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UNIQUENESS OF MARTINGALE SOLUTIONS FOR THE STOCHASTIC
NONLINEAR SCHRODINGER EQUATION ON 3D COMPACT MANIFOLDS

ZDZISLAW BRZEZNIAK, FABIAN HORNUNG AND LUTZ WEIS

ABSTRACT. We prove pathwise uniqueness for solutions of the nonlinear Schrodinger equa-
tion with conservative multiplicative noise on compact 3D manifolds. In particular, we gener-
alize the result by Burqg, Gérard and Tzvetkov, [11]], to the stochastic setting. The proof is based
on deterministic and stochastic Strichartz estimates and the Littlewood-Paley decomposition.

Keywords: Nonlinear Schrodinger equation, Stratonovich Noise, Strichartz estimates,
Pathwise Uniqueness, Littlewood-Paley decomposition

1. INTRODUCTION AND MAIN RESULT

This article is concerned with the nonlinear Schrodinger equation with multiplicative
noise

du(t) = (1Agu(t) — iNu(t)|[*  u(t)) dt — 12 emu(t) odp,(t), te(0,7), 1)

u(0) = ug € H' (M),

on a compact riemannian manifold M, where A is the Laplace-Beltrami-operator, o > 1, A €
{—=1,1}, (em) ey are real valued functions and (3,,),,,c are independent Brownian motions.
if A =1, the NLS is called defocusing and A = —1, it is called focusing.

In the previous article [9], we constructed a martingale solution of in arbitrary di-
mension for A = land a € (1,1+ @ 2) JorA=—land a € (1,1+ 3). Moreover, we proved
pathwise uniqueness of solutions in the 2D-case. The aim of the present article is to show
pathwise uniqueness in the significantly harder three dimensional case and to generalize
the result by Burq, Gérard and Tzvetkov from [11], Theorem 3, for the cubic NLS to the
stochastic setting.

Theorem 1.1. Let M be a compact 3D riemannian manifold. Let A € {—1,1}, a € (1,3] and
em € L>®°(M) real valued with Ve,, € L3(M) form € N and

o0

(IVemllzs + lleml|z=)* < oo. (1.2)

m=1
Then, solutions of (1.1 are pathwise unique.
Note that in contrast to existence, the uniqueness result is the same for the focusing and

defocusing NLS. As an immediate consequence of the Yamada-Watanabe-Theory developed
in [24], Theorem 5.3 and Corollary 5.4, we obtain the existence of a unique strong solution

of (L.1).

Date: August 31, 2018.
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Corollary 1.2. Let M be a compact 3D riemannian manifold. Let A = 1 and o € (1,3] or A = —1
and o € (1, ). If (em),,,cn Satisfies the conditions from Theorem|[1.1} there is a unique strong solution
of (1.1) and martingale solutions are unique in law.

The question of existence and uniqueness of global solutions of the stochastic nonlinear
Schrodinger equation was previously addressed by de Bouard and Debussche in [14] and
[15], Barbu, Rockner and Zhang in [1], [2], [33] and Hornung in [20]. In these articles, the au-
thors considered the fullspace R? and employed a fixed point argument based on Strichartz
estimates to prove existence and uniqueness in one step. As in the deterministic setting,
their ranges of exponents a depend on the space dimension and the considered regular-
ity. Brzezniak and Millet followed a similar approach for the stochastic NLS on a compact
2D manifold M. In higher dimensions, their argument only yields local solutions since the
estimates for the nonlinearity rely on the Sobolev embeddings H*? — L> that are too re-
strictive to work in the energy space H'(M). Another result about the stochastic NLS is
due to Keller and Lisei, see [22], who considered the equation on the space-interval (0, 1)
with Neumann boundary conditions. They proved existence with a Galerkin method and
uniqueness via the Sobolev embedding H'(0,1) < L>(0,1). Hence, their argument cannot
be transfered to higher dimensions. After this work was finished, we learned about a recent
paper [12] by Cheung and Mosincat. Using the additional structure in the special case of the
d-dimensional torus M = T and algebraic nonlinearities, i.e. « = 2k + 1 for some k € N, the
authors employed a fixed point argument based on multilinear Strichartz estimates and an
estimate of the stochastic convolution in Bourgain spaces X** combined with the truncation
method from [14], [15] and [20]. As a result, they solved the NLS with multiplicative noise
in L*(Q, C([0, 7], H*(T%)) N X**([0, 7])) for all s > ¢t := 4 — -2+ and some b < 1 as well as
some stopping time 7 > 0. As a byproduct, their argument also implies pathwise unique-
ness of martingale solutions in L*(Q, C([0,T], H*(T?)) N X**([0,T])) for a = 3and s > 3,
which reflects an improvement compared to the general case considered in Theorem [I.1]

Our approach separates existence and uniqueness. The construction of a martingale solu-
tion in [9] did not use Strichartz estimates. It was only based on the Hamiltonian structure of
the NLS and the compactness of the embedding H'(M) — LP(M). Since these ingredients
are independent of the underlying geometry, the proof worked in a more general frame-
work. In particular, we considered arbitrary dimensions d € N and powers a € (1,1+ ﬁ)
and could also deal with Dirichlet and Neumann Laplacians on bounded domains as well
as their fractional powers. The flexibility of this approach is underlined by the fact that it
could be also used to construct a martingale solution of the NLS with pure jump noise, see
[8]. In the following, we would like to explain the difficulties of the uniqueness result in the
three dimensional case and sketch the proof, which is inspired by the ideas of Burq, Gérard
and Tzvetkov in [11]. We take two solutions with uy,us € L>(0,T; H'(M)) almost surely.

