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Kurzfassung

Die Energiesysteme befinden sich in einem grundlegenden strukturellen und regula-

torischen Wandel, um den Herausforderungen des Klimawandels zu begegnen. Der Be-

griff "Energiewende" bezeichnet den Wandel des Energiesystems von der konventionellen

Stromerzeugung aus fossilen Energieträgern hin zur Stromerzeugung aus erneuerbaren En-

ergien. Mit dem steigenden Anteil der Stromerzeugung aus wetterabhängigen erneuerbaren

Energiequellen sind Schwankungen in der Einspeisung in das Stromnetz zu erwarten. Diese

Volatilität der Stromerzeugung durch die Integration erneuerbarer Energiequellen stellt das

gesamte Stromsystem vor neue Herausforderungen. Um Schwankungen in der Stromein-

speisung auszugleichen, müssen Flexibilitätsoptionen in das Stromsystem integriert wer-

den, um Netzstabilität und Versorgungssicherheit zu gewährleisten.

Im Rahmen der vorliegenden Dissertation werden Flexibilitätsoptionen im nachhaltigen

Stromsystem sowohl aus theoretischer Sicht als auch hinsichtlich ihrer politischen Imp-

likationen untersucht. Vor dem Hintergrund der Integration eines steigenden Anteils an

erneuerbaren Energien im Stromsektor erfolgt dabei eine differenzierte Betrachtung aus

Gesamtsystemsicht sowie aus Perspektive des lokalen Stromsystems.

Aus Gesamtsystemsicht werden angebots- und nachfrageseitige Flexibilitätsoptionen sowie

die Flexibilität durch den Einsatz von Speichern und den Ausbau der Netzinfrastruktur im

Hinblick auf das Gesamtstromsystem untersucht. Ausgangspunkt ist dabei eine Model-

lierung des komplexen Zusammenwirkens von regulierten Ebenen und wettbewerblichen

Prozessen, wobei die Interessen der verschiedenen Akteure und ihrer wechselseitigen Be-

ziehungen berücksichtigt werden. Dazu wird der Strommarkt durch mehrstufige mathema-

tische Optimierungsmodelle abgebildet, die mit Ansätzen aus der Spieltheorie kombiniert

werden.

Aus Sicht des lokalen Stromsystems werden Elektrofahrzeuge als Flexibilitätsoptionen be-

trachtet. Nachdem die Bedeutung von Elektrofahrzeugen für die Emissionsre-

duktion und somit für die Erreichung der Klimaziele mittels einer reduzierten Lebens-
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zyklusanalyse dargelegt worden ist, werden darauf aufbauend mögliche Einflussfaktoren

für eine effiziente Integration von Elektrofahrzeugen in das lokale Stromsystem umfassend

analysiert. Dabei werden statistische Analysen und ein zweistufiger Clusteransatz angewen-

det sowie ein Simulationstool entwickelt und eingesetzt.

Als wesentliches Ergebnis ist festzuhalten, dass bei der Gestaltung eines nachhaltigen Strom-

marktdesigns die Berücksichtigung von Flexibilitätsoptionen von entscheidender Bedeu-

tung ist. Neben den Wechselwirkungen von verschiedenen Flexibilitätsoptionen ist ins-

besondere auch die individuelle Risikobereitschaft der zentralen Akteure im Stromsystem zu

berücksichtigen, um so gezielte marktwirtschaftliche Anreize in (Flexibilitäts-)Investitionen

zu schaffen. Es wird gezeigt, dass Investitionen in Stromspeicher durch privatwirtschaftliche

Marktteilnehmer maßgeblich die Entscheidungen des staatlich regulierten Netzbetreibers

hinsichtlich Ort und Höhe von Netzinvestitionen beeinflussen. Darüber hinaus wird eben-

falls aufgezeigt, dass verschiedene Risikoeinstellungen privater und öffentlicher Investoren

zu unterschiedlichen Investitionen in Flexibilitätsoptionen führen können. In Bezug auf

die Integration von Elektrofahrzeugen als Flexibilitätsoption in das lokale Stromsystem wird

durch die Analysen die Bedeutung des individuellen Ladeverhaltens und der damit verbun-

denen Gleichzeitigkeitsfaktoren als zentrale Schlüsselfaktoren für politische Entscheidun-

gen hervorgehoben. Die Ergebnisse der Arbeit liefern somit politische Handlungsempfeh-

lungen für die Gestaltung des Strommarktdesigns, um Flexibilitätsoptionen erfolgreich in

das deutsche Stromsystem zu integrieren und eine nachhaltige Energieversorgung zu gewähr-

leisten.
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Abstract

Energy systems are undergoing fundamental structural and regulatory change to meet the

challenges of climate change. The term "Energiewende" refers to the change in the energy

system from conventional electricity generation from fossil fuels to electricity generation

from renewable energy sources. With the increasing share of electricity generation from

weather-dependent renewable energy sources, fluctuations in the feed-in to the electricity

grid are to be expected. This volatility in electricity generation due to the integration of re-

newable energy sources poses new challenges for the entire electricity system. In order to

compensate for fluctuations in electricity feed-in, flexibility options must be integrated into

the electricity system to ensure grid stability and security of supply.

In the scope of this dissertation, flexibility options in the sustainable electricity system are

examined both from a theoretical perspective and with regard to their political implications.

Against the background of the integration of an increasing share of renewable energies in

the electricity sector, a differentiated view is taken from a holistic power system perspective

as well as from a local power system perspective.

From a holistic power system perspective, supply-side and demand-side flexibility options

as well as flexibility through the use of storage and the expansion of the grid infrastructure

are examined. The starting point is a modeling of the complex interaction of regulated levels

and competitive processes, taking into account the interests of the different market actors

and their mutual relationships. For this purpose, the electricity market is modeled using

multi-level mathematical optimization models, which are combined with approaches from

game theory.

From the perspective of the local power system, electric vehicles are considered as flexi-

ble options. After the importance of electric vehicles for the reduction of emissions and

thus for the achievement of climate targets has been presented by means of a reduced life

cycle analysis, possible influencing factors for an efficient integration of electric vehicles
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into the local power system are comprehensively analyzed. Statistical analyses and a two-

stage cluster approach will be applied, and a simulation tool will be developed and applied.

As a key result, it can be noted that the consideration of flexibility options is of crucial im-

portance in the design of a sustainable electricity market. In addition to the interactions of

different flexibility options, the individual risk attitude of the central actors in the power sys-

tem must also be taken into account in particular in order to create targeted market-based

incentives for (flexibility) investments. It is shown that investments in electricity storage by

private market participants have a decisive influence on the decisions of the state-regulated

grid operator regarding the location and amount of grid investments. Furthermore, it is also

shown that the different risk attitudes of private and public investors can lead to different

investments in flexibility options. With regard to the integration of electric vehicles as a flex-

ibility options in the local power system, the analyses highlight the importance of individual

charging behavior and the associated simultaneity factors as central key factors for political

decisions. The results of the work thus provide policy implications for the electricity market

design in order to successfully integrate flexibility options into the German power system

and ensure a sustainable energy supply.
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Overview
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1 Introduction

Energy systems are undergoing a fundamental structural and regulatory transformation to

address the challenges of climate change. The term ”Energiewende” refers to the transfor-

mation of the energy system from one primarily based on fossil fuels to a more sustainable

energy system primarily relying on renewable energy sources. This involves the transition

of energy generation, transportation, and usage throughout the entire energy system. The

electricity system, which is a part of the energy system, specifically pertains to the gener-

ation, transmission, distribution, and consumption of electric power. It encompasses the

different types of power plants that generate electrical energy, the transmission grids that

transport electricity from generation sites to consumers, and the distribution networks that

deliver electricity to end users.

1.1 Motivation

With regard to achieving climate goals, Germany faces significant challenges in shaping its

energy system. The paradigm shift in German energy policy involves considering renew-

able energies as a central component. The goal is to reduce dependence on fossil fuels, lower

greenhouse gas emissions, and ensure a sustainable energy supply. Concerning the electric-

ity system, the expansion of renewable energies has led to a changed supply and demand

structure and a substantial increase in decentralized energy sources. Electricity generation

increasingly relies on renewable sources such as photovoltaic and wind power installations,

while electricity demand includes integral components such as electric vehicles and heat

pumps in the German electricity system. In this context, the electricity system has funda-

mentally transformed from a unidirectional centralized system to a bidirectional decentral-

ized system. The integration of renewable energies into the electricity system, along with

resulting structural changes, introduces more frequent fluctuations in electricity genera-

tion and consumption. The surplus or deficit of volatile renewable electricity generation

increases the need for flexibility in the electricity system in order to balance the growing

temporal and regional discrepancy between electricity supply and demand (Brunner, 2014).
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1 Introduction

Fundamental flexibility options in the electricity system include not only electricity gener-

ation and consumption but also electricity storage, the electricity grid, and sector coupling

(Heider et al., 2021). In a sustainable electricity system with a high share of renewable en-

ergies, a mix of various flexibility measures is required to compensate for the divergence

between electricity generation and consumption (Brunner, 2014). This necessitates analyz-

ing both structural changes and associated regulatory framework conditions concerning the

integration of flexibility options into the existing electricity system and incorporating them

into the electricity market design.

1.2 Scope and research objective

This work examines flexibility options in the context of the entire German electricity power

system as well as local electricity power systems, against the background of an increasing

share of renewable energies. In this context, the relevance of flexibility options in the elec-

tricity power system for policy measures and future electricity market design is also dis-

cussed. From a scientific perspective, the fundamental question is whether and to what ex-

tent flexibility options can be used to ensure an efficient, sustainable, and stable electricity

supply. The following energy economics research questions are central to this dissertation:

‚ How can the flexibility gap associated with a growing share of renewable energies be

reduced from a holistic power system perspective and from a local power system per-

spective?

‚ How can the use of the optimal combination of flexibility options be fostered from

a holistic system perspective in order to support the integration of renewable energy

sources and ensure a stable power supply?

‚ From the local power system point of view, what are the decisive factors for integrating

electric vehicles as flexibility resources into the electricity power system?

‚ What role do flexibility options play in the further design of the electricity market, i.e.,

how should the regulatory framework be structured to ensure a system-optimal de-

ployment (both from a system-wide and a local perspective) of these options?
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1.3 Structure of the thesis

1.3 Structure of the thesis

The present cumulative dissertation consists of two parts, whose structure is illustrated in

Figure 1. The first part begins with this introduction (Chapter 1) that addresses the moti-

vation, research objective, and structure of the work. Based on the objectives of the energy

transition in Germany, the structural framework of sustainable power systems and the re-

lated future challenges for the electricity system arising from the increased utilization of

renewable energies are examined (Chapter 2).

Figure 1: Structure of this thesis.
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Subsequently, the central significance of flexibility options in the electricity system, which

are available in various forms, is emphasized, and the flexibility resources are examined from

different power system perspectives (Chapter 3). From a methodological point of view, the

analysis of flexibility options differentiates between the holistic power system perspective

and a local power system perspective (Chapter 4). In this context, the underlying publica-

tions, including the methodologies, are presented and the obtained key results are sum-

marized. A critical assessment is provided for each publication. Based on this foundation,

policy implications for a reform of the electricity market design in Germany with regard to

the integration of flexibility options are derived (Chapter 5). A brief summary and an out-

look form the end of this thesis (Chapter 6).

The second part of the thesis includes the interconnected scientific papers A-E:

Paper A This paper analyzes the interplay of transmission and storage investments in

a multistage game that accounts for a hierarchical decision structure. In the multistage

game, on the first stage, a transmission operator chooses optimal line investments and a

corresponding optimal network fee. On the second stage, competitive firms trade energy

on a zonal market with limited transmission capacities and decide on their optimal storage

facility investments. The main solution strategy for the the multistage game and the cor-

responding bilevel optimization model is presented. The paper is published in the journal

Annals of Operations Research (2020).

Paper B The underlying paper deals with the effects of different risk attitudes of public

and private decision-makers on long-term flexibility options under uncertainty. The pro-

posed four-stage Stackelberg game is translated into a four-level (equilibrium-finding) op-

timization problem. It accounts for public line investments made by a Transmission System

Operator (TSO) in anticipation of private investments in storage and conventional backup

generation facilities (first level). These private investments take place on the second level

based on expected spot-market profits, which are determined within a zonal spot market

on the third level. The fourth level accounts for the redispatch actions of a TSO in the case

where contracted spot market quantities cannot be transmitted through the electricity net-

work. From the four-level optimization problem, an equivalent single-level reformulation

is derived, which is then solved to global optimality with a state-of-the-art spatial branch-

and-bound solver. The article is submitted to a scientific journal (forth.).
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Paper C This scientific contribution investigates the interdependencies of a dynamic

decrease in carbon emissions from electricity provision and electric vehicle (EV) diffusion.

A reduced life-cycle assessment approach is applied, including well-to-wheel emissions of

EVs and taking into account future changes in the electricity mix. Based on the comparison

of future global energy scenarios, they are combined with EV diffusion scenarios. The paper

is published in the journal Environmental Research Letters (2021).

Paper D The paper deals with the investigation of the energy demand and flexibility

potential of EVs for different user groups based on their temporal charging behavior. The

contribution is based on a comprehensive data set of 2.6 million empirical charging pro-

cesses and investigates the possibility of identifying different user groups based on their

temporal charging behavior. For this, a Gaussian mixture model as well as a k-means clus-

tering approach are applied, and the results are validated against synthetic load profiles and

the original data. The article is published in the journal Energies (2022).

Paper E In this proceeding article, an open-source tool for the calculation of simultane-

ity factors of EVs (i.e. battery electric vehicles and plug-in hybrid electric vehicles) charging

processes is presented. In addition, the peak loads of EVs and households can also be dis-

played, taking into account the EV and household-specific simultaneities. This paper was

presented at the 3rd E-Mobility Integration Symposium in 2019 and published in the Sym-

posium’s proceedings.
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2 Transition process to a sustainable power
system

The energy transition aims to generate electricity from renewable sources (e.g., solar, wind,

water), thereby replacing conventional fossil fuel-based power generation. Beyond the tra-

ditional energy policy goals of security of supply and economic efficiency, climate goals are

particularly pressing.

Based on the paradigm shift in German energy policy, there are fundamental changes in

the underlying principles, objectives, and strategies concerning electricity generation, dis-

tribution, and consumption. This involves a transition from conventional centralized power

generation to decentralized renewable power generation while simultaneously integrating

new components and players into the power system.

Renewable electricity generation faces the central challenge of weather-related fluctuations

preventing a consistent and secure supply, as compared to electricity generation from con-

ventional fossil-fueled power plants. In this context, both the holistic electricity system and

the local electricity systems face an increasing need for flexibility in designing a sustainable

power system.

2.1 Objectives of the energy transition in Germany

Under the Federal Climate Protection Act (KSG), numerous national measures have been

adopted to support the Paris Climate Agreement goals (Bundesministerium für Wirtschaft

und Klimaschutz (BMWK), 2023). The overarching climate goal of the German government

is to achieve "climate neutrality", meaning the avoidance or offsetting of greenhouse gas

emissions (Prognos, Öko-Institut, Wuppertal-Institut, 2021). In this context, effective and

comprehensive policy measures are necessary to decarbonize the energy system.
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Figure 2: Greenhouse gas emissions by sector in Germany from 1990 to 2022 and the adjusted targets for 2030 and
2045 according to the revision of the Federal Climate Protection Act (KSG) (Own illustration based on
Umweltbundesamt (2023)).

Figure 2 illustrates the development of greenhouse gas emissions (by sectors) in Germany

since 1990, along with the German government’s emission reduction targets for the pe-

riod up to 2045. The greenhouse gas emission reduction goals encompass the sectors of

energy, industry, transport, buildings, agriculture, and waste management (Umweltbunde-

samt, 2023). By 2030, greenhouse gas emissions are to be reduced by at least 65% (com-

pared to 1990). By 2040, emissions are targeted to be reduced by 88%, with a binding target

of achieving climate neutrality in Germany by 2045 (Bundesministerium für Wirtschaft und

Klimaschutz (BMWK), 2023). To achieve these goals, a sustainable transformation of the en-

ergy sector is necessary, implying a redesign of the power sector towards a climate-friendly,

decentralized, and renewable energy supply.

