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Abstract
Accuracy-aware computing provides a new opportunity to tune systems towards given
design goals. This methodology uses quality of result (QoR) as an additional design
parameter to improve the values of conventional goals. Traditionally, computer systems
are designed by finding a compromise among conflicting design goals, such as perfor-
mance and energy consumption. With accuracy-aware computing, such a compromise
is determined by accounting for the QoR of internal and external results.

QoR as a design parameter raises the question of how accurate results must be to
fulfill their planned purpose. Famous domain-specific approximation examples include
the MP3 audio coding format and IEEE-754 floating-point operations. Compared to ex-
isting approximation methods, accuracy-aware computing allows for a certain degree of
approximation, which is a desired design parameter, and is not a compelling necessity
to solve problems like NP-hard ones. Furthermore, accuracy-aware methods are not
domain-specific.

Accuracy-aware computing can be divided into approximate computing (AC) and
high-precision arithmetic (HPA). Applications such as image processing, recognition,
mining, and synthesis (RMS), machine learning, and data analysis can benefit from AC.
In contrast to AC, HPA provides benefits for other domains such as numerics in minimiz-
ing the effect of numerical instabilities caused by computational errors.

The corresponding research question of this thesis is: How can we design and tune
accuracy-aware applications running on existing computer systems? This requires a
holistic approach using a unified manner to combine accuracy-aware methods. Select-
ing approaches from a single system layer ignores substantial potential benefits but is
quite common in literature. It is inevitable that a holistic approach uses the existing
accuracy-aware and conventional capabilities of computer systems. This thesis also
investigates remaining potential benefits at hardware level regarding accuracy-aware
computing. Therefore, an essential aspect of this work is to select, combine, and tune
accuracy-aware methods from different layers (a vertical view) to maximize gains for an
application executed on the system. However, this dramatically increases the configura-
tion space consisting of all possible combinations and parameter settings of accuracy-
aware methods. Hence, a vertical view increases the complexity of finding appropriate
configurations for given design goals and constraints, which is aggravated by the fact
that these configurations often must be extracted during runtime to adapt to a certain
situation. The rationale ist that design-time decisions may lead to conservative gains.
Therefore, the research aim of this thesis is to present a general, holistic approach to re-
alize an accuracy-aware system. An additional main objective is to increase the scope of
accuracy-aware computing, which is an important step to ensuring that accuracy-aware
computing gains broad acceptance in the research community.

In this thesis, I propose an innovative adaptive accuracy-aware approach across sys-
tem layers. This includes a methodology for system designers to realize accuracy-aware



systems. On this theme, a main aspect of this thesis is investigating methods for a con-
figuration layer to deploy and tune accuracy-aware methods. My approach proposes a
tuning mechanism that tunes accuracy-aware methods on a software layer, architecture
layer, and hardware layer. A layer can include different layers; for instance, the software
layer consists of a task, an algorithmic, and a data layer. For this thesis, I develop in-
novative accuracy-aware methods for a number of applications to increase the scope of
accuracy-aware computing. Accuracy awareness is beneficial for these applications but
has not been considered. Moreover, these methods located on three different layers can
be applied to other domains than the one for which they are designed.

On the hardware layer, this thesis considers converting data before transferring it to
memory, which is useful for algorithms working with floating-point values (for instance,
image processing) and leads to energy savings and an overhead reduction for transfers
while providing a higher accuracy compared to a native execution on a smaller data type.

On the hardware architecture layer, I propose a set of AC-based design patterns
(ACPs) that help developers implement designs for accelerators. These patterns target
dynamic programming algorithms that pose high challenges for porting them to an ac-
celerator efficiently. A combination of an ACP-based accelerator and approximate data
compression further improves performance.

On the software layer, it is essential to have a generally applicable software-only
accuracy-aware method. Therefore, I introduce two novel methods in this thesis. One
is an innovative fuzzy memoization technique based on locality-sensitive hashes. The
goal of fuzzy memoization is to store function results within a table and use these re-
sults, when the function is called with similar inputs. Locality-sensitive hashes improve
the identification of results within the table and thus they improve the hit rate for the ta-
ble and provide a useful QoR. Furthermore, I employ contract algorithms in a new way
to enable a clear, fine-grain, and predictable correlation between required budget and
achievable QoR. When we vary the budget of these tasks, we also adapt the resulting
QoR. I present several methods to improve the performance of these algorithms and
provide best practices to transfer tasks into contract-based tasks.

On the configuration layer, it is important to design an approach that allows for con-
trolling the degree of internal and external QoR either by maximizing the QoR for the
available budget or by minimizing the required budget while achieving the desired QoR.
For the budget, this approach can use the execution time, energy consumption, and a
combination of both based on an energy delay product metric. The last option makes it
possible to deal with multiple objectives: execution time, consumed energy, and QoR.

Integrating accuracy-aware methods into a system results in a large configuration
space. In this space, efficient parameter settings for the various methods must be ex-
tracted during runtime to handle different inputs, system states, and constraints. To
reduce this effort, I present an approach that is divided into a design-time step and a
runtime mechanism. Additionally, I provide a hierarchical approach to further reduce the



number of considered configurations. Therefore, I consider suitable configurations per
task and combine this knowledge to extract global configurations. For this, my approach
generates merged performance profiles by accounting for integrated accuracy-aware
methods and other conventional tuning possibilities of the system such as dynamic volt-
age and frequency scaling (DVFS) or exploiting more cores. Using the local performance
profiles, my approach determines (near-)Pareto-optimal global configurations during de-
sign time, which are exploited during runtime. To integrate input awareness, my approach
uses the policy to adapt the approximation degree on a per-task level dynamically.

To conclude, accuracy-aware computing is a novel and promising methodology to
tune a system towards design goals. During design time, the methods or parameter
settings that best suit an application in a certain situation are often unpredictable. The
proposed adaptive accuracy-aware approach across system layers presents an innova-
tive methodology to realize dynamic accuracy-aware computer systems. This approach
reacts of changing situations during runtime by tuning the global configuration of the
system. These configurations offer better value than conventional application-dependent
tuning strategies for traditional design goals while having the same or less design effort.
The present thesis has the following novel contributions; it:

• Introduces a conversion unit that reduces the overhead of floating-point data trans-
fers. This unit exploits the memory more efficiently while providing a higher QoR
than performing an algorithm using precision scaling. Integrating this unit into a
RISC-V processor reduces the total dynamic energy consumption of a 2D fast
Fourier transformation by 2.5×.

• Proposes a set of AC-based design patterns that leads to the efficient use of het-
erogeneous units. These patterns reduce resource use and improve the perfor-
mance of kernels running on a heterogeneous hardware unit. Applying it to time
series analysis improves the classification time by up to 29.4× compared to com-
plex similarity measures (complexity class: O(n2)) while having a higher QoR than
measures lying in O(n).

• Outlines a general accuracy-aware software-only method based on contract al-
gorithms that can be applied to a wide variety of applications. Furthermore, it
presents a set of best practices to convert a task to a contract-based task. In
general, this method outperforms other accuracy-aware methods on the software
layer. For instance, this method only requires 30% of the baseline execution time
to provide good quality (signal-to-noise ratio of 20 db) for debayering.

• Provides a novel fuzzy memoization library. This library provides routines to intro-
duce fuzzy memoization into applications and different fuzzy memoization meth-
ods. For instance, the locality-sensitive hash method offers a high hit rate and high
visual quality for a JPEG benchmark.



• Investigates an adaptive tuning approach for applications that require HPA. While
the conclusion is that HPA is useful for certain applications such as the Lanczos
approach, numeric algorithms rely on domain expertise to provide better solutions.
Hence, an adaptive tuning approach for HPA cannot be usefully integrated into the
adaptive accuracy-aware approach proposed in this thesis.

• Combines accuracy-aware methods at different layers (a vertical view) for a novel
domain. Using these methods, the numerical Jacobi algorithm is accelerated by a
factor of 6 compared to a 32-threaded version while allowing a QoR of 90%.

• Proposes an innovative execution ordering algorithm for classifying objects within
an image. This algorithm orders the execution order of classification tasks so the
total information gain is highest after executing the next step of the task leading
the order. This algorithm makes it possible to stop the execution at any time and
receive an (approximate) classification result for each input.

• Provides an innovative adaptive accuracy-aware approach across system layers,
designed to

– combine and fine-tune accuracy-aware methods including the methods de-
signed for this thesis during runtime;

– has a vertical view;

– account for multiple conflicting design goals during runtime;

– provide input awareness regarding QoR during runtime;

– exploit conventional methods such as dynamic voltage and frequency scaling
and parallelization;

– allow a user to continue execution if the QoR is not sufficient;

– fine-tune the execution of several accuracy-aware applications; and

– be able to be applied to a real-time sensor-based sorting application. This
makes it possible to meet all deadlines, even under tight constraints and
accelerates the conventional application by a factor of 4 while keeping the
same QoR.



Zusammenfassung
Das Konzept der genauigkeitsbewussten Berechnung (engl.: accuracy-aware compu-
ting) stellt eine neuartige Lösung dar, um Systeme bezüglich vorgegebener Optimie-
rungsziele einstellen zu können. Diese Vorgehensweise betrachtet die Qualität der Er-
gebnisse (engl.: quality of result, QoR) als einen weiteren Entwurfsparameter. Während
des herkömmlichen Entwurfs von Computersystemen muss ein Kompromiss zwischen
sich ausschließenden Entwurfszielen gefunden werden. Zu diesen Zielen zählen die
Leistungsfähigkeit und der Energieverbrauch. Unter Zuhilfenahme der genauigkeitsbe-
wussten Berechnung wird für einen Kompromiss auch die benötigte Qualität der inter-
nen und externen Ergebnisse berücksichtigt. Somit stellt sich beim Entwurf die Frage,
wie hoch die Qualität der Ergebnisse sein muss, um eine gewünschte Aufgabe erfüllen
zu können.

Bekannte domänenspezische Methoden sind die MP3-Audiokodierung und der IEEE-
754 Standard für Gleitkommazahlen. Der Hauptunterschied zwischen existierenden Ap-
proximationsmethoden und dem Konzept der genauigkeitsbewussten Berechnung ist die
ausdrückliche Berücksichtigung des Approximationsgrades auf allen Ebenen des Sys-
tems. Darüber hinaus sind genauigkeitsbewusste Methoden nicht auf einzelne Anwen-
dungsbereiche beschränkt. Das Konzept der genauigkeitsbewussten Berechnung kann
in die Bereiche approximative (engl.: approximate computing) und exaktere Berechnung
(engl.: high-precision arithmetic) eingeteilt werden. Anwendungen aus dem Bereich Bild-
verarbeitung, Maschinelles Lernen oder der Datenanalyse profitieren von approximati-
ven Berechnungen. Gewisse Anwendungen aus dem Bereich des wissenschaftlichen
Rechnens benötigen hingegen eine erhöhte Präzision, um den Einfluss von Berech-
nungsfehlern zu minimieren.

Die zentrale Frage der vorliegenden Dissertation ist: Wie können genauigkeitsbe-
wusste Systeme entworfen und entsprechend zur Laufzeit eingestellt werden? Eine ge-
eignete Lösung benötigt einen allumfassenden Ansatz, der eine Möglichkeit darstellt, um
genauigkeitsbewusste Methoden miteinander kombinieren zu können. Die Berücksichti-
gung von nur einer einzigen Systemebene lässt vorhandenes Potenzial von Anwendun-
gen, die Approximation tolerieren können, ungenützt. Der zu entwickelnde Ansatz nützt
idealerweise die Fähigkeiten der verfügbaren genauigkeitsbewussten und konventionel-
len Methoden der Hardware. Zudem wird in dieser Dissertation verbleibendes Potenzial
der genauigkeitsbewussten Berechnung auf Hardwareebene untersucht und ausgenutzt.
Ein bedeutender Aspekt für diese Dissertation ist die Auswahl, die Kombination und die
richtige Einstellung von Methoden unterschiedlicher Systemebenen, um den höchsten
Gewinn für eine Anwendung bezogen auf die Optimierungsziele zu erhalten. Dies stellt
eine vertikale Sichtweise dar. Jedoch bedeutet diese Sichtweise eine deutlich erhöhte
Komplexität für die Identifikation geeigneter Konfigurationen bezogen auf vorhandene
Entwurfsziele und Zwangsbedingungen. Erschwerend kommt hinzu, dass idealerweise



Konfigurationen zur Laufzeit gefunden werden sollten, insbesondere, wenn das Sys-
temverhalten nicht zur Entwurfszeit genau bestimmt werden kann. Daher ist das For-
schungsziel dieser Dissertation der Entwurf eines generellen und allumfassenden An-
satzes für die Realisierung eines genauigkeitsbewussten Systems. Ein weiteres Ziel ist
die Ausdehnung des Anwendungsbereiches des Konzepts der genauigkeitsbewussten
Berechnung. Dies stellt einen essenziellen Schritt dar, um die Akzeptanz dieses Kon-
zeptes in der Forschungscommunity zu vergrößern.

In der vorliegenden Dissertation wird ein neuartiger, innovativer und adaptiver ge-
nauigkeitsbewusster Ansatz präsentiert, der über Systemebenen hinweg agiert. Dies
beinhaltet eine innovative Vorgehensweise für Systementwickler für die Realisierung von
genauigkeitsbewussten Systemen. Hierfür ist ein Hauptbestandteil die Erforschung von
Lösungen, die es ermöglichen genauigkeitsbewusste Methoden anhand bestehender
Anforderungen entsprechend zu nutzen und einzustellen. Die gefundenen Lösungen
werden in eine Konfigurationsschicht (engl.: configuration layer) integriert. Der entwickel-
te Ansatz stellt einen Tuningmechanismus bereit, der genauigkeitsbewusste Methoden
für eine bestimmte Anwendung entsprechend einstellt. Hierfür werden Methoden auf
der Softwareebene, der Architekturebene, und der Hardwareebene betrachtet. Zu be-
achten ist, dass eine Ebene wiederum unterteilt sein kann. Beispielsweise besteht die
Softwareebene aus einer Task-, Algorithmen- und Datenebene. Zudem werden für diese
Dissertation innovative genauigkeitsbewusste Methoden für neue Anwendungsgebiete
entwickelt. Es zeigt sich, dass für Anwendungen dieser neuen Gebiete der Einsatz des
Konzepts der genauigkeitsbewussten Berechnung nützlich ist. Diese entwickelten Me-
thoden erlauben auch die Anwendung für andere Domänen.

Auf der Hardwareebene wird eine Methode eingeführt, die Gleitkommazahlen vor
dem Transfer in einen Speicher so approximiert, dass der Transferaufwand und der be-
nötigte Speicherplatz reduziert werden. Dadurch kann die benötigte Energie der Aus-
führung verringert werden. Des Weiteren wird eine höhere Genauigkeit der Ergebnisse
gegenüber einer nativen Ausführung mit einem kleineren Datentyp erreicht. Diese Me-
thode ist insbesondere für gewisse Bildverarbeitungsalgorithmen sinnvoll.

Auf der Hardware-Architekturebene werden Entwurfsmuster identifiziert, mithilfe derer
effizientere Beschleuniger realisierbar sind. Algorithmen basierend auf der dynamischen
Programmierung lassen sich dadurch effizient auf Hardwarearchitekturen wie Field-pro-
grammable Gate Arrays (FPGAs) portieren. Diese Methode lässt sich mit einer approxi-
mativen Datenkompression kombinieren, um die Leistungsfähigkeit weiter zu steigern.

Auf der Softwareebene ist es essenziell eine generell anwendbare genauigkeitsbe-
wusste Methode zu haben. Daher werden zwei neue Methoden entwickelt. Zum einen
eine Methode für die unscharfe Memoisation, die das Konzept der Locality-sensitive Has-
hes ausnützt. Die unscharfe Memoisation nützt zwischengespeicherte Ergebnisse von
Funktionen aus, die mit ähnlichen Eingaben berechnet wurden. Mittels Locality-sensitive
Hashes lässt sich die Identifikation ähnlicher Ergebnisse in der Memoisationstabelle ver-



bessern. Somit wird neben der erhöhten Trefferrate von Ergebnissen auch der Qualitäts-
verlust (QoR) verbessert. Zum anderen wird eine Methode eingeführt, die das Konzept
der Vertragsalgorithmen in einer neuen Art und Weise ausnutzt. Diese Methode erlaubt
es, einen feingranularen Zusammenhang zwischen Berechnungsaufwand und erreich-
barem Qualitätsverlust (QoR) zu ermitteln. Somit kann mittels eines vorgegebenen, er-
laubten Berechnungsaufwand der Qualitätsverlust eingestellt werden. Es wird eine Reihe
von Verbesserungen für das Konzept der Vertragsalgorithmen gezeigt. Zudem werden
bewährte Verfahren für die Realisierung von vertragsbasierten Tasks vorgestellt.

Für die Konfigurationsschicht ist es essenziell, einen Ansatz zu entwickeln, der mit
folgenden Szenarien umgehen kann. Das erste Szenario bedingt die Maximierung des
QoR bei vorgegebenem Budget. Zweitens wird das benötigte Budget minimiert, sodass
ein gewünschter QoR erreicht wird. Der vorgestellte Ansatz erlaubt es, die Ausführungs-
zeit, die verbrauchte Energie oder eine Kombination aus beidem als Budget zu verwen-
den. Letzteres wird über die Verwendung eines Energie-Verzögerungs-Produkts (engl.:
energy delay product) realisiert. Somit können mehrere Entwurfsziele, Ausführungszeit,
verbrauchte Energie und QoR, gleichzeitig berücksichtigt werden.

Wie bereits erwähnt führt die Integration mehrerer genauigkeitsbewusster Methoden,
die jeweils (mehrere) Parameter besitzen, zu einem großen Konfigurationsraum. Es ist
zentral, gute Konfigurationen zur Laufzeit in diesem Raum zu finden, sodass auf ver-
schiedene Eingaben, Systemzustände und Randbedingungen geeignet reagiert werden
kann. Um diese Komplexität deutlich zu reduzieren, ist der vorgestellte Ansatz aufgeteilt
in einen Entwurfsschritt und in eine Logik, die zur Laufzeit die Steuerung übernimmt.
Des Weiteren wird ein hierarchischer Ansatz entwickelt, der eine weitere Reduktion der
zu betrachtenden Konfigurationen erreicht. Hierfür werden sinnvolle (lokale) Konfiguratio-
nen auf Taskebene ermittelt mit denen letztlich globale Konfigurationen ermittelt werden.
Zu diesem Zweck werden sogenannte fusionierte Leistungsprofile (engl.: merged perfor-
mance profiles) für eine Task erstellt. Für die Generierung dieser Profile werden sowohl
genauigkeitsbewusste Methoden als auch konventionelle Methoden wie Parallelisierung
und dynamische Spannungs- und Frequenzskalierung mit einbezogen. Ein Punkt in ei-
nem Profil repräsentiert eine (nahezu) Paretooptimale Konfiguration bezüglich dem QoR
und dem benötigten Budget. Diese lokalen Profile lassen sich ausnützen, um globale,
(nahezu) Paretooptimale Konfigurationen zur Entwurfszeit zu ermitteln. Die ermittelten
globalen Konfigurationen können sinnvoll zur Laufzeit eingesetzt werden. Eine Eingabe-
sensitivität wird dadurch erreicht, dass jeder Task den Approximationsgrad selbstständig
anhand von QoR-Vorgaben für die aktuelle Eingabe einstellen kann.

Zusammenfassend ist zu erwähnen, dass das innovative Konzept der genauigkeits-
bewussten Berechnung eine vielversprechende Möglichkeit darstellt, Systeme hinsicht-
lich Entwurfszielen einzustellen. Häufig ist zur Entwurfszeit nicht absehbar, welche Me-
thoden und Parametereinstellungen für eine bestimmte Situation am geeignetsten sind.
Daher bietet der in dieser Arbeit entwickelte adaptive, genauigkeitsbewusste Ansatz



über Systemebenen hinweg eine neue Vorgehensweise, um dynamische, genauigkeits-
bewusste Systeme zu realisieren. Mithilfe dieser innovativen Vorgehensweise können
sinnvolle globale Konfigurationen zur Laufzeit ermittelt werden. Die ermittelten Konfi-
gurationen führen zu besseren Werten für herkömmliche Entwurfsziele verglichen mit
konventionellen, zum Teil anwendungsabhängigen Tuningstrategien. Dabei ist der Ent-
wurfsaufwand gleich oder sogar geringer. Die vorliegende Dissertation beinhaltet die
folgenden neuen wissenschaftlichen Beiträge:

• Den Entwurf einer neuartigen Conversion Unit, die den Aufwand für den Daten-
transfer von Gleitkommawerten merklich reduziert. Dadurch wird erreicht, dass
der vorhandene Speicherplatz der höchsten Hierarchieebene (in der Regel L1
Cache) effizienter genutzt wird. Trotz der Reduzierung der Genauigkeit von Wer-
ten bei der Übertragung in diese Hierarchieebene wird eine höhere Genauigkeit
verglichen mit der Nutzung eines kleineren Datentyps für einen Algorithmus er-
reicht. Durch die Integration der Conversion Unit in einen RISC-V-Prozessor wird
eine Reduktion der dynamischen Energieaufnahme von 2,5 für eine schnelle 2D-
Fouriertransformation erreicht.

• Die Identifikation von Entwurfsmustern zur Realisierung von effizienten Beschleu-
nigern. Mithilfe dieser Muster kann ein Hardwareentwickler approximative Struk-
turen einführen, die eine Erhöhung der Leistungsfähigkeit mit sich bringen. Die
Anwendung der Muster führt zu einem geringen Ressourcenverbrauch und einer
höheren Leistung für Berechnungskernels, die auf heterogenen Einheiten ausge-
führt werden. Beispielsweise führt die Anwendung dieser Entwurfsmuster zu einer
Beschleunigung um den Faktor 29,4 für die Klassifikation von Zeitreihen. Diese Be-
schleunigung wird gegenüber einer Klassifikation mithilfe komplexer Distanzmaße
erreicht. Neben dieser massiven Beschleunigung wird eine Qualitätssteigerung
der Klassifikationsgenauigkeit gegenüber einfachen Distanzmaßen erreicht.

• Eine innovative Methode wird entwickelt, die einen generellen Einsatz von genau-
igkeitsbewussten Berechnungen auf Softwareebene ermöglicht. Diese Methode
basiert auf dem Konzept der Vertragsalgorithmen. Es wird eine Reihe bewährter
Verfahren zur Realisierung von vertragsbasierten Tasks vorgestellt. Im Allgemei-
nen bieten diese neuartigen Tasks eine bessere Lösung als die bekannten ge-
nauigkeitsbewussten Verfahren aus der Literatur. Dieser Lösungsansatz benötigt
beispielsweise nur ca. 30 % der Ausführungszeit eines konservativen Algorithmus,
um eine gute Qualität (Signal-Rausch-Verhältnis von 20 db) für den Benchmark
debayering zu erreichen.

• Eine neuartige Softwarebibliothek, um den Einsatz der unscharfen Memoisation
für Entwickler zu ermöglichen. Die Bibliothek stellt Softwareroutinen zur Verfü-
gung, die eine Integration der unscharfen Memoisation in bestehende Anwendun-
gen ermöglicht. Hierfür kann zwischen unterschiedlichen Memoisationmethoden



gewählt werden. Die entwickelte Methode basierend auf locality-senstive hashes
liefert eine gute visuelle Qualität auf den Ausgaben des JPEG Benchmarks. Dar-
über hinaus wird mit dieser Methode der Grad der Wiederverwendung von Ergeb-
nisse in der Memoisationtabelle erhöht.

• Die Untersuchung eines adaptiven Ansatzes für die Einstellung der Präzision von
Datentypen für Anwendungen, bei denen eine Erhöhung der Präzision genauere
Ergebnisse erbringt. Die Untersuchung führt zum Ergebnis, dass eine Erhöhung
der Präzision für das Lanczos-Verfahren sinnvoll ist. Jedoch wird Expertenwissen
benötigt, um den hohen Aufwand, der durch die erhöhte Präzision eingeführt wird,
deutlich zu reduzieren. Daher wird eine Erhöhung der Präzision nicht weiter für den
generellen, adaptiven genauigkeitsbewussten Ansatz, der für diese Dissertation
entwickelt wird, berücksichtigt.

• Eine Evaluation über das Potenzial der Kombination genauigkeitsbewusster Me-
thoden, die auf unterschiedlichen Schichten liegen. Diese Evaluation zeigt, dass
diese Kombination von Methoden nützlich ist. Insbesondere wurde dieses Poten-
zial auf einer Domäne betrachtet, auf der das Konzept der genauigkeitsbewussten
Berechnungen bisher nicht gründlich untersucht wurde. Mithilfe der Kombination
von Methoden lässt sich das Jacobi-Verfahren um den Faktor 6, gegenüber einer
konventionellen Methode, die auf 32 Kerne ausgeführt wird, beschleunigen, wenn
eine zehnprozentiger Qualitätsverlust akzeptiert wird.

• Ein innovativer Algorithmus zur Bestimmung der Ausführungsreihenfolge von Ob-
jektklassifikationen. Der Algorithmus ordnet die Ausführungsreihenfolge, so dass
der nächste Schritt das globale Wissen bezüglich der Klassifikationen am meis-
ten verbessert. Dieser Algorithmus ermöglicht es, dass zu jeder Zeit die Ausfüh-
rung unterbrochen werden kann (anytime algorithm) und für jede Klassifikation das
bestmögliche Wissen, das bis zu diesem Zeitpunkt möglich war, über die Art des
Objekts zurück gibt. Somit kann der Algorithmus auch bei variierenden Echtzeit-
bedingungen sinnvoll eingesetzt werden.

• Der Entwurf eines innovativen, neuartigen und adaptiven genauigkeitsbewussten
Ansatzes, der über Systemebenen hinweg agiert. Dieser Ansatz

– kombiniert genauigkeitsbewusste Methoden unterschiedlicher Ebenen mit-
einander und stellt die dazugehörigen Parameter sinnvoll ein,

– nutzt das Wissen aus, das vorherige Beiträge dieser Dissertation erzielten
und berücksichtigt die entwickelten genauigkeitsbewussten Methoden beim
Tuning,

– berücksichtigt mehrere, sich gegenseitig ausschließende Optimierungsziele
zur Laufzeit,



– berücksichtigt aktuelle Eingaben für die Steuerung des QoR zur Laufzeit,

– schöpft das Potenzial konventioneller Methoden wie DVFS und Parallelisier-
ung, aus,

– erlaubt Nutzern die Fortsetzung der Ausführung, um den QoR zu verbessern,

– stimmt die Ausführung mehrerer genauigkeitsbewusster Anwendungen ge-
meinsam ab,

– kann für eine echtzeitbasierte und sensorgestützte Sortieranwendung ver-
wendet werden. Durch den adaptiven Ansatz können feste Echtzeitbedin-
gungen eingehalten werden, auch wenn diese eng gefasst sind und eine
hohe Auslastung im System vorliegt. Zudem erreicht der Ansatz eine vier-
fache Beschleunigung der konventionellen Anwendung, ohne den QoR zu
beeinflussen.
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CHAPTER

ONE

INTRODUCTION

According to philosopher and logician Carveth Read “It is better to be vaguely right than
exactly wrong”. This quote is often misattributed to the economist John Maynard Keynes.
Similar to the existing uncertainty about the origin of this quote, there is uncertainty what
future computer systems and software will look like.

This uncertainty is caused by the end of Dennard Scaling [1]. Dennard Scaling en-
abled the efficient use of an increasing number of transistors in an area in line with
Moore’s Law [2]. Until that point, performance was increased per processor genera-
tion, an improvement mainly reached through frequency scaling. Thus, performance
improvement for applications occurred concurrently. In response to the end of the Den-
nard Scaling, hardware developers chose to conduct multicore scaling, but increasing
the number of cores per processor generation cannot continue arbitrarily [3, 4]. Addition-
ally, performance improvement only occurs for applications that provide a high degree of
parallelism, compare with Amdahl’s Law [5].

“Far better an approximate answer to the right question, which is often vague, than the
exact answer to the wrong question, which can always be made precise.” [John Turkey]
Transferred to computer systems, is it necessary to always calculate the best results?
Are there situations in which we should calculate a “good enough” result depending on
the actual purpose?

Accuracy-aware computing deals with these questions and offers a new opportunity
to tune a system towards given design goals by using the accuracy of results as an
additional design parameter. Computer systems are traditionally designed and tuned
by finding a compromise among conflicting design goals such as performance, energy
consumption, and real-time capability. Now, we also consider the accuracy of the results
while reaching this compromise, although we must differentiate between the quality of
result (QoR) and the solution quality for a problem (QoS). For instance, the perceived
QoS of an MP3 can vary among listeners even if the QoR is the same.

Accuracy-aware computing can be divided into approximate computing (AC) and
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high-precision arithmetic (HPA). The main difference between AC and existing approx-
imation methods, such as heuristics, is that AC allows some degree of approximation,
which is a desired design parameter. It is not a compelling necessity to solve certain
problems such as NP-hard ones. HPA provides methods to increase the precision of
integer and floating-point operations within the system. The objective of accuracy-aware
methods is that they can be applied more generally.

Applications such as image processing, recognition, mining, and synthesis (RMS),
and data analysis can benefit from AC, the underlying rationale behind being that these
applications work with noisy input data, have no golden output (i.e., similar results are
still useful), exploit the perceptual limitations of humans, or iteratively improve their re-
sults [6]. In contrast to AC, HPA benefits domains such as numerics by minimizing the
effect of numerical instabilities caused by computational errors.

In the literature, the same applications are often used to demonstrate the benefits of
accuracy-aware methods. This makes sense in terms of comparability, but new domains
must be investigated to increase the scope of accuracy-aware computing. To identify
these new domains, new accuracy-aware methods must be designed.

In the literature, there exists accuracy-aware methods for different layers. The main
focus of AC is at hardware and architectural layers; for HPA, it is at the software and
algorithm layers. AC methods can be grouped according to four layers:

• Hardware layer methods [7] often deal with approximating processing units. Im-
precise adders or multipliers reduce the required hardware area and are more en-
ergy-efficient compared to their precise counterparts. This also includes providing
different hardware-supported data types or exploiting precision scaling.

• Architecture layer methods introduce AC into the hardware architecture. This
includes neural processing units, approximated memory components [8], or en-
tire designs that have integrated dynamic accuracy and voltage scaling [9, 10].
Programmers can use these components through an extended instruction set ar-
chitecture. Some methods use graphics processing units (GPUs) [11] or field-
programmable gate arrays (FPGAs) [12].

• Algorithmic layer methods sometimes use loop perforation [13] or loop tiling [14].
Others rely on an automatic transformation of the code into a neural network [15],
which requires hardware support to be efficient, or they sample the input data.
There are automatic ways to reason about the required data type [16] and approx-
imate versions of certain algorithms are also used [17]. Furthermore, program-
ming language methods exist that enable programmers to exploit the underlying
approximation methods [18].

• Task layer methods comprise skipping tasks, relaxing synchronization points [19],
or exploiting approximate parallel patterns [14].
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To fully utilize the potential of accuracy-aware computing, these methods must be tuned
individually or in combination during design time [20] or during runtime. However, only
few approaches exist for this purpose.

Runtime approaches select an implementation version of a task from different approx-
imate versions [17] or tune the corresponding knobs of the approximation methods [11,
21, 22] - for instance, the perforation rate of a loop. These approaches assume a stream-
ing behavior and thus that subsequent inputs behave according to the current input.

Input-aware runtime methods decide if an approximate result is sufficient or if a re-
execution using the original algorithm is required [23, 24]. Laurenzano et al. present
an input-aware approach using a calibration phase per input, which tunes all available
accuracy-aware knobs with a given QoR constraint [25] but cannot handle constraints
other than QoR; furthermore this approach is limited to the algorithmic layer and provides
only a few value settings per knob. These tuning approaches only tune methods of a
single layer (a horizontal view).

Selecting methods from a single layer misses substantial potential for an approxi-
mation-tolerant application. Previous work shows that considering various layers offers
substantial benefit [26] - for instance, a reduced and rank kernel exploiting three comple-
mentary methods. This ad hoc approach does not provide a general solution. Therefore,
this thesis addresses an essential challenge: How to combine and tune methods from
different layers (a vertical view) in a proactive way to achieve the greatest possible gain
for an application? Considering methods from multiple layers dramatically increases the
configuration space (which represents all possible combinations of methods and respec-
tive knobs’ settings). Hence, the vertical view dramatically increases the complexity of
finding appropriate configurations to achieve design goals. This tuning approach handles
energy or execution time constraints since a user or an external system often restricts
these resources.

In addition to the fact that accuracy-aware methods influence the values of conven-
tional design objectives, conventional methods exists for tuning systems. For instance,
exploiting more cores can accelerate an application but also increases energy consump-
tion; dynamic voltage and frequency scaling (DVFS) can reduce required energy con-
sumption for memory-bound tasks by decreasing the voltage and frequency of a core.
Existing tuning approaches in the domain of accuracy-aware computing do not exploit
these conventional methods’ potential. Hence, one challenge is determining how to
control these conventional methods using the accuracy-aware tuning approach to better
satisfy constraints.

While reducing the degree of internal accuracy is valuable for approximation-toler-
ant applications, we also know that other algorithms rely on higher internal precision.
This higher precision can reduce computational errors and thus improve numerical sta-
bility [27]. It is an open question how higher precision will improve QoR and influence
the values of other objectives. Additionally, determining how to combine this aspect with
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the accuracy-aware tuning approach is challenging.
The research aim of this thesis is to introduce an innovative methodology to realize

accuracy-aware systems, which will help designers integrate accuracy awareness into
their systems. I propose an adaptive accuracy-aware approach across system layers
that addresses the challenges discussed in this section, combining and tuning accuracy-
aware methods on different system layers. The methods are located at the software
layer, architecture layer, and hardware layer, and a layer can be composed of further
layers; - for instance, the software layer can include a task, an algorithmic, and a data
layer. To widen the scope of accuracy-aware computing for other domains, this thesis
presents innovative accuracy-aware methods and techniques for different system layers.

The required tuning of the accuracy-aware methods is integrated into a configuration
layer that tunes the available knobs of the accuracy-aware methods integrated into a
system. This includes the methods proposed in this thesis. In the configuration layer,
a suitable configuration specifying the knobs’ settings is determined in a proactive way
during runtime depending on the current input, system state, and constraints. The thesis
also highlights that increasing internal precision is valuable for certain numerical algo-
rithms, although a control mechanism would require a completely different approach
than that used in the configuration layer. The rationale is that an application-specific
approach and implementation is mandatory to achieve the best performance.

In sum, the proposed methodology exploits the inherent tolerance of applications for
approximating internal and external results to improve values of other important design
goals. This includes computation under time and energy constraints during runtime.

1.1 Thesis Organization

This thesis includes four parts. Part I includes the introduction, background, and overall
proposed approach. Chapter 2 provides a brief background on the current challenges
in designing systems, presents conventional optimization concepts (such as multicore
programming and heterogeneous computing) and novel alternative concepts, and thor-
oughly discusses related work in the field of accuracy-aware computing.

Chapter 3 introduces the central research questions addressed in this thesis and pro-
vides a detailed proposal for a novel adaptive accuracy-aware approach across system
layers that tunes the computational effort to reach a certain desired QoR.

Part II introduces innovative accuracy-aware methods designed for this thesis. Chap-
ter 4 introduces a novel conversion-based approach for memory transfers, as well as
explains the design choices and analyzes the benefits of such an approach for different
applications. Additionally, it integrates the conversion unit into an RISC-V processor; a
simulation-driven execution of the applications leads to a realistic evaluation of the new
hardware component.

Chapter 5 introduces AC design pattern to help hardware programmers efficiently use
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the available resources of an hardware accelerator. It demonstrates these patterns’ use
on different applications, using FPGA-based designs for applications in biology, stereo
vision, and time series analysis. The evaluation reveals that exploiting these patterns re-
duces the required resources and increases performance, as well as that these patterns
are valuable for other hardware accelerators.

Chapter 6 presents different novel AC methods on the software layer, including the
Locality-sensitive hash-based fuzzy memoization framework and a novel approach to
exploit contract-based algorithms, and applies the AC methods to a set of known ap-
proximation-tolerant applications and new domains for AC.

In Chapter 7 shows that increasing internal data type precision can reduce the nu-
merical instability of certain algorithms caused by computational errors, using the well-
known Lanczos algorithm for calculating eigenvalues as a benchmark. Furthermore,
the chapter considers first methods to reduce the effort introduced by higher precision
and clearly demonstrates that algorithmic-specific optimizations are required to reduce
computational effort.

Part III presents the approaches designed for the configuration layer. Chapter 8 high-
lights why it is extremely beneficial to exploit a combination of AC methods on various
layers (a vertical view). Then, it discusses the drawbacks of existing static tuning ap-
proaches for controlling AC methods. Based on these shortcomings, it presents a novel
static tuning approach based on performance profiles.

Chapter 9 completes the novel runtime tuning approach for AC; this approach relies
on the information generated by the static tuning approach.

Part IV concludes this thesis. Chapter 10 summarizes this thesis’ findings on the
novel structure for an accuracy-aware computing system, reviews the benefits of using
the new AC methods, and discusses future directions to extend this work.

1.2 Collaborations

Parts of this thesis were developed during collaborations with other researchers. For the
sake of completeness, briefly, the related projects include:

In collaboration with Markus Hoffmann (Karlsruhe Institute of Technology), I have
investigated the use of accuracy-aware computing in the domain of scientific computing
- more precisely, a certain class of pre-conditioned iterative methods for solving systems
of linear equations needed to solve an additional system per iteration, which does not
influence the final result but poses the issue of significant overhead. The corresponding
evaluation was published [BHR18].

A collaboration with Georg Maier and Thomas Längle (Fraunhofer Institute of Op-
tronics, System Technologies, and Image Exploitation) have aimed to investigate novel
concepts for sensor-based sorting, particularly accelerating required data processing. A
result of this collaboration was published [MBL+16].
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FPGAs provide an interesting platform to accelerate data-intensive applications. In
collaboration with Fabian Nowak (former Karlsruhe Institute of Technology), I have de-
signed FPGA-based solutions for an application from computational biology. The out-
comes of this research were detailed in several publications [BNK15, NBS+13, BN13].
With Martin Schäler (Karlsruhe Institute of Technology), I have investigated the use of
accuracy-aware computing for time series analysis.

1.3 Previously Published Content

This thesis includes work that has been published or submitted for publication:

Chapter 4: [BHK16]

Chapter 5: [BBB+16, BNK15, NBS+13, B14, BKH15, BES+17, BSE+17, BN13]

Chapter 6: [BK18, BKM+18]

Chapter 7: [BHH17]

Chapter 8: [BHR18, BKM+18]

Chapter 9: [MBL+16, BKM+18]
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CHAPTER

TWO

BACKGROUND AND RELATED WORK

This chapter introduces the background of the present thesis. It describes the current
challenges for designing computer systems and presents conventional and alternative
concepts to address these challenges. Then, it discusses the state-of-the-art in accu-
racy-aware computing and how it relates to the present work.

2.1 Design Goals and Challenges for Designing Com-
puter Systems

A system can be defined as a set M of at least two members. Each member has a path
to every other one [28]. A system can consist of components and other systems called
subsystems [29]. In the context of computer science, the term computer systems

“includes system architectures, operating systems, distributed systems, and
computer networks” [30, page 1].

The design of computer systems is a very complex task and relies on expertise in several
fields. To reduce this complexity, the design is split into several layers [31], see Figure 2.1.

Each expert is in charge for a certain layer, for instance, the computer architect im-
plements the instruction set architecture in hardware as efficient as possible. During the
design, several aspects have to be taken into account. These aspects are the design
goals, the constraints, the design principles, and the different requirements. The latter
compromises the application area, the level of software compatibility, the requirements of
the operating system and the different standards [32]. Optimal design decisions depend
on metrics, such as performance, energy efficiency, reliability, fault tolerance, and costs.

Currently used applications, ranging from machine learning and data analysis to im-
age processing, pose huge challenges to computer systems. Especially, the world’s
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Figure 2.1: Structure of layered computer systems according to [31].

amount of data is doubling every two years and is in the zetabyte range currently [33].
This huge amount of data has to be efficiently processed in order to find valuable insights.
Often short response times and real-time processing is important for applications such
as autonomous driving, time series analysis, and industrial applications. A high through-
put is crucial for data analysis tasks. Besides the performance aspects, a low energy
consumption is often inalienable. Computer architects, system designer, and application
developers are currently facing the so-called Brick Wall [34].

2.1.1 Brick Wall

Performance is one of the primary design goals of computer systems. The performance
of a system depends among others on the algorithm, the used programming language,
the compiler, the instruction set architecture, and the hardware. In the past, the main
performance improvement for CPU-intensive applications was achieved by scaling the
frequency and by increasing the instruction level parallelism (ILP). A useful metric for the
performance strongly depends on the application area. The execution time of an appli-
cation is considered as the only valid and reliable metric [35]. A relative performance can
be determined by using benchmarks [36]. Benchmarks are a set of real world programs
and are selected according to the type of the domain [37, 38, 39].

Until 2004, computer architects were able to exploit the increasing amount of tran-
sistors (cf. Moore’s Law [2]) in almost the same rate for performance improvements of
general purpose processors. The driving force behind it was Dennard scaling [40]. Den-
nard scaling enabled the decrease of the power used by transistors in the same range
than the area shrinking. However, the Brick Wall consisting of Memory Wall [41], Power
Wall, and ILP Wall [32] stopped this free lunch of performance improvement [42].
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The Memory Wall describes the widening gap between the performance of process-
ing units and the memory. A main approach to overcome this wall is the usage of a
cache hierarchy. This is valuable for applications that have a spatial and temporal data
locality. However, a programmer has the burden to optimally write code in order to fully
exploit the potential of caches [43, 44, 45]. The arise of new applications coming from
the area of big data poses further requirements to a cache hierarchy. These applications
use a much higher instruction working set. This set does not fit into current L1 instruction
caches of high-end processors [46].

The ILP Wall describes the challenge to extract more parallel instructions from a
sequential stream. This results in underutilized processing units [32].

The Power Wall is strongly related to the end of Dennard Scaling [1]. This end is
caused by the high impact of leakage current and the limitation of scaling gate oxide
thickness below 90 nm [47]. Hence, further increasing the frequency highly impacts the
power consumption in a exponential fashion. Additionally, this causes serious heat prob-
lems. Too high temperature leads to reliability issues, slowing down transistor switching,
or hardware damage. Therefore, we are in a situation, where we cannot power on all
transistors on a chip currently. This situation is often referred as dark silicon [3, 48, 4].

Design decisions that improve a design value often negatively impact the other ones.
Hence, a compromise between different design goals has to be found. This compromise
leads to Pareto-optimal design point. The optimum value regarding a single design ob-
jective specifies a Pareto-optimal point. Hence, this specific value is smaller or equal for
all other design points. Several approaches exist that consider design goals together to
improve the overall system state [49, 50]. In this thesis, the focus is to find a compromise
between quality of result (QoR), energy consumption, and performance.

2.1.2 Current and Future Trends to Break the Brick Wall

In the following, current and future trends and approaches to overcome the Performance
and Power Wall are presented. These approaches do not impact the QoR.

Multicore scaling

The industry has responded to the failure of Dennard scaling by building multicore ar-
chitectures. These architectures include cores replicating existing core designs instead
of designing a very complex single core. This was a paradigm change from latency-
oriented to throughput-oriented designs. Programmers have a high effort to program
multi-threaded applications. This task is more error-prone than programming applica-
tions for single cores due to concurrency issues.

Not all applications can benefit from the performance capability of multicores. Many
algorithms have an inherent sequential part (Amdahl’s law [51]), which limits the maxi-
mum speedup. Revisiting Amdahl’s law in the multicore area, researchers emphasize to
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conduct research on parallel and sequential ways to increase performance of applica-
tions [5]. Researchers stated that dark silicon probably leads to the end of the multicore
scaling [3, 4]. They predict an optimistic performance increase of only 7.9 for highly
parallel workloads and a pessimistic increase of 3.7× [3].

Modern processors can adapt their power consumption itself or allow the operating
system and the user to do this. For example, Intel’s SpeedStep or AMD’s PowerNow.
Dynamic voltage and frequency scaling can trade off performance for energy [52, 53].
Reducing the voltage, hence the frequency leads to less power consumption of a pro-
cessor, but reduces performance. To improve performance for a short period, hardware
vendors have introduced methods such as Intel TurboBoost [54, 55] and AMD Turbo
Core. These methods increase the frequency of a core compared to the base frequency
in case that power, temperature, and current are below certain limits.

Heterogeneous Computing

Approaches were proposed to overcome dark silicon in multicores, for instance, by ex-
ploiting heterogeneous and specialized cores [48]. In general, the term heterogeneous
computing refers to a system or a single chip integrating different types of processing
units. These units can significantly differ in their architecture or just slightly differ in cer-
tain aspects. Since different applications have different requirements on the underlying
hardware, specialized cores for certain tasks are beneficial. Heterogeneous systems [56,
57] combine units such as manycores [58], field-programmable gate arrays (FPGAs) [59,
60], and graphics processor units (GPUs) [61].

It is common known that FPGAs are more energy-efficient than GPUs [62]. GPUs
often perform better on streaming applications that require a high bandwidth. There ex-
ist FPGA-based platforms that are optimized for non-linear memory accesses. These
platforms are beneficial for highly parallel applications that require a low memory band-
width [63]. Sliding-window applications such as 2D convolution performs well on FPGAs
[64]. The best architecture depends amongst others on the input size [64]. In [65], the
authors propose guidelines for finding the best hardware unit according to the properties
of an application. Another approach for providing heterogeneity is to adapt certain char-
acteristics of a single core during runtime. This includes the change of the frequency or
the adaptation of the bandwidth for the decode, issue, commit, and fetch stage [66].

Software Improvements

Another way to improve performance is to find optimizations regarding the way, how we
develop software and execute the software on the hardware. Nowadays, programmers
assemble application code from a large number of reusable libraries and frameworks.
Many abstraction layers were invented to improve the productivity of software. Each
abstraction layer causes a performance gap, which was closed by the frequency scaling.
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The end of the free lunch raises the question how we can run software more efficiently.
This requires solutions to deal with the aforementioned software bloat [67]. A better
integration of methods between different stack layers can improve the performance. For
instance, a garbage collector that works between the operating system and the Java
virtual machine allows an in-memory execution and thus improves the performance [68].

The performance and energy issues do not represent an isolated problem for the
compiler and computer architecture community. These issues has to be considered by
all kind of software designers, since a runtime bloat causes an inefficient usage of the
hardware [69, 70]. Therefore, tools and approaches have to exist that find performance
bugs within the application. This includes performance bugs from memory leakage [71],
memory bloat [72, 73, 74], and execution bloat [75]. The resulting consensus should be
that performance analysis is an important aspect for all developers [76, 77].

To further increase performance, hardware-specific optimizations are a promising so-
lution. These approaches adapt the software according to the current hardware [78].
They are called (online) empirical code optimization or auto tuning [79, 80]. For instance,
finding the best tile size for loop tiling improves the exploitable parallelism and data local-
ity and thus reduces the execution time [81]. Auto tuning has to find an optimal solution in
a huge search space. Therefore, approaches exist that reduce the search space before
applying a search algorithm [82]. Optimal auto tuners require knowledge of the applied
domain, hence it is important to have domain-specific tuners. Solutions exist that help
developers to implement tuners for their purpose [83]. Another optimization approach is
to select the best version from a set of code versions during runtime[84].

A strategy called dynamic concurrency scheduling (DCT) controls the number of ac-
tive threads to save energy and to improve performance concurrently [85]. This is appli-
cable for a single parallel programming model, such as MPI or OpenMP [86], but also for
hybrid MPI/OpenMP models [87].

Device Trends

A further research direction is to improve the device technology for gates and memory
components. The intention is to find a breakthrough for technological devices similar to
the breakthroughs that were achieved by going from vacuum tubes to bipolar transis-
tors and from these transistors to complementary metal-oxide-semiconductor (CMOS)
designs. Near threshold computing (NTC) or sub threshold computing is a solution to
improve the energy efficiency of CMOS-based processors with the drawback of a (sig-
nificant) performance degradation [88, 89]. Evolutionary approaches extent the con-
ventional CMOS technology by new structures or materials to overcome the failure of
Dennard scaling [90]. Besides extensions to classical CMOS devices, there are plenty
of ideas for novel technologies often summarized as beyond CMOS [91, 92]. To get
mainstream, such device technologies need to provide significant improvements regard-
ing energy and delay of standard cells. Furthermore, they have to provide a logic and
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memory family. Beyond CMOS devices can be categorized into charge and non-charge
approaches [93]. Examples are tunneling field effect transistors [94] or carbon nanotube
field effect transistors (CNT-FET) [95].

There is a huge research effort regarding novel memory technologies such as non-
volatile memory (NVM) [96]. NVM is mostly used for secondary storage, but there is
a trend to develop NVM devices acting as main memory. Spin transfer torque RAM
(STT-RAM) is an example [97]. Intel and Micron developed a NVM called 3D Xpoint
and a stack-based RAM called Hybrid Memory Cube (HMC). HMC provides a theoret-
ical bandwidth of up to 420 GB/s [98]. These approaches use 3D integration [99, 100,
101]. 3D integration exploits a third dimension to achieve a power reduction and a higher
bandwidth. Thus, it aims to overcome the memory wall. However, several challenges
have to be solved before applying this technology to main stream. These challenges
include amongst others yield rate, financial costs, design complexity, and testing.

Alternative Computing

There exist new alternative computing concepts [102] inspired by biology, the human
brain [103, 104, 105, 106, 107], or new technologies [108, 109]. For instance, quantum
computing exploits the quantum-mechanical phenomena to realize quantum bits. Such
bits can represent 0, 1, or any superposition between it. Currently, most of these methods
are still under research or in a work in progress state.

Stochastic computing is an unconventional computing method and represents num-
bers as random binary bit streams [110]. This representation allows real numbers be-
tween zero and one. The numbers are specified by the amount of ones in a bit stream.
Stochastic computing has the benefit to build simple hardware and is more fault toler-
ant. The latter results from the point that there is no positional weighting for single bits.
Therefore, each bit flip change the result by the same amount. Stochastic computing is
applied among others to image processing, neural computations, and reliability analysis
[7]. In addition, stochastic computing is used for error-resilient designs [111]. However,
a major issue with stochastic computing is the accuracy of results. Correlated random
bit streams result in an inaccurate output. Another main drawback is the long latency of
operations caused by an exponential increase with respect to the accuracy [110].

A further recent trend is optical computing. Optical computing exploits photons for
computations or memory transfers. On-chip optical interconnection is an approach to
reduce the issue regarding the memory wall [112, 113].

2.1.3 Discussion

The end of Dennard scaling has raised two important questions for system designers.
How can we still improve design values for applications? How can we satisfy the require-
ments of applications?
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Multicore scaling is only suitable for applications that provide a certain degree of paral-
lelism. Heterogeneous computing is a promising approach to provide significant benefits
for applications. However, not all applications have the capabilities to fully exploit the
potential of heterogeneous systems. Radically changing the way of implementing sys-
tems is not a feasible option, since it would drastically impact the design time negatively.
The future situation regarding the used device technology is unclear and no winner is in
prospect. The same holds for most of the alternative computing concepts.

The present thesis focuses on solutions to improve systems that are based on existing
hardware technologies. The exploited computing methodology poses an alternative way
to find a better compromise between conventional design goals. This methodology called
accuracy-aware computing uses the approximation degree of computations as a further
design parameter. Accuracy-aware computing represents an orthogonal solutions and
thus allows designer to combine it with the aforementioned approaches in this section.
Compared to stochastic computing, accuracy-aware computing does not assume any
stochastic nature and provides deterministic approximations [7].

2.2 Accuracy-aware Computing

In this section, the related work regarding accuracy-aware computing is discussed. This
includes the state-of-the-art in approximate computing and high precision arithmetic. Be-
fore doing this, the term Quality of Result (QoR) as used in this thesis is defined.

The Quality of Result (QoR) is a measure for the accuracy loss of the final output
of an application. A numerical value represents this loss. The metric must reflect the
result quality of the application that matters for the user or the system. Generic metrics,
such as the error rate, are often inadequate for this modeling. Moreover, there exist
no general approach to model the relationship between a generic and an application-
specific metric. Defining a suitable and application-dependent metric for the QoR is a
very complex challenge [114]. Akturk et al. present a classification for useful metrics
for the QoR and corresponding example applications [115]. Example metrics are the
mean square error, classification accuracy, Signal to Noise Ratio (SNR), or the number
of mismatches between a exact and an inexact query to a database. It can be worth to
consider different metrics for an application and select a suitable subset of the considered
metrics [114].

2.2.1 Approximate Computing

Approximate computing (AC) comprises different approaches that trade off the internal
and external QoR for improved performance or energy consumption, while still retaining
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adequate results [116, 117, 118, 119, 120, 121, 122]. Moreau et al. presented a taxon-
omy for AC [123]. AC is applicable to a wide-range of applications such as Recognition,
Synthesis, and Mining (RMS), machine learning, image processing, and big data appli-
cations [124, 125, 126, 127, 128]. Iterative algorithms such as the Jacobi method benefit
from executing iterations on low-power but unreliable hardware units [129]. There exist
AC approach for different layers which I group into four layers.

Overview of Methods on The Task and Algorithmic Layer

Deploying neural networks to approximate imperative code snippets is a generally appli-
cable method [15, 128]. The neural network-based method is limited to a small amount
of inputs. McAfee et al. proposed a method for decomposable algorithms [130]. To im-
prove performance or energy consumption of such networks, approximating the network
itself is a possible solution [131, 132] For instance, AXNN finds approximable neurons
through backtracking and applies precision scaling to the found neurons[131]. Such a
quantization method is further improved by a dynamically scaling together with avoiding
operations that has zero as input [133]. But the issue with such a solution is the variable
data size of processing units. To accelerate the evaluation of a convolution neural net-
work, the usage of per-layer perforation reduces the amount of calculated outputs [134].
Missing output values per layer are interpolated using nearest neighbors. Similar to neu-
ral networks, the evaluation of support vector machines are approximable [135].

Loop perforation is a concept to skip certain iterations within a loop [13]. An auto-
matic program transformation exploits loop perforation [136]. In [124], Yazdanbakhsh et
al. conclude that the neural network-based method outperforms loop perforation on the
used benchmarks. They claim that neural networks are close to optimal in terms of the
computation. There is no gain in terms of memory accesses, since the access patterns
are the same.

Beside perforating loops, the number of tasks can be reduced [137]. A correspond-
ing method is relaxing synchronization points for applications running on parallel archi-
tectures [19]. Replacing exact parts with approximated versions within a program is a
further method [138, 139]. Another method transfers serial to parallel loops without the
requirement to calculate exact results [138].

Anytime algorithms correlate the execution time with QoR [140]. Such algorithms
can be applied to image processing algorithms [141]. Recent work considers such al-
gorithms on GPUs[142]. In [143, 144], the authors propose such a method to represent
approximation-tolerant applications as a parallel pipeline of anytime sampling stages.

ApproxHadoop [127] provides an approximation framework for map-reduced applica-
tions, while minimizing the total error. A different sampling strategy improves the per-key
error [145]. Programs modeled as a tree of computation and reduction nodes can be
transformed to an AC-based program [146]. ApproxIt [147] is a framework to approxi-
mate iterative methods. Combining incremental computing and AC leads to the frame-
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work IncApprox. This enables a higher throughput as shown by experiments using a
Twitter data stream and compared to a native Spark Streaming [148].

Well-known parallel patterns such as mean, minimum, sum, and linked lists offer the
opportunity to apply AC [149]. Parapox [14] considers different approximation methods
for data parallel patterns. Often algorithms themselves have static configuration param-
eters that influence the QoR. These parameters can be used as dynamic knobs to trade
off QoR for execution time [150].

