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Abstract

The increasing density of urban traffic gives rise to more complex and crit-
ical traffic situations which needs to be approached systematically. As a
contribution, the present work focuses on trajectory planning methods that
enable an automated evasive maneuver to avoid a collision with a single
critical dynamic obstacle within bounded environments.

Trajectory planning as functional component of an Advanced Driver As-
sistance System (ADAS) is located in the functional chain between envi-
ronment perception and actuator control. Automated evasive maneuvers
require a specific methodology for trajectory planning. Optimal trajectories
shall satisfy the requirements of dynamic integrity, avoidance of collisions
and optimal utilization of the available maneuver space. Furthermore, with
respect to functional safety, a general goal is to determine the latest possible
moment for the execution of the collision avoidance maneuver. In addition,
the method shall support an efficient implementation on a production-type
Electronic Control Unit (ECU).

To meet these challenges, the present work focuses on trajectory planning
methods that consider a combined utilization of braking and steering. The
trajectory planning task is formulated as an optimization problem which is
approached in three different ways. First, optimal trajectory planning in
consideration of a dynamic vehicle model is investigated. This approach
comprises sufficiently precise modeling of the vehicle dynamics and shall
be considered as a benchmark. The second approach shall approximate the
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Abstract

behavior of vehicle dynamics by suitable parametric trajectories. The third
approach extends the second one by introducing heuristic sampling thus is
suitable for online optimization and computational efficient for the applica-
tion in a test vehicle.

In the first step, the potential of the three proposed approaches is verified
in a simulative environment. In the following step, the third approach as
a functional component of an ADAS for collision avoidance is integrated
into a test vehicle to verify the real-time capability and practicability. It is
demonstrated that the proposed method is practical for an application in an
ADAS.

Keywords: Collision avoidance, Trajectory planning, Risk assessment,
Optimization
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Kurzfassung

Die zunehmende Verkehrsdichte in urbanen Ballungsgebieten führt zur
Häufung von unübersichtlichen und kritischen Verkehrssituationen. Um
dieser Entwicklung gerecht zu werden, behandelt diese Arbeit Ansätze
zur Trajektorienplanung, die ein automatisiertes Ausweichen mit einem
einzelnen kritischen dynamischen Hindernis in beschränkter Umgebung er-
möglichten.

Als Komponente eines Fahrerassistenzsystems befindet sich die Trajek-
torienplanung in der Funktionskette zwischen Umfeldwahrnehmung und
Aktorikregelung. Automatisiertes Ausweichen erfordert eine besondere
Methodik zur Trajektorienplanung, um die spezifischen Anforderungen
dieser Aufgabe zu bewerkstelligen. Die optimale Trajektorie muss die Krite-
rien Fahrbarkeit, Kollisionsvermeidung und optimale Nutzung des begrenzt
zur Verfügung stehenden Manöverraums berücksichtigen. Des Weiteren
ist es aus Sicht der funktionalen Sicherheit ein zentrales Ziel, den spätest
möglichen Auslösezeitpunkt für die Kollisionsvermeidung zu bestimmen.
Zusätzlich muss das Verfahren eine recheneffiziente Implementierung in
einem seriennahen Steuergerät unterstützen.

Um diese Aufgabe zu bewältigen, werden hierzu in dieser Arbeit An-
sätze zur Trajektorienplanung behandelt, die eine Kopplung von Längs-
und Querdynamik erlaubt. Die Aufgabe der Trajektorienplanung wird als
ein Optimierungsproblem formuliert; von diesem ausgehend werden drei
Varianten abgeleitet: Die erste Variante betrachtet die Problemstellung der
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Kurzfassung

optimale Trajektorienplanung unter Berücksichtigung eines dynamischen
Fahrzeugmodells. Diese Variante verfügt über eine hinreichend genaue
Abbildung der Fahrzeugdynamik und soll zur generellen Betrachtung und
Bewertung des Verfahrens dienen. Die zweite Variante soll durch eine
geeignete Parametrierung der Trajektorien das Verhalten des Fahrzeugmod-
ells approximieren. Die dritte Variante erweitert die Zweite durch einen
heuristischen Ansatz zur zeitlichen Abtastung. Dadurch ist diese Variante
zur Onlineoptimierung geeignet und folglich ausreichend recheneffizient für
die Anwendung im Fahrzeug.

Das Potenzial der drei vorgestellten Verfahren wird im ersten Schritt simu-
lativ nachgewiesen und im darauffolgenden Schritt wird das dritte Verfahren
in einem Versuchsträger zum Nachweis der Echtzeitfähigkeit implementiert.
Es wird gezeigt, dass die Ansätze für die Anwendung in Fahrerassistenzsys-
temen geeignet sind.

Schlagworte: Kollisionsvermeidung, Trajektorienplanung, Risikobewer-
tung, Optimierung
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Notation and Symbols

Acronym

ADAS Advanced Driver Assistance System
CAN Controller Area Network
COG Center Of Gravity
ECU Electronic Control Unit
IMU Inertial Measurement Unit
MPC Model Predictive Control
P-Planner Polynomial Trajectory Planner
QP Quadratic Program
rP-Planner reduced Polynomial Trajectory Planner
ST-Planner Single-Track Model Trajectory Planner
SQP Sequential Quadratic Program

General Notation

Mathematical symbols within this work are defined in there corresponding
context. The generation of the symbols follows the general rules defined
below.

Scalars Italic lower case a, b, c, σ, λ
Vectors Bold Italic lower case a, b, c, σ, λ
Matrices Bold Italic upper case A,B, C
Constants Roman case a, A, b, B

Sets Calligraphic upper case A, B, C
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AbkÃ¼rzungs- und Symbolverzeichnis

ABS Anti-lock Braking System

ADAS Advanced Driver Assistance System

AEB Automatic Emergency Braking

CAN Controller Area Network

CIB Collision Imminent Braking

CV Constant Velocity

CA Constant Acceleration

CTRA Constant Turnrate and Acceleration

CT Constant Turnrate

COG Center of Gravity

ECU Electronic Control Unit

ESP Electronic Stability Program

GIDAS German In-Depth Accident Study

IMU Inertial Measurement Unit

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

P-Planner Polynomial Trajectory Planner

QP Quadratic Program

rP-Planner reduced Polynomial Trajectory Planner

ST-Planner Single-Track Model Trajectory Planner

SQP Sequential Quadratic Program
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1 Introduction

1.1 Relevance of trajectories for Collision
Avoidance

In accordance to the Federal Statistical Office of Germany [68], 2.40 million
car accidents were recorded by the police in 2014. The amount of accidents
with personal injuries has increased by 3.90 % to 302 435 compared to 2013.
Most accidents with personal injuries occurred within built-up areas with
69.60 % (see Fig. 1.1). Among these, accidents caused by turning into a
road or by crossing it had the highest rate of personal injuries where the
latter also had the highest fatality rate (Table 1.1). Urban traffic situations
with opponents moving in transversal directions obviously cause greatest
difficulties to all involved road users. Addressing urban traffic situations
with opponents moving in transversal directions provides a high potential
for the improvement of road safety.

Addressing these accident types, intensive research activities for enhanced
Advanced Driver Assistance System (ADAS) are conducted within the in-
dustry [80, 79, 29, 9, 62, 63]. Besides assistance functions alerting the
driver, collision mitigation systems already implemented in series produc-
tion assist the driver to avoid an imminent collision. Strategies with varying
characteristics are applied. Several pursue an alerting strategy where the
driver is alerted before the imminent collision occurs. The alerting strategy
comprises of visual alerts, haptic alerts or optical alert or any combination
of these methods. Others extend the alerting strategy by an active interven-
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1 Introduction
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Figure 1.1: Accidents with personal injuries by location of accident for year
2013 and 2014 [68]

tion. These systems either avoid or at least reduce the imminent collision by
an active braking intervention. Future systems will be able to brake earlier
or even steer for a limited period without any driver activation.

A significant contribution to these evolutionary steps are the enhancements
and refinements of environment perception systems and improved scene in-
terpretation [11, 41, 52, 33]. These are the fundamental prerequisite for
automated collision avoidance maneuvers. Especially maneuver planning
or trajectory planning benefits from these developments. Traffic scenarios
that do not change rapidly over time and are observable for a sufficient time
period do not necessarily require complex maneuver planning.

These situations can be handled with relative simple methods which mostly
do not require a trajectory. However, new challenges arise when time critical
scenarios will be addressed, that require a combination of longitudinal and
lateral intervention – especially in the field of trajectory planning. Those
critical scenarios are often within dynamic environments with suddenly ap-
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1.1 Relevance of trajectories for Collision Avoidance

Type of accident Personal
injuries / %

Fatalities / %

Driving accident 10.90 20.00

Accident caused by turning off the
16.30 10.70

road
Accident caused by turning into

26.30 16.90
a road or by crossing it

Accident caused by crossing the road 7.10 26.80

Accident involving stationary
4.50 1.60

vehicles
Accident between vehicles moving

21.60 8.00
along in carriageway

Other accident 13.30 16.00

Table 1.1: Accidents within urban area by type of accident [68]

pearing obstacles where a highly dynamic intervention is indispensable.
Collisions in such time critical traffic situations can be handled by either a
highly dynamic braking or steering intervention. Beyond that, the combi-
nation of braking and steering enables more general maneuvers covering a
broader variety of relevant traffic scenarios. For example, suddenly appear-
ing obstacles in scenarios with limited maneuver space can be meet, which
is highly relevant for urban traffic situation.

The present work will focus on trajectory planning methods addressing
those time critical scenarios, that typically emerge in urban areas. One of
the most challenging aspects of trajectory planning for an application within
urban areas that needs to be addressed are narrow roads. Here, the consid-
eration of the drivable area is inevitable with a clear distinction between
road and pavement or roadside. Further challenges are the feasibility and
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1 Introduction

the dynamic integrity of the planned maneuvers. To ensure accurate and
predictable maneuver planning, the vehicle physics and limitations must be
considered to guarantee a realistic and drivable evasive trajectory. A system
which takes the latter aspect into account can help to reduce traffic accidents
and associated injuries.

1.2 Objectives

The aim of the present thesis is to develop methods for the planning of col-
lision avoidance trajectories. The developed methods shall contribute to the
reduction of accidents within urban areas. Collision avoidance trajectories
will be developed with the following objectives:

• The objective is to develop trajectory planning methods for collision
avoidance in given scenarios. The focus shall be on the usage within
an Advanced Driver Assistance System for passenger cars in urban
traffic scenarios. Variations of single-object scenarios in typical urban
traffic environment shall be considered.

• The method shall provide trajectories that enable the execution of an
evasive maneuver at the optimal moment, where optimal is defined
later. Situations shall be detected where no collision-free trajectory
can be found.

• The method shall consider the kinematic and dynamic characteristics
of the underlying vehicle dynamics. Moreover, physical limits of the
brake and steering actuators shall be considered.

• The developed method shall consider the available maneuver space
and arbitrary objects, i.e., vehicles, pedestrians, or bicycles. Without
limiting the generality of the proposed method, the availability of a
complete and correct environment representation is assumed.
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1.3 Outline

• The trajectory planning algorithm shall be proven on the basis of a
prototypical implementation in an experimental vehicle. The devel-
oped method shall be integrated into an Advanced Driver Assistance
System for collision avoidance. The system performance shall be
evaluated with the focus on practical benefit and applicability. Any
type of driver interference shall be neglected.

1.3 Outline

The structure of this Thesis is as follows:

Chapter 2: Fundamentals

Chapter 2 provides prerequisites and fundamentals for the planning
of collision avoidance trajectories. First, a general definition of tra-
jectories is given and the relevance of trajectories in a collision avoid-
ance context is discussed. Second, trajectory planning as an embed-
ded component of an ADAS is discussed. Third, an overview of re-
lated work on trajectory planning methods is given. Fourth, the most
suitable method with best coverage of the requirements for trajectory
planning of collision avoidance maneuver is selected. Finally, a dy-
namic vehicle model and actuator-specific parameters are presented.

Chapter 3: Optimal Collision Avoidance

Chapter 3 introduces the methodology for optimal trajectory planning
of collision avoidance maneuvers. Necessary conditions, criteria and
requirements for trajectory planning of collision avoidance maneuvers
are presented and discussed. A general mathematical formulation of
the trajectory planning problem is provided.

Chapter 4: Optimal Collision Avoidance Approaches

Three specific trajectory planning approaches based on the optimal
trajectory planning methodology of Chapter 3 are introduced. The

5
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first approach considers a dynamic vehicle model. The second one
considers a parameterized approximation of the trajectories. The third
approach modifies the parameterized approach by adding a sampling
heuristic, which reduces the computational complexity. Further, rel-
evant assessment criteria and a catalog of characteristic use-cases are
introduced that shall facilitate the performance evaluation of the opti-
mal trajectory planning approaches.

Chapter 5: Simulation results

The developed trajectory planning approaches are assessed in a simu-
lation-based analysis. Analysis shall evaluate the performance of the
approaches and verify the compliance with the set of requirements.

Chapter 6: Vehicle test results

The developed approaches are integrated into an ADAS for collision
avoidance and implemented in a test vehicle. The applicability and
robustness of the proposed approaches are verified by vehicle tests.

Chapter 7: Conclusion and Outlook

Chapter 7 finalizes this thesis with conclusion and outlook. The re-
search questions answered within this thesis are summarized and po-
tentials for further work are discussed.

6



2 Fundamentals

This chapter aims to explain the fundamentals that are prerequisites for the
planning of collision avoidance maneuvers with trajectories. First, trajectory
planning as an embedded part of an Advanced Driver Assistance System
(ADAS) is discussed. Second, a definition of a trajectory is provided and
the relevance of trajectories for maneuver planning in a collision avoidance
context is given. Third, an overview of related work on trajectory planning
methods is given. Fourth, the most promising method for the planning of
collision avoidance trajectories is selected. Last, a dynamic vehicle model
is discussed and actuator-specific parameters are presented.

2.1 Trajectory planning in the context of
Advanced Driver Assistance System (ADAS)

The system architecture of ADAS which affects driving dynamics may be
broken down to four main tasks: environment perception, ego-state estima-
tion, trajectory planning and execution. The environment perception task
collects and evaluates all captured sensor information of the environment.
The available sensor information comprises of static and dynamic environ-
ment information. The quality and availability of the sensor information
highly depends on the applied onboard sensor set and its configuration. Sta-
tic environment information is, e.g., the lane markings of ego and adjacent
lanes or the drivable area, which may be bounded by curbstones or parked
cars on the road side. Dynamic environment information are moving obsta-
cles that are in the surroundings of the ego-vehicle, like vehicles, pedestri-
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2 Fundamentals

Trajectory Planning

Control

Vehicle State Estimation

Vehicle

Vehicle Sensors

Actuators

Object Sensors

Environment

Environment Perception

Figure 2.1: System architecture of an ADAS for collision avoidance

ans, or bicycles. Together with the ego-state estimation task, which com-
putes the current state of the ego-vehicle, the collected data can be formed
into a scenery representation of the actual traffic situation. This scenery is
the basic information for the trajectory planner. The trajectory planning task
computes the desired trajectory that shall be performed by the vehicle. In
consideration of the scenery, a trajectory is planned that prevents a collision
with dynamic obstacles and the surroundings, leading to pass safely. The
trajectory execution comprises a low-level controller which is designed to
ensure proper following of the trajectory. The integration of the subsystem
trajectory planning into the system architecture of an ADAS is shown in
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2.2 Trajectories for collision avoidance maneuver

(a) (b) (c)

Figure 2.2: Critical urban traffic situation

Fig. 2.1. A practical implementation of an ADAS for collision avoidance
will be presented in Chapter 6.

2.2 Trajectories for collision avoidance
maneuver

Maneuver planning is the act of finding a path from an initial state to a goal
state. If this path has an additional time-dependency it is called a trajectory.
In control theory, a trajectory is an ordered, time-variant set of states of a
dynamic system. It can be defined accordingly in a discrete manner:

Definition 2.1. Let k ∈ N be a discrete point in time, representing an
arbitrary starting point of a trajectory. Let i ∈ I with I = [0 . . .H] ⊂ N,
an equidistantly sampled sequence of H samples and u(i|k) ∈ Rnu , an
excitation vector of a discretized dynamic system. Then, the trajectory
is

T (k) = [u(0|k), . . . ,u(H|k)] Rnu × I → RnT (2.1)

With the definition of a trajectory, it can be clarified why trajectories are
required for the planning of collision avoidance maneuvers. In critical situ-
ations, the geometrical path without its temporal information is insufficient
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2 Fundamentals

for the avoidance of time-critical situations. Especially in dynamic envi-
ronments with time variant conditions, it is indispensable to consider the
temporal condition in addition to the spatial conditions. For those situa-
tions, a trajectory provides the information when to steer in which direction
and when to brake with which intensity.

For better understanding of the concepts being described in the next sec-
tions, the following characteristic use case shall be explained representing
an urban traffic situation, see Fig. 2.2. The gray vehicle travels along a street
with vehicles parking aside the road (a). The red vehicle parking on the right
roadside enters the lane and blocks the lane in front of the gray vehicle (b).
To prevent a collision, the gray vehicle has to perform an evasive maneuver
as illustrated in (c).

2.3 Related Work

The following section gives an overview of selected trajectory planning
methods for vehicle motion planning. Trajectory planning methods dis-
cussed in the literature can be widely subdivided into two general groups.
First, there are methods using an optimization scheme, which are mostly ap-
plying the principles of optimal control theory or model predictive control
theory. Second, there are non-optimization based methods which mostly
provide an analytic function to express the trajectory.

Trajectories represented in an analytic expression are intensively studied.
Various ideal lane change trajectories in analytical expression are compared
subject to various performance measures in [64]. Circular Arcs, 5th and 7th
order polynomial [69], Ramp Sinusoid [16], Spirals, Acceleration Profile
[66, 13], and Bezier-Spline type trajectories are considered. As a result of
the analysis in [64], the 5th order polynomial trajectories prove as best rep-
resentation for steering only lane change trajectories. Sigmoid functions are

10



2.3 Related Work

considered for evasive steering trajectories in active collision avoidance sys-
tem [30]. The trajectories are represented in a parametrized fashion, which
is beneficial for an effective calculation. However, these sigmoid function
type trajectories are limited to straight road scenarios and to steer-only ma-
neuvers. Moshchuk et al. [46] introduce steering-only evasive trajectories
composing of circular arcs and parabola functions. A quadratic lane model
is considered as end condition, which enables the application in conditions
with arbitrary road geometries. Moreover, lateral jerk limits are considered.
Schmidt [57] studies on latest possible evasive trajectories to avoid a colli-
sion with a single obstacle. Taking Kamm’s friction cycle [34] into account
as a dynamic limitation, latest possible evasive trajectories in analytic ex-
pression are derived. The trajectories are capable to evade the obstacle but
a steer-back cannot be performed. The practicability of the trajectory in
analytic expression is discussed. A parameterized optimization problem is
proposed where the maneuver length is to be minimized, that recovers the
limitation imposed by the analytic approach. The trajectories are parame-
terized by a sequence of equidistant samples, maneuver duration and angle
of the absolute acceleration within the Kamm’s friction cycle. A kinematic
motion model with anisotropic acceleration behavior is considered. The
optimal trajectory of the acceleration angle is further approximated by an
arc tangent function. Specific actuator constraints and road geometries are
neglected.