The central prerequisite for achieving climate neutrality across all sectors by 2045 is that

the power sector must already be largely climate neutral by 2035 (Agora Energiewende et

al., 2022). Hence, renewable sources must come to account for most power generation, and

greenhouse gas emissions from electricity generation must be significantly reduced. There-

fore, the further expansion of renewable energy sources is intended to shape the sustainable

transformation of the power sector.
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2.1 Objectives of the energy transition in Germany

According to the Renewable Energy Sources Act (EEG) and the German government’s Cli-

mate Protection Plan 2050, an increase in the share of renewable energy in gross electricity

consumption to at least 80% by 2030 is envisaged (Bundesministerium für Wirtschaft und

Klimaschutz (BMWK), 2023).

Figure 3 illustrates the share of renewable energy sources in gross electricity consumption in

Germany. Their share has been rising sharply recently. In 2022, the share of renewable en-

ergies was around 46%. However, this share would have to almost double by 2030 to achieve

the political objective.

Figure 3: Share of energy sources in gross electricity generation in Germany from 2000 to 2022 (Own illustration
based on Umweltbundesamt (2023)).

Due to the increasing cross-sector electrification (e.g., transportation and industry), the

power sector is decisive in the energy transition. A climate-neutral power system grounds

the decarbonization of other sectors such as transportation, industry, and buildings. Based

on the expanded use of renewable energy sources in the power sector, cross-sector electri-

fication also incentivizes the adoption of climate-friendly technologies in other sectors.

In this context, the massive expansion of renewable energy sources is also central to the

framework of sector coupling (Bundesministerium für Wirtschaft und Klimaschutz, 2023).

Sector coupling involves linking various sectors within the energy system: particularly the

electricity sector, the heat and cooling sector, and the transportation sector. Sector coupling

creates synergies and enables renewable energy sources to be applied efficiently across all

11



2 Transition process to a sustainable power system

sectors.

In the transportation sector, the German government aims to have at least 15 million elec-

tric vehicles registered in Germany by 2030 to achieve climate goals. Figure 4 shows the

development of the electric vehicle fleet in Germany.

Figure 4: Share of energy sources in gross electricity generation from 2000 to 2022 (own illustration based on
Umweltbundesamt (2023)).

Recently, a significant increase in the registration of battery electric vehicles in absolute

numbers has been recorded. To achieve the goals of the German government, the num-

ber of battery electric vehicles in Germany must continue to grow substantially (Prognos,

Öko-Institut, Wuppertal-Institut, 2021). Therefore, the government commits to further im-

proving the policy framework conditions for electromobility and accelerating the transition

to low-emissions and climate-friendly transportation.

2.2 Structural framework of future power systems

The power system is undergoing a structural and regulatory paradigm change in response

to a rapidly evolving energy landscape. This transformation is driven by the need to address

critical challenges, including the integration of renewable energy sources and the reduction

of carbon emissions.
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2.2.1 Transformation to a sustainable bidirectional power system

In the structural framework of the German electricity sector, multiple market players with

their own economic objectives interact in a very complex way. The liberalization of the Ger-

man electricity market in 1998 marked a paradigm shift. Until then, the electricity market

had been organized vertically integrated, such that the respective energy suppliers were re-

sponsible in their grid areas for the generation, transport, and supply of electricity to the

consumers located in those grid areas.

A key element of liberalization is the creation of a wholesale electricity market in which

supply and demand meet. Ergo, any energy supplier can supply electricity to any consumer

anywhere in the country. Conversely, each customer is free to choose their own electricity

supplier, not tied to a regional supplier. Another key feature of liberalized electricity markets

is the legal and organizational unbundling of grid operation and electricity trading; that is,

in principle, no electricity supplier may also be an electricity grid operator. This unbundling

ensures that any electricity supplier can supply its customers with electricity from other net-

works without suffering any disadvantages. The liberalized electricity market can, thus, be

divided into regulated and market-based market areas.

With regard to the value chain, the liberalized electricity market can be represented by elec-

tricity generation, transmission, and distribution, as well as electricity consumption (see

Figure 5). In the traditional, mainly centralized power system based on conventional power

generation, electricity is produced in large power plants fired mainly by fossil fuels. These

have different cost structures and compete with each other.

Figure 5: Traditional unidirectional power system.

Electricity flows unidirectionally from these power plants through the transmission and

distribution grids to consumers (Heider et al., 2021). Various grid operators control and op-

erate the electricity grid, which is subject to supervision by the state, primarily the Federal
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Grid Agency. The responsibility for the transmission grids lies with the Transmission System

Operators (TSO), who are in charge of the operational management, maintenance, and ad-

equate sizing. Simultaneously, they must ensure non-discriminatory access to these grids

for electricity traders and suppliers. The distribution grid connected to the transmission

grid is operated by Distribution System Operators (DSOs), whose scope includes ensuring a

secure, stable network operation and providing a reliable supply to end customers.

In general, end customers are connected to the low-voltage level of the distribution grid. In-

dividual large consumers (e.g., energy-intensive industries), may also be directly connected

to the transmission grid. Electricity demand is characterized by many factors, including

strong daily and seasonal fluctuations, and reacts inelastically to prices in the short term.

The increased integration of renewable energy sources into electricity generation has pre-

cipitated a decline in electricity generation from coal and gas power plants. Electricity gen-

eration is no longer exclusively confined to centralized fossil-fueled large power plants, but

is increasingly decentralized through renewable energy sources such as photovoltaic (PV)

systems, wind farms, and biomass installations. Therefore, the resulting transformation of

the power system leads to an altered generation and demand structure in the sustainable

electricity system (see Figure 6).

Figure 6: Sustainable bidirectional power system.

Given the increasing share of renewable energy sources on the supply-side, the future power

system will need to emphasize energy storage technologies (such as batteries, pumped stor-

age and thermal storage), which are gaining importance in the future power system, as they

can significantly contribute to mitigating the volatility in energy generation from renewable

energy sources. Electricity storage can house the surplus energy generated during periods

14



2.2 Structural framework of future power systems

of high production for the market to consume during times of high demand or limited avail-

ability of renewable energy.

Also marked by an increasing deployment of distributed energy resources (DER) at the local

level, the structural transformation of the power system equally implies a consumer-side

change. DER refers to decentralized electricity-generating resources or controllable loads,

particularly those integrated into the local power system. Examples include rooftop PV sys-

tems, electric vehicles, heat pumps, and battery storage (Badanjak and Pandžić, 2021).

As decentralized electricity generation at the consumer level through renewables grows, the

flow of electricity in the grid becomes bidirectional (see Figure 6). While in the traditional

fossil fuel-based system, electricity flows from central power plants to end consumers, the

use of local decentralized generation sources (e.g., rooftop PV, rural wind turbines) also en-

ables reverse power flow into the grid.

Consequently, due to the multitude of decentralized energy sources based on renewable

resources, the sustainable power system exhibits a significantly dezentralized character

compared to the traditional power system (Koch et al., 2021). Against this backdrop, the

energy transition entails a fundamental transformation of the German power system from

a unidirectional centralized model to a bidirectional decentralized one. The shift from the

conventional centralized electricity system to a more decentralized and renewable energy-

based system stands as one of the key components for the success of the energy transition.

2.2.2 Holistic and local power system perspectives

The analysis of power systems is essential to understand and optimize the complex dynam-

ics of modern electricity systems, and both holistic and local perspectives can be applied in

such an examination. These complementary perspectives provide a comprehensive under-

standing of the way electricity is generated, distributed, and consumed, and they feature in

the evolution of energy environments.

While the holistic power system perspective encompasses the entire power system and its

integration into the national and international energy infrastructure, the local view focuses

on specific regional or municipal matters. Both perspectives contribute to the development

of a sustainable, efficient, and resilient power system.
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The holistic system view enables an analysis of the performance and stability of the en-

tire power system. Aspects such as generation, grid capacity, national and international

energy trade, and the integration of renewable energy sources are taken into account. The

consideration of the entire electricity system thus includes the generation, transport, and

consumption of electricity at a high level. The transmission grid is the principal grid end

under consideration (see Figure 7).

Figure 7: Holistic and local power system perspective.

In the local power system view, the focus is tighter and concentrates on the distribution net-

work and the consumption or generation at the household level of the end consumers (see Fig-

ure 7). In this context, the integration of decentralized energy generation, the development

of microgrids, or the promotion of electric mobility in cities can be investigated.

Considering the power system from a perspective both holistic and local is essential to com-

prehensively understanding the challenges and opportunities in the energy sector. Further-

more, the connection between the overall system view and the local view is crucial, since

local measures can influence the system as a whole. For example, the increased use of elec-

tric vehicles in a city can have an impact on electricity demand and the need for transmission

grid expansion.
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2.3 Future challenges and flexibility needs

The success of the energy transition depends largely on how effectively and to what extent

the electricity sector can adapt to the changes induced by the integration of renewable re-

sources into the power system. To manage anticipated and unforeseen fluctuations in gen-

eration and demand, a structural adaptation of the power system is crucial to the success of

the energy transition, considering flexible forms of adjustment. Hence, the new challenges

in the electricity sector, accompanied by an increasing share of fluctuating renewable en-

ergies in electricity generation and a decreasing contribution from (flexible) conventional

generators, pose new challenges to future power systems and amplify the need for flexibility.

In the recent power system, flexible generation capacities have traditionally been utilized

to manage both unforeseen and anticipated changes in demand, as well as generation unit

failures. The two primary functions of the power plant have been to respond to demand

fluctuations (variability) and to ensure system balance in the event of a sudden generation

unit outage (stability) (Papaefthymiou et al., 2014). However, the future variable and inter-

mittent generation fluctuations are greater than those caused by the operation of previous

conventional generators and the variability of demand in the existing power system (Ba-

batunde et al., 2020; Bhuiyan et al., 2022; Cruz et al., 2018; Kaushik et al., 2022; Mohandes

et al., 2019; Papaefthymiou and Dragoon, 2016).

In addition, due to the structural changes in the sustainable power system, multiple un-

certainties and challenges arise, further intensifying the need for flexibility (Arboleya et al.,

2022; Sinsel et al., 2020). These changes include, on the one hand, the electrification of var-

ious end-use sectors, the widespread integration of DER, and the associated demand-side

load uncertainty (Babatunde et al., 2020; Badanjak and Pandžić, 2021; Bhuiyan et al., 2022;

Corinaldesi et al., 2019; Emmanuel et al., 2020; Hall and Geissler, 2021; Li and Mulder, 2021).

On the other hand, price volatility, negative prices, and fuel uncertainty add to the complex-

ity (Babatunde et al., 2020; Bhuiyan et al., 2022; Emmanuel et al., 2020; Kaushik et al., 2022).

The emergence of decentralized energy sources such as distributed generation, energy stor-

age, and flexible loads like electric vehicles also has significant implications for the operation

of the distribution grid (Eid et al., 2016). In this context, DER can pose challenges to network

stability and reliability due to resulting congestion and voltage issues, primarily affecting the

distribution grid (Knezovic et al., 2015).
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To meet the challenges of the decarbonized power system, the flexibility of the power sys-

tem must be increased. The necessary level of flexibility can be demonstrated by the con-

cept of residual load (Zöphel, 2022), referring to the total grid load minus the uncontrollable

fluctuating generation that must be covered by conventional power plants or other flexible

technologies. The fluctuation in future electricity generation leads to stronger and more fre-

quent fluctuations in the residual load (Ela et al., 2016) and, increasing demand for flexibility

in the power system.

Figure 8: Electricity generation, total grid load, and net load in Germany from 9th July to 18th July 2023 (Own illus-
tration, source: Bundesnetzagentur - SMARD (2023)).

Figure 8 shows the electricity generation per energy source and the total grid load. In addi-

tion, it depicts the daily fluctuation range of the residual load in relation to the contribution

of renewable energy generation. At the same time, the variable and intermittent generation

fluctuations are evident. Demonstrably, the higher the feed-in from PV and wind power

plants, the lower the residual load necessary to cover. When the residual load is zero, the

electricity demand is completely covered by renewable energy production. If the resid-

ual load becomes negative, the electricity generation from renewable energies exceeds the

amount demanded.

As a result, the flexibility need is necessary to address both holistic and local concerns. More

specifically, flexible electricity generation, distribution, storage, and demand are crucial to
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mitigate fluctuations in renewable energy generation, to ensure reliable power supply, and

to facilitate the efficient integration of renewable energy sources. Flexibility needs within

the power system must be understood to identify and select the most suitable flexibility so-

lutions and the means of realizing them.

In this context, the central challenge in the decarbonized power system lies in ensuring suf-

ficient flexibility in the power system to respond to the volatile and intermittent electricity

generation from renewable energies and the challenges posed by the sustainable electricity

system.
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3 Theoretical background of flexibility options
in future power systems

The fundamental requirement of achieving a high share of variable renewable energies is

the integration of flexibility options into the power system to manage temporal and spatial

fluctuations in electricity supply and demand (Lund et al., 2015; Ma et al., 2013). In this

context, the topics of power system flexibility and the intelligent coordination of different

flexibility options will become increasingly important.

3.1 Power system flexibility

The flexibility of the power system is regarded as a key factor in addressing the challenges

posed by future sustainable power systems. There exists a broad range of definitions of

power system flexibility (Degefa et al., 2021; Eurelectric, 2014; International Energy Agency,

2014). Generally, flexibility refers to the ability of the electricity system to manage both un-

foreseen and anticipated changes (Ela et al., 2016; Zöphel et al., 2018).

Previously, flexibility in power systems was defined as the ability of electricity generators

to respond to unexpected changes in load or system components. However, in the con-

text of high shares of variable renewable energy (VRE) in power systems, the definition has

evolved. The International Renewable Energy Agency (IRENA) extends this definition to

emphasize the need for rapid adaptability of the power system to address the volatility of

renewable energies in electricity supply and fluctuations in electricity demand. According

to IRENA, "Flexibility is the capability of a power system to cope with the variability and

uncertainty that VRE generation introduces into the system in different time scales, from

the very short to the long term, avoiding curtailment of VRE and reliably supplying all the

demanded energy to customers" (International Renewable Energy Agency, 2018, p. 92).
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The coordination of flexibility options at various levels of the power system are of paramount

importance. Congestion in distribution grids can be avoided by providing local flexibility,

in turn impacting the transmission grid. Efficient management of local decentralized flexi-

bility can reduce strain on the transmission grid and better utilize overall system resources.

Specifically, from a holistic power system perspective, power system flexibility pertains to

the capability of the transmission grid and its control mechanisms to adjust to fluctuations

in power generation and demand, ensuring secure, stable, and efficient power transmis-

sion. In the context of the local power system perspective, flexibility mainly corresponds to

the ability to change the power pattern of a unit within a time interval. Thus, local flexibility

aims to reduce peak loads, avoid distribution network bottlenecks, regulate network voltage,

optimize the integration of decentralized renewable energies, and optimize network utiliza-

tion. Hence, the flexibility requirements and types of flexibility options may vary based on

the specific tasks and responsibilities of different market players and the perspective of the

power system.

3.2 Flexibility options in a sustainable power system

Flexibility must be created both systemically and locally (International Smart Grid Action

Network, 2019). Therefore, flexibility options are crucial to providing flexibility and shaping

a sustainable and efficient electricity system.

There are various approaches to characterizing and classifying flexibility options (Akrami

et al., 2019; Alexopoulos et al., 2021; Alizadeh et al., 2016; Chatzivasileiadis et al., 2023; Deng

et al., 2022; Kara et al., 2022; Lund et al., 2015). Flexibility options within the power grid can

be characterized by multiple dimensions to understand their capabilities and contributions

to the power system’s flexibility. These dimensions provide insights into the potential of dif-

ferent flexibility options and their suitability for specific applications.