Overview of Methods on The Architecture and Hardware Layer

Function units such as adders [151, 152, 7, 153], multipliers [154, 155, 156], or com-
pressors used for Dadda multipliers [157] were considered for an approximated design.
Lazy pipelines exploit the slack of underutilized imprecise function units realized by volt-
age over scaling to improve the QoR [158]. GPUs are more power-efficient by using
approximated floating point units [159].

To reduce the design effort for AC hardware, an extension of a hardware description
language (Verilog) was proposed [160]. Furthermore, hardware synthesis for approxi-
mate circuits was considered [161, 162, 163, 164]. It is also important to analyze the
approximated circuits [165].

While dynamic voltage and frequency scaling enables a reduction of the energy con-
sumption, dynamic voltage an accuracy scaling keeps the QoR in mind [9]. There exist
processor designs that are extended by approximated instructions [166, 10, 166]. Fur-
thermore, there exist AC-based processors [167]. For instance, a quality-configurable
reduce and rank hardware design was proposed [168].

To reduce the energy consumption and the latency caused by cache misses, a load-
value approximation unit returns a historically estimated value [169]. A similar method
targeting GPUs additionally drops a certain amount of missing load requests to reduce
pressure regarding the off-chip memory bandwidth [170]. A last level cache often con-
tains similar values. Miguel et al. exploit this fact for applications that can tolerate approx-
imations [171, 172]. Shoushtari et al. [173] favor a two cache policy for storing exact and
approximate data separately. Flikker is a method to distribute exact and approximated
data into different modules of a DRAM memory. For the modules that contain approx-
imable data, the refresh cycle time is increased. This reduces the energy consumption
of the modules [8]. The time required for storing data into a phase change memory
can be reduced for approximable data [174]. Approximating SSD accesses accelerates
applications such as WordCount [175].

Memoization is a technique to store calculated results within a table for later reuse.
For instance, the result of a costly function inside a loop [176]. A fuzzy memoization ap-
proach stores results of floating point operations [177]. This approach also uses stored
results, when the input parameters are similar. A crucial point is to find a measure for
the similarity to avoid high errors. The significance distance can pose such a mea-

17



Chapter 2 - Background and Related Work

sure [178]. Results of function units within a GPU can be cached inside an associative
memory [179]. To indicate an entry in the memoization table, mapping functions such
as cryptographic hashes were considered [180]. However, this approach does not use
application-specific knowledge. A FPGA-based memoization framework reduces the en-
ergy consumption of function unit [181].

Since a software-based calculation of a neural network is slow, a hardware-based
execution was proposed [182]. GPUs connected to neural accelerators were also con-
sidered [183]. An approximation of the accelerator itself is also possible [184]. The
combination of precise and approximate accelerators is useful [185]. The approximate
accelerators vary in performance and QoR executing the same task.

Main Approximate Computing Issues

An important aspect before applying AC methods is to decide how to quantify the QoR
[115]. Especially, the difference between the QoR and the validity of a result is important.
Crowdsourcing allows programmers to get feedback about the tolerable approximation
from users directly [186].

Finding approximable algorithms or parts within a complex application is an important
task [187]. Domain experts can indicate such parts [18, 188], or tools exists that find such
parts under certain prerequisites [6]. To reduce the effort of programmers for annotating
their programs, the solution of Park et al. is applicable [189]. Debugging and monitoring
of AC applications delivers further insights [190].

There exist first compiler approaches which exploit approximable code regions [191,
192, 193, 194]. Significance analysis [195] or sampling strategies [196] find parameters
or inputs that are not suitable for an approximation. A profiling method investigates the
QoR by applying loop perforation [197]. In total, sampling approaches are very accurate,
but slow. Statistic or compiler approaches are fast, but can miss potential due to their
non-data sensitivity. A useful configuration of AC methods also depends on the current
program phase [20]. Based on the significance value for a task, the decision is made
where the task is executed, i.e. whether it is executed on exact or inexact hardware
[198].

Since the resulting QoR is very input dependent, runtime decisions greatly improves
the benefits of AC and avoids a pessimistic assumption. There exist frameworks that
selects a version of a task during runtime [17, 199]. There also exist approaches that
create such versions for GPUs [11] and FPGAs [12]. CoAdapt is a mechanism that tries
to meet certain constraints during runtime. It can consider up to two constraints in parallel
[22]. But this approach only works for streaming applications. JouleGuard guarantees a
user-specified energy consumption of a system while providing near optimal QoR [21].
Scheduling of hard or soft real-time tasks for approximation-tolerant applications was
investigated on heterogeneous multicore architectures [200, 201].

Light-weight checks [202] or models [203, 23, 204] check the QoR during runtime.
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Topaz checks if a result is outside of a tolerable error margin and induces a re-execution
of the task on accurate hardware [204]. Combining several base checkers increases the
prediction accuracy and hence reduces wrong rollbacks [205]. Predictors decide about
the usage of an approximate accelerator depending on the input data [24].

A proactive control approach configures an AC-based application per invocation ac-
cording to a QoR constraint [206]. A useful configuration can be found by comparing
different settings of AC methods on a small subset of the input data. The found con-
figuration likely results in the best achievable acceleration, while keeping the desired
QoR [25]. However, the authors only evaluate their approach using AC methods from
the algorithmic layer and for a small configuration space.

Discussion

Considering the state-of-the-art in approximate computing, we can see that the set of
used applications to design novel methods is limited. Therefore, this thesis makes a step
forwards to increase the scope of AC by evaluating AC on novel applications. To further
exploit the potential of AC, we rely on novel and more generally usable AC methods
on different layers. Such methods are designed, implemented, and evaluated on novel
application areas for the present thesis.

All of the mentioned control approaches do not satisfy the requirements of a holistic
methodology for realizing an accuracy-aware system. Especially, the combination and
tuning of methods on the different layers is important. Moreover, the control approach
has to adapt the parameter setting for the different AC methods depending on the current
system state. A detailed summary of the missing points in the AC domain and the derived
research statements are discussed in Chapter 3.

2.2.2 High Precision Arithmetic

64-bit IEEE-754 floating-point arithmetic is often sufficient for scientific applications. On
the other side, there exist a considerable amount of applications that rely on high pre-
cision. For instance, ill-conditioned linear systems, large summations, or large-scale
simulations [27, 207]. Note that a computer system never provides infinite precision.

Floating-point arithmetic causes four main issues regarding the accuracy of results.
Firstly, rounding floating-point values introduces numerical errors. They are not neces-
sarily bad in each situation [208]. Secondly, not each real number is representable in a
binary system correctly. Thirdly, arithmetic errors occur after simple operations. Cancel-
lation of significant bits and absorption count to these errors. Finally, the associative and
distributive property are not valid for floating-point arithmetic.

Software libraries are usually used for high precision arithmetic.These libraries differ
amongst others in the used number representation. Examples are GNU Multi Precision
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Floating-Point Reliable (MPFR), Multiple Precision Integers and Rationals (MPIR), Arbi-
trary Precision Computation Package (ARPREC), and MPFUN. MPFR is based on GNU
Multi Precision (GMP). A comparison between these libraries is missing in the literature.

A suitable data representation is important to avoid incorrect results and unnecessary
overhead for scientific applications [209]. Tool support is available for programmers to
find operations that can be performed in single precision [16, 210]. This possibly reduces
the computational effort. There exist GPU-based libraries that provide double-double,
quad-double, and arbitrary precision [211, 212, 213]. Reconfigurable architectures exist
that support high precision arithmetic [214, 215, 216]. It was claimed that exact addition
and multiplication in-line with an exact dot product is crucial for high precision arithmetic
[217]. A radical approach was proposed to replace IEEE-754 arithmetic [218]. The main
issue with this approach called UNUM is the hardware complexity. It was argued that the
format is only useful for low-precision applications [219].

This thesis gives an answer to the following question: Is it possible to build an ac-
curacy-aware systems that tunes the precision inside a system for a given numerical
algorithm? This question is further discussed in Chapter 7.
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CHAPTER

THREE

AN ADAPTIVE ACCURACY-AWARE APPROACH

ACROSS SYSTEM LAYERS

This chapter discusses the central dissertation statements, which where identified and
established according to the latest standards and methods in accuracy-aware computing.
Hence, they represent aspects missing in the relevant literature. Using these statements,
this chapter presents this thesis’ contributions in detail.

3.1 Dissertation Statements

This thesis’ main research aim is to develop an accuracy-aware multi-layer approach
that considers a horizontal view and a vertical view. The corresponding tuning approach
configures available accuracy-aware methods for approximation-tolerant applications on
the various layers. It is important to note that it is unnecessary to have at least one
method for each layer. This thesis includes research objectives to address its overarching
aim:

I. Increasing the scope of accuracy-aware computing and thus finding its limitations.

Increasing the application field of accuracy-aware computing is important to build-
ing acceptance of it. Therefore, this thesis surveys novel application domains on
the applicability of accuracy-aware computing. This also builds understanding on
application characteristics that make accuracy-aware computing the methodology
of choice.

II. Designing accuracy-aware methods that can be used for different applications.

IIa. Developing a general method to reduce costly data transfers for the floating-
point unit while providing a deterministic behavior.
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IIb. Providing a set of AC-based design patterns for heterogeneous units.

IIc. Developing a general accuracy-aware method on the software layer that over-
comes the limited scope of current methods.

To improve the conventional design values of applications coming from the newly
found domains, innovative methods are required that can be applied to a broad
spectrum. This also makes it possible to find further domains for accuracy-aware
computing. Furthermore, a control method is needed to vary the approximation
degree during design time or runtime. Thus, it is necessary to investigate the limi-
tations of current accuracy-aware methods and design new ones that make more
general applicability possible. According to the vertical view, innovative accuracy-
aware methods are designed for various layers such as the hardware layer, archi-
tecture layer, and software layer.

III. Evaluating HPA and the achievable benefit for applications.

IIIa. Evaluating an algorithm that is numerically unstable.

IIIb. Considering the possibility of developing a tuning system for applications that
benefit from HPA.

Certain algorithms require higher internal precision than offered by hardware-sup-
ported data types. This thesis takes a step forward and investigates whether it
is possible to tune a system by using a higher precision degree. It investigates
the HPA’s potential to overcome the issues caused by internal computational er-
rors, as well as considers how the method competes in terms of performance with
algorithmic-specific adaptations.

IV. Solving the problem of providing a runtime tuning approach for approximation-
tolerant applications that:

IVa. Is more generally usable than existing approaches.

IVb. Applies a horizontal view and a vertical view for tuning knobs.

IVc. Provides input awareness for the system. This is important since the quality
of result (QoR) loss depends on the current input in addition to the knobs.

IVd. Deals with multiple constraints and system states.

IVe. Exploits the potential of other conventional methods and application-specific
approaches.

IVf. Considers competing tasks within and between applications.

IVg. Finds a good compromise among multiple design goals.
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One of this thesis’ main aspects is designing a configuration layer that selects,
deploys, and tunes accuracy-aware methods realized for different system layers
(a vertical view). Different system requirements can occur: maximizing the QoR
while having a pre-defined budget or minimizing the budget while meeting a cer-
tain QoR. Since there is generally no clear mapping between quality of solution
and QoR, domain knowledge is used for mapping. This leads to a numerical value
for QoR, which is required for tuning the system and thus finding a suitable con-
figuration. A configuration represents the settings of knobs for all accuracy-aware
methods, which can also imply that a method is deactivated. The resulting con-
figuration layer tunes the system per input in a proactive way; it is important to
stay above certain QoR boundaries, but calculating results that are too accurate
means missing opportunities to meet other design goals. Moreover, the configu-
ration layer must control competitive tasks versus only considering a single task
inside a system.

3.2 The Central Approach for an Accuracy-aware Sys-
tem Structure

This section describes the holistic approach used in this thesis to build an accuracy-
aware system. To apply accuracy-aware computing to a wider scope (Statement I) than
related work, this thesis investigates new domains that include applications from time
series analysis, sensor-based sorting, stereo vision, computational biology, and scientific
computation. For all of these applications, I show that accuracy-aware computing is
highly beneficial.

This process has resulted in two lessons: First, it is wise to clarify the necessary
QoR for an application. For instance, using stereo vision data in an automotive environ-
ment for collision detection does not require the per-pixel accuracy of the real world; this
significantly increases the potential gain for other design goals’ values by using accuracy-
aware computing. Second, it is useful to integrate an accuracy-aware method providing
granular adaption of the approximation degree into a software layer; this allows for initial
detection of whether accuracy-aware computing is useful for the application reducing the
effort needed to evaluate the suitability of accuracy-aware computing.

Considering a set of known approximation-tolerant applications from related work
alongside these new domains leads to innovative accuracy-aware methods. They are
designed and implemented on various layers (Statement II), represented in Figure 3.1
by the smaller bright rectangles; the corresponding layers (hardware layer, architecture
layer, and software layer) are below the thick black line, and the corresponding chapter
with a detailed description of each method is provided.

On the hardware layer, this thesis introduces an innovative AC method based on
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Configuration layer

Design time (Chapter 8) Runtime (Chapter 9)

Software layer

LSH-based memoization
framework (Chapter 6)

Contract-based task
design (Chapter 6)

HPA library (Chapter 7)

Architecture layer

AC-based design patterns (Chapter 5)

Hardware layer

Conversion unit (Chapter 4)

Figure 3.1: Overview of the innovative methods introduced in this thesis on various layers
and the corresponding configuration layer.

converting and compressing data. This method is applicable to algorithms working with
floating-point values - for instance, time series analysis and image processing. This
hardware-based method exploits deterministic approximation techniques that make the
influence on QoR predictable. The outcome is a hardware-supported conversion unit
for floating-point values, which reduces the amount of bits that must be transferred to a
first-level memory and thus leads to energy savings and reduced time for data transfers
while providing a higher QoR than native execution on a smaller data type.

On the architecture layer, it proposes novel AC-based design patterns for designing
accelerators. An approximation of dynamic programming algorithms makes it possible
to better exploit the capabilities of reconfigurable architectures and thus leads to more
high-performance designs for accelerators. Removing certain data dependencies on the
algorithmic level allows for efficient implementation and realizes a streaming-based de-
sign. This also results in a low internal memory footprint. Example applications are
stereo vision and computational biology. Coupling this innovative approach with com-
pression before sending data to the accelerator further improves performance and allows
for varying the degree of approximation even during runtime.

On the software layer, this thesis designs an HPA library. Using this library, I show that
increasing the operations’ internal precision is beneficial to increase the quality of calcu-
lated eigenvalues of a matrix. However, this requires significant computational effort that
can only be reduced by exploiting domain knowledge of a certain algorithm (Statement
III). Furthermore, tuning precision according to the input remains a problem. There-
fore, I do not consider higher internal precision of operations for the proposed adaptive
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accuracy-aware approach across system layers.
Also on the software layer, I design a novel library for fuzzy memoization that can

easily be plugged into existing applications. The motivation of memoization is to cache
previously calculated results of a function and re-use them when a similar input occurs.
However, this method’s inherent overhead makes its application for typical approxima-
tion-tolerant applications not useful. The same is true for other state-of-the-art fuzzy
memoization methods, and neither fuzzy memoization nor other state-of-the-art soft-
ware accuracy-aware methods can satisfy statement IIc. Therefore, employing contract
algorithms in a new way enables a clear, fine-grain, and predictable correlation between
execution time and QoR. Each contract-based component improves the output QoR over
time, and hence the final result improves over time. Varying the granted budget leads to
tuning QoR. Tasks from different domains can be re-implemented as contract algorithms.
Exploiting this contract-based task design in accuracy-aware computing at the software
layer leads to the desired software accuracy-aware method that is general applicable.
Furthermore, reaching the exact result requires simply continuing to execute the con-
tract-based task. I propose different methods that improve the performance of contract-
based tasks. Moreover, I introduce best practices to realize contract-based tasks.

Having many accuracy-aware methods on different layers, a system designer faces
the problem of deciding which accuracy-aware methods would be valuable for his or her
system. An additional challenge is determining how to tune these different methods.
Increasing the difficulty, this decision must be made during runtime to achieve greatest
gains for the system. For tuning these methods, a configuration must be found for each
method. A configuration specifies the knob settings for the accuracy-aware method and
makes deactivating the method possible; for instance, the perforation rate used by loop
perforation is such a knob. Setting this rate to a specific value presents a configuration
for the accuracy-aware method.

As a hypothetical, if there are ten possible perforation rates and thus 10 possible
configurations, further integrating a loop perforation with 10 configurations into the appli-
cation leads to a global configuration space for the system with 100 global configurations.
Thus, integrating many accuracy-aware and conventional methods drastically increases
the global configuration space of the accuracy-aware system. According to the State-
ment IV, a suitable global configuration must be extracted during runtime according to
different constraints, system states, and inputs. Therefore, this thesis designs a con-
figuration layer to help system designers to significantly reduce design effort and the
complexity of extracting a suitable global configuration during runtime, as well as to acti-
vate and tune the integrated accuracy-aware methods in the system. The configuration
layer consists of a design-time step and a runtime mechanism (see Figure 3.1, above
the thick black line). The runtime mechanism exploits the information determined by the
design-time step. The design-time step is required to significantly reduce the number of
global configurations that can be selected during runtime to drastically decrease runtime
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overhead during tuning. It is vital that the runtime mechanism introduces low overhead
to maintain the benefits of using accuracy-aware computing. When the application is
composed of tasks, error propagation between tasks within the application is applica-
tion-specific. Therefore, I suggest also determining this correlation during design time.

The remainder of this subsection briefly presents the innovative methodology de-
signed for this thesis to realize an accuracy-aware system, including the steps to achieve
this system and their relationships to each other (see Figure 3.2). The starting point is
an approximation-tolerant application composed of task, which a system designer has al-
ready implemented (Step A). The designer must collect representative input data for the
system that are important for the design-time step (Step B), and then integrate accuracy-
aware methods per suitable task (Step C); an important property of a suitable task is its
significant contribution to the entire execution time or to energy consumption. Steps A to
C require the most effort for a designer to realize the accuracy-aware system. However,
this thesis presents best practices to help reduce this effort.

The remaining steps involve identifying, designing, and implementing solutions, meth-
ods, and algorithms to help the designer integrate and realize the configuration layer.
The configuration layer consists of a design-time step and a control mechanism. In the
design-time step, the different task flows within the application are determined (Step D).
Task flow depends on the application parameters that, for instance, control the ordering
of image filters. This is important since the error propagation depends on the task flow.
Suitable global configurations for each flow are determined in a later step.

The next step (Step E) involves determining (near-)Pareto-optimal local configura-
tions per task. Here, a local configuration represents knob settings for all integrated
accuracy-aware and conventional methods. A Pareto-optimal local configuration means
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this configuration can only be outperformed in terms of a single design value (either
QoR or required budget). As a budget metric, my approach uses execution time, en-
ergy consumption, or a combination using energy delay product metrics. This allows
for considering multiple objectives - execution time, consumed energy, and QoR - dur-
ing runtime. Such a Pareto-optimal front is called a merged performance profile of the
task. This local approach significantly reduces the number of global configurations that
must be considered for the entire application. To further reduce the number of evaluated
global configurations required to determine a (near-)Pareto-optimal global configuration
front significantly, I propose a greedy-based static tuning algorithm. This algorithm ex-
ploits the local merged performance profiles (Step F). The extracted front represents the
merged performance profile of the entire accuracy-aware system. Each available point
in that profile represents a global configuration that can be selected during runtime. This
procedure (Step F) is applied for each determined task flow.

The proposed approach introduces two techniques to integrate input awareness into
the system. The first creates a model that determines the required budget to reach a
pre-defined QoR for a certain input and task (Step G). The model uses the QoR and
input-dependent parameters of the function in question to determine the budget. Input-
dependent parameters are the size of the input, the mean, the variance, or other statis-
tical features that can be derived from the function’s input data. The second method is
a monitoring approach that calculates features during execution (such as the amount of
considered pixels or the variation from the previous result) and uses these features to
estimate the current QoR of a task (step H). If the desired QoR is reached, the execution
is terminated, and thus the monitor acts as a termination condition.

During runtime, the control mechanism receives information about the current con-
straints and system state (Step I), which it uses to select a global configuration from the
global merged performance profile. Input awareness is introduced on a local per-task
level, and two different control modes exist: QoR mode and budget mode.

In QoR mode, each task reaches its specified local QoR even when requiring greater
spending than initially provided. This decision depends on the input-aware local models,
and the information of the local desired QoRs is also part of the global configuration.

For the budget mode, the user or a high-level controller grants a global budget (for
instance, a firm deadline that should be met) and thus an initial global configuration is
chosen with the highest QoR on average for the given global budget. If several inputs
processed by different application instances share a budget, unused local budgets can
be redistributed to other tasks; such unused budgets occur when the model determines
a lower budget than that initially granted to the task. Finding a universal configuration for
independent application instances or accuracy-aware applications is a multiple-choice
knapsack problem. The solution parameterized according to the current system state
and constraints, leads to suitable global configurations for all instances. This problem
must be solved during runtime.
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CHAPTER

FOUR

A NOVEL ACCURACY-AWARE METHOD AT

HARDWARE LAYER

This chapter introduces a novel accuracy-aware method at the hardware layer. Such a
hardware method constitutes the lowest abstraction level to introduce an approximation
into the system in this thesis. The proposed method provides a deterministic way to ap-
proximate individual floating-point values. The presented conversion unit can be applied
to floating-point applications and provides a knob that varies the degree of quality loss.
This knob sets the conversion method which specifies the representation used for storing
a single floating-point value.

The conversion unit reduces the required memory space for an application and thus
the total energy consumption required for memory accesses. A suitable configuration
(knob setting) for the conversion unit can be determined by the configuration layer. Fur-
thermore, the configuration layer can combine the proposed method with other accuracy-
aware methods, which are part of the same layer or other layers.

4.1 Introduction

Approximate computing (AC) has been suggested as a possible means of increasing per-
formance per watt at hardware layer [119, 18, 151]. Initial efforts on AC have proposed
different versions of approximate multiplier and adder [7, 220, 154, 156, 151]. However,
memory accesses consume a considerable amount of the energy in today’s computing
systems. For instance, an integer operation consumes 1,000× less energy compared
to accessing a location in the L1 Cache [221]. Therefore, this chapter presents an ap-
proach that leverages this higher potential for energy savings. The focus lies on image
applications that run on low power hardware and work with floating-point values.

Let us consider two algorithms, 2D Richardson-Lucy deconvolution [222] and fast
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Fourier transformation (FFT). For these floating-point algorithms, it is possible to intro-
duce approximation for the data-relevant operations. Approximating these operations
only influences the QoR specified as mean square error in this section. Figure 4.1 high-
lights the amount of operations that can be approximated for the two algorithms in a pie
chart. In total, the approximable operations represent ∼33% and ∼62% of the opera-
tions, respectively.

Looking at the consumed energy for the different operations, the approximable opera-
tions have a high impact on the energy consumption, see Figure 4.2. Hence, leveraging
approximation in these operations is very beneficial to reduce the energy consumption.
This statement also applies to arithmetic instructions that implicitly perform memory ac-
cesses. The challenge is how can we exploit this opportunity to reduce the energy con-
sumption and keep the effect on the QoR as low as possible.

Current methods in AC exploit approximations to reduce the energy consumption of
memories [8, 226, 227, 174]. Loading a value from these memories can result in a
completely non-deterministic value. Cache compression methods miss a potential of
approximating data [228]. Approximate cache methods are usually located on the last
level cache [171, 172].

None of the previous work I mentioned considers the approximation of a single value.
Therefore, in this chapter I present an accuracy-aware method that leverages this fine
grained adjustment potential. The proposed method allows it to approximate floating-
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Figure 4.1: Dynamic instruction mix of a 2D Richardson-Lucy deconvolution (a) and a
2D Fast Fourier Transformation [223] (b). Mnemonics that include SD in their name are
floating-point relevant operations, hence are approximable for these algorithms. For FFT,
the MOV operations mainly performs the bit reversal of floating-point values, hence are
also approximable1.
1I used the Opcodemix tool of Intel Pin [224], which is a dynamic binary instrumentation tool, to

determine the dynamic instruction mix for both algorithms. As input, I took a 1024× 1024
images with random pixel values. For Richardson-Lucy deconvolution, I specified 10 iterations.
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Figure 4.2: Estimation of the potential energy savings for the 2D Richardson-Lucy de-
convolution (a) and FFT (b). The energy values for each operation are taken from [221]
assuming 45 nm technology. According to the measured cache performance for both
algorithms using valgrind [225], almost all data accesses result in a L1 cache hit. Hence,
for each memory access the energy consumption for an L1 hit is assumed.2

2Energy for controlling instructions is not considered.

point values by converting the values to a representation that requires less bit. The
conversion is applied, when a value is transferred to the first-level memory, which is
normally the L1 cache. A converted value is used on the entire cache hierarchy and thus
reduces the memory footprint of the application. Hence, less data has to be transferred
from and to the main memory for converted values. Using an extra unit for the conversion
makes it unnecessary to have processing units for different floating-point formats. On
that account, the contributions of this chapter are:

• A novel runtime accuracy-aware method which approximates floating-point value
is proposed. This method reduces the energy consumption and increase the per-
formance of approximation-tolerant applications. A conversion unit internally uses
different methods to reduce the amount of data that has to be transferred to the
first memory level.

• The design and evaluation of different conversion techniques. Especially, a dy-
namic selection of these techniques provides a higher QoR, while retaining the
benefit of reducing the energy consumption.

• A detailed measurement of the energy savings on different embedded platforms.

• The integration of the conversion unit into a recent RISC-V processor.

• An extensive evaluation of the conversion unit-extended RISC-V processor.
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4.2 Preliminary QoR and Energy Measurements

A huge challenge for designing a conversion unit is to find conversion methods which
have a low impact on the QoR for different applications. This section compares different
possible conversion techniques. I integrate the best conversion methods into the conver-
sion unit as described in a later section. Furthermore, I investigate the potential energy
savings that can be achieved by the conversion unit for real hardware.

4.2.1 Accuracy Analysis of Different Conversion Methods

In this section, I identify possible conversion methods and compare the influence of these
methods to QoR of different applications. For the required experimental tests, I make the
following assumptions. All floating-point (FP) operations are performed in double (64
bit) according to the IEEE-754-based standard. Floating-point values that are stored in
internal architecture registers are not converted. The conversion unit converts a floating-
point value before transferring it to the L1 cache and deconverts it during a load.

Conversion methods. Table 4.1 summarizes techniques that I have identified for con-
verting a 64-bit floating-point value (FP64) into one with 32, 21, or 16 bits.

The first technique (Op 0) converts a FP64 value to one with less precision bits ac-
cording to the IEEE-754 standard. Besides double precision (FP64), this standard de-
fines single precision (FP32) and half precision (FP16). Since a 21-bit floating-point
format (FP21) is not part of the IEEE-754 standard, I define this format using 1 sign bit,
5 bits for the exponent, and 15 bits for the mantissa. The motivation behind FP21 is the
possibility to pack three FP21 values into a 64 bit word before transferring it to memory.

The second technique (Op 1) increases the value range by a factor of 2 for all FP data
formats by not using negative superscripts. This is beneficial for applications, where it is
tolerable to use the constant 0 for values between 0 and 1.

Opcode 2 and 3 convert a FP64 value to a fixed-point representation QX.Y or Q.Y,
whereX is the number of bits for the integer and Y for the fractional part. The conversion
is achieved by dividing the FP64 value by an adaptable scalar value.

Table 4.1: Proposed techniques for converting a FP64 value to one with lower precision.
Signed numbers are represented by a sign bit.

Opcode (Op) Conversion technique Application’s value range

0 IEEE-754 standard (FP32, FP21, FP16) high value range
1 values < 1 set to zero small numbers are negligible
2 Unsigned/signed QX.Y small value range

3 Unsigned/signed Q.Y
small value range

(adapting the scalar value improves accuracy)
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Additional to statically defined precision, a runtime technique that dynamically selects
between the number of used bits (16, 21, or 32 bit) for the converted value is considered.
The programmer can set a threshold j, which specifies the allowed maximum absolute
approximation error for a conversion into a certain lower data type. The conversion unit
uses the smallest data format for which the resulting conversion error is less than that
given threshold. Hence, a programmer can adapt the threshold in order to trade off
accuracy for energy consumption and total memory latency. This technique is especially
useful if some parts of an algorithm need more accurate calculations. An example are
mixed precision methods, such as mixed-precision iterative refinement [229].

Evaluation setup. Octave1 is used for a rapid prototype implementation. Pixel in-
tensities are chosen randomly between 0 and 255 (assuming 8 bit camera sensors)
or between 0 and 65536 (assuming 12 bit camera sensors) for an input image of size
1024×1024. The Mean Square Error (MSE) is sufficient for investigating how different
conversion techniques influence the QoR.

MSE(x, y) =
1

n

n−1∑
i=0

(xi − yi)2,

where xi is the ith result pixel of a pure FP64 implementation and y the ith result pixel
of an execution using a certain conversion technique.

In the following figures, lines named with FP16, FP21, and FP32 are based on Op-
code 0. Lines with Q8.8, Q8.13, and Q8.24 are based on Opcode 2, and Q.16, Q.21,
and Q.32 are based on Opcode 3. Note that Opcode 1 is not applicable for the first two
benchmarks because it relies on numbers between 0 and 1.

Corresponding lines for the dynamic data type are named with dyn dt (th=j), where
j specifies the error threshold. A line named with Full FP32 means that all internal
operations are natively executed in FP32 and not FP64. Due to the absence of a FP16
execution unit in the test system, we do not consider a Full FP16 execution.

Benchmarks. The first benchmark is a 2D convolution

I
′
[x, y] = (I ∗ f)(x, y) ≡

k/2∑
m=−k/2

k/2∑
n=−k/2

I(x−m, y − n) · f(m,n),

where I is the original image, f is a k× k 2D Gaussian filter, ∗ the convolution operator,
and I

′
is the blurred output image. The 2D convolution is executed up to 10 iterations,

1Octave is a high-level interpreted language. It is primarily intended for numerical computations and
hence poses a rapid way for performing numerical experiments. Moreover, it is an open-source alternative
to MATLAB.
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where I
′

is used as input for the following iteration. When the conversion unit is used,
the pixels of image I

′
are converted.

A 2D fast Fourier transformation (2D FFT) is the second benchmark [223]. A 2D FFT
is performed by row-wise 1D FFT s followed by column-wise 1D FFTs.

X(n) =
N−1∑
k=0

x(k)e−jk2π
n
N , n = 0...N − 1

is a forward FFT, where x(k) is a complex series with N samples. Opcode 0, Opcode 1,
Opcode 3, and the dynamic method are considered for the 2D FFT.

The maximum absolute value of x(k) is used as a scalar value for Opcode 3. I also
investigate to adaptively change the scalar value during the execution of the FFT. Initially
starting from a scalar value of 256, the value is multiplied with 2 after each FFT butterfly.
Finally, I integrate this 2D FFT into an algorithm that reconstructs holography images
acquired by lens-free microscopy [230]. I use the spectral method for the reconstruction.

The last benchmark is a 2D Richardson-Lucy deconvolution

u(t+1) = u(t) ·
( g

u(t) ∗K ∗ K̂
)
,

where u(t) is the latent image, g the observed image, K a point spread function (PSF)
and K̂ the flipped PSF. The conversion technique for the PSF values is fixed to FP16,
FP21, and FP32 (Opcode 0), respectively. Due to the higher value range of the algorithm,
the QX.Y conversion methods are adapted to Q11.5, Q11.10, and Q11.21.

Results. Since pixel values coming from an image sensor are integers, converting the
data to floating-point values does not lead to any approximation of the input data. The
results shown in Figure 4.3 demonstrate the case, where the register set is able to store
all values of the kernel f during the execution. Hence, the values of f were transferred
as FP64 values to the FPU register set.

The output of the first iteration is equal to the FP64 execution (MSE = 0.0) because
there is no approximation of kernel and input values at this point. The first approxi-
mation (conversion) is applied while storing the result image of the first iteration. The
experiments have shown that the MSE of a Full FP32 execution is slightly higher than
an execution using Q8.13 or Q.21, but about two orders of magnitude higher than the
FP32 and even seven orders of magnitude higher than Q8.24 and Q.32. Using a 32-
bit fixed-point method (Q8.24 or Q.32) has resulted in a much smaller MSE than a Full
FP32 execution, but has the same possibility of data reduction. For the dynamic method
(dyn dt (th=0.01)), the threshold 0.01 implies an usage of more FP16 data types, hence
the MSE is closer to the MSE of the FP16 execution. More FP32 data types were used
for dyn dt (th=0.0001), therefore the resulting MSE is closer to the MSE of the FP32
execution.
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Figure 4.3: MSE values of 2D convolutions using different conversion methods without
preconversion. As input, an image of size 1024×1024 with random values is used.

For the second test, the filter values of f were converted into different conversion for-
mats before transferring it to the FPU registers (see Figure 4.4). This test demonstrates
the case, where kernel values also have to be replaced from the register set during the
execution. The fixed-point conversion formats (QY.X and Q.Y ) have resulted in a higher
MSE than their FP relatives. The FP32 approach has slightly outperformed a full FP32
execution.

The two mentioned tests were also applied to images with 12 bit pixel values.However,
the trend was similar to 8 bit values, hence considerations of 12 bit image values are
not presented here. To get a visual impression of the results, I have applied different
conversion methods to the 2D convolution, that has the well-known “Lena” image as
input, see Figure 4.5. As we can see, the visual difference between the exact convoluted
image and the approximated one is low. The approximations cause no artifacts in the
images, however, one can argue that the smearing effect is stronger for the approximated
versions. Nevertheless, the proposed conversion unit allows us to adapt the quality loss
for different users.
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Figure 4.4: MSE values of 2D convolutions using different conversion methods with pre-
conversion. As input an image of size 1024×1024 with random values was used.

Table 4.2: MSE values for 2D FFTs using different conversion methods and an image of
size 1024×1024 with random values.

Full FP32 FP (op 0) FP (op 1) Q.Y (op 3) Q.Y adapt. (op3)
MSE RD MSE RD MSE RD MSE RD MSE RD

16 bit - - ∞ 4 1.60E+05 4 2.00E+10 4 9.87E+07 4
21 bit - - ∞ 3 2.84E+02 3 3.66E+09 3 9.53E+04 3
32 bit 1.63E+02 2 1.67E-04 2 - 2 9.02E+02 2 2.27E-05 2

Dynamic method

Threshold 1E00 1E-01 1E-03 1E-05 1E-07
MSE RD MSE RD MSE RD MSE RD MSE RD

1.16E+03 3.65 1.85E+02 3.14 2.75E-02 2.34 1.67E-04 2.21 1.67E-04 2.21

The third test studies the influence of the conversion techniques for the 2D FFT. Ta-
ble 4.2 shows the resulting MSE and the factor of reduced amount of data (RD) for the
different techniques.

Most of the static techniques using either 16 or 21 bits are presumably not applica-
ble in real applications. The reason is the large value range of outputs of the 2D FFT
algorithm. The only exception is Opcode 1 using a 21 bit data type. A Full FP32 ex-
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(a) Input image. (b) Exact convolution (FP64).

(c) FP16-based (MSE ≈ 0.0005). (d) Q8.8-based (MSE ≈ 5).

Figure 4.5: Visual effect of the 2D convolution using different conversion methods com-
pared to the FP64 method.

ecution, where all operations were performed in 32 bit, had a higher MSE compared
to FP32. Formats based on Opcode 1 have reduced the MSE compared to FP16 and
FP21. Adapting the scalar value for Q.32 has resulted in a smaller MSE compared to
FP32. Compared to Full FP32, the dynamic method with a threshold of 0.1 had roughly
the same MSE, but has reduced the amount of data by a factor of about 3. Hence, the
dynamic method is usefully applicable for the spectral method.

The different conversion techniques were applied to the 2D FFTs, which are part of
the spectral method, see Table 4.3. Using FP32 has resulted in a MSE of 0.0. The
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Table 4.3: MSE values for the spectral method that reconstructs holography images using
different conversion techniques for the 2D FFT.

FP16 (Op 0) FP21 (Op 0) FP32 (Op 0)
MSE RD MSE RD MSE RD

4.93E-02 4 4.78E-02 3 0.00E+00 2

Dynamic approach
threshold=1 threshold=0.5 threshold=0.1 threshold=0.01
MSE RD MSE RD MSE RD MSE RD

2.16E-04 3.94 1.63E-04 3.91 8.00E-05 3.77 1.40E-05 3.35

Figure 4.6: Spectral method for holography reconstruction. Images are calculated using
FP64 (left), FP16 (middle), and dynamic method with threshold 0.001 (right).

dynamic method has reduced the MSE by two orders of magnitude, while slightly de-
creasing the RD compared to FP16. Figure 4.6 shows the output of the spectral method
using different conversion techniques. While we can see some artifacts for FP16 (middle
image), the dynamic method (right) visually matches with the exact image (left).

The last test considers different conversion techniques for 2D Richardson-Lucy de-
convolution. In each case, the same conversion method was used for values of the in-
termediate results and the output image. The results strengthen the already determined
results. A brief summary is given in the following. The MSE of a Full FP32 execution was
higher than our FP32 approach. The FP approaches (FP16, FP21, FP32) had a smaller
error than their fixed-point relatives (Q.16, Q.21, Q.32, Q11.5, Q11.10, and Q11.21).

Findings. According to the results, it is clear that frequently used data such as kernel
and filter values should be stored in the register set without conversion in order to get a
high QoR. Moreover, it is sufficient to support the conversion methods with an Opcode
0/1 (FP32, FP21, FP16), because they achieve the best results in terms of MSE. It is also
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shown that Q.Y yields a lower MSE for algorithms with a small value range. Additionally,
this mode enables a programmer to calculate other parts of an application using fixed-
point operations. For example, parts of the algorithm that need a higher QoR can be
calculated using FP64 hardware combined with the conversion unit and the other parts
can be calculated using fixed-point arithmetic. The conversion unit avoids to have an
explicit cast of variables used in both parts.

4.2.2 Measuring the Potential Energy Savings

In order to measure the energy consumption of an algorithm using different conversion
techniques, memory footprints of the 2D FFT benchmark are created.Because FP21 is
not supported in current computer systems, only FP16, FP32, and FP64 are considered.
Using these extracted footprints, the energy consumption is measured on existing em-
bedded compute platforms. The function memcpy, which is part of the standard C library,
is employed for data transfers.

The used platforms are the Odriod-XU [231], the Parallela board [232], and the Myriad
1 development board [233]. An overview of the integrated compute units in each platform
is given in Table 4.4. These platforms offer some of the lowest energy operations among
commercially available platforms.

The Odriod-XU includes a Samsung Octa processor, which integrates a Cortex-A15
processor and a Cortex-A7 processor. This processor is based on the ARM big.LITTLE
architecture. An operating system can switch between both processors depending on
the current workload and the required performance, but the processors cannot be used
concurrently. The frequency of the Exynos microprocessor is decided based on which
processor the benchmark runs.

A script is used to measure the energy consumption of the Odriod-XU. This script
reads out hardware performance counters that include values for voltage, current, and
power of the A7 processor, A15 processor and the main memory. To measure the energy
consumption for all four available cores, I execute the extracted memory footprints on
each core. An infinite loop around the memcpy calls are used to get a stable value
of the electric power. The execution time is measured in multiple runs of the original
implementation (without the infinite loop) and averaged.

The Parallela board that includes a Dual-core ARM A9 (600 MHz) processor and

Table 4.4: Overview about the considered platforms.

Platform Host processor [Technology] Coprocessor [Technology]

Odriod-XU Exynos 5 Octa (5410) [28 nm] PowerVR SGX544MP3 GPU [28 nm]
Parallela Zynq-7010 [28 nm] E16G301 [65 nm]
Myriad 1 Leon3 [65 nm] SHAVEs [65 nm]
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a 16-core Epiphany (666 MHz) was developed for energy-efficient execution of high-
performance applications. The Odriod Smart Power that is a deployable power supply is
employed to specify a voltage and to measure the current and the electric power of the
Parallela board. The Odriod Smart Power measures the values of the entire board.

I run two threads on the A9 processor to get the energy consumption for the A9
processor exclusively. To measure the electric power of the A9 processor together with
the Epiphany, I start two threads on the A9 processor and 16 threads on the Epiphany.
Each thread executes the memory footprint. The 2D FFT data is transferred from the
host memory to the local memory by Direct Memory Access (DMA). On each Epiphany
core, memcpy transfers data to another region in the local memory of the core.

The Myriad 1 combines a Leon processor with eight Streaming Hybrid Architecture
Vector Engines (SHAVEs). A SHAVE consists of features from Reduced Instruction
Set Computing, Very Long Instruction Word processors, Digital Signal Processors and
Graphic Processing Units. For measuring the electric power of the Myriad 1, power
cables are directly connected to supply the processor with electrical energy. A switched-
mode power supply together with an ampere-meter enable it to specify the voltage and
to measure the current. To transfer the memory footprints inside the host memory, the
function memcpy is used on the Leon processor. In the second run, eight DMA units, that
are assigned to each SHAVE, transfer data to the local memory. All SHAVES are used
to transfer data inside the local memory according to the memory footprints.

The energy consumption is calculated by multiplying the execution time (of the orig-
inal implementation) with the measured electric power (determined with an infinite loop
integrated into the implementation). The results of all setups are visualized in a bar chart
(Figure 4.7). The initial expectation is that reducing the amount of the application’s data
results in a reduction of the energy consumption almost in the same range. According
to the measurements, this expectation is valid. The main contribution for the energy
reduction is the reduced number of cache misses.

4.3 Conversion Unit

As the former section has revealed, converting individual floating-point values is very
beneficial in terms of reducing the required energy consumption for memory accesses.
Furthermore, it offers a higher precision than performing the entire algorithm using a
native lower precision format such as Full FP32. It also has often a negligible impact on
the QoR. To exploit the potential of converting values, a conversion unit (CU) is designed.

Figure 4.8 presents the structure of the CU. The CU converts a FP64 value into a
value with less bits performed by the Converter before storing it to memory and thus it is a
lossy operation. The used conversion technique depends on the opcode which is given to
the Converter. During a read access, the stored value is converted back to FP64 without
an accuracy loss using the Deconverter. Specifying the opcode for both units is done via
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Figure 4.8: Structure of the conversion unit.

an instruction or via memory mapping as described later. Furthermore, when using the
dynamic method for selecting the conversion method, then the decision is based on an
approximation check unit (ACU). The ACU decides, which conversion method is used
depending on the introduced numerical error that will occur after the conversion. The
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Table 4.5: Area and estimated power for the Converter and the Deconverter for different
target frequencies. TSMC 28nm HPM High Speed library is used for the synthesis.

500 MHz 600 MHz
Area Static power Area Static power
[µm2] [µW ] [µm2] [µW ]

Converter 1958.681 336.900 2187.844 435.100
Deconverter 1199.812 188.300 1214.325 225.800

Table 4.6: Area and estimated power for the considered approach for the Approximation
Check Unit (ACU). TSMC 28nm HPM High Speed library is used for the synthesis.

Consumption
500 MHz 1000 MHz

Area Power Area Power
[µm2] [µW ] [µm2] [µW ]

97.875 10.043 129.600 25.044

ACU is parametrized using the threshold j as described in Section 4.2.1.
However, supporting the dynamic method would also require an address translation

unit (ATU), which also has to store further information about the conversion method that
was used for a specific stored value. The ATU also has to avoid fragmentation inside the
memory. To fully exploit the bandwidth, values should be collected before transferring it
to memory. These aspects are not further considered in this thesis.

4.3.1 Preliminary Design

As a first step to realize such a CU, the Converter and the Deconverter are implemented
in Verilog. The preliminary CU supports Opcode 0, 1, and 3. Instead of truncation, the
round to nearest method is implemented. The Q.16 and Q.32 data formats are converted
by scaling the FP64 value. Each conversion is performed in one clock cycle.

Using the Synopsys tools, we get an estimation about the power and the area of the
units. The TSMC 28nm HPM High Speed library is used for the synthesis. The results
are summarized in Table 4.5. Compared to the measured values in Section 4.2.2, these
units do not significantly increase the energy consumption. Table 4.6 shows the area
and power overhead for a simple ACU.
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Figure 4.9: Structure of the the used basic Rocket Chip implementation.

4.3.2 Integration Into an Existing Processor

In the following, I consider a conversion unit, which is controlled by a memory mapping
scheme. I have integrated the CU into an in-order general purpose processor. I have
selected a RISC-V-based system on chip called Rocket chip [234]. A publicly and freely
available Rocket Chip Generator, which is a system on chip generator, has allowed
me to specify a configuration for a Rocket chip [235]. Possible configurations include the
address and data width, the cache hierarchy, floating-point unit support and number of
cores. Additionally, one can select a support for virtual memory. Besides the hardware
description, a simulation environment and a GNU/GCC toolchain to run assembly or C
code on the processor is available.

Before the integration of all CU relevant hardware into the processor, I have configured
a basic processor for evaluation purposes, see Figure 4.9. I have configured the basic
version by setting the number of rocket tiles to one and using a 64-bit address and data
width. The rocket tile includes a data and an instruction cache, while I have not integrated
other caches. I have deactivated the support for virtual memory.

In a next step, I have integrated the CU into the basic processor. The memory location
of the FP value specifies the technique, which is used for the conversion, see Figure 4.10.
This approach poses a memory mapping scheme.

All values in a certain memory region named CU region are converted before storing
it to memory and converted back during a read access. The used CU version for the
evaluation supports Opcode 0, i.e. FP64 to FP16/32. That means the CU applies the
same conversion method for all values in the CU region.
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Figure 4.10: A certain address space in the main memory is memory mapped as the
CU region. This region is located between address Astart and the end of the physical
address space. Each access to that region activates the address mapping and the CU.

To avoid adaptations of the compiler, the processor supports the required address
mapping. Moreover, a write mask specifies which part of a 64 bit memory location stores
the converted value. Memory addresses that belong to the CU region are mapped to
an effective memory address. The following formulas are used for the mapping.

Aphys,CU16 = Astart +
A− Astart

4

Aphys,CU32 = Astart +
A− Astart

2

The integration of the CU affects two parts of the basic processor, see Figure 4.11.
Firstly, there exist a Store CU and a Load CU, which are implemented in the FPU. Sec-
ondly, the controller of the CU (CU control) and the address mapping (Mappping) are
part of the rocket core.

During a store, a FP64 value from the register set is converted, when the associated
memory address is within the CU region The conversion is performed by the Store CU.
The required indication comes from the CU control that activates the use_scu signal.
Since the data bus is 64-bit wide, the FP16 value is concatenated with 48 zeros. Then,
the rocket core sends the data word, the address, and the write mask to the data cache.

When a FP value within the CU region is transferred from the data cache via the
core to the FPU, the CU control activates a signal to the FPU (use_lcu). The transfer
is requested by a read access to CU region. The use_lcu signal is set to one if the FP
value is a FP16/32.
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Figure 4.12: Time diagram for a write memory access to the CU region.

Figure 4.12 shows a time diagram of storing a FP16/32 to the CU region. In the exe-
cute stage of the instruction pipeline, the decision is made whether the mapped address
or the original address is required. In case that the address is part of the CU region,
the signal use_scu is set. The effective memory address is sent together with a write
mask (s1_req) to the data cache. In the MEM stage, the conversion is performed and
depending on the use_scu signal the converted value is transferred to the data cache.

All extensions to the basic processor are written in Scala. The configuration files of
the rocket chip generator are adapted in order to specify the basic version, a version with
a FP16 CU, and a version with a FP32.
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Synopsys tools are used to simulate and synthesize the different versions. Prime
Time PX is employed to apply a power analysis. As the required digital standard cell
library, the SAED 32/28nm library is used. This library is freely and publicly available
from Synopsys for research purposes. The selected technology file offers gates with a
low threshold voltage, hence leads to the highest possible frequency provided by the
SAED 32/28nm library. This file is called ff1p16v25c.

Each processor is synthesized for 400 MHz, i.e. a timing constraint of 2.5 ns. Table 4.7
shows several information about the basic configuration of the processors. Using the
rocket chip generator and the Synopsys design compiler, three different versions of a
processor are implemented and synthesized.

• Basic processor

• Processor with FP16 CU

• Processor with FP32 CU

4.4 Results and Evaluation

First of all, let us consider the area consumption of the different versions, see Table 4.8.
The high-level synthesis tool of Synopsys, design compiler, determines the chip area
by taking the area of all gates into account. However, it does not incorporate additional
resources such as wires.

The basic version requires 101, 211 cells in total, where the CU16-based processor re-
quires 100, 321 cells and the CU32-based processor 101, 865 cells. Hence, the amount
of cells is roughly the same for all versions. The small differences are caused by the op-
timization algorithm of the synthesis tool. Due to different optimization strategies during

Table 4.7: Configuration of the processor, the data cache, and the main memory using
the rocket chip generator.

Processor Main memory

Number of Tiles 1 Size 256 MiB
Number of integer register 32 Data size of an access 64 B
Number of floating-point register 32

Data cache

Size 16 KiB
Line size 64 B
Number of sets 64
Associativity 4
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Table 4.8: Area consumption of the different designs.

Basic Processor CU16-based Processor CU32-based Processor
Area [µm2] Area [µm2] Area [µm2]

Chip 329,076 327,119 330,653
| Processor 298,455 296,470 299,764
| | Rocket Tile 239,713 237,995 241,131
| | | FPU 134,185 132,292 135,181
| | | | Load CU - 191 477
| | | | Reminder FPU 134,185 132,101 134,704
| | | Rocket Core 61,768 61,898 62,216
| | | Reminder Tile 43,760 43,805 43,734
| | Reminder Processor 58,742 58,475 58,633
| Reminder Chip 30,621 30,649 30,889

Table 4.9: Static power consumption of the different designs.

Basic Processor CU16-based Processor CU32-based Processor
Power [mW ] Power [mW ] Power [mW ]

Chip 8.79 8.74 8.82
| Processor 7.82 7.77 7.85
| | Rocket Tile 6.39 6.35 6.42
| | | FPU 3.65 3.60 3.67
| | | | Load CU - 5.56·10−3 14.9·10−3

| | | Rocket Core 1.63 1.63 1.64

the synthesis and the distributed implementation of the CU, only the area consumption
of the Load CU is available in the reports. The 16 bit version consumes roughly 0.2%
of the chip and the 32 bit version 0.5%. Table 4.9 shows the static power consumption
for the different versions. Similar to the area consumption, the power consumption is
roughly the same for all designs.

The power and energy consumption of the caches, which include SRAM modules,
and the main memory is determined using CACTI 5.3 [236]3. The result for area, power,
and energy consumption is shown in Table 4.10. The static power consumption of the
main memory (63.6 mW) is significantly higher than that of the chip (8.8 mW). Compared
to that, the SRAM modules have a negligible static power.

I apply three benchmarks to evaluate the designs: a 2D convolution with a 3×3 filter
and an image of size 64×64, a 2D convolution with a 7×7 filter and an image of size
512×16, and a 2D FFT on an image of size 2048×4. The relatively small input size is
because of the high consumed time for analyzing the energy consumption using Prime-
TimePX. The input images are taken from a subset of the well-known “Lena” image.

3I used the web-interface of CACTI5.3 that was available at quid.hpl.hp.com:9081/cacti/
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Table 4.10: Power and energy consumption analysis of the caches and the main memory
using CACTI 5.3.

Area [µm2] Static power [mW] Energy per access [nJ]

Data cache 54, 364 5.33 · 10−4 5.09
Instruction cache 47, 871 5.78 · 10−4 2.87

Main memory 68.6924 mm2 63.594 31.99

Table 4.11: Different performance metrics for the considered benchmarks.

2D Convolution (3×3) 2D Convolution (7×7) 2D FFT
Basic CU16 Change Basic CU16 Change Basic CU32 Change

Execution time 1.508 s 1.445 s 1.04× 10.93 s 8.09 s 1.35× 27.51 s 8.66 s 3.18×
# cache misses 1750 397 4.41× 61.435 892 68.87× 442,166 9159 48.28×
# memory accesses 1741 394 4.42× 61,339 794 77.26× 442,037 9163 48.24×
# read accesses 1292 340 3.8× 56,962 687 82.91× 301,108 6336 47.52×
# write accesses 449 52 8.63× 4377 107 40.91× 140,929 2827 49.85×

Performance. Table 4.11 presents performance metrics of the different benchmarks. It
comprises the execution time, the number of cache misses, and the amount of memory
accesses. For the first benchmark, the number of memory accesses is reduced by a
factor of 4.4 using the 16 bit CU. However, the execution time is only slightly decreased.
The reason is that for the basic version and the CU16 version the cache is large enough
to store all required pixels for the computation. Increasing the convolution kernel, which is
done for the second benchmark, we can see that the number of cache misses drastically
decreases (68.9×). The execution time is 4.2% faster for the CU16 in this case. But the
main advantage of the CU is for applications that have many memory accesses such as
the 2D FFT. Here, the cache misses are reduced by a factor of 48.2 but the execution
time is also drastically reduced (factor of 3.2).

Theoretically, a frequency of 400 MHz allows the execution of 400 M instructions per
second. Applications, where many of these instructions are memory accesses on FP
values, especially, when the working set is larger than the L1 cache, benefit from the
CU regarding performance. For instance, the benchmark 2 has a memory access every
75th cycle on average. Compared to that, the FFT benchmark has an access every 25th
cycle. Moreover, this benefit increases for irregular memory accesses.

Energy and power consumption. I investigate dynamic power and consumed energy
for the benchmarks. PrimeTime PX determines an averaged dynamic power Pdyn. The
dynamic energy is Edyn = Pdyn · texec. As the used gate library does not allow us to get
power and energy values for memories, the values for the SRAM modules and the main
memory are determined by using the values from Tables 4.10 and 4.11. Tables 4.12
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Table 4.12: Power and energy of the 2D convolution with a 3×3 kernel (benchmark 1).

Dynamic Power Consumption [mW] Dynamic Energy Consumption [mJ]
Basic CU16 Diff Basic CU16 Diff

Chip 88.6 91.4 +3.2% 133.6 132.1 -1.1%
| Processor 86.7 89.5 +3.2% 130.7 129.3 -1.1%
| | Rocket Tile 79.6 83.0 +4.3% 120.0 119.9 -0.1%
| | | I Cache 12.9 13.3 +3.1% 19.5 19.2 -1.2%
| | | | SRAM 2.2·10−3 2.18·10−3 -1.0% 3.32·10−3 3.15·10−3 -5.1%
| | | FPU 32.1 36.1 +12.5% 48.4 52.2 +7.8%
| | | | Load CU - 60 ·10−3 - - 86.7·10−3 -
| | | | Rest of the FPU 32.1 36.0 +12.3% 48.4 52.1 +7.6%
| | | Rocket Core 30.8 30.5 -1.0% 46.4 44.1 -5.1%
| | | Rest of the tile 3.8 3.1 -18.4% 5.7 4.5 -21.8%
| | | | D Cache SRAM 1.07·10−3 1.02·10−3 -5.3% 1.62·10−3 1.47·10−3 -9.3%
| | Rest of the processor 7.1 6.5 -8.5% 10.7 9.4 -12.3%
| Rest of the chip 1.9 1.9 0.0% 2.9 2.7 -4.2%
Main Memory 0.0369 0.0087 -76.4% 0.0557 0.0126 -77.4%

Total 88.6 91.4 +3.1% 133.6 132.1 -1.2%

Table 4.13: Power and energy of the 2D convolution with a 7×7 kernel (benchmark 2).

