− 45

4
ζ3 − 11

3
ln2 2 − 11

36
π2 − 137

18
ln 2 + 217

54

]

+ 4G−1,0,0,1(s
2) − 7G0,1,0,1(s

2) + 22

3
Ci3(2δ)

+ 1

3 tan(δ)
Si2(2δ) + 2Li4(c

2) − 14Li4(s
2)

+ 4Li4

(
1

1 + s2

)
− 2Li4

(
1 − s2

1 + s2

)

+2Li4

(
s2 − 1

1 + s2

)
+ Li4(1 − s4)

+
[

10 ln(s2) − 4 ln
(
1 + s2)+ 11

3

]
Li3(c

2)

+
[

14 ln(c2) + 2 ln(s2) + 4 ln
(
1 + s2)+ 22

3

]
Li3(s

2)

+ 4 ln(c2)Li3(−s2) + 9

2
Li22(c

2) − 4Li2(c
2)Li2(−s2)

+
[

7 ln(c2) ln(s2) − ln2(s2) − 5

2
π2 + 22

3
ln 2

− 131

18

]
Li2(c

2) +
[

2

3
π2 − 4 ln(c2) ln(s2)

]
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× Li2(−s2) + ln4(s2)

3
+ ln4

(
1 + s2

)

6

− ln3(s2)

[
4

3
ln(c2) + 11

9

]
+ ln2(s2)

[
7 ln2(c2)

+ 11

3
ln(c2) + π2

3
+ 22

3
ln 2 − 32

9

]
− π2

6
ln2 (1 + s2)

+ ζ3

[
17

2
ln(s2) − 11 ln(c2) + 7

2
ln
(
1 + s2)

− 21

2
ln 2 − 99

4

]
+ ln(s2)

×
[

− 7π2

2
ln(c2) + 22

3
ln2 2 − 11

18
π2 + 137

9
ln 2 − 208

27

]

− 12Li4

(
1

2

)
+ 143

720
π4 − ln4 2

2
+ π2

2
ln2 2

− 11

6
π2 ln 2 + 125

216
π2 + 22

9
ln3 2

+137

18
ln2 2 + 434

27
ln 2 − 649

81
+ O(ε)

}
, (61)

and

SS(qq̄)
i j = (2Emax)

−4ε

[
1

8π2

(4π)ε

	(1 − ε)

]2

×
{

− 1

3ε3 + 1

ε2

[
2

3
ln(s2) − 4

3
ln 2

+13

18

]
+ 1

ε

[
− 4

3
Li2(c

2) − 2

3
ln2(s2)

+ ln(s2)

(
8

3
ln 2 − 13

9

)
+ π2

9

+4

3
ln2 2 + 35

9
ln 2 − 125

54

]
− 8

3
Ci3(2δ)

− 2

3 tan(δ)
Si2(2δ) − 4

3
Li3(c

2)

−8

3
Li3(s

2) + Li2(c
2)

[
29

9
− 8

3
ln 2

]
+ 4

9
ln3(s2)

+ ln2(s2)

[
− 4

3
ln(c2) − 8

3
ln 2 + 13

9

]

+ ln(s2)

[
− 8

3
ln2 2 − 70

9
ln 2 + 2

9
π2 + 107

27

]
+ 9ζ3

+2π2

3
ln 2 − 8

9
ln3 2 − 23

108
π2 − 35

9
ln2 2

− 223

27
ln 2 + 601

162
+ O(ε)

}
. (62)

Here, s = sin δ, c = cos δ and δ = θ/2 is half the angle
between the three-momenta of the hard radiators i and j .
The Clausen functions are defined as

Cin(z) =
(
Lin(eiz) + Lin(e−i z)

)

2
,

Sin(z) =
(
Lin(eiz) − Lin(e−i z)

)

2i
, (63)

and Ga1,a2,...,am (x) are the standard Goncharov polyloga-
rithms. We have checked these analytic results by comput-
ing the functions SS(gg,qq̄)

i j numerically for a few values of
δ using the Mellin–Barnes representation for the original
eikonal integrals and theMB.m routine for numerical integra-
tion [48]. We found agreement within the expected numerical
precision of the latter.2

The results shown in Eqs. (61) and (62) describe the inte-
grals SS(gg,qq̄)

i j as a function of the relative angle between the
hard emittors. A useful special case corresponds to back-
to-back radiators; this kinematic situation is relevant for the
description of color singlet production and decay. In the back-
to-back limit δ = θ/2 = π/2