Numerous scientific contributions address various assessment characteristics, considering

multiple dimensions including specific flexibility resource location, capacity, the duration

and timing of flexibility provision, ramp rate, direction, and response time (Akrami et al.,

2019; Bhuiyan et al., 2022; Degefa et al., 2021; Eid et al., 2016; Ela et al., 2016; Lannoye et al.,

2012b; Salman et al., 2022; Villar et al., 2018). More recent studies have identified four di-

mensions for characterizing a flexibility product or service: time, spatiality, resource type
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(technology), and risk (Del Granado et al., 2023; Kara et al., 2022).

Flexibility options have been examined in the scientific literature from various perspec-

tives, including renewable energy integration (Alizadeh et al., 2016; Cruz et al., 2018; Lund

et al., 2015), Distributed Energy Resources (Eid et al., 2016; Villar et al., 2018), new technolo-

gies (Cruz et al., 2018; Lund et al., 2015), ancillary services (Degefa et al., 2021; Saele et al.,

2020), markets (Eid et al., 2016), power system needs (Badanjak and Pandžić, 2021; Inter-

national Smart Grid Action Network, 2019), and security of electricity supply (Santos et al.,

2022; Sperstad et al., 2020).

Among others, the main flexibility options can be differentiated in terms of transmission,

storage, generation, and demand. In this context, a distinction is made between temporal

and spatial flexibility. Temporal flexibility is the ability to change the timing of electricity

generation or consumption, and its resources for flexibility pertain to generation, demand,

and storage. Spatial flexibility is the ability to balance supply and demand geographically

and is particularly supported by grid-side flexibility options (Heider et al., 2021). Sector cou-

pling enables the linkage of temporal and spatial flexibility.

Successful integration and utilization of flexibility resources require coordinated planning

and cooperation for various flexibility deployments. Holistically, flexibility options can be

used to support the power system’s ability to adjust its generation or consumption in re-

sponse to sudden, anticipated, or unanticipated changes (Minniti et al., 2018). Locally, flex-

ibility options are often deployed to effect changes in consumption or generation patterns

due to direct or indirect signals (Minniti et al., 2018). Therefore, when assessing flexibility

resources from different power system perspectives, the spatial granularity and aggregation

level of individual flexibility options are pivotal.

3.3 Flexibility resources from a holistic power system
perspective

From a holistic power system perspective, flexibility resources can be broadly categorized

into demand-side, supply-side, grid expansion, and storage flexibility potentials. Flexibility

resources here refer to flexible assets that are located near central power generation plants or

within the national or regional power grid. These resources typically have larger capacities
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and greater potential to provide flexibility. Figure 9 presents the flexibility resources related

to the holistic power system (highlighted in gray).

Figure 9: Flexibility resources from a holistic power system perspective.

With respect to holistic power system, flexibility resources on the supply-side can involve

centralized solutions such as natural gas-fired power plants and large-scale energy storage

systems to align electricity generation with demand. Supply-side flexibility involves adjust-

ing the output of conventional power plants, renewable energy sources, and even flexible

industrial processes to balance supply and demand. Therefore, supply-side flexibility helps

to mitigate fluctuations in generation, ensuring power system reliability and reducing the

need for costly backup capacities.

With regard to demand-side flexibility, the potential flexibility may include engaging con-

sumers as active participants in the energy system. The goal is to collaborate with con-

sumers to optimize energy consumption patterns and adjust them to match the available

electricity generation. In overview, this can be achieved particularly through centralized

demand-response programs to create incentives for consumers to reduce their electricity

consumption during peak load periods, alleviating stress on the grid and enhancing its sta-

bility.

One further flexible resource to increase the flexibility of the power system from an over-

all point of view are energy storages. Battery storage, pumped hydro storage, compressed
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air energy storage, and other storage technologies allow excess energy generated during pe-

riods of high production to be stored and released during periods of high demand. Hence,

storages can help to bridge the gap between electricity generation and consumption, bol-

stering power system stability. In this context, such technologies are significant in the overall

optimization of the power system and can store or provide a substantial amount of energy,

capable of responding to fluctuations in both electricity generation and demand across the

entire grid.

Likewise, another source of flexibility exists with regard to the transmission grid. The grid

has significant flexibility potential, involving the expansion and reinforcement of grid infras-

tructure to accommodate the integration of renewable energy sources and utilizing smart

grid technologies to efficiently control and monitor grid operations.

To sum up, from an overall system perspective, flexibility provision refers to the ability to

maintain a balance between electricity generation and demand across the entire grid. This

includes the coordination of flexibility provision by various stakeholders, including flexible

generation resources, energy storage, and demand response measures, to balance fluctu-

ations in electricity generation and demand and ensure grid stability. Flexibility provision

at the holistic system level aims to avoid congestion in the transmission grid, maintain grid

frequency stability, and facilitate the integration of renewable energy sources (Lannoye et

al., 2012a; Ma et al., 2013; Zeng et al., 2022; Zhao et al., 2016).

3.4 Flexibility resources from a local power system perspective

In general, from a local power system perspective, flexibility resources refer to decentralized

flexible assets positioned at the local or regional level, closer to consumers. These resources

are typically smaller in scale and have lower capacity compared to flexible resources from a

holistic power system point of view. Decentralized flexibility options pertain to the potential

of small and distributed resources to contribute to the flexibility of the power system.

Similar to central flexibility resources, from a local power system level, flexibility potentials

encompass a spectrum of demand-side, supply-side, grid, and storage resources collectively

contributing to a resilient and adaptable power system (see Figure 10, highlighted in gray).

From a local perspective, both demand and generation flexibilities are located on the end-

consumer side.
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3 Theoretical background of flexibility options in future power systems

Figure 10: Flexibility resources from a local power system perspective.

Traditionally, the distribution grid has been considered a passive conduit for the delivery of

electricity from the transmission grid to end-users. However, the increasing penetration of

renewable energy sources, distributed generation, and energy storage systems has endowed

the distribution grid with newfound capabilities to offer flexibility services.

In addition, supply-side flexibility resources in a decentralized context include local renew-

able energy sources such as rooftop solar panels, small wind turbines, or micro-hydropower

plants. These resources can be utilized to feed into the local area or to feed excess energy

back into the grid.

With regard to the decentralized storage flexibility resources, storages integrated into the

local power system offer valuable flexibility. These can encompass batteries or other energy

storage systems located in households, businesses, or community buildings. Hence, stor-

ages can be employed to store surplus energy from renewable sources and utilize it during

periods of high demand or low renewable energy generation, so it can stabilize the grid dur-

ing demand peaks or generation shortfalls.

In this local context, resources for demand-side flexibility in a decentralized context might

involve the use of smart home devices or energy management systems to adjust energy

consumption patterns based on real-time energy prices or grid conditions. In particular,

electric vehicles can be utilized for demand response, making them a valuable flexibility
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service provider.

Hence, locally, flexibility provision regards the adaption of electricity generation and con-

sumption within a local distribution network. It can be used to manage voltage levels, mit-

igate congestion, and ensure efficient power flow. Flexibility resources can enhance local

reliability and contribute to overall grid stability. In this context, DERs enable flexibility

and represent flexibility resources, from the demand- and supply-side, alongside storage

flexibility. Apart from intensifying grid-related issues, DERs can also offer a potential solu-

tion due to their inherent controllability. Many DER units can change their generation and

consumption patterns with limited impact on their primary energy service. The flexibil-

ity potential that DERs offer is substantial and suitable to address location-specific issues,

such as congestion, but also, when properly aggregated, to support flexibility sources at the

transmission level. This contribution can help to avoid bottlenecks in the local distribution

grid, support network stability, and promote decentralized renewable energy supply.
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4 Research contribution of the appended
scientific papers

This section provides an overview of the five research papers appended in this dissertation

with regard to their motivations and research objectives, highlighting the contribution of

each paper in the context of the methodology used. The key results and a critical appraisal

are also presented for each paper. Regarding the approaches for analyzing the impacts of

flexible resources in the power system, two power system perspectives are differentiated.

From a holistic power system perspective, the flexibility resources consisting of storage ca-

pacities, grid expansion, and demand-side and generation-side flexibility options are con-

sidered. With regard to the flexibility resources at the local level, EVs are the focus of the

scientific contributions.

4.1 Methodological framework

The methodological framework for analyzing the impact of flexibility options can vary de-

pending on the perspective and the related points of interest. In the following, a differen-

tiation is made between the holistic and the local power system perspective. In this con-

text, the geographical scope, spatial granularity, and aggregation level of individual flexibil-

ity resources play a significant role. Table 1 illustrates the key differences between these to

perspectives within this dissertation and associates them with the related methodological

approach and the corresponding scientific publications.
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Table 1: Methodological framework within this thesis.

Holistic power system

perspective

Local power system

perspective

Grid level
• Transmission grid • Distribution grid

Aggregation level
• High aggregation level

(low spatial granularity)

• Low aggregation level

(high spatial granularity)

Flexible

resources

considered

• Demand-side flexibility

• Supply-side flexibility

• Storage flexibility

• Grid-side flexibility

• Electric vehicles

Points of interest
• Incentives to flexibility

investments

• Risk attitudes of public and

private decision makers

• Congestion management

• Interdependencies of

different flexibility options

• Market penetrations of EVs

• Individual charging behavior

and related flexibility

potential

• Simultaneity factors of EV

charging processes

Methodological

approaches
• Game theoretical approaches

combined with

implementing stylized

models of liberalized

electricity markets

• Robust/Stochastic

optimization

• Reduced LCA approach

• Statistical analysis

• Clustering approaches

• Simulation
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4.1 Methodological framework

Table 4.1:Methodological framework within this thesis (cont.).

Holistic power system

perspective

Local power system

perspective

Related

publications
• Paper A: Weibelzahl, M.,

Märtz, A. (2020), Optimal

storage and transmission

investments in a bilevel

electricity market model,

Annals of Operations

Research.

• Paper B: Coniglio, S.,

Halbrügge, S., Märtz, A.,

Weibelzahl, M. (forth.), The

flexibility puzzle in liberalized

electricity markets: Under-

standing flexibility invest-

ments under different risk

attitudes, submitted to a

scientific journal.

• Paper C: Märtz, A., Plötz, P.,

Jochem, P. (2021), Global

perspective on CO2 emissions

of electric vehicles, Environ-

mental Research Letters.

• Paper D: Märtz, A.,

Langenmayr, U., Ried, S.,

Seddig, K., Jochem, P. (2022),

Charging behavior of electric

vehicles: Temporal clustering

based on real-world data,

Energies.

• Paper E: Märtz, A., Held, L.,

Jochem, P., Fichtner, W.,

Suriyah, M., Leibfried, T.

(2019), Development of a tool

for the determination of

simultaneity factors in PEV

charging processes, Procee-

dings of the 3rd E-Mobility

Integration Symposium.

From the holistic power system perspective, the focus lies on examining the entire power

system. The goal is to identify flexibility resources available at the aggregated level of the

overall power system and explore how they can contribute to renewable energy integration

and ensure supply security. This perspective involves consideration of large geographical ar-

eas, typically encompassing the transmission grid. Consequently, this perspective implies a

coarse granularity and a high level of analytic aggregation. From a holistic perspective, grid-

side, demand-side, generation-side, and storage-side flexibility resources are considered in
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particular. The central focus of the analysis lies on the analysis of incentives for investing

in flexibility options, considering the individual risk attitude of private and public actors

with regard to (flexibility) investments, different congestion management regimes, and the

interplay between different flexibility resources.

From the local power system perspective, flexibility options are examined at a much smaller

and more localized level. The emphasis is on utilizing flexible resources, particularly within

the distribution network. From a local viewpoint, specific technologies are investigated to

identify technology-specific flexibility potential. Simultaneously, the load profiles of indi-

vidual consumers and installations are analyzed to understand how flexibility can be used

to adjust electricity demand to fluctuating generation and to reduce peak loads. Analyses

at the distribution network level are conducted on smaller geographical scales, focusing on

local or even individual units. From the local power system perspective, the spatial granu-

larity is much finer, and the aggregation level is very small, as individual units and specific

locations are detailed. EVs are under central analysis in this thesis. For flexibility provi-

sion locally, the market ramp-up of EVs, individual charging behavior, available flexibility

potential, and simultaneity of the charging processes are decisive features.

4.2 Methodological approaches from a holistic power system
perspective

To examine flexibility options holistically, this study translates electricity market models into

multistage mathematical optimization models. To account for various stakeholders and

their interdependent relationships, these models are coupled with approaches from game

theory. Specifically, the methodology introduced within this thesis considers

• the multistage Stackelberg game and

• stylized models of liberalized electricity markets.

The starting point of this consideration is a modeling of the complex interaction of regu-

lated levels and competitive processes in the electricity market, considering the interest of

the different market players and their mutual relationships. This interaction rests on the in-

terdependencies between optimal grid investments by the regulated network operator and

optimal investments in storage and generation capacities by private actors. From a game-

theoretical perspective, this constellation corresponds to a multistage Stackelberg game, in
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4.2 Methodological approaches from a holistic power system perspective

which the mutual reactions of individual market players are analyzed. In this context, mar-

ket participants act interdependently and respond to the decisions of other market players.

Each market player optimizes their own actions while considering the decisions of the other

players.

For the methodological approaches in this dissertation, the liberalized electricity market

is represented by multilevel mathematical optimization models, which are combined with

game-theoretical approaches. Depending on the research objective and its level of com-

plexity, a bilevel electricity market model (Chapter 4.2.1) and a four-level electricity market

model (Chapter 4.2.2) are implemented.

4.2.1 A bilevel market model (Paper A)

4.2.1.1 Motivation and research objective

Modern electricity markets are typically characterized by spatial or regional divergence of

energy supply and demand. This trend also typifies the German electricity market, with sig-

nificant wind production in the north and high consumption in the south (Bucksteeg et al.,

2015). In addition to the regional divergence of supply and demand, intermittent renewable

energy injection also leads to a temporal divergence between generated and consumed en-

ergy. The regional and temporal dimensions of divergence are closely interrelated.

As a direct consequence of the regional divergence between supply and demand, situations

often arise in which transmission constraints limit electricity flows between nodes due to

technical limitations (Dijk and Willems, 2011; Neuhoff et al., 2013). To address the spatial

divergence, long-term transmission investments and the implementation of various short-

term congestion management measures were discussed as potential solutions to network

congestion (Grimm et al., 2016a; Grimm et al., 2016b; Jenabi et al., 2013; Zambrano and

Olaya, 2017). Simultaneously, energy storage technologies play a crucial role. On one hand,

storage facilities that typically smooth out intertemporal demand peaks also have the po-

tential to reduce the need for large network investments. On the other hand, an expanded

interregional network can improve the adaptation of the intertemporal divergence between

demand and intermittent supply (Steinke et al., 2013).
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This research paper investigates the interdependencies between storage and network in-

vestments by different players under various congestion management regimes in a multi-

stage game translated into a two-level market model. The study also analyzes whether the

chosen congestion management mechanism can significantly impact on long-term invest-

ments in both transmission lines and storage facilities.

4.2.1.2 Methodological approach

This contribution centers on a game-theoretic perspective utilizing a multistage Stackelberg

game framework, translated into a two-level mathematical optimization problem. In this

hierarchical game, the TSO acts as the leader, making the initial optimal investment deci-

sion in network capacities. Competing firms then act as followers, optimally responding to

the leader’s investment decision. This structure is consistent with extensive literature such

as Baringo and Conejo (2012), Fan et al. (2009), Gil et al. (2002), Grimm et al. (2016a), Jenabi

et al. (2013), and Sauma and Oren (2006), which also consider multistage games with the

TSO serving as the leader. The TSO anticipates the market outcomes of the second stage,

where competitive firms engage in energy trading and invest in storage facilities once the

network expansion by the TSO has been realized. Following the sequential investment de-

cisions of the TSO and the firms, trading occurs across multiple zonal spot markets. This

trading reflects the profitability and efficiency of respective investment decisions while di-

rectly considering potentially constrained network capacities, which may lead to a region-

ally differentiated price structure.