Dynamic Power Consumption [mW] Dynamic Energy Consumption [mJ]
Basic CU16 Diff Basic CU16 Diff

Chip 80.9 100.5 +24.2% 884.24 813.05 -8.1%
| Processor 79.0 98.8 +25.1% 863.47 799.29 -7.4%
| | Rocket Tile 71.8 92.2 +28.4% 784.77 745.90 -5.0%
| | | I Cache 11.6 11.4 -1.7% 126.79 92.33 -27.3%
| | | | SRAM 2.38·10−3 2.45·10−3 +3.0% 65.4·10−3 21.2·10−3 -67.6%
| | | FPU 29.3 46.5 +58.7% 320.25 376.19 +17.5%
| | | | Load CU - 90.90 ·10−3 - - 0.735 -
| | | | Rest of the FPU 29.3 46.4 +58.4% 320.2 375.4 +7.6%
| | | Rocket Core 26.3 30.3 +15.2% 287.46 245.13 -14.7%
| | | Rest of the tile 4.6 4.0 -13.0% 50.3 32.4 -35.6%
| | | | D Cache SRAM 2.02·10−3 1.01·10−3 -50.1% 55.7·10−3 8.75 ·10−3 -84.3%
| | Rest of the processor 7.2 6.6 -8.3% 78.7 53.4 -32.2%
| Rest of the chip 1.9 1.7 -10.5% 20.8 13.8 -33.8%
Main Memory 0.1795 0.0031 -98.3% 1.9623 0.0254 -98.7%

Total 81.1 100.5 +24.0% 886.2 813.07 -8.3%

to 4.14 shows Pdyn and Edyn for the designs and benchmarks including parts of the chip
and the main memory.

For the benchmark 1, the average dynamic power is 3.1% higher for the design with
the CU16 compared to the basic processor. This is mainly caused by the FPU, which
consumes 12.5% more dynamic power. However, this increase is not due to the Load
CU. Since the Load CU only requires 0.3 µW . It seems that the reduced idle time of the
FPU caused by less cache misses is responsible for the higher dynamic power. This
trend is similar for all benchmarks. Additionally, the Design Compiler creates different
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Table 4.14: Power and energy of a 2D FFT (benchmark 3).

Dynamic Power Consumption [mW] Dynamic Energy Consumption [mJ]
Basic CU16 Diff Basic CU16 Diff

Chip 63.1 81.4 +29.0% 1735.88 704.92 -59.4%
| Processor 61.2 79.4 +29.7% 1683.61 687.6 -59.2%
| | Rocket Tile 52.3 72.9 +39.4% 1438.77 631.31 -56.1%
| | | I Cache 8.0 8.7 +8.7% 220.08 75.34 -65.8%
| | | | SRAM 2.45·10−3 2.13·10−3 -13.3% 26.8·10−3 17.2·10−3 -35.8%
| | | FPU 26.7 42.8 +60.3% 734.52 370.65 -49.5%
| | | | Load CU - 3.04·10−3 - - 26.3·10−3 -
| | | | Rest of the FPU 26.7 42.8 +60.3% 734.5 370.6 -49.5%
| | | Rocket Core 11.6 17.7 +52.6% 319.12 153.28 -52.0%
| | | Rest of the tile 6.0 3.7 -38.3% 165.1 32.0 -80.6%
| | | | D Cache SRAM 1.51·10−3 1.26· 10−3 -16.5% 16.5·10−3 10.2·10−3 -35.8%
| | Rest of the processor 8.9 6.5 -27.0% 244.8 56.3 -77.0%
| Rest of the chip 1.9 2.0 +5.3% 52.3 17.3 -66.9%
Main Memory 0.5140 0.0383 -93.4% 14.1414 0.2931 -97.9%

Total 63.6 81.4 +28.0% 1750.02 705.22 -59.7%

versions for the FPU for both designs as discussed above. The reason is that the syn-
thesis tool choose a different trade-off between area, static, and dynamic power. But the
reduced number of cache misses leads to a shorter execution time, hence the processor
with CU needs slightly less dynamic energy (-1.2%). The main benefit of the CU is visible
for the main memory. Here, the dynamic power and the dynamic energy is reduced by a
factor of roughly 4.4. Rest of the tile includes among others the consumption of the data
cache. We can see that the energy consumption is reduced by 21.8% for this part of the
chip. Additionally, Rest of the processor and Rest of the chip compromise the consump-
tion for the processor-internal bus (TileLink), the processor-external bus (AXI4), and the
bridge between both buses. While these values do not not include the wires itself or the
main memory connection to the bus, it gives a relative view on the difference between
the designs. My method reduces the traffic on the bus and hence reduces the energy
consumption of bus system modules by roughly 10%.

Considering the results of benchmark 2, we see that the higher amount of cache
misses leads to a smaller power consumption for the basic chip (80.9 compared to 88.6
for benchmark 1). The rationale is, as discussed above, the higher utilization of the
system components for the first benchmark. The modules remain idle for less cycles,
while waiting for data from the main memory. Compared to that, the power consumption
of the CU16 version increases for the second benchmark. This can especially be seen for
the FPU and the Rocket Core. This behavior is reversed for the main memory. Here, the
power consumption for the basic version is higher for benchmark 1 than for benchmark
2, where the power consumption decrease for the CU16 version. Similar to benchmark
1, the power and energy consumption are mostly reduced for all memory-related parts
of the CU16 design. This leads to an entire energy reduction of 8.3%.
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The last benchmark, FFT, clearly illustrates the discussed aspects. While the power
of components increased due to the higher utilization, the dynamic power significantly
decreased for memory-related components. Therefore, the energy consumption of the
entire CU32-based design is 2.5 smaller compared to the basic version.

4.5 Related Work

Current AC approaches at the hardware layer often focus on reducing the precision of
hardware execution units [237, 153]. Instruction Set Architecture (ISA) extensions are
used to specify which operations or memory regions are executed using high or low
voltage [10]. Cache misses caused by loads are very expensive in terms of latency
and energy consumption in modern architectures. Instead of loading a value that is
missing in the cache, an approximated value is generated according to a history of loaded
values [169]. An often used method to decrease the memory footprint is to exploit cache
compression techniques [238, 228, 239, 240]. However, these methods do neither take
advantage of lossy techniques nor show the same benefit for floating-point data [241,
171]. In case of FP values, a FP block format, in which several mantissae use the same
exponent, reduces the amount of data [242].

Doppelgänger maps approximately equal cache lines to the same physical location in
the LLC to reduce the required cache size [171]. While the performance is almost similar
to the baseline architecture, Doppelgänger saves static and leakage energy. The Bunker
Cache exploits the fact that often real-world data shows the behavior of spatio-value
similarity [172]. On that account, San Miguel et al. argue that data that have similar
content are located nearby in the memory. They map such memory addresses to the
same cache line in order to reduce off-chip transfers and decrease execution time.

The novel approach I presented is orthogonal to the cache related approaches ex-
plained above. Therefore, my approach can be used together with them towards higher
performance or energy efficiency. The presented CU operates on a single value. A newer
work from Jain et al. (published after my approach) also exploits the aspect of using a
different data format in computation and storage [243]. This newer work uses an ISA
extension to integrate the so-called asymmetric compute-memory extension. However,
their approach is a pure static or compiler-based approach. The presented CU method
introduces a dynamic behavior, since the approximation decision is based on a memory
mapping. During runtime, an approximation can be used by storing data into the CU
region. Another newer work compared to my work integrates an approximated compres-
sion method for integer data types such as char, short, int, and so on into the memory
controller [244]. This method dynamically controls the used compression method de-
pending on a quality target.

Increasing the refresh rate of a DRAM memory region can reduce the energy con-
sumption, but raises the probability of losing the correct values [8, 226]. In addition,
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there exist AC approaches for emerging memory technologies such as Solid State Disks
(SSD) [227] and Phase-Change Memory (PCM) [174]. There also exist software ap-
proaches, which trade-off accuracy for performance by using different data types [16,
245]. However, they only consider single and double precision data types.

4.6 Summary

AC poses an interesting and alternative way to improve design goals such as energy
consumption or execution time. A wide-spread applicability requires a controlled way
to tune the degree of approximation. Such a knob can be integrated at hardware layer
as discussed in this chapter and can be employed and tuned by the configuration layer
that is designed in this thesis. While approximating compute units is quite common in
the related literature, the contribution to the design values of an entire processor is low.
However, the contribution of memory accesses is often quite high in terms of energy
consumption and latency for applications running on any processor.

This chapter presented an innovative way to integrate an accuracy-aware method at
hardware layer in a controlled way. The proposed conversion unit leads to a design that
converts floating-point values before being transferred to memory and hence reduces the
required memory space. The results show that the amount of cache misses is reduced.
This leads to a reduction of the energy consumption and latency for memory accesses
on average. Furthermore, compared to a native execution of an application using a
smaller data format, the conversion units yields a higher QoR. An application field that
is suitable to be executed on the presented approximate hardware is image processing.
Using the dynamic method, the QoR achieved by a 2D FFT is improved by two orders of
magnitude, while retaining the potential gain in the reduction of energy consumption.

The experiments on different applications have shown that applications with high
memory access frequency and irregular memory access patterns benefit most from the
CU. On the other side, the overhead of the conversion unit is almost negligible in terms
of area and static power. Comparing the energy and power values to a basic version of
a processor poses some difficulties. Firstly, the integration of the conversion unit and the
heuristic search of synthesis algorithms also change the behavior of unaltered compo-
nents. Lastly, the dynamic power of the various components such as the floating-point
unit significantly increases.

The conversion unit can be combined with other accuracy-aware methods at the same
layer or with one from higher layers. The next chapters present additional accuracy-
aware methods for other layers. Moreover, I present an abstraction layer, configuration
layer, that can control the conversion unit in combination with other methods to achieve
soft bounds for the QoR dynamically or to meet certain performance constraints.
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CHAPTER

FIVE

FPGA-BASED APPROXIMATE COMPUTING

PATTERNS FOR DYNAMIC PROGRAMMING

This chapter proposes a novel way to introduce an accuracy-aware method at the ar-
chitecture layer. It poses another possibility for applications to exploit the paradigm of
accuracy awareness. I introduce novel AC design patterns that can be used by hard-
ware developers to build efficient designs for different hardware units such as FPGAs.
Exploiting the introduced patterns leads to accuracy-aware knobs for a hardware imple-
mentations that can be tuned by the introduced configuration layer in this thesis. Hence,
the presented accuracy-aware method can be combined with the other methods.

The presented design patterns target dynamic programming (DP) algorithms. DP is
a programming concept and a mathematical optimization method applicable to many
domains. An algorithm based on DP often poses a huge challenge in order to port them
into an FPGA. Therefore, I introduce several AC-based patterns, which allow a designer
to implement efficient FPGA designs for 2D DP algorithms. I show the benefit of these
patterns for algorithms coming from different domains.

5.1 Introduction

DP-based algorithms pose significant challenges for hardware designers in order to port
them to special architectures. These algorithms are used in image processing, compu-
tational biology, or in time series analysis. In particular, 2D DP-based algorithms have
a limited internal parallelism due to data dependencies and huge memory footprints.
The high memory footprint often prevents to store all required data on fast local FPGA
memories and thus introduces additional costly off-chip memory accesses. Furthermore,
an often required backtracking step hampers a streaming architecture implementation.
Streaming architectures are very effective to achieve high performance using an FPGA.
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An often used approach to parallelize such 2D DP algorithms are systolic arrays,
which present a set of processing units connected in a certain way. However, they require
a huge amount of hardware resources. To reduce the amount of needed resources and
further improve the performance of FPGA designs, applying approximate computing is a
suitable way. The investigated algorithms that are considered in this chapter allow us to
introduce approximations without sacrificing the final quality of result (QoR).

Useful approximation design patterns enable a hardware designer to implement an
adapted version of an algorithm in order to better exploit the capabilities of FPGAs. Be-
sides hand-optimized FPGA implementations for certain DP algorithms, there are only
few approaches that investigate more general approximation patterns to implement ef-
ficient FPGA designs. In the domain of image processing, down-sampling is such a
pattern [246]. GRATER [12] is an approach that applies precision scaling to OpenCL
kernels in such a way that a certain QoR is met. But these methods only consider a
single pattern, whereas considering more patterns can help to find even better designs.
For GPUs, SAGE [11] shows the higher improvement of design values by using a set
of patterns but these patterns are restricted to GPU kernels. Therefore, I identify and
design useful AC design patterns in this chapter, which target the implementation of 2D
DP algorithms applied in completely different domains.

These patterns are usable on various programming levels, hence it does not matter
if the design is implemented using a hardware description (e.g., VHDL) or a high-level
language (e.g., OpenCL). By employing these patterns, a hardware designer builds effi-
cient FPGA designs running on high-end or low-end FPGA-based systems as shown in
the remainder of this chapter. Furthermore, these patterns are valuable for other hard-
ware architectures such as GPUs or vector extension units (VEUs, e.g., AVX). Hence,
the contributions of this chapter are the following:

• Identification of AC design patterns for 2D DP-based algorithms.

• Exploiting these patterns for efficient implementations of DP designs for different
FPGA systems.

• Evaluation of these designs in various domains such as homology protein se-
quence search, stereo vision, and time series analysis.

• Showing the effectiveness of these patterns for other hardware architectures.

5.2 Fundamentals

This section provides an overview about the used FPGA-based systems. Furthermore,
the basics about dynamic programming and several examples are presented.
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5.2.1 Considered FPGA-based Systems

For the evaluation of the FPGA designs, I use an FPGA-based server system, Convey
HC-1, a workstation, Maxeler Workstation, and an evaluation board, which integrates an
FPGA-based System on Chip.

Convey HC-1. The Convey HC-1 combines an Intel Xeon 5138 processor with a re-
configurable hardware unit (see Figure 5.1). Four FPGAs (Xilinx Virtex-5 LX330) act as
four Application Engines (AEs) that can be user-programmed. Eight memory controllers
provide a bandwidth of 76.8 GB/s in total. Communication with the host is controlled
by the AE Hub. The available Personality Development Kit (PDK) allows a hardware
designer to create custom FPGA designs. Such designs can be described using a hard-
ware description language like VHDL. This system is able to outperform 32-threaded
applications running on an Intel Xeon E5-2670. More details can be found in [247].

SoCrates II Evaluation Board. The SoCrates II includes a Cyclone V system on chip,
which combines two ARM Cortex A9 running at 800 MHz, a reconfigurable FPGA fabric
usually running at 100 MHz, and 1GB DDR3 RAM at a frequency of 333 MHz. There are
41910 Logic Array Blocks (LABs), 112 Digital Signal Processors (DSPs), and 5 662 720
Memory Bits on the FPGA. The CPUs and the FPGA share the RAM. The board offers
several interfaces like USB or Ethernet and runs a full-fledged Linux operating system.
The required time for the compilation and synthesis is around one hour. Configuring
the FPGA requires between 100-200 ms. Despite the RAM being shared, data has to
be copied between CPU-attached and FPGA-attached buffers. The reason is that the
OpenCL framework has to independently deal with cache coherency.

Maxeler Workstation. The Maxeler workstation includes an Intel Core i7-2600S, 16
GB main memory, and a PCIexpress-based FPGA card (Maxeler Card MAX3A Vec-
tis with 24 GB RAM). The FPGA called Dataflow Engine is user-programmable by a
high-level language called MaxJ. MaxJ is a Java-based description language for FPGA
kernels. A programmer has to create a host code, a manager and a kernel code. The
manager code specifies the connection between the host and the FPGA, and the kernel

Figure 5.1: Overview of the Convey HC-1 architecture.
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code describes the actual design that is implemented on the FPGA. The FPGA gets data
from the host via PCI or from a locally attached memory with a bandwidth of 40 GB/s.

5.2.2 Dynamic Programming

The term dynamic programming (DP) describes a mathematical optimization strategy
and a programming concept. DP determines the optimal solution for a problem by ex-
ploiting solutions of subproblems. Therefore, DP combines solutions of these subprob-
lems to find the optimal solution of the main problem. In case that the problem has
several optimal solutions, DP is able to find all of them and thus the number of optimal
solutions can be counted. In general, the computation effort depends on the amount
of subproblems and the number of choices between possible subproblems to reach the
optimum. However, the problem requires a certain structure in order that DP is applica-
ble. The challenge of applying DP is to figure out, whether a problem can be transferred
into such a structure. The method was introduced by Richard Bellmann [248]. DP has
similarity to divide and conquer approaches, but it relies on subproblems that depend on
each other. Bellmann called the needed property of a problem the Principle of Optimality
and the meaning is

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decisions” [248, Page 4].

An important property of the problem structure is that always the same subproblems
occur for solving a main problem, which is called overlapping subproblems. This property
makes it possible to cache solutions to these subproblems. Note that subproblems can
also occur in other subproblems. Another property of the problem structure is that the
optimal solution also requires to solve subproblems optimally. A common way to transfer
a problem into one that can be solved by DP is the definition of a recursive structure if
possible. Besides 1D DP problems, there exist m-dimensional problems. For them, the
computational and storage complexity increase significantly. Such problems require to
consider up to m different subproblems.

In this chapter, I consider DP algorithms used in computational biology, stereo vision,
and time series analysis. The DP algorithm poses the bottleneck regarding the execution
time for these applications. The algorithms are described in the following sections.

5.2.3 A Tool for Finding Homologous Protein Sequences

Based on Hidden Markov Models (HMMs), the tool HMM-HMM-based lightning-fast it-
erative sequence search (HHblits) finds similar (homologous) protein sequences in a
database for a given query sequence [249]. The entries in the database are clusters of
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Figure 5.2: HMM-HMM-based lightning-fast iterative sequence search.

sequences that are biologically similar to each other. The clusters are represented by a
HMM. The HMM reflects this biological-based similarity or homology through delete, in-
sert and match states. For a consensus column of clustered sequences, the match state
models the probability for the occurrence of an amino acid at this position. Additionally, a
HMM models transition probabilities from one state to another. Goal of HHblits is finding
homologous sequences in order to draw inferences on its properties.

Design of HHblits. After starting the application, HHblits first reads the query se-
quence or a multiple sequence alignment and creates a query-HMM (cf. Figure 5.2,
Step 1) from it. All sequences are loaded from the used database into the main memory.
Then, a prefilter is initialized. After initialization, the application starts with the main loop.
The user can specify how often this loop shall search for homologous sequences. The
query-HMM is approximated to a simple profile (Step 2) in order to prefilter the protein
database (Step 3). Database entries consist not only of a HMM, but also of a sequence
in order to support fast prefiltering.

The first step in the prefiltering is to calculate a score for a locally ungapped similarity
of the query profile against each sequence in the database (Step 3.1). For all sequences
with a score higher than a threshold, a locally gapped score is calculated afterwards
in the second prefilter Step 3.2 by using a striped Smith-Waterman [250] implementa-
tion. Both are executed on the VEU. For all HMMs whose corresponding sequence has
passed both steps of the prefilter (Step 4), the application performs a comparison using
the Viterbi algorithm [251] (Step 5). If the calculated Viterbi score is higher than another
threshold then this HMM is considered homologous to the query-HMM. All passed HMMs
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Figure 5.3: Homology detection for a query sequence against a protein database.

are realigned and finally, the query-HMM is updated with all these homologous HMMs
(Step 6). The next iteration searches for homologous HMMs with this updated query-
HMM. To get a more profound understanding at a lower level of how HHblits works,
Figure 5.3 shows a flow chart of the application.

Gene Databases. Equally important to the algorithm under discussion are the layout
and size of the data to be processed. For the query, the profile consists of 220 lines,
one for each “letter” of the “alphabet” by which consensus amino acid columns of the
used query-HMM are represented. A line is at most of length 512 Byte. Thus, a profile
requires at most 110 KB of memory space.

The used database uniprot201 has roughly 3.1 million sequences. Each entry of this
database clusters homologous protein sequences from the uniprot database. An entry is
represented as HMM as well as an approximated sequence for prefiltering. The longest
sequence has 15,000 letters, while the shortest has only 2 letters. As Figure 5.4 shows,
the lengths are not distributed equally. Therefore, it does not make sense to design an
architecture explicitly for longer sequences, but rather to handle many short sequences.

Profiling of HHblits. For an efficient software/hardware design, it is important to fully
analyze the used algorithm and the used architecture. A widespread method to analyze
an application is to use a profiler. Such a profiler gives beneficial hints about the runtime
behavior of the entire application and also about the used execution time of different
parts of the application.

Therefore, I executed the tool HHblits on the Intel Xeon 5138 processor of the Convey
HC-1 and employed gprof as profiler to find the most time-consuming parts. The results
are shown in Table 5.1. According to the case studies of Remmert et al. [249], the
most common number of used iterations is up to two. For one and two iterations of the
tool, most of the calculation time is spent in the function ungapped_sse_score. So, this
function is the best candidate for accelerating the entire tool HHblits.

1ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/databases/hhsuite_dbs/
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Figure 5.4: Distribution of sequence lengths of the uniprot20 database.

Table 5.1: Profiling HHblits over one, two and four iterations.

Function
1 Iteration 2 Iterations 4 Iterations

Time Calls Time Calls Time Calls

ungapped_sse. 62.58% 49.77s 3129234 52.52% 99.69s 6258468 11.08% 200.83s 12516936
CalculatePost. 12.10% 9.62s 2155 7.09% 13.46s 3017 1.18% 21.32s 4741
Hit::Viterbi 6.37% 5.07s 601 19.63% 37.27s 3778 64.79% 1174.64s 83760
swStripedByte 3.72% 2.96s 77921 3.88% 7.37s 191721 1.10% 19.90s 452762
Sum 84.77% 67.42s 3209911 83.12% 157.79s 6456984 78.15% 1416.69s 13058199

Another measurement indicated that at most 7.757 GB of sequences data are trans-
ferred and processed per second by this function. The query profile of at most 220 lines
with a maximum of 512 Byte per line is presumably cached after few runs when all lines
have been accessed at least once, while the sequence data is always fetched from main
memory. The limiting issues for the throughput seem hence the memory boundedness
and the Front Side Bus (FSB) interface with a maximum bandwidth of 8.5 GB/s, because
the SSE unit can process data at a rate of 2133 MHz * 16 Byte = 34.128 GB/s, assum-
ing fully pipelined execution. Using more iterations for finding homologous sequences
increases the probability to find sequences that are not similar in terms of biological rela-
tionships due to over-fitting the query-HMM. Of course, in some cases it is helpful to use
more than two iterations. For four iterations, the most time-consuming part (up to about
64.79% of the entire application) is consumed by the generalized Viterbi algorithm.
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Dynamic Programming Algorithm: Smith Waterman Algorithm. The function un-
gapped_sse is based on the Smith Waterman algorithm [252]. This algorithm deter-
mines the optimal local alignment for two strings, which can be protein sequences. Given
two sequences, X = x1x2 . . . xm and Y = y1y2 . . . yn, of length m and n, respectively,
the following matrix recurrence leads to the optimal local alignment for a substitution
matrix S and a gap penalty function Wk.

H(i, 0) = H(0, j) = 0; 0 ≤ i ≤ m, 0 ≤ j ≤ n

H(i, j) = max


H(i− 1, j − 1) + S(xi, yi)[(mis)match],

maxk≥1{H(i− k, j),−Wk}[delete],

maxl≥1{H(i, j − l),−Wl}[insert],

0

(0 ≤ i ≤ m, 0 ≤ j ≤ n)

The maximum value of H is the similarity score of the local alignment. Starting from that
value, a backtracking step determines the best local alignment.

5.2.4 Stereo Vision

Stereo vision is an important task in many applications such as self-driving cars, hence it
is an integral part of a computer vision system [253, 254]. By using stereo cameras pro-
viding two images of the same scene recorded from different angels, depth information
can be extracted. The resulting disparity map represents the horizontal shift between
corresponding pixels and can be used to calculate real-world distances. A rectification
of the images restricts the search window of corresponding pixels to a horizontal row.

Approaches differ in the way they find corresponding pixel. In general, the calculation
is divided into four steps: matching cost calculation, cost aggregation, disparity calcu-
lation and optimization, and disparity map refinement. Approaches, distributed in local,
semi-global and global ones, exist to calculate a disparity map [255], where global ones
often do not use cost aggregation. The accuracy of different approaches can be looked
up in several public rankings based on benchmarks such as Middlebury or KITTI [253].

Global approaches, which require to minimize a global energy function, such as graph
cut or belief propagation are very accurate, but the high computation and memory costs
often rule out a sufficient frame rate [255]. Semi-global (SGM) or DP approaches are
a good trade-off between global and local approaches. The disparity calculation and
optimization is performed over a subset of pixels. The determined disparity value of a
pixel is influenced by the decision for the pixels within this subset. This is not the case for
local methods, since they solve the correspondence problem for each pixel separately.
Therefore, SGM normally provides a higher accuracy compared to local approaches.
However, SGM provide less accurate results compared to global methods in general.
While SGM implementations improve the performance compared to global approaches,
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they do not achieve sufficient performance on embedded multi-core CPUs[256]. Local
and SGM approaches require a matching cost function like Sum-of-Absolute-Differences
(SAD) or Sum-of-Hamming-Distances (SHD). Larger window sizes tend to improve the
accuracy, but have a significant impact on the computational effort.

Local approaches. Local approaches determine the minimum local matching cost for
a set Ap of possible correspondence pixels. Since the minimum cost value can oc-
cur several times, the local correspondence problem is not well-defined. Therefore, a
uniqueness constraint is applied in practice, so that a value is only used if the lowest and
second lowest cost value have a certain minimum difference. Such a constraint reduces
the density of a depth map but increases the accuracy of the disparity values. Local
methods differ in the set Ap as well as in the used matching cost function. A widely used
method is SAD, which is defined as

costSAD(p, p̄) =
∑
q∈Aq

|l(p+ q)− r(p̄+ q)|,

where l is the left image, r the right image and Aq the set of pixel used for the cost
calculation. p and p̄ indicate the location of a pixel. Another cost function is SHD defined
as

costSHD(p, p̄) =
∑
q∈Aq

hamming(l(p+ q), r(p̄+ q)),

where hamming(a, b) =
∑m−1

i=0 |ai − bi| is the hamming distance, which returns the
number of bits that differ between two given bit vectors a and b of length m.

Dynamic Programming-based Stereo Correspondence Algorithm. The considered
SGM algorithm is based on DP2. As input, the algorithm uses two rectified images l and
r in the RGB space. The first part of the algorithm calculates a cost matrix Cy for each
image row y ∈ [0, height−1], which is calculated using absolute differences in the RGB
space for different disparities.

Cy(x, d) = |lr((x, y))− rr((x+ d, y))|
+ |lg((x, y))− rg((x+ d, y))|
+ |lb((x, y))− rb((x+ d, y))|

,

where the red value at pixel p = (x, y) is denoted with lr(p) and rr(p) for the left and
right image, respectively. Similarly, g(p) specifies the green value and b(p) the blue
intensity. The pixel p = (x, y) is addressed by a row y and a column x. Furthermore, d ∈

2Middlebury Stereo Matcher Framework http://vision.middlebury.edu/stereo/
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[0, dmax] is the disparity in x-direction between a pixel in the left and right image. Three
DP matrices are calculated for each depth map row (see Figure 5.5). DPM includes
information about matching pixels, DPL and DPR about pixels occluded in the left or
right image, respectively.

DPMy(x, d) = min


DPMy(x− 1, d) + Cy(x, d)

DPLy(x− 1, d− 1) + Cy(x, d) + λ(x)

DPRy(x− 1, d) + Cy(x, d) + λ(x)

, (5.1a)

DPLy(x, d) = min

{
DPMy(x− 1, d) + occl

DPLy(x− 1, d− 1) + occl
, (5.1b)

DPRy(x, d) = min

{
DPMy(x, d+ 1) + occl

DPRy(x, d+ 1) + occl
, (5.1c)

where λ(x) are the smoothing costs. The occlusion cost (occl) is a factor control-
ling the smoothness constraint of the line calculation, hence defines an aggregated factor
for possible disparity jumps. By design, the DP-Algorithm does not allow valid disparities
to “jump” (very high disparity following a very low disparity). But a low occlusion cost
value allows higher jumps, but increases the error rate.

Three additional matrices store the transitions. The algorithm has a space complex-
ity of O(6 ∗ imagewidth ∗ numdisparity). In contrast, local methods have a complexity of
O(imagewidth∗m), wherem is the number of rows fromAq. Using the transition informa-
tion together with the DP matrices, a backtracking approach finds the optimal disparities.
The backtracking starts at the cell which contains the smallest value in the rightmost DP
Match column. Depending on the transitions, the backtracking algorithm travels through
the DP matrices to find the best disparity value for each pixel in the current depth map
row. Calculating the three DP matrices and the backtracking step has to be done for each
row. Therefore, calculating the DP matrices together with the backtracking is the most
time-consuming part. The advantage of a DP-based algorithm is the smoothness of the
resulting depth map, but slightly false matches do not change the calculated disparity.
Therefore, false disparities are often calculated close to object boundaries.

5.2.5 Time Series Analysis

Comparing time series using a distance function is a central task in the field of time series
analysis. A distance function3 uses as input a query sequence Q = (q1, q2, ..., qn) and
a candidate sequence Ci = (c1, c2, ..., cm). It depends on the measure whether both
sequences have to be of equal length, i.e., n = m. If two sequences are similar, a

3I use the term distance function. An often used synonym is dissimilarity measure.
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Figure 5.5: This figure shows Equation (5.1) and the corresponding data dependencies
graphically. Note that λ(x) is excluded due to presentation purposes. The four rectangles
represent the three DP matrices (DPMy , DPLy , and DPRy ) and the cost matrix Cy with
the corresponding dimensions x and y. A matrix element is determined by selecting the
minimum value from a set of calculated values. Such a calculated value depends on
a certain element (either from the same or a different DP matrix). Additionally, it either
depends on the occlusion cost (occl) or a cost matrix value. Data dependencies from
DPLy are shown in red (dotted line), from DPRy in black (dashed line), and from DPMy

in blue (solid line).

distance function returns a small value. Usually, a distance of 0 indicates that both
sequences are equal. By contrast a similarity measure returns a large value in case two
sequences are similar.

Euclidean distance. The Euclidean distance: ED(Q,Ci) =
√∑n

i=1(qi − ci)2 is a
simple distance function and often competitively compared to other measures. It requires
that both sequences are of equal length and has a computation complexity that lies in
O(n). It is easy to compute the single squared sums (i.e., (qi− ci)2) in parallel, as there
are no data dependencies. Therefore, it is easy to implement a parallel version. ED is
not invariant against local scaling (warping), which is crucial for many problems.

Dynamic Time Warping: A dynamic programming algorithm. Dynamic Time Warp-
ing (DTW) [257] is a distance function that allows local scaling. This is, for instance,
required in case two sensors sample the same fact, but at a different sample rate. As
a result, we need to align the sequences. This measure tries to find an optimal global
alignment between two sequences. Therefore, we do not require sequences having the
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same length. DTW relies on the following recurrence to calculate the DP matrix:

CDTW (0, 0) = d0,0

CDTW (i, j) = di,j +



CDTW (i− 1, 0), j = 0

CDTW (0, j − 1), i = 0

min


CDTW (i− 1, j)[delete]

CDTW (i, j − 1)[insert]

CDTW (i− 1, j − 1)[(mis)match]

, else

,

where di,j is any distance function. Often ED is used. The element CDTW (n,m) repre-
sents the DTW distance between Q and Ci. It takes quadratic computing time to get the
resulting matching costs by using DP.

An often used method to reduce the complexity of DTW is to restrict the warping
path in the DP matrix. Moreover, this restriction avoids pathological paths, hence can
increase the accuracy. Typical constraints are the Sakoe-Chiba (SC) band [258], the
itakura parallelogram, and the Ratanamahatana-Keogh band (RK band). The SC band
restricts the warping path to elements that are only |i − j| ≤ c away from the main
diagonal of the matrix.

Use case: Distance-based classification. Given a query sequence Q, an often re-
quired task is to find the most similar time series for Q called query by content. Another
important data-mining method for time series is to perform a classification. Having a new
unknown time series, a query, we want to find the class which includes the most similar
time series to this query. Classification usually requires labeled data which assigns a
class to each training data element.

5.3 Approximate Computing FPGA Design Patterns

Figure 5.6 shows common challenges that arise for hardware developers while porting
2D DP algorithms to an FPGA efficiently. To solve these challenges, I identify five suitable
approximations (shown in red) leading to approximate computing-based design patterns.
These patterns can help designers to meet their performance and resource constraints
while still having an acceptable QoR (classification accuracy, mean square error, etc.).

2D DP algorithms have a two-dimensional input, which can be, for instance, two se-
quences. First of all, 2D DP algorithms require to calculate one or more 2D DP matrices.
The calculation of each matrix element that specifies a state of the DP algorithm depends
on two input data items, which span the two dimensions. The input data is required to
calculate the cost value. This is important to identify the optimal transition from a previ-
ous stage. Cost values can be determined in a preprocessing step and stored in a cost
matrix. Besides the costs, the value of a stage depends on the values of previous stages,
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which can be located in different DP matrices. The considered previous stages vary be-
tween DP algorithms. Additionally, determining the stage value needs some constants or
regularization costs, which are stored in an array. If an optimal alignment is required, we
need to perform a backtracking step. Therefore, we have to store the made transitions
and the entire elements of the DP matrices. To conclude, porting DP algorithms into an
FPGA poses several challenges which can be roughly grouped into:

C1: Parallelization
C2: Memory consumption
C3: Memory bandwidth
C4: Hardware compute resources

...

Input data

Cost matrix
(optional)

Data 
reduction

Remove
transitions

(internal, external)

DP matrices

Remove 
regularization

Remove 
backtracking

(avoids storing 
entire DP matrix)

Constant

Approximate 
data type

Regularization 
costs

Figure 5.6: While porting 2D DP algorithms to an FPGA, hardware designers may face
four challenges. The first challenge (C1) occurs due to the calculation rules for the DP
matrices. These rules prevent a parallelization of the algorithms. The second challenge
(C2) is related to the presumably high memory consumption caused by DP matrices,
the cost matrix, and regularization costs. The third challenge (C3) represents the issues
regarding the streaming of input data in an FPGA. Finally, the developer must handle the
limited amount of resources available on an FPGA (C4). Therefore, this thesis identifies
five suitable target points for applying approximations (shown in red). Such approxima-
tions lead to increased performance and reduced resource consumption while having an
acceptable QoR (classification accuracy, mean square error, etc.) loss.
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There exist data dependencies for calculating a single stage value (DP matrix element).
These dependencies occur, because the calculation of the value depends on values from
previous stages, which are located in the same or a different matrix. Calculating elements
of a row or a column cannot be parallelized (C1), hence the massive parallel capabilities
of an FPGA are not exploited. A possible solution is that we parallelize over the anti-
diagonals called wavefront parallelization. This is realized by using systolic arrays [259,
260, 261] on an FPGA, but requires a significant amount of resources.

DP algorithms have a high space complexity (C2). Especially, if it is required to store
the entire DP matrices for later steps. Moreover, space can be necessary for some of
the input data to avoid repeating memory accesses to the same data. In contrast to
CPU implementations, it can be worth to calculate costs on demand, thus avoiding the
storage for the cost matrix. However, this increases the amount of compute resources
(C4). Depending on the cost function, this can require to load more data into the FPGA,
hence increases the required memory bandwidth (C3). The required memory bandwidth
is accumulated by additional regularization costs that depend on the input data.

In case, we find solutions to the above challenges, we can have issues regarding
resource problems due to the number of required processing units, such as floating-point
units (FPUs) (C4). FPUs impact the resource consumption of an FPGA significantly.

While porting a function into an FPGA, the designer makes sure that the same results
are returned by the FPGA design and the original CPU implementation. For that, the
designer uses traditional suitable design patterns [262] including systolic arrays, pipelin-
ing, or precision scaling. However, in this chapter I present a different strategy to port
algorithms into FPGAs focusing 2D DP algorithms. The motivation is to adapt an algo-
rithm in a way, that it can efficiently exploit the capabilities of an FPGA architecture. The
main goals are the improvement of the performance and the reduction of the resource
consumption. Such an adaptation is achieved by introducing approximation methods.

I identify five different AC design patterns that lead to an adaptation of the original
algorithm and address the aforementioned challenges. These patterns are shown in Ta-
ble 5.2, together with the challenges they address. By applying these patterns, it is
possible that the optimal solution is not found but the considered algorithm still produce
useful results, as shown later.

Removing transitions (ACP1), which avoids data dependencies between stages, al-
lows a parallel calculation of stage values (C1). For instance, removing the top neighbor,
we can calculate all elements of a column in parallel. However, this requires to take spe-
cial care of global algorithms, as for them the right bottom element of the DP matrix is the
final value. Since this element is only influenced by the left diagonal neighbor after the
approximation, we have to deal with this aspect in a algorithm-specific way as described
later. In summary, ACP1 allows a designer to exploit the parallel capabilities of an FPGA.
A removed transition coming from a different DP matrix gets rid of the synchronization of
the calculations for both DP matrices and a connection path which can cause timing is-
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Table 5.2: Overview about proposed FPGA compute patterns (CP) including approxi-
mate computing patterns (ACP) and the challenges they address.

AC pattern Name C1 C2 C3 C4

ACP1 Remove transitions X X
ACP2 Remove backtracking X X
ACP3 Remove regularization X
ACP4 Data reduction X X X X
ACP5 Approximate data type X X X

CP1 Calculate cost matrix on demand X ×

sues. Such data dependencies can cause an additional kernel call when using OpenCL.
Moreover, ACP1 reduces the amount of required compute resources (C4).

Reducing the required memory space of the algorithm is very beneficial (C2), be-
cause the on-chip memory (block RAM) is a very limited resource on an FPGA. In case,
the memory space is not enough, an external off-chip memory has to be used, which
causes costly external memory accesses (C3). Therefore, avoiding a backtracking step
is beneficial because it makes storing all elements unnecessary (ACP2). Then, it is
sufficient to store only two columns for each DP matrix and the DP algorithms under
consideration.

Some DP algorithms need a regularization term such as smoothcosts, which takes
care that the final disparity values are smooth. However, such costs are adaptive to the
current input data, hence have to be determined dynamically. Removing these costs
(ACP3) reduces the required bandwidth (C2). Calculating these costs on demand re-
quires a more complex FPGA design.

To address all of the aforementioned challenges, a reduction of the input data (ACP4)
is a suitable way. There are two possibilities: reducing the data before sending it to the
FPGA or on the FPGA itself. The latter does not address C3. There exist many different
ways how to reduce data. A general way, which I will not consider here, but in Chap-
ter 8, is to remove certain data points. Another method is to reduce each single data
point, for instance, converting double values to half precision values. Moreover, some
DP algorithms allow us to exploit algorithm-specific reduction methods. For example,
representing single data points with a symbolic representation requires fewer bits.

This directly leads to ACP5, since a reduced data point requires less compute re-
sources. ACP5 can further approximate individual data items, thus reduces compute
resources (C4) and can increase the parallelization degree (C1), because a single com-
putation requires fewer resources. Storing the elements in the DP matrices in an ap-
proximate way reduces the memory footprint (C2). The last compute pattern (CP1) that I
consider for 2D DP algorithms is not an AC pattern, but it also addresses C2. Calculating
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the costs on demand prevents the usage of costly memory resources on the FPGA for
storing the costs, but this can cause an additional pressure on the memory bandwidth.

5.4 Applying Approximate Design Patterns to FPGA De-
signs

To show the effectiveness of the AC design patterns (ACPs), they are applied to DP
algorithms from various domains. Table 5.3 gives an overview about the used ACPs
for an algorithm and the FPGA system(s) used for the implementation. This section
shows that these patterns can be applied to completely different FPGA-based systems
(cf. Section 5.2.1), which require distinct ways to program the system. This emphasizes
the general characteristic of the ACPs.

5.4.1 HHblits

According to Section 5.2.3, ungapped_sse_score is the most time-consuming function
for low iteration counts of HHBlits, hence it is a very promising candidate to port to an
FPGA in order to accelerate the function. As already mentioned, the function is based
on the well-known Smith-Waterman (SW)-algorithm. Since this function acts as the first
prefiltering step, the maximum local DP value of the DP matrix is sufficient. Hence,
a backtracking step is not required (ACP2). The SW algorithm does not require regu-
larization costs and the input data is already represented in a symbolic way (ACP4). A
substitution matrix S, which represents the cost matrix, is based on biological conditions,
hence cannot be calculated on demand. ACP1 is the AC pattern that can be applied and
leads to a parallel calculation of row elements in the DP matrix H . This aspect is al-
ready exploited in the original implementation of ungapped_sse_score in HHBlits, which
also uses the VEU of x86 processors. Since ungapped_sse_score requires to process
all elements of the database, the design goal is to implement an FPGA design that
achieves a high throughput regarding sequence comparisons. Building an efficient and
non resource-intensive unit enables integrating more units onto the FPGA. Exactly that
is already achieved, since the original implementation exploits ACP1. I have not used
the ACPs to redesign ungapped_sse_score, but I was able to identify this function as a
promising candidate for porting into an FPGA using the ACPs.

Table 5.3: Overview about the application of ACPs to a certain algorithm.

2D DP algorithm ACP1 ACP2 ACP3 ACP4 ACP5 CP1 FPGA system

Smith-Waterman (Section 5.4.1) X Convey HC-1
DP-based Stereo Vison (Section 5.4.2) X X X X X Convey HC-1 & SoCrates II
Dynamic Time Warping (Section 5.4.3) X X X X X Maxeler Workstation
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Algorithm 5.1: Calculation of the ungapped score.
1 W = (query_length+ 15)/16; // 16-Byte block count
2 uint128 workspace[2*W];
3 s_prev = &workspace[W];
4 s_curr = &workspace[0];
5 for j ← 0 to n− 1 do
6 qji = query_profile [ sequence[j]*W ];
7 S = s_curr[W-1];
8 processing unit SWAP(s_prev, s_curr);
9 for i← 0 to W − 1 do

10 S = S + qji[i] - Soffset;
11 Smax = max(Smax, S);
12 s_curr[i] = S;
13 S = s_prev[i];
14 end
15 end
16 return component_wise_max(Smax);

Calculation of ungapped scores using SSE hardware of the processor. The func-
tion ungapped_sse_score calculates a locally ungapped score for a query profile against
a sequence from the database. To calculate this score, a modified version of the SW al-
gorithm is used in the implementation of HHBlits as depicted in Figure 5.7. Each element
in the result matrix depends on the left diagonal neighbor in the matrix, but does not de-
pend on the top or left element (ACP1). The SIMD extensions of an x86 processor are
exploited to calculate the elements of the result matrix. The current implementation in
HHblits uses Streaming SIMD Extensions 2 (SSE2). Hence, the function works on 16-
Byte blocks, with data dependencies removed by means of striping the profile [250].

Algorithm 5.1 gives the corresponding pseudo code. A nested loop processes these
16-Byte blocks where the outer loop iterates over all elements of the reference sequence
(j loop). In this outer loop, for each element in the sequence an address is calculated to
address a line in the query profile. The inner i loop iterates over all 16-Byte blocks of a
16-Byte column of the result matrix. Due to striping, only the first block in a workspace
column depends on the last block of the previous column. For each other block, the

Figure 5.7: Calculation of the ungapped score.
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Figure 5.8: Parallel architecture with 16 processing units (PUs) for evaluating the un-
gapped score between a profile and a sequence on one FPGA.

previously calculated left diagonal neighbor 16-Byte block is added to the corresponding
block in the profile. An offset is subtracted from each score in the block. The 16 maximum
scores are kept in a 16-Byte variable and at the end of the function, the maximum Byte
value in this variable is determined. This is the calculated locally ungapped score.

The SSE-based implementation of the Smith-Waterman algorithm already speeds
up the calculation by 24.1× (whole application) to 28.9× (ungapped-score kernel only)
against sequential execution. The goal is now to achieve superior speedup over the
SSE-based implementation using an FPGA-based 2D DP implementation.

FPGA unit for calculating an ungapped score. The AE design for calculating the
locally ungapped score exploits fine-grained data-level parallelism. 128 entries of the
result matrix are calculated in parallel for each ungapped score. All internal units are
initialized by a controller and each unit executes in a data-driven way. The AE design de-
picted in Figure 5.8 calculates the maximum locally ungapped score in a pipeline. With
a loaded sequence, the compute profile address unit calculates for each element in this
sequence the address to request the appropriate line of the profile from the coprocessor
RAM. The 16 processing units (PUs) start to calculate the entries of the result matrix
when the required data are loaded. Figure 5.9 shows how each PU calculates eight
entries of the result matrix in parallel. First, for each Byte from the profile data, the cor-
responding Byte of the previously calculated line is added. Then an offset is subtracted
from this result. Both calculations are done with saturated arithmetic together in one
cycle (150 MHz). The resulting 8-Byte values are forwarded to the reduction unit and
stored in the line buffer.

The multi-port line buffer needs to store both the previous and the current column of
the result matrix because the previous column is required for calculating the current col-
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Figure 5.9: Parallel structure of a processing unit (PU).

Figure 5.10: Reduction circuit for determining maximum entry of result matrix.

umn. Whenever all PUs have produced valid data, the reduction circuit begins searching
the local maximum of the freshly calculated 128 elements of the matrix in a pipelined
fashion in the reduction circuit, employing a binary-tree-like approach (see Figure 5.10).

In the first stage, two calculated entries are compared at a time and the greater one
is forwarded to the next stage. Same is done in the next stage. Finally, one value is left.
In the last stage, this value is compared against the global maximum. In case the local
maximum is greater, this value becomes the new global maximum. The reduction circuit
pipeline has eight pipeline stages. If all entries of the result matrix have been calculated,
the global maximum value is returned to the host system via the AEG register file.
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Figure 5.11: Final FPGA design including an ungapped score calculation unit for concur-
rent use on all four application engines (AEs).

Design of an Application Engine. There is no point in keeping the sequences in
FPGA memories for later reuse. Rather, the 110 KB profile that is reused for every
sequence comparison should be stored. Then, only small amounts of data will have
to be transferred once the profile is loaded. This distinguishes this approach from the
memory-bound SSE implementation in HHblits where the profile is cached only implicitly
and might be replaced by sequence data.

To exploit the available bandwidth, I decided to transfer the 110 KB query profile
in parallel on all memory controller ports first and to store it in FPGA-internal profile
memory implemented by Block RAMs (BRAMs) for later reuse. This memory can be
seen in Figure 5.11. Due to the weak consistency model of the Convey HC-1, reordering
is required. Through this model the ordering of incoming requested data can be different
from the read request ordering. A consecutive identification number (ID) is assigned to
each request. So, Read-Order Queues (ROQs) are employed to reorder incoming data
from the memory controllers according to these IDs. Using such a consistency model
allows an efficient implementation of the underlying memory architecture.

The profile memory is split into 16 regions, one assigned to each ROQ (see Fig-
ure 5.12). Each PU has its own memory region (M0–M15) in the profile memory. Prelo-
ading a query profile enables fast data reuse on FPGA. A query profile is loaded asyn-
chronously, directed by the depicted controller. The query profile is stored in this memory
according to Farrar’s data striping [250]. This data striping allows highly parallel data ac-
cess and thereby achieves higher data throughput for PUs. The read address from all
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Figure 5.12: Internal Profile Memory, split into 16 memory regions (M0–M15).

PUs is the same, because the calculation of all PUs is synchronous. So, only one collec-
tive read address is used for all memory regions. After loading the profile, the reference
sequence needs to be streamed to AEs, but will not be consumed at a very fast rate. I
use a memory crossbar so that I can exploit a distinct ROQ for reading an entire refer-
ence sequence. The remaining ROQs can be used for further ungapped score units.

The calculation of lines 5-15 of Algorithm 5.1 is spread over the ungapped score calcu-
lation unit. The kernel (lines 9-10) is calculated in the pipelined PUs. The ROQs, profile
memory regions and PUs form logical pipelines whose results are reduced by searching
the maximum (line 11) in the custom reduction circuit. Sequence data is not consumed
at a very fast rate because for each Byte (line 5), the corresponding 512-element line of
the profile needs to be processed (line 6), with each of the 16 PUs processing 32 ele-
ments (line 9), 8 of them in parallel, in 4 iterations. Hence, memory bandwidth does no
longer pose the limitation. So I have implemented a compute-bound and resource-bound
version of the algorithm where the available bandwidth can be exploited for instantiating
further units, while the query profile needs to be loaded only once for all instances.

The implementation results are given in Table 5.4. Slice usage is high because I
initially required some memory structures to be reset to zero, which inhibited the use
of FPGA Block RAMs (BRAMs). Correctness was proved by checking the individual
scores against the scores from sequential and SSE implementations and by comparing
the number of sequences that passed the prefiltering step.

Optimizing Data Transfer. There are several different methods for allocating and using
the coprocessor memory. First of all, data can be allocated on the host side or on the
coprocessor. Second, host-allocated data can be migrated implicitly or explicitly toward
coprocessor memory or it can be copied explicitly by GLIBC or Convey routines. Copying
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Table 5.4: Resource usage of a single ungapped-score calculation unit.

Resource Count Percentage

Slices 25,701 49 %
Registers 68,002 32 %
LUTs 70,432 33 %
BRAMs-total 74 25 %

Max. freq. (Synthesis) 5.046 ns 198.196 MHz
Max. freq. (P&R) 6.658 ns 150.20 MHz

data also means occupying more memory and burdening the programmer with memory
management. From first measurements during implementation, however, I concluded
that allocating on the host and copying each sequence individually and iteratively would
be fastest because implicit migration is too slow and migrating explicitly from host to
coprocessor memory was not possible for all 3 million sequences.

Transferring all sequences at once requires to pass a pointer for each sequence.
However, as it turns out from Table 5.5, a single copy operation (“Block copy”) of all se-
quence data with the Convey-provided copy routine lets coprocessor execution perform
much better so that the overhead of calculating and passing an additional pointer to each
sequence in coprocessor memory becomes tolerable. As a further option, data can be
copied concurrently using one of the two available copy routines to coprocessor execu-
tion by performing an asynchronous coprocessor call. Figure 5.13 indicates that data
transfer can be hidden completely.

But as Table 5.5 reveals, there is some overhead when transferring a large sequence
while calculating the score for a short sequence. So, block copy performs better overall.
Therefore, I employ the Convey-provided copy routine and transfer all sequences at once
to coprocessor memory. The individual coprocessor calls are each passed the new
addresses of the sequences to calculate the scores for. To fully exploit the available
bandwidth and the Convey memory architecture of 64 Bytes per memory controller when
reading the profiles, the padding is increased from 16 Byte to 512 Byte. Thereby, an

Table 5.5: Time (in seconds) for ungapped score calculations computations and data
transfer on an AE.

Way of data transfer Memcpy routine Data transfer Computation Total

Per iteration
GLIBC 6.627 72.145 78.776
Convey 42.056 64.207 106.324

Concurrently
GLIBC – – 74.569
Convey – – 67.871

Block copy Convey 0.400 63.802 64.201
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entire sequential line of the profile is read by using all 16 memory ports concurrently
instead of using only fewer ports.

Exploiting More Parallelism on FPGAs. As the previous synthesis results indicate,
there is some area available for further instances of the ungapped score calculation unit.
With the highly modular, crossbar-enabled design, each MC-ROQ combination can be
used to read a different reference sequence to compare against the query. I modified
the software/hardware design so that the memories do no longer need to be reset, which
results in using BRAMs after place&route instead of logic and hence reduces the slice
usage. Thereby, I was able to instantiate at least two units and a second profile memory,
and later on also a third instance and memory. The reference sequences are streamed
from the database to the score calculation units via different ROQs so that theoretically
up to 16 such units could be instantiated. Additionally, the profile memory has to be
replicated for each unit. Due to the available resources only three units fit onto one
FPGA using this design.

Therefore, I adapted the profile memory to provide two ports so that two units can
share a profile memory. Due to timing problems, I used different options for the vendor
tools to create a bitstream. Switching off the synthesis options resource sharing and
equivalent register removal helped to create a working bitstream without timing errors.
This additionally reduced the amount of BRAMs because the design now uses logic
blocks for on-chip memory. Table 5.6 shows the resource usage of the design for three
and four ungapped score units, respectively. Figure 5.14 shows the final design for one
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Figure 5.13: Overlapping data transfer with coprocessor execution on one AE for the first
sequences. Copy indicates the time that is consumed for the data transfer to coprocessor
memory initiate by host. Wait for AE is the time that the host has to wait for completion
of the coprocessor computation. For each sequence, additional computation has to be
done on the host. The time for this calculation is labeled remainder.
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Figure 5.14: Instantiating four ungapped score calculation units on an AE.

AE of the Convey HC-1 including four ungapped score calculation units.

Using heterogeneity of the Convey HC-1. All previous approaches have the same
drawback that the host processor is idle while the coprocessor is running. There is much
potential in exploiting the host processor and coprocessor in parallel. For this purpose,
data-parallel or task-parallel execution can be used. For data-parallel execution, shorter
sequences can be calculated on the host and larger ones on the coprocessor. However,
it is important to balance the workloads between coprocessor and host processor: in the
used database uniprot204, there are many sequences smaller than 500 Bytes.

Table 5.6: Resource usage for the previous design including three ungapped score cal-
culation units and three profile memories and the new design including four ungapped
score calculation units and two dual-port profile memories. The synthesis options re-
source sharing and equivalent register removal were switched off.

3 Units 4 Units
Ressource Count Percentage Count Percentage

Slices 46,098 / 88 % 50430 / 97%
Registers 140,951 / 67 % 164349 / 79%
LUTs 126,745 / 61 % 143687 / 69%
BRAMs 170 / 59 % 64 / 22%

Max. freq. (Synthesis) 4.801 ns / 208.29 MHz 4.801 ns / 208.29 MHz
Max. freq. (P&R) 6.666 ns / 150.02 MHz 6.661 ns / 150.13 MHz

4The uniprot20 released at September 2nd 2011 is used.
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Figure 5.15: Setup of coprocessor integration and used tools.

The final design exploits task-parallel execution for prefiltering the protein database by
using a hardware/software pipeline. The first prefilter step is executed by the coproces-
sor, controlled by a thread on the host processor. Another thread calculates the second
stage of the prefiltering on the host processor. This thread is waiting for accepted se-
quences from stage 1. In addition, a second worker thread is enabled in HHblits to
process the Viterbi algorithm in a task-parallel fashion (Step 5 in Figure 5.2, feature of
HHblits). I employ the setup as depicted in Figure 5.15 when evaluating the kernel im-
plementation and coprocessor integration. This includes using the dedicated Convey
Compiler to access the coprocessor, which also makes comparisons more difficult.
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5.4.2 FPGA Design for Stereo Vision

Existing semi-global stereo vision designs for FPGAs are often hand-optimized and im-
plemented using a low level hardware description language. But still, they are very re-
source and memory demanding. Therefore, I apply the aforementioned design patterns
to overcome the resource issues and to increase the performance. By analyzing the
selected DP algorithm (cf. Section 5.2.4), three major issues are found, which limit the
implementation on an FPGA. The first issue is the required high memory bandwidth.
The memory bandwidth poses a bottleneck to stream data in such a way that the design
provides a high frame rate. The high memory consumptions poses the second issue.
Data dependencies that prevent a parallelization pose the third issue. In the next para-
graphs, I discuss general implementation aspects, which do not depend on the actual
FPGA-based design. Then, I present an FPGA design targeting low-power FPGAs and
a design that is implemented for an FPGA-based server system. Both designs exploit
the pattern shown in Table 5.2. Hence, this leads to streaming architectures, which are
able to calculate depth maps.

Reducing required off-chip memory bandwidth (ACP3). As input, the original al-
gorithm has the right and left image row data as well as so-called smoothcosts for the
current image row. These smoothcosts are removed from the algorithm (ACP3) to avoid
that memory transfers are the bottleneck of the resulting implementation and limit the
performance. This would require an additional memory stream to the FPGA, which also
increases the resource consumption. Furthermore, the new designs are working on gray
values instead of RGB values (ACP3), which reduces the amount of image data that has
to be transferred to the FPGA by a factor of 3.