Our starting point is the representation

|y (t) — ug(t) |32 :2/0 Re (ul(s) — ug(8), —iNuy(s)|* Tug () + i\u2(3)|a*1u2(s))L2ds (1.3)

almost surely for all ¢ € [0, 7). At this point, it is crucial to consider Stratonovich noise with
real valued coefficients, since this leads to cancellations of the stochastic integral and the
correction term in It6’s formula. We remark that the formula is closely related to the
mass conservation of solutions to which leads to the notion of conservative noise. To
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use (1.3) for a uniqueness proof, we employ the local Strichartz estimate
It s B0p(h2A ) el pmoran < lalle, o € LA(M), (1.4)
for small times 7' < h and the global Strichartz estimate

. 1
||t — eltAgﬂfHLq(o,T;Lp(M)) S HJZH RS HQ(M). (15)

H%(M)’
from [11]] for p,q € [2, 0] with % + g = % and (¢,p,d) # (2,00,2). Here, h € (0,1] and
¢ € C°(R) can be chosen arbitrarily.

In two dimensions, (1.5) improves the regularity to u,,us € L9(0,7; H P ) almost surely
fors e (1— é, 1). Hence, one can use a Gronwall argument based on the Sobolev embedding

H* P (M) — L*>(M) to prove pathwise uniqueness. For the details, we refer to [9]. In
3D, the challenge is to gain ; + ¢ derivatives with respect to the embedding H 1T (M) <
L>*(M) in order to control the nonlinearity in by the H'-estimates of the solutions.
Unfortunately, this is not possible, but it turns out that one can replace L>-estimates by

1
ujll2oey S 1+ (17]p)> a.s. (1.6)

forall p € [6,00) and intervals J C [0, T]. Then, we use and the control of the LP-norms
for2 <p < 6by H' (M) — L5(M) to get an inequality

Jur () — ua(t)[172 < Clp, ua, ua, |J]) (1.7)

with C(p, uy, us, |J|) — 0 a.s. as p — oo for sufficiently small time intervals J C [0, 7.

In order to get (1.6), we use partitions of unity to estimate the solutions locally in time
and frequency by the Strichartz estimate (1.4). To control the stochastic term, we adapt
Brzezniak’s and Millet’s approach from [10] to derive a spectrally localized stochastic Strichartz
estimate. Afterwards, we reassemble the local estimates by Littlewood-Paley-Theory. We
point out that the proof is restricted to dimension d = 3 and « € (1, 3]. In fact, we need the
endpoint Strichartz estimate by Keel and Tao, [21], to prove pathwise uniqueness for a = 3.
We would like to point out that recently, Bernicot and Savoyeau, see [3], could prove esti-
mates of the type of and also in the case of possibly non-compact manifolds with
bounded geometry. Unfortunately, their estimate only holds for 7' < h'*¢ and
holds with loss % for an arbitrary € > 0. Moreover, the constants depend on ¢, which leads
to an additional growth of the constant in as p — oo. Hence, the results from [3] cannot
be applied scheme of proof.

The strategy to use estimates of the type to prove uniqueness was developed by Yu-
dovitch, [32], for the Euler equation. In the context of the NLS, it was used by Vladimirov
in [31], Ogawa and Ozawa in [26] and [27]. They looked at 2D domains and used Trudinger
type inequalities as an analogon to to control the growth of LP-norms for p — oo.
Burq, Gérard and Tzvetkov could use the Yudovitch-strategy for three dimensional mani-
folds without boundary due to the regularizing effect of Strichartz estimates. In [4], Blair,
Smith and Sogge proved uniqueness of weak solutions of the deterministic NLS on compact
3D manifolds with boundary as an application of their Strichartz estimates on this type of
geometry.

The paper is organized as follows. In section 2, we fix the notations, formulate our as-
sumptions and collect auxiliary results. Section 3 is devoted to proof of the estimate (1.6)
and the pathwise uniqueness.
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2. DEFINITIONS AND AUXILIARY RESULTS

This section is devoted to the notations, definitions and auxiliary results that will be used
in the next section to show pathwise uniqueness.

If a, b > 0 satisfy the inequality a < Cb with a constant C' > 0, we write a < b. Givena < b
and b < a, we write a =~ b. For two Banach spaces E, F, we denote by L(E, F') the space of
linear bounded operators B : E — F and abbreviate L(E) := L(E, E). We use the notation
HS(H;, H,) for the space of Hilbert-Schmidt-operators between Hilbert spaces H; and Hs.
Furthermore, we write £ — F'if E is continuously embedded in F’;i.e. E C F with natural
embedding j € L(E, F).

Let M be a three dimensional compact riemannian C'** manifold without boundary and
LP(M) for p € [1, 00| the space equivalence classes of C-valued p-integrable functions. The
distance induced by g is denoted by p and canonical measure on M is called p.. By LP(M)
for p € [1,00], we denote the space of equivalence classes of C-valued p-integrable func-
tions with respect to p.. The Laplace-Beltrami operator on M, i.e. the generator of the heat
semigroup on M, is named A,. Moreover, we use the fractional Sobolev spaces

HP(M):={ue LP(M): v e LP(M):u= (I - A,y 2v
for p € [1,00) and s > 0 with the norm ||u||g=» := ||v||r». For s < 0, the space H*?(M) is
defined as the completion of L”(A/) with respect to
o = (1= Ag)2ulls,  we LP(M).

For all s € R, we shortly denote H*(M) := H**(M). For properties of the Laplace-Beltrami
operator, characterizations of the fractional Sobolev spaces and embedding theorems, we
refer to [29] and [28]. For s = 1, one can show that the definition from above coincides with

lul

the classical Sobolev space and (||u|3, + ||[Vu||2.)? defines an equivalent norm on H'(M).
We refer to [25] for an explanation of the gradient as an element of the tangential bundle of
M.

Next, we summarize the assumptions on the coefficient of the noise in (1.1)).

Assumption 2.1. Let Y be a separable Hilbert space and B : H*(M) — HS(Y,H'(M)) a
linear operator. For an ONB (f,,),,cy of Y and m € N, we set B,, := B(-) f,,. Additionally,
we assume that B,,, m € N, are bounded operators on H'(M) with

> 1Bz < o (2.1)
m=1
and that B,, is symmetric as operator in L*(M), i.e.
(B, ), = (u, Byv) ., u,v € H(M). (2.2)

In particular, we have B € L (H*(M),HS(Y, H'(M))) and u € L(H'(M)) if we abbreviate

. 1 - 2 1
(u) == —imlemu, we HY(M).