The advantage of trajectories in an analytical expression is the capability
of an efficient calculation. However, the methods are generally limited to
restricted conditions. The coverages of arbitrary conditions can hardly be
achieved with these method. Most of the approaches are capable of steering
only trajectories or provide trajectories that just avoid a collision with an
obstacle without considering additional constraints like available maneuver
space.

11



2 Fundamentals

Among the group of optimization methods, there are methods that con-
sider state lattices [51, 83] or consider a sampling strategy for trajectory
planning [39, 40, 54]. Others apply the method of artificial potential fields
[31, 50, 44, 5] to the trajectory planning task.

The method of artificial potential field generates a gradient field of the sur-
rounding. The idea originates from robot motion planning. The vehicle is
guided through the gradient field considering attraction forces and repul-
sion forces acting on the vehicle. Repulsion forces push the vehicle away
from obstacles in descending direction across the field. A drawback of this
method is the risk of terminating in a local minimum instead of the global
optimum [44, 50]. Also, the detection of an imminent collision is hard to
realize. The separation of obstacles highly depends on the design of the
artificial potential field. If the gradients at boundaries of the obstacles are
considered too shallow, obstacles could be interpreted as a single obstacle
even though the gap between those obstacles is wide enough for safe pass-
ing of the ego-vehicle.

Another trajectory planning method based on the principle of optimization
is Model Predictive Control (MPC). It forms a subgroup of optimal control,
which is a finite-horizon optimization control scheme [10, 38]. MPC utilizes
a motion model to predict future vehicle states and optimizes a set of inputs
such that these predicted states satisfy constraints while a cost function is
iteratively minimized. A main differentiation factor are the considered vehi-
cle models and their complexity. The used vehicle models vary from simple
ones like a point mass model, via the single-track model up to complex
models like the double-track model with the further consideration of wheel
dynamics, roll motion, etc. [84, 45]. Trajectory planning methods applying
the principles of MPC generally implement a constant finite planning hori-
zon, which can be interpreted as a lookahead horizon. For each iteration,
the trajectory is successively optimized for the planning horizon towards a
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2.3 Related Work

predefined goal state subject to the dynamic model and the constraints, if
constraints are applied.

Werling et al. [76] present a trajectory planner for collision avoidance with
pedestrians applying a nonlinear MPC scheme [20]. The proposed cost
functional defines the ratio between the clearance distance to the pedes-
trian and the maneuver intensity. Optimal collision avoidance trajectories
are found that utilize the braking and steering capabilities of the vehicle up
to their physical limits. The subsequent analysis of the simulated concept
evaluation shows only small deviations comparing the planned and executed
trajectories. It is claimed that the presented algorithm can reach real-time
capabilities, although it is a nonlinear optimization approach. Applying
MPC to trajectory planning is also addressed in [28, 25, 24].

The challenge in the MPC design is to find an appropriate duration for
the planning horizon. Especially for the application of trajectory planning
for collision avoidance maneuvers, the design of the planning horizon is
crucial. If the planning horizon is too short, obstacles which suddenly ap-
pear could be missed. If the planning horizon is too long, the computation
of the trajectory might exceed the available computational power.

Optimization is a common method for trajectory planning which is dis-
cussed in numerous studies. Trajectory planning is formulated as a con-
strained or unconstrained optimization problem. A popular approach is
to generate an array of trajectories, which generates a subset of solutions
[75, 27, 26]. By this approach, the set of all possible solutions is reduced.
The optimal trajectory which minimizes a cost functional is sought out of
the subset. The design of the cost functional is chosen depending on the
required application of the trajectory. Others apply a direct optimization
approach. The trajectories are directly optimized for given optimization
criteria. The trajectories may vary by their representation and expression.
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Common representations are kinematic vehicle models [81, 82] or single-
track model [61, 60, 43].

A parameterized expression of the trajectories is also often applied. The
trajectories are approximated using a parameterized function where poly-
nomials, spirals [36] or spline functions [37] are used. In [65], 5th order
polynomial trajectories are compared with a direct trajectory optimization
approach for a lane change maneuver . Further, the trajectory is optimized
for a constant finite maneuver duration and a nonlinear single-track model
is considered as a constraint. Two test scenarios, one for a comfortable lane
change and one for an evasive maneuver, are proposed for comparison. The
optimal trajectory shows lower absolute lateral acceleration compared to
the 5th order polynomial trajectory. In contrast to the 5th order polynomial
trajectory, yaw rate and lateral acceleration for the optimized trajectory are
nonzero. This phenomenon is explained by the absence of terminal con-
straints defining the optimal trajectory. The author’s perspective is to prefer
the optimized maneuver over the 5th degree polynomial for evasive ma-
neuvers, which is justified by the lower absolute acceleration. In collision
avoidance scenarios, comfortable maneuver characteristics are questionable.

Different sets of constraints are applied to optimal trajectory planning ,
which depend on the application of the intended trajectory. Besides the col-
lision avoidance with obstacles the drivable corridor is considered by several
authors [82, 82, 77, 37]. Also different approaches for the planning horizon
are applied. Similar to the MPC-based methods, a typical approach is to
use a predefined planning horizon. A fixed planning horizon or maneuver
duration is typically applied to trajectories that are intended for the use in
automated systems [82, 75, 25]. In those applications, the trajectories are
consecutively planned for the purpose of vehicle guidance. Trajectories for
the use in an ADAS have different requirements - specially for collision
avoidance maneuvers. Here, trajectories are required to avoid the critical
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situation. Consequently, only relatively small maneuver durations are con-
sidered in contrast to an automated driving scenario where the maneuver
duration is theoretically infinite. In typical collision avoidance scenarios, a
maneuver duration is required that enables the collision avoidance maneu-
ver and the transition between the automated maneuver and the handover to
the driver.

A variety of research activities are conducted that focus on the investiga-
tion of trajectory planning. Various different approaches and methods are
analyzed. However, it is remarkable that the main research focus is on the
characteristic design of trajectories. In the context of trajectory planning,
the moment when a trajectory shall be executed is investigated with minor
significance. Hillenbrand et al. [23] for example, examines maneuver ex-
ecution strategies from a scene representation perspective. The discussion
of the maneuver execution is mostly separated from the trajectory planning.
This disconnect between trajectory planning and decision shall be resolved.
Consequently, a specific need is the jointly trajectory planning together with
the trajectory execution, which shall be investigated. These aspects should
be jointly considered in the trajectory planning.

2.4 Method selection

The selection of the applied method for trajectory planning of collision
avoidance maneuvers is discussed in this section. An appropriate method
shall be selected by a study of the requirements. First, the set of essential
requirements for the planning of collision avoidance maneuvers shall be de-
rived. Thereafter, the most appropriate method for this work will be selected
based on the requirements.

Collision avoidance systems designed for urban traffic scenarios have spe-
cific requirements. The design of collision avoidance maneuvers demands
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specific criteria building up the foundation for the subsequently introduced
trajectory planning. Collision avoidance maneuvers shall avoid imminent
collisions and react to suddenly changing situations. To avoid imminent
collisions, all feasible corrective actions shall be applied without the lim-
itations of any comfort requirements. After the critical situation has been
cleared, the maneuver shall enable a safe passage. In consequence, collision
avoidance maneuvers shall have the following essential properties.

• A collision with a dynamic obstacle and the environment shall be
avoided

• The maneuvers shall satisfy the vehicle physics and limitations

• A safe passage shall be enabled after the imminent collision has been
avoided

• The moment when the maneuver has to be executed shall be known

Finding evasive trajectories which satisfy all those properties is a challeng-
ing task. The reaction to suddenly changing situations is essential for col-
lision avoidance. To enable a reactive intervention, a successive trajectory
planning and evaluation, whether a collision is avoidable or not, is required.
It is crucial to determine the moment when the evasive trajectory has to
be executed. Planning of evasive trajectories without consideration of the
appropriate moment of the maneuver execution could potentially lead to
increased accident severity.

The compelling character of an evasive maneuver induces the necessity
to exploit the full potential of the vehicle dynamics. Utilizing the entire
dynamic capabilities of a vehicle requires the consideration of combined
steering and braking in the trajectory design. The theoretical foundation for
collision avoidance trajectories combining braking and steering is provided
by [57]. The combination of longitudinal and lateral motion additionally
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increases the complexity. This is mainly induced by the nonlinear coupling
of the lateral and longitudinal vehicle dynamics [45, 59, 84]. To ensure the
dynamic integrity and a predictable planning of the trajectories, dynamic
limitations of the vehicle shall be considered. This also requires the consid-
eration of specific actuator limitations. Disregarding the specific actuator
characteristics could potentially lead to an overestimation of the vehicle dy-
namics and an underestimation of the criticality of the scene.

In structured environments such as urban roads, a bounded drivable area
is typical. The drivable area can be structurally restricted or obstructed by
parked vehicles on the roadside. The boundary of this area needs to be
considered in the design of evasive trajectories. Facilitating the highest flex-
ibility of coverable scenarios, arbitrary road geometries are required, too.
Depending on the available drivable area, it is to be evaluated whether an
evasive maneuver is feasible or not. In the latter case, it shall be evaluated
if at least a braking maneuver is feasible.

Besides the influencing environmental factors, a most general solution to
the trajectory planning problem for collision avoidance maneuvers shall be
provided. It enables the adaption to a broad variety of possible scenarios. To
address this, a variable length and duration of the trajectories is additionally
required.

In append to the discussed requirements, the trajectory planning shall be
integrated into an ADAS for collision avoidance. Its practicability and per-
formance shall be proven on the basis of a prototypical implementation in an
experimental vehicle. Therefore, the method shall allow a real-time capable
implementation.

With the introduced set of requirements, the appropriate method for tra-
jectory planning of collision avoidance maneuvers can be selected. An
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Requirements Analytical MPC Optimization

Maneuver execution time - ◦ +

Vehicle Dynamics ◦ + +

Braking ◦ + +

Steering ◦ + +

Actuator limitations ◦ + +

Road Geometry ◦ + +

Road boundaries ◦ + +

Variable end position - ◦ +

Variable end time - ◦ +

Real-time capable + ◦ ◦

Table 2.1: Scorecard for the selection of applied trajectory planning method

overview of trajectory planning methods is presented in the previous sec-
tion. Considering the risks and disadvantages of artificial potential fields,
this method shall not be considered any further. The remaining methods are
assessed for how well they can cope with the requirements. The results of
the assessment are collected in Table 2.1. As one outcome of the assess-
ment, trajectory planning methods relying on the principles of optimization
show clear advantages over using the other methods. A challenging aspect
for optimal trajectory planning is to ensure the real-time capability which
also holds for the MPC. The analytic trajectories are fast in computation but
are overruled in all other items by the others. Optimal trajectory planning
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enables a variable design of the maneuver end position and time.

Summarizing the requirement analysis, the winning method is optimal tra-
jectory planning. In comparison to the other discussed methods, optimal
trajectory planning attains most of the requirements. The advantage of ap-
plying the principles of optimization to trajectory planning is the straightfor-
ward incorporation of constrains. Input, output and states can be considered,
which inaugurates the integration of road boundaries, actuator and dynamic
limitations. In consequence, the focus of this work is set to optimal trajec-
tory planning. The challenge of real-time implementation will be further
considered in this work.

2.5 Optimal trajectory planning

Corresponding to the discussion in the previous section, this work will focus
on the method of optimization for optimal trajectory planning of collision
avoidance maneuvers. As a prerequisite for the definition of the optimal
trajectory planning problem, a general nonlinear optimization problem with
nonlinear constraints is discussed in the subsequent section. In the context
of optimization, optimality is associated to a cost function to be minimized
or maximized subject to a set of constraints. The constrained solution is a
subset of the unconstrained optimal solution. Corresponding to trajectory
planning, the constraints may comprise of geometric or physical limitations.
For example, the drivable area can be bounded or the vehicle dynamic is lim-
ited.
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The general nonlinear trajectory optimization problem is:

Definition 2.2. Let x(i|k) ∈ Rnx be a state vector, u(i|k) ∈ Rnu be
an excitation vector and ∆t(i|k) ∈ R be a sequence of sampling rates.
Further, let k ∈ N be a discrete point in time, representing an arbitrary
starting point of a trajectory, i ∈ I with I = [0 . . .H] ⊂ N be an equidis-
tantly sampled sequence of H samples.

The optimization problem is defined as:

min
T
J(T (k))

subject to x(i+ 1|k) = f(x(i|k),u(i|k), ∆t(i|k))

x(i|k) ∈ X ⊂ Rnx

u(i|k) ∈ U ⊂ Rnu

∀i ∈ I

(2.2)

with the functions f : Rnx × Rnu × R→ Rnx ;J : RnT → R

The cost function J is defined as a function of the trajectory T (k), which
is to be optimized subject to the constraints. The nonlinear state constraints
and excitation constraints are collected in the constraint sets X and U , re-
spectively.

Except for a limited number of nonlinear optimization problems, in general,
nonlinear optimization problems must be solved numerically. The necessity
of solving the nonlinear optimization problem has given rise to a wide range
of numerical methods. Amongst those Sequential Quadratic Program (SQP)
is a frequently used method. SQP is a numerical solver for a general non-
linear optimization problem with nonlinear constraints. The problem is ap-
proximated with a Quadratic Program (QP) which is then solved for every
iteration. Other methods use a linear approximation of the nonlinear opti-
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mization problem, which is iteratively solved applying the Newton method
[53]. The implementation and numerical solution of nonlinear solvers may
be referenced to the appropriate literature [7, 21, 3, 6, 53, 48].

2.6 Vehicle modeling

The single-track model is introduced in this section. The single-track model
considers the forces acting on the vehicle’s front and rear wheel. More
complex models like the double track model [72], which considers the roll
motion as well, are not considered in this work. Previous authors have
shown that the single-track model is an adequate dynamic model with the
required depth of detail for evasive maneuvers up to the vehicle’s dynamic
bounds [43]. The single-track model is a simplified nonlinear model of the
vehicle dynamics. In this section, the nonlinear equations of vehicle motion
are derived. For the further use in an optimization algorithm, the set of
nonlinear equations is discretized.Assuming the vehicle mass distribution
coincides with the Center of Gravity (COG) that lies within the horizontal

`f

`r

Fxf

Fxr

Fyf

Fyr

αr

αf
δ
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vr

vy vx

v
β
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Figure 2.3: Single track model with relevant quantities
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road level, roll moments causing dynamic wheel loads can be neglected.
Therefore, wheel forces on the respective axis can be combined in a single
wheel centered on the longitudinal axis of the vehicle according to Fig. 2.3
[72, 71, 45, 59].

Here δ is the steering angle of the front wheel. αf and αr are the front
and rear slip angles, vf and vr are the front wheel and rear wheel velocities,
respectively. The longitudinal and lateral wheel forces of the front and rear
axis are Fxf ,Fyf ,Fxr and Fyr. The angle ψ is the heading or yaw angle of
the vehicle with respect to the COG. The heading or yaw angle rate is ψ̇.
The absolute vehicle velocity v related to the COG can be further subdi-
vided into a longitudinal and lateral velocity component vx and vy , acting
under the side slip angle β. The distances of the front and rear wheel to the
COG `f and `r, respectively.

In the following, the dynamic equations of the nonlinear single-track model
are derived. Followed by the discretization of the single-track model for the
use in an optimization algorithm. Applying the principle of conservation of
linear momentum on the chassis yields

Fxfcos(δ)− Fyfsin(δ) + Fxr =m(v̇x − vyψ̇) (2.3)

Fxfsin(δ) + Fyfcos(δ) + Fyr =m(v̇y + vxψ̇),

with the vehicle mass m acting on the COG.

The lateral forces action on the wheels are considered as a linear tire model
yielding

Fyf = −cfαf (2.4)

Fyr = −crαr
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with constant corner stiffness cf , cr an the wheel slip angle αf , αr for the
front and rear tire, respectively [59].

αf = tan−1

(
vy + `f ψ̇

vx

)
− δ (2.5)

αr = tan−1

(
vy − `rψ̇

vx

)
.

The longitudinal forces of the front and rear wheel are modeled by the rela-
tion of the brake force acting on the vehicles COG

Fxf =−2

3
FB (2.6)

Fxr =−1

3
FB

where the brake force distribution of front and rear axis is considered in
relation of 2

3 on the front axis and 1
3 on the rear axis. The brake force acting

on the COG yields

FB = m(ax + ȧxt) (2.7)

with the longitudinal acceleration ax and jerk ȧx. Applying the principle of
conservation of the angular momentum yields

`f (Fxfsin(δ) + Fyfcos(δ))− `rFyr = Izψ̈ (2.8)

with the angular yaw acceleration ψ̈ and the moment of inertia around the
mass center Iz . Now the equations of motion can be transfered into the state
space form:

ẋ = f(x,u, t) (2.9)
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The state vector is

x = [sx, sy, vx, vy, ax, ay,ψ, ψ̇,β, δ]T. (2.10)

With the states sx and sy , the longitudinal and lateral position, vx and vy ,
the longitudinal and lateral velocity, ax and ay , the longitudinal and lateral
acceleration. Further, ψ and ψ̇ are the yaw angle and yaw angle rate, β is
the slip angle and δ is the steering angle, acting on the vehicle’ front wheel.
The excitation vector is

u = [ȧx, δ̇]T (2.11)

along with the longitudinal jerk ȧx and the steering angle rate δ̇.As a whole,
Eqs. (2.9) – (2.11) reads

ṡx

ṡy

v̇x

v̇y

ȧx

ȧy

ψ̇

ψ̈

β̇

δ̇


︸ ︷︷ ︸

ẋ

=



vcos(ψ + β)

vsin(ψ + β)

Fxfcos(δ)−Fyfsin(δ)+Fxr

m + vyψ̇

Fxfsin(δ)+Fyfcos(δ)+Fyr

m − vxψ̇

ȧx

0

ψ̇

`f (Fxfsin(δ)+Fyfcos(δ))−`rFyr

Iz

0

δ̇


︸ ︷︷ ︸

f(x,u,t)

(2.12)
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with the auxiliary functions

v =
√
v2x + v2y (2.13)

a =
√
a2x + a2y

β = tan−1
(
vy
vx

)
.