Reducing memory consumption (ACP2). The high memory consumption is caused
by the backtracking which requires to buffer all the elements in the three DP matrices and
the three transition matrices. Removing the necessity to store all elements of the matri-
ces is a crucial point. Therefore, the decision of the optimal disparity is based on local
information rather than the global one calculated by the backtracking (ACP2). Accord-
ing to the data dependencies of the algorithm and without backtracking, only a column
per DP matrix needs to be stored and the transition matrices are completely removed.
This drastically reduces the internal memory consumption and avoids the use of external
memories that offer a much lower bandwidth and would increase the execution time. This
novel approach decreases the memory complexity fromO(6·imagewidth ·numdisparity)
to O(3 · numdisparity). The three DP columns can be calculated concurrently. An in-
vestigation reveals that the best accuracy for the local information approach is given by
using the minimum value found in the current calculated DP columns. If the minimum is
in column DPLy(x) or DPRy(x), the disparity is marked as invalid because the pixel is
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Figure 5.16: AE design for calculating four rows of a depth map concurrently and follow-
ing rows in sequential.

presumably occluded in one of the input images. If not, the disparity is set to the current
row index of the cell including the minimum.

FPGA-based VHDL Design for a High-end FPGA-based System (ACP4). The most
time-consuming parts of the algorithm, calculation of the DP matrix and determining
the disparities, are ported to the AEs of the Convey HC-1. The calculation of the cost
matrices is performed on the host CPU. Before the execution starts, some parameters
have to be transferred to the AEs. These are the height and width of the depth map,
the number of allowed disparities, the occlusion costs and the address of the cost matrix
as well as the memory region for the resulting depth map inside the local FPGA off-
chip memory. The resulted FPGA architecture calculating four rows in parallel is shown
in Figure 5.16. To note, the presented architecture is extensible for more units, which
calculate a depth map row each, in case more resources are available. An internal
controller based on a state machine controls the execution of each AE. Direct Memory
Access (DMA) units (not shown in Figure 5.16) read data from and write data to the
coprocessor memory. Each unit for calculating a DP matrix (Calc-DP unit) uses three
DMA read units connected to three memory controller (MC) ports. Each of the eight MCs
provide two 64-bit data ports. Since the values of the cost matrices are 32-bit integer, two
of them can be read in one cycle by a port. Internally, the data width is reduced to 20 bit
(ACP5). This decreases the consumed resources as well as the latency required for each
operation. The latter allows the execution of more additional operations or multiplexing
input data in front of an operation during a cycle.

Three columns of each DP matrix (DPMy , DPLy , DPRy ) are calculated concurrently
by a pipeline structure (see Figure 5.17). A controller sets the correct operands for the
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Figure 5.17: Unit for calculating DP matrices called Calc-DP-unit.

boundary cases and checks if the required values are valid. Assigning a valid bit to each
operation enables it to check which results have to be stored into the buffers and output
registers, thus the entire unit always returns valid and correct results. The calculation
starts at row 0 and column dmax due to Equation (5.1c). According to Equations (5.1a)
and (5.1b) some results have to be delayed for further processing in the next pipeline
stage. Additionally, result forwarding is integrated to calculate Equation (5.1c) in each of
the three DP_R units. No smoothcosts (λ(x)) are used for calculating Equation (5.1a)
to integrate more Calc-DP units (ACP3). Integrating smoothcosts would require an addi-
tional memory port per unit, hence increases the required bandwidth.

Two buffers are used to store values of a column coming from the last pipeline stages.
This data is required to calculate the next columns and transferred to the first pipeline
stage if needed. A buffer stores data currently produced by the last stage, another one
is used by the first stage for reading previously calculated data. All output data of a Calc-
DP unit is transferred to an approximation unit Calc-Disp unit, see Figure 5.18. This
unit calculates the optimal disparity by finding the minimum value in the three current
considered DP columns DPMy(x), DPLy(x) and DPRy(x) as well as for column x + 1
and x+ 2. If the minimum is in column DPLy(x) or DPRy(x), the disparity is set to zero,
because the pixel is presumably occluded in one of the input images. The disparity is set

82



5.4 - Applying Approximate Design Patterns to FPGA Designs

Figure 5.18: Internal structure of the approximation unit determining disparities of three
rows concurrently.

to the row index of the cell if the minimum is in column DPMy(x). This approximation
calculates the disparity in a lower accuracy than the backtracking approach but in much
less time. The minimum of the current calculated DP values is determined in the fist
stage of the Calc-Disp unit and passed to the second stage. If the new value is smaller
than the minimum, the current disparity (cur_disp_x) is updated according to the matrix
in which the new minimum lies. The current row index is determined by a counter and
is written in the register if the minimum is in DPMy(x). The register is set to zero for
all other cases. The current disparity value is delivered to the DMA write unit once the
value of the counter is zero.

The amount of units that can be integrated into an FPGA depends on the number of
memory ports and the available resources. An AE of the Convey HC-1 allows it to inte-
grate four Calc-Disp units. To increase performance, the same bitstream is transferred
to all AEs. Therefore, four rows of the depth image are calculated in parallel inside an
AE, thus 16 rows of the depth map are determined concurrently using all four AEs. A sin-
gle coprocessor call is invoked to calculate the entire depth map. This avoids additional
overhead caused by multiple calls.

Removing data dependencies (ACP1). The next considered FPGA-based system is
a System on Chip including a Cyclone V FPGA, which is a low-power FPGA. Instead of
VHDL, OpenCL is used to implement the FPGA design. During the implementation and
testing phase, I figured out that data dependencies of the algorithm cause an additional
OpenCL cycle which doubles the execution time. Therefore, I considered removing some
data dependencies on the algorithmic level to avoid this additional cycle. The result is that
removing the data dependency from DPMy(x− 1, d) to DPLy(x, d) enables calculating
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a depth value per cycle, while only slightly changing the results as shown later.

OpenCL-based Design for a Low-power FPGA-based System on Chip. To reduce
the design time and investigate the benefit of the ACPs on a higher programming level,
an OpenCL-based design targeting a low-power FPGA is implemented. According to the
best practice guide [263], a Single Work-Item Kernel is used. The Intel FPGA SDK for
OpenCL [264] Offline Compiler takes care that a fine-grain parallelism is exploited. This
is achieved by pipelining the iterations of loops. The pragma #pragma unroll leads to
a complete unrolling of a loop if sufficient FPGA resources are available. This pragma is
used for all for loops inside the OpenCL kernel.

The previous VHDL design is transfered to OpenCL C code for the kernel. Avoiding
complex source code of the OpenCL implementation is important for the FPGA OpenCL
compiler, since the compiler is not able to analyze complex structures efficiently [263], for
instance, complex array indexes. Shift registers are used to store the required pixel data
of the left and right image. This leads to efficient data access to the needed pixels for
the cost calculation within the FPGA. Each of the two shift registers are large enough to
store an image row. A subtractor is needed to perform the cost function computation that
is based on absolute difference. For the data transfers, two read and a write streamer
are used that are connected to the OpenCL kernel required for the DP calculation via
so-called channels. Channels avoid costly external memory accesses, because data is
passed to the next kernel within the FPGA. This is a unique feature for OpenCL targeting
FPGAs. The resulting FPGA design is a streaming architecture that calculates a depth
value per cycle.

The SoCrates II board is used as platform of choice [265]. Altera’s FPGA SDK for
OpenCL compiler v15.1 is used to synthesize the different OpenCL kernels. The mea-
sured power consumption of the board is 2W, while running a fully booted but otherwise
idle operating system. The maximum power consumption is around 6W for the compu-
tation of stereo vision on the FPGA. The execution time of the FPGA design depends on
the size of the image. For instance, processing images of size 680×480 require 3.6 ms
(277 fps) and images of size 1360×1024 need 13.8 ms (72 fps). The novel FPGA DP
algorithm requires more logic for larger images because the internal data width depends
on the size of an image row. The design consumes 94% of the available logic resources
for 100 possible disparities and images of size 640×480 and 97% for 88 possible dis-
parities and images of size 1360×1024.

A problem that arises with DP-based algorithms is that incorrectly calculated dispari-
ties occur between high and low disparities due to smoothing. Smoothing shall increase
the density of a depth map. To reduce this boundary effect, the concept of so-called
resets is introduced, where the previous DP matrix elements are set to zero. To deter-
mine reset points, the Sobel filter is used. A reset is triggered if the current image row
includes edges. Afterwards, a left-right consistency check is used to further improve the
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accuracy. Hence, disparities are considered as correct if a depth value is consistent in
both calculated depth maps.

5.4.3 Time Series Analysis

My main objective regarding time series analysis is to find a similarity measure that is
more accurate than using ED and significantly faster than using DTW. Such a measure
shall efficiently exploit the capabilities of FPGAs while getting the best possible results
for the similarity.

Generating a new similarity measure. By systematically applying the ACPs, I trans-
fer the DTW algorithm into a ACP-based similarity measure. This procedure includes
evaluating the impact on the QoR, which is done, for instance, by considering the clas-
sification accuracy. Step (1) is to relax data dependencies within DTW to enable data
parallelism (ACP1). Normally, complex measures like DTW, SW, or Longest Common
Subsequences (LCSS) have time (and space) complexity of O(n2). Since there exist
data dependencies in such measures (cf. Fig. 5.19, the blue element has 3 data depen-
dencies), a parallelization is only possible on the anti diagonals. This aspect is exploited
by e.g. systolic arrays or by calculating several measurements concurrently.

Inspired by the approach of Farrar [250] and Rognes [266], I exploit ACP 1 to relax the
data-dependencies caused by the top neighbor (red arrows). These authors showed that
the SW matrix calculation does not often use the insertion case (red arrows) that prohibits
column-wise parallelization during the calculation for biological sequences. Hence, an
implementation can calculate all elements in a column concurrently. In Figure 5.19, the
elements in the green block can be calculated in parallel now. As the above method is
more suitable for local methods (e.g., LCSS and SW) than for global ones (e.g., DTW and
ERP), the ACP-based measure is also a local method. This is achieved by integrating
the 0 case into the measure. The reason is that values from the upper triangle matrix
would have no influence on the global value located at position (n,n) (see Figure 5.19),
hence the measure would perform an ED calculation. Step (2) removes the backtracking
step for the measure (ACP2), since an alignment is not required for a classification.

Besides relaxing data dependencies, reducing dimensionality or size of time series
leads to a more compact representation of a database. Therefore, a query by content
is accelerated in two ways: (1) reducing execution time per similarity calculation and (2)
better exploiting the memory hierarchy of a computing system [267]. Moreover, it enables
us to store time series data in fast but limited internal memory of FPGAs. Quantization
methods introduce approximations that enable it to better capture the underlying trend
and texture of a time series, hence, e.g., can improve the classification accuracy. Quan-
tization is a method for mapping real values to a smaller set of discrete symbols. Hence,
Step (3) is to use a variant of the SAX representation [268] called 1D-SAX [269] (ACP4).
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1D-SAX [269] expands SAX by introducing information about the slope of each seg-
ment into the quantization step. Therefore, for each segment, a regression line is de-
termined and a segment is represented by the tuple (q̄i, si), where q̄i is the mean value
of a segment and si is the slope of the line. To get the q̄is, Piecewise Aggregate Ap-
proximation (PAA) is used. PAA transfers a series of length n into one of length w using
q̄i = w

n

∑ n
w
i

j= n
w
(i−1)+1 qj . qf = n

w
is called the quantization factor. A tuple (q̄i, si) is

mapped to a symbol from alphabet A of length N = NA ∗ NS . Thus, the time series
Q is converted to the 1D-SAX-quantified sequence Q̂. A user can increase qf to further
accelerate the computation with an eventual drawback regarding the accuracy. Further
parameters are the allowed warping path represented by R and the sizes NA and NS of
the alphabet A.

The calculation of the similarity value between two quantified time series Q̂ relies
on a novel similarity function between two 1D-SAX symbols. Therefore, Step (4) is the
design of this novel function s1D-SAX(i, j) using ACP5 and CP1. This function uses an
approximate data type as input and the calculations are performed on demand (CP1).

Figure 5.19: Schematic for the calculation of the SW matrix between a candidate and
a query sequence represented in 1D-SAX. The approximation removes dependencies
shown in red. Hence, a global value only depends on values from the lower triangle ma-
trix. Therefore, the measure uses a local value, i.e., the maximum element of the matrix.
Elements that are not in the warping window, i.e., between the red lines are ignored. The
implementation can exploit to calculate elements in the green block concurrently. The
element, where a arrow points to, depends on the origin element of the arrow.
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Additionally, the operations are performed in fixed-point arithmetic (ACP5). s1D-SAX(i, j)
represents a novel similarity function between two 1D-SAX symbols. This function is
defined as follows:

s1D-SAX(i, j) =
1

1 + hamming(q̂i, ĉj)
, (5.2)

where hamming() is the hamming distance between two symbols. Furthermore, q̂i is an
element of the quantized query sequence Q̂ and ĉj of the candidate sequence Ĉ.

Definition of a new similarity measure. The resulting measure is an approximative
variant of the SW algorithm using 1D-SAX-quantified time series as input. The resulting
matrix recurrence is

SWAi,0 = 0, for 0 ≤ i ≤ w
SWA0,j = 0, for 0 ≤ j ≤ w

SWAi,j = max


SWAi−1,j−1 + s1D-SAX(i, j) if (dis)similarity
max1≤k≤i{SWAi−k,j +W (k)} if deletion
0 else

,

(5.3)

where w is the sequence length of the 1D-SAX-quantified time series. The maximum
value of the SWA matrix represents the similarity score between two time series. W () is
a cost function for deletion of symbols.

FPGA-based Design for the ACP-based Measure. A FPGA-based implementation
of Equation (5.3) is designed (see Figure 5.20). To efficiently use the integrated mem-
ory resources of an FPGA, one or more query sequences Q̂s are transferred to these
memories. Since for distance-based mining tasks, distances between the query and all
databases sequences Ĉs have to be calculated, transferring the query multiple times
is avoided trough the above approach. Internally, a query memory stores query time
series. Candidate sequences Ĉis are streamed to the FPGA. Local off-chip memories
store these Ĉis and include a part of a database or an entire database, which depends
if the FPGAs should calculate distances for one or more databases. Each FPGA per-
forms the similarity measurements for a certain query, but different FPGAs can use other
queries as input.

A host CPU starts the FPGA-based execution, while delivering the required param-
eters, sequence length, warping window R and the number of Ĉis. Each of the m
similarity measurement units (SMUs) integrated into an FPGA perform a similarity cal-
culation. p internal Smith-Waterman-Stream units (SW-Stream) calculate a SWA matrix
concurrently. A SW-Stream calculates certain lines of SWA sequentially (see bottom right
in Figure 5.20). The similarity function (Equation (5.2)) is evaluated on the FPGA dynam-
ically (CP1). A following unit collects all elements of SWA and determines the maximum
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element, which represents the similarity score. Each FPGA transfers the calculated sim-
ilarity scores to the host for further processing steps. In order to reduce the resource
consumption, fixed-point arithmetic is used for the FPGA design (ACP5). Moreover, the
SMU supports the RK-Band as warping constraint but the execution time is independent
from this band in the current version. The design is implemented using the high-level
language MaxJ on the Maxeler Workstation. According to a manual design space ex-
ploration, the best implementable design for a data flow engine of the workstation has 8
SMUs and 8 SW-Streams. The frequency of the design is 100 MHz.

Improve Classification Accuracy. Machine learning (ML) methods can be used in
order to improve the classification result. Kate et al. [270] proposed a feature-based
representation of a time series by using all calculated similarities between the query se-
quence Q and all entries in a database Ci as features. This approach down votes noisy
training examples that would lead to wrong classifications using a 1NN classification.
Moreover, this approach can be extended with more features just by combining all fea-
tures into a vector. The ML method tries to find a more complex classification hypothesis
to improve the classification accuracy. The most time-consuming part of this feature-
based approach is the calculation of features as also mentioned by Kate. To drastically
reduce this issue, my novel FPGA-based measure is used to create a feature vector
Feature-SW-1DSAX=(SW-1DSAX(Q̂,Ĉ0), ..., SW-1DSAX(Q̂,Ĉl−1)) for a given Q̂, where
l is the number of entries in the database. I consider logistic regression, decision trees
and SVMs with different kernels as ML method.

Figure 5.20: FPGA-based architecture design for SW-1DSAX calculations.
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Table 5.7: Average kernel execution times over entire uniprot20 database.

sequential SSE Convey HC-1
original adapted original adapted 1st approach 2nd approach

512.7µs 607.2µs 16.1µs 18.9µs 31.8µs 23.1µs

5.5 Evaluation and Results

In this section, I compare the achieved accuracy and performance of the ACP-based
FPGA designs with the original implementations running on a x86 processor. These
original implementations may use several cores or exploit the vector extension unit. I
omit a comparison against an exact FPGA implementation of the different algorithms,
since often such an implementation is not possible or requires a complex redesign of the
algorithm in order to get an efficient and optimized FPGA design.

5.5.1 HHblits

For heterogeneous architectures, it is important to know which parts of an application
can efficiently be executed on the different resources. Efficient execution is not only influ-
enced by the algorithm itself, but also depends on data size. A resource can be faster for
smaller databases than other resources, while for larger databases it is contrary. There-
fore, an important aspect is to analyze for which sequence lengths the hardware-based
ungapped score calculation unit is faster than the SSE-based implementation.
Note that using the novel designed and implemented ungapped score calculation unit
does neither influence the final QoR of the application nor the result of the first prefilter
step. Hence, I do not present accuracy measurements for the ungapped score calcula-
tion unit and HHblits.

Measurement of performance for an ungapped score calculation unit. I measure
the average kernel execution time for calculating an ungapped score with different im-
plementations (see Table 5.7). For the coprocessor-supported implementation, I have
to adapt the original source code of the tool HHblits. The focus is on accelerating the
adapted version, but I also compare the results with the original implementation. I mea-
sure the execution time over 30 runs for a sequential and an SSE version calculating
the ungapped score on the dual-core Intel Xeon 5138 of the Convey HC-1. The first
approach for a unit calculating an ungapped score loads the required query profile line
dynamically and directly from coprocessor memory. The second approach prefetches
the whole query profile into profile memory to calculate all ungapped scores. With the
second approach, I achieve speedup of 512.7/23.1 = 22.2 with an AE including 16 PUs
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Figure 5.21: Kernel execution time and obtained speedup of single-threaded SSE exe-
cution and coprocessor with 1 unit on 1 AE for varying sequence lengths.

for calculating an ungapped score against a sequential implementation using the original
profile. The second approach outperforms the first approach. Therefore, I continue with
the second approach to calculate the ungapped scores in the final design. After that,
I look at how computation time depends on sequence length. To find out precisely for
which data size speedup can be obtained, I split the sequences into 31 buckets of length
500 each as in Figure 5.4. I present the kernel execution time of the second approach in
relation to single-threaded SSE-supported execution in Figure 5.21. Speedup by means
of coprocessor execution can be gained from sequences larger than 500 Byte. For small
sequences, the overhead for starting up coprocessor execution has the major influence
of the execution time. This influence is negligible for larger sequences. So, for these
sequences coprocessor execution is up to factor two faster than on the SSE unit of the
Intel Xeon 5138 processor. Considering Figure 5.4, most approximated sequences in
the uniprot20 database used for prefiltering are smaller than 500 Byte. Therefore, the
average kernel execution time is faster on the SSE unit.

Measuring execution time for calculating all ungapped scores. To evaluate the
benefit of the coprocessor design, I measure the execution time of the loop calculating
the ungapped scores for all sequences. Both sequential, unaccelerated execution and
SSE-supported single- and dual-threaded execution on the dual-core Intel Xeon 5138 of
the Convey HC-1 and coprocessor-accelerated execution are measured. As can be seen
from Table 5.8, SSE support is really necessary to obtain reasonable execution time.
According to Remmert et. al. [249], the SSE version scales nicely for up to eight cores.
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The necessary increase of data padding has minor negative impact on the remaining
functions of the coprocessor versions. Still, the coprocessor design running with four AEs
and four ungapped-score-caclulation units on each AE accelerates the sequential first
prefilter step more than 150 times and is even faster than dual-threaded, SSE-supported
execution by a factor of 25.1

10.6
= 2.37 for the first prefilter step.

As normally 4*4 sequence comparisons are issued concurrently to the coprocessor,
the execution time depends on the longest of the 16 sequences. Using the uniprot20
database the design scales not very well (2.2×) from one to four AEs. Therefore, se-
quences in the database have to be ordered first to account for their lengths so that only
similar data sizes are taken so that concurrent sequence calculations are balanced with
regard to their lengths. With such an ordered database, the design including four units is
50.0
6.3

= 7.94 faster than single-threaded SSE-supported execution and 25.1
6.3

= 3.98 faster
than dual-threaded execution for the ungapped score calculations. However, it currently
incurs additional overhead at runtime for the tool HHblits. Sorting should therefore be
done in a preprocessing step upon release of a new database version. Using an ordered
database, our design scales slightly better (2.62×) from one AE to four AEs. The bot-
tleneck is hence the sequential comparison against a threshold for one sequence after
the other. An often used measure to compare SW implementations is to use giga cell
updates per second (GCUPS). The implementation achieves 157 GCUPS.

Currently, the design uses only 4 of the available 16 memory ports of each AE. So,
each AE uses 4 ports ∗ 8 Byte ∗ 150MHz = 4.8GB/s of the available coprocessor
memory bandwidth of 19.2GB/s. Therefore, using an FPGA of the newest genera-
tion offering more available resources on the chip would make an integration of more
ungapped score calculation units possible. Due to the remaining unused bandwidth,
12 additional units could be provided with data. Additionally, according to the internal
calculation, a new element of a sequence is needed every fourth cycle. This would the-
oretically lead to integrating 4 ∗ 16 = 64 units. By a wise data striping, eight times more
units could be integrated because an element of the sequence is only 1 Byte large. This
shows that the memory bandwidth poses no limiting factor to the design.

Table 5.8: Average execution time over 30 runs of first prefilter step for entire uniprot20
database.

Hardware CPU CPU Convey HC-1
Impl. seq. SSE 3 units 4 units
Cores/AEs 1 1 2 1 4 1 4

Unsorted database 1601.9 s 50.0 s 25.1 s 28.6 s 13.1 s 23.3 s 10.6 s
Sorted database 1601.9 s 50.0 s 25.1 s 21.7 s 8.3 s 16.5 s 6.3 s
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Performance evaluation for HHblits. After looking at the execution time for the first
prefilter step, I measure the execution time for the entire tool HHblits. I again measure a
sequential, unaccelerated version and SSE-supported single- and dual-threaded execu-
tion and the coprocessor-accelerated execution using 4 ungapped score units on each
AE (see Table 5.9). For the measurements, I use the original uniprot20 database and a
database sorted by sequence length. At the moment, this ordering is done at runtime by
an adapted quicksort algorithm. Therefore, I measure the execution time for sorting and
subtract it from the entire execution time of the tool HHblits. For the sorted and unsorted
database, I measure time with sequential coprocessor-accelerated prefiltering as well as
with task-parallel, overlapped prefiltering. The sequential version begins with calculating
the first prefilter stage by the coprocessor, while the host processor is idle. Once the
coprocessor has finished calculations, the host processor calculates the second prefilter
stage. A second worker thread for all coprocessor-supported implementations is enabled
in HHblits to process the Viterbi algorithm in a task-parallel fashion.

The design including four ungapped score units and using all four application engines
is 1626.2

33.9
= 48× faster than an unaccelerated, sequential version on a sorted database

and 44.5
74.1

= 2.19× faster than the original single-threaded SSE-supported version of
HHblits. Comparisons between the coprocessor-supported execution and the original
one is not completely fair and authentic due to different compilers (see Figure 5.15).
However, through a wisely workload-distributed task-parallel design for prefiltering the
database, a significant performance gain is achieved.

5.5.2 DP-based Algorithm for Stereo Vision

Two FPGA designs were implemented for stereo vision. The following paragraphs evalu-
ate the designs regarding achieved accuracy, performance, and resource consumption.

Convey HC-1. I compare the proposed design implemented for the Convey HC-1 to
methods from StereoMatcher (SM) framework. Namely, the sum of absolute differences

Table 5.9: Average execution times over 30 runs of the tool HHblits for entire uniprot20
database.

Hardware CPU CPU Convey HC-1
Impl. seq. SSE 4 units
Cores/AEs 1 1 2 1 4

Unsorted database
Sequential 1626.2 s 74.1 s 44.5 s 51.4 s 38.9 s
Task parallel 1626.2 s 74.1 s 44.5 s 48.3 s 35.7 s

Sorted database
Sequential 1626.2 s 74.1 s 44.5 s 46.6 s 37.0 s
Task parallel 1626.2 s 74.1 s 44.5 s 44.0 s 33.9 s
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(SM-SAD), simulated annealing (SM-SA), scan-line optimization (SM-SO), dynamic-pro-
gramming (SM-DP) and graph cut (SM-GC) algorithm. I use the default parameters of
the example scripts for each algorithm in the SM framework. Additionally, I compare
the accuracy against the top ranked CSM [271] and the middle ranked DTAggr-P [272]
algorithm. Figure 5.22 shows the depth maps of the algorithms under consideration.

The ground truth visualizes the correct disparities of the objects in the scene, hence
it is the correct depth map. According to the human visual perception, the CSM method
delivers the best result because of its similarity to the ground truth. Depth maps created
by global approaches (CSM, GC) are very smooth and accurate. Since the decision of
finding the optimal disparities is based on the local information of a column, the edges
of the different objects are not smooth in the depth map calculated by my approach.
Objects in the front are calculated more accurately.

To also get a quantitative value for the accuracy, I use the root mean square (RMSE)

error
√∑n

i=1(xi−ti)2
n

, where n is the number of pixels, xi the calculated values of the
depth map, and ti the ground truth values. The RMSEs of the different approaches are
shown in Table 5.10. The DP and local approaches produce slightly less accurate results
than the global approaches. The quality of the FPGA-based approximation approach is
comparable to algorithms that are ranked in the lower middle range of the Middlebury
Stereo Evaluation. However, there is a difference between the results published in the
Middlebury Stereo Evaluation and those collected by the execution of the methods in the

(a) Original Image. (b) Ground truth. (c) SM-SAD. (d) SM-SA.

(e) SM-SO. (f) SM-DP. (g) SM-GC. (h) DTAggr-P.

(i) CSM. (j) ACP-based design.

Figure 5.22: Depth maps calculated by different stereo correspondence algorithms.
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SM framework. This should be caused by different parameters used for the algorithms.
Besides the accuracy, the execution time of the algorithm is important. The execution

time of the different methods is measured on a 2.13 GHz Intel Xeon 5138 processor
(see Table 5.11). I also present the execution times required for three calculation steps,
matching cost calculation (Costs), cost aggregation (Aggr/Transfer ), disparity calculation
and optimization (Opt). I do not apply the fourth step, disparity map refinement. As
shown in Table 5.10 the global algorithms (GC, CSM) offer a good accuracy of the results
but the consumed execution time for the GC is between 159.32

0.11
= 1448 and 684.24

0.2
=

3421 times higher than the local approaches (SAD). Increasing the maximum allowed
disparity value leads to an enormous increase of the execution time for global algorithms.
Algorithms with such a large execution time are not applicable to processing a huge
amount of data. So, by using an ACP-based approach, we can handle such a high
amount of data. The FPGA-based approximation unit allows us to compute the disparity
values 0,14

0.000381
= 367× faster than the original DP-based algorithm for the tsukuba

image (384×288 pixel). The ACP-based unit computes large images up to 4096× 4096
pixels or more in an adequate time (see Table 5.12). The FPGA-based design processes

1
3.74·104µs = 26 frames per second (fps). The most time-consuming parts of the FPGA-
based approach are the data transfer and the computation of the cost matrix. The latter
can easily be integrated into the FPGA design itself. Exactly, this is done for the OpenCL
ACP-based variant in the following.

SoCrates II Board. The novel OpenCL ACP-based DP FPGA design is compared with
several local matchers, which are implemented on the same SoC. This includes SAD
and SHD matchers as well as different preprocessing methods (sobel filter and census
transformation). I apply different optimization approaches for local matchers such as

Table 5.10: Root mean square error (RMSE) between depth maps created by different
approaches and the ground truth tsukuba image. For the nonocc case, only the non-
occluded pixels are considered for the error calculation, where and every pixel is used
for all. rank specifies the rank of the algorithm in the Middlebury evaluation.

kind nonocc [RMSE] rank all [RMSE] rank

CSM global 0.82 1 1.2 3
SM-GC global 1.08 1.40
SM-DP DP 1.54 1.78
SM-SAD local 1.61 1.78
SM-SSD local 1.67 1.84
SM-SO DP 1.67 1.88
DTAggr-P [272] local 1.75 76 2.10 61
SM-SA global 1.84 2.03
FPGA-AC approx. 3.24 3.34
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Table 5.11: Average execution time for different algorithms calculating a depth map for
tsukuba.

Execution time [s]
Number of disparities: 16 Number of disparities: 32

Costs Aggr/Transfer Opt Total Costs Aggr/Transfer Opt Total

SM-GC 0.07 - 159.31 159.32 0.13 - 683.99 684.24
SM-DP 0.07 - 0.14 0.22 0.13 - 0.31 0.45
SM-SAD 0.06 0.03 0.01 0.11 0.11 0.06 0.01 0.20
SM-SO 0.07 - 0.14 0.21 0.13 - 0.38 0.52
SM-SA 0.07 - 258.51 258.59 0.14 - 503.19 503.33
FPGA-AC 0.05 3.41ms 381µs 0.06 0.11 5.99ms 603µs 0.12

Table 5.12: Average execution time [µs] of the optimizing step for different algorithms.

Execution time [µs]
Image size 1024× 1024 2048× 2048 4096× 4096

Local method 5.30 ∗ 104 1.76 ∗ 105 8.28 ∗ 105

Global method 2, 54 ∗ 109 1, 04 ∗ 1010 4.31 ∗ 1010

DP method 1.33 ∗ 106 5.89 ∗ 106 2.13 ∗ 107

FPGA-AC 2.46 ∗ 103 9.43 ∗ 103 3.74 ∗ 104

reducing the internal data width, remove operations (full, sparse), a novel cost function
and vary the considered neighboring pixels (window) Aq. Optimization 3 bit means that
only the leading 3 bits of a data type are used and novel indicates that I use my novel
cost function for SHD. The execution time only depends on the size of the image for
all FPGA designs. Processing images of size 680×480 requires 3.6ms (277 fps) and
images of size 1360×1024 need 13.8ms (72 fps). The resource consumption between
the same matcher varying in supported image size is roughly the same, only the novel
ACP-based DP algorithm requires more logic for larger images because the internal data
width depends on the size of an image row. Post-processing is not considered, which
further can improve the accuracy or visibility of depth maps. However, it is used for
approaches discussed in Section 5.7. Hence, a direct comparison is not fair. Detailed
information about my implementation for local approaches can be found in [BES+17].

Moreover, I successfully use one of these local approaches exploiting AC for 6D vi-
sion [BSE+17]. This leads to a gesture control system and to the ability of extracting
valuable information from a traffic scene. The goal of the gesture control system is to
find a dominant moving object in the scene as well as determining direction and speed
(see Figure 5.23a). Therefore, I calculate 6D points using the system and cluster them
on the CPU. The cluster with the highest movement is considered as the dominant ob-
ject, for instance, the hand. Moreover, a qualitative analysis shows that the approach
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(a)

(b) (c)

Figure 5.23: Detecting moving hand (a). A real-world traffic scene(b [253]+c).

is useful for providing information about a traffic scene (see Figures 5.23b and 5.23c).
Objects can be found in the 6D field by using a clustering of similar 6D vectors. A line
connects points in the current frame with the same point seen at the previous frame and
the color presents the distance, hence the velocity. Therefore, the relatively fast move-
ment of the black car (red circle) is seen as red lines. The 6D vision approach is able to
find the critical objects in the scene.

The different stereo vision designs are evaluated regarding accuracy of the calculated
depth map. A quantitative evaluation is performed by using 200 images from the KITTI
benchmark [253] and four from the Middlebury framework, see Table 5.13. According
to the KITTI benchmark, a depth value is correct if the difference to the ground truth
value is less than 3. I use the same quality function. Since the ground truths of the
KITTI benchmark do not provide a depth value for all objects in the scene, checking
the accuracy and density for those pixels is not possible. Hence, I cannot verify the
incorrectness of found depth values in these regions.

The resource consumption of SAD approaches is high and optimization approaches
like reducing data width results in a poor accuracy. The only exception in terms of ac-
curacy is the sparse approach. In terms of supported disparity values, SHD approaches
outweigh the others. The SHD sparse approach significantly increases the supported
disparities and has a reasonable accuracy. Census-based matchers offer a good trade-
off between accuracy of the results and supported disparities. Additionally, they achieve
a high accuracy even with small Aq.

The novel ACP-based algorithm has the highest accuracy on the KITTI images and
provides a high number of supported disparities. For the KITTI camera setup, the algo-
rithm calculates real world distances between 4.3 m and 432 m. Census approaches
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Table 5.13: Design space exploration and evaluation of the accuracy.

Resource Cons. Middlebury KITTI
Preprocessing Local Method Optimization Max. Disp. Cons. Logic accuracy accuracy

Sobel SAD Aq=5x5 76 90% 83.53% 90.96%
Sobel SAD Aq=5x5, 3 bit 52 37% 29.39% 81.68%
Sobel SAD Aq=7x7 42 89% 90.19% 89.56%
Sobel SAD Aq=9x9 26 89% 88.67% 86.35%
Sobel SAD Aq=11x11, sparse 54 87% 90.63% 91.38%
Sobel SHD Aq=7x7, novel, 3 bit 180 97% 74.52% 87.84%
Sobel SHD Aq=9x9, novel, 3 bit 120 99% 84.44% 89.99%
Sobel SHD Aq=11x11, novel,3 bit 74 88% 89.25% 91.24%
Sobel SHD Aq=15x15,novel, sparse, 3 bit 140 95% 86.71% 89.34%

Census16 SHD Aq=5x1 156 91% 79.30% 89.42%
Census16 SHD Aq=9x1 90 93% 85.79% 91.13%
Census16 SHD Aq=3x3 90 94% 85.13% 90.59%
Census16 SHD Aq=5x5 30 85% 90.65% 87.08%
Census24 SHD Aq=3x1 190 99% 81.60% 88.17%
Census24 SHD Aq=5x1 62 61% 86.21% 89.14%
Census24 SHD Aq=3x3 62 96% 88.20% 88.85%

novel ACP-based DP - 100 94% 83.91% 94.26%
DP (orginal) original SW version - - 92.91% 83.85%

can even detect distances that are closer to the camera (up to 2,3 m). Interestingly, the
original DP algorithm provides the highest accuracy on the images that are part of the
Middleburry stereo matcher framework, but badly performs for the KITTI benchmark. On
the other side, our novel algorithm badly performs on scenes that include overlapped
objects or only single object like rectangles, where striking is a major issue (Middleburry
images). However, in many applications like self-driving cars the front object is more
important, and our algorithm calculates the distance of these objects very accurate as
seen by the KITTI image results.

In order to make a qualitative evaluation of the different approaches, a visual com-
parison is applied. Thus, an already existing stereo vision system5 is used. This system
additionally provides a laser projection to enable texture on all areas, which improves the
density of local methods [273]. The recorded image size of both cameras is 1360×1024,
and the overlap of both images is 1024 × 1024. The used static scene and the ground
truth are shown in Figure 5.24. The texture on the foreground board is projected by the
infrared laser. A correct depth map for the scene has a color gradient from red (objects in
the front) to blue (background). The front object requires that the matcher finds disparity
values greater than 130, which cannot be achieved by each implemented matcher. The
results of different matchers are shown in Figure 5.25.

Since no post-processing filters are applied, invalid values are perceived as noise.
SAD-5x5 returns a relatively dense depth map, but only 76 disparities can be found,
hence it cannot find objects close to the camera like the panel in the upper part of the
image. Reducing the data width enables reducing the used logic, but less accurate

56D vision technology by MYESTRO Interactive GmbH
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(a) Left camera (b) Right camera (c) Ground truth depth map.

Figure 5.24: Left and right image recorded by the stereo vision system.

values are found (see SAD-5x5-3bit). Larger window sizes as used for SAD-7x7 and
SAD-9x9 lead to a more dense depth map, but the increased resource usage drastically
reduces dmax. Therefore, the distance to close objects can not be calculated. Using
a larger window size in combination with the sparse approach as used in SAD-11x11-
sparse can slightly increase the number of considered disparities. It results in a dense
depth map but objects in the front are enlarged.

Since using the hamming distance drastically reduces the amount of used logic, SHD-
7x7 enables dmax = 186. Therefore, accurate distances are calculated for objects in
the front. Wrong distances tend to be large as can be seen by the red noise. Similar
to SAD, larger window sizes lead to more dense depth maps (SHD-9x9, SHD-11x11).
SHD-15x15-sparse is comparable to SAD-11x11-sparse, but more than doubles dmax.

Census-based approaches enable the use of so-called line matchers, which only con-
sider values of a line. Compared to SAD and SHD, this is feasible because information
about adjoining image rows is given by the census transformation. Census16-5x1 en-
ables that dmax is very high, but increasing the window size (Census16-9x1) results in a
more dense disparity map. But again, increasing the window size decreases dmax. The
same behavior holds for Census16-3x3 and Census16-5x5. Going to Census24 meth-
ods increases the logic consumption, hence dmax decreases but no benefit arises for
accuracy and/or density.

The approximated DP matcher (DP-SM) creates a very dense depth map. But sim-
ilar to the original DP approach smearing occurs at object boundaries, hence it is not
guaranteed that the disparity value is valid. The combination of the left-right matching
combined with the reset approach yields a more accurate depth map but unnecessary
resets introduce incorrect disparities (adapted ACP-based algorithm).

Next, I consider the importance of the laser texture. For this, some methods are
applied to a real world traffic scene, where a pedestrian is moving, see Figure 5.26. The
trend in this real-world scenario is that the behavior of each method is similar to the
experimental setup. Hence, the laser texture is not required in real-world scenarios.

I apply all methods to an object detection framework (see Figure 5.27). Using this
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(a) SAD-5x5 (b) SAD-5x5-3bit (c) SAD-7x7 (d) SAD-9x9

(e) SAD-11x11-sparse (f) SHD-7x7 (g) SHD-9x9 (h) SHD-11x11

(i) SHD-15x15-sparse (j) Census16-5x1 (k) Census16-9x1 (l) Census16-3x3

(m) Census16-5x5 (n) Census24-3x1 (o) Census24-5x1 (p) Census24-3x3

(q) DP-SM(680x512) (r) DP-SM(1360x1024) (s) Adapted ACP-based
DP algorithm.

Figure 5.25: Depth maps returned by the different methods aligned to the left image.

framework, pedestrians can be detected in a real world traffic scene. A depth map is
used as input. Such a system has potential to detect collisions of a subject with objects.
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(a) Ref. Image (b) Ground truth (c) SAD-5x5 (d) SAD-5x5-3bit (e) SHD-9x9

(f) Census16-5x1 (g) Census16-9x1 (h) DP-SM (680x512) (i) DP-SM (1360x1024)

Figure 5.26: Depth maps returned by the different methods aligned to the left image.

As ground truth, I use an object detection application provided by a stereo vision system6.
The white rectangle shows the detection range, the yellow ones represent the distances.
The stereo camera is shown as yellow points. The right point shows that there is a
potential collision with a pedestrian. Often, the methods found incorrect objects, i.e., they
find objects where no real object is, but most of them were able to detect the pedestrian,
hence a post-processing step should help avoiding a false detection. The novel ACP-
based DP algorithm is the only approach that is able to find the correct objects in the real
world scenario (the red bounding box surrounds only the pedestrian).

To sum up, SAD-based designs have a high resource consumption. SHD needs a
larger window size to provide similar accuracy but still requires less resources, hence
offers more supported disparity values. Going from 16 bit to 24 bit Census is not useful.
Census16-based approaches are similar in terms of accuracy and resource consumption
to SHD approaches using our novel cost function. Our novel DP algorithm outperforms
all other approaches for typical traffic scenes in terms of accuracy and supports a high
number of disparities. Hence, the most promising candidate for an integration into an
object detection system for self-driving cars of the considered approaches is the novel
ACP-based DP FPGA design.

6I use an already existing stereo vision system (6D vision technology by MYESTRO Interactive
GmbH).
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(a) Ground truth (b) SAD-11x11-sparse

(c) Census16-5x5 (d) SHD-11x11

(e) Census24-5x1 (f) Novel ACP-based DP algorithm

Figure 5.27: Detection of a pedestrian using different implemented stereo matcher
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5.5.3 Time Series Analysis

As evaluation data, I use all databases from the UCR archive [274], which includes time
series data from completely different domains. The current version of the UCR archive
includes 85 different time series databases, where the smallest database has 16 entries
and the largest one 8926. The length of the time series varies between 24 and 2709
and the number of classes between 2 and 60. For each database, there is a number of
queries varying between 20 and 8236. The total zip compressed archive has about 350
MB. In all cases, the 1D-SAX quantization is performed as preprocessing step.

I evaluate the influence of different parameters to the ACP-based measure and com-
pare it to ED and DTW in terms of a 1NN classification, where the classification accuracy
(= correct classifications

number of classifications ) and the execution time represent the quality metric. Additionally, I
check the occurrence of the top DTW candidate in the top ten/twenty time series returned
by a query by content search using SW-1DSAX. Afterwards, I investigate if I can deter-
mine ahead of time when SW-1DSAX outperforms ED in terms of classification accuracy.
Then, I evaluate the feature-based approach in terms of classification accuracy.

Influence of relaxed data dependency (ACP1). I apply a 1NN classification using
the ACP-based measure. The result is that removing the insertion case has only minor
influence on the classification accuracy (cf. Figure 5.28). The average classification error
increases by 1.1% to 28.6%. This is slightly better than using ED. The novel method is
better on 47 databases.

Selection of Parameters. The ACP-based measure has four parameters and W () =
−1, see Equation (5.3). Firstly, I consider the influence of the warping window R on the
classification error for different databases. A leave-one-out cross-validation is used on
the training data to find the optimum R ∈ {0%, 100%} on each database, where qf= 2,
NA = NS = 8. Using the extracted optimal R per database, the average classifica-
tion error on the training data is 0.267. I calculate the classification errors of the test sets
for a 1NN using SW-1DSAX5, SW-1DSAXopt, SW-1DSAX100, DTWopt and ED (see Ta-
ble 5.14), where opt means that for each database, the warping window is used which is
found optimal on the training set. Additionally, classification error comparisons between
all used methods are shown. The comparison is presented as win/loss/tie between two
methods on the UCR archive, where the column method is the base line. The influence
of the optimal warping window is less for SW-1DSAX compared to DTW, but small R
enables a faster execution of the ACP-based similarity measure. Finding the optimal R
for SW-1DSAX requires a suitable amount of available training data. Especially, for small
training sets one should use r = 5% or r = 100%, respectively. SW-1Dsax performs
better than ED on more than half of the databases. It also outperforms DTW on one third
of the databases.
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Figure 5.28: Classification error rate of SW-1DSAX compared with approximated SW-
1DSAX with 5% SC Band. For databases above the line approximated SW-1DSAX is
better, below line SW-1DSAX is better.

Table 5.14: Comparison of classification error between different (dis)similarity measures
on the entire UCR archive.

SW-1DSAX5 SW-1DSAXoptr SW-1DSAX100 DTWopt ED

class. error 0.286 0.288 0.282 0,237 0.288

SW-1DSAXopt 35/37/13 - - - -
SW-1DSAX100 28/34/23 24/32/29 - - -
DTWopt 21/63/1 24/59/2 26/58/1 - -
ED 47/37/1 44/40/1 47/36/2 54/8/23 -

Secondly, I determine the best values for all four parameters using leave one out
cross-validation. For such a grid search, the parameters space is R ∈ {0, 1, ..., 100},
L ∈ {2, 4, 8, 10, 15, 20, 25, 30, 35, 40}, Ns ∈ {2, 4, 8, 16}, and Na ∈ {2, 4, 8, 16, 32
, 64}. The product N = Na ∗NS is restricted to a maximum of 256, which is equivalent
to the original 1DSAX setup. The total amount of combinations is 21 for the alphabet
lengths, hence the total number is 21210. Applying this grid search to the complete UCR
archive would be very time-consuming, therefore I restrict R to [optr − 2, ..., optr + 2].
The number of combination decreases to 1050, but this still requires 2.7 days on a CPU-
based system. However, this approach does not guarantee to find the best parameters.

103



Chapter 5 - FPGA-based Approximate Computing Patterns for Dynamic Programming

For example, on the CBF database the optimal parameters areR = 13, qf = 8,Na = 8,
Ns = 2 with trainings classification error 0.033. But with restricted R we find R = 5,
qf = 15, Na = 4, Ns = 2 with a training error of 0.066. Therefore, it is worth it to
perform a full grid search for a dedicated domain.

Moreover, such a grid-based parameter search requires a certain amount of training
data in order to avoid over-fitting of the parameters. According to the results on the test
data, it turns out that databases with more than 300 training examples determine pa-
rameters that perform better than the standard parameters. Databases with a smaller
amount of training data are not reliable in terms of parameter determination. Using
the grid based parameters for databases with more than 300 training elements (see Ta-
ble 5.15) results in a 0.012 better performance in terms of classification error on average,
0.229 in the best case and −0.037 in the worst case compared to SW-1DSAXoptr.

FPGA-based Execution. As already mentioned, the execution time of the FPGA de-
sign is independent of the parameter R. The FPGA design is restricted to time series
with a minimum length of 80 after quantization. The design outperforms the single-
threaded SW-1DSAX5 version running on the Maxeler host CPU by a factor of 2.9 on
average in terms of execution time, where the single-threaded SW-1DSAX5 outperforms
single-threaded DTW by a factor of 2.4. On two databases, LargeKitchenAppliances
and StarLightCurves, the FPGA design is about two times faster than an eight-threaded
SW-1DSAXoptr version running on the host CPU. Since Maxeler offers a cloud-based
FPGA cluster, I theoretically calculate the amount of FPGAs required to outperform the
40-threaded versions of DTW, SW-1DSAX-5, and SW-1DSAX-100, where both approx-
imated SW measures use an AVX implementation (see Section 5.6). 20 FPGAs would
outperform the 40-threaded version on most of the databases. For some databases one
or two FPGAs outperform the DTW execution time on the server system. The FPGA
execution is suitable for large time series and often in combination with a required high
warping window.

Besides 1NN classification, I also consider kNN classification. Given a query, the
task is to find the most similar time series using a certain similarity measure. The top
similar candidate sequence is found per test query for each database using DTWoptr

Table 5.15: Comparison of classification error between different (dis)similarity measures
on databases from the UCR archive that have more than 300 training elements.

SW-1DSAXopt DTW ED

class. error 0.279 0.229 0.291

DTWopt 8/26/0 - -
ED 22/12/0 23/4/7 -
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Figure 5.29: Percentage of the occurrence of the top DTW candidate in top of 1D-SAX.

and a check if this sequence is in the top 10 or 20 of 1NN-1DSAX7. The results per
database are shown in Figure 5.29. In roughly 81% of the cases the top DTW candidate
for each query is part of the top 20 of 1D-SAX and roughly 70% are in the top 10. For
33 databases the occurrence is more than 90%, for 63 more than 80% and only 10
databases are below 50%. Hence, on most of the databases we can accelerate the
query by content while the approximated results are still valuable.

No distance measure can outperform all other measures in terms of accuracy, hence
it is important to know beforehand which measure shall be used. Therefore, it is crucial
to predict for which problems the ACP-based method is more accurate than ED or DTW.
A simple way is to perform a cross-validation on the training set in order to select the
measure for classifying unknown objects [275]. Using leave-one-out cross-validation
and an 1NN classification, the expected accuracy gain is

gainexp =
accuracySW-1DSAX

accuracyED
. (5.4)

If the expected gain is greater than one, it is expected that the method will outperform
ED in terms of classification accuracy on the given database. The classification error is
determined on the test set for SW-1DSAX and ED. The actual accuracy gain is calculated

7Recapitulate that I use SW-1DSAX5 in case the database has less than 300 items, else I use SW-
1DSAXopt.
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Figure 5.30: Expected and actual classification accuracy gained regarding ED.

by dividing these two numbers. The results are shown in a Texas Sharpshooter Plot
(see Figure 5.30).

According to Batista et al. [275], the plot is divided into four regions. The true positive
(TP) region includes all databases shown as points in Figure 5.30 for which an accuracy
gain is expected and this assumption is true. The true negative (TN) region includes all
databases for which I can correctly estimate to be worse than ED. All databases for which
I predict that my method is worser than ED, but the accuracy actually increases lies in
the false negative (FN) region. Unfortunately, the false negative (FN) region indicates
that we lose the chance to improve the accuracy. The only bad region for my approach in
terms of accuracy is the false positive (FP) region which includes all databases for which I
wrongly expect an accuracy gain. Points, i.e., databases that are close to (1,1) only have
a minimal magnitude of accuracy improvement or decrease. 13 databases fall into the FP
region, where three have an accuracy decrease of more than 10%. Predicting in which
cases my method outperforms ED is especially difficult for small training databases. For
a considerable number of databases, it can be determined ahead of time when the ACP-
based method outperforms ED.

Feature-based approach. As discussed in Section 5.4.3, I apply the calculated similar-
ities of SW-1DSAX5 as features for different machine learning approaches. I exploit the
python library scikit. I use the similarities between the training data elements as features
to learn the different classifiers. The aforementioned ML methods are compared to each
other in Table 5.16. The LR classifier-based method outperforms ED on 61 databases.
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Table 5.16: Comparison of different ML methods to improve the classification accuracy.

SVM linear SVM poly LR RFC

class. error 0.272 0.250 0.248 0,275

SW-1DSAX5 52/32/1 53/31/1 61/24/0 45/39/1
SW-1DSAX100 51/32/2 53/31/1 59/24/2 45/38/2
DTWopt 36/49/0 39/46/0 42/43/0 29/56/0
ED 56/28/1 56/28/1 61/23/1 54/29/2

Notice that on 21 databases ED is the ideal measure. Better results are achievable by
using DTWr distances as features [270], but this results in a higher execution time. I am
able to outperform DTWoptr on about 50% of the databases in terms of accuracy and
execution time using LR.

5.6 ACP-based Vector Extension Unit Design

I develop an implementation that uses SIMD instructions to perform the ACP-based sim-
ilarity measure (see Algorithm 5.2). The algorithm uses SIMD instructions as much as
possible, while reducing the scalar operations to a minimum. The only critical part that
hampers the performance is the shifting step which cannot be omitted due to necessary
data dependencies. The implementation uses a query sequence Q̂, a candidate se-
quence Ĉi, and a warping constraint R as input. N represents the number of lanes, i.e.,
the amount of parallel processing elements in the VEU. Therefore, N depends on the
certain VEU and also on the used data type. The latter means that the number of pro-
cessing elements varies between different data types for the same VEU. The algorithm
returns the maximum local similarity score in the DP matrix. I evaluate the ACP-based
measure and run it on a NUMA system. This NUMA system has an Intel Xeon E5-2670
v2 on each of the two sockets. The base frequency is 2.5 GHz and each processor has
10 cores with 2 HW-threads each. The E5-2670 has 20 MB smart cache and AVX as
instruction extension. I consistently use gcc in Version 5 for compiling my source code
and OpenMP to enable a parallel execution of several similarity calculations for the same
query. The measured execution times are shown in Tables 5.17 and 5.18.

The ACP-based 1DSAX5 is on average 3.2× faster than DTWopt, but it mainly de-
pends on the warping window. Small R together even with larger time series length re-
sults in a slow-down of the execution on the AVX units for example on the HAM database.
However, in these cases, I am still faster by using the sequential variant of my method.
In the case of the LargeKitchenAppliances database, which needs a high warping win-
dow, I achieve a speedup of 29.4. However, the most interesting databases are those for
which we run significantly faster (speedup > 2) as DTWopt and have a higher accuracy
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Algorithm 5.2: SIMD-based implementation for VEUs.
Input: Q̂ // query sequence

Input: Ĉi // candidate sequence

Input: R̂ // warping constraint

1 num_blocks = (|Ĉi|+N − 1)/N ;

2 bitmap=calc_bitmap(r,|Q̂|,|Ĉi|); // Array for invaldating matrix elements
3 initialize other variables;
// Loop over DP matrix columns

4 for j=1 to |Ĉi| do
5 SWAP(curr,prev);
6 iinit = max(0, (j-1-r)/N);
7 if iinit == 0 then
8 shift_val_vec[0] = 0;
9 else

10 shift_val_vec[0]=prev[iinit-1][N-1];
11 end

// Loop blockwise over DP rows
12 for i=iinit to min((j-1+r)/N, num_blocks-1) do
13 sim_score_vec = calc_sim_hamming(); // calculates N similarity score

values
14 prev_shift_vec = SLL(prev[i],1);
15 prev_diag_vec = prev_shift_vec | shift_val_vec;
16 diag_vec = prev_diag_vec + sim_score_vec;
17 diag_vec = diag_vec | bitmap[(j-1)*num_blocks+i];// Invalidate matrix entries
18 best_so_far_vec = max(diag_vec,best_so_far_vec);
19 left_vec = prev[i] + W_vec;
20 left_vec = left_vec | bitmap[(j-1)*num_blocks+i];// Invalidate matrix entries
21 curr[i] = max(diag_vec, left_vec) ;
22 shift_val_vec[0]=prev[i][N-1];
23 end
24 end
25 return max(best_so_far_vec);

than ED. This holds for 19 databases for SW-1DSAXoptr and 39 for SW-1DSAX5 and I
also outperform DTWopt in terms of accuracy on 26 databases.

Besides accelerating DTW by using a warping constraint, there exists lower bound-
ing. Lower bounding is a technique to calculate a lower bound of the distance betweenQ
and Ci in order to prune off sequences. According to Rakthanmanon et al. [276], I use a
sequence of lower bounds to accelerate a 1NN classification8. As first lower bound, I use
a variant of LB_kim [277] described in [276], which is a O(1) lower bound. The second
lower bound is LB_keogh [278], which has complexity O(N), but early abandoning en-
ables it to stop the calculation once the distance is greater than the current best distance.

8I slightly adapt the source code from http://www.cs.ucr.edu/~eamonn/UCRsuite.html
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Table 5.17: Comparison of execution time between different (dis)similarity measures on
the entire UCR archive.

SW-1DSAX5 SW-1DSAXoptr SW-1DSAX100 DTWopt ED

exec. time 81.87 s 252.38 s 624.37 s 1123.49 s 21.89 s

Table 5.18: Comparison of execution time between different (dis)similarity measures on
databases from the UCR archive that have more than 300 training elements.

SW-1DSAXopt DTW ED

exec. time 226.1 s 1040.7 s 21.1 s

Table 5.19: Comparison of DTW lower bounding in combination with our measure.

SW-1DSAX5 SW-1DSAXoptr SW-1DSAX100
class. error 0.295 0.291 0.293
exec. time 41,3 s 37.6 s 173,08 s

DTWopt 19/65/1 17/68/0 21/64/0
ED 41/44/0 36/49/0 41/44/0

I use the approach from Lemire to calculate the required envelopes for LB_keogh [279].
Moreover, the proposed reordering step is also used to enable abandoning as soon

as possible. Therefore, I order the query sequence according to the values in a time
series. Early abandoning enables stopping the calculation once the similarity value is
less than the best so far value. Hence, it drastically reduces the execution time of a 1NN
classification. I apply above approach together with SW-1DSAX as measure instead of
DTW. LB_kim and LB_keogh are two lower bounds for DTW, which are exact. How-
ever, applying a different similarity function lead to different results. Therefore, I need to
evaluate this factor.