We look at the following slight generalization of in the It6 form

{du(t) = (1Agu(t) — iMu(®)]|* u(t) + p(u(t)) dt — iBu(t)dW(t), te (0,T), 23)
u(0) = up. '
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In the introduction, we used that the process

with a sequence (3,,),,.y of independent Brownian motions is a cylindrical Wiener process
in Y, see [13], Proposition 4.7, and the identity

—iBu(t) o dW (t) = —iBu(t)dW (t) + p (u(t)) dt, (2.4)

which relates It6 and Stratonovich noise. For the sake of simplicity, we restricted ourselves
to the special case of multiplication operators

B,u = enu, u€ HY(M).

with real valued functions e,, satisfying

> (IVemllzs + llemllze)* < oo, (2.5)

m=1

We want to justify that they fit in Assumption[2.1] The Sobolev embedding H'(M) < L%(M)
and the Holder inequality yield
IV (emu) [z <[[uVem|z +[lemVull 2 < [Vem| osllullze + llemll e[| Vul 2
SIVemllzs + llemllz=) lullm, — we HY(M).
Thus,
1Brullir = lemullze + IV (emt) 2 S (IVemllzs + lemllee) lullar, — we HY(M).

Note that the existence-Theorem from [9] additionally needs the assumptions B,, € L(L*(M))N
L(L>TY(M)) with

> IBullzwey <000 Y IBullfges < oo (2.6)
m=1 m=1

But in our example of multiplication operators, this assumption is implied by (2.5). In the
first Definition, we explain two solution concepts for problem (1.1).

Definition 2.2. Let 7' > 0 and uo € H'(M).
a) A martingale solution of the equation (1.1)) is a system (2, F, P, W, F, u) with
e a probability space ({2, F,P)
e a Y-valued cylindrical Wiener W process on €2;
e afiltration F = (%), 7y with the usual conditions;

e a continuous, F-adapted process with values in H~*(M) such that almost all
paths are in C,, ([0, T], H'(M)) and u € L*(Q x [0, T], H'(M));
such that the equation

u(t) = ug + /0 [1A u(s) — iMu(s)]* u(s) + p(u(s))] ds — i/o Bu(s)dW(s) (2.7)

holds almost surely in H~!(M) for all ¢ € [0, T].
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b) Given a probability space (2, F,P), a Y-valued cylindrical Wiener W process on (2,
and a filtration F = (7)o 71 with the usual conditions, a strong solution of the equa-

tion is a continuous, F-adapted process with values in H~*(M) such that almost
all paths are in C\,([0,T], H*(M)), uw € L*(Q x [0,T], H'(M)) and holds almost
surely in H'(M) for all t € [0,T).
Remark 2.3. For a € (1, 3], the solution is almost surely continuous in L?*(M). Indeed, this
follows from the mild form

u(t) = ey +/0 e!t=5) 2 [ iIAu(s)|* u(s) +,u(u(s))} ds — i/0 e t=9)% By (s)dW (s) (2.8)

almost surely for all ¢ € [0, 7] (see for example the proof of Proposition|3.1]in a similar situa-
tion), since the nonlinearity with a € (1, 3] maps H'(M) to L*(M) by the Sobolev embedding
HY(M) < L*(M).

In the following definition, we fix different notions of uniqueness. As we have seen
in the previous remark, it makes sense to define uniqueness by comparing solutions in
C([0,T], L*(M)).

Definition 2.4. a) The solutions of problem are called pathwise unique in
L*(Q; L>(0,T; H'(M))), if given two martingale solutions (Q, F, P, W, F, u;) with u; €
L*(Q; L=(0,T; HY(M))) for j = 1,2, we have u; (t) = uy(t) almost surely in L?(M) for
all¢ € [0, 7.
b) The solutions of are called unique in law in L*(Q; L>(0,T; H'(M))), if given two
martingale solutions (Q2;, 7;,P;, W;,F;, u;) with u;(0) = uo and
u; € L*(Q; L>=(0,T; H'(M))) for j = 1,2, we have P}* = P32 on C([0, T], L*(M)).
We continue with some auxiliary results which are either well-known or due to Burq,
Gérard and Tzvetkov, [11]. The first Lemma gives us an estimate for the nonlinear term in

(1.1).
Lemma 2.5. Let q € [2,6] and r € (1, 00) with ;; = § + *_+. Then, we have
Il ull g < Mlullfp,  w e HY(M).
Proof. See [5], Lemma II1.1.4. d

The following Lemma deals with a Littlewood-Paley type decomposition of L”(M) for
p € [2,00).

Lemma 2.6. Let ) € C°(R), p € C(R\ {0}) with

A) + i ©(27FN), AER.

Then, we have

2

£l = (II%ZJ f||L2+Z||90 27°A) f||L2) . feLl*(Mm), (2.9)

and

1
2

1fllze Sp 190 (Ag) flle + (Z le(27A,) f!lm) , e l(M), (2.10)
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forp € [2,00).

Proof. Let p € (1,00). By [6], page 2, or [23] Theorem 4.1 and estimate (2.9) in a more general
setting, we have

1A ller = ( f\2+2\90 27FA) f|2> , felr(M).
Lr
Hence, we get by Fubini and (2.10) by Minkowski’s inequality. O

The previous Lemma indicates the importance of estimating operators of the form ¢(h%A,)
for h € (0,1]. In the next Lemma, we state how they act in LP-spaces and Sobolev spaces.
Note that these kind of estimates are usually called Bernstein inequalities.

Lemma 2.7. a) Let us assume that 1 < q < r < oo. Then for any ¢ € C°(R), thereis C > 0
such that

1_1
lo(?Ag)llran < CRC ™2 lo(WPAg)ullzs,  we LYM), he(0,1].

b) Let us assume that p € (1,00) and s > 0. Then, for every ¢ € C*(R\ {0}), thereis C' > 0
such that

lp(h*Ag)ullrr < Ch*lp(h*Ag)ul
Proof. ad a): See [11], Corollary 2.2.

ad b): Throughout this proof, we w.L.o.g. assume s > 0. Moreover, we take ¢ € C*(R\ {0})
with ¢ = 1 on supp(y) and define

fu 1 [0,00) = R, fu(t) ==t 3p(—h%)

for h € (0,1]. Then, we have p(—h?*t) = f,(t)t2¢(—h?t) for all t € [0,00) and h € (0,1].
Furthermore, we obtain that f), satisfies the Mihlin condition

sup P Sk, keNy, he(0,1].

gen,  w€ HP(M), hel(01].