Where v and a are the absolute velocity and acceleration, respectively. β is
the slip angel acting on the COG.

The set of differential equations is discretized using the Euler Forward Inte-
gration method [73], yielding:

x(i+ 1|k) = x(i|k) + ∆t(i|k)f(x(i|k),u(i|k), ∆t(i|k)) (2.14)

with the sequence of sampling rates ∆t(i|k). Applying Eq. (2.14) to
Eq. (2.12) yields to the discretized nonlinear single-track model. With
Eq. (2.15), the single-track model is fully defined.

2.7 Actuator representation

Time is a critical resource in the context of trajectory planning of collision
avoidance maneuvers. An underestimation of a critical situation can lead
to drastic results for all participants. Therefore, it is required to identify
the key factors that have a significant impact to the timing of a trajectory.
Besides the previously discussed vehicle dynamics, the specific actuators
are amongst the number of key factors. The performance and capabilities
of the actuators significantly influence the timing of the trajectory. For a
predictable and reliable trajectory planning, it is inevitable to consider these
effects. The time delays induced by the actuators need special consideration
in the design of the trajectory. Actuator performance limits in combination
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Figure 2.4: Characteristic curve of the steering rate δ̇max and the longitudi-
nal velocity vx

with the vehicle dynamics determine the overall capabilities of the maneu-
ver. The faster the actuators can change the vehicle’s acceleration the more
reactive a maneuver can be designed. However, considering ideal actuators
without limitations leads to a temporal misinterpretation.

This section covers the actuator specific limitations. The integration of
the actuator limitations into the trajectory planning is discussed in a later
section. The significant measures of the actuators are their maximum con-
trol values, i.e., the maximum steering angle and the corresponding rate
limits for a steering actuator. For a brake actuator the significant measures
are, i.e., the maximum brake acceleration and the corresponding rate limit.
To achieve a design that is independent of the specific actuator technology
and its dynamic model, the influences and reactions of the actuators on the
vehicle’s COG are considered. In general, the acceleration build-up rates
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acting on the COG are of interest. Incorporating the actuator dynamics into
the vehicle dynamic model is done by constraining the model’s control val-
ues. For the single-track model Eq. (2.11), e.g, this will be achieved by
introducing dynamic constraints (See Section 3.5.2).

For the required prototypical implementation in a test vehicle, the actu-
ator limitations are determined by vehicle tests. The tests are conducted
as follows: For a variation of the longitudinal vehicle speed in a range of
20 km/h to 100 km/h, a step is applied to the actuator. The tests are con-
duced separately for the steering and for the brake.

Brake Parameterization

For the variation of the vehicle speed, a maximum deceleration step of ax =

−9.81 m/s2 is applied to the brake controller. The longitudinal accelera-
tion in the COG are measured and analyzed. The maximum acceleration
build-up, the jerk, is independent of the velocity. For the test vehicle, the
maximum longitudinal jerk of ȧmax

x = 20 m/s3 is observed.

Steering Parameterization

For a variation of the vehicle speed, a maximum steer step of 6 Nm is ap-
plied to the steering controller. Also for the steering, the lateral jerk is in-
dependent of the velocity. For the test vehicle, a maximum lateral jerk of
ȧmax
y = 15 m/s3 is observed. The maximum steering rate δ̇max, opposed to

the braking rate, highly depends on the velocity. Fig. 2.4 shows the char-
acteristic curve of the steering rate δ̇max the longitudinal velocity vx. The
characteristic curve is implemented as a lookup table.
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3 Optimal Collision Avoidance

A general approach for the planning of optimal collision avoidance trajec-
tories is presented in this chapter considering traffic scenarios with a single
critical dynamic obstacle ahead. The approach shall consider a bounded
drivable area and limitations of the vehicle dynamics and actuators.

The crucial factors for the planning of collision avoidance trajectories are
the timing and intensity of braking and steering activation. The interde-
pendencies of braking and steering intervention [45] are considered by the
proposed design. Also the vehicle dynamics and realistic limitations, in-
cluding actuators, are considered aiming to provide dynamically feasible
trajectories. Besides necessary dynamic considerations ensuring the dy-
namic integrity of the trajectory, the moment in time when the maneuver,
described by the trajectory, has to be executed needs special attention. This
moment is a crucial point and distinguishes whether or not an imminent col-
lision is avoidable. Determining this moment represents a key parameter for
the execution strategy of an Advanced Driver Assistance System (ADAS)
for automated collision avoidance.

The structure of this chapter is as follows: the methodology for optimal
trajectory planning of collision avoidance maneuvers is developed. Neces-
sary conditions, criteria and requirements for trajectory planning of collision
avoidance maneuvers are presented and discussed. A general mathematical
formulation of the trajectory planning problem is derived.
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3.1 Structural definition of the optimization
problem

To satisfy the requirements introduced in Section 2.4, trajectory planning is
formulated as a nonlinear optimization problem. Optimal trajectory plan-
ning is considered as previously discussed in Section 2.5. A general mathe-
matical formulation of optimal trajectory planning for collision avoidance is
given. On the basis of Definition 2.2, optimal trajectory planning is defined
with adaptations to the necessary requirements.

Definition 3.1. Let k ∈ N be a discrete time, representing an arbitrary
starting point of the trajectory. Let i ∈ I with I = [0 . . .H] ⊂ N be a
sampled sequence of H samples. Further, let x(i|k) ∈ Rnx be a state
vector, u(i|k) ∈ Rnu an excitation vector, and ∆t(i|k) ∈ R a sequence
of sampling rates. Let z(k) be an augmented trajectory with

z(k) = [T (k),p(k)] RnT × Rnp → RnZ (3.1)

where T (k) ∈ RnT is a trajectory according to Definition 2.1 and
p(k) ∈ Rnp is a parameter vector, which is specified in the further
course of this section. The nonlinear optimization problem in general
expression is:

min
z
J(z(k))

subject to x(i+ 1|k) = f(x(i|k),u(i|k), ∆t(i|k))

x(i|k) ∈ X ⊂ Rnx

u(i|k) ∈ U ⊂ Rnu

x(0|k) = x(k)

∀i ∈ I

(3.2)

With the functions f : Rnx × Rnu × R→ Rnx , J : Rnz → R
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The cost function J is defined as a function of the augmented trajectory
z(k). The trajectory z(k) is sought which yields minimal cost in J subject
to the set of constraints. The state and excitation vectors are constrained
to satisfy the requirements of the collision avoidance maneuver. The state
and excitation constraints are collected in the constrained sets X and U ,
respectively. A detailed definition of the constraints is given in the next
sections. Function f represents a general discretized functional description
of an arbitrary dynamic model mimicking the vehicle dynamics. This can
be a single-track model as recapped in Section 2.6 for example or any other
expression.

The general mathematical formulation of optimal trajectory planning ac-
cording to Definition 3.1 shall serve as the fundamental for the following
sections, finalizing a comprehensive formulation of a collision avoidance
problem. The remaining open items are described in the following sections.

3.2 Optimality criteria and cost function

Optimality criteria for collision avoidance maneuvers are discussed. Ini-
tially, it shall be clarified what optimal collision avoidance maneuvers are
and which criteria are decisive. Based on this, a mathematic expression
of the cost function J is deduced. The criteria and the cost function were
already partially covered in [17] and [18] and shall be readdressed and dis-
cussed in detail.

To clarify the optimality criteria for collision avoidance maneuvers, the
initial step is to identify the sufficient conditions which guarantees the ab-
sence of collision. This condition holds if a maneuver is capable to avoid
the imminent collision with a dynamic obstacle and the environment, while
satisfying the physical characteristics and limitations of the vehicle. Ensur-
ing the adherence of the sufficient condition shall be attained by the set of
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Figure 3.1: Closed band comprising the set of collision-free trajectories

constraints, which are introduced in a later section. Trajectories that satisfy
the sufficient condition are collected in an extensive set of collision-free
trajectories.

A representative scenery with the corresponding band comprising the set
of all collision-free trajectories is shown in Fig. 3.1. The ego-vehicle travels
along a road towards an obstacle blocking the ego-vehicle’s lane. The adja-
cent lane is unoccupied. A variety of possible trajectories exists that ensure
a safe passage of the obstacle. The possible collision avoidance maneuvers
are grouped into two classes, which are also called homotopy class as dis-
cussed in [2] for example. There are either evasive maneuvers to the left,
collected in the gray area, or braking maneuvers with the intention to stop
in front of the obstacle, collected in the light gray area. The challenge is to
identify which trajectory in the set is optimal. This example shows the ne-
cessity of additional criteria to specify the optimality of collision avoidance
trajectories.

A suitable optimality criterion can be obtained by considering the temporal
behavior of collision avoidance trajectories. A trajectory is not considered to
be optimal, if another trajectory exists that prevents the imminent collision
at a later time. The moment of the last possible evasive maneuver is con-
sequently highly relevant. This complies with the works of [78] and [57].
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amax
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t

xObj(k) =∞ . . . 0

Figure 3.2: Lateral acceleration trajectories for decreasing distance to crit-
ical obstacle

Collision avoidance maneuvers comprising a steering intervention enables
a maneuver execution at a later time compared to a brake-only interven-
tion under certain conditions (vehicle speed) [78]. A combined braking and
steering intervention has the potential to further extend the time compared to
a pure steering intervention [56]. These findings were conducted assuming
a maximum utilization of the absolute acceleration. Vehicle specific limi-
tations like actuator limits or tire dynamics and environmental limitations
were not considered.

The relevance of utilizing the last possible evasive maneuver as an optimal-
ity criterion shall be supported by the following example: The ego-vehicle is
approaching a stationary obstacle which blocks the ego-vehicle’s lane, com-
parable to the situation in Fig. 3.1. An evasive maneuver to the adjacent lane
is feasible. The assumption is that a pure braking intervention would be too
late to avoid the imminent collision. While the ego-vehicle is approaching
the obstacle, the necessary lateral acceleration trajectories are successively
evaluated. It is assumed that the trajectories are planned prior to an instanta-
neous execution. Fig. 3.2 shows the corresponding acceleration trajectories.
While the ego-vehicle is approaching the critical obstacle, the longitudi-
nal distance to the obstacle xObj(k) decreases for each instance k. With
decreasing distance, the magnitudes of the lateral acceleration trajectories
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increase until the limit is reached. The moment when the acceleration limit
is reached determines the last possible evasive maneuver. After this specific
moment, no further collision-free trajectory can be found while approaching
the obstacle without violation of the main constraint, which is the absence of
collision. With regards to the constraints, reaching the limits of at least one
constraint is not a direct requirement for an evasive trajectory. This is rather
a consequence or a characteristic of a last possible maneuver, which can be
classified as an extremal maneuver [57]. The example shown in Fig. 3.2
also highlights the importance of the trigger condition. Arbitrary execu-
tion of a collision avoidance maneuver is not the favorable strategy which
is highlighted by the acceleration trajectories where most are hardly at the
limit. This contradicts the characteristics of a highly dynamic maneuver.
Instead, the moment when the acceleration limit is reached, which indicates
the moment of the last possible execution, shall be desired. Consequently,
successively trajectory planning prior to the execution of evasive trajectories
and determining the trigger time shall be a decoupled process.

Motivated by the subsequent discussion, the optimality criteria for evasive
trajectories are clarified. Optimal trajectories are identified by their tempo-
ral characteristics. Looking at the chronological sequence, the moment of
the latest possible maneuver specifies the optimal moment for the trajectory
execution. After this point is exceeded no further collision-free trajectory
exists while converging further to the critical object. Not only the moment
of the last possible evasive maneuver is crucial but also the chronological
sequence to this moment. While observing and interpreting a scenery, it is
a huge benefit to comprehend how much time is left until an intervention is
urgently needed. Concluding from the criteria, the period to the execution
of that trajectory shall be known at every instance.

The period to the execution of the last possible evasive trajectory shall be
further refereed to Time to Last Maneuver Execution tTLME . The time-
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tLME =∞

(a)

tLME > 0

(b)

tLME = 0

(c)

tLME < 0

(d)

Figure 3.3: Relevant events for tTLME

related reference of tTLME is shown in Fig. 3.3 for relevant events. The
ego-vehicle travels along a street and the driving corridor is scanned for
any obstructions. At the absence of any obstacle, tTLME is infinite, refer-
ring to sequence (a). This event specifies a uncritical situation where no
evasive maneuver is necessary. In sequence (b), an obstacle appears in the
driving corridor that blocks the ego-vehicle’s lane. The relative longitudi-
nal distance to the obstacle is sufficiently large. An immediate intervention
at this stage is not necessary. Therefore, tTLME is greater than zero and the
intervention can be postponed until tTLME reaches zero. The ego-vehicle ap-
proaches the obstacle without any noticeable reactions until tTLME is zero,
shown in sequence (c). This moment identifies the moment for the last pos-
sible collision-free trajectory execution. After this spatiotemporal point is
exceeded, a collision with the obstacle is inevitable. This corresponds to
sequence (d).

To define the required cost function J , the discussed time to last maneu-
ver execution tTLME provides an appropriate temporal measure.

J(z(k)) = −tTLME (3.3)

Defining the cost function according to Eq. (3.3) ensures the demanded
criteria. The cost function is defined to maximize tTLME. Since the cost
function J is a function of the augmented trajectory z(k) for the given
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3 Optimal Collision Avoidance

situation k, it is highly depending on both the individual situation and the
trajectory itself. Maximizing tTLME indirectly provides the optimal trigger-
ing time while the last possible evasive trajectory is sought, subject to the
constraints. Another advantage of this approach is the capability to assess
the criticality of the scenery by evaluating the duration to optimal trigger
time, which is the value of the maximized tTLME . Depending on tTLME ,
the criticality of the present situation can be interpreted. Values of tTLME

greater zero can be interpreted as less critical whereas tTLME close to zero or
zero are highly critical and should trigger a rapid intervention. Values below
zero can preemptively identify situations where a collision is not avoidable.

A mechanical analogon for the proposal can be found in moulding processes
where a machined workpiece, e.g., a rod, is pressed into the mold and is re-
molded. The analogon to tTLME is the applied pressure to the rod. The phys-
ical properties of the workpiece, e.g., Young’s modulus, are the analogon to
the vehicle physics. The mould cavity is the analogon to the constraints.

3.3 Trajectory sampling

An appropriate approach for the sampling of collision avoidance trajectories
shall be introduced. The applied trajectory sampling approach was already
introduced in [18] and is described in this section.

Trajectory planning concepts designed for automated systems consider a
successive trajectory re-planning with a fixed planning horizon. A typical
example for such an approach is the concept of Model Predictive Control
theory. Typically, trajectories are planned for a predefined planning horizon
[19, 24, 27], where the trajectory is sampled with a fixed step size of H

steps. The advantage of the fixed step size is the a priori determined trajec-
tory duration and, hence, reduces the complexity of the problem.
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t0 tP tF

Figure 3.4: Relevant events for trajectory sampling

However, applying a fixed trajectory duration to trajectories that are in-
tended for collision avoidance could be insufficient. If the fixed planning
horizon is too short, a holistic calculation of the trajectory cannot be ensured
in a single planning step. Additionally, the avoidance of a road departure
after a successful evasion cannot be ensured. On the other hand, if the fixed
planning horizon is too long, computational complexity and sampling size
increase with the risk of exceeding the maximum allowable computation
time. In consequence, for the specific application of collision avoidance,
the trajectory for the entire evasive maneuver shall be planned in a single
planning step.

Prior to the discussion of the trajectory sampling approach, the distinctive
events of evasive trajectories are introduced. The relevant points are shown
for an exemplary evasive trajectory in Fig. 3.4. Three relevant events are
identified. The start and the end of the trajectory are t0 and tF. The most
important time of evasive trajectories is the time when the ego-vehicle’s
front vertex and the obstacle’s rear vertex coincide. For an evasion to the
left, the relevant vertices are the front-right for the ego-vehicle and the rear-
left for the obstacle. An evasion to the right is analog, respectively.This
specific point determines whether or not a collision occurs between the two
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3 Optimal Collision Avoidance

opponents. This temporal point will be further referred to Passing Time

tP. The time, related to the stylized ego-vehicle front-right vertex, when
the ego-vehicle firstly coincides with the rear corner of the obstacle. De-
termining tP and tF highly depends on the situation and is required to be
individually determined for every trajectory. This implies tP and tF to be
evaluated jointly with the trajectory during the optimization process.

Next, the proposed sampling approach is discussed which shall provide
a holistic description of evasive trajectories. Evasive trajectories shall com-
prise a fixed sequence of H samples in total. This sequence is split into
two sub intervals. The first interval begins at the start of the maneuver, t0,
and ends at tP. This interval is sampled with N samples. The subsequent
interval starts at tP, terminates at the end of the evasive maneuver, tF, and is
sampled with M = H−N samples. The split into two maneuver sequences
enables more flexibility in the trajectory design and supports an individual
adaption to the specific needs for the two maneuver intervals.

The proposed sampling approach enables an optimal passing time, tP, and
an optimal maneuver duration, tF, for each individual situation. Further, the
restriction to two representative times diminishes the computational com-
plexity by its inherent definition of the temporal sequence. These two subin-
tervals facilitate the definition of applicable time vectors for the planned
evasive trajectory of the actual planning step k. A discrete time prediction
vector t(i|k) and a sequence of sampling rates ∆t(i|k) are defined. For the
first interval the discrete time vector and the sequence of sampling rates are

t(i|k) =0 ∀i = 0 (3.4)

t(i|k) =
tP
N
· i ∀i = 1, . . . , N (3.5)
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3.4 Trajectory definition

∆t(i|k) =
tP
N

∀i = 0, 1, . . . , N (3.6)

with N + 1 samples from maneuver start until passing the object tP. The
second intervals of the discrete time vector and the sequence of sampling
rates with M samples for the time period after passing the obstacle tP until
the end of the maneuver tF are

t(i|k) =tP +
tF − tP

M
· (i−N) ∀i = N + 1, . . . , N + M (3.7)

∆t(i|k) =
tF − tP

M
∀i = N + 1, . . . , N + M. (3.8)

With Eqs. (3.4) – (3.8), the discrete time vector and sequence of sampling
rates for optimal evasive trajectories are holistically described.