SS(gg)
i j |δ→π/2 = (2Emax)

−4ε

[
1

8π2

(4π)ε

	(1 − ε)

]2

×
{

1

2ε4 + 11

12ε3 + 1

ε2

[
11

3
ln 2 − π2

4
− 16

9

]

+ 1

ε

[
− 21

4
ζ3 − 11

3
ln2 2 − 137

18
ln 2 − 11

36
π2 + 217

54

]

− 11

80
π4 − 275

12
ζ3 + 22

9
ln3 2 − 11

6
π2 ln 2 + 125

216
π2

+ 137

18
ln2 2 + 434

27
ln 2 − 649

81
+ O(ε)

}
, (64)

and

SS(qq̄)
i j |δ→π/2 = (2Emax)

−4ε

[
1

8π2

(4π)ε

	(1 − ε)

]2

×
{

− 1

3ε3 + 1

ε2

[
13

18
− 4

3
ln 2

]

+ 1

ε

[
π2

9
+ 4

3
ln2 2 + 35

9
ln 2 − 125

54

]

+ 25

3
ζ3 + 2π2

3
ln 2 − 8

9
ln3 2 − 35

9
ln2 2 − 23

108
π2

− 223

27
ln 2 + 601

162
+ O(ε)

}
. (65)

We have checked the back-to-back results Eqs. (64) and (65)
against the numerical values used in Ref. [19], and found
perfect agreement.

6 Conclusions

We computed integrals of the double-soft eikonal functions
over phase-spaces of two soft gluons or a soft qq̄ pair in the
case when the three-momenta of the hard massless radiators

2 We are indebted to Ch. Wever for help with these checks.
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are at an arbitrary angle to each other. Within the frame-
work of a nested soft-collinear subtraction scheme [19], our
results will allow for an analytic treatment of the double-soft
contribution to NNLO QCD corrections to a generic process
with arbitrary number of hard massless color-charged parti-
cles. Our results for the integrated double-soft functions are
compact; they are expressed in terms of ordinary and har-
monic polylogarithms which ensures that they can be evalu-
ated numerically fast and efficiently. We look forward to the
applications of these results in NNLO QCD computations.
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Appendix A: Boundary conditions for master integrals

We provide the boundary conditions for the required master
integrals in this appendix. We introduce the following nota-
tion

I	 = 	3 (1 − 2ε) 	 (1 + ε)

	2 (1 − ε) 	 (1 − 3ε)

= 1 + ε2 π2

6
− ε32ζ3 − ε4 29π4

360
+ O

(
ε5
)

, (66)

and write the results for master integrals as

Ii = Nε Ĩi , i = 1, . . . , 17. (67)

where Nε is given in Eq. (28). The integrals Ĩ at small z are
given below.

Ĩ1 = z1−2ε,

Ĩ2 = z1−2ε 2(1 − 2ε)2

ε
×
{
I	z−ε

1 − 3ε
− 1

1 − 2ε

}
+ O (z2) ,

Ĩ3 = z1−2ε 4(1 − 2ε)2 ×
= z1−2ε

{
z−1−ε I	

[−1

2ε
+ z(1 − ε)

(1 − 3ε)

]

− 2

(1 − 2ε)(1 + ε)

}
+ O (z2) ,

Ĩ4 = z−2ε 2(1 − 2ε)2

ε2

×
{

1 − z−ε I	F21
(
1, ε, 1 − ε, cos2 δ

) }+ O (z) ,

Ĩ5 = z−2ε −6(1 − 2ε)2

ε
z−1−ε I	

× F21
(
1, 1 + ε, 1 − ε, cos2 δ

)+ O (z0) ,

Ĩ6 = z−1−2ε (1 − 2ε)2

ε2

×
{

− 3z−ε I	F21
(
1, 1 + ε, 1 − ε, cos2 δ

) }

+ 2 Ĩ18 + O (z0) ,

Ĩ7 = z−1−2ε (1 − 2ε)2

ε2

×
{

2 + 2 z1−ε I	F21
(
1, ε, 1 − ε, cos2 δ

) }

+ 2(1 − 2ε)2(1 + 4ε)

zε2(1 + 2ε)
Ĩ1 − (1 + 3ε)z

ε
Ĩ18

+ (1 + ε)z sin2 δ

ε(1 + 2ε)
Ĩ19 + O (z0) ,

Ĩ8 = z1−2ε (1 − 2ε)