Fact 2.20 in [30] and the Spectral Multiplier Theorem 7.6 in [16] hence imply
[n(=Ag)llcr ooy Sh° he(0,1].
Since we also have
1n(=Bo)le@s) < sup|f(® S A7 ke (0,1],
by the Borel functional calculus for selfadjoint operators, the Marcinkiewitz Interpolation
Theorem, see [18], Theorem 1.3.2, yields
1 (=B)llewny S he(0,1],
for p € (1,2]. Since f(—4,) is selfadjoint on L*(M), we obtain for p € (2, 00)
”fh(_Ag)HC(LP) = sup sup |(fh(_Ag)uvv)L2‘

ueLPNL2:||lul|Lp<1 veLp’mL2;||U||LP, <1

= sup sup | (u, fu(=2g)v) 1|

veL? NL2: v,y <L wELPOL?:lullLp <1

= I1fn(=Bg)ll gy S P° h € (0,1].
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For every p € (1, 00), we therefore get
le(h*Agyullze = [1F5(=2g) (=25)% @(W*Ag)ullr < || (~Ay)
S e uller, e H(M).

This completes the proof of Lemma

N|w

p(h*Ag)ul|r

O

In the following Lemmata, we quote the spectrally localized Strichartz estimates from
[11], which are a consequence of [21]. In this paper, Keel and Tao solved the endpoint case
needed for our application in the proof of Proposition [3.1]

Lemma 2.8. Let M be a compact riemannian manifold of dimension d > 1 and p, q € [2, oo] with

2 d d
_+_:_a q7p7d 2700’2'
40=5 apd# 2%

Then, for any p € C°(R), thereis f > 0 and C > 0 such that for h € (0, 1] and any interval J of
length |J| < Bh
[t = e o(h?A) x| pagyrey < Cll2| 12, x € L*(M). (2.11)

Proof. See [11], Proposition 2.9. The result follows from the dispersive estimate for the
Schrodinger group from [11], Lemma 2.5, and an application of Keel-Tao’s Theorem ([21])
with U(t) = e**9p(h*A,)1,(t) for some ¢ € C°(R) with ¢ = 1 on supp(¢). O

A similar result also holds for convolutions with the Schrédinger group.

Lemma 2.9. Let M be a compact riemannian manifold of dimension d > 1 and p1, ps, ¢1, g2 € [2, 0]
with

2 d d

_+_:_7 Qi7pi7d 7é 270072'

PR ( ) 7 ( )
Forany ¢ € C*(R), thereis § > 0 and C' > 0 such that for h € (0, 1] and any interval J of length
<5

< Cllp(h*A,)
L‘H((LLPI)
Proof. See [11]], Lemma 3.4. d

To prepare the next Lemma, we recall the following notation.

t
Htl—>/ =R (R2A,) f(s)ds

o0

f”LqIQ(J,LPIZ)

Notation 2.10. Let E be a separable Banach space, p € [1,00), J C [0,00) an interval and
(2, F, P, F) afiltered probability space. By M?(.J, X'), we denote the space of F-progressively
measurable £-valued processes £ : J x Q — E with ||£]|zr(sx0,5) < 00.

Adapting the proof of Theorem 3.10 in [10] to the present situation, we obtain a spectrally
localized stochastic Strichartz estimate for stochastic convolutions with the Schrédinger
group.

Lemma 2.11. Let ¢, ¢ € C°(R\ {0}) with ¢ = 1 on supp(p). Choose 8 > 0 as in Lemma[2.8] Let
h € (0,1] and J C [0,T] be an interval of length |J| < Sh and x;, € C(R) with supp(xs) C J.
For B € M?*(J,HS(Y, L?)), we set

G(t) = /Ot =929y, (s)p(R*A,) B(s)dW (s), te
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Then,
||GHL2(Q,L2(J,L6)) < ’|S5(h2Ag)BHLQ(Q,LQ(J,HS(Y,LZ)))‘
Proof. We abbreviate
F(t,s) == 1ene ™%y, (s)p(h2A,) B(s), t,s € J,

and use the Burkholder-Davis-Gundy-inequality in the martingale type 2 Banach space
L*(J, L%) (see for example [7]) to estimate

2

/JF(-, $) AW (s)

|KHE%QH@LQV:E\ SE [ IFCBpmumds @12

L2(J,L)
Writing out the definition of (Y, L?(J, L%)) and using ¢(h*A,) = o(h*A,)p(h*A,), we get
-~ 2

1ECo8) B vzzgzey =E|[t = D vmliscny@ % xn(s)p(h*Ag) B(s) fn

m=1

L2(J,L5)
2

Y
L2(J>5,L°)

=E ||t Y @ Bo(hPAg) [yme 27X () G (h*Ag) B(5) fn]

m=1

where (7,,),,.x is a sequence of i.i.d. N(0,1)-Gaussians on some probability space Q. By
Lemma [2.8] the operator e"®sp(h*A,) is bounded from L*(M) to L?(J, L®). Hence, we can
take it out of the sum and obtain

2
I£(, S)H'Qy(Y,L?(J,LG)) SE

S o €2 (8)(hAg) B(5) f
m=1

L2
:He_iSAth(S)SE(hQAg)B(S) H?y(Y,LQ) ~ He_iSAth(S)@(hQAg)B(S) ||%IS(Y,L2)
Slixa()@(h*Ag) B(3) sy, 2 -

Finally, inserting the last estimate in (2.12) yields

||G||%2(Q,L2(J,L6)) S E/J ”Xh(3)95(h2Ag)S5(h2Ag)B(3)||2HS(Y,L2)d3 S ||85(h2Ag)B||%2(Q,L2(J,HS(Y,L2)))-

The proof of Lemma is thus completed. O

3. UNIQUENESS

In the following section, we will prove the pathwise uniqueness of solutions of (1.1). A
key ingredient for this result is an L?Lf-estimate for solutions for arbitrary large p with
moderate growth of the bound in p.