The temporal timeframe of the modeled relationships and the underlying Stackelberg game

is depicted in Figure 11.

Figure 11: Timing of the underlying multistage Stackelberg game of the bilevel market model (based on Weibelzahl
and Märtz (2020)).

It is assumed that, in each phase, all (investment) decisions from the preceding stage(s) can

be observed by rational actors, enabling accurate expectation formation (Sauma and Oren,

2006).
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The mathematical modeling thus results in a bilevel optimization model, corresponding

to an equilibrium model of the electricity market. In this model, a central planner (e.g.,

the regulated grid operator) anticipates the location and production decisions of private-

generation companies when making network expansion decisions (investments in network

capacities). The bilevel optimization problem is illustrated schematically in Figure 12.

Figure 12: Schematic representation of the bilevel optimization problem.

Being non-convex and non-differentiable, bilevel models are known to be NP-hard, im-

plying that this class of optimization problem is in general very challenging and hard to

solve (Jeroslow, 1985; Pozo et al., 2017; Sariddichainunta and Inuiguchi, 2017; Zare et al.,

2017). In the underlying contribution, the bilevel optimization model was reformulated to

a single-level problem by using a linear reformulation. In addition, given that the second

problem is a convex (concave) and continuous optimization problem with only linear con-

straints, Karush-Kuhn-Tucker (KKT) reformulation including complementary constraints

can be used to replace the bilevel problem with a single-level problem (Colson et al., 2007;

Dempe, 2002).

Accounting for various zonal congestion management regimes, the model was applied us-

ing a commonly used six-node example in the literature (Chao and Peck, 1996), and the

numerical results were interpreted.

4.2.1.3 Key results

Within the scope of this research contribution, both the absolute capacity of investments

and the locations of corresponding storage facilities and grid investments were evaluated,

considering different congestion management regimes.
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It was observed that appropriate storage investments by private firms can generally reduce

TSO transmission investments. However, investments in a (zonal) market environment can

yield suboptimal outcomes compared to an integrated planning solution (nodal pricing).

Moreover, invested storage facilities may affect inter-regional price and demand structures,

requiring a reconfiguration of optimal zonal boundaries; that is, in the case of storage facili-

ties, the welfare-maximizing zone configuration may change, as compared to the no-storage

case.

In overview, in the long-term, investments from private market participants in energy stor-

age significantly influences decisions made by the state-regulated grid operator concerning

the level of network fees set by the TSO, the location and extent of transmission investments,

the configuration of optimal price zones, and social welfare. Hence, policy recommenda-

tions should be based on economic analyses encompassing storage capacities and interac-

tions with grid expansion.

4.2.1.4 Critical appraisal

For the purposes of the paper, only two time periods were examined as part of the case study.

This can be justified due to the complexity of the model. This temporal frame contains the

smallest number of time periods to be able to represent storage facility effects. Neverthe-

less, in contrast to simple two-period models (see e.g. (Sioshansi, 2010; Sioshansi, 2014)),

the implemented model is, however, generally able to capture more than two time periods.

Ultimately, this may help to increase the accuracy of the proposed model and should be

considered in future research.

With regard to the case study, the six-node model used represents a highly generalized case

study. However, it is widely accepted and used in a broad scientific community (Jenabi et

al., 2013; Grimm et al., 2016a; Ambrosius et al., 2022). Due to the complexity of the model,

the six-node model is a suitable to validate modeling approaches. Notably, the presented

optimization model is also appropriate for highly complex case studies.
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4.2.2 A four-level market model (Paper B)

4.2.2.1 Motivation and research objective

With the increasing penetration of renewable energy sources, supply-side variability and its

inherent uncertainty pose new challenges to balance supply and demand. In particular, the

loss of generation flexibility due to the growing dominance of renewable energy production

leads to a phenomenon known as the flexibility gap. To address this gap, new forms of flex-

ibility are required. In this context, the challenge of selecting the "right" mix of flexibility

options, akin to a flexibility puzzle, becomes pivotal.

Simultaneously, the degree of risk aversion exhibited by numerous stakeholder groups in

the electricity market can significantly impact the location and quantity of flexibility assets

that these stakeholders are willing to invest in. Properly modeling the flexibility investment

behavior of diverse market participants necessitates accurately and realistically incorpo-

rating the level of risk tolerance of involved parties into energy market models (Ambrosius

et al., 2020; Ambrosius et al., 2022; Grimm et al., 2019; Grimm et al., 2021).

This research analyzes the emerging flexibility challenge and, consequently, covers an ap-

propriate mix of flexibility options while considering the individual risk attitudes of different

stakeholders. To this end, a game-theoretical approach to a multistage investment game is

proposed, accounting for uncertainties, and is then translated into a four-level mathemati-

cal market model.

4.2.2.2 Methodological approach

The contribution examines the flexibility puzzle in a liberalized electricity market under un-

certainty as an investment game. This can be interpreted as a multistage Stackelberg game

in which different players with varying risk attitudes make decisions under uncertainty. It is

assumed that the involved players form rational expectations about the optimal responses

of players who make decisions after them.

The temporal framework underlying the multistage game-theoretical approach is illustrated

in Figure 13. The first stage considers public transmission investments by the TSO, made

anticipating private investments in storage and conventional backup generation facilities.
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Figure 13: Timing of the underlying multistage Stackelberg game of the four-level market model (based on
Weibelzahl and Märtz (2020)).

These private investments are made in the second stage based on expected spot market

profits, which are determined in the third stage on a zonal spot market. The fourth stage

considers TSO’s redispatch measures in case the contracted spot market quantities cannot

be transmitted through the power grid.

While investment decisions are made only once, trading on the spot market and the re-

dispatch performed by the TSO for all modeled time periods follow. This modeling is also

based on an equilibrium model of the electricity market, where a central planner (e.g., the

regulated grid operator) anticipates private investment decisions by generation companies

in storage and backup generators to determine network expansion (investment in network

capacities). Electricity trading occurs through a central power exchange, neglecting possi-

ble network restrictions, following the merit order principle.

In the fourth stage, if a non-transportable spot market outcome occurs, a cost-based re-

dispatch is conducted. In this process, the TSO utilizes power plants and consumers in

the most cost-effective way possible to ensures permissible flows. To achieve this, the TSO

may require some generators to shut down or ramp up their plants, or may ask consumers to

change their demand. Plants that are shut down must pay their variable costs saved through

the shutdown to the TSO, while newly ramped-up plants receive their variable costs.

The multistage Stackelberg game developed in the paper is translated into a four-level op-

timization problem (see Figure 14) and transformed through reformulation into an equiva-

lent single-level optimization model. This model is then solved using a spatial branch-and-

bound method to achieve global optimality.
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Figure 14: Schematic representation of the four-level optimization problem.

Using a well-established academic case study, the model is applied to analyze the effects

of the varying risk preferences of private and public decision-makers on long-term invest-

ments in the considered flexibility options. One key feature of the study involves simulating

investments in an uncertain environment. The uncertainties are reflected in variables such

as CO2 prices, levels of renewable energy injection, and demand levels.

4.2.2.3 Key results

Through the modeling and analysis of various types of risk preferences and with the help

of a comprehensive case study, this contribution has demonstrated that the lower risk aver-

sion of a public investor leads to higher investments and greater welfare, even if the private

investor’s risk attitude remains risk-averse. When comparing uniform and zonal market

designs, the results indicate that a zonal market design, thanks to the consideration of inter-

zonal transmission lines, can require less network expansion and can consequently lead to

increased regional investments in generation capacity and storage.

The computational results of the case study also highlight that, due to the urgent need for

adequate investments in flexibility, it is important to consider not only the market design but

also the risk behavior inherent in different market designs. It has been observed that differ-

ing risk preferences among private and public investors (e.g., companies and grid operators)
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result in distinct investments that are more or less desirable from a system perspective. To

create targeted incentives for (flexible) investments it becomes crucial understanding how

policymakers can address varying risk preferences.

4.2.2.4 Critical appraisal

The model could be expanded in various directions, such as incorporating different forms

of demand flexibility (including demand shifting) or storage, market-based redispatch, and

investments in electrification (e.g., EVs or heat pumps), which could help policymakers to

pave the way towards a flexible, climate-neutral electricity system.

As already critically noted in the bilevel market model, the applied six-node model rep-

resents a highly generalized case study. Nevertheless, it is accepted and applied by a broad

scientific community. For reasons of complexity, it is a suitable option for validating model

approaches. In general, the established model is also appropriate for highly complex case

studies.

It is worth mentioning critically that the model assumes an ATC-based market coupling.

In this setup, companies belonging to a given zonal spot market receive price signals that

encourage them to consider inter-zonal network capacity. Intra-zonal transmission limits

and phase angles are completely ignored during the spot market clearing. Such a commonly

applied market coupling approach can, depending on the structure of the transmission net-

work and associated capacities, lead to post-optimization in redispatch.

4.3 Methodological approaches from a local power system
perspective

From the local perspective, market penetration of distributed energy sources and technolo-

gies, individual behavior (demand and generation), and spatial granularity regionalization

play a role with regard to decentralized flexibility options.

In the context of this dissertation, the focus lies on EVs as decentralized flexibility resources.

To address the future challenges and opportunities associated with the introduction of EVs,
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it is essential to quantify the impacts on the local power system. In this context, the method-

ology used within this thesis provides

• a reduced LCA approach,

• statistical analysis,

• clustering approaches, and

• a simulation approach.

There is a broad consensus that the critical factor for a system integration of EVs is not the

additional energy demand but the potential load peaks resulting from many simultaneous

charging processes. Therefore, accurate predictions of the new additional load caused by EV

charging are necessary. As is common today, synthetic load profiles or empirical data from

field tests are used as input for energy system models. Current knowledge of the characteris-

tics of load profiles of EVs in local areas is limited (Helmus et al., 2020; Noussan and Neirotti,

2020). More informed insights into charging habits, the amount of energy charged, and

charging power can empower to harness the flexibility potential of electric vehicle charging,

for instance, to mitigate peak loads.

Therefore, from a local power system perspective, the market penetration and the CO2

mitigation potential of EVs (Chapter 4.3.1), informed knowledge about individual charg-

ing behavior (Chapter 4.3.2), and the simultaneities of charging processes (Chapter 4.3.3)

are analyzed in this dissertation.

4.3.1 Market penetration of electric vehicles and related greenhouse gas

mitigation potential (Paper C)

4.3.1.1 Motivation and research objective

The transportation sector is responsible for approximately a quarter of global energy-related

greenhouse gas emissions and is the only energy-related sector that continues to exhibit in-

creasing emissions compared to 1990. EVs are viewed as a promising option to reduce green-

house gas emissions in the transportation sector, particularly due to the growing share of

renewable energy in electricity generation.
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Numerous studies have already examined the life-cycle greenhouse gas emissions of plug-

in electric vehicles (PEVs) compared to internal combustion engine vehicles (ICEVs). These

studies demonstrate that PEV emissions depend heavily on the assumed electricity mix,

driving behavior, and environmental conditions, leading to regional variability (Cox et al.,

2018; Gómez Vilchez and Jochem, 2020).

The increasing proportion of renewable energy in electricity generation also affects bat-

tery production and the charging of EVs. However, most studies still assume a fixed carbon

content for electricity in the environmental assessment of PEVs, and the rapid evolution of

the generation mix has yet to be examined on a global scale. Furthermore, the inclusion of

upstream emissions remains an open policy issue. The overall reduction of greenhouse gas

emissions through PEVs is primarily determined primarily by the evolution of the vehicle

fleet and the specific emissions of electricity generation.

This study combine two PEV market scenarios with an electricity generation scenario and

investigate the mutual influence of the electricity mix development on the potential for CO2

emissions reduction through EVs.

4.3.1.2 Methodological approaches

This paper employs a reduced Life Cycle Assessment (LCA) approach, with a focus on the us-

age phase, while additionally incorporating emission factors from the literature stemming

from battery and vehicle production.

The assessment is conducted by combining scenarios for the future PEV fleet in key au-

tomotive markets with values from the literature concerning their life cycle greenhouse gas

balances, along with the impacts of decreasing the carbon intensity of electricity over time.

In this process, a forthcoming energy scenario is examined for various global markets (China,

Europe, Japan, United States, and India) characterized by high passenger car sales and con-

nected with two distinct PEV market diffusion models. An evaluation is performed to eval-

uate the potential impact of the combined consideration of electricity generation mix and

PEV market diffusion in Europe, China, Japan, the United States, and India.
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4.3.1.3 Key results

The results obtained through the reduced LCA indicate that PEVs can lead to the necessary

reduction, but it is crucial for the entire vehicle fleet to be operated nearly emission-free. The

greenhouse gas emissions of PEVs exhibit significant temporal variation in many countries

due to the decarbonization of the grid. The common assumption in many studies of a fixed

carbon intensity in the grid significantly underestimates this change. If PEVs are chosen as

a key option for reducing GHG emissions from passenger cars, the market diffusion of PEVs

should not be delayed, as improvements in the carbon intensity of the electricity grid can

immediately increase the remaining carbon budget. Our findings demonstrate that post-

poning PEV market diffusion negatively impacts the remaining carbon budgets.

The central result shows, that the remaining carbon budget is best utilized with early PEV

market diffusion. Waiting for cleaner PEV battery production cannot compensate for the

lost carbon budget associated with the use of internal combustion engine vehicles.

4.3.1.4 Critical appraisal

Within the scope of the underlying paper, no low-carbon or carbon-free fuels were con-

sidered. The article focused exclusively on the indirect emissions of PEVs and the changes

related to the energy transition in electricity generation, specifically the reduced greenhouse

gas emissions from battery production and lower upstream emissions from electricity gen-

eration that affect the vehicle use phase of all current PEVs (Cox et al., 2018; Kim et al., 2016).

In addition, due to limited experience with PEV disposal, emissions from vehicle disposal

were not considered.

Notably, the results are subject to uncertainty, as future parameters may evolve differently

than anticipated. The scenarios and greenhouse gas reduction potentials are based on a set

of assumptions. However, all relevant electricity scenarios assume future decarbonization

of electricity generation, but at different rates. Therefore, the observed impact on the car-

bon budget remains robust across variations in the chosen scenario, although the extent of

the impact may vary.
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4.3.2 Individual charging behavior and flexibility potential (Paper D)

4.3.2.1 Motivation and research objective

With the increasing penetration of BEVs, understanding the driving and charging patterns

of BEV users becomes of paramount importance to comprehend their charging behaviors

and the associated flexibility potential. Gaining insight into the complexity of spatial and

temporal charging behavior is immensely significant for future sizing and flexibility assess-

ment of local charging infrastructure or leveraging BEV flexibility for renewable energy inte-

gration. Therefore, comprehensive knowledge of charging behavior and the resulting load

profiles is essential for a successful and thoughtful integration of EVs into the energy system.

The goal is to investigate the insights that can be gained from the individually timed charg-

ing behavior of BEV users. To achieve this, a two-stage cluster algorithm approach was

employed to identify user groups and derive a standard charging pattern for each group.

The BEV user groups were subsequently validated and associated with charging locations

such as home, workplace, and public areas, supported by synthetic load profiles. Further-

more, this paper also wants to provide statistical parameters for the replication and reuse of

the underlying real-world dataset.

4.3.2.2 Methodological approaches

In the context of the paper, statistical analyses and a two-stage cluster algorithm approach

were employed to investigate the insights that can be derived from the temporal charging

behavior of BEV users, identify user groups, and derive a standard charging pattern for each

group.