ε

1

sin2 δ
×
{

2z−ε (1 − 2ε)

(1 − 3ε)
I	

− 4
[
sin2 δ

]−ε
F21
(−ε,−ε, 1 − ε, cos2 δ

) }

+ O (z2) ,

Ĩ9 = z1−2ε 8(1 − 2ε)2 ×
{

− (1 + 2ε)

(1 + ε)(2 + ε)(1 − 2ε)

× F21
(
1, 2, 3 + ε, sin2 δ

)

− z−1−ε I	
[sin δ]2

[
1

4ε
+ z(1 + ε)

2(1 − 3ε)

]
+ z−ε I	

[sin δ]4

(1 + ε)

2ε(1 − 3ε)

− [cos δ]2ε

[sin δ]4+2ε
	 (1 − ε) 	 (1 + ε)

(1 + 2ε)

ε(1 − 2ε)

}

+ O (z2) ,

Ĩ10 = z−2ε (1 − 2ε)2

ε2

1

sin2 δ

×
{

4
[
sin2 δ

]−ε
F21
(−ε,−ε, 1 − ε, cos2 δ

)− z−ε I	

}

+O (z) ,

Ĩ11 = O (z) ,

Ĩ12 = O (z) ,

Ĩ13 = z1−2ε 16(1 − 2ε)2 ×
{

− (1 + 2ε)

(1 + ε)(2 + ε)(1 − 2ε)

× F21
(
1, 2, 3 + ε, sin2 δ

)

− z−1−ε I	
[sin δ]2

[
1

4ε
− z(1 + ε)(1 − 2ε)

4ε(1 − 3ε)

]

+ z−ε I	
[sin δ]4

1

ε(1 − 3ε)

− [cos δ]2ε

[sin δ]4+2ε
	 (1 − ε) 	 (1 + ε)

(1 + 2ε)

ε(1 − 2ε)

}

+ O (z2) ,
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Ĩ14 = z1−3ε 4(1 − 2ε)2 × I	
ε(1 − 3ε)

1

sin2 δ

×
{

2ε − sin2 δ − ε sin2 δ

}
+ O (z2) ,

Ĩ15 = z1−2ε 4(1 − 2ε)2

×
{

− 2(1 + 2ε)

(1 + ε)(2 + ε)(1 − 2ε)
F21
(
1, 2, 3 + ε, sin2 δ

)

+ z−1−ε I	
[sin δ]2

[
1

2ε2 − z(1 + ε)(1 − ε + 2ε2)

2ε2(1 − 3ε)(1 − ε)

]

+ z−ε I	
[sin δ]4

(3 − ε)

ε(1 − ε)(1 − 3ε)

− [cos δ]2ε

[sin δ]4+2ε
	 (1 − ε) 	 (1 + ε)

2(1 + 2ε)

ε(1 − 2ε)

}
+ O (z2) ,

Ĩ16 = z−2ε 8(1 − 2ε)2

ε2 ×
{

ε

(1 + ε)
F21
(
1, 1, 2 + ε, sin2 δ

)

+ [sin2 δ
]−1−ε

	 (1 + ε) 	 (1 − ε)
[
cos2 δ

]ε

− 1

4

[
sin2 δ

]−1
z−ε I	

[
1 + 2 F21

(
1, ε, 1 − ε, cos2 δ

)] }

+ O (z) ,

Ĩ17 = z−2ε 8(1 − 2ε)2 ×
{

(1 + 2ε)

ε(1 + ε)(2 + ε)
F21
(
1, 2, 3 + ε, sin2 δ

)

+ z−1−ε I	
[sin δ]2 ×

[
3

4ε2 × F21
(
1, 1 + ε, 1 − ε, cos2 δ

)

+ z(1 + ε)

2ε(1 − ε)
× F21

(
1, ε, 1 − ε, cos2 δ

) ]

− z−ε I	
[sin δ]4

[
1

2ε2 + (1 + ε)

2ε2(1 − ε)
× F21

(
1, ε, 1 − ε, cos2 δ

)]

+ [cos δ]2ε

[sin δ]4+2ε
	 (1 − ε) 	 (1 + ε)

(1 + 2ε)

ε2

}
+ O (z) .

We note that the hard contributions for master integrals Ĩ6
and Ĩ7 can be written in terms of the master integrals Ĩ18 and
Ĩ19, see Eq. (27). This provides an easy way to compute these
integrals to the required order in the ε-expansion.
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