Proposition 3.1. Let d = 3 and a € (1, 3]. Let (Q, F,P, W, F, u) be a martingale solution of (1.1).
Then, there is a measurable set 0y C Q with P(€)y) = 1 such that for all w € 4, p € [6,00) and
intervals J C [0, T, we have u(-,w) € L*(J; LP(M)) with

1
luC 2oy S 1+ (1]p)2 -
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We remark that this estimate of LP-norms is a substitute for the L>°-bound for solutions in
the 2D-setting, see [9], and complements the inequality
HUHLQ(J,LP) 5 |J|§HUHL°°(J,H1) < 0 a.s.

for p € [1,6], which we get from Sobolev’s embedding and the energy estimate for martin-
gale solutions. Before we start with the proof, we introduce an equidistant partition of the
time interval.
Notation 3.2. Let ] = [a,b] with 0 < a < b < co. For p > 0and N := Lb’T“j, ie. N = max{n €
N:n < ”‘7‘1}, the family (Ij);.vzo defined by

Iii=la+jpa+(+1)p, jefo,...N—1},

IN :[a—i_Npab]
is called p-partition of I. Observe

N
Ll<p, §=0...N,  I=UL  Ln=0 j#k
j=0

Proof of Proposition Step 1. We choose 8 > 0 and h € (0,1] as in Lemma [2.§] and take
a %-partition (1;);2, of [0,T] in the sense of Notation E Furthermore, we define a cover

NN T
(17,2, of (1;);, by
h Bh 1 Gh h
[]/: ([j—i—{—%,%])ﬂ[O,T], m]:'i—'—ﬁ—, ]:O,,NT,
and a sequence (ij)j.v:TO C C°([0,00)) by x1, := x ((Bh)7}(- — m;)) for some x € C°(R) with
_ 11

+, 3] and supp(x) C [—1, 3]. Then, we have

x, =1 onl;,  supp(xr,) C I, X lee@ < (BR) X [l ). 3.1)

We fix ¢, ¢ € C2°(R\ {0}) with ¢ = 1 on supp(y). In order to localize the solution u spectrally
and in time, we set

x=1lon|

vr, (1) = x1, () p(h*Ag)u(t), j=0,...,Np,
and apply It6’s formula to @; € C**(I} x H*(M), H~*(M)) defined by
D,(s,x) = ei(t_s)AQXIj(s)gp(hQAg)x, sell, zeH M),
to get the representation of v;; in the mild form

o, (t) = / 0,2 () (B2 u(s) + €I ()p(h2A Juls) | ds

min I,
J

b [ (9)(1,) [iByus) — Nu(o) " Muls) + p(us)] ds

min I/,
J

i [ (), Bu(s) I ()

H !
min [,
J

t
= [ (s)e A, u(s)ds

min I,
J
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b [ () (1) [~ u(s) () + pfa(s))] ds

min I,
t .
- i/ e‘(t_s)A-"XIj(s)gp(hQAg)Bu(s)dW(s) (3.2)
min I,
for j =1,..., Ny in H=3(M) almost surely for ¢ € I}. Because of the regularity of each term

(recall a < 3), this identity also holds in L?(M). Analogously, we get
t
vy, () =e*Aov; (0) +/ ei(t_S)Agx}o(s)gp(thg)u(s)ds
0
t
+/ %oy (8)p(h2A,) [—iMu(s)]*  u(s) + p(u(s))] ds
0

— i/t =920y 1 (8)o(h*Ay) Bu(s)dW (s) (3.3)
0

in L?(M) almost surely for ¢t € Ij. We abbreviate
t .
Gr(t)i= [ 90, (9)o(1,) Buls)d IV (s)
min I,
for 0 <t € [0, T]. We use the stochastic Strichartz estimate from Lemma [2.11} the properties
of (I j);Y:TO and (I ;)?fo and Lemma b) to estimate

Nt Nt
EY 16y [0 SEY / 08 Blu(3))rsirzzy s
j=0 =05
<EY [ 1608 B sy s

T
:QE/O 12(h*Ag) B(u(s)) || fisey.z2)ds

T
<IE / 1B(H2Ag) B () sy 1y 5.

Since ¢(h*A,) is a bounded operator from H'(M) to H'(M) and B is bounded from H' (M)
to HS(Y, H'(M)) by Assumption[2.1, we conclude

Nr T
B 16 g0 SHE [ u(s)pds

=0
Hence, there is C' = C'(w) with C' < oo almost surely such that

Nr

> lIG, [Zor o) S H*C - as. (3.4)

J=0

Step 2 We fix a path w € Q,, where ), is the intersection of the full measure sets from
(B.2), 3.3), (3.4) and u; € L>(0,T; H'(M)) almost surely. In the rest of the argument, we skip
the dependence of w to keep the notation simple. Let us pick those intervals J, . .., Jy from
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the partition (/) ;V:TO which cover the given interval J. The associated intervals in (I}), will
be denoted by J/, ..., Jy. From (3.4), we infer

N
> 1G22, 10y < H2C. (3.5)
j=0

Applying the homogeneous and inhomogenous Strichartz estimates from Lemma [2.8/ and

2.9/in and in (3.3), we obtain

vl 22(s;,8) < ||UJj||L2(J;,L6) S ||X&1<P(h2Ag)U||L1(J;,L2) + ||XJj90(h2Ag)|U|a_1u||L2(J;7Lg)
+ xR Ag) p(u)l L ey + 1G22, 99 (3.6)
forj=1,..., N and
[osll L2 0,29 < Nvsoll2er,ioy S v (min Jg) [ 2 + (X5, 0 (B* Ag)ull Lo 1)

e (BB Aul Ml g+ e (B2 () x 2

+ |G 5ol 225,89 (3.7)
Note that vy, (min J)) = 0if Iy # Jy. Next, we estimate the terms on the right hand side of
(3.6) and (3.7). By (3.1), Lemma[2.7]b) and Hélder’s inequality, we get

X5, o (R Ag)ullrrcr ey S b7 oW Ag)ullpre 2y S ol Ag)ullpacy
< W (B Ag)ull 2y .