Through the statistical analyses, real-world insights into charging behavior were provided

based on a comprehensive dataset of 2.6 million charging sessions in 2019. This analysis

focused particularly on the charging process, including charging behavior, utilized charging

power, and plug-in times, which represent the corresponding charging flexibility potential.

Subsequently, a two-stage clustering approach was applied. Before the determination of

the final number of clusters, the clustering approach was executed with several different

cluster numbers, and the Akaike Information Criterion and Bayesian Information Criterion

(Schwarz, 1978) were calculated. Both criteria helped assess the fit of the developed model
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and avoid overfitting the data. Based on the analysis of these criteria, Gaussian Mixture

Model (GMM) clustering with seven clusters was performed.

The total number of charging activities during each of the derived temporal charging clus-

ters was counted, and the proportion of charging activities for each cluster was calculated

for each user. These proportions for each user formed the basis for the next clustering step.

The unsupervised k-Means clustering approach was utilized to derive different temporal be-

havioral clusters (Lloyd, 1982). K-Means is a simple and commonly used clustering method

for behavioral analysis. Examples of applying k-Means for analyzing driving patterns are

Fugiglando et al. (2019) and Dardas et al. (2020).

To assess whether all these dimensions were necessary for the k-Means clustering, the di-

mensions were normalized, and the number of dimensions was reduced through a sub-

sequent Principal Component Analysis (PCA) (Fugiglando et al., 2019). The final number

of clusters was determined by applying the elbow method to different numbers of clusters

(Syakur et al., 2018).

Finally, the BEV user groups were validated and mapped to charging locations such as home,

workplace, and public areas, supported by synthetic load profiles.

4.3.2.3 Key results

The results obtained from the underlying paper allow for insights into real charging behav-

ior. Applying a GMM to a real dataset reveals seven distinct charging clusters. Building upon

this, five BEV user groups are identified through k-means clustering. These user groups are

then mapped to charging locations, with validation using synthetic load profiles. This paper

further provides the statistical parameters necessary to replicate and reuse the underlying

real dataset. Thus, the paper not only offers insights into real charging behavior but also

the opportunity to replicate the dataset, thereby reducing data scarcity. This replication can

greatly assist current energy system modelers in examining the load flexibility of BEVs in

much finer detail.

Based on the results of cluster analysis, an investigation was conducted into how homo-

geneous the charging behavior of BEV users was. Evidently, BEV users did not behave ho-

mogeneously, charging their vehicles at similar times and for similar durations. This insight

contradicted the categorization of BEV users into fixed user groups.
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In conclusion, the results demonstrate that insights into user groups of battery electric ve-

hicles and associated charging patterns and flexible (shiftable) loads can be drawn from the

exclusive examination of individual temporal charging data. Two main findings can be high-

lighted: in this early market phase, the analysis identified a surprisingly high number of op-

portunistic chargers during the day and the shifting of users between charging clusters. Fur-

thermore, an estimation of charging locations is possible. Derived load profiles have been

created, which can be used in energy system models to more accurately consider the load

shifting potential of BEVs.

4.3.2.4 Critical appraisal

Due to certain limiting factors, the Gaussian Mixture Model (GMM) clustering was em-

ployed. The high data concentration serves as a general indicator for the application of

density-based approaches, and in addition, the clustering approach must perform well in

terms of computation time and storage constraints when dealing with large datasets.

While the underlying dataset was extensive compared to other currently available BEV data,

the chosen approach relied solely on technical data, with user-specific data unavailable.

Additionally, all data originated from a specific BEV model, the BMW i3, and all charging

events occurred during an early phase of BEV market adoption. Nevertheless, the dataset

provides valuable insights for the current literature.

For future research, in addition to temporal aspects, further charging process factors should

be taken into account, including charging power, amount of energy charged, and charging

frequency. Furthermore, spatial distribution should be considered in future studies.

4.3.3 Simultaneity factors of EV charging processes (Paper E)

4.3.3.1 Motivation and research objective

One challenge associated with the integration of EVs into the power system is their relatively

high additional load compared to other household appliances, which can impact the power

grid. One crucial factor that has often been neglected in previous analyses is the simultane-

ity factor of charging processes. Previous studies have typically assumed that all EVs are
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charged simultaneously at a constant rate throughout the entire charging process. Never-

theless, this assumption does not align with the real-world behavior of EV users.

An analysis of the simultaneity factor of charging processes of EVs requires one to distin-

guish between two different aspects of simultaneity. Firstly, there is the simultaneity factor,

which describes the percentage of EVs being charged on the same day. This factor recognizes

the fact that not all EV owners necessarily charge their vehicles on a daily basis. Secondly,

there is the simultaneity factor related to the timing of charging processes within a single

day. This aspect considers the variation in when EVs are plugged in for charging throughout

the day.

The objective of this tool is to understand the simultaneity factor, crucial to accurately as-

sess the impact of EV charging on the power grid. It involves recognizing that not all EVs

are charged daily, as well as that the timing of charging events within a day can vary signif-

icantly. These considerations are essential for effective grid management and planning to

accommodate the growing adoption of EVs.

4.3.3.2 Methodological approaches

With regard to the simultaneity factor of the charging processes taking place within one

day, an open-source tool was developed. The tool calculates the simultaneity of the charg-

ing processes within one day, considering several key factors, including the number of EVs,

their arrival and departure times, different vehicle classes, various charging rates, and State

of Charge (SoC) at arrival as well as the desired SoC at departure.

Users of the tool have the flexibility to choose between using pre-included data or inputting

their own customized data, allowing for consideration of future trends in EV charging be-

havior and infrastructure. The tool is also particularly valuable when assessing the resulting

impacts on the power grid, as it enables the incorporation of household loads with specific

simultaneity patterns in combination with the associated simultaneities of EV charging, sig-

nificantly influencing grid dynamics.

An additional feature of the tool is its ability to differentiate between balanced and un-

balanced charging. Ergo, it accounts for scenarios in which EVs are unevenly distributed

across the three phases of a three-phase electrical system, as commonly found in Germany

and other countries. Accordingly, the tool can effectively model cases in which individual
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EVs are connected in an unbalanced manner across these three phases.

The tool not only provides a comprehensive framework by which to assess the simultaneity

of EV charging processes but also considers factors such as household loads, phase imbal-

ances, and future trends in EV adoption. Additionally, the tool includes a sensitivity analysis

to enhance its robustness and practical utility.

4.3.3.3 Key results

The results of this study and the tool presented are pivotal in understanding the interplay

between EV charging behavior and household load dynamics and the related simultaneity

factors.

The simultaneity of charging processes features in the analysis of the network effects of EVs.

However, it is crucial to differentiate between whether the EVs are evenly distributed across

the three phases of the electrical system or whether there is an uneven distribution. In any

scenario, it is important to note that the simultaneity factor is consistently lower than the

often assumed but empirically unrealistic factor of 1.

The results show occasional peaks in the match of about 0.8, although with a very low prob-

ability when 10 EVs are considered. Since the total peak load is a critical factor in grid analy-

ses, it is essential to consider household loads in addition to EV loads. Since the peak load of

households and that of EVs usually differ in time, this temporal discrepancy should also be

considered when calculating the total peak load. This adjustment consideres the fact that

the peak load is less than the sum of the individual peak loads due to the time discrepancy.

4.3.3.4 Critical appraisal

The default data set provided is sourced from various references, allowing user modifica-

tions for each value. However, when utilizing the tool and interpreting the resulting simul-

taneity or peak load values, it is important to be aware that extreme values may occasionally

arise empirically by chance.

In the tool, it is assumed that individual EVs are unevenly distributed across the three phases

of the electrical system. However, due to the lack of available data, household loads are con-

sidered to be symmetrically distributed across these three phases.
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As demonstrated, both the charging power and the number of EVs under consideration sig-

nificantly influence the simultaneity factors. These variables must be carefully analyzed to

better understand the simultaneity of EV charging processes and their implications for the

grid.
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The creation of an efficient and sustainable power system is a factor central to the success

of the energy transition and the realization of climate goals. The aim is to create an efficient,

flexible, and stable electricity market supporting the integration of renewable energies and

the use of flexibility options. In this context, the structural paradigm shift in the electric-

ity environment requires adaptations in regulatory structures and market mechanisms to

foster the integration of renewable energy sources and to harness the benefits of decentral-

ization and bidirectional power flow within a future sustainable power infrastructure.

Given these circumstances, a comprehensive revision of the electricity market design emer-

ges as imperative to support the assimilation of renewable energy sources and, conse-

quently, the introduction of flexibility options into the power system. At the same time, it

becomes essential to introduce incentives for stakeholders involved in the electricity sector

to contribute to the efficient integration of renewable energy sources and targeted invest-

ments in flexibility options.

Beyond the policy implications derived from the key results of this dissertation, the limi-

tations of the work are critically appraised.

5.1 Policy implications

Flexibility options enable the further design of the electricity market, as they are essen-

tial for increasing the integration of renewable energy sources, ensuring grid reliability and

enabling a more sustainable and efficient energy system. Consequently, electricity market

regulation and the corresponding market design must promote upcoming long-term invest-

ments in flexibility and, thus, support the integration of flexibility options in the electricity

system.

This redesign of the market structure applies to both the holistic and local power systems

51



5 Conclusion and critical appraisal

and requires a careful assessment of specific needs and framework conditions. Simultane-

ously, the complex interdependencies and interactions between different flexibility options

must be considered. This need for scrutiny pertains to the characteristics of individual flex-

ibility resources and the interplay across different grid levels and market players.

Policy recommendations for political decision-makers may derive from the central results of

this dissertation. These results underline the necessity of adapting the future market design

in the electricity market. In this context, the creation of a competitive market environment

for renewable energies is particularly important. Simultaneously, due to the urgent need for

appropriate flexibility investments, not only should targeted incentives for (flexibility) in-

vestments be created, but also the risk tolerance of the different market participants should

also be comprehensively recognized. With regard to the appropriate design of the market,

policymakers must also consider the interdependencies between the different flexibility op-

tions.

5.1.1 Market integration of renewable energies

The market design and institutional framework of the electricity power market should be

carefully designed to promote the integration of renewables into the German power system.

In achieving a sustainable and environmentally friendly energy power supply, the integra-

tion of renewable energies into the energy sector is a central objective. However, the growing

prominence of renewable energy sources such as wind and solar power also challenges the

electricity market design.

To ensure a smooth integration of renewable energies into the power system, certain policy

implications are of paramount importance. Policymakers need to establish incentives facil-

itating the expansion of renewable energy sources, thereby augmenting their contribution

to the energy mix. Various instruments like feed-in tariffs, quota systems, or auction meth-

ods can be deployed to encourage investments in renewables.

In this context, fostering competitive market dynamics for renewable energies is immensely

significant. A powerful instrument for transitioning the electricity sector from fossil fuel

dependency to renewable sources lies in the prudent incorporation of social and environ-

mental costs into electricity pricing.
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The electricity market design should incorporate the internalized environmental costs as-

sociated with fossil fuels, thereby ensuring fair competition between diverse energy sources

and achieving precision in the accounting of social costs. In a market-driven economy,

prices serve as key signals and control mechanisms, encouraging efficient behavior among

market participants and incentivizing investments in innovative business models.

Currently, fossil fuels are subsidized compared to renewable energies, and thus the costs

stemming from CO2-induced air pollution remain inadequately reflected in electricity prices.

As the cost of CO2 emissions from fossil fuels escalates due to the internalization of exter-

nal social costs, the attractiveness of renewable energy sources within the electricity market

will increase. Furthermore, the consistent pricing of CO2 incentivizes investment in tech-

nologies that significantly curtail CO2 emissions throughout the value chain. Consequently,

market-based pricing may be more influential than legislative mandates and prohibitions,

given that relative prices between fossil and renewable energy sources stimulate incentives

for innovation and investments within the electricity market.

5.1.2 Efficient long-term investments in flexibility

Policy implications to incentivize investments in flexibility options centrally facilitate the

integration of renewables, increasing grid stability, and strengthening the overall flexibility

of the power system. Given the paramount importance of carefully assembling the optimal

mix of flexibility options in modern power systems, policymakers have a key role to play in

creating strong incentives to effectively promote the deployment of novel flexibility options.

The results presented in this dissertation underline the crucial importance of carefully de-

signing the market structure to ensure efficient investment incentives for different market

participants. Thus, it importantly contributes to the evaluation of effective market architec-

tures providing appropriate long-term investment incentives with regard to the flexibility

puzzle in terms of demand-side, supply-side, storage, and grid-side flexibility resources.

With regard to appropriate investment incentives, the risk attitude of private and public

investors is also critical to the decision on investments in flexibility options. Given the

rapid and extensive transformation of energy systems, individual market participants are

confronted with various uncertainties, ranging from the progress of decarbonization to the

speed and extent of electrification.
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The results of this thesis show that to encourage investments in flexibility options, poli-

cymakers must consider the implications between the risk attitudes of public and private

investors in combination with different market framework conditions. To create targeted

incentives for investments, especially in flexible resources, it is necessary to understand

how policymakers can address different risk attitudes. This understanding enables to target

investments in flexibility that are consistent with overall climate goals.

5.1.3 Integration of electric vehicles as flexibility resources in the power

system

The rapid uptake of EVs holds great potential to transform the power system, as they can

serve not only as a means of transport but also as valuable components of a dynamic and

flexible energy system. The results underline the potential role of EVs in achieving the re-

quired emission reductions. However, the realization of this potential depends on the entire

vehicle fleet being operated with almost zero emissions. Demonstrably, policies must be de-

veloped to ensure that by 2050 either the entire vehicle fleet is electric or the remaining fuel

for combustion engine vehicles is carbon neutral.

Consequently, policies must simultaneously address both dimensions of this challenge: the

widespread introduction of EVs and the introduction of low-carbon fuels. Effective policies

to address these issues include the implementation of CO2 fleet targets and EV mandates

to address the first dimension, while the introduction of low-carbon fuel standards can ad-

dress the second.

As EVs represent a relevant flexibility resource, their integration into the local power sys-

tem needs to be promoted by decision-makers. In particular, the individual charging be-

havior, its considerable variability and its importance in combination with the resulting

flexibility potential must be considered in the future electricity market design. The simul-

taneous charging of numerous EVs at peak times can lead to grid congestion and, thus,

can damage the power system. The promotion of controlled charging behavior that favors

off-peak charging can help to distribute the grid load more evenly and reduce congestion.

Thus, promoting flexible charging behavior, where EV users adapt their charging times to

the availability of cheap electricity or renewable energy, can reduce charging costs and can

support the integration of renewable energy.
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5.1.4 Interdependencies of different flexibility options

Policymakers must understand the complicated interactions between different flexibility

options and solve the resulting flexibility puzzle to find a robust bundle of flexibility solu-

tions for the future. Market regulations can provide incentives to encourage the transfer of

flexibility across different grid levels.

The key findings of this work underline the need to consider the complex interaction of

different flexibility options in upcoming, cost-intensive (flexibility) investments. While the

expansion of transmission lines is subject to certain regulatory framework conditions, in-

vestments in storage are shaped by the profit expectations of the firms and the associated

(zonal) market constellations. This complex market environment must also be examined,

as it can significantly influence the investment decisions of individual market players.

Thus, the interplay of flexibility options between local and higher-level power systems can

help to balance energy supply and demand in different regions and ensure the overall sta-

bility and reliability of the power grid. The development and implementation of effective

flexibility options tailored to the specific needs and characteristics of both local and higher-

level power systems require coordination and cooperation between different power system

actors, including local utilities, grid operators and, policymakers.

5.2 Critical reflection

Within this thesis, flexibility options were investigated both from an overall system perspec-

tive and from a local perspective. Based on the results, policy implications were derived

for the design of the future electricity market, taking flexibility options into account. The

adaptation of the market design to include flexibility options can be done from both the

overall system perspective and the local perspective. However, these are based on certain

limitations that need to be critically appraised.