The temporal complexity of the algorithm O(log(H)) with H = N + M

was verified by a complexity analysis of the algorithm where the optimal
solution converges for a total number of H = 20 samples.

3.4 Trajectory definition

The trajectory shall be defined in this section. Considering the structure of
the augmented trajectory for each instance k, which is

z(k) = [T (k),p(k)] RnT × Rnp → RnZ . (3.9)

The Trajectory is defined by the sequence of the excitation vector yielding

T (k) = [u(0|k), . . . ,u(H|k)] Rnu × I → RnT . (3.10)

The parameter vector p(k) is defined according to

p(k) = [tTLME, tP, tF] (3.11)
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with the relevant times of the trajectory. It comprises the time to last maneu-
ver execution tTLME, the optimal passing time tP and the trajectory duration
tF.

The definition of the trajectory T (k) and the parameter vector p(k) yields
the augmented trajectory

z(k) = [u(0|k), . . . ,u(H|k), tTLME, tP, tF]. (3.12)

Applying the sequence of the excitation vector u(k) and the reconstructed
time vector ∆t(k) to the dynamic function f yields the state vector se-
quence:

x(k) = [x(0|k), . . . ,x(H|k)] Rnx × I → RnT . (3.13)

Depending on the applied dynamic model f , the state vector x(k) and exci-
tation vector u(k) may vary in their components. In general, the state vector
shall comprise of the longitudinal and lateral position sx and sy , velocity vx
and vy , and acceleration ax and ay . Further, the excitation vector u(k) shall
comprise of two components that enables a manipulation of the lateral and
longitudinal vehicle motion.

3.5 Constraints

In addition to the cost function, a set of constraints is required to generate
collision avoidance trajectories. The constraints are subdivided into geo-
metric and dynamic constraints and final conditions. Geometric constraints
shall ensure the absence of collisions and shall prevent a departure off the
road. Dynamic constraints shall ensure the integrity of the vehicle dynam-
ics and limitations. Final conditions shall ensure a proper handover after the
trajectory was terminated.
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Edge ι FL FR RL RR

Cpι =

[
Cxι
Cyι

] [
a
w
2

] [
a

−w2

] [
−b
w
2

] [
−b
−w2

]

Table 3.1: Edges of the vehicle’s contour which are the front-left, front-
right, rear-left and rear-right vertices related to the COG

3.5.1 Geometric constraints

Geometric constraints are essential to the definition of collision avoidance
trajectories. The surroundings of the ego-vehicle needs special attention, es-
pecially in the presence of dynamic obstacles and restrictions to the drivable
area. While moving on public roads, especially in urban areas, arbitrary
road geometries and road limitations, e.g., pavements, verges or parked ve-
hicles on the roadside, shall be considered. In the presence of critical obsta-
cles, e.g. vehicles or pedestrians, their geometry as well as the ego-vehicle’s
geometry shall be considered. All together require a representation in a con-
venient form to derive mathematical expressions of the necessary geome-
tries.

Vehicle shape approximation

The shape of a vehicle is approximated by a rectangle that encloses the vehi-
cle’s expansion as illustrated in Fig. 3.5. All quantities are further related to
the vehicle’s Center of Gravity (COG), which is assumed as fixed rotation
center. Dynamic variations of its position caused by braking and turning
movements are neglected. The length from the COG to the stylized vehicle
front is called a, b is the length from the COG to the stylized vehicle rear,
and w is the maximum vehicle width, respectively. The four corresponding
vertices of the stylized vehicle shape are summarized in Table 3.1, where
Cpι is a generalized vertex vector of the vehicle contour with Cxι and Cyι

being the coordinates related to the vehicle’s COG. The four vertices are
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Figure 3.5: Stylized vehicle contour

listed with the equivalent vertex labels ι = FL, FR, RL, RR, which are the
front-left, front-right, rear-left, and rear-right vertices, respectively[28].

For the further application, the vertex vectors Cpι are required in global
coordinates. Therefore, a transformation matrix T z is defined that trans-
forms the vehicle vertex vectors, related to COG, into vertices relative to
global coordinates. The vectors are rotated around the vehicle’s z-axis, with
the COG as center of rotation, with the vehicle’s yaw angle ψ and the slip
angle β. The transformation matrix is defined as:

T z(ψ + β) =

cos(ψ + β) −sin(ψ + β)

sin(ψ + β) cos(ψ + β)

 (3.14)

42
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Multiplying the transformation matrix with the vertex vector in vehicle re-
lated coordinates

Gpι = T z(ψ + β)Cpι (3.15)

yields the global vertex-vector

Gpι = [Gxι,
Gyι]

T ι = FL, FR, RL, RR (3.16)

with Gxι and Gyι in global coordinates, respectively.

The vehicle envelope caused by slip angle changes requires special con-
siderations if the applied dynamic model does not provide a valid slip angle
information. To cover those limitations, the vehicle envelope is approxi-
mated by adding an extra safety margin to the vehicle width w due to the
unknown direction and value of the induced slip angle related rotation. The
safety margin is approximated assuming a maximum slip angle β∗max, which
is in the range of −6◦, . . . , 6◦. Rotating the vehicle in both directions by
β∗max reveals a larger envelope, as shown in Fig. 3.6. The obtained envelope
determines the new width of the vehicle contour w∗. It is obtained by rotat-
ing the diagonal vertices front-left and rear-right in positive direction. The
rotated vertices are

Cp∗ι = T z(β
∗
max)Cpι, ι = FL, RR (3.17)

with the coordinates

Cp∗ι = [Cx∗ι ,
Cy∗ι ]T (3.18)

The new width substituting w in Table 3.1 is

w∗ = max(CyFL, CyRR) (3.19)
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Figure 3.6: Vehicle contour with approximated slip angle β

Environment information

Reliable data of the environment are a prerequisite for trajectory planning.
Especially for collision avoidance trajectories, data related to the critical
obstacle are highly relevant. These shall comprise at least the obstacle’s
relative position and velocity. Additionally, data of the drivable area is re-
quired. It shall be assumed that the necessary environmental information is
available.

For each trajectory planning step k, the relevant environmental information
are continuously collected in the environment vector

e(k) = [eObj(k), eRoad(k)]T. (3.20)

The current information of the critical obstacle ahead is collected in

eObj(k) = [xObj(k), yObj(k), vObj
x (k),wObj(k)]T (3.21)
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with the coordinates of the critical obstacle relative to the ego-vehicle, the
longitudinal distance xObj(k) and the lateral coordinate yObj(k). The rela-
tive longitudinal velocity of the obstacle is denoted as vObj

x (k). The width
of the obstacle is wObj(k). The parameterized data of the drivable area for
the planning step k are collected in

eRoad(k) (3.22)

Collision avoidance with a single obstacle

The successful planning of evasive maneuvers starts with the understanding
of the spatial constellation of the potential accident opponents. Assessing
the necessary geometric conditions that lead to a safe passage of an obstacle
are investigated. The spatio-temporal point, when and where the two poten-
tial opponents pass each other, is crucial whether or not a collision occurs.
Fig. 3.7 shows a general exemplary situation where the gray ego-vehicle
passes the red vehicle to the left. The vehicle contours are approximated
by rectangles as presented in Section 3.5.1. The critical point is at the lo-
cation where the ego-vehicle’s stylized front-right corner coincides with the
opponent’s stylized rear-left corner. This point can be interpreted as a vir-

tP tF

t0

Figure 3.7: Relevant geometric points of the ego-vehicle and obstacle
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tual point of first contact. The critical time related to that spatial point is
referred to as the passing time tP, which is referenced to the ego-vehicle’s
COG. The transformation of the ego-vehicle’s approximated contour co-
ordinates to COG related coordinates is defined in Eq. (3.15), where the
contour approximation reveals an additional safety margin. Consequently,
the coincidence of both opponents at the passing time can be considered as
the smallest point to point distance where a collision-free passage is still
possible. A feasible condition to define geometric constraints for collision
avoidance trajectories is obtained by considering the coincident point as
a critical and crucial point. Nonetheless, more conditions are required to
ensure the absence of collisions while the ego-vehicle is passing the oppo-
nent’s rear corner, especially while the ego-vehicle’s side-face is next to the
critical point. The necessary conditions for a collision-free passing of the
opponent’s rear corner shall be clarified in detail.

As a consequence of the expected high lateral acceleration during evasive
maneuvers, the slip angle can reach a significant magnitude, which would
induce a side drift of the ego-vehicle, hence an increased envelope. To
ensure the absence of collision, the minimal distance of the ego-vehicle’s
contour to the opponent’s rear corner needs to be at least equal or greater
than zero while the ego-vehicle’s side-face is next to the critical point.

Another condition that needs to be considered is how to proceed after the
ego-vehicle has passed the critical point. In principle, there are two possible
options. The first option is a return to the ego-vehicle’s initial lane. For the
second option, the ego-vehicle may keeps its current lateral displacement
while adjusting its orientation parallel to the road. In this work, option two
is favorable, keeping the lateral displacement during the maneuver.

In consequence, the following conditions are required to extract geometric
constraints to avoid the collision with a single obstacle. First, the coincident
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point shall be considered. Second, the minimal distance of the ego-vehicle’s
contour to the opponent’s rear corner shall be at least equal or greater than
zero. And third, the lateral offset of the ego-vehicle after the opponent is
passed shall be greater or equal than the lateral coordinate of the critical
point. With these considerations, geometric constraints can be defined en-
suring a collision-free maneuver.

Starting with the first condition when the front-right corner of the ego-
vehicle and the rear-left corner of the opponent coincide. The geometric
constraint covering an evasion to the left is described hereafter.

sx(N|k) + GxFR(N|k) = xObj(k) + vObj
x (tTLME − tP)

− vx(0|k) · tTLME

sy(N|k) + GyFR(N|k) = yObj(k) + 0.5wObj(k)

(3.23)

The left hand side of Eq. (3.23) defines the spatio-temporal coincident point
of the trajectory for the actual planning step k. This point is reflecting the
global coordinate of the ego-vehicle’s front-right corner at that point. The
passing time tP is expressed by sample N as defined in Section 3.3. With
the longitudinal and lateral coordinate of the trajectory, sx(N|k)+GxFR(N|k)
and sy(N|k) + GyFR(N|k) reflect the ego-vehicle’s front-right corner related
to the vehicle’s COG. The right side of Eq. (3.23) defines the coordinates
of the opponent’s rear-left corner related to the ego-vehicle’s COG for the
actual planning step k with the longitudinal and lateral coordinates of the
opponent’s rear-left corner,

xObj(k) + vObj
x (tTLME − tP)− vx(0|k) · tTLME and

yObj(k) + 0.5wObj(k).
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Where vx(k)Obj is the opponents longitudinal velocity and vx(0|k) is the
ego-vehicle’s initial longitudinal velocity.

Depending on the value of the optimized solution of tTLME , it can be inter-
preted differently as described below.

tTLME > 0 The maneuver execution can be postponed, additional
time reserve is available for the current situation.

tTLME = 0 An immediate trajectory execution is required, no addi-
tional time reserve is available for the current situation.

tTLME < 0 For the current situation, no feasible trajectory can be
found that avoids the imminent collision.

Subsequent to the geometric constraint for the first condition, the geometric
constraint for the second condition will be discussed in the next section. The
distance of the ego-vehicle’s contour to the opponent’s rear corner is inter-
preted by the geometrical problem of finding the minimal distance between
a line and a point [74, 49]. In this analogon, the side of the ego-vehicle is
interpreted as the line and the opponent’s rear corner is interpreted as the
point. Let the line be specified by the two contour points of the ego-vehicle
lying on it, with the corresponding position vectors for the rear-right corner
GpRR(i|k) and for the front-right corner GpFR(i|k). These vectors define
the ith trajectory sample of the two corners for the kth trajectory. The posi-
tion vector of the opponent’s rear-left corner is

qObj(k) = [xObj(k), yObj(k)]T (3.24)

Applying the formula for the distance of a point to a line, the minimal dis-
tance becomes:

de2o(i|k) =
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|
(
GpFR(i|k)− GpRR(i|k)

)
×
(
GpRR(i|k)− qObj(k)

)
|

|GpFR(i|k)− GpRR(i|k)|
(3.25)

Where de2o(i|k) is the trajectory of the minimal distance for the kth mea-
surement. Eq. (3.25) enables the formulation of a geometric constraint for
the second and third collision avoidance condition. Ensuring a collision-
free passing of the opponent, the distance to the critical point is required
to be greater than or equal to zero. Further, to ensure no collision until the
maneuver is finished, the lateral displacement is kept up to the end of the
trajectory. The geometric constraint is

de2o(i|k) ≥ 0, ∀i = N . . .H (3.26)

Road Boundaries

The consideration of boundaries of the drivable area is essential for colli-
sion avoidance, especially within narrow roads typical for urban areas. A
collision with road boundaries or a road departure shall be avoided. Lane
markings do not represent the physical limit of the drivable area. Within
urban areas, lane markings are untypical on one-way streets or in residen-
tial areas. In contrast, e.g., pavement boarders or physical boarders, like
parking vehicles on the roadside, are highly relevant obstacles. A suitable
expression of the road boundaries and the road geometry shall be defined.
This shall lead to the definition of geometric constraints for arbitrary road
geometries that keep the ego-vehicle within the drivable area.

A common geometrical road model is a parameterized approximation of
the road clothoid as a third-degree polynomial function [42, 67, 22]. This
compact notation is also reasonable for the curved road boundaries. The
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lateral road boundary with related quantities is shown in Fig. 3.8. The poly-
nomial expression for the lateral road boundary is defined as

dj(k) = c0,j(k) + c1,j(k)x+ c2,j(k)x2 + c3,j(k)x3 j = L, R (3.27)

Where dj(k) denotes the left or right road boundary at planning step k.
The polynomial coefficients c0,j(k), c1,j(k), c2,j(k), c3,j(k) of the current
planning step k are collected in

eRoad(k) = [c0,j(k), c1,j(k), c2,j(k), c3,j(k)]T j = L, R (3.28)

with the corresponding coefficients c0...3,j(k) of the left and right side of the
drivable area. Here, c0,j(k) denotes the lateral offset of the road boundary
to the ego-vehicle’s longitudinal axis, c1,j(k) denotes the angle between the
ego-vehicle’s longitudinal axis and the road boundary’s tangent in the initial
point x = 0, and c2,j(k) and c3,j(k) denote the curvature and curvature rate

c0,R

c0,L

c2,R, c3,R

c2,L, c3,L

c1,R, c1,L

dR

dL

Figure 3.8: Road boundary and related quantities
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of the road boundary, respectively. Index j = L, R denotes left or right road
boundary related to the ego-vehicle. x denotes a longitudinal distance ahead
of the ego-vehicle.

Differentiating Eq. (3.27) with respect to the longitudinal distance x leads
to

∂

∂x
dj(k) = ϕj(k) = c1,j(k) + 2 · c2,j(k)x+ 3 · c3,j(k)x2 (3.29)

with the heading angle of the road boundary ϕj(k). The curvature of the
lateral road boundary is obtained by differentiating Eq. (3.27) twice with
respect to the longitudinal distance x, obtaining

∂2

∂x2
dj(k) = 2 · c2,j(k) + 6 · c3,j(k)x (3.30)

To formulate the constraints, the representation of the road boundaries needs
to be modified. The longitudinal distance x of Eq. (3.27) is substituted by
the sequence of the trajectory’s longitudinal positions

sx(0|k), . . . , sx(H|k). (3.31)

The sequence of lateral road boundaries is

dj(0|k), . . . , dj(H|k) j = L, R (3.32)

The road boundary that shall avoid a road departure are defined as geometric
constraints

sy(i|k) + max
(
GyFL(i|k), GyRL(i|k)

)
≤ dL(i|k)

sy(i|k) + min
(
GyFR(i|k), GyRR(i|k)

)
≥ dR(i|k)

(3.33)
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with the sequence of the lateral road boundaries, Eq. (3.32), the approxima-
tion of the vehicle shape, Eq. (3.16), and the sequence of the lateral position
of the evasive trajectory

sy(0|k), . . . , sy(H|k) (3.34)

leading to 2H inequality constraints. Applying the min and max functions
to Eq. (3.33) ensures the selection of the nearest vertex of the ego-vehicle
contour to the road boundary. The critical vertex of the ego-vehicle and the
opponent are the front-left and the rear-right, respectively.

In summary, the geometric constraints are collected in the set of geometric
constraints, Xg , Eq. (3.32). For an evasion to the right direction, the same
constraints can be applied analogously to the conditions for an evasion to
the left.
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3.5.2 Dynamic constraints

This section covers the dynamic constraints required for the planning of
evasive trajectories. Dynamic constraints ensure the integrity of the re-
quired dynamic limitations of the vehicle and, thus, ensure the driveability
of the planned trajectory. Incorporating the limitations is highly relevant,
especially in the planing of collision avoidance trajectories. The utilized
trajectories are intended to be as late as possible, which induces a highly
dynamic maneuver. The vehicle’s dynamic limitations are mainly influ-
enced by the interaction of the contact points between the road surface and
the wheels [45]. For a practical implementation, considering the influence
of actuator limitations is absolutely essential for the planning of collision
avoidance trajectories. Considering only the friction circle as constraint
is probably insufficient. Utilizing a last possible maneuver induces rapid
directional changes, hence, the state transition within the friction circle is
highly relevant. The vehicle’s capability for rapid directional changes are
given by the dynamics of the braking and steering actuators. Thus, actuator
limitations are considered.

In the following, the considered dynamic constraints are defined and clar-
ified. The vehicle’s absolute acceleration is constrained by the friction
circle [34], which was already proposed for a trajectory planning context
[56, 57, 82]. It is given as

‖a‖ ≤ amax (3.33)

where amax is the maximum allowed absolute acceleration, which is typi-
cally in a range of 7 m/s2 to 9.81 m/s2.

‖a‖ =
√
a2x + a2y (3.34)
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is the absolute acceleration calculated for longitudinal acceleration ax and
lateral acceleration ay . The vehicle’s curvature κ [4] is considered as con-
straint where the curvature is given as

κ =
vxay − vyax
(v2x + v2y)

3
2

(3.35)

where vx, ax, vy , and ay are the longitudinal velocity and acceleration and
the lateral velocity and acceleration, respectively, yielding the inequality
constraint for the vehicle’s curvature

|κ| ≤ κmax (3.36)

with the maximum curvature bound κmax. Constraining the vehicle’s cur-
vature is also considered by [82]. The dynamics of the steering actuator is
constrained with respect to steering angle and steering angular rate, similar
to [23, 76]. The steering angle is constrained by

|δ| ≤ δmax (3.37)

with the maximum steering angle δmax. Further, the steering angular rate is
defined as inequality constraint that yields

|δ̇| ≤ δ̇max (3.38)

with the maximum steering angular rate δ̇max. The parameterization of the
specific actuator limitations shall be done according to the experimentally
evaluated limitations (see Section 2.7).