Holder’s inequality with |Ji| < h, Lemma b) and the boundedness of the operators
¢(h*A,) and pin H'(M) yield

;0 (B Ag) () | 107,22y S hllxa (B Ag) () || oo, 2y < Bllo(h* Ag) ()l oo 0,7 12)
ShQHSD(hQAg)M(U)||L°<>(0,T;H1) S h2||uHL°°(O,T;H1)-

We apply Lemma|2.5|with i’ = -£5 > £ and ¢ = 6 and obtain the estimate

ol ol g S Mol ol e, S WlIg, v € HY(M),

where we used o < 3. Together with Holder’s inequality, Lemma 2.7b) and the bounded-
ness of p(h?A,), this implies

_ 1 o
;0 (h* Ag)ul*Hul| S hE (R Ag)lul* ™ ul|

L2(J1,L8) L=(0,T;L%)
< e [o(h2A,)|ul* L

6
Lo(0,T;HY5)

N

— 3
5 h |||u|a 1u||Loo(07T;H17g) 5 hZHUH%M(O,T;Hl)‘

Inserting the last three estimates in (3.6) and (3.7) yields
1 30 la
HUJj HLQ(JJ-,LG) She HSD(hQAg)UHm(J]’.,HI) + h2 HUHLoo(o,T;Hl)

+ 12 {|ull Lo,y + Gy 2207, 0), (3.8)

. 1 3 a
[vs0 ]l 220,20y S Bl (R* Ag)u(min Jo) [ + 22| @(h* Ag)ull 20y a1y + B2 ||ull oo o 5111
+ h2||u||Loo(o,T;H1) + |G 255,169 (3.9)
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We square the estimates (3.8) and (3.9) and sum them up. Using x;, = 1 on Jj;, (3.5) and
N < Np = th we conclude

N
”30<h2Ag)uH%2(J,L6) < Z HXJJ-%O(h2 uHL2 Jj, L) Z v, ”L2 Jj,L8)
=0
Sh2|p(h*A,)u(min J)||3.
N

+ 7 [l A ullEaqy sy + B Nl 3 oy

7=0

-

Il
o

+ 3 (Wl o] + 3C

J

N
Sl (R Agyulmin Jo)l[Fn + 1Y o Ag)ulfa s ay

j=0
+ hQHUHLw or;HY) T hSHUH%oo(o,T;Hl) + h*C. (3.10)

Below, we will use the notations

JN+1 = (LNJ J;) \ (Lj\j Jj> , Jh = NL—jl Jj.

By
N+1
Z lo(h?Ag)ullZ2 oy <2 > W Ag)ullFag, 1y = 2l Ag)ulla sn pny
7=0
we obtain

o Agullfag oy < h lp(h* Agyu(min Jg) |3 + All(h*Ag)ullza sy
+ 12 ul[Fo rieny + Bl oo gy + H2C.

Let p > 6. Then, Lemma2.7)a) and u € L>(0,T; H'(M)) imply
B8 o A ul e
3
B *2|p(h?A g Ju(min Jo)HHl + he [l (h* Ag)ull 2,y

lp(h*Ag)ullracrin S
S

L1 3 3.1
+hote ||u||L°°(O,T;H1) + hp+1||u”L°°(0,T;H1) +hr 20
< hets 4 b (B2 Ag)ull o gy + B TE 4 BT (3.11)
Step 3. In the last step, we use (3.11) and Littlewood-Paley theory to derive the estimate
stated in the Proposition. To this end, we set hy, := 277 and ko := min {k: [J] > 2} Let
us define Q; := (,—; @, and fix a path w € Q;. We remark that we have P(€;) = 1 by

the choice of 2, for each h € (0, 1] from the previous step. In the rest of the argument, we
skip the dependence of w to keep the notation simple. Moreover, we choose ¢ € C°(R),
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@ € CX(R\ {0}) such that
ANu + Z ©(27FN), AeR.

Then, Lemma 2.6, the embedding ¢! (N) — (*(N) and (3.11) imply

lullz2(re0) S (IW u|’LP+ZH(:0 27A) UHLP>

2

L2(J)

1
2

= | llv(A )uHL2(JLP +ZH90 kA U”L2(JLP)>

< 1(Ag)ullr2(sze) + Z (27 Ay Yull L2(s,Lr)
k=1
ko—1

S (Ag)ullziee) + Z l(27"Ag)ull L2,y

+3 2 B oz Al + 3 [ 427800 4o

k=ko k=ko
ko—1

<[[¥(Ag)ullz2(srey + Z lp (27 Ag)ull L2 ry

_ 3k > k _k _k
F 3 2 E @ A ul e + 3 2t 27t ot
k’Zk‘o k:k()
ko—1

S (Ag)ullziee) + Z l(27"Ag)ull L2,y

NI

2
(z ) (zw n)

k=ko k=ko
From Lemma [2.7a) with h = 1, we conclude

[0(Ag)ullz2rrry S IV(Agull2srey S llull2zey S 1.
From Lemma[2.7/a) and the Sobolev embedding, we infer

o2 Ag)ullz2rin S 27853 [lp(27 Ay ull 220
N QZHSO(Q_ICA Jull L2051

fork € {1,...,ky — 1} . From the definition of ky, we have |J| < 27z . Thus, we get

ko—1 feo—1 T fko—1 3
3 bt < (zz) (zw 2+l Hl>)

< 2% |lull ey S WIEE S L

(3.12)

(3.13)

(3.14)
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We proceed with the estimate of the sums over k > k. The fact that we have J hirr < Jh for
all £ € N, leads to