The underlying analyses rely primarily on the available flexibility resources from different

perspectives. However, notably, the concrete provision of flexibility and the use of flexibility

by the various market players were not considered. The market-, grid-, and system-oriented

usage of flexibility in the power system involves various actors with different interests and
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objectives. Moreover, in addition to long-term investments in flexibility options, it is imper-

ative to incentivize the efficient short-term use of flexibility options.

Given the liberalization of the electricity market and the coexistence of market-based and

regulated processes, it is essential to emphasize that not all stakeholders can readily access

and harness the available flexibility resources. Therefore, the legal framework also plays

a significant role. Hence, each market actor faces distinct responsibilities and challenges

within the electricity system, necessitating tailored adjustments to adequately account for

flexibility options. In this context, the analysis could benefit from a more comprehensive

examination of how these actors can interact with and leverage flexibility resources in the

power system.

Regarding the flexibility of EVs, the dissertation focuses primarily on their role within the lo-

cal power system. However, it is important to note that EVs can provide flexibility at various

power system levels, such as aggregated contribution from an overall system perspective or

through sector coupling. Numerous influencing factors determine the integration of EVs

into the local power system. Thus, future scientific approaches should extend beyond indi-

vidual charging behavior. By aligning the short-term use of EVs with grid demand through

these incentives, the full potential of EVs as dynamic flexibility resources can be realized,

ultimately contributing to a more stable, sustainable, and cost-effective electricity system.

In addition, the link between the overall system perspective and the local perspective is

crucial, as local measures can impact the overall power system. For example, an increased

adoption of EVs in a city can influence regional electricity demand and the need for broader

grid expansion. Consequently, coordination and communication between local authori-

ties, utilities, and higher-level regulators are paramount. Therefore, future analyses should

prominently address the interaction between different levels of the power system.

In sum, it is essential that the use of flexibility options be tailored to the unique characteris-

tics and needs of the grid. Factors such as grid size, geographical location, and the extent of

renewable energy penetration must all be considered. Moreover, the ideal mix of flexibility

options may change over time, as technologies evolve and as grid demands change. This

fluidity underlines the significance of adaptability and continuous investment in flexible

resources to ensure a stable and reliable electricity supply.
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The fundamental paradigm shift in German energy policy means a transition from conven-

tional fossil fuel-based power generation to the use of renewable energy sources. Hence, the

paradigm shift in the electricity sector, accompanied by an increasing share of fluctuating

renewable energies in electricity generation and a decreasing contribution from (flexible)

conventional generators, poses new challenges to future power systems and amplifies a

growing need for flexibility.

To successfully advance the energy transition, it is essential to establish economic and po-

litical framework conditions to promote the further expansion of renewable energies and

their integration into the electricity grid. In this context, a basic prerequisite for the effec-

tive use of an increasing share of fluctuating renewable energies (e.g., wind, solar) is the

integration of flexibility options into the power system to balance temporal and spatial fluc-

tuations in energy supply and demand. In line with the transformation of the energy sector,

decision-makers and stakeholders are faced with the task of dealing with the future design

of a sustainable electricity market incorporating flexibility options.

This dissertation investigated different flexibility options from both a holistic power sys-

tem perspective and from the perspective of a local power system. From the conceptual

dimension of power system flexibility to different definitions and measures of flexibility

options in terms of dimensions such as the temporal, the spatial, and the operational, the

theoretical background showed the associated complexities and the central importance of

flexibility resources in the future power system. An overview of flexibility resources related

to the holistic and local power system perspectives was given.

From a holistic power system perspective, supply-side and demand-side flexibility options,

along with the role of flexibility through the use of storage and the expansion of the grid in-

frastructure, were analyzed. To represent the electricity market and account for the complex

interactions between regulated entities and competitive processes, this thesis employed
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multi-level mathematical optimization models combined with approaches from game the-

ory. Game-theoretically, this constellation corresponds to a multistage Stackelberg game in

which the mutual reactions of individual market players are analyzed. In this context, mar-

ket participants act interdependently and respond to the decisions of other market players.

Each market player optimizes their own actions while considering the decisions of the other

players.

This dissertation showed that, in addition to the interactions of different flexibility options,

the individual risk attitude of the central stakeholders, in particular, must be factored into

the design of the future electricity market in order to create targeted market-based incen-

tives for (flexibility) investments. The research revealed interdependencies between invest-

ments in electricity storage by private firms and the decisions of the state-regulated grid

operator in grid expansion. It also demonstrated that the varying risk attitudes of private

and public investors can lead to different investments in flexibility options.

Examining the local power system, EVs were primarily considered flexibility resources. The

research underlined the importance of EVs for emissions reduction and conducted a com-

prehensive analysis of potential factors influencing an efficient integration of EVs into the

local power system. A central conclusion was that EVs represent a significant flexible re-

source in the local power system, and accounting for individual charging behavior in defin-

ing future regulatory conditions can support a fast and successful integration into the power

system.

In relation to the research questions posed within the framework of the dissertation, the

following findings can be summarized. To alleviate the flexibility gap caused by the growing

share of renewable energies, it is vital to consider both a holistic power system perspec-

tive and a local power system perspective. On a holistic level, a comprehensive approach

involves diversifying flexibility options, including supply-side, demand-side, storage, and

grid-side resources. These options should be strategically integrated to address temporal

and spatial fluctuations in renewable energy supply and ensure grid stability. From a local

power system perspective, integrating EVs as flexibility resources plays a significant role.

Factors like individual charging behavior, bidirectional charging capabilities, and the devel-

opment of supportive regulatory frameworks are key considerations.
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To encourage the use of the optimal combination of flexibility options, particularly from

a holistic system perspective, various measures can be adopted. In this context, such en-

couragement can stem from the targeted incentives for investments in flexibility options,

considering the interactions between different flexibility options and the risk behavior of

stakeholders. From a local power system perspective, it is crucial to consider individual mo-

bility and charging behavior when considering the integration of EVs as flexibility resources.

With regard to the role of flexibility options in future electricity market design, a well-structu-

red regulatory framework can help to ensure the optimal use of flexibility resources. First,

adapting the electricity market design to encourage and facilitate the use of flexibility op-

tions. In addition, market-based incentives to encourage investment in flexibility resources

must be formulated, recognizing that flexibility options work at both holistic and local lev-

els and ensuring their coordinated deployment. At the same time, the interactions between

flexibility options and stakeholder behavior must also be taken into account.

In summary, bridging the flexibility gap created by a growing share of renewable energies

is a crucial challenge for the future power system to confront. Therefore, the regulatory

framework for the electricity market should be designed to encourage the use of flexibility

options. By restructuring electricity markets and the associated electricity market design,

policymakers can ensure that flexibility resources are used optimally, leading to a more re-

liable, sustainable, and responsive power system at both the system-wide and local level.

Integrating flexibility options requires the simultaneous evolution of the existing electricity

market framework that not only incentivizes investments in flexibility resources, but also

formulates strategies for their strategic deployment across all levels of the power system.

Hence, this dissertation demonstrated the importance of flexibility options for the trans-

formation of the electricity sector and their essential role in the successful implementation

of the energy transition in Germany. The future consideration of flexibility options in sus-

tainable electricity market design will be crucial. However, the successful transformation of

the power sector is a complex and multidimensional process requiring the cooperation of

all relevant actors in the electricity market.
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A Optimal storage and transmission investments in a bilevel electricity market model

Abstract

This paper analyzes the interplay of transmission and storage investments in a multistage

game that we translate into a bilevel market model. In particular, on the first level we as-

sume that a transmission system operator chooses optimal line investments and a cor- re-

sponding optimal network fee. On the second level we model competitive firms that trade

energy on a zonal market with limited transmission capacities and decide on their optimal

storage facility investments. To the best of our knowledge, we are the first to analyze in-

terdependent transmission and storage facility investments in a zonal market environment

that accounts for the described hierarchical decision structure. As a first best benchmark,

we also present an integrated, single-level problem that may be interpreted as a long-run

nodal pricing model. Our numerical results show that adequate storage facility investments

of firms may in general have the potential to reduce the amount of line investments of the

transmission system operator. However, our bilevel zonal pricing model may yield ineffi-

cient investments in storages, which may be accompanied by suboptimal network facility

extensions as compared to the nodal pricing benchmark. In this context, the chosen zonal

configuration of the network will highly influence the equilibrium investment outcomes in-

cluding the size and location of the newly invested facilities. As zonal pricing is used for

instance in Australia or Europe, our models may be seen as valuable tools for evaluating

different regulatory policy options in the context of long-run investments in storage and

network facilities.

A.1 Introduction

Modern electricity markets are typically characterized by a spatial or regional divergence of

energy supply and demand. One example is the German electricity market with substantial

wind production in the north and a high consumption in the south; see Bucksteeg et al.

(2015). Given transmission capacity shortages, as a direct result of the regional divergence

of demand and supply, corresponding network congestion arises in many situations, where

power flows between nodes are restricted by binding technical constraints; see also Dijk and

Willems (2011) or Neuhoff et al. (2013). In this context, long-run transmission investments

and the implementation of different short-run congestion management regimes are fre-

quently discussed as possible solutions to network congestion; see for instance Jenabi et al.

(2013), Grimm et al. (2016a), Grimm et al. (2016b), and Zambrano and Olaya (2017). Besides

the described regional divergence of supply and demand, intermittent renewable energy
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supply additionally yields a temporal divergence of the produced and consumed energy. In

general, such an intermittent renewable energy production calls for additional transmis-

sion capacities in order to being able to accommodate arising peak flows. Obviously, both

the regional and temporal dimension are highly interdependent. On the one side, storage

facilities that typically smoothen inter-temporal demand spikes may simultaneously have

the potential to lower the necessity for large network investments. On the other side, an ex-

tended inter-regional network may simultaneously contribute to a better adjustment of the

described inter-temporal divergence of demand and intermittent supply; see also Steinke

et al. (2013).

To the best of our knowledge, we are the first to analyze such interdependencies of stor-

age and network investments under different congestion management regimes in a multi-

stage game that we translate into a bilevel market model. As we will demonstrate, in such a

framework the chosen congestion management mechanism will highly influence long-run

investments in both transmission lines and storage facilities.

In particular, this paper assumes a transmission system operator (TSO) that decides on op-

timal line investments as well as on a corresponding network fee on the first level. The TSO

anticipates market outcomes of the second level, where competitive firms trade energy and

invest in storage facilities given the realized network extensions of the TSO. Energy trading

on the second level directly accounts for possibly scare network capacities that may result

in a regionally differentiated price structure. Within our model, we also study the effects of

different zonal designs. In this context we will evaluate both absolute investment levels and

the locations of the corresponding facility investments. Given that zonal pricing is applied

in European countries as well as in Australia (see for instance (Bjørndal et al., 2003; Glachant

and Pignon, 2005; Dijk and Willems, 2011)), our analyses may directly contribute to the cur-

rent policy discussion on the design of efficient market structures that account for adequate

long-run investment incentives in both storage facilities and network lines. In addition, in

times of growing importance of storage facilities, the proposed models may also be seen as

tools for a meaningful evaluation of the need for huge network extension plans that typically

involve billions of euros like in Germany; for more details see German Transmission System

Operators (2017).

As our numerical results show, both under nodal and zonal pricing storage investments may

in general have the potential to reduce network extensions as compared to the no-storage
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case. However, our bilevel, zonal-pricing market may yield inefficient storage facility invest-

ments that may be accompanied by suboptimal line investments as compared to a nodal

pricing model. Moreover, invested storage facilities may affect inter-regional price and de-

mand structures in a way that requires a reconfiguration of optimal zonal boundaries, i.e.,

in the case of storage facilities the welfare-maximizing zone configuration may change as

compared to the no-storage case.

Our work directly contributes to various strands of the energy market literature. In particu-

lar, we elaborate on different congestion management regimes. In the context of congestion

management, nodal prices are known to yield a first-best outcome, as they simultaneously

reflect all relevant economic and technical restrictions between the different nodes of the

network; see Bohn et al. (1984), Hogan (1992), and Chao and Peck (1996). In contrast, zonal

pricing assumes identical prices within zonal boundaries, which gives a simplified price

structure; see Bjørndal et al. (2014). Even though, zonal pricing may in general be accom-

panied by a welfare loss as compared to a system of nodal prices, zonal pricing is some-

times seen as being more attractive from an administrative and political point of view. For

this reason, in the past various studies have focused on properties of zonal pricing systems

that ensure a comparatively small welfare loss. Such properties relate for instance to the

number of price zones and their respective boundaries; see Bjørndal and Jørnsten (2001),

Ehrenmann and Smeers (2005), and Oggioni and Smeers (2013).

In addition, with this paper we also contribute to the increasing literature on transmis-

sion investments. Traditionally, reference investment solutions were derived for integrated,

single-level optimization problems as in Gallego et al. (1998), Hirst and Kirby (2001), and

Alguacil et al. (2003). In recent years transmission investments were also analyzed in multi-

stage games and corresponding multilevel optimization problems; see for instance Sauma

and Oren (2006), Fan et al. (2009), Garcés et al. (2009), Baringo and Conejo (2012), and Jenabi

et al. (2013). As pointed out by Grimm et al. (2016a), in such games the market environment

and the chosen congestion management regime will highly influence optimal transmission

expansions of the TSO. In particular, hierarchical market models may yield suboptimal line

investments as compared to an integrated network expansion plan.

Finally, we link the two above stands of congestion management and transmission invest-

ment literature to existing studies on price and welfare effects of storage facilities. Most of

the latter studies including Sioshansi et al. (2009), Sioshansi (2010), Gast et al. (2013), and
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Sioshansi (2014) mainly abstracted from transmission constraints and the network man-

agement regime. Only recently, Weibelzahl and Märtz (2018) study storage facilities and

their effects in a zonal electricity market. However, the authors only consider the short-run

perspective, where both the transmission network and storage facilities are given. It is the

aim of the present paper to analyze the interplay of transmission and storage facility invest-

ments in a multilevel market environment from a long-run perspective.

This paper is organized as follows. Our model framework is introduced in Sect. A.2. Then,

Sects. A.3 and A.4 present our investment benchmark models and the bilevel zonal pricing

model with storage, respectively. The main solution strategy for our multistage game and

for the corresponding bilevel optimization model is then discussed in Sect. A.5. Numerical

results of our long-run investment analysis regarding storage facility investments and net-

work extensions are presented in Sect. A.6. Finally, Sect. A.7 concludes and highlights main

policy implications.

A.2 Notation and economic quantities

This section introduces the main model framework that is used in our paper. All sets, pa-

rameters, and variables are summarized in Tables A.4, A.5, and A.6 in the Appendix.

A.2.1 Electricity network and time horizon

In this paper we assume a finite time-period set T .1 In addition, we are given a connected

and directed graph G “ pN , Lq, which is defined on a set of network nodes N and a set

of transmission lines L. Each transmission line l P L is characterized by different techni-

cal properties such as the maximal transmission capacity f l or the susceptance Bl . Corre-

sponding lossless DC power flows on a line l P L will be denoted by fl ,t for any given time

period t P T . In addition, we consider the case where different candidate transmission lines

may be built by the TSO. Therefore, we assume a subset of lines L inv that can be invested in.

1 In contrast to simple two-period models [see, e.g., Sioshansi (2010) or Sioshansi (2014)] our model is able to
capture more than two time periods. Ultimately, this may help to increase the accuracy of the proposed storage
model.
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In order to being able to model the building of new (lumpy) lines and not only a simple in-

crease in the thermal capacity of existing lines, we let the binary variable wl P t0, 1u describe

whether candidate line l is built by the TSO. Line investment cost are denoted by il .

Additionally, in this paper we assume that the node set N is partitioned into r connected

price zones. We consider the case where a fixed zonal configuration Z “ tZ1, . . . , Zr u is ex-

ante specified:

H R Z , (A.1)
ď

i Pt1,...,r u

Zi “ N , (A.2)

Zi P Z , Z j P Z with i ‰ j ñ Zi X Z j “ H. (A.3)

Note that in its two limit cases, the above definition comprises both a single zone as well as

a nodal pricing configuration, i.e., r “ 1 and r “ |N |.