Vehicle specific dynamic models, e.g., the single-track model (Section 2.6),
ensure a direct interface to the actuators. The single-track model enables a
direct limitation of the steering angle and the brake actuator. More general
dynamic models which do not consider a direct actuator interface, actuator
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limits are constrained by jerk limitations. Constraining the lateral motion
with this approach was previously proposed by [46]. Formulating the actu-
ator constraints in terms of jerk limitations for the lateral and longitudinal
jerk ȧy and ȧx.

|ȧx| ≤ ȧx,max

|ȧy| ≤ ȧy,max

(3.39)

Summing up, the dynamic constraints are collected in the set of dynamic
constraints Xd yielding

Xd =


x ∈ Rnx

‖a‖ ≤ amax

|κ| ≤ κmax

|δ| ≤ δmax

(3.40)

The constraints acting on the input of the dynamic model are collected in
the set of input constraints U . For the single-track model, see Section 2.6,
the brake jerk ȧx and the steering angular rate δ̇ are collected in the set of
input constraints:

U =

u ∈ Rnu
|ȧx| ≤ ȧx,max

|δ̇| ≤ δ̇max

(3.41)
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For a general dynamic model with no specific actuator interface, the steering
angular rate is substituted by the lateral jerk. The substituted set of input
constraints yields:

Us =

u ∈ Rnu
|ȧx| ≤ ȧx,max

|ȧy| ≤ ȧy,max

(3.42)

3.5.3 Final conditions

The final or end conditions shall specify the characteristics of the trajec-
tory at the end of the maneuver. One objective of the final condition is to
reduce the risk of a road departure as a consequence of the evasive maneu-
ver. In this context, the final condition supports the geometric constraint,
Eq. (3.33), which prevents the ego-vehicle from road departure during the
evasive maneuver. Ensuring this requirement, the ego-vehicle should be ori-
ented parallel to the road. After the critical situation is successfully avoided,
the ego-vehicle is intended to return into a safe state. The safe state shall be
ensured by constraining the slip angle to zero.

These final conditions are formulated as equality constraints. To orien-
tate the ego-vehicle parallel to the road at the end of the evasive maneuver
yields

ψ(H|k)− ∂

∂x
dj(k) = 0 (3.43)

with the predicted ego-vehicle orientation at the end of the evasive trajec-
tory ψ(H|k) and the current orientation of the road ∂

∂xdj(k) according to
Eq. (3.29).
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3 Optimal Collision Avoidance

To ensure that the vehicle reaches a safe state at the end of the evasive
maneuver, the final condition for the slip angle β(H|k) is given by

β(H|k) = 0 (3.44)

The final conditions are collected in the set of constraints:

Xf =

x ∈ Rnx
β(H|k) = 0

ψ(H|k)− ∂
∂xdj(k) = 0

(3.45)

The definition of the final condition completes the set of constraints nec-
essary for the planning of collision avoidance trajectories. The set of state
constraints is defined with the set of geometric constraints, the set of dy-
namic constraints, and the set of final conditions. It is given by

X = Xg ∩ Xd ∩ Xf (3.46)
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4 Optimal Trajectory Planning
Approaches

Three specific trajectory planning approaches for optimal collision avoid-
ance trajectories are introduced which all build upon the optimal trajectory
planning concept discussed in Chapter 3. The first approach considers the
integration of a dynamic vehicle model into optimal trajectory planning. It
shall provide theoretical insights to trajectory planning for collision avoid-
ance with one critical dynamic obstacle on urban roads. Furthermore, it shall
serve as a benchmark for the subsequent approaches. The second approach
proposes a parametric trajectory planning concept for collision avoidance
trajectories. The third approach augments the second one by a heuristic
sampling method to satisfy the required real-time demands for trajectory
planning. The goal is to facilitate a fast trajectory planning that enables
an implementation into a prototype Electronic Control Unit (ECU). This
approach shall be implemented into an Advanced Driver Assistance Sys-
tem (ADAS) for collision avoidance and assessed in an vehicle test regard-
ing benefit and practicability.

4.1 Model-based approach

This section covers the integration of a dynamic vehicle model into an op-
timal trajectory planning approach. Definition 3.1 provides the definition
of optimal trajectory planning for collision avoidance comprising of func-
tional f as constraint. The set of constraints was previously defined in Sec-
tion 3.5. Functional f is considered as an arbitrary discretized functional,
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which shall mimic the vehicle dynamics. To further specify this functional,
the discretized single-track model, as given in Section 2.6, is considered for
the proposed approach. This optimal trajectory planning approach shall be
further referred to as Single-Track Model Trajectory Planner (ST-Planner).

Trajectory representation

With the functional f being defined as single-track model according to
Eq. (2.15), the trajectory and its structure can be specified for the ST-
Planner. The state vector of the single-track model Eq. (2.15) is

x = [sx, sy, vx, vy, ax, ay,ψ, ψ̇,β, δ]T (4.1)

with the trajectory states longitudinal and lateral position, sx and sy , longi-
tudinal and lateral velocity vx and vy , and longitudinal and lateral accelera-
tion, ax and ay . Further, ψ and ψ̇ are yaw angle and yaw angle rate, β is the
slip angle and δ is the steering angle, acting on the vehicle’s front wheel.

The excitation vector of the single-track model is

u = [ȧx, δ̇]T (4.2)

with the longitudinal jerk ȧx and the steering angle rate δ̇. The general
augmented trajectory z(k) is defined according to Eq. (3.12), which com-
prises of trajectory T (k) (see Eq. (3.10)) and parameter vector p(k) (see
Eq. (3.11)). With the excitation vector u, the augmented trajectory z(k) for
the ST-Planner yields

z(k) = [ȧx(0|k) . . . ȧx(H|k), δ̇(0|k) . . . δ̇(H|k), tTLME, tP, tF]. (4.3)

Consideration of the derivatives of the longitudinal acceleration and the
steering angle rate results in smooth trajectories with continuous accelera-
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tion and steering angle. Moreover, it enables continuity at trajectory start
and trajectory end.

Applying the sequence of the excitation vector u(i|k) and the sequence
of sampling rates ∆t(i|k) to the recursive single-track functional f yields
the state vector sequence:

x(k) = [x(0|k) . . .x(H|k)] Rnx × I → RnT . (4.4)

Substituting the arbitrary dynamic model f by the single-track model and
the previously defined augmented trajectory z(k) in the nonlinear optimiza-
tion problem, defined by Eq. (3.2), provides a holistic description of the
ST-Planner. The trajectories planned by the ST-Planner will be analyzed in
the next chapter and provide theoretical insights into trajectory planning for
collision avoidance with single obstacles on urban roads.

4.2 Parametric trajectory planning approach

This section focuses on a suitable parameterization for collision avoidance
trajectories. The previously introduced ST-Planner considers a single-track
model to evaluate trajectories, which are generated applying the sequence
of sampling rates ∆t(i|k), the optimized excitation vector u(i|k), and the
state vector x(i|k) to the dynamic model f , and iteratively evaluated for the
future trajectory sample x(i + 1|k). The consideration of the single-track
model provides trajectories that satisfy the dynamic integrity. A drawback
of forward integration of dynamic models is the computational complexity.
For each sample i, the nonlinear model has to be evaluated and the optimal
sequence of excitation vectors has to be sought. Suitable parametric trajec-
tories, which satisfy the dynamic integrity, reduce the computational com-
plexity. However, this approximations might reduces the set of coverable
use cases and lead to lower accuracy. Trajectories in various parameteri-
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zations are widely discussed in literature. Common parameterizations are
splines or polynomials. In [47], curvature polynomials of arbitrary degree
are considered. Polynomials of degree 7 are considered in [35] for evasive
trajectories. Quintic polynomials are common parametric trajectories (e.g.
[77, 69] ). In [75], polynomials of degree 5 are separately planned for lateral
and longitudinal trajectories.

The latter approach is adopted in this work. Splitting up the trajectory
into its motion components provides flexibility to the design, e.g, by al-
lowing different polynomial degrees for lateral and longitudinal motion.
Moreover, it enables a direct integration of actuator-specific properties into
the trajectories. Incorporating the coupled vehicle dynamics, the vehicle
curvature as a function of the lateral and longitudinal motion is considered
as constraint. This approach will be referred to as Polynomial Trajectory
Planner (P-Planner) in this work.

Polynomial Trajectory Planner

In this section, the general P-Planner is discussed. Parametric trajectories
are defined as polynomials of arbitrary degree. Thereafter, a suitable poly-
nomial degree for collision avoidance trajectories is determined. Finally,
polynomial trajectories for lateral and longitudinal motion are integrated
into the optimal trajectory planning, yielding the P-Planner.

Polynomial trajectories of arbitrary degree are defined as

Definition 4.1. Let k ∈ N be a discrete time, representing an arbitrary
starting point of the trajectory, L ∈ N be an arbitrary degree of a poly-
nomial function. Let i ∈ I with I = [0 . . .H] ⊂ N be an equidistantly
sampled sequence of H samples, t(i|k) ∈ R be a sequence of time sam-
ples, and p̃j(k) ∈ R with j = 0, . . . , L be the jth polynomial coefficient.
Further, let ζ(i|k)(q) be the qth derivative of the ith polynomial trajec-
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tory sample. The polynomial coefficients are collected in the parameter
vector

p̃L(k) = [p̃j(k)]T, j = 0, . . . , L. (4.5)

Trajectories and the corresponding derivatives are defined according to
the polynomial function, yielding

ζ(i|k)(q) = f
(q)
ζ (p̃L(k), t(i|k)) :=

L∑
j=q

q∏
p=0

(j − p)p̃j(k)t(i|k)(j−q), q = 0, . . . , L (4.6)

with the arbitrary polynomial function f (q)
ζ of the qth derivative. With

Eq. (4.6), the polynomial trajectory according to Definition 2.1 yields

T p = [ζ(0|k)(q), . . . , ζ(N|k)(q)]. (4.7)

The polynomial coefficients p̃L(k) are obtained by applying boundary con-
ditions to Eq. (4.6) and determining the polynomial coefficients p̃j(k). For
an a priori known temporal sequence t(i|k), there exists a closed solution
for the applied boundary conditions problem.

In order to determine a suitable polynomial degree for the collision avoid-
ance trajectory planner, the following requirements need to be considered.
Trajectories shall be smooth and several times differentiable. To obtain
polynomial trajectories that satisfy the requirements, the boundary value
problem needs to be solved. Boundary conditions are given as initial and
final values of the polynomial and its derivatives. The number of boundary
conditions specifies the degree of the polynomial. Polynomials of degree 5,
for example, are commonly used for trajectory planning. They are defined
by six boundary conditions (position, velocity, and acceleration), three ini-
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tial and three final values, respectively. However, polynomials of degree 5
are discontinuous in jerk at start and end [8]. In order to obtain trajectories
with continuous jerk, besides boundary conditions on acceleration, velocity
and position, it is also required to assign initial and final conditions to the
jerk. Therefore, in overall eight boundary conditions need to be considered
(four initial and four final), a seventh degree polynomial shall be applied.

Polynomial trajectories of degree 5 and 7 shall be compared briefly. bound-
ary conditions for a characteristic collision avoidance trajectory are consid-
ered. The initial conditions for the polynomial trajectories of degree 5 and
7, with t0 = 0 and tf = 2, are sx(t0) = 0, vx(t0) = 10, ax(t0) = 0, for
the longitudinal trajectory and sy(t0) = 0, vy(t0) = 0, ay(t0) = 0, for
the lateral trajectory. The final conditions are sx(tF) = 0, vx(tF) = 5, and
ax(tF) = 0, for the longitudinal trajectory and sy(tF) = 2, vy(tF) = 0,
and ay(tF) = 0, for the lateral trajectory. Additionally, for the polynomial
trajectories of degree 7, the initial and final conditions for the longitudinal
and lateral jerk are ȧx(t0) = 0, ȧy(t0) = 0, ȧx(tF) = 0, and ȧy(tF) = 0,
respectively.

Fig. 4.1 shows the comparison of polynomial trajectories of degree 5 and
7. Jerk trajectories are shown in the bottom row. Polynomials of degree 5
show the discontinuity, whereas polynomials of degree 7 are continuous in
jerk. Polynomials of degree 7 provide trajectories with a lower absolute jerk
compared to degree 5, even though polynomials of degree 5 have minimal
squared jerk [75]. However, with respect to the acceleration, degree 7 trajec-
tories lead to higher absolute accelerations, both lateral and longitudinal, to
achieve equivalent end positions. In the x-y plane the trajectories appear to
be considerably similar. For equivalent boundary conditions, polynomial of
degree 5 seems more reactive than polynomial of degree 7. Achieving com-
parable absolute acceleration levels to the degree 7, degree 5 would need
less time to achieve that level. However, this reactive character of degree 5

64



4.2 Parametric trajectory planning approach

0 2 4 6 8 10 12 14 16

0

1

2

3

sx [m]

s y
[m

] Degree 5
Degree 7

0

10

20

s x
[m

]

0

1

2

s y
[m

]

0

2

4
v y

[m
/s

]

4

8

12

v x
[m
/s

]

−6

−3

0

a
x

[m
/s

2
]

−4

0

4

a
y

[m
/s

2
]

0 0.5 1 1.5 2
−10

0

10

t [s]

ȧ
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Figure 4.1: Comparison of polynomial trajectories of degree 5 and 7. The
upper plot shows the trajectories in the x-y plane. The left column shows the
longitudinal trajectories (from top to bottom): position, velocity, accelera-
tion, and jerk. The right column shows the lateral trajectories, respectively.
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comes at the cost of the discontinuities at start and end. Disregarding the
ramp-up and down of the jerk leads to the diminished absolute acceleration
and the comparable lower maneuver time if trajectories with equivalent ac-
celeration profiles are compared.

Polynomials of degree 7 shall be considered for the planning of braking
and steering trajectories. It enables direct incorporation of actuator-specific
limitations. Steering jerk is equivalent to the torque rate of the power steer-
ing motor. Brake jerk is equivalent to the pressure build-up in the hydraulic
system of the brake.

Optimal parametric collision avoidance trajectories are obtained applying an
additional set of parameters and substituting the dynamic model in Eq. (3.2).
In the next step, optimal polynomial collision avoidance trajectories shall
be defined.

Definition 4.2. Let k ∈ N be a discrete time, representing an arbitrary
starting point of the trajectory. Let i ∈ I with I = [0 . . .H] ⊂ N be a
sampled sequence of H samples. Further, let x(i|k) ∈ Rnx be a state
vector, u(i|k) ∈ Rnu an excitation vector, and t(i|k) ∈ R a sequence of
time samples. Let

p̃x7(k) = [x̃0(k), q̃x7(k)] and (4.8)

p̃y7(k) = [ỹ0(k), q̃y7(k)]

be the coefficient vector of longitudinal and lateral polynomial trajectory
of degree 7. Where x̃0(k) and ỹ0(k) are the initial values of the the
longitudinal and lateral polynomials with

x̃0(k) = [sx(0|k), vx(0|k), ax(0|k), ȧx(0|k)] and (4.9)

ỹ0(k) = [sy(0|k), vy(0|k), ay(0|k), ȧy(0|k)]
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q̃x7(k) and q̃y7(k) comprise the polynomial coefficients to be determined
of the longitudinal and lateral polynomials which are

q̃x7(k) = [p̃x4(k), p̃x5(k), p̃x6(k), p̃x7(k)] and (4.10)

q̃y7(k) = [p̃y4(k), p̃y5(k), p̃y6(k), p̃y7(k)].

Further, let z̃(k) be an augmented parameterized trajectory with

z̃(k) = [q̃x7(k), q̃y7(k),p(k)] Rnqx ×Rnqy ×Rnp → Rnz (4.11)

where p(k) ∈ Rnp is the parameter vector according to Eq. (3.11). The
arbitrary dynamic model, represented by the functional f , is substituted
by the polynomial trajectory description which is defined accordingly.

sx

sy

vx

vy

ax

ay

ψ

κ


︸ ︷︷ ︸

x

(i|k) =



f (0)
x (p̃x7(k), t(i|k))

f (0)
y (p̃y7(k), t(i|k))

f (1)
x (p̃x7(k), t(i|k))

f (1)
y (p̃y7(k), t(i|k))

f (2)
x (p̃x7(k), t(i|k))

f (2)
y (p̃y7(k), t(i|k))

tan−1
(
vy(i|k)
vx(i|k)

)
vx(i|k)ay(i|k)−vy(i|k)ax(i|k)

(vx(i|k)2+vy(i|k)2)
3
2


︸ ︷︷ ︸

fx(p̃7(k),t(i|k))

(4.12)
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with the state vector x and the functional fx(p̃7(k), t(i|k)) defining the
parametric trajectories. The excitation vector u is defined according to
the parametric functional fu(p̃7(k), t(i|k))ȧx

ȧy


︸ ︷︷ ︸

u

(i|k) =

f (3)
x (p̃x7(k), t(i|k))

f (3)
y (p̃y7(k), t(i|k))


︸ ︷︷ ︸

fu(p̃7(k),t(i|k))

(4.13)

With these considerations, the P-Planner can be defined as

min
z̃
J(z̃(k))

subject to x(i|k) = fx(p̃(k), t(i|k))

u(i|k) = fu(p̃(k), t(i|k))

x(i|k) ∈ X ⊂ Rnx

u(i|k) ∈ U ⊂ Rnu

x(0|k) = x(k)

∀i ∈ I

(4.14)

with cost function J : Rnz → R and the sets of constraints X and U
that are defined in Section 3.5.

The maneuver duration for a collision avoidance trajectory cannot be de-
termined a-priori due to the wide variation of possible scenarios. Conse-
quently, for each situation, an optimal maneuver duration is individually
evaluated for each trajectory. As a result, it is required to determine the
polynomial coefficients within the optimization process. The computational
complexity of the optimization problem correlates with the dimensional-
ity of the augmented trajectory z which is to be sought. Substituting the
sampling-based trajectory representation, as considered in the ST-Planner
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(Section 4.1), with the polynomial trajectories of degree 7 diminishes the
dimensionality from dim(z) = (2×H+3) to dim(z̃) = (2×4+3), where
H is typically ≥ 20.