ZII@O 2R A ull Ty = Y 0@ AUl iy

k= k‘() ke |J|>Bhk

S Z ”(70< kA )u||L2(Jhk0 Hl)

kil J|> ok

~ HuHLQ(JhIcO’Hl) S |Jhk0‘ HU’H%OO(O,T;Hl)'
Using | J"o | < 3% +|J] <4|J|and u € L>(0,T; H'(M)) almost surely, we obtain

Z ng kA UHL2 Jh H) ~ ‘J| (3.15)

k=ko

Finally, the calculation

] — 1 1 1 1
lim—z _Sj—hm—(—g—1>:1im - —
e prep \1- 275 p=oo (2; . 1) 31og(2)

yields the boundedness of the function defined by [6,00) 3 p — % Yooy 2% and hence,

So v < (3.16)

1

Using the estimates (3.13) (3.14), (3.15), and (3.16) in (3.12), we get

00
k=

lullz2eny S 14 (17]p)? . p € [6,00),
which implies the assertion. The proof of Proposition 3.1|is thus completed. O

We would like to continue with some remarks on seemingly natural extensions of the
previous result to higher dimensions, nonlinear noise and non-compact manifolds.

Remark 3.3. We would like to comment on the case of higher dimensions d > 4. The
Strichartz-endpoint is (2, - 2) and the use of Lemma 2 leads to the restriction o < 1+ 555
The corresponding estimate in (3.12)) has to be replaced by

ko—1
k
| 222wy SI(Dg)ull 2o +Z||90 27FA, u||LzJLp>+Z2 $GD) o (27F A Yl 2
k=ko
I Z[ v(d)+3) 4 o5 (8- (d)+1)+2—§(%—u(d)+%)}

k=ko

forp > 24 where we set v(d) := %52. Hence, the convergence of the sums requires an upper
bound on p, which destroys the uniqueness proof below such that the case d > 4 remains
an open problem. In fact, this problem occurs since the scaling condition for Strichartz
exponents, Sobolev embeddings and Bernstein inequalities are more restrictive in higher
dimensions and therefore, the restriction to d = 3 is of deterministic nature.
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Remark 3.4. In the proof of Proposition we did not need the optimal estimates for the
correction term y and the stochastic integral. In fact, it is possible to generalize the argument
and show the estimate

1
lull 2y S 14 (1J|p)2 as., pe€|[6,00),

for martingale solutions of the equation

du(t) = (iAgu(t) — iNu(®)]* u(t) + p (Ju@) PO D)) dt —iB (Ju@)] u(t)) dW (),
u(0) = wo,

(3.17)
with nonlinear noise of power v € [1,2). However, we do not know if this equation has
a solution, since the existence theory developed in [9] only applies for v = 1. Moreover,
it is unclear how to apply these estimates in order to prove pathwise uniqueness since the
arguments below rely on the linearity of the noise. Hence, the case of equation remains
another open problem.

Remark 3.5. Let us comment on the case of possibly non-compact manifolds with bounded
geometry. In the two dimensional setting, the Strichartz estimates from [3] with an addi-
tional loss of ¢ regularity were sufficient to prove uniqueness, see [9], Section 7. In fact, these
estimates correspond to localized Strichartz estimates of the form

[t = €294, 1 (=R A )| agiry < Cell]| 2, |J| < B.hMFE, (3.18)

foralle > 0 and some C. > 0 and . > 0, where we denote t,, ,(\) := \™e~** for m € N and
a > 0. A continuous version of the Littlewood-Paley inequality which can substitute (2.10)
. ferr(M),  (319)

is given by
! dh\ 2
([ tomat-reapsey)
0 h)olL

for pma(N) == f/\oo wm,a(t)%, see [3], Theorem 2.8. Based on (3.18) and (3.19), we can argue
similarly as in the proof of Proposition 3.1jand end up with the estimate

||f||LP ~ ngm,a(_Ag)f”LP +

1

1 P2
o < 14 |J)2 a.s.
follooan 14171 (2

foreache > 0and p € [6,6e~!) with an implicit constant which goes to infinity for e — 0. The
upper bound on p is due to the fact that the additional € in weakens the estimates of the
critical term containing the derivative x of the temporal cut-off and enlarges the number
of summands in (3.10). As in the case of higher dimensions than d = 3, the uniqueness
argument breaks down since a limit process p — oo is no longer possible.

So far, we only used the topological properties of the noise, i.e.
Be L(H'(M),HS(Y,H'(M))), p € L(H'(M)).

Now, the Stratonovich structure and the symmetry of the operators B, for m € N come into
play to prove the following representation formula for the L?-distance of two solutions.

Lemma 3.6. Let d = 3and o € (1,3]. Let (0, F,P,W,F,u;), j = 1,2, be solutions of (1.1). Then,
we have

o (6) = a0 =2 | Re (1n(5) = (o), —iAlun ()]s (5) + Au(o)|* () s (320
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almost surely for all t € [0,T].

Note that the RHS of (3.20) only contains the terms induced by the nonlinearity. In partic-
ular, the stochastic integral vanishes, which will enable us to use the pathwise estimate from
Proposition [3.1]to prove uniqueness.

Proof. We restrict ourselves to a formal argumentation. Similarly to [9], Proposition 6.5,
our reasoning can be rigorously justified by a regularization procedure based on Yosida

approximations Ry := A (A —A,)"" for A > 0. The function M : L?>(M) — R defined by
M(v) := ||v||3, is twice continuously Fréchet-differentiable with

MI[U]hl =2Re (1), hl) MH[U] [hl, hg] =2Re (hl, h2)L2

L2’

for v, hy, hy € L*(M). We set w := u; — uz. Then, a formal application of the It6 formula
yields

|w(t)]32 22/0 Re (w(s), A w(s) —iluy(s)]* Tui(s) + i|u2(s)|a_1u2(s))L2ds

+ 2/0 Re (w(s), p(w(s))) ,ds — 2/ Re (w(s),iBw(s)dW (s)) ,

0
0o ¢
Y /0 | B (s)|[22ds (3.21)
m=1

almost surely for all ¢ € [0,T]. Since A, is selfadjoint, we get Re (w,iA w) , = 0. From the
symmetry of B,,, m € N, we infer Re (w,iB,,w) , = 0 and thus, we obtain

/0 Re (w(s),iBw(s)dW(s)),, = 0.