A.2.2 Electricity demand

We further assume a set of demand nodes D Ă N where consumers are located at. We de-

note by xd ,t the endogenous consumption variable of d in period t . To model price-sensitive

demand behaviour that is node- and time-dependent, for each demand node d P D and

time period t P T we are given a continuous and strictly decreasing inverse demand func-

tion pd ,t pxd ,t q that depend on the respective consumption quantity xd ,t , i.e., plugging a

given consumption quantity xd ,t into the inverse demand function pd ,t pxd ,t q gives the node-

specific price in the considered time period; see for instance the vaste literature using elas-

tic demand including Chao and Peck (1996), Bjørndal and Jørnsten (2001), Bjørndal et al.

(2003), Ehrenmann and Smeers (2005), and Bjørndal and Jørnsten (2007). Finally, we refer

to
ÿ

t PT

ÿ

d PD

ż xd ,t

0
pd ,t puqdu

as the gross consumer surplus that is aggregated over all demand nodes and time periods.

This gross consumer surplus measures the sum of all monetary consumer benefits.
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A.2.3 Electricity generation

Throughout this paper, we will denote by G the set of all ex-ante given generation facilities.

Gn Ă G describes the generators, which are located at a node n . In addition, we denote

production of a generator g in a time period t by yg ,t . Production is further described by

a continuous and strictly increasing marginal cost function Vg ,t pyg ,t q that gives the respec-

tive variable production costs of a generator implied by a production level yg ,t , i.e., variable

production costs Vg ,t depend on the argument yg ,t ; see also Chao and Peck (1998), Bjørndal

and Jørnsten (2001), Ehrenmann and Smeers (2005), and Oggioni and Smeers (2013).

We will assume that all firms act in a perfectly competitive environment as price takes. Such

an assumption has been established as a standard in order to keep complex electricity mar-

ket models computationally tractable, see, e.g. Boucher and Smeers (2001), Daxhelet and

Smeers (2007), and Grimm et al. (2016a), or Weibelzahl (2017). We further note that perfect

competition may also serve as a benchmark for evaluating deviations or abuses of market

power; see Bunn and Oliveira (2003).

A.2.4 Storage facilities

We assume a set of storage facilities S that may be invested in. The non-storage scenario

is captured by the limit case S “ H. As above, by Sn Ă S we denote the subset of storage

facilities that are located at node n. Storage facilities are described by their (roundtrip) stor-

age efficiency es P r0, 1s, which may significantly vary in reality between different storage

technologies, e.g., 60% for a hydrogen storage and 90% for a battery storage; see Kuznia et

al. (2013) or Sioshansi et al. (2013). Storage investment costs are given by a continuous and

strictly increasing function Is pz̄s q, with the argument z̄s denoting the invested storage ca-

pacity. An example is an affine investment cost function with a positive slope.2 Further note

that our framework allows to explicitly analyze both the size and location of storage facility

investment within the electricity network G . For each storage facility we additionally in-

troduce the variables z `
s ,t and z ´

s ,t that describe the amount of electricity that is stored or

discharged in the different periods, respectively. The latter two variables are obviously lim-

ited by the invested storage capacity z̄s . Finally, we introduce the variable zs ,t that gives the

current storage level and we assume that the initial storage level is zero.

2 Observe that for an infinitely small slope, such an affine investment cost function will converge to a constant
investment cost function.
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A.3 Investment benchmark models

A.3.1 Single-level nodal pricing & integrated planning with storage

facilities as an overall investment optimum

As a first benchmark, we present an integrated planning model. We add storage facility

investments to this standard model in order to derive welfare-maximizing line and stor-

age capacities while accounting for all relevant technical and economic restrictions. Us-

ing a single-level optimization problem, these constraints relate to electricity production,

constrained transportation, price-sensitive consumption, and inter-temporal storage. Note

that given such an integrated single-level model, optimal investments will be determined

(out of the given discrete line investment options), as the whole industry is planned in a

benevolent and welfare-maximizing manner. In particular, such an integrated view implies

that line investments are not constrained by budget restrictions, but the benevolent plan-

ner can make lump-sum transfers in the case of a loss-making TSO. Using a more economic

point of view, the integrated planner model is also equivalent to an electricity market under

perfect competition and therefore maximizes total welfare. In this context, our benchmark

may be interpreted as a long-run nodal pricing model with discrete line extensions similar

to Jenabi et al. (2013), Grimm et al. (2016a), and Grimm et al. (2016b). Ultimately, the cor-

responding reference investments can be used to assess and evaluate inefficiencies of our

bilevel market model in Sect. A.4, where investments are made in a complex hierarchical

environment based on the expectations of the optimal decision response of other market

players.

In line with Sect. A.2, we assume fully competitive firms that have no market power. This

assumption directly implies that nodal pricing may be modeled as a welfare maximization

problem:

W i :“
ÿ

t PT

˜

ÿ

d PD

ż xd ,t

0
pd ,t puq du ´

ÿ

nPN

ÿ

g PGn

ż yg ,t

0
Vg ,t puq du

¸

´
ÿ

s PS

ż z̄s

0
Is puq du ´

ÿ

l PL inv

il wl . (A.4)

Denoting by δin
n pLq and δout

n pLq the set of in- and outgoing lines of node n P N , Kirchhoff’s

First Law ensures power balance at every node and in each of the two time periods, i.e.,
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demand, generation, charging and decharging activities as well as power flows in and out of

a given node are balanced:

xn ,t “
ÿ

g PGn

yg ,t `
ÿ

l Pδin
n pLq

fl ,t ´
ÿ

l Pδout
n pLq

fl ,t `
ÿ

s PSn

z ´
s ,t ´

ÿ

s PSn

z `
s ,t

@ n P N , t P T . (A.5)

For all lines, the following set of constraints ensures that no transmission capacities are ex-

ceeded:

´ f l ď fl ,t ď f l @ l P L z L inv, t P T . (A.6)

´ f l wl ď fl ,t ď f l wl @ l P L inv, t P T . (A.7)

Power flows fl ,t on each line l “ pn , mq are further characterized by Kirchhoff’s Second Law,

which links line flows to the corresponding phase angles Θn ,t and Θm ,t . While for already

existing transmission lines Kirchhoff’s Second Law can be written as

fl ,t “ Bl pΘn ,t ´Θm ,t q @ l “ pn , mq P L z L inv, t P T , (A.8)

for all candidate transmission lines Kirchhoff’s Second Law is given by

´M p1 ´ wl q ď fl ,t ´ Bl pΘn ,t ´Θm ,t q ď M p1 ´ wl q

@ l “ pn , mq P L inv, t P T , (A.9)

with M denoting a large constant. We additionally set the phase angle of the reference node

1 to zero, which will ensure unique phase angle values:

Θ1,t “ 0 @ t P T . (A.10)

For each storage facility s P S , the storage level in period t is described by

zs ,t “

t
ÿ

i “1

es z `
s ,i ´

t
ÿ

i “1

z ´
s ,i @ s P S , t P T . (A.11)
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Moreover, we assume that storage investment is nonnegative

0 ď z̄s @ s P S , (A.12)

and that all charging variables and discharging variables, and the storage level variable will

not violate their lower nonnegativity bounds as well as their upper storage capacity invest-

ment bounds, respectively:

0 ď z `
s ,t ď z̄s , 0 ď z ´

s ,t ď z̄s , 0 ď zs ,t ď z̄s @ s P S , t P T . (A.13)

At the same time, the discharging variable is restricted by the storage level through

z ´
s ,t ď zs ,t ´1 @ s P S , t P T zt1u, (A.14)

and

z ´
s ,1 “ 0 @ s P S . (A.15)

In analogy, demand and generation are restricted by the following nonnegativity constraints:

0 ď xd ,t @ d P D , t P T . (A.16)

0 ď yg ,t @ n P N , g P Gn , t P T . (A.17)

Finally, line investment is assumed to be discrete:

wl P t0, 1u @ l P L inv. (A.18)

Thus, the complete nodal-pricing problem can be stated as:

max Welfare : (A.4), (A.19a)

s.t. Kirchoff’s First Law: (A.5), (A.19b)

Flow Restrictions: (A.6), (A.7), (A.19c)

Kirchhoffs Second Law: (A.8), (A.9), (A.19d)

Reference Phase Angle: (A.10), (A.19e)

Storage Level Constraints: (A.11), (A.14), (A.15), (A.19f)

Variable Restrictions: (A.12), (A.13), (A.16), (A.17), (A.18). (A.19g)
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Let us conclude this section with an observation: The well-known concept of congestion

cost measure the welfare loss of the network-constrained model (A.19) as compared to a

non-network model, where transmission constraints and corresponding power flows do not

play a relevant role. It is obvious that maximizing welfare coincides with a minimization

of congestion costs, i.e., a minimization of the difference between welfare under unlimited

transmission and welfare under the actual transmission-limiting conditions:

Observation 1 The nodal pricing model (A.19) does not only maximize welfare, but also

minimizes congestion cost.

A.3.2 Single-level zonal pricing with storage facilities

In the previous section we introduced an integrated single-level benchmark model that re-

sembles a long-run nodal pricing system. While such a benchmark is commonly used in the

literature, it may be difficult to discern whether sub-optimality of our bilevel zonal pricing

model (Sect. A.4) is primarily due to the zonal market structure or due to the strategic inter-

action. For this reason, in this section we discuss a single-level zonal market as a second

benchmark model.

As in Sect. A.2, we consider a given zonal configuration Z, which satisfies the connectiv-

ity conditions (A.1) - (A.3). We will use the zonal pricing formulation introduced by Bjørndal

and Jørnsten (2001), which requires that prices at network nodes that belong to a given

zone Zi P Z must be equal for every time period t P T .3 Assuming elastic, inverse demand

functions, this price equality can be formulated as follows

pn ,t pxn ,t q “ pm ,t pxm ,t q

@ i P t1, ..., r u,tpn , mq : n , m P Zi , n ă mu, t P T , (A.20)

where the right- or left-hand inverse demand functions may be replaced by corresponding

supply functions in order to link consumer prices to producer prices. Note that in the case

r “ 1, all nodes will have an identical price, which implies a uniform pricing system. In its

other extreme, r “ |N | yields a nodal pricing system, where all prices may possibly differ. In

addition, a system with 2 ď r price zones is a relaxion of a zonal system with r ´ 1 zones, if

the new zone is constructed by splitting one of the existing zones. Ultimately, this implies

3 For applications of this zonal pricing formulation, see for instance Bjørndal et al. (2003), Ehrenmann and
Smeers (2005), Bjørndal and Jørnsten (2007), Weibelzahl and Märtz (2018), and Weibelzahl (2017).
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that our nodal pricing model pr “ |N |q introduced in the previous section is a relaxation of

the following zonal pricing model pr ă |N |q that again accounts for all production, trans-

portation, generation, and consumption restrictions:

max Welfare : (A.4), (A.21a)

s.t. Kirchoff’s First Law: (A.5), (A.21b)

Flow Restrictions: (A.6), (A.7), (A.21c)

Kirchhoffs Second Law: (A.8), (A.9), (A.21d)

Reference Phase Angle: (A.10), (A.21e)

Storage Level Constraints: (A.11), (A.14), (A.15), (A.21f)

Zonal-Pricing Constraints: (A.20), (A.21g)

Variable Restrictions: (A.12), (A.13), (A.16), (A.17), (A.18). (A.21h)

A.4 Bilevel zonal pricing model with storage

A.4.1 Structure of the hierarchical game and the corresponding bilevel

optimization problem

Assuming price-sensitive demand, an integrated nodal pricing system ensures welfare max-

imizing investments out of the set of candidate transmission and storage facilities, as in-

vestments are always decided on from an overall welfare perspective by taking all scarce

capacity constraints (stemming from production, transmission, and storage) into account.

Nevertheless, such a first-best and integrated mechanism is not a realistic policy option

for different countries and regions including for instance Europe; see Oggioni and Smeers

(2013) and Bucksteeg et al. (2015).

In contrast, in liberalized electricity markets decisions of independent market players are

typically made in a highly complex market environment, which often uses a system of zonal

prices. In such an interdependent market structure, the extent of optimal line investment

of the TSO highly depends on optimal storage facility investments and vice versa. While

transmission line extensions base on the respective regulatory structures, investments in

storage facilities are driven by future profits of firms and corresponding structures of the

(zonal) market. As we will see in our numerical results that are presented in Sect. A.6, such

a complex market environment will yield a quite different equilibrium investment solution
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as compared to our integrated benchmark models.

In this section we assume that the TSO decides on an optimal transmission expansion and

on a corresponding network fee before firms invest in their storage facilities. In this hierar-

chical game the TSO is the leader that is the first to make an optimal investment decision

with competitive firms reacting as followers in an optimal way to the leader’s investment

choice; see also the vast literature including Gil et al. (2002), Sauma and Oren (2006), Fan

et al. (2009), Garcés et al. (2009), Baringo and Conejo (2012), Jenabi et al. (2013), and Grimm

et al. (2016b) that also consider multistage games with the TSO acting as the leader. Our

game directly relates to the classical problem of Von Stackelberg (2010), where a leader and

different followers interact in an anticipative environment.

Note that in our setting the sequential investment decisions of the TSO and of the firms

are followed by trading on several zonal spot markets, which determine the profitability and

efficiency of the respective investment decisions; see also Fig. A.1.

Figure A.1: Timing of the underlying multistage game.

As in Sauma and Oren (2006), we assume that at each stage all (investment) decisions of the

previous stage(s) can be observed by the rational players, which allows a correct expectation

formation. Therefore, our game can be translated into a bilevel programming problem with

a network-extending TSO on the first level that anticipates storage investments and com-

petitive market outcomes on the second level. Observe that storage investment and spot
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market trading may be analyzed jointly on the second level, as we assume a competitive

market.4 The following two sections will describe the two problem levels in more detail.

A.4.2 First level problem: network extension

On the first level, we assume that the TSO chooses a line expansion plan, i.e., the TSO de-

cides, which line to build. Such a long-term network development of the grid is a very chal-

lenging task, as in principle the TSO should eliminate the transmission capacity shortages

that are welfare diminishing; see also Hornnes et al. (2000), David and Wen (2001), and Ri-

ous et al. (2008). In this paper we assume that the TSO maximizes social welfare, which can

be stated as:

W f :“
ÿ

t PT

˜

ÿ

d PD

ż xd ,t

0
pd ,t puq du ´

ÿ

nPN

ÿ

g PGn

ż yg ,t

0
Vg ,t puq du

¸

´
ÿ

s PS

ż z̄s

0
Is puq du ´

ÿ

l PL inv

il wl . (A.22)

In order to recover network investment cost, the TSO charges a network fee. In particular,

as in the US market, we consider the case of a flow-based fee that is paid for each unit of

transported electricity. As a main characteristic, such a fee bases on the actual usage of the

network and is therefore not paid for pure power output; see also Galiana et al. (2003) and

Jenabi et al. (2013). The corresponding fee variable is denoted by ϕTSO. Income I TSO of the

TSO is given by

I TSO
“

ÿ

t PT

ÿ

l PL

ϕTSO
| fl ,t |, (A.23)

4 We note that the time to build new transmission lines will in general be much larger than the time to build
(battery) storage facilities. In turn, investments in storage facilities will have a larger time horizon than the
market clearing interval. From this point of view, our bilevel model may be (re)interpreted as some kind of
trilevel problem. On the first level, again the TSO chooses an optimal line extension plan with a corresponding
network fee. The TSO anticipates optimal storage investments of perfectly competitive firms on the second
level and competitive market outcomes of a zonal market on the third level. Assuming perfectly competitive
firms, the objective functions of the second level and of the third level will be affine-equivalent as described in
Grimm et al. (2016a). In particular, the objective of the second level will correspond to the aggregated differ-
ence between consumer surplus, variable generation cost, network charges, and storage investment cost. On
the opposite, on the third level the spot market welfare objective can be expressed as the difference between
consumer surplus, network fees, and variable production cost. From a mathematical point of view, we can
equivalently subtract storage investment costs from the objective function of the third level without chang-
ing the optimal solution. This implies that the discussed hierarchical trilevel model may be reformulated and
solved as the bilevel maximization problem introduced in this section. On the other hand, our proposed bilevel
model may be reinterpreted using three levels that correspond to long-term line investment, medium-term
storage investment, and short-term market clearing.
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where | fl ,t | is the absolute flow value on line l in time period t .