I use a single core of the CPU-based server to execute the different versions. The
results are shown in Table 5.19. Executing the entire UCR archive using DTWoptr with
LB_kim and LB_keogh requires 3588,09 s. Hence, my method is significantly faster than
DTW with lower bounding, but have a slightly worser classification error compared to
ED in general. However, it is important for my method to be faster than DTW and more
accurate than ED on a significant number of databases. This is true for 28 databases
for SW-1DSAXoptr, 25 for SW-1DSax100, and 31 for SW-1DSax5. Using SW-1DSAX5,
my method is 2579× faster than DTW with lower bounding on these 31 databases with
a maximum of 471 for the RefigerationDevices database. In the case of SW-1DSAX100,
the total speedup on the 28 databases is 3143 with a maximum of 766 for Phoneme.
This is very interesting because Phoneme is normally a very huge database, but only a
subset is part of the UCR Archive.
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5.7 Related Work

Design patterns are a well-known concept in software engineering and help to solve
reoccurring problems [280]. A pattern is described in such a way that it is independent
of a certain context. It provides a template which shows how to solve the accompanying
problem. Thus, patterns represent best practices. However, the introduction of design
patterns in the field of FPGAs is low. De Hon et al. [262] provide a classification of design
patterns for reconfigurable computing. They group patterns amongst others in patterns
for area-time trade-offs, for extracting parallelism, for common case optimization such as
memoization, for using hardware efficiently, and for number representations. To reduce
the design effort, parallel patterns implemented in a functional language, such as Scala,
can be exploited to generate configurable hardware in an automatic way [281]. A systolic
array is an often used pattern to exploit parallelism on anti diagonals, called wavefront
parallelization [260]. The aforementioned approaches do not consider the high potential
of approximation.

Gribbon et al. [246] discuss which design patterns for reconfigurable computing can
be used for image processing FPGA designs and group them in patterns for timing,
bandwidth, and resources. Their investigation includes approximation patterns such as
downsampling or functional approximation. GRATER [12] is an automated design
workflow for FPGA accelerators that tunes the precision of data types within an OpenCL
kernel. Additionally, there exist approaches for certain domains like artificial neural net-
works [132], which use memory access skipping, precision scaling, and approximate
arithmetic blocks. SAGE [11] is an AC self-tuning approach dedicated to GPUs, and
uses the following AC patterns: skipping atomic instructions, data packing, and skipping
computations of inactive threads. In contrast, my ACP patterns have their focus on higher
abstraction layers to introduce AC, while focusing on 2D DP algorithms.

Smith Waterman Algorithm. As the Smith Waterman (SW) algorithm is the most ac-
curate method for comparing biological sequences, there exists a huge research effort
to accelerate the underlying computation. A recent survey considers SW algorithm im-
plementations on different hardware architectures dedicated to protein sequences [282].
On the CPU level, the implementations of Wozniak [283], Rognes and Seeberg [266]
and Farrar [250] are state-of-the-art and use intra-parallelism. To make things clear for
the reader, intra-parallelism use the available parallelism within a sequence comparison,
while inter-parallelism performs several comparisons concurrently. Exploiting AVX2 and
inter-parallelism, Daily [284] achieves 291.5 giga cell updates per second (GCUPS) on
two Intel Xeon E5-2670 2.3 GHz processors. CUDASSW++ 3.0 [285] is the de-factor
standard tool for GPUs but uses the inter parallelism approach on the CPU and GPU.
CUDASW++ 3.0 reached 119 GCUPS on a quad-core Intel i7 2700k 3.5Ghz processor
and an NVIDIA GeForce GTX 680 for the Swiss-Prot database.
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The main focus towards FPGA approaches lies on DNA sequences due to its simplic-
ity. These approaches are based on systolic arrays [286] and reach up to 98 GCUPS for
synthetic data. Similar to my ACP-based approach, Rucci et al. [287] exploit inter paral-
lelism and get 58.5 GCUPS using the FPGA mode and the NR database. By combining
two Intel Xeon E5-2620 v2 2.0Ghz and two Intel Xeon Phi 7110P, Lan et al. [288] achieve
s 220 GCUPs for a merged database. The ACP-based design running on the Convey
HC-1, which is a relatively old technology compared to the mentioned ones, leads to 157
GCUPs for the adapted uniprot database. My design exploits inter- and intra-parallelism
in combination with approximation techniques, which is not used by the other ones.

Stereo Vision. The related work regarding local approaches is huge, therefore I refer
to a current survey [255]. The execution time of FPGA-based local approaches only
depends on the number of pixels, in case the resources are sufficient for the current
window size. My ACP patterns transfer a SGM algorithm in such a way that the exe-
cution time also only depends on the number of pixels, hence they lead to a streaming
architecture. Regarding SGM approaches, learning a matching cost function using deep
neural networks based on ground truth data improves the accuracy of SGM, but is very
computationally intensive and requires high-performance hardware [289]. Other SGM
approaches aim at minimizing the memory consumption using tiling, architectural opti-
mizations, for instance by storing only a certain part of the intermediate data [290], or
reducing the considered paths [291].

A recent GPU implementation on a Tigra X1 [291] achieves 42 fps considering 128
disparities on VGA images (640×480) and has an accuracy of 93.36% on the entire
KITTI benchmark [253]. To support a large disparity range, Gehrig et al. [292] adapt the
disparity step size to a maximum of 4 for large disparities. It achieves a performance
of 22 fps considering up to 256 disparities for images of size 1024×512 and has an
accuracy of 93% on KITTI. Hoffmann et al. [293] propose a scalable SGM design for
low-end as well as high-end FPGAs achieving an accuracy of 91.6% on Middlebury and
providing 33 fps on VGA images on the Zed board.

A solution on a high-end FPGA achieves 42 fps for 128 disparity levels on images
of size 1600×1200 achieving an accuracy of 94,5% on Middlebury [294]. Recently, a
tree-based global algorithm was proposed on a costly FPGA and achieves 30 fps for 60
disparities on images of size (1920×1680) and has an accuracy of 93% on Middlebury
[295]. I addressed the point which techniques overcome the issues regarding memory
and resource consumption for a SGM approach with a tolerable impact on the accuracy.
Therefore, I systematically apply the novel and general ACP patterns, which can also be
applied on a high-level programming language like OpenCL. This results in efficient ACP-
based FPGA designs, which are streaming architectures and achieve high frame rates
with useful accuracy. In contrast, other approaches rely on a hand-optimized low-level
implementation.
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Time series analysis. There exist few works that exploit heterogeneous architectures
for time series databases. Some approaches port DP algorithms like SW and DTW
to special hardware using systolic arrays [296, 297]. Moreover, different implementa-
tions for DTW exist on GPUs [298, 299] and many-cores [300]. A comparison between
GPUs and FPGAs is done in [301], where FPGA versions of DTW outperforms GPU and
sequential CPU. All special hardware approaches do not consider the aspect of approx-
imation to improve the performance, which I do using the ACP patterns.

5.8 Summary

Dynamic programming-based algorithms play an important role in different domains such
as computational biology, image processing, or time series analysis. Such algorithms
often have a high computational complexity and require a large memory space. However,
the application fields of these algorithms make it necessary to process huge amount of
data or to perform the task very fast. While reconfigurable architectures can provide a
sufficient hardware platform to achieve these requirements, porting the algorithms into
an FPGA poses a high design effort.

Approximation techniques reduce this design effort and often enable satisfying the re-
quirements as shown for different applications. Therefore, I have identified approximate
computing design patterns, which help a hardware designer to port 2D DP algorithms
into an FPGA efficiently. These patterns increase the exploitable parallelism, reduce the
required memory space and bandwidth, and decrease the required hardware resources.
As this chapter showed, these patterns are not only usable for a low-level implemen-
tation, they can also be used for higher hardware programming languages. Moreover,
these patterns are applicable to other hardware architectures.

The evaluation in this chapter gives valuable feedback for hardware designers to see
on which kind of problems it is beneficial to use the ACPs. However, the influence regard-
ing the QoR strongly depends on the algorithm, hence an evaluation has to be performed
to get the resulted impact. Such an evaluation can be performed according to a CPU im-
plementation which significantly reduces the effort. Moreover, the hardware designer
gets an early feedback if certain ACPs can be applied.

An implementation based on the ACPs poses an accuracy-aware method on the ar-
chitecture layer and thus can also be used by the configuration layer. Furthermore, this
implementation can also provide accuracy-aware knobs that can be tuned by the config-
uration layer. For instance, the quantization factor and the warping window pose such a
knob for the ACP-based measure.
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CHAPTER

SIX

INNOVATIVE SOFTWARE APPROACHES FOR

ACCURACY-AWARE COMPUTING

Accuracy-aware computing methods on the software layer have high potential to improve
different design values. Therefore, I introduce innovative and general accuracy-aware
software methods in this chapter.

The novel concept of applying contract-based algorithms in the domain of accuracy-
aware computing is proposed. Furthermore, I address the challenge how to control
the budget consumption of these algorithms and to realize contract-based tasks in an
efficient way. This includes the capability to adapt the execution of a contract-based task
per input to reach a desired quality of result (QoR).

Moreover, I introduce performance profiles for accuracy-aware computing. Perfor-
mance profiles act as a behavior description for contract-based tasks and present a rela-
tion between budget consumption and QoR. This description also leads to a general way
how to describe the behavior of other accuracy-aware methods that can be located in
any system layer. Moreover, exploiting this description leads to considering multiple ob-
jectives and different hardware parameters concurrently. Besides contract-based tasks
and performance profiles, I introduce a novel approach for fuzzy memoization.

6.1 Introduction

Applying accuracy-aware methods on the software layer poses huge opportunity to in-
crease the efficiency of the execution for an application regarding different design val-
ues1. Using approximation on a software level is not a new approach. The main differ-
ence of accuracy-aware methods compared to already existing approximation methods

1Cf. Prof. Anand Raghunatan’s talk at the center of computational brain research (CCBR) workshop at
the Indian institute of technology madras 2017 https://ccbr.iitmadras.in/workshops-previous.
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is that allowing a certain degree of approximation is a further desired design parameter
and not a compelling necessity to solve certain problems such as NP-hard ones.

There exist different accuracy-aware methods on the software layer [302]. Domain-
specific approximations [131] and function-specific approximate implementations [17]
have the drawback that they are not applicable on a broad spectrum. Furthermore, for a
fine-grained adaptation of the approximation degree, several approximate versions have
to be available.

The same holds for neural network-based approximate computing (AC) methods [15,
182], however, they present an automatic way to create an approximate version for a
certain code snippet. While the resulting neural network could be inferred using software,
a performance gain is only achieved by exploiting a neural processing unit. The above
method relies on the aspect that the number of inputs and outputs is fixed for a function
and thus different input sizes require a different neural network.

More general software-only AC methods are loop perforation [13] and loop tiling (ap-
proximate loop memoization) [14]. Note that I use loop tiling in this section to indicate
the method of approximate loop memoization from Samadi et al. Researchers showed
that loop perforation performs worse in general compared to a neural network-based
method exploiting a neural processing unit [303]. Furthermore, loop perforation is also
not generally useful as backed up by the findings in this chapter (cf. Section 6.5.2). The
applicability of loop tiling strongly depends on the algorithm and works well for image
processing. Moreover, the performance gain by increasing the perforation rate or tiling
size is often not clear and therefore requires two models that describe the behavior of
the performance and the quality for different settings in order to control the approximation
degree.

Therefore, this chapter proposes novel accuracy-aware software methods that en-
able a general and fine-grained adaptation of the approximation degree. This includes a
novel way of realizing fuzzy or approximate memoization. Instead of executing a func-
tion, fuzzy memoization looks in a table whether a result is stored that is based on calling
the function with a similar input to the current one. This avoids the actual execution of the
function. The proposed novel memoization method is based on locality-sensitive hashing
(LSH). LSH creates an input-aware address to the memoization table and thus increases
the hit rate in the table, while providing useful quality of results (QoRs). The only restric-
tion of this method is that the function has to be referential transparency. This means
that given the same inputs the function returns the same results, hence is deterministic.
Such functions are also called pure functions. However, the overhead of memoization
methods is too high for typical approximation-tolerant applications and therefore, they do
not present the needed solution. Therefore, I propose a general and innovative solution
to realize an accuracy-aware software method that exploits the concept of contract al-
gorithms [140]. These algorithms improve the QoR with increasing budget consumption
and hence correlate the budget with the QoR.
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This fundamentally differs from existing AC methods that provide knobs for the ap-
proximation degree and cannot inherently restrict one objective dimension, while maxi-
mizing the other one. Furthermore, I introduce an input-aware approach that controls the
approximation degree for each input individually. This comes with almost no overhead
compared to the original function. Moreover, my innovative approach does not require
to differ between exact and approximate implementations of a function, since providing
a sufficient budget to the contract-based task leads to the exact result. I also introduce
an ordering scheme for processing input data items that improves the performance of
contract-based tasks.

The behavior of contract-based tasks is described with performance profiles. A per-
formance profile correlates the required budget of a contract-based task to the achieved
QoR according to a Pareto-optimal front. The proposed approach can use the execution
time, the consumed energy, or a combination of both as budget. The combined budget
leads to considering multiple objectives concurrently. The energy delay product met-
ric [304] makes it possible to combine the execution time and the energy consumption
for the budget metric. Performance profiles can be used to describe other accuracy-
aware methods on different layers and allows the approach to take non-AC hardware
parameters (conventional methods) such as the number of threads or dynamic voltage
and frequency scaling into account. Therefore, I introduce the novel concept of exploit-
ing performance profiles as an intermediate layer between accuracy-aware methods and
approaches that control these methods and other hardware parameters. The usage of

To sum up, this chapter presents the following novel contributions.

• Introducing the concept of contract-based tasks as general and fine-grained accu-
racy-aware software method.

• Exploiting performance profiles as intermediate layer between accuracy-aware
methods and accuracy-aware control approaches. This represents a transparent
view on accuracy-aware methods.

• Considering multiple objectives by using an energy delay product metric for per-
formance profiles.

• Input-aware adaptation of contract-based tasks according to a desired QoR.

• Improving the performance of contract-based tasks by adapting the sampling or-
dering of the input data.

• Introduction of LSH-based memoization in combination with the demonstration that
software memoization has a non-tolerable overhead for typical AC benchmarks.
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6.2 Fundamentals

Since I consider two different approaches to realize novel ways for introducing AC on
the software level, I give a brief description about the fundamentals regarding theses
two approaches. Firstly, I describe the concept of memoization and discuss about hash
functions, which are required for my fuzzy memoization approach. Secondly, I introduce
the concept and background about anytime algorithms.

6.2.1 Memoization

Memoization is an approach for program optimization and trades memory space for per-
formance. Note that the term optimization is rarely used to indicate a truly optimal pro-
gram, since the required effort is not reasonable. The idea behind memoization is to
cache results of software functions in order to reuse this result when the function is
called with the same parameters again. Hence, the computational effort for performing
the function is avoided.

The results are stored into an associative array that can be a list, a tree structure, or
more often a hash table. On average, the computational complexity of a lookup or an
element insertion into a hash table is O(1) and therefore it is often the favorable choice.
Theoretically, the binary representation of the input data, which are scalars, vectors, or
matrices, can be used as index to the hash table. This results in a big hash value and
thus applying a hash function is useful.

As the range of the hash value is limited, we have to deal with collisions. Two well-
known approaches to address collisions are separate chaining and open addressing.
Separate chaining only stores an address to an association list that stores the elements
in the hash table. Open addressing uses empty slots in the table to store new values.

The required probing of slots is determined by a probing sequence such as linear or
quadratic probing. Even then, it is possible that the memoization table has no free slot
left. Hence, elements have to be replaced or the table is increased.

In contrast to memoization, lookup table-based approaches completely cover a cer-
tain domain for the function. The number of lookup table entries depends on the dis-
cretization of the required range of the domain. Such lookup table approaches replace
the actual function, for instance, a sine function. The input value acts as index to the table
and often this approach is only used when the dimension of the input is low. Otherwise,
the required space is often too large to store efficiently. Look-up tables are generated
during the implementation or compile time, whereas memoization tables are generated
during initialization or runtime.
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6.2.2 Hash functions

The main task of a hash function is to map a large value range to limited amount of
so-called hash values. There exists a wide variety of hash functions that map an input
x ∈ I to a hash value, where I = 0, · · · , N − 1 is a set of 1D elements. Simple hash
functions are h(x) := x mod n or h(x) := x · n/N , where 0 to n − 1 is the range of
the hash value. Ideally, n is a prime number. The efficiency of these simple functions
depends on the distribution of the input data. Moreover, certain hash function can deal
with variable length of inputs. According to [305], a good hash function has the following
properties. Good hash functions

• evenly distribute the input data (collision probability is independent from the input).

• spread the data (similar inputs get different hash values).

• are correct (work for all possible inputs).

• have a clearly limited range of the hash value.

• have sufficient performance.

Especially, the last point is important in my case, since the hash function is often the most
time-consuming part of the memoization approach. There exist different classes of hash
functions. Universal hash functions are randomized algorithms and allow us to specify
the probability of a collision. Checksum algorithms like CRC32 can be exploited to per-
form hashing. Moreover, multiplicative hashing is an efficient and simple method, where
Murmur3 and xxHash are representatives of this class. Furthermore, cryptographic hash
functions play an important role in different applications such as password verification or
checking the authenticity of files or messages. Additional properties of cryptographic
hash functions like SHA are deterministic behavior and the non-existence of an inverse
function. The latter impedes finding the message that has generated a given hash value.
Small changes in the message should also cause a huge difference in the hash value.
However, these properties are purchased by high computational effort compared to other
hash functions and therefore not useful for memoization.

In contrast to other hash functions, locality-sensitive hashing (LSH) maximizes the
probability of a collision for similar inputs. Such methods are based on certain distance
metrics that specify the similarity of inputs. A main field of these hash functions is finding
the nearest neighbor in a database for a given query. A formal definition of LSH is
proposed by Indyk et al. [306]. Being D a distance function in space X , then a metric
spaceM(X,D) is given. An LSH family H is defined as H = {h : M → B}, where
b ∈ B is a bucket. A family is called (r1, r2, p1, p2)-sensitive if the following conditions
are satisfied for any two points ~x, ~y ∈M:

• if D(~x, ~y) ≤ r1, then PH[h(~x) = h(~y)] ≥ p1
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• if D(~x, ~y) > r2, then PH[h(~x) = h(~y)] ≤ p2 ,

where pi is a probability, ri a distance radius, and r1 < r2. A family H is useful if and
only if p1 > p2. A hash function h is chosen randomly fromH.

It is possible to generate another LSH family G = {gi}, 0 ≤ i ≤ L by using an AND-
or OR-construction of several hj ∈ H, 0 ≤ j ≤ k. This approach, we call it multi-tabling,
reduces the probability to create bad hash values, i.e., a hash value that is equal to
a value generated by an input that is not similar to the current one. To create a hash
function gi ∈ G, we choose k random functions from H and combine them. MinHash
and SimHash [307] are noticeable approaches to generate LSH families. An extension
of SimHash is based on a p-stable distribution and called E2LSH [308]. For E2LSH,

H =

{
h~a,b =

⌊
~a~x+ b

w

⌋}
,

where w is a quantization factor. A hash function h ∈ H is parametrized with a random
projection vector ~a chosen from a normal distribution and a scalar b, which is uniformly
taken from the interval [0, w].

Since gi ∈ G represents a vector with integers, we are not able to use this as an index
for a bucket in the hash table H. Hence, another hash function

h1 := Zk → {0, . . . ,Hsize}

is used and returns an index to the table H. For instance,

h1(gi(~x)) = h1(ha1,b1(~x), . . . , hak,bk(~x)) =

((
k∑
i=1

r
′

ihai,bi

)
mod prime

)
mod Hsize,

where r
′
i is a random integer and modprime is a prime number. However, we can also

use other hash functions such as xxHash.
To further improve the probability to find the best table entry, i.e., most similar input in

the hash table, we can use multi-probing, which is a probing approach [308]. Multi-probe
LSH creates so-called perturbation vectors ~δh, which represent buckets that most likely
include the searched entry. These vectors are ordered according to the probability that
their addressed bucket includes the wanted entry. A preprocessing step can calculate
these vectors based on expectation values. Details can be found in the E2LSH user
manual [308].

6.2.3 Anytime algorithms

Anytime algorithms pose a special type of algorithms and normally improve the quality
of their results over their execution time. Compared to other algorithms, which return
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their results after they finished the computation, anytime algorithms can return results in
between any time. Hence, such algorithms easily allows us to trade off quality for perfor-
mance. Early works consider such algorithms in the domain of real-time systems [309,
310, 311], especially for artificial intelligence, time-dependent planning, decision making.
Anytime algorithms can be grouped into contract algorithms and interruptible algorithms.
Contract algorithms require to specify a budget, for instance, execution time beforehand.
Then, the algorithm returns the best QoR that can be returned using the given budget.
In contrast, interruptible algorithms are interrupted by an external function that can im-
mediately get the current result. Contract algorithms are often easier to implement and
maintain [312]. Researchers have shown that any interruptible algorithm can be realized
as contract algorithm [313, 312].

Performance profiles describe the behavior of anytime algorithms regarding the QoR
and budget trade-off [314]. Simulation-based approaches or an analytical strategy lead
to the generation of performance profiles. Having performance profiles for different tasks
that pose an application, it is possible to combine these performance profiles into a per-
formance profile for the application. This procedure is called the compilation of anytime
algorithms. However, the existing works mainly include theoretical considerations and
make assumptions that are not true for approximation-tolerant applications [315, 316].
For instance, for probabilistic performance profiles that occur for these applications, only
a linear relationship is possible for a compilation of anytime algorithms. Such a rela-
tionship is often not given. A probabilistic performance profile takes into account that a
certain budget leads to different QoRs for various inputs. To apply anytime algorithms in
approximation-tolerant applications, it is important to deal with many low-level inputs.

Exactly, due to this probabilistic behavior, monitoring is a useful approach to estimate
the current QoR of an anytime algorithm [317, 318, 319]. The overhead of monitoring
negatively impacts the QoR improvement and thus evaluating when to monitor can sig-
nificantly reduce this overhead [320]. However, compared to planning algorithms which
have a utility function, finding good monitoring functions poses a tough challenge for AC.

Furthermore, there exists an approach that determines a scheduling based on any-
time and non-anytime alternatives in order to determine a complex solution plan for a
given task in the domain of real-time AI problems [321]. In contrast, this chapter pro-
vides an approach to exploit anytime algorithms to realize AC-based applications and
additionally it takes care that the introduced overhead is as low as possible. Further-
more, it is a general method to combine several AC approaches. There exist basic works
how to automate steps for creating anytime-based applications [322].

6.3 Local-sensitive Hashing-based Memoization

In this section, I introduce a novel software concept for fuzzy memoization. Fuzzy mem-
oization extends the memoization approach in a way that not only exact matches lead to
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a hit in the memoization table. Instead, having a result in the table produced by a similar
input, the result from the table is used.

Therefore, such an approach wants to improve the hit rate and hence it is more often
avoided to calculate the actual function. First of all, I introduce a theoretical relation that
shows, when it is likely that fuzzy memoization is beneficial for an application in terms of
performance. Then, I present the design of a generic library that can be used for different
applications to introduce fuzzy memoization.

6.3.1 Theoretical Considerations

In the context of databases, it is important that LSH-based approaches find the correct
nearest neighbor with a high certainty. However, in the field of approximate or fuzzy
memoization, we require a sufficient result as soon as possible. Thus, if the lookup
consumes too much time, it is wise to perform the actual function instead.

How much time we are allowed to spend for the lookup depends on several factors
and therefore I present a relation for that. This relation corresponds to a standard cache
miss model. The average time Tavg for a function call using memoization is

Tavg = phitThit + pmiss(Tmiss + Tfcall),

where phit is the probability of a hit in the memoization table and pmiss = 1 − phit the
probability of a miss. Thit represents the consumed time for getting a result from the
memoization table including the time to find the right bucket using an LSH approach.
Tmiss is the time until the search in the memoization table is aborted which also depends
on multi-tabling and multi-probing. The time for executing the function is Tfcall. If we
relatively specify Thit and Tmiss to Tfcall

Thit = hrel · Tfcall

Tmiss = mrel · Tfcall
,

we get the following relation

Tavg = Tfcall(phit(hrel −mrel − 1) +mrel + 1),

where hrel and mrel are the relative factors for a hit and miss, respectively. Setting the
memoization time factor as

fmem = (phit(hrel −mrel − 1) +mrel + 1), (6.1)

the average time Tavg = fmemTfcall. We can clearly see that when fmem < 1, we get a
performance gain using memoization. However, this relation only considers the perfor-
mance aspect of approximate memoization.
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Figure 6.1: Structure of the memoization table.

According to the Equation (6.1), we can estimate the potential performance gain of
adaptations regarding the approximate memoization approach. Such an adaption is use-
ful if fmemold > fmemnew . For instance, applying multi-probing may increase the hit prob-
ability phitnew = phitold + ∆hit, but it requires more time in case of a hit and a miss for a
lookup and thus hrelnew = hrelold + ∆h and mrelnew = mrelold + ∆m. Such an adaption is
useful when the following inequality is true

phitold(∆m −∆h) > ∆hit(hrelold + ∆h −mrelold −∆m − 1).

General assumptions about the accuracy influence of approximate memoization are
not possible and so the influence has to be evaluated for a certain application. But the
used method described in more detail in the next section allows a programmer to set
parameters for adapting the accuracy, but likely reduce phit.

6.3.2 Design of a Software Library for Approximate Memoization

In order to evaluate LSH-based approximate memoization for different applications, a
general library is designed. The library deals with different data types and input sizes by
using a template-based approach. The library can be used to create the content of the
memoization table in a pre-processing step or during the execution of an application.

Besides LSH, the library supports exact memoization and the quantization-based ap-
proach from Brandalero et al. [323]. Moreover, the library provides the usage of different
hash functions such as SHA256, xxHash, and Murmur3, which are used to perform the
actual bucket hashing. Bucket hashing is the required step to determine an index to the
memoization table. Furthermore, fingerprints are used to create a label for the input that
creates the entry. This is important to deal with unwanted hash collisions. Figure 6.1
shows the structure of the memoization table.
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Figure 6.2: Flowchart for checking bucket entries in the memoization table.

The library has three main interfaces: creating a memoization table, checking if a
similar result exists in table, and inserting new elements in table. Additionally, the library
can provide useful information to a programmer to improve the parameters of the mem-
oization table using the interface. The flowchart in Figure 6.2 shows the steps that are
performed for finding similar results in the table. The input data is considered as an n-
dimensional vector and therefore all parameters of a function are included in this vector.
An optional step quantizes the elements of this vector. The next optional step performs
one or more LSH computations (multi-tabling).

Each LSH computation results in an m-dimensional LSH hash gi(~̂x), for instance,
determined bym E2LSH. Afterwards, for each gi, a hash function such as h1() or xxHash
is applied. This function leads to the index h() of a bucket in a certain table.

The library checks (check_bucket) if the bucket is filled and the fingerprint of the
current input is similar to the one that is in the bucket. When this check is successful,
we have a hit in the memoization table and can use the stored result as result for the
current function call. For the fingerprint, the upper part of the bucket hash is used. This
allows it to deal with unwanted bucket collisions. A fingerprint is considered as similar if
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the hamming distance between the fingerprints is less than a certain threshold.
If the check is not successful, multi-probing can occur. Multi-probing is applied, when

it is specified by a programmer and the final search depth is not reached. In this case,
the current bucket hash is adapted with a perturbation vector ~δh and check_bucket is
performed again. If the multi-probing is stopped and all other tables also returns a miss,
we have not been able to find a useful result in the table. Hence, the original function
has to perform the calculation in order to get the wanted result. According to a policy,
the library can store the new result together with the fingerprint in the memoization table.
This can also requiring replace a result in a table.

6.4 Anytime Algorithms for Approximate Computing

This chapter does not only introduce contract algorithms as a general concept for re-
alizing AC on the software level, it also claims that the usage of performance profiles
(PPs) is a way to abstract different AC methods that target various levels. Such an ab-
stract view allows us to exploit PPs as an intermediate representation in the domain of
AC (more details in Section 6.4.3). Thus, we can separate the tasks of realizing approx-
imation methods and of finding ways for controlling these methods (see Part III). PPs
are an essential part of contract algorithms. As contract algorithms improve their QoR,
while consuming more budget, a PP represents their performance. Hence, PPs make
the comparison of different anytime realizations for a certain task possible. Furthermore,
contract-based functions make it possible to improve a QoR if required by exploiting a
concept similar to application checkpointing.

I represent the budget as the allowed execution time of the algorithm, for instance,
a firm real-time constraint or the allowed energy consumption. The latter is a novel
approach compared to the original invention of anytime algorithms. Later, I also describe
how it is possible to consider multiple objectives. The quality of a PP is represented in
an absolute metric like Signal-to-Noise-Ratio (SNR) or using a relative metric such as
relative error (RE) or mean absolute percentage error (MAPE). The quality function is
given by a domain expert in case the result of the contract algorithm is the output of an
application. Internally, the PP only acts as information for controlling the internal QoRs
of the contract algorithms (more details see Part III) and thus any quality metric does the
job. Furthermore, I also introduce a multi-objective consideration of the budget by relying
on a so-called energy delay metric (see Section 6.4.1).

A sketchy illustration of the comparison between a PP of a contract algorithm (blue
line) and a traditional algorithm (black line) is shown in Figure 6.3a. In this case the PP
of traditional algorithms is a step function (the maximum QoR is reached after a certain
time, black line), contract algorithms can return results in between with different QoRs
(blue line). However, using contract algorithms for proper tasks, discrete points (green
crosses) are often considered only, see Figure 6.3a.
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Figure 6.3: As an illustration, Figure 6.3a compares an illustrative performance profile
(PP) (blue) to a conventional algorithm (black). A PP can be a non-monotonically in-
creasing function for contract algorithms performing real computations, see Figure 6.3b.
An issue with PPs is the variance of the QoR for different inputs (see Figure 6.3c). For a
certain task, there exist different realizations of anytime algorithms having different PPs
(see Figure 6.3d).

Internally, a PP can be represented as a closed and analytical formula or as a table
of discrete points. I use the latter. Furthermore, the assumption that the PP is always a
monotonically increasing function is not true. There exist cases, where spending more
budget leads to poorer outcomes (see Figure 6.3b). Therefore, it is useful to store the
best so far result (dark green line). However, identifying these results is not easy and
thus this thesis provides solutions to it in the remainder (see Section 6.4.1 and part III).

Besides the variance of QoRs that occurs due to an indeterministic system behavior2,
the QoR depends on the current input data for a fixed budget. Therefore, I present two
input-aware methods that deal with the QoR variance: monitoring and budget estimation
(see Section 6.4.2). As a PP is required for controlling aspects, the PP for a contract
algorithm with input-dependent QoR behavior can be modeled in different ways. One
way is just to use the average QoR for a certain budget, see orange curve in Figure 6.3c.
Another one is to represent the PP as the lower bound of the various QoRs (red curve).
Furthermore, we can use the expectation value or the probability of getting a certain
expectation value for varying budgets to generate a PP. The approach presented in this
chapter makes no assumptions about the used category of a PP.

A PP depends on the distinct design and implementation of the contract algorithm.
PPs are created by a simulation-based approach, where representative data is used
to create points in the QoR-budget space. It also depends on the order in which the
input data is processed. A different order can lead to a completely different PP as shown
in Figure 6.3d. The green curve provides the best QoR in the mid-range of the consumed
budget, whereas the black one offers a slightly better QoR improvement at the beginning.
My proposed solution is task-specific ordering of data items of the input and output data

2External and internal circumstances in a computer system can lead to an influence on the contract
algorithm and thus result in a different QoR even for the same input.
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for contract-based tasks in order to extract the best PP for a given contract algorithm.
Finally, the usage of PPs enables taking non-AC hardware parameters into account

such as using dynamic voltage and frequency scaling or exploiting parallelization. Mak-
ing use of the so-called merger concept for anytime algorithms, a PP is generated for
getting information in order to control the execution, see Section 6.4.1.

6.4.1 Design, Implementation, and Controlling of Contract-based
Approximate Computing Tasks

In general, each task or function that enables us to estimate the final result based on the
current knowledge within the function is suitable for an anytime-based design. Algorithms
that already calculate a sequence of intermediate results make it possible to return these
intermediate results, which pose an approximation of the result, before the completion
of the algorithm [313]. For instance, search functions like RTA∗, randomized algorithms,
or iterative methods such as Newton’s method or the conjugate gradient method. Such
methods change the QoR over time, hence a contract-based implementation is straight-
forward but potentially requires to suppress newer results with lower QoR.

A naïve way to realize an anytime algorithm is to start the same function with different
approximate parameter settings sequentially as suggested by San Miguel et al. [144].
This introduces essential overhead during runtime. Furthermore, the authors solely exe-
cute a single anytime algorithm on a single core and hence waste resources. Sampling
of the input and output data is a further approach to realize an anytime algorithm.

Besides the actual computation within a contract-based function, an initial step and a
post-processing step can improve the QoR behavior. To enable fast initial results, some
tasks allow us to use the input data as a first useful approximation. For instance, an
image convolution using a Gaussian filter can use the input image for such an initial
approximation. In such cases, the result buffer is filled with the input data. Moreover,
we can adapt the approximated output before returning the results to improve the QoR,
which can be performed in a post-processing step3. This includes scaling and simple
interpolation of the output results and causes negligible additional overhead.

Determining a good visiting order of samples. Sampling per element, as done by
Miguel et al. [144], can violate data locality and thus I apply sampling at least on cache
line granularity to fully exploit the potential of caches. The adaption of certain fixed sam-
pling approaches, for instance, exploiting linear-feedback shift register or N-dimensional
bit-reverse, to a certain input data size can be cumbersome. Therefore, I present the
novel concept of iterative loop perforation (see Algorithm 6.1). For iterative loop perfo-
ration, a single loop is manually transferred into a nested loop, where loop perforation is

3Which is part of the function determineResult() used in Algorithm 6.5.
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exploited in the inner loop and the outer loop adapts the starting point of the inner loop.
This leads to fast traversal of the entire input space but allows that probably all elements
are considered depending on the provided budget.

Algorithm 6.1: Iterative loop perforation.
1 for i→ 0 to step-1, i++ do
2 for j→ i to n-1, j+=step do
3 do_work(j);
4 end
5 end

In contrast to fixed sampling approaches (sequential, tree, or pseudo sampling pre-
sented in [144] or iterative loop perforation), I introduce task-specific ways to perform
a sampling in order to get better PPs, i.e., a QoR improvement at the beginning of the
execution. A wise visiting order of the input data enables fast improvement of the QoR.
Algorithm 6.2 illustrates the usage of a static task-specific order that is determined for
a certain contract-based task during design time using Algorithm 6.3. The result is an
ordered set O, which specifies the visiting order of items in the input data. This set is
delivered to the contract-based function.

As input, Algorithm 6.3 gets a Task T (contract-based function) and a set of repre-
sentative data D. D includes different input items di that represent an input for the task
T . Furthermore, di can be divided into N different sample items, where a certain item
is denoted as dij . Then, the algorithm determines the error caused by only executing
items with index ij and indexes in the already determined ordering set O in compari-
son to using the entire di. The error is calculated by error function E, which can be any
error function, for instance, mean square error or the peak to noise ratio. The listO corre-
sponds to the order in which the sample points shall be visited to get a good performance
profile, i.e., a fast decreasing error at the beginning. Hence, the QoR enhancement of a
contract-based function is improved.

If a suitable order is input-dependent, then it is beneficial to spend some time to calcu-
late a dynamic task-specific order of input items. In this case, the first step of a contract-
based function is to determine a wise visiting order for its current input data using the
function determineOrdering(), see Line 9 in Algorithm 6.4. Afterwards, the calculation is
performed according to this visiting order Lp and the function parameters P . The input of
the function determineOrdering() is the current input data I of the function, the number
N of sample points in I , a score function V and the information about different priority
levels (number of priority levels NUMP and the interval size b of score values that fall
into a certain priority level). The priority levels specify in which order the samples shall
be processed. The algorithm puts sample indexes where their respective score value
lies in a certain interval of size b to the same list. Each priority level p is represented
by a list Lp. The function processes the input samples according to these priority lists
starting with the list that contains the indexes with the highest priority. Such a strategy
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Algorithm 6.2: Usage of task-specific static ordering.
// I specifies the input data and P the function parameters.
// Static ordering O was determined during design time using Algorithm 6.3.

1 Function contractFunction(I ,P ,O):
2 do_work;// according to P and O

Algorithm 6.3: Determining a static task-specific ordering during design time.
Input: Task T , number of input samples N , set of representative data D, error metric E
Output: Ordering of input sampling O.

1 O = ∅;
2 for i→ 0 to N − 1 do
3 for each input sample index j in (0, N − 1) do
4 error = 0.0; errormax = inf ;
5 bestj = -1;
6 for each input data di in D do
7 exact = T (i); // uses all items in di
8 approx = T (ij ∪O); // uses the jth and ikth items in di, k ∈ O
9 error += E(exact, approx);

10 end
11 if error<errormax then
12 errormax = error; bestj = j;
13 end
14 end
15 O.append(bestj );
16 end

Algorithm 6.4: Task-specific dynamic ordering.
// Input: Input data I distributed into N sets, score function V , number

of priorities NUMP , list size b
// Output: Ordering of the N sets (NUMP lists Lp).

1 Function determineOrdering(I ,V ,NUMP ,b):
2 Initialize NUMP lists Lp;
3 for each set S in d do
4 score = V (S);
5 index = bscore/bc;
6 Lindex.append(Index(S));
7 end
// I specifies the input data and P the function parameters.

8 Function contractFunction(I ,P):
// V is a score function, NUMP the number of priority levels, and b

indicates the maximum elements per level.
9 Lp = determineOrdering(I ,V ,NUMP ,b);

10 do_work;// according to P and Lp
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Algorithm 6.5: Integration of checking the budget within a contract-based func-
tion.
// Check budget after each compute step, first option

1 Function function1(I ,P):
2 · · ·
3 step1;
4 · · ·
5 if budgetConsumed then
6 return determineResult();
7 end
8 · · ·
9 stepM;

10 · · ·
11 if budgetConsumed then
12 return determineResult();
13 end
14 · · ·
15 stepLast;
16 return correctResult ;

// Check budget after each iteration, second option
17 Function function2(I ,P):
18 · · ·
19 for i→ 0 to N-1 do
20 doIteration;
21 if budgetConsumed then
22 return determineResult();
23 end
24 end
25 return correctResult ;

is, for instance, beneficial for an image convolution using a Gaussian kernel, where the
variance between image pixels in a certain area is used to define a score function as
shown in the evaluation of this chapter.

Implementation aspects for getting the consumed part of the granted budget.
Specifying a maximum number of allowed iterations or compute steps to a contract-
based function can result in high variation regarding the execution time and energy con-
sumption between different runs. Therefore, I use the maximum allowed budget as an in-
put parameter to a contract-based function. The function has to frequently check whether
the assigned budget is consumed (see Algorithm 6.5). If so, the task returns the current
result.

I rely on lightweight methods to measure time or energy consumption in order to intro-
duce minimal overhead. This is of particular interest in this case because the progress
of the execution relates to the QoR. Thus, I exploit hardware counters.
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The time stamp counter (TSC) provided by x86 architectures is used to get the con-
sumed execution time [324, Volume 3, Chapter 17.17]. Note that I translate the allowed
execution time into cycles and check in the contract-based function whether the number
of allowed cycles is consumed. Modern Intel CPUs tick the TSC not by using the actual
frequency, but the nominal frequency, and thus it does not indicate core ticks. Therefore,
it matches wall clock time. The further issues4 of TSC are acceptable for measuring the
consumed budget. We can call an intrinsic function called __rdtsc() to get the content
of the TSC. One of the test systems has a time resolution of 160 ns using TSC, while
consuming 7.9 ns compared to 40 ns using a kernel function.

Intel’s Running Average Power Limit (RAPL) interface enables getting the energy con-
sumption [324, Volume 3, Chapter 14.9]. Since the Sandy Bridge architecture, Intel
supports an interface to get information about the consumed energy of processors and
memory. This can be controlled using model-specific registers (MSRs). I use the publicly
available tool likwid5 [325] to get the energy information using a C/C++ API.

Checkpointing for improving QoR using a contract-based function. Checkpointing
is a well-known and important technique for providing fault tolerance in a computing
system. The idea behind it is to store snapshots of an application or a task state and
restart from that point in case of a failure. The same concept can also be used for
contract-based functions, where the benefit is not providing fault tolerance but enabling
a lightweight method to improve the QoR, if required. Therefore, the internal state is
stored when the provided budget is consumed and before the result is returned. If now
a controller or user decides that the resulting QoR is not sufficient, the contract-based
function is continued from the stored checkpoint. It depends on the actual contract-based
function, which internal buffers, control and data variables have to be stored inside a
checkpoint in order to continue execution.

Having a 2D convolution implemented as contract-based function, we have to store
the visiting order list (cf. Algorithm 6.4) and the current position in that list for a check-
point. For a k-nearest neighbor algorithm, we also require the order list and additionally
the so-far maximum similarity between the query and an entry in the database to corectly
continue the execution of the contract algorithm.

Dealing with non-monotonically increasing performance profiles. An issue that
arises with contract-based functions are non-monotonically increasing PPs. This means
that higher QoRs can be reached by spending less budget and spending more bud-
get will locally decrease the QoR, or in other words, the PP has local maxima (cf. Fig-
ure 6.3b). Depending on the actual algorithm, lightweight error checks pose a possible
solution [202] to identify local maxima. Such checks allow us to get the current QoR of a

4http://oliveryang.net/2015/09/pitfalls-of-TSC-usage/, last visited on 01/24/2018
5I used the version 4.3.1 of likwid. Furthermore, I use direct access to the performance counter.
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solution without executing the exact version. For instance, having nearly solved a system
of linear equations, we can insert the solution vector into the system and the deviation
between the left and right side is a useful indicator for the solution quality, also known as
the residual. This check is much less computationally expensive than solving the system
with an exact algorithm and comparing the exact solution vector with the one determined
by an approximation. For searching an element in a database using a similarity metric,
we can keep the best so far solution and thus the current solution is the one with the
highest QoR so far.

In case the variability regarding the QoRs for various inputs is low6, we can exploit the
information from the generated PP to avoid spending too high budgets. This will result
in reaching the local maxima of the QoR (this will be described in Part III). However, it
is more likely that we have high variability for QoRs. Therefore, my solution is to gather
runtime information of the input. This information is used to adapt the provided budget.
More details are given in Section 6.4.2.

Taking hardware parameters into account for performance profiles. Current com-
puter systems provide different technical opportunities that influence the execution of
an application and can even be controlled by an application. An opportunity is to ex-
ploit heterogeneous hardware units of the system, as discussed in Chapter 5. Further-
more, modern CPUs provide the adaptability that the software or the processor itself can
change the frequency called dynamic frequency scaling (DFS). Often DFS is combined
with dynamic voltage scaling and then called dynamic voltage and frequency scaling
(DVFS). The main motivation for integrating DVFS is that the dynamic power

Pdyn ≈ aCV 2f,

where a is a switching factor and C the capacitance of the CPU, depends on the supply
voltage V and the frequency f [32]. DVFS adapts V and f in order to get a reduction
of the consumed energy for a certain task. Especially, this has low influence on the
performance for non-CPU-bound tasks. The dynamic power influences the temperature
of the CPU and thus also influences the static power consumption. Two commercial
examples of DVFS are Intel’s SpeedStep [326] and AMD’s Pure Power [327]. Moreover,
modern CPUs are often multi-core architectures and therefore an application can exploit
several cores. This can be seen as a further hardware parameter.

In general, the above mentioned parameters can influence execution time or energy
consumption of a task or function or even both. In the context of contract-based func-
tions, this can influence the relation between QoR and consumed budget. For instance,
increasing the frequency of a core or exploiting more cores can lead to reaching a certain
QoR earlier in terms of execution time, but impacts the energy consumption.

6Providing the same budget for various inputs roughly leads to the same QoR.
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In the remainder of this chapter, I show for DVFS and internal parallelization how to
employ PPs to control a contract-based function that can use hardware parameters. To
change the internal parallelization degree of a certain function, I use OpenMP. OpenMP
allows a programmer to specify the number of running threads numthreads using the func-
tion omp_set_num_threads() or an environment variable.

Similarly to specifying the number of threads within an application, a programmer can
assign a desired frequency to a core of the CPU. However, modern CPUs, for instance,
from Intel, do not guarantee that the user-specified frequency is used. The hardware can
change the frequency of the core at any time regardless from the frequency assigned by
the operating system or a programmer.

Instead of the default Linux driver intel_pstate7, I use the driver acpi-cpufreq
as CPU frequency driver. This driver enables using the so-called Userspace gover-
nor. This governor deactivates DVFS for the operating system and makes it possible to
specify a frequency from the user-space. For that, the Linux kernel provides the library
libcpufreq. The library offers an access to acpi-cpufreq driver. Using the library,
we can get the current frequency of a core and can set the desired frequency fdesired of
a core within an accuracy-aware application.

Both hardware parameters, numthreads and fdesired, individually influence execution
time and energy consumption, and hence also lead to different PPs. Generating a PP for
each value of a parameter, we get several PPs for a single task (similar to Figure 6.3d).
Following the principle of a Pareto-optimal front, I combine all PPs of a task and a hard-
ware parameter into a single PP by employing the concept of a merger [313]. This
concept combines several PPs by finding the best PP for each budget, cf. Figure 6.5a.
As a PP is stored in a discrete way, each element of a PP is equipped with the actual
value of the hardware parameter that leads to this point. This is important in order to
control the hardware parameter.

So far, I only considered a single hardware parameter. However, according to the
approach we could create individual PPs for all value combinations of both hardware
parameters. Assuming we have a CPU allowing 48 hardware threads and 10 DVFS
steps, this requires us to evaluate and create 480 PPs. If this brute force or exhaustive
method is too time consuming, a possible solution is to sample this space and to not
test all parameter values. Another method is to only combine the parameter values that
are part of a respective merger. As the time consumption for the exhaustive search is
tolerable for the functions that I consider, finding a suitable method to reduce the effort is
left for future work.

How to consider multiple objectives? Until now, I have looked at the budget as a
single objective execution time or energy consumption and thus a PP shows the context
in the style of a Pareto-optimal front for a bi-objective problem. Considering both at the

7This driver is default, since the Linux kernel version 3.9 for Intel Sandy Bridge and newer Intel CPUs.
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same time leads to a third-order objective problem spanned by the conflicting objectives,
accuracy, execution time, and energy consumption. Finding good configuration points in
that space is a difficult task and would probably require a 3D PP in my case.

Solely optimizing for energy consumption is known as optimizing the power delay
product (PDP) in computer architecture. The PDP represents the energy E = Pavgtexec,
where Pavg is the average power and texec the execution time. Exploiting the aforemen-
tioned hardware parameters allows us to influence Pavg and texec to reach a certain QoR.
However, the PDP does not explicitly address the performance aspects and thus can
consider a parameter setting as good which leads to low energy and low performance.
To avoid such a problem, I use a concept similar to scalarization [328]. Scalarization
transfers a multiple objective problem into a single objective one, where the optimal solu-
tions correspond to the Pareto-optimal solutions of the multiple objective problem. More
precisely, in my case, the energy consumption as optimization goal can be weighted with
the execution time and thus the execution time is a parameter for the scalarization.

Therefore, I can reduce the design goals, energy consumption and execution time, to
a single optimization goal. Such an approach is also known from computer architecture
and low power design and summarized as the EDn metric [304], where E is the energy
and D the delay of a circuit. In the present case, D = texec. While for n = 0, the
metric reduces to the PDP, n = 1 represents the energy delay product (EDP) [329] and
n = 2 the energy delay squared product [330]. Generally speaking, any EDnP metric
is an indicator for the energy usage per computation and therefore a lower value shows
that the energy is more efficiently used [331]. The value n represents that it is tolerable
to spend n percent more energy for one percent reduction in execution time. Hence, n
is a parameter indicating how high the emphasis on the performance over the energy
consumption is.

Since I am already able to get a measured value for the execution time and the energy
consumption (see Section 6.4.1), I can easily combine them using any EDnP metric and
generate a PP for it. This PP shows the QoR over the used EDnP metric. Moreover,
this makes it possible to constrain the EDnP value, but also to constrain the energy
consumption or execution time separately. This is achievable, since the values for the
energy consumption and execution time are separately available and thus we can specify
these metrics to use for the budgetConsumed condition in Algorithm 6.5. Therefore,
besides an EDnP constraint, we can additionally use a constraint for the energy or the
execution time.

6.4.2 Determining Required Budget and Monitoring the Progress

The QoR often has a high variance for a certain contract-based function and different
inputs even if the budget is the same. One way to deal with such a variance is to use
models that map the desired QoR to the required budget. I call this model the budget
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model. The model uses input-specific parameters and the input itself in addition to the
desired QoR to determine such a budget. There exist different machine learning algo-
rithms like rule-based methods, neuronal networks, or regression approaches to learn
such a model [332]. However, it depends on the actual contract-based function what
overhead is tolerable at the beginning of the actual execution. I suggest as a suitable
method the usage of M5 models [333], which are tree-based models. Such models di-
vide the input space into subspaces and apply a linear regression for each subspace.
By specifying the amount of subspaces, we can influence the complexity of the model,
hence minimize the required overhead. Currently, the input features have to be defined
by the system designer. But such M5 models can be generated automatically using Cu-
bist [334]. For the function under consideration, I use the number of columns and rows
and the mean and variance of the input data as features for the model.

Another method to enable input-specific behavior of contract-based tasks is to use a
monitoring approach (monitor). A monitor observes the progress of the function regard-
ing the QoR. If the monitor observes that the desired QoR is reached, the task returns
the current estimated result. A limited number of specific contract functions can use
lightweight checks to determine the current QoR [199]. It is not possible to directly de-
termine the current QoR in general, because it would require to know the exact result,
which is often not achievable, or a tight lower bound of the QoR.

If this not the case, I exploit algorithm-specific features that correlate with the QoR.
In the absence of general features that always works well, a system designer has to
define useful features. Algorithms that iteratively improve the result allow us to use the
difference between the previous and current result as a useful feature for the current
QoR. Knowing such features, we can apply a linear regression between the features
fi and the current QoR q. Assuming we have a single feature f0, we get the following
relation using linear regression: q = a ∗ f0 + b, where a is the slope and b a constant
term. Then, we reach a given QoR q, if the following equation is true: f0 ≥ q−b

a
. Multiple

features are combined by multiplying them in oder to still use linear regression or by
switching to multiple linear regression. The quality of the monitor strongly depends on
the actual contract-based function and the used features. As features, I use, for instance,
the ratio between found hull points and pixels left to visit. Alternatively, I multiply the
percentage of not-visited pixels with the variation of the final result.

Figure 6.4 shows the integration of both approaches, budget model and monitor,
for a contract-based task. The budget model gets the desired QoR, the input parame-
ters and derived features from the input data features and outputs an estimation for the
required budget. The features for the input data are derived using a pre-processing step
that calculates the needed features. Inside the contract-based task, the monitor derives
features that are derived during the progress of the calculation which are related to the
current QoR. If the features indicate that the desired QoR is reached, the contract-based
task is completed and the current result returned. Alternatively, the task is completed,
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Figure 6.4: Integration of the budget model and the monitor for a contract-based task.
Both methods are optional.

when the budget is consumed. Each method, budget model or monitor, is optional for
a contract-based task within a system.

6.4.3 Exploiting Performance Profiles as Transparent View On Ac-
curacy-aware Methods

The proposed approach of exploiting PPs to have an abstract or transparent view on
the resulting approximation degree allows us to cover existing accuracy-aware method
as already discussed for loop perforation (cf. Section 6.4.1). I categorize existing ap-
proximation methods into two different cases and therefor present different solutions to
generate a PP.

The first category includes methods that influence the hardware, where a task or func-
tion is actually executed. This is somehow similar to hardware parameters as discussed
in Section 6.4.1, but these methods also have impact on the QoR. For instance, select-
ing approximate function units, using dynamic voltage accuracy scaling (DVAS) [9], or
applying my method described in Chapter 4 pose such methods.

The second category poses methods that I consider as black boxes and thus there is
no way to internally adapt the execution or measure the progress of the execution using
internal features. In general, such methods create different implementation versions of
a same task [17, 11, 15] or provide knobs in order to select the approximation degree.
Typical examples are special hardware accelerators, for instance, based on neural pro-
cessing units or DP-based AC FPGA designs presented in Chapter 5, or approximate
memoization approaches (see Section 6.3.2).

However, the memoization approaches suffer from the fact that there can be a huge
variance between the execution time in case of a hit or a miss. Hence, the resulting
PP for approximate memoization can also be seen as an average indicator which QoR
and budget trade-off can be achieved for a certain parameterization. But using fuzzy
memoization can reduce the initial time of a contract-based function to produce a first
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Figure 6.5: A performance profile provides an abstract view on the resulting QoR degra-
dation and hence can be used to control AC methods.

useful output result. Methods that do not fall into one of the above categories can be
seen as white boxes and hence using the scheme as shown in Algorithm 6.5 is possible.

For the first category, I apply the same procedure as for hardware parameters. As nor-
mally the amount of configurations is low, a PP is generated for each configuration using
representative data and finally combined using the merger concept. A configuration has
a value for each available knob. Figure 6.5a shows this concept using an illustrative ex-
ample. Let us assume we have three AC hardware knob values. Knob value AC-HW
2 applies a more aggressive internal approximation and therefore has a better QoR im-
provement, but cannot reach the highest QoR . Using knob value AC-HW 0 leads to the
correct solution, but offers a worser QoR for lower budgets. Creating a merger for the
PPs, we get a single PP that offers the best QoR for each budget. The information about
knob value that is used to get a certain QoR is memorized in the merger. Depending on
the desired QoR, we select the knob value in accordance with the merger.

In the case of a black box AC method (category 2), we cannot measure a budget and
stop the execution, since we would not have a useful output result. The reason is that
these methods are not made in a way that they provide a result in between the execu-
tion. Potentially, we could use the concept of starting the same method with different
knob values and use the newest result that is returned as output and abort the remain-
ing executions. However, this comes with high overhead and, moreover, we would still
need some information about the behavior of the method regarding QoR and consumed
budget for different configurations. Therefore, I suggest to build a model that describes
this behavior as a PP.

Using representative data and a certain configuration lead to a point in the QoR versus
budget space. The budget is not measured inside the method, it is rather measured
for an entire call. Having two knobs for an approximation method applied to a task as
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shown in Figure 6.5b, then different settings (ai, bi) result in various points. I assume
that a higher value for a knob results in a more aggressive usage of approximation.
In accordance with a Pareto-optimal front, we can identify those points where a single
objective has the best value compared to all other points, see Figure 6.5b. More formally,
for a point p1 = (tl, ql), where tl is the budget value and ql a QoR value, there exists no
point p2 for which bj < bl and qj ≥ ql.

Having a list of different points p, generating the PP is straightforward. First, the list
is sorted in ascending order regarding the required budget. Furthermore, points that
have the same budget value are sorted in descending order according to the QoR value.
Then, the first point in the list is added to the PP. Further points are only added if the
QoR value is larger compared to the one of the previously added point. For each point
in the PP, the required knob setting is also stored. This is necessary for tuning aspects
(more details in Part III).

6.5 Evaluation and Results

In this section, I present experimental results for the approaches presented in this chap-
ter. This includes an evaluation of the LSH-based fuzzy memoization and of the contract-
based task approach. Furthermore, I investigate PPs not only as behavior description
for contract based-tasks but also for hardware parameters and other AC methods.

6.5.1 Fuzzy Memoization

The evaluation setup for the LSH-based memoization is described in this subsection.
Furthermore, I present and discuss performance and accuracy results achieved by the
novel fuzzy memoization approach.

Evaluation setup. For the evaluation, I use the benchmarks from AxBench [303],
which are often used in the domain of AC.

• blackscholes is a financial applications, which values options in the financial
market. Therefore, several differential equations have to be solved.

• inversek2j calculates the inverse kinematic, which is a reverse transformation to
calculate the joint angles for a given position in world coordinates.

• jmeint checks if a triangle intersects with another triangle in a 3D space.

• jpeg is a simple JPEG encoder. I consider the discrete cosine transformation
(DCT) together with the following quantization step for the memoization.
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• kmeans finds clusters in an image. It distributes the image into six clusters accord-
ing to the pixel colors.