Moreover, we simplify

2Re (w(s), p(w(s))) ., = = > Re (w(s), Baw(s)) , = — > _ | Buw(s)|72-
Therefore, we have

l|w(t)]|22 :2/0 Re (w(s)7 —i|ui(8)]* tuy(s) + i|u2(3)\0‘—1u2(s))L2d8

almost surely for all ¢ € [0, 7.
U

We close with the proof of our main Theorem We prove the uniqueness by applying
a strategy developed by Yudovich, [32], for the Euler equation. In the context of the NLS, it
was first used by Vladimirov in [31]], Ogawa and Ozawa in [26] and [27]. They looked at 2D
domains and used Trudinger type inequalities to control the growth of LP-norms for p — oo.
A generalization of this argument to the stochastic case in 2D is straightforward and can
be found in [19], Subsection 5.2. Following Burq, Gérard and Tzvetkov in the case without
boundary, the Yudovich-strategy in combination with Strichartz estimates as an improve-
ment of Trudinger’s inequality was also applied it to the deterministic NLS on compact 3D
manifolds with boundary by Blair, Smith and Sogge in [4].
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Proof of Theorem Step 1. Let us take two solutions uy, us € L*(Q, L>(0,T; H'(M))). Using
Proposition 3.1, we choose a null set N; € F with

luso)llzin So 1+ (D)2, w€Q\ N, (3.22)

for each interval J C [0,7] and p > 6. By Corollary B.6, we choose a null set N, € F such
that

| (t) — ua(t)]|32 :2/0 Re (u1(s) — ua(s), —=iAu1 ()] ur(s) 4+ iA|ua(s)|* ua(s)) ,ds (3.23)

holds on 2 \ N, for all ¢t € [0, 7). In particular, this leads to the weak differentiability of the

map G := |[u; — us]|3, on Q\ N, and to the estimate
|G'(t)] =|2Re (ur(s) — ua(s), —iX|ui ()] uy(s) + iMua(s)|*  ua(s)) .|
S/ lui (s, ) — ua(s, ) (Jur(s, 2)[*" + |ua(s, 2)|*7") da. (3.24)
M

The Sobolev embedding H'(M) — L°(M) yields u; € L*(0,T;L%(M)), j = 1,2, almost
surely. Moreover, we have the mild representation

t t
iu;(t) :ieimgug—l—/o 6i(t_T)Ag)\\u( N (T )dT+1/O it- T)AgM(Uj(T))dT

n /0 =% B, (7)) dW (1)

almost surely for all ¢t € [0,7] in H*(M) for j = 1,2. As a consequence of a € (1,3] and
u; € L>(0,T;L5(M)), each of the terms on the RHS is in L*(M). In particular, we obtain
u; € C([0,T), L*(M)), j = 1,2, almost surely and thus, we can take another null set N3 € F
such that

u; € L0, T; LS(M)) N C([0,T), L*(M)) on Q\ Ns.

Now, we define Q; := Q\(N; U N, U N3) and fixw € ;. We take a sequence (p,,),,.y € [6,00)"
with p, — oo asn — oo. We fix n e N and define ¢, := *2;. By the estimate (3.24) and

Holder’s inequality with exponents + = =1, we get

|G (8)] Sllua(t) — ua(t )Hqu;l \ul( it (2163] el PR A (W

The choice of g, yields 2¢;, € [2,6] and for 6 := 3>~ € (0,1),
obtain

L1006
57 = 5 +6.Hence,we

23 3 93 3
Jur — unl|? 5, < Nlus — wall 7 ™ lur — uallfi < Jlug — wall 7 ™ [lur — || 7% (0 7.0

by interpolation. We choose a constant C'; > 0 such that
HU1HL°°(0,T;L6) + HU2HL°°(07T;L6) <,
which leads to
3
GO SCmG®" = [l @l + lua(t)155] (3.25)

Step 2. We argue by contradiction and assume that there is 5 € [0, 7] with G(t2) > 0. By
the continuity of G, we get

3t € [0,85) : G(t) =0 and Vit € (t,ts) : G(t) > 0. (3.26)



UNIQUENESS OF SOLUTIONS FOR THE STOCHASTIC 3D NLS 19

We set J. := (t1,t1 + ¢) with e € (0,t2 — t1) to be chosen later. By the weak chain rule (see
[17], Theorem 7.8) and (3.25)), we get

3 3/ 3 =/
6t = o [ G s s C;n/ (lua(s) 155" + lua(s) 8] ds, ¢ € JL.
Qn q t1
By another apphcatlon of the Holder inequality with exponents —= and 3=, we infer that
3 3-a
G(t) Qq” 5 2_C |:Hu1HL2 (t1,t;:LPn) + HuQHLZ (t1 tLPn):|€ 2, te .
Now, we are in the position to apply (3.22) and we obtain
3 =2 - a
Gty S 5O (1+(epa) )7, e

n

In particular, there is a constant C' > 0 such that for all ¢ € J. it holds that
30 a—1 3—a 2an
< — 2 2
G(t) < C? ( 2%( + (e(a = 1)gn) )g )

2qn

3¢ o\
< 2 — = .
2 (2% (1 + &% (a 1)%) > b, (3.27)

where we used p,, := ¢, (o — 1) and 251 € (0,1].

Step 3. We aim to show that the sequence (b,),,.y on the RHS of converges to 0 for
e sufficiently small. Then, we have proved G(t) = 0 for all ¢ € J. which contradicts (3.26).
Hence, we have u; (t) = uy(t) almost surely for all t € 10,77

To this end, we choose ¢ € (0, min{ty — 4, 3C(a 30— })- Then,

2qn

by :Cf(go <1+6 2 (oz—l)qn> 3_&)3

2n
3C 0 | 5
=C? <M) — t1 7.
2 €2 (OZ - 1)Qn
The proof of Theorem[I.1]is thus completed. O
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