Considering polynomials of degree 7 as collision avoidance trajectory corre-
lates with the expense of two times four polynomial coefficients that need to
be sought. For a practical application and implementation, the longitudinal
trajectory is considered as polynomial of degree 5. Reducing the polyno-
mial degree from 7 to 5 diminishes the computational costs in additions. The
necessary polynomial coefficients to be sought diminishes to two for the lon-
gitudinal trajectory, which leads to a dimensionality of dim(z̃) = (4+2+3).

Regarding polynomial of degree 5, the parametric vector for the longitu-
dinal trajectory becomes

p̃x5(k) = [x̃0(k), q̃x5(k)] (4.15)

with

x̃0(k) = [sx(0|k), vx(0|k), ax(0|k)] and (4.16)

q̃x5(k) = [p̃x3(k), p̃x4(k), p̃x5(k)].

The parameter vector is handled analog to polynomials of degree 7 within
the P-Planner.

4.3 Fast parametric trajectory planning
approach

Integration of optimal trajectory planning in an ADAS for collision avoid-
ance is a nontrivial task. Challenges arise when a nonlinear optimization
problem has to be solved in real-time. Especially when the ADAS shall
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be utilized on a production-type ECU with limited resources, e.g. limited
computational power. Meeting real-time requirements can be approached
from two sides. Either the optimization algorithm can be adapted to the op-
timization problem and to the target hardware. Or the problem formulation
can be modified to meet real-time requirements. This work will focus on a
solution that modifies the previously trajectory planning approaches to meet
the real-time requirements.

The previous section covered parametric trajectories for collision avoidance.
Polynomials of degree 5 and 7 are considered to parameterize the trajecto-
ries in longitudinal and lateral direction, respectively. This approach already
reduced the search space of the ST-Planner from dim(z) = (2× H + 3) to
dim(z̃) = (2× 4 + 3) for the P-Planner.

A further reduction of computational complexity is achieved by consid-
ering the trajectory’s sequence which is sampled by i samples. ST-Planner
and P-Planner successively evaluate all constraints for the entire sampling
interval, which leads to a set of nonlinear equations of dimension dim(X +

U) × dim(I) to be solved, with I = [0 . . .H] ⊂ N being the sampled se-
quence of H samples. In order to reduce the number of required samples,
a heuristic sampling approach is introduced in the next section that sub-
stitutes the equidistantly sampled time sequence t(k) of H samples in the
P-Planner. This will yield to a real-time capable trajectory planner for col-
lision avoidance which is further referred to reduced Polynomial Trajectory
Planner (rP-Planner)

4.3.1 Heuristic trajectory sampling

Obtaining the relevant temporal points that are required to plan collision
avoidance trajectories, symmetric properties of the polynomial trajectories
are considered (Fig. 4.2). The boundary conditions are analog to those
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of Section 4.2, which leads to symmetric trajectories. The left column of
Fig. 4.2 shows the longitudinal polynomial trajectories of degree 5 with its
motion components (position, velocity, acceleration, jerk). The right col-
umn shows the lateral polynomial trajectories of degree 7 with its motion
components (position, velocity, acceleration, jerk). The relevant sampling
points can be expressed in fractions of the trajectory duration tF. With
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Figure 4.2: Characteristic sample points for symmetric collision avoidance
trajectories. The left column shows the longitudinal polynomial trajectories
of degree 5 (from top to bottom): position, velocity, acceleration, jerk. The
right column shows analog the lateral polynomial trajectories of degree 7.
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respect to longitudinal acceleration, one relevant point is the minimum of
acceleration which is at t = 0.5 · tF. This point is vital to determine the
absolute minimum or maximum lateral jerk for evasive maneuvers to the
left or to the right, respectively. The next relevant point is the maximum
lateral acceleration. This point is obtained by finding the roots of the lateral
jerk leading to t = −

√
5−5
10 · tF.

With these points and the passing time tP(see Section 3.3), the reduced
time sequence is specified as

t̃(k) = [0,−
√

5−5
10 · tF, 0.5 · tF, tP, tF]. (4.17)

Substituting the equidistantly sampled time sequence t(k) in the P-Planner
leads to the rP-Planner which is defined accordingly.

Definition 4.3. Let k ∈ N be a discrete time, representing an arbitrary
starting point of the trajectory. Let r ∈ Ir with Ir = [0 . . . 4] ⊂ N be
a sampled sequence of 4 samples. Further, let x(r|k) ∈ Rnx be a state
vector, u(r|k) ∈ Rnu an excitation vector, and t̃(r|k) ∈ R a sequence
of time samples. The rP-Planner is

min
z̃
J(z̃(k))

subject to x(r|k) = fx(p̃(k), t̃(r|k))

u(r|k) = fu(p̃(k), t̃(r|k))

x(r|k) ∈ X ⊂ Rnx

u(r|k) ∈ U ⊂ Rnu

x(0|k) = x(k)

∀r ∈ Ir

(4.18)
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rP-Planner Feasibility Check

Two-Step Trajectory Planner

Figure 4.3: Structure of two-step trajectory planning approach comprising
the rP-Planner and a feasibility check

with cost function J : Rnz → R and the sets of constraints X and U
which are defined in Section 3.5.

Evaluating trajectories with the reduced set of samples enables online tra-
jectory planning with high computational efficiency. However, this also im-
poses limitations. Assuming symmetric properties of trajectories limits the
applicable use cases to straight road scenarios. Furthermore, due to the tra-
jectory evaluation with the reduced set of samples, the solution delivers just
the polynomial coefficients. A trajectory that can be used as an input to a
controls algorithm needs to be generated in a second step. Trajectories have
to be re-evaluated with a sufficiently higher amount of samples leading to a
higher temporal resolution. Also, to evaluate the compliance of constraints
for only the reduced set has a potential risk of missing constraint violation
in between the sparse samples.

4.3.2 Two-step trajectory planning

To overcome the risk of missed constraints violation and to provide trajec-
tories for controls, a tow-step trajectory planning approach is proposed. The
structure of the two-step approach is shown in Fig. 4.3 It comprises of the
rP-Planner followed by a feasibility check. rP-Planner provides the para-

73



4 Optimal Trajectory Planning Approaches

metric trajectories which are re-evaluated in the feasibility check. First, the
trajectories are evaluated for a denser set of samples i ∈ I . These trajec-
tories are then further reviewed for compliance with the constraints. If a
violation of any constraint is observed, the time to last maneuver execution,
tTLME, is set to a negative value. Otherwise, if the feasibility test passed,
the densely sampled trajectories are provided to the vehicle controls system.

4.4 Assessment Criteria

This chapter summarizes relevant assessment criteria to evaluate the per-
formance of the developed approaches, based on assessing the trajectories.
Additionally, a catalog of characteristic use cases is introduced that is used
to evaluate the performance of the proposed optimal trajectory planning ap-
proaches.

4.4.1 Performance measures

Evaluation and assessment of collision avoidance trajectories demands suit-
able performance measures. Besides the compliance to constraints and limi-
tations, which is relevant for each individual trajectory, an assessment crite-
ria to distinguish between trajectories and evaluate their specific differences
is required.

Various performance measures for the comparison of ideal lane change tra-
jectories are presented in [64]. Amongst those, one performance measure
is the area between a trajectory and a straight line for one half of a single
lane change maneuver. Considering this proposal as a starting point, a more
specific performance measure to determine the difference of two trajecto-
ries is the area between the trajectories, as shown in Fig. 4.4. The gray area
between the two distinct trajectories shows this performance measure. The
smaller the area between the trajectories, the smaller the difference of the
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sx(t)

sy(t)

Figure 4.4: Area between two trajectories

trajectories. The performance measure is defined in terms of a relative error
yielding

AE =
A−Ac

Ac
· 100% (4.19)

where A is the area of the desired or objective trajectory, Ac is the area of
the simulated or compared trajectory, respectively. The area is defined as

A =

T∫
0

F (ξx(t), ξy(t)) dt (4.20)

where F is a parametric trajectory with longitudinal and lateral components,
ξx(t) and ξy(t), respectively. T is the upper limit, e.g., the maneuver dura-
tion.

Another useful performance measure is the Mean-Absolute-Percent-Error

[1] to compare trajectory deviations.

MAPE =
1

T

∫ T

0

∣∣∣∣y(t)− yc(t)
yc(t)

∣∣∣∣ dt · 100% (4.21)
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or

MAPE =
1

T

T∑
i=1

∣∣∣∣y(i)− yc(i)
yc(i)

∣∣∣∣ · 100% (4.22)

as applicable, where y is the desired or objective measure, yc is the simu-
lated or compared measure, T is the upper limit, e.g., the maneuver dura-
tion. Normalizing the argument enables the comparison of trajectories with
variable properties, e.g. variable maneuver duration tF and final maneuver
position sx(tF) and sy(tF).

4.4.2 Characteristic use cases

The performance of the developed trajectory planner for collision avoidance
trajectories shall be verified by three characteristic use cases.

Use case 1: The topology of the first scenario is illustrated in Fig. 4.5.
The gray ego-vehicle follows the blue leading vehicle on a straight
two-lane road traveling on the right lane. The road has an unoccu-
pied adjacent lane to the left. Both vehicles, lead and ego-vehicle, are
traveling with constant speed up to 70 km/h while keeping a safety
distance within the legally required specifications (§4 S1 StVO). At
a certain moment, the lead vehicle evades a suddenly appearing ob-
stacle that blocks the lane while the ego-vehicle is still approaching
the suddenly appearing obstacle. Without an intervention, a collision
between the ego-vehicle and the obstacle is imminent.

Use case 2: The topology of use case 2 is analog to the first use case,
shown in Fig. 4.6. Except, the blue lead-vehicle and the gray ego-
vehicle are traveling on the left lane. The right adjacent lane is unoc-
cupied. Here, the lead vehicle evades an obstacle that blocks the left
lane.
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4.4 Assessment Criteria

Use case 3: The topology of the third scenario is illustrated in Fig. 4.7.
The gray ego-vehicle is traveling on a one-way road. At a certain
moment, a pedestrian steps suddenly out onto the road, out of a row
of parked cars on the left pavement. The ego-vehicle approaches the
sudden appearing pedestrian and a collision is imminent.
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Figure 4.5: Use case 1

Figure 4.6: Use case 2

Figure 4.7: Use case 3
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5 Simulation results

Optimal trajectory planning approaches discussed in Section 4 are analyzed
and compared. Typical urban traffic situations are considered as test sce-
narios, see Fig. 5.1. The ego-vehicle travels along a straight road, which
is bounded on either side, towards a stationary obstacle blocking the ego-
vehicle’s lane. For the traffic situation, relevant parameters defining the
geometry of the scene are shown. In the following sections, the three
trajectory planning approaches are evaluated based on simulations. The
ST-Planner (Section 4.1) is evaluated first. Thereafter, the ST-Planner is
compared with the Polynomial Trajectory Planner (P-Planner) (Section 4.2)
and the reduced Polynomial Trajectory Planner (rP-Planner) (Section 4.3).

sx

yObj(k)

xObj(k)

sy

c0,R(k)

c0,R(k)

wObj(k)

Figure 5.1: Urban traffic situation with evasive maneuver. Relevant scene
parameters are left and right margin, c0,L(k) and c0,R(k), the obstacle’s co-
ordinate relative to the ego-vehicle with the longitudinal distance xObj(k),
the lateral coordinate yObj(k), and the width of the obstacle wObj(k).
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5 Simulation results

5.1 Single-Track Model Trajectory Planner

In the following section the ST-Planner (see Section 4.1) is evaluated and
verified. The simulation and the subsequent analysis shall verify if the pro-
posed planner provides dynamically feasible trajectories at a latest possible
moment.

The ST-Planner is embedded into an Advanced Driver Assistance Sys-
tem (ADAS) for collision avoidance, which will be discussed in detail in
Chapter 6.1. An IPG CarMaker® vehicle simulation environment is used to
perform the simulations of the ADAS. The simulation environment consid-
ers a detailed multi-body vehicle model of an Opel Insignia with emulated
steering and braking control unit software. Applying such simulation mod-
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Figure 5.2: Simulated collision avoidance maneuver for amax = 9.81 m/s2

and vx(0|k) = 70 km/h. The left figure shows the planned and executed
trajectories in the x-y plane, the upper right shows the velocities over time,
the lower right shows the planned lateral and longitudinal acceleration tra-
jectories over time.
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5.1 Single-Track Model Trajectory Planner

Approach ST-Planner

xObj(k) [m] vx(0|k) · tTTCini

yObj(k) [m] 0.0

wObj(k) [m] 2.0

vx(0|k) [km/h] [50.0 70.0]

tTTCini
[s] 2.00

c0,L(k) [m] 3.75

c0,R(k) [m] −1.50

Table 5.1: Scene parameter set evaluating the ST-Planner. The obstacle’s
coordinate relative to the ego-vehicle with longitudinal distance xObj(k),
lateral coordinate yObj(k), and width of the obstacle wObj(k). Variation of
initial speed vx(0|k). First detection time of the obstacle tTTCini

, and left
and right lateral margin, c0,L(k) and c0,R(k).

els with this complexity and degree of detail shall lead to reliable and robust
simulation results. The goal is make the simulation match real vehicle tests
as closely as possible (which will be further verified in the next chapter).

An urban traffic situation according to Fig. 5.1 is considered as test sce-
nario. The parameters defining the scene are listed in Table 5.1. The initial
ego-vehicle speed vx(0|k) is assessed in two levels. All trajectory parame-
ters are listed in Table 5.2. To better explore the potential of the algorithm,
two different absolute acceleration limits amax are investigated. Achieving
comparable test results, a virtual time for the first detection of an obstacle
is assumed in terms of Time To Collision (tTTC) which is further consid-
ered as tTTCini . The related longitudinal distance to the obstacle at the first
detection event is

xObj(k) = vx(0|k) · tTTCini
. (5.1)
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5 Simulation results

Approach ST-Planner

amax [m/s2] [7.0 9.81]

κmax [1/m] 0.04

ȧx,max [m/s3] 20.00

δ̇max [°/s] 9.00

N + M 20 + 20

Table 5.2: Trajectory parameter set of ST-Planner. Variation of absolute
acceleration limit amax, limits for curvature κmax, longitudinal jerk ȧy,max

and the steering rate δ̇max. N + M are the samples of the trajectory.

The simulation runs are performed on a personal computer with an Intel®

core i5 processor. The trajectory planning approaches are implemented in
Matlab® using the internal function fmincon with the solver option Active-

set as provided by the optimization toolbox [70] to solve the optimization
problem. fmincon uses the method of Sequential Quadratic Program to
solve the nonlinear problem, whereas the Quadratic Program is solved it-
eratively. The Quadratic Program (QP) subproblem is solved using the
active-set strategy. A detailed description of the solver principles are cov-
ered by the literature (see e.g. [21, 7, 10, 3]).

An example of the planned and executed trajectories is shown in Fig. 5.2
for the parameter set amax = 9.81 m/s2 and vx(0|k) = 70 km/h. The left
figure shows planned and executed trajectories in the x-y plane. The up-
per right figure shows planned and executed trajectories of the velocity and
the lower right figure shows planned lateral and longitudinal acceleration
trajectories over time. Both, x-y plane and velocity reveal little difference
between the compared trajectories.

The simulation results are collected in Table 5.3, listing the time to last
maneuver execution tTLME, the passing time tP and the maneuver duration
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5.1 Single-Track Model Trajectory Planner

Approach ST-Planner

t̄TLME [s] 0.69

t̄P [s] 1.30

t̄F [s] 2.35

Table 5.3: Simulation result of trajectories obtained by the ST-Planner with
mean values of time to last maneuver execution t̄TLME, passing time t̄P and
maneuver duration t̄F.

tF for the four scenarios. The results of the data analysis are listed in Ta-
ble 5.4 with the performance measure MAPE (see Section 4.4.1) for the
area difference between the two trajectories. In addition, the MAPE for
the deviations of longitudinal, lateral, and velocity trajectories can be re-
trieved. The planned and executed trajectories differ by less than 3 %. The
mean values of the lateral deviation (2.02 %) is smaller than the longitudinal
deviation (2.76 %). Measured in terms of covered distance (40 m in longitu-
dinal direction and 2.30 m in lateral direction), the slightly higher deviation
in longitudinal direction seems tolerable. The velocity has a deviation of
0.49 %.

These simulations of characteristic scenarios show that the chosen concept
and the implemented algorithm fulfill the described requirements for eva-
sive trajectories. ST-Planner shows the potential of the presented optimal
trajectories for collision avoidance to find last possible evasive maneuvers.
The simulative evaluation of the ADAS shows good trajectory tracking per-
formance. An overall deviation of less than 3 percent between planned and
executed trajectories is achieved, even when the utilized maximum accel-
eration is close to the limit. The low tracking deviation corroborates the
approach to provide dynamically feasible trajectories. This implies that the
assumed limitations in scale and function are chosen appropriately for the
given problem.The test was performed without the consideration of addi-
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5 Simulation results

MAPE(Area) [%] 2.66

MAPE(sx) [%] 2.76

MAPE(sy) [%] 2.02

MAPE(vx) [%] 0.49

Table 5.4: Evaluation of ST-Planner comparing planned and executed tra-
jectories. Mean values of performance measures for the deviation of the
X-Y Area, sx, sy , and vx trajectories.

tional safety margins. For the subsequent vehicle implementation, longitu-
dinal and lateral safety margins shall be applied. For longitudinal margin, a
temporal margin of additional 100 ms shall be applied. This covers all com-
putational and executional delays. For a longitudinal velocity of 20 m/s this
adds 2 m safety margin. The obstacle’s lateral expansion shall be consid-
ered by additional 10 cm. This covers the imposed uncertainties within the
object detection system. Assuming the safety margins are included, the to-
tal longitudinal deviation of 2.76 % would be 40 % below the safety margin
and the lateral deviation of 2.02 % would be 54 % below the safety margin.
To conclude from this, imposing the additional safety margin as proposed
ensures collision free trajectories.