• sobel is an image filter that is applicable for edge detection. In the output images,
edges are marked with white pixels.

As input data, I use the available data of AxBench.
The developed fuzzy memoization framework is appropriately integrated into each

benchmark. Each benchmark is compiled with g++ in version 7 together with the options
-O2 and -march=native. The latter is important to exploit AVX for vector operations.
The evaluation system has an Intel Core i5-7200 U with 3 MB L3 cache. The Linux
governor is set to “performance”.

Performance evaluation. In the related work, often an evaluation of the achieved per-
formance gain is missing or just the number of saved arithmetic operations is reported. In
contrast, the present evaluation includes an investigation of fuzzy memoization by con-
sidering the entire application for the performance tests. Furthermore, the introduced
fuzzy memoization framework is a software-only approach and thus no adaptation of the
hardware is needed. For the test, I use a memoization table size of 216 entries. The
quantization levels are adapted for both fuzzy memoization approaches such that a hit
rate of 50% shall be reached. The LSH approach uses 8 random projections. To deter-
mine the QoR, I use the normalized and averaged root mean square error between the
exact and the approximated images and the available error calculation within AxBench
for the remaining benchmarks.

Table 6.1 shows the execution times for different memoization approaches and bench-
marks. The baseline represents the average time consumed by the function that is the
memoization candidate. For the exact memoization, I show the results for using xxHash.
The hit rate is independent from the general purpose hash, but xxHash provides the
best performance of all considered hash functions. Quantization and the LSH-based
approach work as described in Section 6.3.2. Tmiss is the average time consumed for
detecting a miss and Thit for a hit, respectively. Tavg is the average time required for the
memoized function, hence it includes the lookup in case of a hit and the actual computa-
tion for a miss. Therefore, if Tavg < Tbaseline, then the memoization approach is valuable
in terms of performance. As we can see, there is no memoization approach that is ben-
eficial in terms of execution time. The only exception is the exact memoization approach
for blackscholes, however, this is due to the input data set. For this set, the inputs
repeat after 1000 entries and thus all data can be stored in the table. Note that the time
for an execution of the function often increases, since the memoization code influences
the execution time, for instance, due to cache replacements and additional jumps. The
quantization approach leads to a reduction of Tavg compared to an exact memoization
approach for two benchmarks, inversek2j and sobel. The increased hit rate is respon-
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sible for that. However, the overhead of the LSH-based approach to calculate the table
entry index revokes that benefit.

Accuracy evaluation. A main benefit of the LSH-based approach is that even if the
quantitative error is the same, the LSH-based approach provides a better subjective
quality compared to the quantization memoization, see Figure 6.6.

Furthermore, the distribution of the erroneous pixels is different as shown in Fig-
ure 6.7. The lower part of the figure shows two error maps, which indicates the position
and the magnitude of the errors. Especially, we can see that the LSH-based approach
preserves more detail in homogeneous regions, for instance, the clouds in the back-
ground. Moreover, the random distribution of the error leads to a better visual quality.
Note that the quantization approach produces a higher number of errors, where the
magnitude of the error is larger than 10 (deviation of the pixel intensities between the
exact and approximated value).

A further benefit of the LSH-based approach is the adaptation capability. While the
quantization approach only achieves a hit rate of 22% for jpeg, the LSH-based approach
can achieve a hit rate of 96% introducing an error of 37% by tuning the available knobs.
However, this leads to even higher execution times than showed in Table 6.1. Further
tests (not shown here) reveal that the usage of neither multi-probing nor multi-tabling is
beneficial for fuzzy memoization.

Table 6.1: Execution time of different fuzzy memoization approaches for different bench-
marks.

blackscholes inversek2j jmeint jpeg kmeans sobel

Baseline function Tbaseline 125.5 ns 97.9 ns 71.4 ns 155.2 ns 25.3 ns 39.0 ns

xxHash
(exact memoization)

Tmiss 95.8 ns 125.5 ns 171.2 ns 221.6 ns 147.6 ns 182.0 ns
Thit 65.3 ns - - 110.1 ns 81.3 ns 106.3 ns
Tavg 116.1 ns 274.3 ns 291.3 ns 417.5 ns 177.6 ns 267.8 ns

hit rate ≈99% 0% 0% ≈1% ≈47% ≈4%

Quantization
(fuzzy memoization)

Tmiss 108.3 ns 131.1 ns 212.8 ns 333.8 ns 164.2 ns 196.1 ns
Thit 77.8 ns 121.5 ns 253.9 ns 235.7 ns 98.5 ns 106.4 ns
Tavg 128.9 ns 225.8 ns 326.3 ns 425.0 ns 187.0 ns 217.4 ns

hit rate ≈99% ≈52% ≈22% ≈45% ≈56% ≈52%
error 0% ≈40% ≈7% ≈6% ≈1% ≈4%

LSH
(my fuzzy

memoization approach)

Tmiss 146.6 ns 174.9 ns 253.6 ns 527.4 ns 226.0 ns 707.1 ns
Thit 111.4 ns 238.1 ns 299.0 ns 471.9 ns 141.0 ns 609.8 ns
Tavg 163.3 ns 325.4 ns 415.9 ns 650.4 ns 235.2 ns 721.7 ns

hit rate ≈99% ≈59% ≈21% ≈48% ≈56% ≈53%
error 2% ≈44% ≈8% ≈3% ≈0% ≈5%
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6.5.2 Contract-based Tasks

The concept of contract-based tasks leads to a generally applicable and innovative soft-
ware accuracy-aware method. In this subsection, I present PPs for variously imple-
mented contract-based tasks and compare them to other general accuracy-aware soft-
ware methods. This does not mean that the usage of these other methods is always
valuable. Then, I show the benefit of determining a visiting order per task in detail, both
in a static and dynamic manner. By exploiting an EDnP, the consideration of multiple
objectives, energy consumption and execution time, is just a matter of exchanging the
definition of the budget metric for the PP. This results in a different PP curve. The gener-
ation of this PP is trivial. The PP is realized as a discrete function. We can measure the
corresponding values of the objectives within the function, see Section 6.4.1. We use
these values to calculate the desired EDnP metric.

Moreover, I present how to integrate the checkpoint approach and investigate the in-
troduced overhead of it. As the QoR of a contract-based function often depends besides

(a) Original algorithm. (b) Quant.-based memoization. (c) LSH-based memoization.

Figure 6.6: Visual comparison of the JPEG encoder benchmark between the quantiza-
tion approach and the LSH approach, while the hit rate is similar (Quantization: 44%,
LSH: 46%).
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on the budget on the actual input, I show real data to emphasize this issue. Afterwards,
I measure the overhead and accuracy of my suggested methods to deal with the afore-
mentioned issue and present how they reduce the QoR variance.

As evaluation systems, I use three different systems. Test system A includes an Intel
Core i7-4550U CPU running at 2 GHz with 8 GB DDR3 RAM. The L2 cache provides
256 kB and the L3 cache 4 MB. System B has two Intel Xeon CPU E5-2650 v4 running

(a) Quantization-based memoization.
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(b) LSH-based memoization.

Figure 6.7: Comparison of memoization methods according to JPEG encoder bench-
mark with a set QoR of 95 %. (a) Quantization-based memoization (42 % hit rate,
QoR=26.2532 dB PSNR). (b): LSH-based memoization (48 % hit rate, QoR=26.1723 dB
PSNR). Colormaps visualize the deviation in pixel intensity between the exact and ap-
proximate version. The error bar shows the magnitude of the pixel error.
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at 2.2 GHz with 128 GB RAM. The total number of cores is 24 and therefore 48 hardware
threads are possible. Each processor has 30 MB SmartCache8 (last level cache). Test
system C is configured in a way that it is possible to change the frequency of a core from
user space. The system comprises an Intel Core i5-6500 CPU running at 3.2 GHz. The
processor has 6 MB SmartCache and 8 GB of RAM attached.

First examples of real performance profiles. To get an impression for PPs based on
real data, I present several PPs. These tasks determine different object features that are
used to classify an object within a binary image. The task Calculate Hull calculates
the hull of the object and represents the hull as points within the image. To determine
the area, Calculate Area counts the “white” pixels in the binary image. Calculate
Diameter exploits the hull points in oder to calculate the diameter of the objects. The
diameter is the maximum Euclidean distance between two hull points.

To realize a contract-based implementation of the above algorithms, I use the proce-
dure explained in Section 6.4.1. In case of Calculate Hull and Calculate Diameter,
I integrate an exit condition into a for-loop body (according to Algorithm 6.5) and mea-
sure if the time budget is consumed. Therefore, these contract-based task process the
input data items sequentially. For Calculate Area, I apply the proposed approach of
nested loop perforation. Furthermore, the area is scaled according to the currently cal-
culated area and the so-far considered rows. Thus, a post-processing step is applied.
The contract-based algorithms are implemented in C++-11. g++ in version 6 and the
compiler option -O3 are used.

To generate an individual PP, I use more than 1760 binary images showing one of
three different object types (sphere, cylinder, square) as representative input data. For
Calculate Diameter, the corresponding result of Calculate Hull is used. I config-
ure Calculate Hull in such a way that it returns the exact hull. For the PP generation,
I use different budgets for the execution time (shown as points) and determine the result-

ing QoR. QoR = 1 − MAPE and the average MAPE is MAPE =
n∑

MAPE
n

. MAPE rep-

resents the mean absolute percentage error and is defined as MAPE = |resexact−resapprox|
resexact

,
where resexact is the result of the exact algorithm and resapprox of the approximated. For
Calculate Hull, I use the number of found hull points, since even for the approximate
version a found point is always correct. Between measured points in the QoR and bud-
get space, interpolation is used to generate a visual line for the generated figures. The
PPs shown in Figure 6.8 are based on measurements performed on Test System A. The
contract-based tasks are executed on a single core.

All shown PPs have an almost monotonically increasing trend of their QoR over an
increase of the budget. In Figure 6.8b, the PP for Calculate Area has a high QoR im-

8SmartCache is L2 or L3 cache method developed by Intel. It shares the cache memory between
multiple cores.
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Figure 6.8: Performance profiles for different contract-based AC tasks.

provement in the beginning. For Calculate Diameter, we see that already providing a
low budget is sufficient to get a high QoR (see Figure 6.8c). For each contract algorithm,
the order of processing the input data is sequential, except for Calculate Area, where
I use the nested loop perforation approach. However, to emphasize that changing the
processing order is very beneficial, I implemented an improved version of Calculate
Hull regarding the QoR improvement highlighted in Figure 6.8d.

For the improved version of Calculate Hull, I changed the algorithm itself such
that a binary input image is not sequentially processed. In an alternating way, pixels
are considered from the left, top, right, and lower part of the image until all pixels are
processed. This accelerates the process of finding the hull points. Such an improved
implementation requires a priori algorithm knowledge. Therefore, I have proposed the
general solution of determining a task-specific ordering using Algorithms 6.3 and 6.4.
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Comparison with existing accuracy-aware software methods. In this paragraph, I
compare the contract-based task approach against existing approximation techniques
at software level. I consider loop tiling (LT) [14] and loop perforation (LP) [13]. I use
these methods for the outer loop of the kernels. Additionally, I compare it against the
methods presented in [335] (named automaton). The sequential method processes
input data items in a sequential order. Automaton (LFSR random) uses a pseudo-
random order using a linear-feedback shift register (LFSR). Automaton (tree) exploits
tree permutation sampling.

For the comparison, I use three different kernels from the PERFECT benchmark suite
(2D convolution, histogram calculation, debayering), which are compute kernels in the
domain of embedded computing [336]. For these benchmarks, I measure the QoR in
terms of signal-to-noise-ratio (SNR), where SNR = 20 log10

( signal
RMSE noise

)
and hence the

SNR is expressed in decibels (db). RMSE is the root mean square error. For images, I
calculate the SNR using the following equation SNR = 20 log10(Imax)− 10 log10(MSE),
where Imax is the maximum possible pixel intensity. The mean square error

MSE =

n∑
i=1

(Iref(i)− Itest(i))
2

n

where Iref(i) is the intensity of the ith pixel in the exact image and Itest(i) the ith pixel
in the approximate image. Both images consist of n pixels. I exploit histogram equal-
ization to get a SNR value for the histogram calculation kernel. It is noteworthy that
it is not clear how non-computed output pixels are treated before calculating SNR by
the authors of [335]. Therefore, I assume that these pixels are zero. Moreover, I com-
pare the existing approximation methods with my proposed contract-based approach for
Calculate Area. I also consider a matrix-vector multiplication using input matrices of
size 100 × 100, where the elements are defined by a probability distribution. I use the
exponential, dweibull, and chi2 probability distribution.

I apply the static task-specific approach (static), where the sampling ordering is de-
termined during design time, and the dynamic task-specific approach (dynamic), where
the ordering is determined at runtime and thus the PP includes the overhead for it. To cal-
culate the contract-based histogram, iterative loop perforation adapted by the detected
static ordering in combination with post-processing scaling is used. In case of contract-
based debayering, I use a post-processing step.

The figures shown in Figures 6.9 and 6.10a are generated running the same kernel
multiple times and halting it at different times for the existing methods. For the contract-
based tasks, I vary the time budget. The overhead of my proposed contract-based
method (blue line) is almost negligible compared to the original benchmarks to get the
exact solution. This can be seen, since the highest QoR is reached by my method at
around 100% (1.0) of the normalized execution time. The only exception exists for the
2D convolution benchmark. This higher overhead is mainly caused by calculating the
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Figure 6.9: Comparisons of my proposed contract-based method (static or dynamic, blue
line) with existing AC software methods for different benchmarks.

dynamic ordering. Note that my approach has a significant lower overhead than the
existing automaton approach (gray line). This overhead is especially significant for the
2D convolution benchmark, where the automaton approach requires for times more to
reach a QoR of 1 compared the original benchmark. The reason is that my contract-
based tasks exploit the cache better. That is a main issue of automaton as mentioned
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by the authors.
For Caculate Area (Figure 6.9a), my proposed approach (blue line) has a high im-

provement in the beginning and only a slow improvement later similar to automaton
(gray line). In the case of debayering (Figure 6.9b), my approach (blue line) reaches ac-
ceptable output quality (20 db) after 40% and excellent image quality (32 db) after 85%
of the baseline execution time. A high QoR for the histogram equalization (Figure 6.9c)
is reached by my approach and automaton quite early. Furthermore, my proposed
method significantly outperforms all other existing methods on the matrix-vector multipli-
cation benchmark (Figure 6.9d). As we can see for 2D convolution (Figure 6.10a), the
dynamic ordering (blue line) enables a higher improvement of the QoR between 30%
and 100% of the original execution time compared to the sequential method (orange
line). Loop tiling (black line) has an even higher QoR improvement, but offers only a few
points that can be reached and are below the performance of my method (above blue
line). Thus, a fine-tuning is not possible.

The task-specific ordering of my method (blue line) always outperforms the sequential
method (orange line). The sequential method processes input data items sequentially.
LP (green line) shows the worst behavior on all compute kernels in general. Skipping
each second iteration (smallest possible approximation knob value) already leads to a
high QoR loss. LT (black line) is quite reasonable, especially, as it reaches good QoR
early. The main drawback of LT is that fine-tuning is often not possible, since the distance
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Figure 6.10: Comparison of my approach (static, blue line) with existing AC software
methods for 2D convolution (a). Furthermore, PP is shown generated with the consumed
energy as budget (b).
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between reachable QoR points increases with higher quality. Additionally, LT shows
different behavior for the benchmarks. For instance, it performs worse on the matrix-
vector product benchmark. LT would require re-executing all tasks to increase the QoR
of the output, where my proposed checkpointing method for contract-based tasks makes
this unnecessary. However, I could use LT to reach a fast and reasonable initial QoR for
the proposed contract-based tasks.

In total, my method provides a high QoR improvement over time combined with neg-
ligible overhead compared to the original version as shown on completely different ker-
nels. Hence the introduced method is a general software method that enables fine-
tuning of the approximation degree. Besides contracting the time, my method allows us
to constrain the energy consumption of the contract-based task. Using the consumed
energy as budget makes this possible. For instance, we can generate a PP for the
contract-based 2D convolution using the consumed energy (see Figure 6.10b). How-
ever, this comes with additional overhead, since likwid is used to get an access on the
hardware counters. Direct access via likwid causes an overhead ranging from 2µs to
7µs depending on the set frequency on the Test System B.

The shape of the resulting PP for the 2D convolution budgeting the energy looks
similar to the one using the time. Which PP is the desired one depends on the actual
purpose and thus it depends on which single objective is more important. Later, I will
show how we can consider both objectives simultaneously.

Influence of the visiting order of samples. The above results show that task-specific
ordering is very beneficial for contract-based tasks. So far, I consider either the static
or the dynamic ordering method for an application. Now, I consider both for the same
algorithm. In time series analysis, an important task is to classify an unknown time series
by means of a database. For this task, I use an one-nearest neighbor algorithm (1NN)
that uses the dynamic time warping (DTW) as distance metric. The usage of DTW results
in a reasonable accuracy of the classification [337]. The class of the nearest neighbor
is returned as class for the unknown query. I use time series databases from the UCR
archive for the evaluation and use the Sakoe-Chiba (SC) band [258], which restricts the
allowed warping path for DTW (more details see Section 5.2.5)

For the distance metric required for the 1NN, I use a contract-based variant of DTW
that uses a static task-specific ordering determined using Algorithm 6.3. The contract-
based version of 1NN uses a dynamic task-specific ordering to get a per-input (unknown
time series) ordering by using Algorithm 6.4. The ordering specifies the order in which
the time series of the database are considered as possible nearest neighbor. Hence,
those time series are considered first that are more likely the searched one. This en-
ables a fast improvement of the QoR for the contract-based 1NN. The score function V
in Algorithm 6.4 is realized by using the Euclidean distance between the query time se-
ries and the current time series in the database. Note that using Euclidean distance as
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metric for the 1NN normally results in a lower classification accuracy, however it provides
a good rough estimation for the dynamic ordering of database time series.

The QoR is defined as QoR = 1 − (capprox
error − cexact

error ), where cexact
error is the average

classification error of the original method and capprox
error of the contract-based version. The

average classification error cerror is calculated using available class labels of the provided
test time series in the UCR archive [274]. It can occur that the QoR is larger than 1, since
it is possible that capprox

error < cexact
error . The rationale is that even when we use DTW as metric,

we do not get a correct classification in each case.
Figure 6.11a shows the PPs for the proposed static task-specific ordering version

(solid lines) and a sequential version of the contract-based DTW method (dashed lines)
applied to time series data of different UCR archive databases. The sequential method
processes the elements of the time series in a sequential order. The proposed static
method achieves an accuracy close to using the original DTW after roughly 33% of the
DTW-based execution time. The sequential method requires a budget of more than
roughly 80% or 90% to reach an acceptable QoR. Hence, considering the right points of
a time series at the beginning leads to significant benefits. This is exactly achieved by
the proposed static task-specific ordering.

In the next experiment, I compare a sequential version (dashed lines) with a dynamic
task-specific ordering-based version (solid lines) of the contract-based 1NN. As we can
see in Figure 6.11b, the proposed dynamic ordering for visiting the database time se-
ries inside the contract-based 1NN is important to reach a high QoR at the beginning
of the contract-based 1NN execution. Again, the task-specific method outperforms the
sequential-based method (dashed lines). In contrast to the static method, the dynamic
ordering method is independent from the database, hence it does not have to be adapted
to a certain time series domain. It is possible to use the static contract-based DTW
version within the dynamic contract-based version of 1NN. This combination of both is
considered in Part III.

To see further benefits of a task-specific ordering, I employ the contract-based 2D
convolution inside the Richardson-Lucy deconvolution (RLD). The RLD is an iterative
method (see Section 4.2.1). In each iteration, this deconvolution performs two convolu-
tions, a point-wise multiplication and division. In general, the best improvement regarding
the QoR is achieved after 10 iterations [338]. Therefore, I set the iteration count to 10 for
the evaluation. According to [20], I distribute the execution into several phases (iteration
1, iteration 2 to 5, and iteration 6 to 10). The significance of each phase is almost similar
except for the first phase of the second convolution and therefore I avoid an approxima-
tion of the first phase. As QoR, I use the peak to signal noise ratio (PSNR)9.

For a given microscopy image (see Figure 6.12a), the algorithm mainly improves the

9PSNR is often used as performance metric for deconvolution in the domain of microscopy (see http:
//bigwww.epfl.ch/deconvolution/challenge/index.html)
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blurring effect around an object10. My method enables that approximations unlikely occur
close to the object as indicated by the white area in Figure 6.12b, while reducing the
execution time by 10%. The dynamic task-specific ordering allows us to find the relevant
parts in the image and start the RLD calculation there.
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Figure 6.11: Performance investigations of contract-based versions of tasks for time
series analysis.

10The image in Figure 6.12b shows the change in the intensity level of each pixel.
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Considering checkpointing for contract-based tasks and its overhead. The moti-
vation behind using checkpointing is that we can continue the execution of a contract-
based task in order to improve its QoR. This requires less overhead than restarting the
entire task with a different budget that presumably allows reaching the desired QoR. Fig-
ure 6.13 shows a progress of the QoR for different tasks and the introduced overhead for
checkpointing.

In case of 2D convolution, the task works until the budget is reached. This results in
a SNR of roughly 32 decibel. Afterwards, additional computations, control methods or a
quality check by the user can be performed. I simulate these computations with a method
that essentially ensures that the data residing in the cache for the contract-based task is
replaced. Therefore, I request a huge memory space and apply computations that work
on this space. Restarting the execution from the checkpoint only comes with negligible
overhead of 2% compared to a direct execution resulting in the same final QoR.

However, the overhead is more critical for other contract-based tasks that have differ-
ent memory footprints, for instance, the matrix-vector product, where the contract-based
version is based on a blocking scheme. For such tasks, the overhead is up to 70%. This
likely indicates that the missing data in the cache plays an important role regarding the
restarting overhead. Even in this case, the checkpoint method is faster than restarting
the contract-based task. In another experiment, I also consider the overhead for the
contract-based version of the 1NN. The overhead is around 2% to 10% depending on
the specified frequency of the executing core.

(a) Input image.

0
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1000
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2000
2500
3000

(b) Error map shown as deviated intensities.

Figure 6.12: Richardson-Lucy Deconvolution. Figure 6.12b shows the deviation caused
by approximation for the input image (see Figure 6.12a). The bars specify colors that
indicate the magnitude of the error starting from white (no error).
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Dealing with input-dependent QoR variance. As already mentioned, a static assign-
ment of budgets is only optimal if the variance regarding the QoR is small [317] even for
different inputs, as discussed in Section 6.4.2. To emphasize this aspect, I collect the
difference in QoR for contract-based algorithms and inputs as shown in Figure 6.14.

For the RLD, I use different microscopy images as input. The QoR is defined as the
number of erroneous pixels (relative error occurrence). As we can see in the box plot
shown in Figure 6.14a, granting a certain budget for different inputs leads to different
QoRs indicated by the size of the boxes. The size of each box is an indicator for the QoR
variance for a certain budget. Especially, the variance is quite high for low budgets.

The box plot for the contract-based version of Calculate Hull is shown in Fig-
ure 6.14b. I generate the data by using a large set of binary images and providing
different budgets. The QoR is defined as 1− MAPE. Especially, the boxes are large for
medium size budgets and thus indicate a high QoR variance for different inputs. The his-
togram in Figure 6.14c shows the resulting QoRs for setting the budget to 18 time units
for Calculate Hull and different inputs. While most inputs reach a QoR of 1, there are
some that have really low QoRs. The number of bars in the histogram is an indicator of
the QoR variance. The achieved average QoR is 0.83 for this experiment.

According to the results, we are facing with the following challenge: How can we
adapt the budget in order to reach a desired QoR? Hence, it is important to identify the
required budget for each input individually. The goal is now to achieve that for all inputs
the individual QoR is the same as the desired one, for instance, 0.83. The rationale is
manifold: Firstly, there should be almost no inputs where the resulting QoR is lower than
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Figure 6.13: Resulting PP when exploiting the checkpoint approach and considering the
involved overhead.

150



6.5 - Evaluation and Results

1 2 3 4 5 6 7 8 9
Budget

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
er

ro
r

oc
cu

re
n

ce

(a) Box plot for the Richardson-Lucy deconvolu-
tion and different input images.

5 10 15 20 25 30 35 40 45 50
Execution time (discrete)

0.0

0.2

0.4

0.6

0.8

1.0

Q
oR

(1
-M

A
P

E
)

Histogram for 18 time units
is shown in (c)

(b) Box plot for Calculate Hull and different
input images.

0.4 0.6 0.8 1.0
QoR (1-MAPE)

0

25

50

75

100

125

O
cc

u
rr

en
ce

ss

Average QoR is 0.83

(c) Histogram of the resulting QoRs for different
input images processed by Calculate Hull.
The budget is set to 18 time units.

Figure 6.14: Resulting QoRs of different contract-based tasks for different inputs and
budgets.

desired. Secondly, a higher QoR than the desired one likely indicates that we can reduce
the computational effort, while still meeting the desired QoR. This can be exploited to
improve the value of other objectives. Finally, controlling the contract-based task from
a global point of view is easier. This is important for controlling several of these tasks
within an application or part of different applications. However, there is always a trade-off
between the achieved accuracy of a method regarding the determination of the required
budget and the computational effort introduced by this method. A high effort rules out
the benefits of the proposed contract-based method.

To achieve this goal, I presented a solution in Section 6.4.2. The budget model esti-
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Figure 6.15: Accuracy investigation for the budget model designed for different contract-
based tasks .
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Figure 6.16: Overhead of the budget model and the monitor.

mates the required budget to reach a desired QoR. I investigate the accuracy of budget
model by comparing the desired QoR with the one that was achieved by the estimated
budget for different contract-based tasks and inputs, see Figure 6.15. In Figure 6.15a, I
consider the accuracy of the budget model for contract-based tasks that calculate image
features (diameter, area, and hull). I also consider this for the RLD, seeFigure 6.15b.
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As we can see, the budget model works quite well for the image feature contract-
based tasks. This can be seen, since almost all points fall onto the (black) line. A
point on the line indicates a perfect estimation. Similarly, this is the case for the budget
model of RLD and high budgets (high QoRs). For lower budgets, the estimation is not
very accurate, however, an accurate estimation is pointless, since low budgets are not
sufficient for a reasonable QoR. Furthermore, for gray images that have a salt and pepper
noise in it, the estimation is harder.

Besides the accuracy of the model, the introduced overhead is an important point.
Figure 6.16 shows this overhead for the budget model (red). Additionally, I also consider
the overhead of the proposed monitoring method (green). The overhead is represented
as the relatively consumed execution time based on the respective original task. For
Calculate Area, the overhead is negligible. The overhead for Calculate Hull varies
between 1% and 4%, especially, the monitoring has a higher impact. Since Calculate
Diameter gets a reasonable QoR quite early (cf. Figure 6.8c), finding a controlling mech-
anism is difficult. Moreover, the overhead is more significant because the execution time
for getting a high QoR is low.

Next, we consider how the proposed methods lead to a better solution compared to
assigning a fix budget. Let us assume that we want to achieve a QoR of 0.83 for each
input processed by Calculate Hull. Applying the budget model, the number of inputs
that have a larger QoR than 0.83 is reduced, see Figure 6.17a and cf. Figure 6.14c. This
reduction leads to a decrease of the QoR variance from 0.031 to 0.012 as seen by the
compression of the histogram compared to the histogram in Figure 6.14c. Moreover,
the average time budget is reduced to 17 time units instead of 18, cf. Figure 6.17b.
There are some inputs where the resulting QoR is too bad (< 0.83), see Figure 6.17a.
If it is crucial to avoid larger errors, approaches from literature can be used [24, 203].
Such approaches use a guard band for the QoR, for instance, by adding a constant to
the needed QoR. Building more accurate models would require more knowledge about
the inputs, and therefore more complex models. This is only applicable if the additional
overhead does not rule out the savings achieved by the approximation.

On the other side, the resulting average QoR is increased to 0.88, while we want
to have a QoR of 0.83. Hence, we miss potential to gain performance, because most
inputs have a QoR of 1. Using the monitoring and budget model together, we achieve
to get an average QoR of 0.83, see Figure 6.17c. Additionally, we can see that bars of
the histogram are more located at the desired QoR and thus the variance is reduced to
0.009. Hence, this is also an indicator that the computational effort is decreased.

6.5.3 Exploiting Performance Profiles for System Tuning

Generalizing the behavior description of AC tasks using the concept of PPs enables a
unified method to control the approximation degree of different tasks, even when the
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underlying approximation methods are different. Therefore, PPs play an important role
for my thesis approach to control the approximation degree within a system.

Here, I present results for exploiting PPs as a behavior description of further approxi-
mation methods. Moreover, PPs easily allows us to consider multiple objectives and take
further hardware parameters into account.

Dealing with multiple objectives. Instead of considering the objectives, performance
and energy consumption, individually, my approach also allows us to consider both at the
same time. Therefore, different energy delay product metrics can be exploited. This is
related to just changing the definition of the budget for the PPs. Since the values for both
objectives, execution time and consumed energy, are already available, we can combine
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(c) Applying the budget model and the monitor.

Figure 6.17: QoR variance improvement compared to a fix budget (18 time units) by
applying the budget model and the monitoring.
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Figure 6.18: Showing different performance profiles for the 2D convolution, while varying
the metric of the budget. This leads to a multiple objective consideration of performance
profiles. It is important to emphasize that each curve has a different meaning of the
budget (x-axis) as indicated by the label.

them to generate a budget metric and thus a new PP.
Figure 6.18 shows the PPs for the different used budget metrics. It is important to

note, that the x-axis is scaled between 0 and 1 for each PP individually and therefore a
direct comparison is not possible. The main purpose is to show how a changing budget
definition will lead to different selected configuration points.

Let us consider that our objective is to not spend more than 50% of energy and 75%
of execution time, while maximizing the QoR. Considering the execution time alone, we
would reach a SNR of roughly 43 decibel. However, since this would also require more
than 50% of energy, we can only reach a QoR of roughly 38 db, when satisfying this goal.

Considering both objectives at the same time and thus finding a good compromise
between them is possible for my approach by relying on the concept of exploiting EDnP
metrics. Having a PP generated by using an EDnP, the respective budget is calculated
using the given objectives. For instance, for the EDP the budget is 50% ∗ 75% = 37.5%
and hence the best achievable QoR is roughly 40 db according to the PP. Putting more
emphasis onto the performance objective, the ED2P can be used. This results in a
budget of 50% ∗ 75% ∗ 75% = 28.125% and the best achievable QoR is roughly 41.5
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db. This clearly shows that the willingness of spending more time as done by using the
ED2P metric reduces the influence of considering the energy objective.

Considering non-AC hardware parameters for generating PPs. As hardware pa-
rameter, I use the number of used cores and the frequency of a core. The usage of
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Figure 6.19: Influence of different conventional hardware parameters (non AC) on PPs
for the contract-based 1NN task. The budget metric is also varied.
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OpenMP allows a programmer to change the number of used cores, while the overhead
for forking and joining a parallel section is within the introduced pragma. On the other
hand, changing the frequency requires a library call. This call requires 51µs for chang-
ing from the highest to the lowest frequency and 62µs for the other direction on the Test
System B. Getting the current frequency ranges from 13.5µs to 17.5µs.

Figure 6.19 shows the influence of two non-AC hardware parameter on the PPs gen-
erated for the contract-based 1NN classification using DTW as metric. I use the Test
System C, which enables up to 48 hardware threads, to evaluate how exploiting paral-
lelization effects the shape of the PP and show it in Figure 6.11b. As we can see in
Figure 6.19a, increasing the number of hardware threads for the contract-based function
results in a compression of the PP regarding the x-axis which represents the execution
time. However, the ratio of the compression decreases with an increasing number of
used cores and thus there is almost no further benefit for going from 16 to 32 cores.

The purpose of Figures 6.19b to 6.19d is to show how the budget metric influences the
decision about the parameter value that will be used during runtime. I exploit as hardware
parameter DVFS, while running the contract-based 1NN on Test System B. This system
offers the possibility to change the frequency for the core within the application. In the
present case, the parameter is the current frequency of the core. Using the PDP metric
(energy), we would decide to set the frequency of the core to 1 GHz for executing the
contract-based function. Considering the execution time as budget, we would set the
frequency to the highest possible value (3.2 GHz). By changing the budget metric to the
EDP metric, we can consider the energy and the execution time together, while keeping
the notation of PPs. For the EDP, the best configuration is 2.2 GHz.

So far, I only have considered a single hardware parameter and therefore a combina-
tion of hardware parameters is investigated now together with different budget definitions.
As benchmark, I use the contract-based 2D convolution and run it on Test System B. The
used conventional methods (non-AC hardware parameters) are DVFS (15 different set-
tings) and the number of used cores (3 different settings). In total, the configuration
space consists of 45 different knob settings. Depending on the budget metric, a certain
configuration outperforms the other ones and therefore the entire PP of this configuration
also poses the merger. In Figure 6.20, I only compare settings that pose the best one
regarding one of the four budget metrics.

In case of the execution time, the best configuration is the one using four cores (4
threads) and the highest frequency (3.2 GHz). In terms of PDP, the opposite is the best
configuration (1 thread + 0.8 GHz). The configuration with four hardware threads and a
2.3 GHz core frequency is the best configuration for the multiple objective case based
on the EDP. Applying the ED2P metric, there are two configurations equivalently good (4
threads + 3.2 GHz and 4 threads + 2.3 GHz). The results reveal that a high emphasis on
the performance leads to a configuration with a high value per knob. On the other side,
a configuration leading to a low energy consumption uses a small value per knob.
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Figure 6.20: Considering a combination of non-AC parameters for the contract-based 2D
convolution.

Performance profiles represent a transparent view on approximation methods.
As already mentioned, the hardware AC methods can be used by contract-based al-
gorithms equally to non AC hardware parameters. I show this aspect according to the
Richardson-Lucy deconvolution. The Richardson-Lucy deconvolution, especially the 2D
convolutions, tolerates small approximations of floating-point operations. Therefore, I
consider two different possibilities to approximate these operations. The first one is the
conversion method presented in Chapter 4. The second method considers approximate
main memories based on DRAM.
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The conversion unit reduces the data that has to be transferred from a floating-point
unit to the memory by using the conversion method as described in Chapter 4. As the
conversion unit works on single data types, it is a representative for other approximate
computing approaches working on single data type operands, such as processing units
(multipliers, adders, etc.). The difference is that approximate processing units do not
necessarily truncate the least significant bits. They also approximate the computation
itself. There exist different designs for integer operations that vary in the average relative
error, in the absolute error, or in the likelihood of an error. Furthermore, there exists a
publicly available library that emulates these processing units [339]. However, the work
regarding approximate floating-point units is limited and no real measurement of the
performance is possible without a re-implementation of available methods [340, 341].
Therefore, I do not present results for approximate floating-point units explicitly.

An approximate DRAM is achievable by adapting the number of cycles between a re-
fresh of the DRAM. This can lead to reading wrong data. I consider different probabilities
for reading out wrong data, see Table 6.2. For the following test, I make a pessimistic
assumption that every operation inside the 2D convolutions that requires a pixel from
the input image needs an access to an approximate main memory11. Note that a DRAM
approximation method does not influence the bandwidth of the memory in general. More-
over, as the number of iterations is set, this method also does not influence the execution
time. Approximate DRAM can lead to a significant reduction of the power required for
refresh [8].

Figure 6.21 shows the PPs exploiting accuracy-aware parameters. As the Richard-
son-Lucy deconvolution mainly consists of 2D convolutions, I assume that my conversion
unit (CU) achieves a speedup of 3.3 (cf. Chapter 4). As QoR metric, I use the peak signal
to noise ratio (Figure 6.21a) and one minus the error rate (Figure 6.21b). As we can see,
the PP representation is able to capture the behavior of different accuracy-aware hard-
ware methods. Thus, this representation easily allows us to compare different methods.
Moreover, building a merger is important to adapt the approximation degree using the
PP representation during runtime. In case of the Richardson-Lucy deconvolution, the
CU-based design builds the merger (blue line). However, the results also reveal that it is

Table 6.2: Potential power savings by increasing the cycles between a refresh of the
DRAM. The data is taken from [8].

Refresh cycle(s) [×] Error rate Power savings

2 2.6× 10−7 ~23%
5 3.8× 10−6 ~24%
10 2.0× 10−5 ~24.3%
20 1.3× 10−4 ~24.6%

11Approaches for realizing approximate main memory are already discussed in Sections 2.2 and 4.5.
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beneficial to exploit a slight (up to 2 RC, green line) approximation setting of the DRAM
in order to reduce the energy consumption for refreshing the DRAM content.

For black box AC methods, I investigate loop perforation, memoization, and neural
networks. The PP of such a method consists of few points in the QoR budget space.
Results for loop perforation are already shown in Figures 6.9 and 6.10a. According
to AxBench [303], the neural network AC approach outperforms loop perforation. The
neural network based approach relies on hardware support for inferring the network in
order to achieve an acceleration [15]. In the absence of such an accelerator, I use
publicly available results for it [303, 15, 182]. However, the achieved QoR of different
neural network topologies for certain applications can be determined by the available
AxBench source code12.

Figure 6.22 presents the resulting PPs of the AC black box methods. Results are
presented for jpeg (see Figure 6.22a) and the jmeint (see Figure 6.22b). The results for
fuzzy memoization are based on my LSH-based memoization method. The LSH-based
versions differ in the number of used random projections (4,8,12,16). As we can see,
the LSH-based method achieves reasonable QoRs for different configurations, however,
the performance it too low to be beneficial. For the neural network approximation, only
the result of a single configuration is published in the literature. This neural network con-
figuration presents the best network regarding the achievable QoR. Therefore, I assume
two further configurations to show what a PP would look like if we could choose between
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Figure 6.21: Performance profiles for the Richardson-Lucy deconvolution using different
QoR metrics and accuracy-aware methods (approximate DRAM and conversion unit).
RC represents the number of cycles between a refresh.

12The code is available on http://axbench.org/.
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Figure 6.22: PPs for black box accuaracy-aware methods and different benchmarks.

multiple configurations. Furthermore, we can see for jmeint, how we filter out configura-
tions that do not lie on the Pareto-optimal front. This is done according to the procedure
presented in Section 6.4.3.

In each case, the PP for black box models presents a step function that represents
the merger. This means that we can reach a certain QoR until we reach the point for
another configuration. This knowledge can be exploited during runtime to control the AC
black box methods.

6.6 Related Work

Memoization approaches have been considered at software level [342, 343, 14, 323] and
hardware level [344, 178, 177, 345, 179, 171, 172, 346, 181]. Hardware approaches rely
on special hardware extensions that are not given in common computing systems.

My focus is on software-only memoization approaches. There exist automatic ways
to generate lookup tables during compile-time by varying the levels of quantization to
reduce the required memory space [347] or by exploiting piecewise approximation [348].
These approaches only work for functions having up to two inputs.

Exact memoization approaches often used hash tables as memoization table. They
can be used by an application without adapting the source core [342, 343]. This is
achieved by a compiler-based approach or by adapting dynamically linked math func-
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tions. Compared to exact approaches, fuzzy memoization can increase the hit rate.
Therefore, Paraprox uses a non-uniform quantization of inputs and concatenates the
remaining bits of the inputs to generate an index to the memoization table [14]. This
solution poses issues when the number of bits used per input or the amount of inputs
increase and a quantification significantly leads to getting wrong results from the table.
Then, the Paraprox approach would require a large table, which is inefficient, especially,
if (most parts of) the table cannot be stored in the cache.

In order to compress the table, while also increasing the hit rate, Brandalero et al.
apply hashing after a quantization [323]. The main drawback of this work is that they
only show the potential of fuzzy memoization regarding the potential performance im-
provement. They mention that SHA1 could be a useful hash function, however, as my
investigation reveals SHA1 is not a useful candidate. The introduced overhead of SHA1
is higher than using xxHash. Moreover, my results show that at software level such an
approach is not beneficial. The authors say that accessing to the hash table shall require
no more than 200 processor cycles but no solution is presented for that.

The concept of anytime algorithms was applied on image processing methods such
as smoothing or edge detection [141]. As already mentioned, anytime algorithms can be
divided into contract-based and interruptible algorithms. Compared to Miguel et al. [335],
I argue that contract algorithms are more suitable than interruptible algorithms for AC.

Firstly, contract algorithms are often easier to implement and maintain [312]. Sec-
ondly, the approach of Miguel et al. requires that each interruptible task be assigned
to an exclusive core to get an suitable solution. This hampers full utilization of a single
core. Thirdly, keeping the cache hierarchy in mind, my contract-based approach has
almost negligible overhead compared to [335]. Finally, since there exist kernels and
algorithms that cannot be transferred into an anytime algorithm and the quality improve-
ment is different for each anytime task, controlling interruptible tasks is difficult. I further
elaborate on this point in Part III.

6.7 Summary

In this chapter, I introduced novel accuracy-aware software methods. Methods on the
software layer have high potential to increase the efficiency of the execution. While
the introduced LSH-based fuzzy memoization provides useful QoRs, the overhead for
introducing it rules out any savings regarding execution time. However, the method can
still be useful for functions that have higher execution time than the time required for
finding a result in the memoization table.

In contrast to fuzzy memoization, the proposed innovative accuracy-aware method
that exploits contract algorithms poses a general solution for exploiting AC at software
layer. I presented how tasks can be transferred into contract-based tasks and how to
control them according to a certain budget metric. Determining a task-specific ordering
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for processing input and output data items leads to a significant improvement of the
performance profiles for different tasks.

Performance profiles describe the behavior of contract-based tasks in the QoR and
budget space. Therefore, such profiles pose an intermediate layer between approxima-
tion methods and control methods as shown in this chapter. They represent a transpar-
ent view. This also enables us to consider a combination of different accuracy-aware
methods and hardware parameters that influence the execution of contract-based and
non-contract based tasks. This aspect of exploiting performance profiles as intermediate
layer is more elaborated in Part III.

Finally, multiple objectives can be concurrently considered using performance profiles.
This is achieved by changing the definition of the budget metric for a single objective to
a metric that considers several objectives such as the energy delay product metrics.
Using these metrics, we can consider three different objectives, QoR, execution time,
and energy consumption for contract-based tasks.
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CHAPTER

SEVEN

EVALUATION OF HIGH PRECISION ARITHMETIC

The three previous chapters consider innovative accuracy-aware methods at various lay-
ers focusing on approximation techniques. In this chapter, I consider a further aspect
at the software layer. Instead of reducing the QoR, I present a framework that allows
programmers to investigate different high precision arithmetic (HPA) libraries for their al-
gorithms and applications. Hence, the content of this chapter tackles the problem of
computational difficulties that can occur during an execution of an algorithm. Especially,
algorithms used in scientific computing can suffer from computational errors.

Using the proposed framework, I evaluate the different libraries regarding the compu-
tational overhead and the improvement regarding the computational errors. Finally, the
chapter concludes the extracted insights and discusses further aspects.

The main conclusion is that by using HPA the introduced overhead to the computa-
tion is not tolerable. Algorithmic-specific adaptations are required in order to improve
the numerical stability and to reduce the usage for HPA. Hence, it is not suitable to con-
sider the HPA framework together with the innovative adaptive accuracy-aware approach
presented in Part III, since an algorithmic-specific solution is inevitable.

7.1 Introduction

The algorithms and applications considered in this thesis offer the potential to reduce
the computational effort by exploiting approximation at different layers. In contrast, there
exists a wide range of applications that require a certain degree of precision for internal
computations in order to reach desired accuracy. IEEE-754 32 bit or 64 bit floating-point
arithmetic is most of the time sufficient to satisfy these requirements. However, floating-
point operations can pose computational difficulties such as cancellation or round-off
errors. Researchers argue that analyzing the code regarding numerical stability is the
most useful way to avoid numerical issues. This includes implementing the algorithm in
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the most stable way [208]. Therefore, programmers need a thorough understanding of
numerical analysis. However, this is not the case for scientific programmers in general.
On that account, extracting a more stable algorithm typically takes a lot of time and may
cause other problems, for instance, with respect to parallelization.

Other researchers propose the usage of HPA. Especially, for the large growing body
of applications where the precision of arithmetic operations provided by modern pro-
cessors is not enough [207, 349]. These applications include numerical reproducibility,
ill-conditioned linear systems, large summations, long-time simulations, probabilistic tim-
ing analysis [350] or optimization solvers [351]. The incorrect usage of data types or an
inexpertly handling of floating-point operations can lead to catastrophic situations [352,
353]. Premature or delayed algorithm termination can also be a resulting issue.

Some compilers enable the usage of 128 bit floating-point operations or of double-
double data types (~31 digit precision). There exists a wide range of HPA libraries
that allow operator overloading to easily integrate HPA into existing source code [354,
355, 356]. Applying HPA data types only to relevant operations within an application re-
duces the overhead for HPA. This can be done automatically [16, 245]. There also exist
coprocessor-based designs that provide HPA [214, 212, 215]. However, these designs
are limited regarding supported precision and integration into existing source codes. Fur-
thermore, the performance over software implementations is not necessarily higher.

In this chapter, I consider the influence of data type precision on an algorithm used
in scientific computing, namely the Lanczos algorithm. This includes an evaluation of
the statement that issues regarding computational errors are solvable by HPA [207].
Moreover, I show a comparison of different HPA libraries in this chapter. Evaluating
these HPA libraries fills a missing point in the related literature, since there exists only a
work considering interval data types [357]. Additionally, I evaluate an approach that is a
candidate for reducing the overhead of HPA by exploiting the work of Kulisch et al. [217].
This includes a fine-grained coprocessor-based design. The contributions of the chapter
are:

• A framework to integrate different HPA libraries into one algorithm.

• Evaluating the influence of data type precision, matrix dimension, and eigenvalue
distribution on the Lanczos algorithm. This is important to see, whether HPA by-
pass the computational errors of standard floating-point operations.

• Comparison of HPA libraries regarding accuracy, efficiency, and execution time.

• The investigation of an exact scalar product for the Lanczos algorithm.

• Consideration of a fine-grained OpenCL-based exact scalar product.
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7.2 Fundamentals and Mathematical Background

In this section, I present the mathematical backgrounds of the used algorithms. As I in-
vestigate the influence of data type precision with a simulation-based approach, I choose
the Lanczos algorithm as a benchmark. This algorithm is known to be sensitive against
numerical errors [208, 358]. It is important to differentiate between precision and accu-
racy. Here, precision means the level of exactness for a single value stored into a data
type. Normally, the precision is represented according to the number of bits. The accu-
racy is a measure for quality of result. It provides a quantity of the deviation to the actual
exact result.

7.2.1 Numerical Issues and Cause of Computational Errors

The usage of floating-point operations has different issues. First of all, not each real
number can be exactly represented by the IEEE-754 standard. For example, this is the
case for the number 1

3
. Hence, there can be a difference between the real number x and

the representation of this number x̃ in the IEEE-754 double format. This round-off error
can be indicated as absolute error Eabs or as relative error Erel.

Eabs(x̃) = |x− x̃|, Erel(x̃) =
|x− x̃|
|x|

These equations can be generalized for vectors and matrices. Moreover, they are also
true for results of an algorithm.

In general, there are four sources of errors introduced by floating-point arithmetic:
data errors, representation errors, round-off errors, and truncation errors. Data errors
are due to an inexact measurement or input values. Representation errors are already
discussed above. Round-off errors are not only an issue for the representation of a real
number, they also occur after floating-point operations, such as multiplication. Truncation
errors occur, for instance, for infinite mathematical series, since at a certain point we
have to approximate this series in the computer. These errors can accumulate after
each operation, when applied to a series of operations or to an algorithm. The so-
called cancellation error occurs, for instance, for subtraction. Assuming two floating-
point numbers that are approximately equal and the last significant bits of the mantissa
are generated due to rounding. Then, a subtraction of these numbers removes the most
significant bits and only the result of the rounded, presumably incorrect bits remains.
Hence, the cancellation phenomena likely removes correct bits in the mantissa, while
keeping bits that can be affected by an accumulation of rounding errors. Another issue
with floating-point arithmetic is absorption. Absorption describes the fact that adding or
subtracting a small number with a huge number has no effect. For instance, the result of
the formula 232 + 2−232 = 0 instead of 2. Moreover, the associative and the distribution
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law are not valid for floating-point arithmetic as seen in the example above. Calculating
232 − 232 + 2 yields to the correct result.

The aforementioned issues do not necessarily lead to critical errors of the final re-
sult [208]. Therefore, a numerical analysis is important. A numerical analysis consists of
three important methods: considering the condition number, the numerical stability, and
the consistency. The condition number represents the sensitivity of a mathematical prob-
lem to the inexactness of the input data. A condition number close to one represents a
well-defined problem, where a huge number specifies an ill-conditioned problem. In con-
trast, the numerical stability is a matter of the implemented algorithm. Hence, the stability
depends on the influence of the round-off errors to an algorithm. The consistency of an
algorithm indicates, whether the given algorithm solves more or less the actual problem.
More on numerical analysis can be found in [208].

7.2.2 Number Formats

This section briefly summarizes number formats for real or rationale numbers. Floating-
point numbers are usually defined according to ±m · b±e, where m is the significand,
b the base, and e the exponent. Normally, the base is implicitly defined and is two.
According to the IEEE-754 standard, a floating-point number consists of three parts: a
sign bit, a biased exponent, and a fraction. The number of bits per part depends on the
actual format, for instance, single or double precision. Combining floating-point values
increases the precision and still uses the available hardware floating-point units. For
instance, the double-double format uses a double for the MSBs and one for the LSBs.
According to the IEEE-754 standard, we can specify number formats with higher biased
exponent and fraction.

Fixed-point formats offer an alternative to floating-point arithmetic, in case that the
data range is comparatively small. The makes it possible to build more efficient hardware
units. Fixed-point formats can be specified using QX.Y convention, where X represents
the integer part and Y the fractional part. As a benefit of fixed-points formats one can
think of that the absolute error magnitude is equal for the entire representable data range.
This is not the case for floating-point arithmetic. However, exactly multiplying two fixed-
point numbers representing the entire data range of a double precision floating-point
value requires more than 4000 bits [217].

An approach that takes rounding errors into account is the concept of interval arith-
metic. Here, a number is represented as an interval [a, b]. Interval arithmetic ensures
that the correct result of an operation is inside the returned interval, even if the result
cannot be represented in the used data format. Hence, the result lies in the interval that
is specified by two representable data values. A problem of interval arithmetic is that
intervals can be growing significantly large. This contradicts useful results.

Further examples of number formats are continued fraction-based formats [359], log-
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arithmic number systems [360] or residue number systems [361]. Though all of them
have benefits in certain areas, they are not superior regarding precision compared to
floating-point formats. Therefore, a detailed description is not given.

The universal number (unum) format is an approach to overcome round-off and rep-
resentation errors caused by floating-point arithmetic [362]. It also prevents under- and
overflows. There exist three unum formats: Type I, Type II, and Type III (posit). These
formats are significantly different from each other. Type I is a variable precision data type,
where the significand and exponent are variable. Two additional fields store the size of
these parts. A bit specifies, whether the number is exactly represented or part of an open
interval. This variable format does not store zeros at the end of the significand for exact
numbers and only stores exact bits for inexact numbers. This shall avoid accumulation of
rounding errors. The exponent can be adapted to the required bit length. However, this
format needs a suitable memory management and hardware. This is important to keep
the benefit of the reduced amount of data and thus leading to improvements regarding
performance and energy consumption.

The focus of Type II is on custom number formats for applications that require ultra-low
accuracy [218]. This Type shall reduce the effort for hardware designers and program-
mers. Type II maps signed integers to the projective real number line. Gustavson et
al. argue that Type II leads to a software-defined number system. Since operations are
performed by exploiting lookup tables, this approach only works for small precision (up
to 20 bits). A lookup table theoretically makes it possible to perform an operation in a
cycle. This could also be applied to half precision floating-point arithmetic.

Type I and Type II are not very hardware-friendly, thus Gustafson et al. propose
Type III, which shall be more hardware-friendly [363]. Type III exploits the concept of
tapered accuracy [364]. A Type III value has a fixed size and a fixed number of exponent
bits. So-called regime bits realize the tapered accuracy. This enables values with small
exponents to have more precision, while very small or high values have less precision.
The regime together with the exponent forms a 2k scale vector. The remaining bits form
the significand or fraction, hence x = (−1)sign ·2k · (1 + fraction). The further concept
of quires (cf. Kulisch et. al [217]) performs dot products, sums, and other operations in a
way that a rounding error can only occur after the operation.

All unum types are more or less just concepts and almost no hardware designs exist
that evaluate these concepts. Especially, the integration into a processor is missing in the
literature. Hence, considerations regarding performance, area, or energy consumption
are just theoretical estimations. Software libraries are available that allows a programmer
to use a simulation of unum types. There is also an ongoing discussion about the suit-
ability of unum1. Therefore, according to the conceptual state and the lack of hardware,
I do not further consider unum in this chapter.

1cf. the Great Debate at ARITH23
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7.2.3 Lanczos Algorithm

The Lanczos algorithm is an iterative method that, for instance, supports the calculation
of eigenvalues for a given squared matrix. This method is highly sensitive against numer-
ical rounding errors and cancellations. Instead of the Lanczos algorithm, one can use
the Householder or Givens method, but the computational effort is significantly higher for
sparse matrices. Nowadays, the Lanczos algorithm is mostly seen as an efficient itera-
tive method, while the other two approaches are direct reduction methods to calculate
the eigenvalues [365]. Given a large sparse squared matrix, the Lanczos algorithm is an
efficient method to support the calculation of a subset of the eigenvalues [366], i.e. de-
termining some of the largest or smallest eigenvalues. Applications like PageRank [367],
latent semantic indexing [368], or graph bisection using spectral methods [369] require
the calculation of eigenvalues. Even the domain of condensed matter physics requires
such information for certain applications [370].

The Lanczos algorithm creates a tri-diagonal matrix Tm that has up to m eigenvalues
of a matrix A ∈ Rn×n, where m ≤ n. The main diagonal is represented by the vector ~α
and the upper and lower diagonal by the vector ~β.

Tm =


α0 β0 0
β0 α1 β1

β1
. . . . . .
. . . . . . βm−2

0 βm−2 αm−1


Algorithm 7.1 shows the unmodified Lanczos algorithm in its most numerically sta-

ble variant [366]. The computational complexity of the unmodified Lanczos algorithm is
O(n2m). The eigenvalues of Tm can be calculated by using QL or QR algorithm. The
QL or QR algorithm are iterative methods that apply a QL or QR decomposition in each
step, respectively. This leads to a convergence of the diagonal elements of the triangular
matrix, L or R, to the eigenvalues of Tm. Since Tm is a tri-diagonal matrix, the compu-
tational complexity of the QL algorithm is reduced to O(n) instead of O(n3). The critical
point regarding computational errors is the orthogonality step (line 6). Here, standard
floating-point arithmetic leads to numerical instability. To improve these issues, the mod-
ified variant shown in Algorithm 7.2 adapts the orthogonalization step. It uses all of the
calculated vectors qi instead of using the last two qi (see line 7) [358]. This introduces
an additional overhead, because significantly more dot products have to be performed
per iteration. The amount of dot products increases over the iterations, since the number
of qi increases. Line 7 represents the modified Gram-Schmidt process. The modified
process is more numerically stable.
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Algorithm 7.1: Unmodified symmetric Lanczos algorithm.
Input: m, Matrix A, random start vector x, where x is not Eigenvector of A
Output: Vectors ~α and ~β

1 β−1 ← 0;
2 q−1 ← 0;
3 q0 ← x

‖x‖ ;

4 for i← 0 to m− 2 do
5 αi ← 〈Aqi, qi〉;
6 ri ← Aqi − αiqi − βi−1qi−1; // Orthogonalization against qi, qi−1

7 βi ← ‖ri‖;
8 if ‖ri‖ < ε · ‖Aqi‖ then
9 break; // Break, if orthogonalization is violated

10 end
11 qi+1 ← ri

βi
; // Normalization

12 end
13 αm−1 ← 〈Aqm−1, qm−1〉;
14 return (~α, ~β);

Algorithm 7.2: Modified symmetric Lanczos algorithm.
Input: m, Matrix A, random start vector x, where x is not Eigenvector of A
Output: Vectors ~α and ~β

1 β−1 ← 0;
2 q−1 ← 0;
3 q0 ← x

‖x‖ ;

4 α0 ← 〈Aq0, q0〉; // Different to unmodified version
5 β0 ← 0; // Different to unmodified version
6 for i← 0 to m− 2 do
7 ri ← Aqi −

∑i−1
j=0〈Aqi, qj〉 · qj ; // Orthogonalization against q1,..., qi,

replaces lines 7 to 9 of unmodified version
8 if ‖ri‖ < ε · ‖Aqi‖ then
9 break; // Break, if orthogonalization is violated

10 end
11 qi+1 ← ri

‖ri‖ ; // Normalization, replaces line 11 of unmodified version

12 αi+1 ← 〈Aqi+1, qi+1〉; // Different to unmodified version
13 βi+1 ← 〈Aqi+1, qi〉; // Different to unmodified version

14 end
15 αm−1 ← 〈Aqm−1, qm−1〉;
16 return (~α, ~β);

7.2.4 Synthetic Input Data

The stability of the Lanczos algorithm depends amongst others on the input data, hence
the squared matrix A. The eigenvalues of A have a big influence. Especially, the distri-
bution of eigenvalues has a high impact. In general, the algorithm behaves more stable
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for exponential distributions. Unfortunately, the distribution of eigenvalues is most of the
time not known beforehand. Therefore, the matrix A is artificially constructed for the
benchmark to investigate different distributions. A matrix A is constructed in a way that
one can select the distribution of the eigenvalues [358]. Moreover, as we know the cor-
rect eigenvalues, we can compare the calculated eigenvalues with the correct values.

For this purpose, the eigenvalues are calculated through the following equation

λi = c1 · e−c2·(i−1)
α

(7.1)

with c1, c2 > 0, α ∈ (0, 1]. c1 is a scale factor of the eigenvalues, but has no effect on
the distribution. c2 influences the distance between the eigenvalues of A and α changes
the distance and the distribution and hence the convergence behavior of the Lanczos
algorithm. Note that these eigenvalues are all positive and real numbers, we construct a
square A ∈ Rn×n with the help of singular value decomposition. This decomposition is
defined by

A = V ·D · U,
where V ∈ Rn×n is an orthogonal normalized matrix and represents the eigenvectors of
A. U ∈ Rn×n is a transpose of an orthogonal matrix. D ∈ Rn×n is a diagonal matrix
that includes the eigenvalues λi of A in case of positive eigenvalues. Choosing U = V T

simplifies the computation. To construct the needed orthogonal normalized matrix V , we
first assemble an orthogonal matrix Tn ∈ Rn×n with the help of Tschebyscheff nodes
and polynomials, because A is just defined over the dimension n. These Tschebyscheff
nodes and polynomials are a system of orthogonal functions i, j ∈ {0, 1, . . . , n − 1}
defined by

ti(xj) = cos(i · arccos(xj)), xj = cos

(
j + 1

2

n
· π
)
.

Tn is now assembled by (Tn)ij = ti(xj). To normalize this matrix, we can define a
diagonal matrix ∆n that includes the squares of the reciprocal of the product T Tn · Tn.
Then,

A = V ·D · V T = (Tn ·∆n) ·D · (Tn ·∆n)T .

Algorithm 7.3 shows the synthetic construction of the input matrix A according to the
scheme described above.

7.3 Overview of High Precision Arithmetic Libraries

This section presents the different HPA libraries used for the evaluation. Besides these
libraries, I consider double (53 bit significand) and long double (64 bit significand) as
hardware-supported data types according to the IEEE 754-2008 standard [371]. I set
de-normalized numbers to zero by using Intel intrinsics. I use HPA data types provided
by MPFR [356], MPIR [372], ARPREC [354], and C-XSC [355].
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Algorithm 7.3: Create squared matrix A ∈ Rn×n with eigenvalues λi = c1 ·
e−c2·(k−1)

α

Input: Dimension n of output matrix A, Inputs c1,c2, and α for Equation (7.1)
Output: Matrix A

1 for i← 0 to n− 1 do
2 λi ← c1 · e−c2·(k−1)

α

;
3 for j ← 0 to n− 1 do

4 (Tn)ij ← cos
(
j · i+

1
2

n · π
)

;

5 if i 6= j then
6 (∆n)ij ← 0, (D)ij ← 0;
7 else
8 (D)ij ← λi;
9 if i = 0 then

10 (∆n)ij ←
√

1
n ;

11 else

12 (∆n)ij ←
√

2
n ;

13 end
14 end
15 V ← Tn ·∆n;
16 A← V ·D · V T ;
17 return (A, λ);

MPFR is based on GNU Multiple Precision (GMP) [373] and supports mathematical
standard functions of the C programming language standard C99. The maximum preci-
sion depends on the available memory space and data types are stored in floating-point
representation. It supports IEEE-754 rounding and special cases such as not-a-number
and infinity, but does not provide de-normalized numbers. Internally, numbers are treated
as a floating-point values, where the size of the exponent and significand can be spec-
ified by the programmer. Performance critical parts are written in assembly. For the
evaluation, I use a C++ interface for MPFR [374]2. MPIR is similar to MPFR, but it is opti-
mized for manycore architectures and graphical processor units3. ARPREC4 represents a
number A as an array a of doubles, where a0 represents the number of elements in the
array, a1 the sign (0 or 1), a2 the number of elements representing the mantissa, a3 the
exponent, and a4 to an+4 are the n blocks of the mantissa. Each block has a length of
48 bits. Hence, a represents the number

A = (−1)a1 · 248·a3 ·
n−1∑
k=0

ak+4 · 2−48·k, n = a2.

2The MPFR version 3.1.3, the GMP version 6.0.0a, and the interface version 3.6.2 are used.
3The MPIR version 2.7.0 is used.
4The ARPREC version 2.2.17 is used.
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ARPREC has optimized routines for precisions larger than 1000 bit, for instance, a FFT-
based multiplication. Internally, ARPREC exploits fused and multiply add operations.

C-XSC5 is a library for scientific applications and provides two high precision arith-
metic data types, dot precision and l_real. It provides algorithms such as FFT, solving
linear equations, or zero calculation of a function. Dot precision is a fixed-point format
supposed for an exact product of double types required by an exact scalar product. This
data type is based on the approach of Kulisch et al. [217]. The data type l_real repre-
sents a number as summation of doubles (staggered arithmetic). The programmer can
choose the amount of doubles.

I have considered more libraries, but it was not possible to integrate them into the
framework. For instance, interval arithmetic data types pose problems regarding dividing
by zero. The reason is that the result of a re-orthogonalization can be close to zero.
The used interval data type of the C-XSC library includes zero for the norm in case the
boundaries are specified by 64-bit floating-point values. A presumable solution would be
to exploit another library or data type.

7.4 Integration of High Precision Arithmetic Libraries

To investigate the influence of data type precision, I consider Algorithms 7.1 and 7.2.
These algorithms are well suited due to their sensitivity against computational errors.
It is important for such an investigation that the input data itself introduces no errors,
for instance, caused by a representation error. The same applies to the output data,
since the outputs is used to determined the achieved accuracy of different libraries. This
comparison should not be subjected to any errors. Therefore, I use higher precision for
the input data and the remaining steps than inside the Lanczos algorithm.

For a fair comparison of libraries, I remove the exit condition of Algorithm 7.1 (lines 8
and 9). Hence, the algorithm executes n iterations. The reason for this change is that the
usage of the exit condition can significantly vary between different HPA data types thus
thus makes the comparison very difficult. This does not hold for Algorithm 7.2. Since
the Lanczos algorithm only creates a matrix that has m eigenvalues identical to the input
matrix, I use the QL method to determine the eigenvalues on the resulting tri-diagonal
matrix. As discussed above, the QL algorithm uses the same precision than the input
data, hence higher precision compared to the Lanczos algorithm.

Many HPA libraries are available for C/C++, especially, the ones described in Sec-
tion 7.3. Therefore, a C++-based framework using templates is implemented that easily
integrates different HPA libraries. This template-based method allows a programmer to
easily select and adapt the HPA data type during design time. On that account, the
programmer can select the data type of a HPA library and the desired size. The frame-

5The C-XSC version 2.5.4 is used.
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work includes algorithm 7.3 to generate a input matrix A. Moreover, it contains an algo-
rithm that determines the accuracy of the results. This algorithm compares the resulting
eigenvalues with the correct ones. The algorithm gets as input correct eigenvalues λk
and calculated µi eigenvalues. A parameter ε represents the relative allowed deviation
of eigenvalues. If the actual relative deviation of a correct eigenvalue and a calculated
eigenvalue is smaller than ε, the calculated eigenvalue is considered as correspond-
ing eigenvalue. To this end, the evaluation algorithm returns the largest absolute error
∆max between two eigenvalues, the largest relative error δmax, the number of calculated
eigenvalues that are correct η, and the number of collisions κ. κ counts the number
of calculated eigenvalues that occur several times. The algorithm exploits the fact that
according to Algorithm 7.3 each eigenvalue only occurs once. For instance, λ0 = 1.0,
µ0 = 0.998, µ1 = 0.999, and ε = 0.001, then the algorithm considers µ1 as correct
eigenvalue. Everything within the framework can easily be adapted in order to plug in
other algorithms and perform an evaluation for it.

7.5 Evaluating the Influence of Data Type Precision

In this section, I investigate the influence of data type precision on the Lanczos algorithm.
I describe the setup and discuss different evaluation features.

7.5.1 Evaluation Setup

The test system includes an AMD Opteron 2400 MHz and 16 GB main memory. The
processor does not support fused multiply and add operations. To generate the input
matrix A according to Algorithm 7.3, we assume c1 = c2 = 1.0 for Equation (7.1) and all
tests. A starting vector ~x is randomly generated and tested whether it is an eigenvector
of A. The vector ~x is constant during all benchmark tests for a certain matrix A. The
Eigen library [375] is deployed for matrix and vector operations. This library performs all
operations with HPA. The desired HPA data type is specified by a template instantiation.
An eigenvalue is considered as correct if the relative deviation ε is less than 0.001.

7.5.2 Influence of the Precision

As a first test, I investigate the influence of the data type precision on the results of the
modified and unmodified Lanczos algorithm (Algorithms 7.1 and 7.2). This allows us to
draw conclusions about the stability of the both methods. Therefore, the precision of a
MPFR data type is varied inside the Lanczos algorithm from 64 bit to 512 bit. The number
of bits essentially specifies the size of significand. Figures 7.1 and 7.2 show the num-
ber of correctly calculated eigenvalues for different αs and thus for different eigenvalue
distributions.
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Figure 7.1: Influence of the internal data type precision regarding number of calculated
eigenvalues using the unmodified (Algorithm 7.1) Lanczos algorithm.
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Figure 7.2: Influence of the internal data type precision regarding number of calculated
eigenvalues using the modified (Algorithm 7.2) Lanczos algorithm.

For the Algorithm 7.1, the curves of α = 0.25 and α = 0.5 have local variations,
but the trend is that HPA leads to more correct eigenvalues and fewer variations. These
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variations are higher for less exponential distributions of eigenvalues (smaller α) and
likely caused by rounding errors. The influence of cancellations increases for larger
exponential distributions. This leads to calculating the same eigenvalue several times
(more collisions). On that account, significantly less eigenvalues are correctly calculated
by the Algorithm 7.1. In addition, higher precision has less influence for larger α and
so slowly improves the stability. At a certain precision point, all 100 eigenvalues can be
correctly calculated. For instance, the α = 0.25 curve is stable at 400 bits of data type
precision. However, this would introduce a large computational overhead for larger α.

In case of the modified algorithm, we can see variations for all α, but they are quite
high for α = 0.25 (cf. Figure 7.2). The general trend is that the computation is more
stable on less precision compared to the unmodified version, hence it leads to correctly
getting all eigenvalues. Interestingly, this point is reached fastest for α = 0.5 at roughly
128 bits. This is presumably due to the fact that the combination of convergence and
influence of cancellation is best. Unfortunately, it is not known beforehand, where this
point lies. This knowledge would help to adapt the HPA in the right way in advance of
the computation. Theoretically, the convergence of α = 1.0 is the best. To sum up,
the modified version significantly benefits from HPA even for small enlargements of the
number of precision bits.

7.5.3 Influence of the Matrix Dimension

Next, I investigate the influence of the matrix dimension in combination with HPA. I set
α = 0.5 and use MPFR data types. Figure 7.3 shows the number of eigenvalues col-
lisions that occur for different data types and matrix dimensions n. Such collisions only
occur for Algorithm 7.1 as discussed. The algorithm does not suffer from collisions for
small matrices up to a dimension of roughly 30. From that point on, drastic computa-
tion errors occur that negatively impact the stability of the algorithm. To overcome such
errors, HPA is beneficial, but only with a significant number of precision bits.

Then, I consider the number of correctly calculated eigenvalues, see Figure 7.4. Each
of the modified versions (dashed lines) correctly calculate all eigenvalues. This agrees
with the result of the previous section. Note that all lines (dashed lines) overlap in Fig-
ure 7.4 and therefore cannot be seen. In contrast, the unmodified algorithm (solid lines)
significantly benefit from a higher precision using HPA.

Besides the accuracy, I measure the required iterations and the execution time per
correct eigenvalue. The required iterations and the required execution time per correct
eigenvalues are calculated by dividing the number of iterations or the execution time
through the number of correct eigenvalues, respectively. Booth metrics can be seen as
an efficiency measure. The number of iterations per eigenvalue shown in Figure 7.5 is
always one for the modified version (dashed lines), since 128-bit is already sufficient to
avoid computation errors that impact the result. We can see that the required number
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Figure 7.3: Number of eigenvalue collisions depending on the matrix dimension.
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Figure 7.4: Number of correct eigenvalues for different dimensions and data types.

of iterations to get a correct eigenvalue decreases by exploiting higher precision for the
unmodified version (black solid line). As we can see in Figure 7.6 the highest efficiency
regarding the execution time and larger matrix dimension is provided by the modified
version using a 128 bit data type (orange dashed line). In general, a higher precision is
less efficient, especially, for the modified version. The unmodified algorithm using 512
bit data types performs best (gray solid line) for a matrix dimension of 100. The raw
execution time for the modified version is roughly twice as high compared to unmodified
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Figure 7.6: Execution time consumed for a correct eigenvalue.

version using the same data type precision (cf. Figure 7.7, compare the solid and the
corresponding dashed line per color). However, the unmodified version often calculates
wrong results as we have investigated above. Therefore, one can draw the conclusion
that the modified version is more efficient in general, especially, for α = 0.5. Other eigen-
value distributions could possibly benefit from the unmodified version in cases, where the
modified version requires more precision to reach a stable point.
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Figure 7.7: Entire execution time of the algorithms.
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Figure 7.8: Number of eigenvalue collisions. Input matrix is generated using α = 0.5.

7.5.4 Comparison of Different Libraries

I compare HPA libraries using input matrices of size 100 × 100, while α = 0.25 or
α = 0.5, respectively. Note that the generated matrix has 100 different eigenvalues.
Figures 7.8 and 7.9 show the number of collisions. The Figures 7.10 and 7.11 show the
number of correctly calculated eigenvalues.
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Figure 7.9: Number of eigenvalue collisions. Input matrix is generated using α = 0.25.
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Figure 7.10: Number of correct eigenvalues. Input matrix is generated using α = 0.25.

All libraries show a similar behavior, except ARPREC (orange lines). Please remember
that the modified version correctly calculates all eigenvalues when the precision is above
128 bit. ARPREC offers a better accuracy for smaller bit widths compared to the other
libraries. Therefore, ARPREC shows less collisions. The number of collisions decreases
with smaller α. In addition, we can see that double or long double is not sufficient to
calculate all eigenvalues (gray lines). This is also the case for the modified version.
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Figure 7.11: Number of correct eigenvalues. Input matrix is generated using α = 0.5.
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Figure 7.12: Average execution time per iteration. Input matrix is generated using α =
0.5

The unmodified algorithm earlier reaches the optimal point (0 collisions or 100 correct
eigenvalues) for α = 0.25 than for α = 0.5. The modified versions (dashed lines)
require a minimal precision of roughly 220 bits to reach the optimum for α = 0.25.
ARPREC (orange line) performs better than the other libraries regarding the accuracy.
In contrast, 128 bit is enough for all libraries and α = 0.5 using the modified version.
ARPREC reaches the optimum for the unmodified and modified version quite early.

Figures 7.12 and 7.13 present the execution time (in seconds) of a single iteration of
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Figure 7.13: Average execution time per iteration. Input matrix is generated using α =
0.25.
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Figure 7.14: Average execution time per correct eigenvalue. Input matrix is generated
using α = 0.5.

the Lanczos algorithm using different HPA libraries and eigenvalue distributions. Note
that the y-axes have logarithmic scales. We can see in the figures that the modified
version always requires twice as long as the unmodified version (compare the dashed
line with the corresponding solid line in the same color).

The overhead of MPFR and MPIR is significantly lower compared to the other two HPA

183



Chapter 7 - Evaluation of High Precision Arithmetic

0 500 1000 1500 2000
Data type precision [bits]

10−5

10−4

10−3

10−2

10−1

100
E

xe
cu

ti
on

ti
m

e
p

er
co

rr
ec

t
ei

ge
nv

al
u

e
[s

]
ARPREC

CXSC

double

MPFR

MPIR

ARPREC (mod)

CXSC (mod)

double (mod)

MPFR (mod)

MPIR (mod)

Figure 7.15: Average execution time per correct eigenvalue. Input matrix is generated
using α = 0.25.

libraries. ARPREC is three to ten times slower than MPFR and CSXC is about three to
four times slower than ARPREC. The overhead of MPFR and MPIR does not significantly
increase with number of precision bits. ARPREC and CSXC have an enormous increase
regarding the overhead for higher bit widths. MPIR is two times faster until 1024 bit com-
pared to MPFR. However, this consideration does not include the accuracy of eigenvalues.
Therefore, Figures 7.14 and 7.15 shows the efficiency of the executions.

Please remember that the efficiency is the entire execution time divided by the number
of correctly calculated eigenvalues. Despite the intention that the modified version is
less efficient than the unmodified version, this is not really the case. Since the modified
version requires less precision to calculate all eigenvalues of the matrix, we can see
that for 128 bits the modified version using MPIR is the most efficient library. Higher
precision just increases the overhead for the modified version, but this higher precision
is not necessary.

7.5.5 Findings

One of the initial question is, whether HPA, in combination with an unstable algorithm,
can outperform a modified algorithm using standard floating-point operations (double).
Looking at the accuracy of the results, HPA leads to more accurate results. The modi-
fied algorithm using double calculates 30 and 71 correct eigenvalues for α = 0.25 and
α = 0.25, respectively. HPA in combination with the unmodified version calculates more
correct eigenvalues using 128 and 512 bit, respectively. However, HPA introduces an
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overhead of 142× and 194× in terms of execution time to achieve the higher accuracy.
The results indicate that even the modified algorithm requires a higher precision than

supported by current processors. Considering the raw execution time, MPIR is until 1024
bits roughly twice as fast compared to MPFR. The raw performance is almost the same
above 1024 bit. In general, the modified variant is twice as slow as the unmodified
algorithm, but has the higher efficiency. The benefit of HPA is significantly higher for the
unmodified algorithm. The rationale is the low numerical stability. In total, it is clear that
the modified algorithm is more efficient than the unmodified algorithm.

The important outcome is that neither for the modified nor for the unmodified algorithm
hardware-supported data types are sufficient to calculate exact results. Therefore, even
the numerically more stable algorithm requires higher internal precision depending on
the size of the input matrix. While HPA improves the stability of a certain algorithm, it
introduces a significant overhead that is often not tolerable. Hence, a numerical analysis
in combination with an algorithmic improvement is still required.

7.6 What about the Exact Dot Product?

According to the findings in Section 7.5, HPA is inevitable for certain algorithms, but
causes significant overhead regarding execution time and memory footprint. To avoid
high overhead, applying HPA to less operations can be a solution. Kulisch et al. argue
that an exact dot product is crucial for HPA [217]. Therefore, I consider an exact dot
product for all dot products in Algorithms 7.1 and 7.2. Each matrix vector multiplication
~t = A · ~qi is replaced by ti = 〈~ai · ~qi〉 = ~ai

T · ~qi, where ti represents an element of ~t and
~ai is the ith column of Matrix A. Norm operations are substituted with ||~v|| =

√
|〈v, v〉|.

Matrix vector multiplications and norm calculations are also performed by using an exact
dot product. All remaining operations are executed in double precision.

For the exact dot product, I consider MPFR, C-XSC, and an OpenCL implementation
based on [217]. Additionally, I compare these approaches with a native double imple-
mentation and an implementation based on the Eigen library. A MPFR data type requires
at least a precision that can exactly perform a multiplication with two doubles for an exact
dot product. A fixed-point representation of a double needs 2098 bits. The amount of
bits has to be doubled after a multiplication to make sure that the value is still stored
exactly. Since MPFR is based on 64 bit blocks, the required data type has 66 blocks and
thus represents 4224 bits of precision. For C-XSC, dotprecision is used. The OpenCL
variant also provides a precision of 4224 bits. The conversion into a double value is done
on the host processor. The reason is that this would require synchronizations and data
transports between compute units on the GPU.

Again, the AMD Opteron system is used. This system includes a NVIDIA GeForce
GTX 960. The proposed OpenCL kernel is executed on this GTX 960. To create an input
matrix, the parameters n = 100, c1 = c2 = 1.0, and α = 0.5 are used.
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Figure 7.16: Comparison of various exact dot products within the two Lanczos methods.
Note that the execution time has a logarithmic scale.

Figure 7.16a shows the number of correctly calculated eigenvalues for different used
exact dot products. We can see that the influence of the exact dot product is low on the
accuracy of the Lanczos algorithm. In case of the unmodified version, the CXSC approach
calculates two eigenvalues more, but this is not significant. This is presumably caused
by the variations shown in Figures 7.1 and 7.2. The same holds for the OpenCL variant
that calculates one eigenvalue more using the modified algorithm.

Although the benefit regarding accuracy is negligible, the introduced overheads of the
exact dot products are enormous, see Figure 7.16b. The fastest method, CXSC, is ten
times slower than the double variant. The OpenCL method is 320× slower, while MPFR is
8× faster than the OpenCL method. As expected, the execution time of a single dot prod-
uct on a PCI-attached GPU is mainly consumed by data transfers (Data transfer).
These transfers pose more than 50% of the time. The intention of a OpenCL-based im-
plementation is that a GPU integrated on the same chip can act as a HPA coprocessor.
However, an exact dot product has no benefit for the algorithm. According to the results,
we can conclude that the critical part of the algorithm is the re-orthogonalization step.
This step involves subtractions that can cause cancellations.

7.7 Summary

Knowing the correct eigenvalues of an input matrix is an important point to compare the
different HPA libraries. Therefore, the approach discussed in Section 7.2.4 was used.
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This avoids the usage of another method to calculate eigenvalues for a given matrix.
While the used approach is very useful to analyze the influence of HPA and to compare
different libraries, the practical relevance is limited. Determining the required precision
for data types in advance is an important aspect for real-world applications.

Setting the precision to a fixed value is not sufficient, since an unnecessary high pre-
cision introduces an avoidable overhead and a too low value leads to wrong results. This
is backed up by the findings in Section 7.5. The required precision depends amongst oth-
ers on the distribution of the eigenvalues. The knowledge about this distribution would be
beneficial. However, the estimation of the range of the eigenvalues using known meth-
ods, for instance, greshgorin circles, does not help. The rationale is that the estimation is
too coarse grained. To that end, it is an open question how to set the internal precision
for a given input matrix.

The evaluation by means of investigating the influence of data type precision on the
Lanczos algorithm reveals that HPA is inevitable to calculate correct results. While there
exist several software solutions to easily integrate HPA into existing applications, they all
introduce intolerable, additional overhead compared to hardware-supported data types.
General applicable coprocessor designs that could reduce the overhead of HPA are still
not available. Therefore, an entire re-implementation of the application has to be done
for porting it to a coprocessor. Applying HPA to only critical parts of an application is
a solution, but this requires a deep knowledge of an algorithm. For instance, using
an exact dot product is not sufficient for the Lanczos method. A numerical analysis
would presumably turn out that the re-orthogonalization step is sill critical, even when
the modified version significantly improves it.

Another outcome is that HPA is not sufficient alone to overcome numerical stability
issues. While HPA improves the stability, it introduces an enormous overhead. A numer-
ical analysis during the implementation can lead to improvements for the efficiency of an
algorithm. The usage of HPA for the critical operations reduces the overhead.

The core idea of this thesis is to have different accuracy-aware methods that allow a
user or a controller to vary the QoR. However, adapting the QoR by varying the degree
of HPA would not be the best way regarding the considered design goals in that thesis.
This chapter has revealed that domain expertise is required for efficient implementations.
On the basis of the outcome of this chapter, I do not further consider HPA for the next
part of the thesis. This part proposes an approach for tuning accuracy-aware systems.
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Part III

Tuning of Accuracy-aware Systems
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CHAPTER

EIGHT

PREPARATIONS DURING DESIGN TIME

In this chapter, a novel accuracy-aware tuning approach is proposed. This approach
tunes accuracy-aware applications during design time. The novel tuning algorithm finds
suitable parameter settings for the accuracy-aware methods within the applications. This
includes methods that are presented in Part II. Hence, this tuning algorithm is an import
part of the configuration layer. The extracted configurations of the tuning algorithm can
be exploited to tune the system during runtime. This results in a novel runtime control
approach presented in this and the following chapter. In the following, the design-time
part is presented. Furthermore, accuracy-aware computing is applied to a new domain
to highlight, why it is beneficial to tune the system in a horizontal and a vertical view.

8.1 Introduction

Accuracy-aware methods provide knobs that allow designers to control the approxima-
tion degree, as discussed in Part II. This makes it possible to configure the accuracy
in order to trade off quality of result (QoR) for other design goals. A knob specifies a
parameter of an accuracy-aware method, selects between different approximate func-
tion versions, or represents an existing parameter of an application that affects the QoR.
These knobs can be controlled using various methods that differ amongst others in the
point of time, when the knobs are set. In this chapter, the focus is on approaches applied
during design time. However, these approaches can also extract important knowledge
required for a tuning during runtime.

The first part of this chapter presents, why it is important to exploit and tune accuracy-
aware methods in a horizontal and a vertical view. An application in the domain of
scientific computing is selected for this purpose. Scientific computing poses a difficult
challenge for people from different domains, especially in order to find a suitable trade-
off between desired solution quality and computational effort. Even the high parallel
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capabilities of todays hardware and novel parallel algorithms do not lead to a significant
reduction of these challenges because of the increasing dimensions of current problems.
Hence, we must rely on new ways to overcome the aforementioned issues. Such a new
way is accuracy-aware computing.

Normally, high accuracy is often a prerequisite for scientific computing. Thus, at first
glance, it seems counterproductive to marry approximate computing (AC) with scien-
tific computing. There already exists successful work that introduces AC into scientific
computing [376, 147, 377, 378, 379, 380]. However, these approaches mostly analyze
the influence of data type precision on the accuracy only. Asynchronous parallelization
methods are well-known in numerics and show a high efficiency on GPUs [381]. How-
ever, a systematic evaluation of AC on different layers inside a scientific application is
missing in the literature. Therefore, this chapter presents a first step to apply a holistic
evaluation of AC on a widely used algorithm in scientific computing.

This gives us the knowledge, where it is possible to apply AC and how we can com-
bine orthogonal accuracy-aware methods. Horizontal and vertical AC methods are used
for this evaluation. Previous work shows that the consideration of various layers and
different AC methods results in an enormous benefit [26]. However, this orthogonal
view is missing for scientific applications. Firstly, representative input data is assembled
for the evaluation (see Section 8.2). Then, suitable and promising AC approaches are
selected for the evaluation in Section 8.3.1. The systematic evaluation compares the dif-
ferent accuracy-aware methods regarding the execution times and the relative error as
described in Section 8.3.1. This evaluation aims to answer the following questions: How
big is the influence of well-known AC methods on the accuracy of a scientific algorithm?
Is it possible to combine AC methods to improve other design parameters while keeping
an acceptable accuracy?

Based on the outcome of the experiments, the following findings can be drawn:

• Finding 1: There exist further AC approaches besides precision scaling which are
useful for scientific computing. Loop tiling and loop truncation enable a program-
mer to trade off accuracy for performance for the synchronous and parallelized Ja-
cobi algorithm. Additionally, an approximation parameter that specifies the degree
of relaxed synchronization poses an opportunity to find an optimal configuration
point for accuracy and performance.

• Finding 2: Combining orthogonal AC methods leads to configuration points that
cannot not be reached by a single method. Hence, this combination outperforms
single methods regarding accuracy and performance. The combination of up to
five AC methods is possible for the Jacobi method.

• Finding 3: Using a simple greedy-based tuning algorithm [11], suitable parame-
ter values for the orthogonal AC methods are found. A user can state a desired
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relative error that is tolerable for the solution of the Jacobi method. Then, the al-
gorithm finds the best possible performance for that given error by tuning the AC
parameter.

While greedy tree-based tuning algorithms significantly reduce the computational ef-
fort compared to an exhaustive search, they do not exploit application knowledge to fur-
ther reduce the effort. They only return limited information that can be exploited during
runtime (more details in Chapter 9).

Model-based tuning approaches [206, 17, 20] create a model of the applications be-
havior regarding the QoR and performance. This can further reduce the tuning effort.
However, these approaches require to learn separate multi-dimensional models describ-
ing the QoR and performance behavior and solve an optimization problem.

All of the existing approaches do not consider multiple objectives. Additionally, they do
not take care about other accuracy-aware applications within the system. Conventional
tuning opportunities are not part of the tuning. In summary, no static tuning approach is
sufficient in the domain of accuracy-aware computing. Therefore, a novel static tuning
approach is introduced in this chapter.

This approach considers accuracy-aware methods on a horizontal and vertical view.
The tuning approach takes conventional methods and multiple objectives into account.
The consideration of multiple objectives is achieved by exploiting an energy delay metric
as budget metric.

A hierarchical approach is used for the tuning. Assuming that an application is com-
posed of tasks, local mergers (performance profile, PP) per task are generated according
to Chapter 6. This applied local view significantly reduces the number of global config-
urations that have to be considered. The rationale is that useless local configuration
points are filtered out by the merger. The integration of a task into another application
does not require to build a new merger for it. The information within the local mergers,
especially, the gradients are used by the proposed adaptive global tuning approach. This
approach only has to consider promising global configurations and thus it reduces the
computational effort.

In sum, the contributions of the present chapter are the following:

• An evaluation study that shows the importance of considering accuracy-aware
methods on a horizontal and vertical view.

• A detailed evaluation of accuracy-aware computing on a novel domain.

• The presentation of drawbacks that existing accuracy-aware tuning approaches
have.

• The introduction of a novel static tuning algorithm that significantly reduces the
computational effort. The tuning algorithm takes conventional tuning methods and
multiple objectives into account.
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Note that the information generated by the global static tuning approach is important to
extract knowledge for the proposed runtime approach discussed in Chapter 9.

8.2 Fundamentals

A common task within scientific computing is numerically solving partial differential equa-
tions (PDEs). This is typically done by transforming the basic problem into a large scaled
system of (linear) equations [382]. The finite element method, for example, directly trans-
fers a weak formulation of the PDE into a system of linear equations by using arbitrary
test-functions:

Ax = b, (8.1)

where xi are the coefficients of the linear combination of the basis functions of an ap-
propriate function space. This function space approximates the solution of the PDE.
Depending on the set of basis functions, the original problem, and the given approxima-
tion of the observed area, A has different characteristics including high dimensionality.
Wisely selecting the basis functions leads to a sparseA. Hence, Krylow subspace meth-
ods are ideal candidates for solving the problem (8.1) [383].

Lowering the conditional number of A results in a higher convergence for those meth-
ods. This is accomplished by multiplying a suitable matrix B with A [384]. A method to
find a suitable B, the so-called preconditioning matrix, is a factorization of A based on
its characteristics. A widely usable factorization is the incomplete LU -factorization [385]:

A ≈ LU = B−1,

where L and U are lower and upper triangle matrices, respectively. As for performance
reasons B is embedded within the Krylow subspace method by multiplying it with a
basis vector vm of the actual Krylow subspace Vm. This leads to two further systems of
equations that have to be computed:

Bvm = y ⇔ LUy = vm ⇔ Lỹ = vm, Uy = ỹ. (8.2)

Because L and U are sparse but triangle matrices, typically solvers based on splitting
methods like the Jacobi method are used to solve the inner systems [385].

The main challenge now is to solve these inner systems (Equation (8.2)) very effi-
ciently to keep the performance benefit due to less iterations of the Krylow subspace
method. An important fact to note is that the accuracy of the solution of the inner sys-
tems only affects the convergence rate, hence it does not affect the solution of the outer
method. Note that there are important mathematical properties for solvers and precon-
ditioning methods. First of all, the preconditioning operator B has to be invariable over
the whole iteration process for most Krylow subspace methods [383]. Manipulating the
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updating process of the inner solver may change the operator from one iteration to an-
other. However, methods such as FGMRES allow the adaptation of preconditioners per
iteration [383].

The second problem is the convergence of the inner solver. Having spectral radius ρ
ofL andU smaller than unity results in a secured convergence [386]. Although this might
be not the case for all matrices assembled from discretization of PDEs and incomplete
factorization, there are large and relevant classes of problems with resulting triangular
matrices. These matrices can be solved by matrix splitting based solving methods.

Now, we take a look at the generation of the test data. The basic problem is an in-
homogeneous Poisson’s problem with homogeneous boundary conditions on the unit
square. The discretization is done with a five-point-stencil and the finite difference
method. The resulting system of equations is diagonally dominant, irreducible, and can
be easily scaled to any useful dimension. A is sparse, symmetric, and positive definite.

For the evaluation study, the Jacobi method is used. This method acts as the inner
solver as discussed. The right side vm of Equation (8.2) is a set of vectors that are
created as residuals within a performed CG method. Not that only the influence of AC
on the Jacobi method is evaluated. The evaluation shows that exploiting vertical and
horizontal AC methods together is wise.

8.3 The Potential of Exploiting Horizontal and Vertical
AC Methods

In part II, accuracy-aware methods are considered in isolation and compared on a hor-
izontal view. In this chapter, an evaluation study is performed to investigate the useful-
ness of combining different accuracy-aware methods also on a vertical view. Further-
more, requirements are identified that are important for controlling the collaboration of
different methods during design time and runtime. These points represent the require-
ments for the configuration layer.

8.3.1 Evaluation Study

For the evaluation study, a benchmark from numerical mathematics is chosen. The
detailed description of the benchmark is given in Section 8.2.

Considered approximation methods

The selection of the accuracy-aware methods is inspired by two things. Firstly, I want to
evaluate orthogonal methods, which are applicable concurrently. Secondly, I decide to
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Table 8.1: Overview about the considered accuracy-aware methods for the Jacobi
method.

Layer Approximation target Approaches

Problem layer Input Input data approximation

Software layer
Parallelization Relaxed synchronization
Sampling (data items) Loop perforation Loop tiling Loop skipping

Hardware layer Data operations Precision scaling Approximate memory

use methods that seem promising and have a high standing in the AC domain. More-
over, each of them has shown great success on different applications. The selection of
methods is shown in Table 8.1. Each of these methods offers different parameters that
influence the trade-off between different design goals such as QoR and performance. In
the following, I describe the meaning of each parameter and present the used approxi-
mation parameters.

Problem layer: An input data approximation directly targets the problem description
itself and thus approximates the input to the approximate task for solving the linear equa-
tion system. More precisely, it adapts the system of linear equations in a way that less
work is required for solving the system.

In the test case, this can be done by taking influence to the ILU factorization as this
specifies the resulting system of equations. This resulting system represents the input
data of the Jacobi method. The usage of a sparsity pattern makes it possible to specify
entries of L or U that are set to zero. This reduces the operations within the Jacobi
method. The challenge is to decide which entries have the least impact on the accuracy
of the Jacobi method. These entries are most likely the best entries to remove.

Taking a look at the updating process of the Jacobi method, it is obvious that there
exist two possibilities to determine the best element of L or U to remove. The restriction
is not to remove the diagonals of the matrices. The first removes the entry matching to
one of y from Equation (8.2), which is close to zero. The second is the one which is
closest to zero itself.

As y is unknown during the computation of the ILU factorization, the latter method is
the one of choice. To keep the original structure of the matrices as long as possible, I ad-
ditionally decide to give removing priority to the leftmost (respectively rightmost) element
of a row. This results in removing these elements first. The number of removed entries
poses the approximation parameter.

Software layer: Relaxed synchronization is a way to reduce the synchronization
overhead introduced for a parallel execution [19]. It means that some synchronization
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points are intentionally violated to improve performance. However, relaxed synchroniza-
tion can hamper the accuracy of the result. Hence, programmers have to take care
where relaxed synchronization is viable. Barriers or synchronizations that assure to read
the most recent data are good points to introduce relaxation.

For the evaluation, I use an algorithmic-specific relaxation, which is often called an
asynchronous method in numerics. This relaxation is based on a work of Anzt et al.
[381]. Normally, a given start vector is updated within each step of the Jacobi method.
The update process can be done in parallel, but needs synchronization at the end of
an iteration. The motivation behind the relaxation is to subdivide entries of the vector
in groups of a given size. All members of the same group are synchronized at the end
of the iteration step but synchronization between two different groups is relaxed. Anzt
et al. showed that this relaxation may lead to great speedups on GPUs. Additionally,
convergence is proven for the asynchronous Jacobi method [387]. The number of groups
presents the approximation parameter.

Software layer: Sampling approaches can be realized by adapting the behavior of a
loop. They select items of the input data that are used for the computation only. I also
count approaches to this level that earlier stops the execution of an iterative algorithm.
Figure 8.1 shows the schematic of these approaches.

Loop perforation (see Figure 8.1a) is a well-known technique of AC on the software
level [13]. The motivation is to reduce the execution time of a loop by skipping iterations
in between. Depending on the actual loop, this essentially results in sampling the input
or output. The perforation rate is the approximation parameter (steps).

1 for i← 0 to n− 1, i+=steps
do

2 result = do_work();
3 end

(a) Loop perforation.

1 for i← 0 to n− 1, i+=steps do
2 result[i] = do_work(input[i]);
3 for i← 1 to steps-1, j++ do
4 result[i+j] = result[i];
5 end
6 end

(b) Loop tiling.

1 for i← 0 to (n-steps), i++ do
2 result = do_work();
3 end

(c) Loop truncation.

Figure 8.1: Used approximation methods on the data level (sampling approaches).
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Loop tiling (see Figure 8.1b) assumes that nearly located elements of an input have
similar values [14]. Hence, it only calculates some iterations of the loop and assigns
nearby outputs to an already calculated value. This actual forms a tile structure of the
output. Loop tiling is a special form of memoization. The tile size presents the approxi-
mation parameter.

Loop truncation (see Figure 8.1c) is a method that drops the last iterations of a loop.
Here, the approximation parameter specifies the number of dropped iterations. Such
an approach is especially useful for iterative methods. Iterative methods are commonly
used in numerical mathematics. They perform a computation in a way that it calculates
a sequence of approximate solutions. This sequence ideally converges to the exact
solution. The number of truncated iterations represents the approximation parameter.

Hardware level: Data operations are typically floating-point operations for numeri-
cal algorithms. Many approaches in AC present designs that deal with arithmetic units.
This also includes floating-point units. These approaches can be roughly grouped into
two general approaches. One deals with the precision of the operations itself. This is
achieved by precision scaling or by redesigning a processing unit in an approximate way
(cf. Chapter 4). These methods lead to more efficient hardware designs regarding power
consumption, latency, or area. The other approaches deal with approximate memory
which may affect the accuracy of involved operands [8]. In general, approximate mem-
ories can lead to indeterministic stored data and thus getting wrong data, while loading
data from the memory.

To include these approaches in the evaluation, floating-point operations are adapted
within the algorithm. The first group is simulated by truncating bits of the significand
(called precision scaling). The approximation parameter represents the number of
truncated bits. For the second group, random bits are used for those less significant
bits. However, this means that each memory accesses would be affected. Therefore,
another experiments is performed. For this experiment, errors are introduced according
to realistic error rates [8].

Evaluation setup

The described approximation methods are applied to the iterative Jacobi method individ-
ually. As input, the described system of linear equations is used according to Section 8.2.
In a next step, a combination of several AC methods is considered. All the experiments
are executed on an AMD Opteron 6128 processor providing 64 GB of main memory. A
synchronous and parallel version of the Jacobi solver executed using 32 threads is the
base line. The parallelization is done over matrix rows.

The parallel algorithm requires 130.1ms for a matrix A with a dimension of 10242

and 631.2ms for a dimension of 20482. If not otherwise mentioned, the iteration count
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is set to 10. Stopping the iterative method after 10 iterations results in a relative error of
roughly 10−4 compared to the exact solution independent from the matrix dimension d.

Evaluation metrics

For the accuracy, the relative error is used

Erel =
||~x− ~̃x||2
||~x||2

,

where ~x is the solution vector of the base line and ~̃x the solution of the approximate
version. Moreover, the execution time is measured, when possible. In other cases,
realistic numbers are used from the literature.

Evaluation result

Next, I present the results of the cross-layer evaluation study.

Problem layer: Input approximation adapts the input data and thus the problem
statement. Therefore, certain inputs are removed. The approximation parameter rep-
resents an offset, which specifies the affected rows of the input matrix. For instance,
20 means that each 20th row is influenced. In general, affecting fewer rows leads to
a reduction of the error. Until a parameter value of 20, this reduction is exponential
(see Figure 8.2a). Afterwards, the error decreases slowly.

However, we cannot see that removing certain inputs have a clear influence on the
execution time. There are strong variations in the execution time. This means that they
are independent from the approximation parameter. According to these results, I draw
the conclusion that input approximation is not useful for our test case.

Software layer: Relaxed synchronization is investigated for the following experiment
(see Figure 8.2b). A higher number of blocks means that more synchronizations are
relaxed during the execution. The relaxation method introduces a small error until the
number of blocks is larger than the number of available cores, in this case 25 = 32. At
this point, we can see a high increase of the relative error. In contrast, the optimal point
regarding performance is reached when the number of blocks is roughly eight times the
number of cores. The curves show similar behavior for different matrix dimensions, but
the relative error is smaller for the larger dimensions. The performance gain is more
significant for larger matrix dimensions.
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(a) Input approximation1.
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(b) Relaxed synchronization.

Figure 8.2: Consideration of input approximation and relaxed synchronization on the
Jacobi method.

Software layer: Sampling strategies are common method in AC. It also adapts the
execution of iterations for a loop. This essentially leads to skipping iterations or a sam-
pling scheme on the input data. Figure 8.3 shows the impact of loop perforation and loop
tiling for different approximation parameters (called steps in Figure 8.1).

The method loop perforation is not applicable at all for the considered algorithm,
since the error exponentially increases with the approximation parameter. In contrast,
loop tiling works quite well. Especially, small values for the approximation parameter
still lead to small errors. We can see an influence of the dimension on the accuracy for
loop tiling. A smaller dimension shows a higher error behavior.

Fortunately, the execution time significantly decreases for small parameter values.
Larger values have no further considerable benefit regarding the execution time. The
rationale behind is that at a certain point the synchronization overhead of the paralleliza-
tion and other parts of the algorithm, where the AC methods have no effect, have the
main impact on the execution time.

loop truncation is a natural way to approximate iterative methods. It just stops
the iterative method before it converges. Figure 8.4 shows the accuracy and execution
time for different stop points. A stop point specifies the number of allowed iterations.
Again the relative error is almost independent from the matrix dimension. The error
exponentially decreases with the iterations at the beginning and then requires some time
to converge. The execution time for large dimensions scales roughly linearly with the
number of iterations. For small dimensions, the synchronization overhead is quite high.

1I am aware of the strange time measurements but unfortunately it is unclear where the oscillation
comes from. However, they are reproducible.
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Figure 8.3: Influence of loop perforation and loop tiling.
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Figure 8.4: Influence of loop truncation regarding accuracy and performance2.

To sum up, loop perforation is not a useful approach for the Jacobi method. Re-
garding the error and performance, loop truncation provides the best solution in gen-
eral. However, loop tiling can be a useful method for larger allowed relative errors.

2The accuracy measurements are overlapping for loop perforation (red and gray curve).
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Hardware level: Influence of AC on the data type level is investigated regarding the
impact on the accuracy of the solution vector. Since I cannot perform these experiments
on current hardware, I use an emulation scheme. The reason is that current hardware
does not provide other floating-point data types apart from float or double in general.
I consider two well-known AC methods: precision scaling and approximate memory.
Figure 8.5a shows the impact of these methods on the relative error. I vary the number
of influenced precision bits of the significands from 53 to 0.

We can see that for the given system of linear equations, the most of the least signif-
icant bits of the significand play a minor role for the accuracy. Moreover, the results are
more or less independent from the matrix dimension d and the way how the data type
precision is influenced. 13 bits are enough to have almost no additional error compared
to the base line. Having less than roughly 8 correct bits leads to an exponential increase
in the relative error.

However, according to literature it is not very likely that all memory reads are affected
by approximation. It actually depends on how this approximation method is implemented.
A common way is to increase the refresh cycle time of a DDR memory bank, which can
significantly save energy. Depending on this increase, the error rate of getting wrong
results from the memory also raises. For some realistic values, I consider how this error
rate impacts the accuracy of the Jacobi solver, see Figure 8.5b. Even if we have relatively
high error rates, for instance 1.3× 10−4, the influence on the accuracy is not drastic.
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(a) Precision scaling.

Relative error
Error rate d = 10242 d = 20482

1.3× 10−4 0.00234583 0.0026825
2.0× 10−5 0.00221096 0.0010068
3.8× 10−6 0 0
2.6× 10−7 0 0

(b) Approximate Memory.

Figure 8.5: Influence of the data type precision on the accuracy.
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Such an approximate memory approach decreases the power required for refresh up to
25% having an error rate of 1.3× 10−4 [8]. Getting the actual performance or energy
gain is very difficult, since it would require to build such a hardware and to evaluate the
wanted metrics. Here, I show the potential of the reduction in precision bits.

Putting everything together: A cross-layer consideration of multiple and orthogo-
nal AC methods is presented in the following. According to the results so far, I include
loop truncation, loop tiling, relaxed synchronization and precision scaling. All of them
have an approximation parameter that is tunable. I set these approximation parameter
values according to a given relative error, which represents the QoR constraint. To find
a good configuration of parameter values that satisfies the constraint, I exploit a known
greedy algorithm [11] based on steepest ascent hill climbing.

For the first test, I exclude precision scaling, since performance measurements are not
possible for this method without the actual AC-based hardware. I adapt approximation
parameters in a way that higher values present a more aggressive approximation level.
The results are shown in Figure 8.6a for different error constraints.

As we can see, the greedy algorithm tunes the parameter of all three orthogonal
methods. Hence, the combination of methods is beneficial to reach good performance
points for different error constraints. Allowing a relative error of 1%, we get a performance
improvement of roughly 300% compared to the 32 threaded basis version. Moreover, a
10% allowed error leads to almost a speed up of 600%.
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(a) Three approximation methods.

Parameter set
maxErel d = 10242 d = 20482

1× 10−4 (0 | 21 | 0 | 32) (0 | 21 | 0 | 52)
1× 10−3 (0 | 22 | 1 | 35) (0 | 23 | 0 | 52)
1× 10−2 (0 | 24 | 3 | 40) (1 | 24 | 3 | 52)
1× 10−1 (4 | 24 | 6 | 52) (2 | 212 | 2 | 52)

(b) Four approximation methods.

Figure 8.6: Considering multiple orthogonal approximation methods for the Jacobi
method. Parameter set (TI|RS|TR|PS) TI: Loop tiling, RS: Relaxed synchronization,
TR: Loop truncation, PS: Precision scaling
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For the found configuration points, I further consider the potential of applying preci-
sion scaling, see Figure 8.6b. This consideration reveals that all found configurations
further enable the usage of AC on the data level. This allows a hardware designer to
approximate hardware arithmetic units for the algorithm under test. Additionally, another
possibility is to exploit approximate DRAM as fifth parameter.

Summary

Taking a look on the results, we see that not only a single accuracy-aware method is
useful. A combination of strategies is very beneficial. The results of the combined
accuracy-aware method show that remarkable speed ups can be gained with careful
QoR reductions. Moreover, the results reveal that even in the domain of scientific com-
puting accuracy-aware computing is beneficial.

However, the important point of combining different accuracy-aware methods is how
to find suitable configurations. For the evaluation, I exploited a well-known greedy algo-
rithm which is based on steepest ascent hill climbing according to [388]. This algorithm
reduces the effort for finding a good configuration that satisfies (user) constraints com-
pared to an exhaustive search. I elaborate on this point in detail in the following.

8.3.2 Requirement Analysis and Drawbacks of Current Approaches

An accuracy-aware method provides a knob that varies the degree of approximation.
The meaning of a knob is different. A knob allows a designer to select between different
approximate versions, for instance, a different hardware unit or neural network repre-
sentation. A knob can represent a parameter that influences the execution behavior.
Examples are the perforation rate or the point in time for a DRAM refresh. In case of the
proposed contract-based tasks, a knob represents the granted budget to a task.

An issue of finding suitable values for these different knobs is that each value for a
knob can have a completely different meaning. Such a mix of discrete and continuous
parameters makes solving an optimization problem very cumbersome.

The goal of the tuning is to find a (near) optimal setting for the different parameter val-
ues. This setting satisfies all of the existing constraints and achieves the best values for
the remaining design goals. For instance, having a QoR constraint, the goal is to find the
best configuration that satisfies this constraint and provides the best achievable perfor-
mance. Since we cannot make any assumptions about the properties of the optimization
function, an exhaustive search only guarantees to find an optimal solution.

Such an exhaustive search requires to consider all possible configuration points. The
number of configurations |C| depends on the number of tasks within the application
|T |, the number of different tasks orders |O| that also indicates the used tasks, and the
number of approximation configurations |AC|. Thus, |C| = |O||AC||T |. The used tasks
depend on the application parameters. In case that we only use a single approximation
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method per task, |AC| = |AM||K|, where |AM| is the number of approximation methods
and |K| is the number of knob values per approximation method.

Considering a combination of approximation methods per task, which is important for
the horizontal and vertical view, the number of possible combinations is 2|AM|. The total
number of different knob settings per combination depends on the number of combined
approximation methods and thus

|AC| =
|AM|∑
k=1

|K|k =

|AM|∑
k=0

|K|k − 1 =
|K||AM|+1 − 1

|K| − 1
− 1.

Let us consider examples. Having three different tasks (|T | = 3), two different
approximation methods (|AM| = 2), two knob settings per method (|K| = 2) and a
single task ordering (|O| = 1), then the number of possible configurations is |C| =(

22+1−1
2−1 − 1

)|3|
= 216. Now, let us also consider |T | = 3, |AM| = 5, and |K| = 4, then

we have |C| = 2.54 · 109 configurations. For the cross-layer evaluation study, |T | = 1,
|AM| = 7 and |K| = 45, which is an average value for the possible knob settings. Thus,
the number of configurations |C| = 188.7 · 106.

Since there is no analytical function to evaluate a configuration, we have to empirically
determine the wanted values of the design goals. Therefore, a typical procedure in
AC is to execute the application according to the current configuration for each item of
representative data. Afterwards, the average QoR and the wanted design goal value
such as consumed energy or execution time is determined.

The configuration that provides the best value for the considered design goal and
satisfies the constraints is the desired configuration, which is used during runtime. The
required time to find this configuration using an exhaustive search is t = |C||D|tapp,
where |D| is the number of representative data items and tapp the average time required
to execute the application.

Considering a further approximation method or changing something within the appli-
cation leads to a re-execution of the exhaustive search. If a certain knob represents a
continuous value such as a budget for contract-based tasks, |K| depends on a suitable
discretization factor. We can discretize the parameter into 0.5% or 1% steps according
to the baseline execution time leading to |K| = 100 and |K| = 200, respectively.

An often used method to drastically reduce the number of considered configurations is
the usage of a greedy-based tree algorithm. This algorithm is based on steepest ascent
hill climbing [11, 25]. Such an algorithm was used in the cross-layer evaluation study.

This process called tuning wants to find the configuration, which satisfies a given
QoR constraint and provides the best performance. All approximation methods applied
to an application are considered at once. Their respective knobs span an n-dimensional
space (K1, K1, · · · , Kn), where the best configuration shall be found. Tuning is applied
during design time. This procedure assumes that a lower knob value represents a less
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aggressive approximation and thus (0, 0, · · · , 0) represents the exact version. The root
node of the tree represents the exact version and thus all knobs are set to zero. The
tuning algorithm starts from the root. Then, it applies an incrementally more aggressive
value for each knob, which also represent the child nodes. The child node offering the
best performance, while satisfying the QoR constraint, is selected for the next step. In
case that no such child node exist, no approximation is possible.

The selected child node is used as starting point for the next iteration. Again, an in-
crementally more aggressive value for each knob is applied. This procedure is continued
until no further valid child node can be found. The last valid child node is returned and
used for the actual execution. Figure 8.7 shows an example run of the greedy-based
tuning algorithm. The number of considered configurations |Cgreedy| = nd, where d is
the number of tuning iterations. For the example in Figure 8.6a, the greedy algorithm
reduces the number of considered configurations by

|C|
|Cgreedy|

=
127, 550

60
≈ 2125.

But considering all seven possible accuracy-aware methods and assuming 70 iterations
of the greedy algorithm, we have 490 configurations to consider. To get a stable mea-
sured value for the execution time, it is common to execute a task multiple times, for
instance, 30 times. Additionally, if we would consider further hardware parameters, the
time for tuning can be significantly high. These parameters are not considered by current
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QoR
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Figure 8.7: Example run of the existing greedy tree-based tuning algorithm [11, 25]. The
algorithm starts with the exact version, which also represents the QoR baseline. The
algorithm stops, when during an iteration no valid configuration is found (shown in red).
Then, it returns the last valid (green) configuration.
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approaches. Let us assume two hardware parameters, then we have to consider 9800
configurations and hence have to execute the task 2 ·490 ·30 = 29, 400 times. Assuming
an execution requires a second, the tuning requires more than 8 hours.

The existing tuning algorithm has further significant drawbacks. Firstly, it does not
consider multiple objectives. Secondly, it does not take hardware parameters into ac-
count that do not influence the QoR as already mentioned. Furthermore, changing the
QoR constraint or integrating a further AC method requires a re-execution of the tuning
algorithm. It does not allow us to take care about a further constraint such as the allowed
execution time. Moreover, it does not take into account that further tasks or applications
can also have an influence on the QoR. The rationale is that these applications compete
about the same resources. Finally, the existing tuning algorithm can get stuck in local
minima of the configuration space.

I have identified three opportunities that can significantly reduce the effort for the
tuning. Firstly, filtering out useless accuracy-aware methods is a suitable method. For
instance, this is the case for loop perforation for the evaluation study. Secondly, the
greedy algorithm does not exploit any knowledge about the meaning and type of a knob.
Hence, it also has no idea about the presumable effect caused by increasing the knob
setting. Such a knowledge leads to an adaptive increase of the step size for adjusting a
knob and thus significantly reduces the number of considered configurations. Thirdly, this
knowledge avoids to consider configurations that most likely pose a worser configuration
than we already have.