5.2 Comparison of Polynomial Trajectory
Planner (P-Planner) with Single-Track Model
Trajectory Planner (ST-Planner)

The preceding analysis of the ST-Planner has proven its potential for col-
lision avoidance. In particular, the approach ensures dynamically feasible
trajectories that can be utilized up to the dynamic limits. Additionally, the
approach provides trajectories that enable an evasion at the latest possi-
ble moment. The following investigation shall verify the applicability of
the proposed approximation of the dynamic model by parametric trajecto-
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5.2 Comparison of P-Planner with ST-Planner

Approach ST-Planner P-Planner

xObj(k) [m] vx(0|k) · tTTCini

yObj(k) [m] 0.50

wObj(k) [m] 2.00

vx(0|k) [km/h] 70.00

tTTCini
[s] 2.00

c0,L(k) [m] 5.00

c0,R(k) [m] −1.50

Table 5.5: Scene parameter set of ST-Planner and P-Planner. Obstacle’s
coordinates relative to the ego-vehicle with longitudinal and lateral coordi-
nate, xObj(k) and yObj(k), and width of the obstacle wObj(k). Initial speed
vx(0|k), first detection time of the obstacle tTTCini

, and left and right lateral
margin, c0,L(k) and c0,R(k).

ries. The characteristics of ST-Planner and P-Planner shall be analyzed and
compared to determine if the considered polynomials deliver suitable tra-
jectories.

Either approach is simulated for a specific test scenario to achieve optimal
evasive trajectories executable at the latest possible moment. The test sce-
nario is again defined as shown in Fig. 5.1. Table 5.5 lists the parameter set
specifying the test scenario. The parameter set for the trajectory planners are
listed in Table 5.6. The steering rate, δ̇(i|k), is considered in the ST-Planner
to constrain the steering actuator. Analog, the lateral jerk, ȧy(i|k), is con-
strained in the P-Planner to realize steering actuator limitations. The limits
are chosen according to prior vehicle studies (see Section 2.7) providing
comparable and realistic limits for each approach.

The simulation results are shown in Fig. 5.3. The top plot shows the trajecto-
ries in the x-y plane of ST-Planner and P-Planner. The red circles highlight
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Figure 5.3: Comparison of ST-Planner and P-Planner trajectories. The up-
per plot shows trajectories of ST-Planner and P-Planner in the x-y plane
with there corresponding spatiotemporal point at tP in red. The left column
shows (from top to bottom) the trajectories of both approaches over time for
v, ax, ȧx, and |a|. The right column shows (from top to bottom) the tra-
jectories over time for κ and ay for both approaches, ȧy for the parametric
trajectory, and δ̇ for the dynamic model-based trajectory.
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5.2 Comparison of P-Planner with ST-Planner

Approach ST-Planner P-Planner

amax [m/s2] 9.81

κmax [1/m] 0.04

ȧx,max [m/s3] 20.00

ȧy,max [m/s3] 15.00

δ̇max [°/s] 9.00

N + M 20 + 20

Table 5.6: Trajectory parameter set of ST-Planner and P-Planner. Absolute
acceleration limit amax. Limit for trajectory curvature κmax, longitudinal
and lateral jerk, ȧx,max and ȧy,max, and steering rate δ̇max. N + M are the
trajectory samples.

the spatiotemporal point when the ego-vehicle passes the obstacle at tP (rel-
ative to the vehicle’s center of gravity). The left column of the figure shows
(from top to bottom) the trajectories of velocity, longitudinal acceleration
and jerk, and absolute acceleration for both approaches, respectively. The
right column of the figure shows (from top to bottom) the trajectories of
curvature and lateral acceleration for both approaches, lateral jerk for the
polynomial trajectory and the steering rate of the trajectory associated to the
ST-Planner. In addition to the trajectories, the corresponding limits accord-
ing to Table 5.6 are plotted.

All trajectories lie within the given limits. For the trajectories of the P-
Planner, the lower limit of the longitudinal jerk is reached right at the start
of the maneuver. For the lateral jerk trajectory, the lower limit is reached
at the moment of the passing time tP. The curvature trajectory reaches the
lower limit in the second half of the maneuver. Looking at the trajectories
of the ST-Planner, lower longitudinal jerk and absolute acceleration limits
are already reached during the first half of the maneuver. The steering rate
trajectory is at the upper and lower limit during the maneuver.The trajectory
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MAPE(Area, tP)[%] 1.01

MAPE(Area, tF)[%] 12.65

MAPE(sx, tP)[%] 2.04

MAPE(sx, tF)[%] 1.00

MAPE(sy, tP)[%] 1.45

MAPE(sy, tF)[%] 6.26

MAPE(vx, tP)[%] 3.05

MAPE(vx, tF)[%] 7.41

Table 5.7: Comparison of trajectories generated with ST-Planner and
P-Planner. Performance measures for two temporal intervals, [0, tP] and
[tP, tF], comparing relative deviation of the X-Y area, sx, sy , and vx trajec-
tories.

shapes of both approaches are very close. Hardly any difference is observ-
able for the trajectories shown in x-y plane from the start of the maneuver
until the object is passed. With respect to lateral acceleration trajectories,
maximum and minimum levels are achieved at the same time. The maxi-
mum acceleration levels differ significantly, where the ST-Planner has the
highest lateral acceleration levels.

Table 5.8 lists time to last maneuver execution tTLME, passing time tP,
and maneuver duration tF for ST-Planner and P-Planner, revealing little dif-
ference in tTLME and small difference in tP and tF. The values for tTLME

only differ by 13 ms.

The trajectories are further assessed by the performance measures MAPE

(see Section 4.4.1). The trajectories are subdivided into two temporal in-
tervals, [0, tP] and [tP, tF], for better analyses and distinction of differ-
ent effects. The results are listed in Table 5.7. The first interval [0, tP]

shows small deviations except for the longitudinal trajectories in magni-
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5.2 Comparison of P-Planner with ST-Planner

Approach ST-Planner P-Planner

tTLME [s] 0.95 0.93

tP [s] 1.05 1.20

tF [s] 2.53 2.20

Table 5.8: Simulation result of ST-Planner and P-Planner. Compared values
are time to last maneuver execution tTLME, passing time tP, and maneuver
duration tF.

tudes of the performance measure. The MAPE(·, tP) values in a range of
[1.08 % . . . 3.05 %] (see Table 5.7). The second interval shows higher vari-
ations with MAPE(·, tF) values are in a range of [1.02 % . . . 12.65 %]. A
reasonable explanation for the deviation in the second interval can be given
by a discussion of the constraints. In the first interval, trajectories have
equal and "fixed" constraints where the vertices of the two opponents meet
at passing time tP (see Section 3.5.1). Whereas in the second interval, the
end conditions are unbounded except for the lateral position, which shall
stay within the drivable corridor. This extra degree of freedom is likely to
be the reason for the differences at the maneuver end for these two different
approaches.

Both evasive trajectories appear to reach the limits in at least one mea-
sure, which indicates that the last-possible evasive trajectories are found by
both approaches. The achieved time to last maneuver execution tTLME val-
ues are nearly equal (see Table 5.8) for both planners. Overall, it is shown
that the approximation of the trajectories of the ST-Planner by a polynomial
function of degree 7 for the lateral trajectories and a polynomial function
of degree 5 for the longitudinal trajectories lead to acceptable results. The
investigation confirmed the compliance with constraints and requirements
together with the dynamical integrity of the parametric trajectories.
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5.3 Comparison of reduced Polynomial
Trajectory Planner (rP-Planner) and
Single-Track Model Trajectory
Planner (ST-Planner)

The prior comparison of P-Planner with ST-Planner has confirmed the pro-
posed parametric trajectories to be sufficient to provide dynamically fea-
sible collision avoidance trajectories. In this section, rP-Planner shall be
compared with ST-Planner to investigate the behavior of both approaches
with regards to their capabilities to handle various traffic situations. Further,
specific temporal characteristics of the last-possible evasive maneuver shall
be evaluated and compared. Besides the comparison of the two planning
approaches, the computational efficiency of the rP-Planner shall be verified
together with the clarification whether the proposed approach enables tra-
jectory planning in real time.

The approaches are examined by simulation of different test scenarios ac-
cording to Fig. 5.1. The approaches are again simulated for different scene
and trajectory parameters. The scene parameters are listed in Table 5.9. Ini-
tial velocity, vx(0|k), lateral position of the obstacle, yObj(k), and left road
boundary, c0,L(k), are varied. The left road boundary is varied depending
on the variation of the obstacle’s lateral position according to Eq. (5.2) to
ensure a sufficient maneuver corridor to pass for the evasive maneuver.

ĉ0,L(k)(yObj(k)) =

Nc∑
i=0

(
yObj(k) + 0.5wObj(k) + w + ε

)
+

(
c0,L,max −

(
yObj(k) + 0.5wObj(k) + w + ε

)
Nc

)
i (5.2)

with the amount of desired measures Nc, the width of the ego-vehicle w,
the lateral safety margin ε, and the maximum of the varied road boundary

90



5.3 Comparison of rP-Planner with ST-Planner

Approach ST-Planner rP-Planner

xObj(k) [m] vx(0|k) · tTTCini

yObj(k) [m] [-0.5 0.0 0.5]

wObj(k) [m] 2.00

vx(0|k) [km/h] [40.0 50.0 60.0 70.0]

tTTCini
[s] 2.00

c0,L(k) [m] ĉ0,L(k)(yObj(k))

c0,R(k) [m] −1.50

No. of variations 108

Table 5.9: Scene parameter set of ST-Planner and rP-Planner. Obstacle’s
coordinate relative to the ego-vehicle with longitudinal coordinates xObj(k),
variation of lateral coordinate yObj(k), and width of the obstacle wObj(k).
Variation of initial speed vx(0|k), first detection time of the obstacle tTTCini

,
left lateral margin depending on the obstacles lateral coordinate , c0,L(k),
and right lateral margin, c0,R(k).

c0,L,max. In the presented case, Nc = 2, w = 2.00 m, ε = 0.10 m, and
c0,L,max = 6 m. The time for the first detection of an obstacle, tTTCini

, is
again considered with the related longitudinal distance to the obstacle at the
first detection event according to Eq. (5.1). The trajectory parameter set is
listed in Table 5.10 with variations in the absolute acceleration limits.

In contrast to ST-Planner and P-Planner, the simulation of rP-Planner is
already performed on a dSPACE MicroAutoBox II of type 1401/1511/1512
[15] which is the target hardware for the subsequent vehicle test imple-
mentation. It shall facilitate realistic and reliable insights to the real-time
capabilities. The approach is implemented in Matlab/Simulink® using the
Nlopt optimization package [32]. The COBYLA [53] algorithm is used to
solve the nonlinear optimization problem.
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Approach ST-Planner rP-Planner

amax [m/s2] [7.50 8.655 9.81]

κmax [1/m] 0.04

ȧx,max [m/s3] 20.00

ȧy,max [m/s3] 15.00

δ̇max [°/s] 9

N + M 20 + 20

H 5

Table 5.10: Trajectory parameter set for ST-Planner and rP-Planner. Varia-
tion of the absolute acceleration limit amax. Limits for curvature κmax, lon-
gitudinal and lateral jerk, ȧx,max and ȧy,max, and steering rate δ̇max. N + M
and H are the number of samples used for the trajectory.

For the comparison of the approaches, only feasible solutions with tTLME ≥
0 are considered. For rP-Planner, 10 out of 108 test cases reveal an infea-
sible solution whereas ST-Planner succeeds to find a feasible solution in all
108 test cases. These 10 infeasible cases are removed from the sample set
to ensure reliable comparison. Further analyses yield the cause for the 10
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tTLME

ST-Planner rP-Planner

Median=
0.93 s

Median=
0.80 s

Figure 5.4: Simulation results of ST-Planner and rP-Planner comparing the
time to last maneuver execution tTLME.
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5.3 Comparison of rP-Planner with ST-Planner

Approach ST-Planner rP-Planner

t̄TLME [s] 0.93 0.80

t̄P [s] 0.95 1.13

t̄F [s] 2.19 3.13

Table 5.11: Simulation results for ST-Planner and rP-Planner, comparing
mean values of the time to last maneuver execution tTLME, passing time tP
and maneuver duration tF.

infeasible cases, originating from a too narrow lateral distance between the
obstacle and the road boundary.

The simulation results are shown in Fig. 5.4. All values of time to last
maneuver execution, tTLME, for ST-Planner and P-Planner are collected in
the corresponding box plots. Table 5.11 shows the achieved medians values
of the trajectories’ time to last maneuver execution t̄TLME, passing time t̄P,
and maneuver duration t̄F for the set of feasible solutions. The characteris-
tic median values differ significantly between both approaches. The t̄TLME

of ST-Planner is higher with a value of t̄TLME = 0.93 s compared to the
rP-Planner with t̄TLME = 0.80 s, which is a total difference of 0.13 s. This
indicates that the trajectories generated with ST-Planner enable an execution
of a latest possible evasive maneuver in average 0.13 s later than the trajec-
tories generated by the rP-Planner. Passing time t̄P and maneuver duration
t̄F are reached earlier for the trajectories of ST-Planner.

Both planning approaches show the potential of handling variations in the
scenery. Overall, ST-Planner is more robust in scene variations, whereas
rP-Planner sometimes finds an infeasible solution. ST-Planner outperforms
rP-Planner in its temporal behavior. In average, the model-based planning
approach finds last-possible trajectories that can be executed at a later mo-
ment than the parametric trajectories. However, good results are achieved
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Approach rP-Planner

amax [m/s2] 9.81

κmax [1/m] 0.04

ȧx,max [m/s3] 20.00

ȧy,max [m/s3] 15.00

H 5

Table 5.12: Trajectory parameter set of rP-Planner. Limits for absolute
acceleration amax, curvature κmax, longitudinal and lateral jerk, ȧx,max and
ȧy,max. H is the amount of trajectory samples.

with rP-Planner, though a reduced scenery set can be covered. This signifi-
cant difference in the temporal behavior of rP-Planner owes to the trajectory
approximation and the inclusion of the heuristic sampling approach, which
on the other hand offers a reduced computational complexity.

Consideration of the average worst-case execution time for computing a sin-
gle trajectory, ST-Planner terminates after 10.00 s, whereas the implemen-
tation of rP-Planner has a worst-case execution time of less than 50 ms.The
potential of an efficient implementation and the real-time capabilities of
the proposed approach is verified with the achieved low average worst-case
execution time.

5.4 Risk indication capabilities

As described in the previous section, rP-Planner shows good potential to ful-
fill the functional requirements for a collision avoidance trajectory planner
while being efficient for a potential integration in an in-vehicle application.
In this section the thread assessment capabilities of the trajectory planning
approach are investigated and shown exemplarily for the rP-Planner. The
same test scenarios as before will be applied with different parameters being
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5.4 Risk indication capabilities

Approach rP-Planner

xObj(k) [m] vx(0|k) · tTTCini

yObj(k) [m] 0.00

wObj(k) [m] 2.00

vx(0|k) [km/h] 70.00

tTTCini
[s] [2 . . . 0]

c0,L(k) [m] 5.00

c0,R(k) [m] −1.50

Table 5.13: Scene parameter set of rP-Planner. Initial speed, vx(0|k),
and lateral object position, yObj(k), varied longitudinal object position,
xObj(k), and the corresponding initial time to collision. tTTCini

, left and
right lateral margin, c0,L(k) and c0,R(k).

permuted. The scene and trajectory parameter sets are listed in Table 5.12
and Table 5.13, respectively.

An imminent collision shall be simulated where no action is taken to avoid
the collision of the ego-vehicle with the obstacle ahead. To simulate the
continuing rapprochement of the ego-vehicle towards the obstacle, the vir-
tual time for the first detection of an obstacle tTTCini is varied in descending
order. The collision event emerges when tTTCini reaches zero.

The simulation results are shown in Fig. 5.5. The upper plot shows the
descending time to collision tTTC and the lower one shows the time to last
maneuver execution tTLME of the successively planned trajectory. The ver-
tical dotted line indicates the time when the time to last maneuver execution
tTLME drops below zero.

At the start of the simulation (tTTCini
= 2.00 s), the situation is uncritical

and a collision avoidance trajectory is successfully found with a sufficient
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5 Simulation results

time until the maneuver has to be executed (tTLME = 0.93 s). While the
time to collision, tTTC, decreases monotonically and, hence, the longitudi-
nal distance to the obstacle decreases, the situation becomes more and more
critical since tTLME decreases. At t = 2.00 s, the value of the time to last
maneuver execution changes its sign from positive to negative with a corre-
sponding time to collision of tTTC = 1.00 s. When this moment has been
reached, no further collision avoidance trajectory can be found.

The proposed approaches provide trajectories that enable a latest possi-
ble evasive maneuver strategy for a set of given constraints while indicating
situations when no collision-free trajectories can be found. The risk crite-
ria supported by the approaches contributes to system design for decision-
making modules.

0 0.5 1 1.5 2 2.5 3

−1

0

1

t [s]

t T
L
M

E
[s

]

0

1

2

t T
T
C

[s
]

Figure 5.5: Simulation results generated with rP-Planner illustrating the
risk assessment capabilities of the proposed approaches. The upper plot
shows the descending tTTC and the lower plot shows the tTLME of the suc-
cessively planned trajectory
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6 Vehicle Test Results

In the previous chapter, the trajectory planning approaches were analyzed
using a simulation environment for characteristic scenarios. The evaluation
supports the assumption, that the rP-Planner is suitable fo a real-time ap-
plication while providing trajectories with high quality, which are close to
optimal trajectories achieved with the Single-Track Model Trajectory Plan-
ner (ST-Planner). In this chapter, the implementation of the reduced Poly-
nomial Trajectory Planner (rP-Planner) in the test vehicle shall be described
and the performance of the approach in real test scenarios shall be inves-
tigated. The achieved simulation results with regard to the last possible

Figure 6.1: Automated collision avoidance maneuver performed in a test
vehicle

97



6 Vehicle Test Results

maneuver execution time shall be verified. The system is tested in the traffic
scenarios described in Section 4.4.2, with a maximum speed of 70 km/h

and a limited lateral maneuver space typical for city traffic. Fig. 6.1 shows
the test vehicle performing an evasive maneuver for a scenario defined in
Use case 3 (4.4.2).

6.1 Experimental setup

This section describes the hardware and software implementation utilized in
the test vehicle.

6.1.1 Hardware setup

As integration vehicle, a model-year 2014 Opel Insignia 5-door sedan is
used with a 2.0L ECOTEC direct injection turbo engine, 6-Speed automatic
transmission, and all-wheel-drive.

An overview of the hardware implementation is given in Fig. 6.2.
A dSPACE® MicroAutoBox II of type 1401/1511/1512 [15] is used as
Electronic Control Unit (ECU), hosting the collision avoidance system. For
all other required components, series and near-production hardware is used.
The on-board steering and braking systems are triggered via Controller Area
Network (CAN).