Instead of an explorative search, other tuning approaches rely on two behavior models
of the application [17, 20, 206]. In general, these approaches build a model for the
behavior of the QoR and the execution time depending on the knobs. The approaches
differ in how they build these models and find the configurations. The approach of Sui et
al. [206] generates global models, which consider all knobs together. Other approaches
generate local models for different accuracy-aware methods applied to certain tasks.
The combination of the local models generates the global configuration. Sui’s approach
is limited to already existing application parameters that influence the QoR.

Green [17] builds different models for various accuracy-aware methods using MAT-
LAB for interpolation and curve fitting. This approach is limited to certain accuracy-
aware methods or requires a huge programming effort to integrate own approximations.
Furthermore, it still relies on an exhaustive search. In [20], the authors use polyno-
mial models for local and global models. The optimal knob setting is found by solving
a polynomial numerical optimization problem. The authors did not mention the used
optimization algorithm.

While the approach of building local models reduces the complexity compared to a
global model, the number of models increases. Each accuracy-aware method and task
requires two models. Figure 8.8 shows for tasks the QoR and knob space and the
execution time and knob space, respectively. Both tasks consist of a two nested loop. AC
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Figure 8.8: Execution time and QoR space of the loop perforation approach for different
tasks. The QoR is represented by the mean absolute percentage error (MAPE) and the
execution time is normalized using the execution time of the baseline. The color bars
show the magnitude of MAPE or execution time.

parameter 1 describes the perforation rate of the outer loop and AC parameter 2 of the
inner loop. The two shown planes has to be modeled for the model-based approaches.

The main drawback of the model-based approaches is that they rely on two cost
models, performance and QoR, to find suitable configurations given certain constraints.
Hence, finding a suitable model or curve can be cumbersome. The reason is that the
influence on the execution time (performance), for instance, by adapting the number of
skipped iterations is not necessarily linear.

To make things even worse, increasing the number of knobs can result in more com-
plicated configuration spaces. This makes it hard to generate correct models. Moreover,
it is also difficult to find good configurations in that space, since it requires global opti-
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mization algorithms. Another issue is that the different meaning of knobs, for instance,
discrete and continuous, increases the complexity to solve the optimization problem.

Still, the model-based approaches have the same drawbacks in mind than greedy-
based tuning approaches. These models do not consider multiple objectives concur-
rently. They do not exploit the advantage of conventional methods. Equally, they do not
take the competition of several applications into account.

8.4 Performance Profile-based Tuning Algorithm

In this section, I introduce a novel static tuning approach. This approach adapts knobs of
accuracy-aware and conventional methods that influence different design values. For the
tuning, the proposed approach considers given constraints. The core of this approach is
based on the motivation to correlate the value of design goals to the QoR. The correla-
tion is achieved by the presented approach to exploit performance profiles (PPs) in the
domain of accuracy-aware computing as described in Chapter 6. This avoids building
several models per task. Hence, the presented approach uses one dimension to control
the other one. For instance, given a QoR constraint, finding the best available perfor-
mance is easy. This also leads to a unified meaning of parameters and thus simplifies
the combination of several tasks.

Building a single PP for an application is very complex, since it requires to build many
global PPs and to generate a merger from it. Therefore, the proposed approach is
distributed into three main tasks (see also in Figure 8.9):

1. Building a merger per task (see Chapter 6)

2. Analyzing the control flow of tasks

3. Exploiting the local PPs to find suitable global configurations for an application
(results in Algorithm 8.1)

Similarly to other model-based approaches, the proposed approach generates local
information to determine suitable global configurations. The introduced approach deals
with multiple optimization goals and considers non-AC hardware parameters. Further-
more, it filters out useless methods for each task. The control flow can be analyzed using
an approach based on a decision tree classifier as introduced in [389, 20]. This leads
to different tasks flows, where each flow depends on the application parameters, for in-
stance, the ordering of image filters. For each task flow, different global configurations
are determined.
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Figure 8.9: Overview of my novel tuning approach exploiting performance profiles.

8.4.1 Single Task

As already mentioned, my approach requires local information per task to determine a
global configuration. In case that an application only consists of a single task, this local
information also represents the global view.

For a task, it is important to generate a single PP called the merger (more details
in Chapter 6). Each discrete point within the PP has the knowledge of the knob setting
required to reach that point. Programming effort is only required, when no approxima-
tion method is already applied to a task. Possible approximation methods are thoroughly
discussed in Part II. It can be needed to configure approximation methods itself, for in-
stance, the visiting order in case of the contract-based approximation presented in this
thesis. Besides the consideration of individual accuracy-aware methods for generat-
ing a merger, it is possible to build a merger for a combination of accuracy-aware and
conventional method as presented in Chapter 6. Dynamic voltage and frequency scal-
ing presents a conventional method. In Chapter 6, it is also presented in detail how
a merger is built for a certain task. Note that the proposed tuning approach exploits
accuracy-aware methods on a horizontal and a vertical view per task. This represents
a central aspect of the present thesis. By changing the budget metric of a PP, my novel
tuning method allows us to consider multiple objectives, which is not possible by other
state-of-the-art tuning algorithms.

Having extracted the merger, finding the best configuration gets trivial. Restricting the
budget, we can just use the PP point that provides the best QoR and requires less budget
than allowed. The corresponding knob setting is attached to that configuration point. The
same procedure can be used for restricting the QoR loss. There we use the PP point that
requires the lowest budget to reach the desired QoR. Please remember, that in case of a
combined budget (EDP metric), the proposed method allows us to only restrict a single
design value. Figure 8.10 shows an illustration of finding the best configuration having a
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Figure 8.10: Illustration of selecting configurations from a single merger and for different
constraints.

single merger.
The merger is represented as a list with n items. Each item has three entries: required

budget, estimation of the resulting QoR, and the knob setting required to reach that
point. Hence, finding the best configuration has O(n) complexity in the worst case. If
we know the more important constraint beforehand, we can sort the list according to this
constraint. Then, we can apply binary search, which has a complexity of O(log(n)).

The knowledge of a merger can also be exploited to determine a global configuration
for an application that consists of several tasks.

8.4.2 Single Application

Before the introduction of the global tuning algorithm, I clarify the terminology used in
this and the next section, see also Figure 8.11. A task represents a computation that is
performed on the corresponding input data. A task that works on a certain input is called
an instance of the task. This instance gets a local configuration, which is pre-set in the
static case as discussed in this chapter.

An application can consist of a single task or of several tasks and thus the compo-
sition of these tasks represents the computation of the application. An instance of an
application works on a single input using the tasks within the application. Therefore,
each application input is processed by another instance of the application. This is im-
portant, since a global configuration is applied per instance. The global configuration
consists of local configurations for each task instance. In the static case, the different
knobs are set according to the global configuration during design time. The dynamic
case is presented in Chapter 9.

Task instances have a direct influence on the QoR of other tasks instances within an
application instance. This also poses an influence on the final QoR of the application
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Figure 8.11: Illustration of the terminology used in this thesis. An application consist of
tasks (T), which represents computation blocks. A task working on a certain task input
(IN) is called instance (I) of a task. Besides the input, the task instance gets a local con-
figuration (CT). The result (R) of a I comes with a local QoR (lq). An application instance
(AI) works on a certain application input (AIN) and also gets a global configuration (CA).
The result of AI (AR) has a global QoR (gq).

instance. A direct influence means that the result of a task instance is processed by a
following task instance, hence its QoR impacts the QoR of the other task instance.

Since different tasks instances compete for the same compute resource, it implies an
indirect influence on the QoR of other task instances, even if they are part of another
application instance. This is especially the case for contract-based tasks. The rationale
is that a higher execution time leads to a better QoR for a certain task instance, but may
reduce the allowed budget for other tasks instances.

The QoR of a certain task instance depends on the QoR of the input generated by
a previous task instance. The exact influence of the input approximation to the QoR
of a task instance is not easy to determine. In the absence of a general approach,
this relation is application and algorithm-dependent. Therefore, I suggest to learn good
configuration points during design time. Instead of determining a single configuration that
satisfy the given constraint, the proposed approach determines several Pareto-optimal
configuration points. This enables a designer to deal with different constraints without
re-starting the tuning algorithm as required by other approaches.

The proposed global tuning algorithm determines suitable distributions between local
budgets for varying fixed global budgets. A naïve approach is to evaluate all possible
local budget distributions for given global budgets. Such an exhaustive optimization al-
gorithm is not feasible. This algorithm would have a complexity of O(nm), where n is the
number of different local budgets and m the number of tasks. Since a local budget is a
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Algorithm 8.1: Greedy algorithm to find global configurations that build the
Pareto-optimal front between the QoR and the required global budget.

Input: Control flow path A composed of m Tasks, maximum QoR qmax, maximum iterations imax,
set of PPs P , exact result e, budget step size ∆step. quality function Q.

Output: Set of configurations C with increasing global QoR.
1 Initialize each local budget lbT ∈ B with ∆step;
2 Initialize adaptive step size ∆T ∈ S with ∆step;
3 while i ≤ imax and qbest ≤ qmax do
4 ∆budget = max{∆T |∆T ∈ S};
5 for each Task T in C do
6 Calculate gradient gt of PT between budgets lbT and lbT + ∆budget;
7 Determine task T with maximum gradient gbest = max{gt, gbest};
8 end
9 Increase local budget lbT by ∆T ;

10 result = execute A with local budgets in B;
11 q = Q(result, e);
12 if q > qbest then
13 qbest = q;
14 C.append() ; // store current configuration B
15 Initialize adaptive step size ∆T ∈ S with ∆step;
16 else
17 ∆T = ∆T + ∆step ; // Increase step size to faster reach a better qbest
18 end
19 i++;
20 end

continuous value, many sample points have to be considered. Instead of a brute force
method, my approach exploits the mergers of the involved tasks.

Algorithm 8.1 builds a Pareto-optimal front between the achievable QoR and the re-
quired budget. This greedy algorithm additionally determines the local budgets and local
QoRs per task to reach a output QoR. The algorithm starts from zero global budget until
a global budget is reached that returns the maximum desired QoR. In each step, the
algorithm increases the local budget of a task that has the highest improvement of QoR
according to its PP. Global configurations are only stored if the global QoR is higher
than for all previous configurations. Representative data is used to calculate the QoR for
different configurations.

The proposed algorithm exploits two important mechanisms to reduce the compu-
tational effort. Firstly, instead of incrementally increasing the budget, the algorithm only
increases the budget for the task that has the highest gradient of its merger, when the ad-
ditionally budget is granted. Hence, the algorithm exploits the knowledge of the merger
and thus of the used tasks. State-of-the-art tuning approaches do not exploit such task
knowledge. Secondly, the algorithm adapts the budget step size to fast overcome local
minima of the global QoR.
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Table 8.2: Fictitious example of determined global configurations for an application con-
sisting of three tasks.

Config.
Local configs

Global Global Task 1 Task 2 Task 3
budget QoR local budget local QoR local budget local QoR local budget local QoR

0 0% 30% 0% 50% 0% 10% 0% 20%
1 8% 80% 5% 98% 20% 30% 0% 20%
2 17% 90% 10% 99% 40% 50% 0% 20%
3 25% 95% 15% 99% 60% 70% 0% 20%
4 50% 98% 20% 100% 80% 90% 50% 60%
5 73% 100% 20% 100% 100% 100% 100% 100%

Table 8.2 shows a fictitious example of an output that could be determined by Algo-
rithm 8.1. As we can see, the algorithm returns a set of suitable configurations. The
found configurations present configurations for that only the budget or the global QoR
can be improved by the other found configurations. Hence, they present points accord-
ing to a Pareto-optimal front. Furthermore, the global budgets and global QoRs of the
configuration itself pose a global PP.

For a global and static tuning, the best configuration point within such a configuration
set is selected according to given constraints during design time. Equally to the single
task case, finding the configuration point requires a linear or binary search in the set.
Having the global configuration, the local informations within the configuration are used
to configure the task instances as described in Section 8.4.1.

8.4.3 Multiple Applications or Application Instances

The global QoR of the entire application is considered as the sum of the QoR of indi-
vidual application inputs. On that account, the optimization goal is either to increase the
global QoR for a fixed global budget or decrease the global budget while reaching a de-
sired global QoR. This optimization problem is known as the multiple-choice knapsack
problem (MCKP) [390]. This NP-hard MCKP has to be solved during design time for the
static tuning. However, solving the MCKP during runtime enables the system to react on
changing situations. I present a way to solve the MCKP during runtime in Chapter 9.

The execution of several applications within a system poses a further challenge. How-
ever, we can also setup a MCKP in this case. The difference ist that different items
have a different tool set. When the entire system works under a given constraint, also
conventional applications running in the system have to be considered. We rely on an
estimation of the execution time or the energy consumption for these applications. The
required budget of these applications minimize the budget to the accuracy-aware tasks.
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Table 8.3: Determined configurations for the contract-based one nearest neighbor algo-
rithm and different databases3.

50words

Configuration Global budget (Time norm.) Global QoR
Local configurations
DTW 1NN

Local budget Local budget

Dyn. + static 80 1.0% 83.0% 80% 1%
Dyn. + static 99 5.3% 97.0% 99% 5%
Dyn. + static Full 7.2% 97.4% 100% 7%

FaceAll

Configuration Global budget (Time norm.) Global QoR
Local configurations
DTW 1NN

Local budget Local budget

Dyn. + static 80 2.75% 75% 80% 3%
Dyn + static 99 4.00% 98% 99% 4%
Dyn. + static Full 8.20% 102% 100% 8%

8.5 Evaluation

For single tasks, I have shown an extensive evaluation in Chapter 6. The focus here
lies on finding global configurations for an entire application consisting of several tasks.
I also compare the computational overhead with other tuning approaches.

8.5.1 Applying the Innovative Tuning Approach to Applications

To find good global configurations for an one-nearest neighbor classification in the do-
main of time series analysis, I exploit Algorithm 8.1. More details about the used bench-
mark can be found in Section 5.2.5. This benchmark consists of two different contract-
based task, DTW and 1NN, as described in Chapter 6. Some interesting configurations
for two different UCR archive databases, 50words and FaceAll, are shown in Table 8.3.
Note that DTW task is nested in 1NN and thus the global budget is almost similar to the
local 1NN budget.

Using the tuning approach, we achieve, for instance, a QoR of 83% for the 50words
database and require only 1% of the baseline execution time. Spending 5% of the exe-
cution time, we achieve a QoR of 97%. Similarly, we get a QoR of 98%, when spending
4% of the execution time for the FaceAll database. Hence, the novel contract-based
tasks together with the proposed static tuning algorithm represent a novel way to accel-
erate the classification of time series data. The found configuration leads to impressive

3static XY states the required budget to reach a quality of XY% for DTW, while having full budget for
1NN. Full means the full budget for DTW-CAT.
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Figure 8.12: Steps to classify an object.

Table 8.4: Percentage of execution time for the different tasks within the feature-based
classification pipeline.

Task Time

Area 19.34%
Hull 12.31%
Diameter 65.98%
Perimeter 1.23%
Roundness 0.02%
Compactness 0.02%
Classifier (SVM) 0.34%

performance gains.
Next, I use the proposed tuning approach for a feature-based classification pipeline,

see Figure 8.12. For instance, sensor-based sorting [391] or wheat identification [392]
exploit such a pipeline. The input of the pipeline is an image containing an unknown
object. Several tasks extract different features of the object. A classifier identifies the
category of the object. The design goals are the classification rate and the latency of
the pipeline. The classification rate is the normalized number of correct classifications
and represents the QoR. In case of a firm deadline, each classification decision should
require less time than the given constraint while maximizing the QoR.

Tasks with the highest execution times are perfectly suited for applying approximation
in order to improve performance. However, not each of those tasks are useful to the same
extent, since approximating a certain task can have a much higher impact on the QoR.
Using profiling, the following tasks are the hot spots of the pipeline: Calculate Hull,
Calculate Area, Calculate Diameter and Calculate Perimeter, see Table 8.4.
Transferring these tasks to contract-based tasks leads to a configurable accuracy degree
for each task. Furthermore, this makes it possible to apply the proposed tuning algorithm.

Figure 8.13 shows the determined configurations and thus the found budget distri-
butions. The global budget varies from 1 to 120,000 time units. The algorithm only
keeps configurations, for which the QoR is improved compared to configurations with
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Figure 8.13: The blue points represent the average classification error (QoR) achieved
by the corresponding configuration. The bars represent the time distributions of the
contract algorithms to reach the corresponding error. Hence, the bars show the found
suitable configurations that pose the (near) Pareto-optimal front.

smaller global budgets. Hence, each point belongs to or close to the Pareto-optimal
front. Note that each configuration uses its own classifier, since this provides the best re-
sults regarding the QoR. Using the same classifier for all configurations leads to a worse
classification rate. Depending on the constraints, we can select one of the configurations
during design time.

8.5.2 Investigating the Tuning Effort

A central aspect for the design of the proposed tuning algorithm was to reduce the com-
putational effort required to find suitable global configurations. Exploiting local PPs and
determining all suitable configurations in a single run achieves that goal. Remember,
finding m configurations with state-of-the-art tuning approaches requires m invocations.

Since the difference between some global configurations is small for the feature-based
classification pipeline, see Figure 8.12, I only use the exhaustive search to find four con-
figurations. This requires four invocations. I consider a budget for each contract-based
task between 0 and the maximum budget required to reach a QoR of 100% for each
representative data item. The budget per task is quantized in intervals of length 500 ns.
The exhaustive search requires to investigate |Cexact| = 4 · 41 · 65 · 280 · 6 ≈ 17.7 · 106

configurations to find the configurations. Since the state-of-the-art greedy-based tree
algorithm starts from the exact result, it has to investigate unnecessary configurations
until it reaches the point, where the QoR begins to drop (cf. Section 6.5.2). This drop
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indicates the first useful global configuration. The rationale is that a QoR of 100% is also
reached for the application, when we do not grant the full budget to all contract-based
tasks. To reach that configuration, the state-of-the-art approach has to consider 1085
configurations. Thus, finding all four valuable configurations requires to evaluate 5600
configurations. To find these configurations, I assumed that it is already known before-
hand which constraint is useful. In general, this is not necessary the case. Therefore, a
significant benefit of my proposed tuning approach is that the found configurations are
useful for budget and QoR constraints.

The proposed approach requires 72 iterations and thus evaluates 72 global config-
urations. It reduces the tuning effort about 245,000 times compared to an exhaustive
search and roughly 78 times compared to the state-of-the-art greedy tree-based tuning
algorithm. In total, the introduced tuning algorithm requires 272 s to find the valuable and
(near) Pareto-optimal configurations.

8.6 Summary

In this chapter, I showed the benefit of combining accuracy-aware methods in a horizontal
and vertical view. I presented how combined accuracy-aware methods influence the
QoR and performance trade-off of a scientific computing algorithm. All methods were
experimentally investigated for the Jacobi method performing on realistic data. Hence,
this presents the first extensive, holistic, and schematic evaluation of accuracy-aware
computing on a scientific algorithm. While single methods already can be seen as useful,
a combination of them results in a much higher gain. For instance, allowing 1% relative
error, we achieve an acceleration of a factor of three compared to the parallel version of
Jacobi.

Furthermore, I discussed and evaluated the drawbacks of state-of-the-art static tuning
approaches required to control knobs of different accuracy-aware methods. Based on
this investigation, I presented an innovative tuning approach that overcomes the found
drawbacks. This approach deals with multiple objectives and can exploit conventional
tuning opportunities. My static tuning approach is able to significantly reduce the effort for
finding global configurations. As a static approach, it cannot handle varying constraints
and system states during runtime. Moreover, we already knew from Part II that the QoR
behavior strongly depends on the current input. Therefore, I introduce a dynamic tuning
approach in the next chapter, Chapter 9. This dynamic approach uses the information
generated by the static tuning approach.
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CHAPTER

NINE

DYNAMICALLY TUNING AND CONTRACTING THE

APPROXIMATION DEGREE OF COMPETING TASKS

This chapter introduces two innovative approaches for a runtime tuning of accuracy-
aware applications. They are located within the configuration layer. While the first ap-
proach is algorithm-specific, the second approach represents a general accuracy-aware
tuning algorithm. The general approach selects a pre-defined configuration according to
the system state and constraints. Each global configuration provides information about
the required local QoR. This local QoR is used to control the approximation per task.
The required control mechanism exploits the control methods presented in Chapter 6.

9.1 Introduction

Accuracy-aware methods can be used on different layers: task [19, 14, 17], algorithmic
[14, 13], architecture [8, 12, 15], and hardware layer [393, 394]. Part II has introduced in-
novative accuracy-aware methods for the different layers. These accuracy-aware meth-
ods provide knobs that control the approximation degree and thus make it possible to
trade off QoR for other design goals. A knob specifies a parameter of an accuracy-
aware method, selects between different approximate function versions, or represents
an existing parameter of an application that affects the QoR. These knobs can be con-
trolled using various approaches that differ amongst others in the point of time, when
they set the knobs. The previous chapter presented an innovative approach to set these
knobs during design time.
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9.1.1 Problem Statement

Setting the knobs during design time [15, 12, 20] can lead to undesired QoRs for certain
inputs [24], for instance, for a JPEG decoder, cf. Chapter 6. The rationale is that the
resulting QoR is highly input dependent. Hence, worst case assumptions have to be
made during design time, which result in pessimistic gains. Thus, dynamically tuning the
approximation degree is important for two reasons. Firstly, it shall be avoided that the
number of inputs affected by a lower QoR than desired is intolerably high. Secondly, a
higher QoR than desired provides an opportunity to reduce the computational effort and
hence can be beneficial for other design objectives. Besides satisfying a QoR constraint,
it is also important that a control mechanism deals with other constraints such as firm
deadlines and takes multiple objectives into account. The mechanism has to consider
multiple applications that can be accuracy-aware or not and run within the same system.
This requires a co-controlling of applications.

9.1.2 State-of-the-Art

A hot topic in accuracy-aware computing is how to control the approximation degree dur-
ing runtime. To overcome this issue for streaming applications, calibration phases are
used during runtime [17, 11]. These phases statically set knobs for a certain number
of following inputs according to the desired QoR and the current input. The calibration
phase determines the QoR for possible knob settings by using the result of the exact
algorithm and the current input. It exploits the greedy tree-based or the model-based
static tuning (cf. Section 8.3.2). These approaches introduce a high overhead. The
setting is used that complies with the desired QoR and provides the best value for the
performance. Such control approaches assume that the behavior regarding the QoR for
new inputs processed between calibrations is always similar to the one used for the cali-
bration. Since the correctness of this assumption depends on the application, the points
in time of the re-calibrations can be varied automatically [11]. But still there is no consid-
eration of inputs processed between the re-calibrations. Approaches that exploit control
theory also assume that subsequent inputs lead to a similar QoR and thus use a closed
control loop for tuning knobs [22]. However, they cannot deal with QoR constraints, since
it is not clear how they can measure the QoR without having the exact result.

A proactive control approach from Sui et al. leads to a dynamical adaptation of exist-
ing application parameters which have an influence on the QoR per invocation according
to a current input and constraints [206]. This control approach requires to learn separate
models describing the QoR and performance behavior and to solve an optimization prob-
lem. However, only the model for the performance depends on the input. In contrast, Sui
et al. only use an expectation value determined off-line for the QoR model. ApproxIt is a
framework that applies a dynamic approximation degree for iterative methods [147].

There exist input-aware control approaches regarding the QoR. Most of these ap-
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proaches make a binary decision if an approximation shall be applied [203, 24, 395, 204,
396]. This can reduce, for instance, that bad pixels occur in an image processing appli-
cations. However, there is often some margin for an approximation rather than a full or
no approximation.

On the hardware level, a pipeline of neural or special hardware accelerators provide
an input awareness for specific compute patterns [185, 26]. Cascading classifiers allow
an input-dependent classification [397]. Laurenzano et al. present the only complete
input-aware and dynamic control method for setting knobs on the software level by using
a calibration phase per input [25]. This approach uses a smaller but similar version of
the input to adapt knobs. They show an almost negligible overhead for small configura-
tion spaces. But the overhead for large configuration spaces is unclear. In contrast to
controlling of the QoR, there exist control approaches that exploit accuracy-aware knobs
to control the energy consumption [21] or to guarantee a hard deadline, while optimizing
the energy consumption [201].

However, there exists no general approach in the literature that considers all important
aspects together. A holistic approach has to deal with streaming and non-streaming
applications. It shall handle iterative and non iterative methods. Additionally, it shall
not only consider existing application parameters that influence the QoR. The approach
shall also control vertical and horizontal accuracy-aware methods. Furthermore, it has to
reduce the runtime overhead for controlling the accuracy-aware knobs as far as possible.
Since the introduced innovative contract-based method is very promising, the controlling
approach has to deal with continuous parameters. Besides the input awareness, it is also
desirable that the control approach takes other applications running in the same system
into account.

9.1.3 An Innovative Dynamic Tuning Approach

This chapter introduces a runtime approach that specifies the execution order of tasks in-
stances running on a single core. While this approach is valuable in the theoretical sense,
it highlights the importance of low overhead for accuracy-aware control approaches to
achieve practical gains. Therefore, in this chapter, I propose a general and innovative
tuning approach that controls accuracy-aware and conventional methods during runtime.
This approach relies on performance profiles for the tuning and thus contracts the budget
for the different accuracy-aware tasks within an application. During runtime, this tuning
approach selects from a set of global configurations found by the proposed static tuning
algorithm during design time (see Chapter 8). A global configuration is selected accord-
ing to the provided constraints for the QoR or budget. As budget, the proposed approach
considers the execution time, the energy consumption, or a combination of both using
an energy delay product metric.

The global configurations represent (near) Pareto-optimal points between the QoR
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and the considered budget determined on a representative set of input data. Each global
configuration specifies the allowed budget for each involved task instance working on an
application input1. In case that a task is not a contract-based task or the PP is a merger,
the budget is transferred to a knob setting that also includes the knobs values of the used
conventional methods (see Chapter 6).

When a constraint holds for several applications and application instances, it poses a
multiple choice knapsack problem. The rationale ist that application instances have an
indirect influence to each other regarding the QoR, cf. Chapter 8.

To take an input awareness into account, the innovative approach performs a local
tuning to reach a desired QoR. On that account, a global configuration includes a local
QoR for all involved task instances that shall be reached for an input. My dynamic control
approach uses the model and monitoring approach presented in Chapter 6 to tune the
approximation degree per input in order to reach the desired local QoR.

In total, the innovative dynamic control approach introduces low overhead and en-
ables a dynamically contracting of the budget per task instance. It deals with multiple
objectives and co-controls several applications and application instances. Furthermore,
it can react on changing constraints and system states, for instance, varying workloads.

9.1.4 Contributions

In summary, the main contributions of this chapter are

• An innovative dynamic accuracy-aware control approach that is generally usable.
This approach deals with different constrains and workloads dynamically and pro-
vides an input awareness for contracting local budgets.

• The design of a low overhead algorithm to reduce the effort for solving the multiple
choice knapsack problem.

• Introducing an anytime algorithm that adapts the execution order of task instances
during runtime.

• Showing the importance for low overhead control approaches.

• Exploiting the innovative control approach for a vertical tuning of accuracy-aware
methods.

• An evaluation of the proposed control approaches.

1A description of the used terminology for task instance and application instance is given in Sec-
tion 8.4.2.
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9.2 Anytime Algorithm to Determine The Execution Or-
der of Task Instances

For several situations, it is important to have a valid result at each point of time. Let
us consider an application that performs classifications, for instance, in the domain of
high-throughput sensor-based sorting. The calculation of a sorting decision involves
several processing steps such as filtering, extracting object regions within the image,
and the final classification. The classifications are performed using decision tree-based
classifiers. For each node in this tree, a feature has to be evaluated against a threshold.
A leaf node represents a class. The evaluation of the tree requires to calculate several
object features. The execution time can significantly vary for calculating these features
and the classification itself depending on the input. Furthermore, the application exploits
lazy evaluation and thus features are calculated on demand in order to minimize required
execution time.

The goal of the ordering approach is to adapt the execution order in order to maximize
the QoR for the next execution step. The decision about the next executed task instance
on a core can be modeled as an anytime algorithm. The purpose of the anytime-based
ordering approach is that the corresponding algorithm can be interrupted at anytime. Af-
ter the interrupt, the approach returns classification decisions for all input objects. The
proposed anytime algorithm uses the current knowledge about each object for the classi-
fication decision. Hence, this approach makes it possible to have approximate classifica-
tion decisions for all inputs at each point of time during the execution of the application.
This is especially important during high workloads, since the exact application is not able
to comply with the firm deadline in these situations. A noteworthy strength of the anytime
approach is that the system only applies approximation when the situation requires it.

A decision tree is learned using the well-known ID3 algorithm [389]. Starting at the
root, the algorithm optimally splits the data set. In the present case, the split point con-
sists of a feature and a threshold. The algorithm continues with the left and right sub-tree
in a recursive manner. In a second training phase that uses distinct training data, a node
hit ratio is determined per node. The node hit ratio represents the ratio of correct classi-
fications based on the knowledge of this node.

It is possible to transfer a decision tree classifier working on several inputs into an
anytime algorithm. The classification of several objects is divided into single steps during
runtime. Each current step represents the current node for an object within the decision
tree computation. The core idea of the novel anytime algorithm is that the next steps for
all inputs are dynamically ordered according to the highest increase of information gain
within the application. The ordering specifies the execution order of the steps. Hence,
an additional computing step is granted to an object, for which it is likely that the correct
class is not yet known. On the other side, the classification process is delayed for ob-
jects, for which the class is known with high confidence. The execution order is updated
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Figure 9.1: Possible states of the anytime classification algorithm for two inputs (left and
right). The green nodes indicate the current step of the decision tree classifier working on
an object. The orange node highlights the next step that will be executed. Assuming that
the anytime classification is interrupted, the algorithm returns the current classification
decisions. For the right classifier, it is the exact result, while for the left one the decision
is based on the node hit ratio.

after each performed step. Internally, the ordered list is stored as a priority list. The
priority is formulated in terms of the node hit ratio, where a smaller value represents a
higher priority. The node hit ratio for each object is determined according to the current
node within the classifier. Approximate classification decisions are available for each
object at anytime during the execution. The anytime algorithm makes it possible to con-
tinue the execution until the deadline. When the deadline is reached, the (approximate)
classification results can be queried.

An example of the anytime classification for two inputs is shown in Figure 9.1. The
current visited node (shown in green) for an input represents the current step for this
input within the classifier. The node hit ratio of this node determines the (approximate)
classification. The priority list specifies the next step (shown in orange).

9.3 An Innovative Dynamic Tuning Approach for Accu-
racy-aware Applications

The task of a dynamic tuning approach is to tune the available knobs of an accuracy-
aware application. In Section 3.1, I have identified seven important statements that are
important for a dynamic tuning approach for accuracy-aware applications. The generality
of the proposed tuning approach (statement IVa) is realized by relying on performance
profiles (cf. Chapters 6 and 8). The usage of performance profiles also realizes a hori-
zontal and vertical view during the tuning process (statement IVb) and a consideration of
multiple objectives (statement IVg). The performance profiles also make it possible to ex-
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ploit the high potential of conventional methods that influence design values (statement
IVe). The integration of the input-aware methods presented in Section 6.4.2 introduces
an input awareness for the tuning process (statement IVc). Representing the tuning de-
cision as a multiple-choice knapsack problem takes the given constraints and the current
system state into account (statement IVd). This representation also allows the tuning to
consider competing tasks and applications (statement IVf).

Since the space of possible knob settings (configurations) is huge, the innovative
dynamic tuning approach only takes configurations into account that are identified by the
proposed static tuning in Section 8.4. Moreover, the influence of an approximate result
to a following task is different for varying tasks. Hence, the best distributions of a global
budget to local ones has to be modeled. Due to the high computational effort, this relation
is modeled during design time. Additionally, for non-contract-based tasks, the behavior
regarding the budget has to be known. The proposed static approach determines the
required information and thus already satisfies the following statements: IVa, IVb, IVe,
and IVg.

Given a QoR constraint at runtime, the innovative dynamic tuning algorithm selects
a global configuration that satisfies this constraint. The same holds for applying a bud-
get constraint. The proposed dynamic approach can deal with various budget metrics
including multiple objectives, since it relies on performance profiles. As extensively dis-
cussed in Chapter 8, a certain global configuration is selected per application instance
and includes a local configuration per involved task instance.

9.3.1 Dealing with Different System States, Constraints, and Multi-
ple Applications (Instances)

Dynamically selecting a global configuration handles runtime changes regarding differ-
ent constraints and system states (statement IVd). For instance, a change in the sys-
tem state impacts a budget constraint, since less budget is available for the application.
Changing the system from high performance to energy mode also results in a lower bud-
get for the application instance. Moreover, a higher system load has the same effect.
Also, a QoR requirement leads to a different configuration.

The proposed dynamic tuning approach has two different control modes: QoR mode
or budget mode. In the QoR mode, an application instance shall reach their stated QoR
and minimize the required budget for it. For the budget mode, the user or a high-level
controller states a global budget, for instance, a deadline that has to be met. According
to the selected mode and the current constraint, the innovative approach selects a global
configuration for the application (instance).

The novel approach also enables the system to tune several application instances
together (statement IVf). In this case, an universal QoR or budget constraint is shared
between several application instances. It is assumed that the universal QoR is just the
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sum of the global QoRs achieved by the various application instances. The task is to
find a global configuration per application instance. The above problem represents a
classical problem in theoretical computer science. Namely, a multiple-choice knapsack
problem (MCKP) [390]. This NP-hard problem has to be solved during runtime. A valid
solution for the MCKP requires to exactly select one item from each class. An item
consists of a weight and a profit. Items are subdivided into k classes. The k application
instances represent the k classes and the items are specified by the different global
configurations. The weight of item is defined according to the global budget of the global
configuration. The profit is specified by the global QoR of the global configuration. The
number of items per class depends on the found configurations and the corresponding
control flow of the application instance. In the case that an application only has a single
task control flow and no further applications are running in the system, then all classes
have the same set of items. In the budget mode, the solution of the MCKP represents
the maximum achievable universal QoR (profit) in subject to the budget constraint. For
the QoR mode, the role of profits and weights is exchanged. There exist different exact
algorithms for solving the MCKP. In this chapter, I consider the dynamic programming-
based approach [390] and mcknap2 for solving the MCKP. Additionally, I design and
implement an approximation algorithm called mckp_approx() to solve a special case of
the MCKP. This special case occurs, when all classes have the same items.

mckp_approx() divides the universal budget by the number of application instances
to get a maximum global budget per instance. According to this global budget, the same
global configuration is selected for all instances. In a post-processing step, the remainder
of the universal budget is used to improve the approximated result. The algorithm selects
between two strategies: either assigning a high budget to few tasks or a slightly higher
budget to more tasks. The solution of the strategy is selected that leads to the highest
universal QoR. Again, the budget and QoR is exchanged for the QoR mode.

Running several applications within a system poses a further challenge (statement ).
However, the MCKP-based approach can also be used in this case. The universal QoR
of the system is the sum of the global QoRs of all application instances belonging to dif-
ferent applications. However, the items are different per class and thus mckp_approx()
is not applicable. When non accuracy-ware applications have to be considered and the
system has to work under a universal constraint such as the allowed total execution time,
we need an estimation of the execution time of these applications. Approaches from the
literature can be used [398, 399] to estimate the execution time. Having the execution
times, the tuning approach subtracts it from a firm deadline. The result specifies the re-
maining execution time for the accuracy-aware applications. This new constraint is used
as universal budget for the MCKP. To make things clear, the approximation degree is only
tuned according to constraints and the system state so far. In the following, I explain how
the innovative tuning approach introduces an input awareness.

2Source code publicly available at http://www.diku.dk/~pisinger/mcknap.c.
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9.3.2 Enabling an Input Awareness

To realize an input awareness, the proposed dynamic tuning approach uses the infor-
mation within the global configurations. They include the local QoRs that are required
to reach the desired global QoR. These local QoRs are provided to the monitoring and
budget models of the contract-based tasks (more details in Chapter 6). The monitoring
stops the execution of a task instance, when it assumes that the stated QoR is reached.
Moreover, the budget model may decrease or increase the assigned budget.

In case that several application instances share a universal budget, unused local bud-
gets can be redistributed to other task instances. The unused budgets are transferred
into a global budget buffer. The budget model is not allowed to grant more budget than
available in the buffer. Unused budgets occur, when the model determines to use less
budget than initially was given to the task instance. Improving the local QoRs can lead to
an increase of the global QoR. Realizing the input awareness on a local level is a policy
decision, since it can exploit already known information from the static tuning. However,
my approach also allows system designer to introduce other policies.

9.4 Evaluation and Results

In the following, I evaluate the anytime classifier approach discussed in Section 9.2 and
my general and innovative dynamic tuning approach presented in Section 9.3. Addition-
ally, I apply a vertical tuning.

9.4.1 Anytime Classification During Runtime

The anytime classifier approach is evaluated on two different datasets. The first dataset
consists of six different classes of glass shards that mainly differ in their color. The
second dataset consists of eight classes of Lego bricks that mainly differ in geometric
properties. For each experiment, 50 objects are randomly selected from the correspond-
ing test set. As a reference, a conventional, non-interruptible classification based on the
same decision tree is used. Objects that are not classified within a deadline are con-
sidered to be falsely classified. For the following experiments, the overhead required to
calculate the execution order is not considered.

As we can see in Figure 9.2a, the proposed anytime approach significantly increases
the number of correct classifications under tighter constraints (deadlines) on the glass
shards dataset. The conventional approach reaches the maximum classification accu-
racy that is possible after ∼350ms. The anytime approach reaches this QoR already at
around 200ms. Furthermore, the innovative anytime approach also performs superior
compared to the conventional approach for the Lego dataset, see Figure 9.2b. The ex-
perimental results exclude the overhead for maintaining the priority list. If we take this
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Figure 9.2: Correct classification ratios of different classifiers for different deadlines and
datasets. The max frequency indicates the class distribution within the corresponding
data set.

overhead into account, then the novel approach performs worse than the conventional
approach. There are several possibilities to reduce this overhead, however, I will not
discuss them here. Instead, I investigate the general and innovative dynamic approach
for tuning accuracy-aware applications.

9.4.2 Evaluation of the Novel General Dynamic Tuning Approach

For the following evaluation, I consider the feature-based classification pipeline, see Fig-
ure 8.12. I use the found global configurations from Chapter 8. As test system, I use
a system that includes an Intel Core i7-4550U CPU running at 2 GHz with 8 GB DDR3
RAM attached. The L2 cache provides 256 kB and the L3 cache 4 MB.

First of all, I investigate the introduced runtime overhead caused by solving the MCKP.
Only application instances of the feature-based classification pipeline are executed within
the system. Hence, mckp_approx() is usable for solving the MCKP. The time consumed
for mcknap is often higher than the actual execution time for all application instances.
If no trivial solution exists, the overhead is between 73% and 300% for mcknap. The
dynamic programming-based approach even has a considerably higher overhead. Com-
pared to that, mckp_approx() has an overhead between 0.09% and 0.3%.

Figure 9.3 shows a comparison between mckp_approx() and mcknap regarding the
quality of the approximate MCKP solution found by mckp_approx(). For this compari-
son, I use several different workloads and constraints together with the available global
configurations for the feature-based classification pipeline to set up different MCKPs.
The relative deviation of the profit between the found solution is 8.19 ∗ 10−4 and hence
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Figure 9.3: Comparisons of the exact and the approximate solution (mckp_approx())
for different MCKPs (orange).

the quality loss of the approximate solution is negligible.
In the following, I evaluate the proposed runtime tuning approach. For each test run, a

random number of objects is determined that shall be classified according to the classes
square, cylinder, and sphere. The number of objects represent the number of application
instances. All application instances of a test run are processed in a batch-wise manner.
After run 9 and 17, I change the firm deadline from 130ms to 15ms and from 15ms
to 50ms, respectively. Changing the number of objects and the deadline shows that
my approach allows a system to react on varying constraints and system states in a
proactive way. I show two different test scenarios.

The first scenario does not take input-aware approximations into account. In Fig-
ure 9.4a, the blue bars represent the number of application instances per batch in each
test run. The red ones show the number of objects for which the deadline is missed
using the conventional application. I assume that classifications that are not performed
within the deadline are wrong. As we can see, the conventional application misses a lot
of deadlines, when the deadline is tighter. Figure 9.4b shows the accuracy and execution
time per test run. As the blue line is below or close to the black line, we can see that each
deadline is met by my innovative runtime tuning mechanism. The conventional applica-
tion (red line) only satisfies the deadline for larger deadlines and low numbers of objects.
For small deadlines, 20 ms and 50 ms, there is a large drop in the classification accuracy
for the conventional application (gray line). In contrast, my novel approach reacts in a
proactive way to these changing situations. Besides satisfying deadlines, the QoR stays
most of the time close to the highest possible QoR (around 1) (green line). Only for the
small deadline and high number of objects, can we see a slight drop of the QoR.
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Figure 9.4: Results of different test runs with varying amount of objects per batch and
firm deadlines. (a) represents the number of objects per test run. (b) compares the
conventional application with an accuracy-aware version that is tuned using the proposed
innovative dynamic approach.

The results for the execution time and classification accuracy of the second scenario
are shown in Figure 9.5. I compare a fixed budget approach (fix) with the monitoring
approach (monitoring) and the approach that combines monitoring and budget models
(model+monitoring). Note that a budget model is not allowed to spend more budget
than the granted for this approach. Therefore, I consider a further approach (budget)
that allows the proposed tuning approach to redistribute budgets.

The budget approach (green line) has the highest execution time but also the high-
est QoR in general. Monitoring (blue line) and model+monitoring (red line) reduce the
execution time compared to fix, while monitoring is slightly faster due to less overhead,
cf. Section 6.5.2. Regarding the accuracy, monitoring is close to fix and model+monitor-
ing. However, the latter performs not as good as the other ones in extreme cases.

To sum up, in cases where the QoR is more important, budget is the right method. In
other situations, monitoring reduces the execution time, while having similar accuracy.

9.4.3 Vertical Tuning of Accuracy-aware Methods

For the following experiment, I take vertical accuracy-aware methods into account to
show the potential of a vertical view. A vertical essentially means a cross-layer approach.
I integrate accuracy-aware methods from the algorithmic layer and from the architecture
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Figure 9.5: Execution time (a) and accuracy (b) comparison of different approaches that
introduce input awareness to the proposed runtime approach.

layer to the contract-based versions of the hull and area task of the feature-based clas-
sification pipeline. The selected tasks have the highest impact on the execution time and
hence are suitable candidates for the vertical approach. The accuracy-aware methods
are loop perforation and approximate DRAM3.

The evaluation reveals that approximate DRAM is theoretically applicable for both
tasks4. Loop perforation is very beneficial for the hull task but not for the area task.
Figure 9.6 shows the improvement of the performance profile for the hull task exploiting
accuracy-methods from vertical layers. We can see that the resulting merger (red line)
is especially improved for medium budgets by exploiting the vertical view compared to
the contract-based hull task (gray line).

By integrating the novel hull task into the feature-based classification pipeline, we are
able to find better configurations using the static tuning algorithm presented in Chapter 8.
These new configurations are provided to the proposed dynamic tuning approach. The
results are shown in Figure 9.7 I compare the vertical view-based approach (red line)
with the monitoring approach (blue line), since this approach offered the best solution
regarding the execution time so far (cf. Figure 9.5). The merged version of the hull task

3The same procedure as described in Section 8.3 is used for simulating approximate DRAM.
4I have not considered a full simulation of the application running on a system with an attached ap-

proximate DRAM.
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Figure 9.6: Improvement by applying vertical accuracy-aware methods to the hull task.
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Figure 9.7: A vertical accuracy-aware view on the feature-based classification pipeline.

leads to a significant acceleration of the entire classification pipeline and also improves
the QoR. This is again a clear statement that applying a vertical view is very beneficial
for accuracy-aware computing.
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9.5 Summary

This chapter presented novel approaches to enable a dynamically contracting and tuning
of accuracy-aware applications. The first approach that was proposed leads to approx-
imated classification decisions derived by an anytime classifier. This classifier can be
interrupted at anytime and returns the current classification decisions for a number of
objects. The results show that such an approach can theoretically speed up classifica-
tions, while keeping classification errors low. However, the current additional overhead
during runtime to realize this approach rules out the benefits. Thus, this clearly high-
lights, why it is important to design low-overhead control approaches for accuracy-aware
computing. Therefore, I proposed a novel low-overhead dynamic tuning approach for
accuracy-aware applications in this chapter.

This approach is generally usable for different kind of approximation-tolerant appli-
cations. The presented approach considers the current system state, constraints, and
the actual inputs of the task instances to tune the system. To realize input awareness
into the application instance, I presented a local method that individually controls the
approximation degree of all task instances during runtime. The universal control prob-
lem is represented as multiple-choice knapsack problem. Solving this problem makes it
possible to react on different system states and constraints during runtime. The selected
pre-determined global configurations include the knowledge to control the different task
instances. Furthermore, I showed that the control approach is also valuable for a vertical
tuning of accuracy-aware methods.
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CHAPTER

TEN

CONCLUSION AND OUTLOOK

This final chapter summarizes the findings of this thesis and provides a conclusion. Then,
it proposes potential directions for future work in this field.

10.1 Summary and Conclusion

This thesis aims at introducing a novel methodology to realize accuracy-aware computer
systems. To achieve this aim, it introduced innovative solutions to four research objec-
tives (see Section 3.1):

Objective 1: Finding a solution for the problem of providing a runtime control approach
for tuning approximation-tolerant applications;

Objective 2: Investigating approaches for tuning applications that require high-precision
arithmetic;

Objective 3: Increasing the applicability scope of accuracy-aware computing; and

Objective 4: Determining innovative accuracy-aware methods that are generally
applicable for approximation-tolerant applications.

In this thesis, I introduced a novel adaptive accuracy-aware approach across sys-
tem layers to address Objective 1. This approach is an innovative way to realize ac-
curacy-aware systems, combining accuracy-aware methods in different layers to tune a
system towards conventional design goals such as performance and energy consump-
tion. This thesis demonstrated the advantages of combining different accuracy-aware
methods for a numerical task solving a system of linear equations. The algorithm used
for this task was the well-known Jacobi method, and the corresponding evaluation is
the first extensive consideration of accuracy-aware methods for a scientific algorithm.
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By combining loop truncation, loop tiling, and relaxed synchronization, I achieved perfor-
mance improvement of 300% for 99% QoR and 600% for 90% QoR. The QoR evaluation
demonstrated the value of additional methods, such as approximate DRAM.

To transfer an application to an accuracy-aware application, a programmer integrates
accuracy-aware methods from various layers. Integrating many of these methods into an
application results in a large configuration space and using conventional methods such
as parallelization and DVFS further increases that configuration space (which represents
all possible combinations and respective parameter settings of the integrated methods).
The configuration layer introduced in this thesis aims to determine a (near-)optimal con-
figuration during runtime. This configuration satisfies the given constraints and provides
the best design values for the remaining objectives.

The thesis introduced an innovative way to reduce the effort for finding such a (near-
)optimal configuration. The proposed approach combines a hierarchical method with
a design-time step and runtime mechanism. This hierarchical method considers an
application as composed of tasks and determines near-Pareto-optimal configurations
between QoR and budget for each task during the design-time step. This procedure
essentially filters out useless configurations that would have been considered as possi-
ble global configurations during runtime, which tunes the entire application. This results
in a merged performance profile showing the near-Pareto-optimal local configurations
extracted for each task; the local configurations represent the useful combinations of
methods and respective parameter settings for a task. As the budget metric, the thesis
used execution time, energy consumption, or a combination; the latter makes it possible
to consider multiple objectives (execution time, energy consumption, and QoR) for tun-
ing. The hierarchical method has the additional benefit that when the task is plugged into
another application, the same merged performance profile can still be used.

Since a suitable global configuration depends on the system state and constraints
that can vary, a global configuration must be determined during runtime. To significantly
reduce the set of global configurations considered during runtime, near-Pareto-optimal
global configurations between the budget metric and global QoR must be extracted dur-
ing design-time by the presented static tuning approach. This tuning approach assumes
the highest local QoR improvement for a certain budget leads to the highest global QoR
improvement, and thus it uses the information within the generated merged performance
profiles. This approach significantly reduces the computational effort to extract suitable
global configurations by reducing the number of global configurations considered to find a
suitable one during the design-time step. Compared to an exhaustive search, it reduces
effort of extracting a near-optimal configuration for an image application by a factor of
245,000; compared to state-of-the-art algorithms by a factor of 75. The quality of the
global configurations found is almost the same, as shown by a study.

During runtime, a tuning mechanism uses the set of extracted global configurations
to proactively adapt the system. Depending on the system state and given constraints,

238



10.1 - Summary and Conclusion

a configuration is chosen from this set. With multiple application instances or different
accuracy-aware applications running in the system, finding a global configuration for all
instances and applications represents a multiple-choice knapsack problem. Solving this
problem during runtime leads to a holistic configuration of the entire system. To reduce
the effort needed to solve this problem, I introduced an approximation algorithm that
drastically reduces computational effort compared to exact methods while keeping the
quality of the extracted solutions close to optimal when the set of possible configurations
is the same for each application instance. On a local level, a granted budget can be
transferred to a parameter setting for the accuracy-aware task.

Moreover, I demonstrated the importance of low-overhead solutions for input-aware
approaches to avoid ruling out the benefits of accuracy-aware methods. The anytime
scheduling algorithm presented provides performance improvements, which are lost
when accounting for the introduced overhead to update the control data. Therefore, I
proposed a low-overhead approach based on a budget model estimating the required
budget for an accuracy-aware task and an input to reach a desired local QoR. Addition-
ally, using an internal monitoring approach, a task aborts and returns the result when
the desired QoR is presumably reached, which further reduces computational effort. In-
troducing a per-input tuning of the accuracy-aware system improves the application’s
global average QoR or reduces computational effort while maintaining the same QoR
as the non-input-aware runtime mechanism. The policy applied for this thesis provides
input awareness on the local level.

I applied my innovative methodology for realizing accuracy-aware systems to a data
processing application used in sensor-based sorting. I was able to accelerate execu-
tion by a factor of 4 while providing nearly the same QoR compared to the conventional
application. My approach behaves proactively and thus reacts during high-workload situ-
ations. The approach adapts the multiple-choice knapsack problem constraints to handle
these situations, extracting a different holistic configuration. Whereas the conventional
application has many deadline violations, my control mechanism showed none while
slightly reducing the QoR for these extreme cases. Additionally, using the vertical view
for tuning further improved the entire solution.

This thesis also considered an adaptive approach for applications requiring greater
precision than offered by current hardware. Greater precision can overcome numerical
instabilities caused by computational errors (Objective 2). I showed that greater pre-
cision leads to calculating more correct eigenvalues using the Lanczos method, but it
introduces significant overhead to the application. It is important to use domain knowl-
edge to implement a more stable variant of a numerical algorithm, thus requiring less
additional precision and significantly reducing overhead. The required additional preci-
sion depends on the input, and thus a fixed setting for precision is sub-optimal. To that
end, determining how to set the internal precision for an input matrix remains an open
question. Thus, this thesis did not further consider tuning accuracy up inside a system.
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To increase the applicability scope of accuracy-aware computing (Objective 3), I de-
veloped new accuracy-aware methods on various layers for different domains (Objective
4): computational biology, stereo vision, time series analysis, and sensor-based sorting.

On the hardware level, I presented a conversion unit that converts floating-point val-
ues before transferring these values to memory. Integrating such a unit into a RISC-V
processor reduces energy consumption for a 2D fast Fourier transformation by a factor
of 2.5 while having almost no impact on the QoR. A 2D convolution required 26% less
execution time and such a conversion unit-based method provides a higher QoR than
performing the application using a smaller data type.

To increase design efficiency for hardware accelerators and approximation-tolerant
applications, I introduced a set of five approximation design patterns for dynamic pro-
gramming algorithms; such algorithms are used for stereo vision, computational biology,
and time series analysis. Exploiting these patterns resulted in a performance of 157
giga cell updates per second for an adapted version of the Smith Waterman algorithm
outperforming a software version exploiting the vector extension units of an x86 proces-
sor. Furthermore, these patterns made it possible to port a dynamic programming-based
stereo vision algorithm to a low resource FPGA while maintaining the same performance
and having a better QoR than local stereo vision algorithms. For time series analysis, the
patterns improve the performance for classifications by a factor of up to 29.4 compared
to complex similarity measures while having a higher QoR than simple measures.

I designed two innovative approaches for general and useful accuracy-aware methods
at the software level. While the novel fuzzy memoization technique is generally applica-
ble, the introduced overhead is too high for most approximation-tolerant applications.
Therefore, I proposed a method based on contract algorithms, as well as described best
practices on how to transfer tasks into contract-based tasks and how to control them.
Moreover, I presented innovative methods that adapt the ordering of input items to pro-
vide a better performance profile. Such tasks allow a user to continue execution for
situations in which the QoR is insufficient and thus reduces overhead to reach a higher
QoR compared to re-executing the task.

To conclude this thesis, I present the following key takeaway: Accuracy-aware com-
puting provides an innovative way for system designers and programmers to reach cer-
tain design goals. I demonstrated that a one-size-fits-all strategy is not useful for ac-
curacy-aware computer systems. Therefore, I presented a methodology for realizing
accuracy-aware systems. The introduced methodology is a step towards controlling a
system during runtime by tuning accuracy-aware and conventional methods according
to the current system state, constraints, and inputs. Introducing input sensitivity is a
milestone to increase the scope of accuracy-aware computing.
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10.2 Outlook and Future Work

The hierarchical approach used to find global configurations at design time shifts the
highest computational effort towards generating performance profiles for the task. Here,
QoR must be determined for each parameter setting and budget by using a set of rep-
resentative input data. This is achievable for the tasks considered in this thesis but gen-
erating local profiles can be a bottleneck when there are many accuracy-aware methods
and corresponding parameter settings. Therefore, reducing the effort required to build
merged profiles should be the subjective of future research.

Certain programming effort is currently required to integrate accuracy-aware methods
into an application. The programmer must identify the tasks and transform them into
an accuracy-aware task. This thesis presented straightforward methods to realize such
a transformation, including the introduction of a mechanism to control the budget and
best practices to implement contract-based tasks. In the future, this effort should be
reduced by an automatic solution, which requires identifying suitable tasks, integrating
accuracy-aware methods into the task, and building local merged performance profiles.
For contract-based tasks, an easy solution would be to integrate a timer into a loop and
to exit the loop as soon as the value of the timer is larger than the budget.

Future work should also identify innovative solutions on introducing input awareness
into the system. For the tasks considered in this thesis, it was sufficient to use M5 models
for the budget model and linear regression for the monitor. However, more complex tasks
- especially in the domain of high-precision arithmetic - require more complex solutions
than identified by this thesis because the correlation between input, parameter setting,
and QoR is much more complex. Notably, this is not only a matter of improving the
methods’ accuracy, since computational effort must be low to benefit the accuracy-aware
applications. Moreover, a completely automatic method to build the budget model and
the monitor per task, and to integrate them into the application, would reduce the effort
required of the programmer.

This thesis assumed that achieving a local desired QoR per task for a particular in-
put results in the desired global QoR, which works well on the applications considered.
However, there could be situations in which different local QoRs are required to achieve
the same global QoR for different inputs. Hence, it would be useful to have a mechanism
that estimates the local QoRs based on the current application input during runtime.

The AC design patterns for dynamic programming algorithms presented in this thesis
are efficient for different domains, but not all patterns are as valuable as others for the
various domains. Since these patterns can also be applied on a higher level, such as
OpenCL, automatic design space exploration could identify useful AC patterns. Similar
AC patterns could also be identified for other algorithms. Ideally, this would mean general
AC design patterns to be considered in automatic design space exploration.

Accuracy-aware methods targeting memories, caches, or data transfers are consid-
ered individually in the literature. There are multiple expected advantages to combin-
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ing multiple methods, but this has yet to be explored. For instance, the conversion
unit could be combined with the load-value approximation approach and techniques for
higher memory levels such as approximate compressing techniques or increasing the
refresh cycle time for DRAMs.
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