A near-production object sensor system is used to observe the environ-
ment. A combination of camera and radar system is used to observe the
area ahead of the ego-vehicle. At the rear corners of the ego-vehicle, two
radar sensors are mounted to observe both rearward and side traffic area.
The object sensor system provides fused environment information, which
is transfered to the MicroAutoBox via Ethernet using a UDP/IP protocol.
The provided environment information comprises object information, in-
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6.1 Experimental setup

cluding the object dimensions, position, and velocity, each relative to the
ego-vehicle. Detected objects are classified, where the system distinguishes
between vehicles, pedestrians, and bicycles. In addition, drivable area and
lane markings are provided.

Real-time kinematic information of the ego-vehicle, position, orientation,
and motion, are provided by a six degree of freedom Inertial Measurement
Unit (IMU) aided GPS. All relevant vehicle states are provided to the system
via CAN.

6.1.2 Software Setup

The collision avoidance system is implemented in Matlab®/Simulink® using
the dSPACE® Real-Time Interface (RTI) library accessing the MicroAuto-
Box II. Fig. 6.3 illustrates the algorithmic structure of the system.

Object Sensor BrakeSteering

Vehicle DataIMU / GPS

CPU

CAN Ethernet

CAN I/OEthernet I/O

MicroAutoBox II

Figure 6.2: Hardware structure for vehicle tests
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Trajectory Prediction

Collision Detection

Trajectory Planning

Control

Vehicle State Estimation

Vehicle

Vehicle Sensors

Actuators

Object Sensors

Environment

Environment Perception

Figure 6.3: Software structure of the Advanced Driver Assistance System
(ADAS)

The vehicle state estimation [72, 58], predicts the current vehicle states
on the basis of the vehicle sensors and provides the information to the en-
vironmental model, the trajectory planner, and the control module. The
environment perception model collects object sensor information and gen-
erates a model of the environment for the current scenery. Trajectories of
moving objects and of the ego-vehicle are predicted in the trajectory predic-
tion module. The predicted trajectories are placed into a grid map together
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6.2 Test setup

with stationary obstacles and road-boundaries [12]. The ego-vehicle trajec-
tory is permanently analyzed for a possible collision ahead with either the
road boundary or any objects, moving or stationary. If an imminent colli-
sion with an object is predicted, position and width of the object of interest
are sent to the trajectory planner. A detailed description of the environment
perception module can be found in [55].

With the information of environment perception and vehicle states esti-
mation, the trajectory planner searches for the latest possible evasive trajec-
tory. The evaluated trajectory including the estimated time to last maneuver
execution tTLME is sent to the control module, which triggers the vehi-
cle’s steering and brake actuators. For lateral control, a Model Predictive
Control (MPC) is applied, similar to [14]. The longitudinal trajectory is
controlled by the on-board brake control module.

6.2 Test setup

The collision avoidance system is tested in a prototypical implementation
under realistic conditions. The goal is to evaluate the proposed collision
avoidance system for characteristic traffic scenarios that can typically occur
within urban areas. The main focus is on sceneries where a suddenly ap-
pearing obstacle enters the driving lane of the ego-vehicle. Those scenarios
are selected with a short temporal distance between ego-vehicle and obsta-
cle, so that a braking maneuver would no longer avoid the collision. The
constellation of the traffic participants for the considered characteristic use
cases is described in Section 4.4.2. The collision avoidance system is tested
for these scenarios.

The parameter set of the trajectory planner is listed in Table 6.1. The
parameters are equal to those considered for the simulative tests of the
rP-Planner in Section 5.3. Except for lateral margins which are bounded,
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6 Vehicle Test Results

Approach rP-Planner

amax [m/s2] 9.81

κmax [1/m] 0.04

ȧx,max [m/s3] 20.00

ȧy,max [m/s3] 15.00

c0,L(k)max [m] 4.50

c0,R(k)min [m] −4.50

H 5

Table 6.1: Trajectory Parameter set of rP-Planner. Limits of absolute ac-
celeration amax, curvature κmax, longitudinal and lateral jerk, ȧx,max, and
ȧy,max. Limits of the lateral road margins, c0,L(k)max and c0,R(k)max. H is
the amount of trajectory samples.

covering the case where no margin is detected by the environment percep-
tion system.

6.3 Performance results

Four snapshots of relevant maneuver events are listed in the analysis plot,
see Fig. 6.4 for example.

From top to bottom, the first row shows the non-critical situation. The
second row shows the event when the critical object is detected for the first
time. The third row shows the event when the latest possible evasive trajec-
tory is executed. The forth row shows the end of the maneuver. Each event
corresponds to the scenery image in the left column. The scenery image is
augmented by the following Information:

• Detected critical objects are overlaid with a red bounding box.

• Detected non-critical objects are overlaid with a green bounding box.
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6.3 Performance results

• Left and right road boundaries are marked as blue lines.

• The current time stamp is shown in the lower-left corner of the scenery
image.

In the right column, the corresponding result of the trajectory planning al-
gorithm, comprising the trajectory, tTLME, and the related tTTC , is given.
The trajectories for each event are illustrated in the x-y plane. The plots
contain the planned trajectory, the determined road boundaries, c0,j(k), and
the predicted location and width of the obstacle. The inherent criticality of
tTLME has a color coding to highlight criticality. When the imminent col-
lision is avoidable, tTLME is greater zero and, hence, colored green. When
the imminent collision is unavoidable, tTLME is less than or equal to zero
and, hence, colored red.

Besides the event-based analysis of the use cases, the temporal chronol-
ogy of tTTC and tTLME for each use case is additionally analyzed (see
Fig. 6.5 as example). The upper plot shows the tTTC over time whereas
the lower plot shows the successively calculated tTLME. The vertical dotted
lines indicate the corresponding events.

For the time period between start of the evasive maneuver and maneuver
end, the executed trajectory is illustrated. The upper plot shows the ex-
ecuted trajectory in the x-y plane. The trajectory with the corresponding
ego-vehicle shape and additionally, road boundary and obstacle are shown.
On the left side, from top to bottom, velocity, longitudinal acceleration, and
jerk over time are shown. On the right, curvature, lateral acceleration, and
jerk over time are shown. The corresponding constraints, as listed in Ta-
ble 6.1, are given as dotted black lines.

A detailed description of the use case analysis is given exemplary for use
case one.
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Use case 1
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Figure 6.4: Relevant scenery events of use case 1. Left column shows the
scenery image from the on-board perspective out of the ego-vehicle with
overlays, right column shows the corresponding results of the trajectory
planner.
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Use case 1
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Figure 6.5: Temporal chronology of tTTC and tTLME and corresponding
executed trajectory with relevant measures for use case 1.
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Use case 2
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Figure 6.6: Relevant scenery events of use case 2. Left column shows the
scenery image from the on-board perspective out of the ego-vehicle with
overlays, right column shows the corresponding results of the trajectory
planner.
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Use case 2
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Figure 6.7: Temporal chronology of tTTC and tTLME and corresponding
executed trajectory with relevant measures for use case 2.
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Use case 3
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Figure 6.8: Relevant scenery events of use case 3. Left column shows the
scenery image from the on-board perspective out of the ego-vehicle with
overlays, right column shows the corresponding results of the trajectory
planner.
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Use case 3

0.5
1

1.5
2

2.5
t T

T
C

[s
]

132 133 134 135 136 137
0

0.2

0.4

t T
L
M

E
[s

]

0 5 10 15 20 25 30

−4
−2
0

sx [m]

s y

0

10

20

v
[m
/s

]

−0.04

0

0.04

κ
[1
/
m

]

−10

0

10

a
y

[m
/s

2
]

−10

−5

0

a
x

[m
/
s2

]

0 1 2 3
−20

0

20

t [s]

ȧ
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Figure 6.9: Temporal chronology of tTTC and tTLME and corresponding
executed trajectory with relevant measures for use case 3.
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Use case 1

The events of the scenery are depicted in Fig. 6.4, the chronology of tTTC,
tTLME, and the executed latest possible trajectory are illustrated in Fig. 6.5.
Next, the relevant events of the scenery are described in detail:

440.50 s The ego-vehicle follows a leading vehicle with a speed of 15 m/s

while keeping a constant distance to it. Road boundaries are detected.
The vehicle ahead is classified as an uncritical object, hence, marked
with a green bounding box. No evasive trajectory is planned, tTTC

and tTLME are infinite indicating an uncritical situation.

442.05 s The leading vehicle suddenly evades an obstacle by moving to
the left. The critical object is detected ahead and marked with a red
bounding box. An evasive trajectory is found for the actual situation.
The found trajectory intends an evasion to the left to avoid the immi-
nent collision with the obstacle. The actual tTLME is greater than zero
with tTLME = 0.25 s, thus, colored green. The corresponding time to
collision is tTTC = 1.42 s. On the basis of the evaluated tTLME for
the actual event, an execution of the planned trajectory is postponed
and the situation is further observed.

442.28 s The leading vehicle has successfully evaded the obstacle. The
ego-vehicle’s distance to the obstacle has decreased further. The sit-
uation is re-evaluated and the collision avoidance trajectory is re-
planned. The actual tTLME equals zero, which demands an imminent
execution of the maneuver. The corresponding time to collision is
tTTC = 1.22 s. The planned trajectory is released to the control unit
and the collision avoidance maneuver is executed.

444.51 s The collision has been avoided. No further critical object is de-
tected in the driving path, indicated by tTTC and tTLME being infinite.
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6.4 Robustness results

The two subsequent use cases are analyzed in an analogous way. Test re-
sults for use cases 2 and 3 with the events of the scenery are illustrated in
Fig. 6.6 and Fig. 6.8, the chronology of tTTC, tTLME, and the executed
latest possible trajectory are illustrated in Fig. 6.7 and Fig. 6.9 for use case
2 and 3, respectively.

The temporal behavior of the use cases shall be considered jointly. With
the first detection of the critical obstacle, tTTC and tTLME start to decrease
monotonously until tTLME is zero. The time between the first detection of
the critical obstacle to the execution of the latest possible evasive trajectory
is noticeably small for the considered use cases with a typical duration be-
low 500 ms. For the period between maneuver execution and maneuver end,
tTTC and tTLME remain infinite.

All planned and executed trajectories stay within the constraint set. The
limits of steering actuator (lateral jerk) and curvature are reached for all test
cases. The lateral jerk limits are reached in the middle of the trajectory.
The curvature limits are reached after the obstacle is evaded. The maximum
reached acceleration levels are below limits within a typical range of 5 m/s2

to 7 m/s2.

6.4 Robustness results

The executed vehicle test demonstrates the successful integration of the pro-
posed trajectory planning approach in an ADAS for collision avoidance.
The approach’s applicability and robustness towards the handling of chang-
ing conditions could be verified. The vehicle test corroborates successful
collision avoidance in all test cases while complying with constraints and
satisfying all given requirements. The following paragraph shall verify the
simulative results of the parameter study of Section 5.3 with focus on the
time to last maneuver execution, tTLME.
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Approach rP-Planner

xObj(k) [m] vx(0|k) · tTTCini

yObj(k) [m] 0.50

wObj(k) [m] 2.00

vx(0|k) [km/h] [50 70]

tTTCini
[s] 2.00

c0,L(k) [m] 5.00

c0,R(k) [m] −1.50

Table 6.2: Scene parameter set of rP-Planner planner for in vehicle test. The
obstacle’s coordinates relative to the ego-vehicle with longitudinal distance
xObj(k), lateral coordinate yObj(k), and width of the obstacle wObj(k).
Variation of initial speed vx(0|k). First detection time of the obstacle
tTTCini

, and left and right lateral margin, c0,L(k) and c0,R(k).

The verification run is performed by vehicle tests of the ADAS for col-
lision avoidance discussed in the previous section. The vehicle tests are
executed on a proving ground, where the previously simulated traffic sce-
nario is recreated. The ego-vehicle is traveling towards a stationary obsta-
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Figure 6.10: Test results of n = 6 collision avoidance maneuvers, evaluat-
ing the time to last maneuver execution tTLME of the rP-Planner.
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Approach rP-Planner

amax [m/s2] 9.81

κmax [1/m] 0.04

ȧx,max [m/s3] 20.00

ȧy,max [m/s3] 15.00

H 5

Table 6.3: Trajectory parameter set of rP-Planner for vehicle test. Limits
for absolute acceleration amax, curvature κmax, and longitudinal and lateral
jerk, ȧx,max and ȧy,max, respectively. H is the number of samples used for
optimization.

cle, the drivable area is bounded with a left margin of 4.50 m and a right
margin of −1.50 m. The parameter set defining the scenery is collected in
Table 6.2. With this scenario, only evasive maneuvers to the left are fea-
sible. The initial velocity of the vehicle, vx(0|k), is varied within a range
of [50 km/h . . . 70 km/h]. The parameters of the trajectory planner are as
provided in Table 6.3. Discarding the influence of the object sensor system
with regard to first object detections, the virtual first detection of an obstacle
is again assumed to be at tTTCini

= 2.00 s. This provides a baseline for the
comparison of the time to last maneuver execution, which will be calculated
relative to this virtual first object detection time.

Six test runs are considered for the evaluation of tTLME. In all test rides,
a collision of the ego-vehicle with the obstacle is successfully avoided.
The time to last maneuver execution, tTLME, of the vehicle is shown in
Fig. 6.10. The median of the time to last maneuver execution, t̃TLME, for
the test drives is t̃TLME = 0.82 s. The simulation results of the time to last
maneuver execution t̃TLME of Section 5.3 was t̃TLME = 0.80 s. The vehicle
test discussed here could verify the consistency of the rP-Planner with the
simulation results.
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6.5 Summary

The planning approach was successfully integrated into a comprehensive
ADAS for collision avoidance in urban traffic situations. The tested char-
acteristic use cases proved that the planning approach delivers trajectories
for the latest point in time that are dynamically feasible. The robustness of
the proposed method against changing conditions in the environment was
successfully verified in the vehicle test. During the test runs and beyond, all
planned and executed trajectories stayed within the constraint set. The con-
straining borderline of the steering actuator and the curvature were reached
for all test cases. The constraining borderline of the curvature was reached
when the ego-vehicle was turning back after the obstacle has been evaded.
These results, utilizing the proposed rP-Planner, are an indication that the
latest possible evasive maneuvers is found.

Moreover, it could be verified that the last maneuver execution time of
the in-vehicle test are consistent with the simulation results received by the
rP-Planner. Also test in bad weather conditions lead to reasonable results,
which confirms the robustness of the method. The on-board actuators could
be identified as limiting factors during the vehicle test, especially within the
typical velocity range of urban areas and in narrow roads. The actuator lim-
its were reached right before the acceleration limit. Also the limited lateral
maneuver space, typical in urban areas, influenced the accessibility of the
maximum acceleration. For the characteristic use cases, a rapid change of
direction seems to be more crucial than reaching the maximum acceleration.
This is further supported by the use case investigation where the maximum
steering jerk was always reached in the middle of the trajectory, which is
exactly the counter steering point.
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Conclusion

A comprehensive trajectory planning method as functional component of
an Advanced Driver Assistance System (ADAS) for automated collision
avoidance systems in urban traffic was developed. Urban traffic presents
challenging environment conditions, like narrow roads or vehicles parking
aside the road, and as such demand special considerations to plan collision
avoidance trajectories. To solve the trajectory planning problem for these
situations the principle of optimization was considered.

Three optimal trajectory planners were covered in this work. The kine-
matic and dynamic characteristic of the underlying vehicle dynamics were
considered in the trajectories including the physical limits of the brake and
steering actuators. In the trajectory design the available maneuver space
and arbitrary objects were considered in order to be robust against use case
variations, e.g., evasion to the left or to the right, available maneuver space,
or object width. The first approach, a model-based trajectory planner, could
be successfully applied to find optimal, dynamically feasible trajectories for
the given set of constraints and boundary conditions. The second approach
approximates the dynamic model by polynomial trajectories with a mar-
ginal performance reduction. The third approach, extending the parametric
trajectories with a heuristic sampling strategy, and as a result opens up the
potential for real-time implementation.
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The objective to implement an integrated risk assessment mechanism prior
to maneuver initiation could be achieved. Each situation is assessed and
the optimal moment for the execution of the latest possible collision-free
evasive trajectory is successively evaluated. Moreover, the mechanism is
capable of indicating situations where no collision-free trajectories are fea-
sible. This mechanism benefits from the chosen cost functional leading to a
risk criteria that may serve as input to a decision logic.

The developed approaches were assessed and compared in a simulative en-
vironment. It was verified that all approaches provide collision avoidance
trajectories that are dynamically feasible and enable an intervention at the
latest possible moment. The trajectory approximation by polynomials pro-
vide reliable results with marginal degradation in performance. To evaluate
system performance and real-time capabilities of the developed approaches,
the reduced Polynomial Trajectory Planner was integrated into a compre-
hensive Advanced Driver Assistance System for collision avoidance. This
ADAS was successfully demonstrated on a prototypical implementation in
an experimental vehicle. The robustness towards changing conditions and
the practicality of the proposed approach could be successfully verified in
the demonstration.

Outlook

As one results of the vehicle test, the actuators reveal to be the decisive lim-
itation factor for automated evasive maneuvers. To broaden the potential of
automated collision avoidance and further gain the coverable use cases the
investigation in improved actuator concepts appears most promising. How-
ever the approaches presented in this work were designed such that they can
cope with any kind of actuator limits. The proposed trajectory planning ap-
proaches imply more versatility than the application of automated braking
only. The presented optimization problem is capable of achieving any kind
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of lane change maneuvers. The maneuver characteristics are prescribed by
the set of constraints and the corresponding limitations. Modifying the limi-
tations enables further options in the design of characteristic maneuvers. For
example, comfortable lane-change maneuvers can be generated by lowering
the maximum levels of the dynamic constraints. Adjusting the constraints
to application specific requirements opens even more versatile maneuver
possibilities.

The greatest challenge in trajectory planning is to achieve the given real-
time requirements, especially when a nonlinear optimization problem is to
be solved. One solution to resolve this issue was successfully developed and
verified in this work. In order to enable more complex trajectory planners
further development and investigations in nonlinear solvers and there imple-
mentation on production-type Electronic Control Units (ECUs) is required.
Investigation in the field of parallel computing or computing on a graphic
chip will even provide more computational efficiency to solve nonlinear op-
timization problems.

The relevance of automated collision systems will continuously increase,
considering the ongoing developments in the field of automated driving.
The approach presented here contributes to these upcoming developments
and presents an scalable solution for systems of varying complexity.
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