Analogously, expenses of the TSO in form of line investments can be written as

E TSO
“

ÿ

l PL inv

il wl . (A.24)

Then, the following budget constrain ensures that investment costs of the TSO are covered

by its income in form of network fees:

ÿ

t PT

ÿ

l PL

ϕTSO
| fl ,t | ě

ÿ

l PL inv

il wl . (A.25)

To sum up, on the first level the TSO decides on both an optimal transmission fee ϕTSO and

on adequate line investments wl as to maximize welfare. Therefore, the first-level problem

can be written as

max Objective: (A.22), (A.26a)

s.t. Budget Constraint: (A.25), (A.26b)

Investment Variable Restrictions: (A.18), (A.26c)

s.t. Second Level Problem: (A.28), (A.26d)

where the TSO anticipates optimal spot market outcomes and storage investment decisions

that are determined on the second level. Thus, the second-level problem is embedded in the

constraint set of the first level problem, i.e., spot market outcomes and storage investment

decisions are chosen as the argmax of the lower level problem (A.28). Note that even though

the TSO cannot explicitly enforce certain private storage investments on the second level,

optimal second-level variables will be influenced by optimal first-level decisions, which are

treated as parameters on the second level; see also the following section.

Table A.1: Problem levels and corresponding decision variables.

Level Variables

First level ϕTSO w

Second level x y z ` z ´ z̄ z f Θ
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For the ease of improved clarity, the decision variables of the two levels are summarized in

Table A.1, where variables without an index denote the vector of corresponding decision

variables.

A.4.3 Second level problem: storage investment and energy trading

On the second level firms invest in new storage technologies and trade energy on a compet-

itive market. Note that the decision behaviour of the firms on the second level is part of the

constraint set of the TSO on the first level.

As in Jenabi et al. (2013), the assumption of perfect competition allows to model profit-

maximization behaviour of firms as a welfare maximization problem, where costs in form

of the transmission fee ϕTSO are directly taken into account:

W s :“
ÿ

t PT

˜

ÿ

d PD

ż xd ,t

0
pd ,t puq du ´

ÿ

nPN

ÿ

g PGn

ż yg ,t

0
Vg ,t puq du ´

ÿ

l PL

ϕTSO
| fl ,t |

¸

´
ÿ

s PS

ż z̄s

0
Is puq du . (A.27)

Again, we assume price equality within a given zone as modelled in Eq. (A.20). As all equi-

librium quantities must be both technically and economically feasible, on the second level

all power flow, production, storage, and market clearing constraints are taken into account.

In this context we again note that the second-level problem is not an independent problem,

but the second-level problem determines equilibrium spot market and storage investment

outcomes given an optimal transmission fee ϕTSO and corresponding first-level line invest-

ments wl of the TSO; see Table A.1.
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Ultimately, the second-level problem – that is embedded in the first level by the argmax oper-

ator – writes for a fixed transmission feeϕTSO and parameterized first-level line investments

wl as:

max Welfare : (A.27), (A.28a)

s.t. Kirchoff’s First Law: (A.5), (A.28b)

Flow Restrictions: (A.6), (A.7), (A.28c)

Kirchhoffs Second Law: (A.8), (A.9), (A.28d)

Reference Phase Angle: (A.10), (A.28e)

Storage Level Constraints: (A.11), (A.14), (A.15), (A.28f)

Zonal-Pricing Constraints: (A.20), (A.28g)

Variable Restrictions: (A.12), (A.13), (A.16), (A.17). (A.28h)

Let us conclude this section with the following trivial, but important observation, which

states that welfare under the integrated planning model (A.19) yields an upper bound for

the bilevel model (A.26) and (A.28):

Observation 2: The optimal welfare level of the bilevel model (A.26) and (A.28)can not

exceed welfare of the integrated planning model in (A.19), i.e., welfare of the integrated model

is at least as high as welfare of the bilevel model.

A.5 Solution strategy and problem reformulation

Our market model introduced in the previous section can be seen as a special instance of a

general bilevel model. Being non-convex and non-differentiable, bilevel models are known

to be NP hard, which implies that this class of optimization problem is in general very chal-

lenging and hard to solve; see for instance Jeroslow (1985), Ishizuka and Aiyoshi (1992), Cam-

pêlo and Scheimberg (2005), Dempe and Zemkoho (2012), Pozo et al. (2017), Sariddichain-

unta and Inuiguchi (2017), and Zare et al. (2017). In this section we present a single-level

problem reformulation and discuss our main solution strategy.
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A.5.1 Linear Reformulation of the absolute value of transmission flows

Similar to Jenabi et al. (2013) and Kirschen and Strbac (2004), we first linearize the absolute

value of transmission flows. For this reason, we introduce the continuous variables f `

l ,t ě 0

and f ´

l ,t ě 0 for all lines l P L and time periods t P T . Then, the absolute flow value can be

rewritten as

| fl ,t | “ f `

l ,t ` f ´

l ,t @ l P L , t P T , (A.29)

where line flows are given by:

fl ,t “ f `

l ,t ´ f ´

l ,t @ l P L , t P T . (A.30)

Ultimately, this allows to rewrite
ÿ

t PT

ÿ

l PL

ϕTSO
| fl ,t | (A.31)

as
ÿ

t PT

ÿ

l PL

ϕTSO
´

f `

l ,t ` f ´

l ,t

¯

. (A.32)

A.5.2 Linear reformulation of the non-convex flow product

In a second step, we linearize the non-convex flow product in the second-level objective

(A.27). Let us assume a set K of discretized fee values, e.g., K may comprise fees measured

in cent. We introduce the binary variablesϕTSO P t0, 1u indicating whether fee k is chosen.

Obviously, exactly one fee must be implemented by the TSO:

ÿ

kPK

ϕTSO
k “ 1. (A.33)

This allows to further rewrite (A.32) as

ÿ

t PT

ÿ

l PL

ÿ

kPK

k ϕTSO
k

´

f `

l ,t ` f ´

l ,t

¯

. (A.34)
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In a next step, we introduce the continuous variable f abs
l ,t ,k that measures the absolute flow

value on line l in period t under fee regime k . Obviously, f abs
l ,t ,k must satisfy the following

constraints:

0 ď f abs
l ,t ,k ď f̄l ϕ

TSO
k @ l P L , t P T , k P K . (A.35)

ÿ

kPK

f abs
l ,t ,k “ f `

l ,t ` f ´

l ,t @ l P L , t P T . (A.36)

Then, we can finally rewrite (A.32) linear as

ÿ

t PT

ÿ

l PL

ÿ

kPK

k f abs
l ,t ,k . (A.37)

A.5.3 KKT reformulation & (non-)uniqueness issues

Given that the second level is a convex (concave) and continuous optimization problem

with only linear constraints, we can use a Karush–Kuhn–Tucker (KKT) reformulation includ-

ing complementarity constraints5 in order to replace the bilevel problem by a single-level

problem; see for instance Dempe (2002), Boyd and Vandenberghe (2004), and Colson et al.

(2007). From a mathematical point of view, such a reformulation strategy yields a mathe-

matical program under equilibrium constraints (MPEC); see Huppmann and Egerer (2015).

Applying a KKT reformulation, caution must be taken whenever the second-level problem

has a non-unique optimal solution. In particular, in the case of non-uniqueness of lower-

level optimal solutions, without additional assumptions the TSO cannot anticipate the op-

timal out- comes on the lower level. Therefore, ignoring multiplicity of optimal lower level

solutions may make it hard (or even impossible) to assess the value of an optimal trans-

mission expansion on the first level; for details and further discussions see, e.g., Dempe

(2003) or Zugno et al. (2013). From a policy perspective, such ambiguities will also make it

difficult to compare and quantitatively analyze the (in)efficiency of different policy regula-

tions and market designs, as it is unclear which equilibrium will be realized; see also Hu and

Ralph (2007). Ultimately, (non-)uniqueness of lower level solutions is therefore an impor-

tant aspect, both from a theoretical and a practical point of view. Being a prerequisite for

meaningful bilevel policy analyses, we first prove uniqueness of the optimal solution of the

5 An alternative approach would be to use an explicit formulation of the strong duality equality; see, e.g., Garcés
et al. (2009).
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second-level problem with respect to all production variables yg ,t , consumption variables

xd ,t , and storage investment variables z̄s .

Theorem 1 The second level problem (A.28) has a unique optimal solution in all produc-

tion variables yg ,t , consumption variables xd ,t , and storage investment variables z̄s .

Proof By assumption, all inverse demand functions pd ,t are continuous and strictly de-

creasing. In addition, both the variable cost functions Vg ,t and the storage investment func-

tions Is are continuous and strictly increasing. As a direct consequence, the second-stage

objective is strictly concave in all demand, production, and storage investment variables,

with
B2W S

Bx 2
d ,t

“ p
1

d ,t @ d P D , t P T ,
B2W S

By 2
g ,t

“ ´V
1

g ,t @ n P N , g P Gn , t P T ,

B2W S

Bz̄ 2
s

“ ´I
1

s @ n P N , s P Sn .

The strict concavity directly implies uniqueness of these variable, see Mangasarian (1988).

We next show that for only two time periods, additionally the operational storage variables

z `
s ,t and z ´

s ,t that are used for charging and discharging are unique. In direct consequence,

in this case power flows fl ,t are also uniquely determined:

Theorem 2 Assume a planning horizon of only two time periods with an initial- and end-

storage level of zero. Then, the optimal solution of the second-level problem (A.28) is unique

in all second-level variables.

Proof We first show that for each storage facility s , the amount of stored-in electric-

ity z `
s ,1 in period 1 equals the uniquely determined storage capacity z̄s . To see this, as-

sume the contrary, i.e., consider the case z `
s ,1 ă z̄s . Obviously, z̄ ˚

s :“ z `
s ,1 is also a feasi-

ble investment solution. However, as z̄ ˚
s yields a welfare increase as compared to z̄s , with

∆W “ W p¨, z̄ ˚
s q ´ W p¨, z̄s q “

şz̄s

z̄ ˚
s

Is puqdu ą 0, the original investment level z̄s cannot be

optimal. This observation directly yields a contradiction.

Using an optimal end of horizon inventory, the amount of discharged electricity in period 2

is uniquely determined by Constraint (A.11), Constraint (A.14), and Constraint (A.15), which

readily imply

z ´
s ,2 “ es z `

s ,1. (A.38)
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To show uniqueness of power flows, we finally consider Kirchhoff’s First Law (A.5) for pe-

riod 1 and period 2:

xn ,1 “
ÿ

g PGn

yg ,1 `
ÿ

l Pδin
n pLq

fl ,1 ´
ÿ

l Pδout
n pLq

fl ,1 ´
ÿ

s PSn

z `
s ,1 @n P N . (A.39)

xn ,2 “
ÿ

g PGn

yg ,2 `
ÿ

l Pδin
n pLq

fl ,2 ´
ÿ

l Pδout
n pLq

fl ,2 `
ÿ

s PSn

z ´
s ,2 @n P N . (A.40)

Note that for a given line expansion plan on the first level, we can treat newly constructed

lines as already existing lines. In addition, not constructed candidate lines can be removed

from the network. For all nodes n P N we set

Fn ,1 :“ xn ,1 ´
ÿ

g PGn

yg ,1 `
ÿ

s PSn

z `
s ,1, (A.41)

Fn ,2 :“ xn ,2 ´
ÿ

g PGn

yg ,2 ´
ÿ

s PSn

z ´
s ,2, (A.42)

and rewrite Constraints (A.39) and (A.40) for both periods t P tt1, t2u as:

Fn ,t “
ÿ

l “pm ,nqPδin
n pLq

Bl pΘm ,t ´Θn ,t q ´
ÿ

l “pn ,mqPδout
n pLq

Bl pΘn ,t ´Θm ,t q . (A.43)

Using (A.43) and Theorem 1, we see that for the unique optimal demand, production, and

storage variable values captured in Fn ,t , all phase angles are determined by a system of linear

equations. The latter can equivalently be stated by using the following matrix representation

Ft “ B Θt @ t P T , (A.44)

whereΘt denotes the vector of phase angles in period t , Ft is the vector of optimal nodal net

injections in period t , and B is the corresponding matrix of (aggregated) susceptances. As
ř

nPN Fn ,t “ 0 holds for all time periods t , it directly follows that B is singular. However, in

Constraint (A.10) we have set the phase angle value of the (arbitrarily chosen) reference node

to zero, which yields non-singularity. Ultimately, optimal phase angles will be uniquely de-

termined. By using the relation between phase angles and power flows given in Constraint

(A.8), in each of the two periods and on each transmission line optimal power flows will also

be unique.

Despite the fact that the optimal lower-level solution is unique for the case of two time

periods, assuming a general planning horizon with |T | ě 3, operational storage variables
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will not always be unique. Thus, uniqueness does not hold in the general case. This am-

biguity directly translates into optimal transmission flows fl ,t . To see this non-uniqueness,

consider the following simple three-period counter example that is depicted in Fig. A.2.

We assume three network nodes that are connected by two limited transmission lines with

a transmission capacity of 4 units each. Note that our counter example does not require

the assumption of loop flows, which shows that non-uniqueness can already be observed

in very simple networks. In addition to transmission facilities, we are given a single gener-

ator that is located at node 1 with a strictly increasing variable production cost function of

V py q “ y .

1

Generation:

V py q “ y

2

Demand:

t1 : p px q “ 5 ´ x

t2 : p px q “ 5 ´ x

t3 : p px q “ 15 ´ x

Storage:

I pz̄ q “ 2 ` 0.25z̄

3
Demand:

t1 : p px q “ 5 ´ x

t2 : p px q “ 5 ´ x

t3 : p px q “ 15 ´ x

Storage:

I pz̄ q “ 2 ` 0.25z̄

f 12 “ 4 MWh

f 23 “ 4 MWh

Figure A.2: Counter example: Three-node network.

The electricity network is complemented by two consumers, which are located at node 2

and node 3. To keep our example as simple as possible, the two demand nodes 2 and 3

have identical inverse demand functions of p px q “ 5 ´ x in the two off-peak periods 1 and

2, respectively. In the on-peak period 3, the two demand nodes are characterized by an
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inverse demand function of p px q “ 15 ´ x . We also assume that storage investment can

take place at the two demand nodes with a strictly increasing investment cost function of

I pz̄ q “ 2 ` 0.25z̄ . For ease of presentation, we neglect storage losses that could easily be

included in the counter example. Finally, the TSO charges a transmission fee of 1 for using

the given network facilities.

Obviously, the limited northern transmission line (1, 2) determines the maximal produc-

tion that can be supplied in each of the three time periods. Therefore, total production

aggregated over the entire planning horizon cannot exceed 4 · 3 = 12 units. In order to be-

ing able to increase peak demand in period 3 in contrast to a no-storage scenario with a

total consumption of 4, from an overall welfare perspective it is optimal to install 4 units of

storage capacity at node 2 and at node 3, respectively. As the off-peak demand is too low in

order to being efficiently served, in our stylized example both in period 1 and in period 2 the

produced electricity in the amount of 4 units is completely stored at the two nodes 2 and 3.

However, note that respecting the flow bound on link (2, 3), in period 1 we can arbitrarily

distribute the produced electricity of 4 units among the two storage facilities, i.e., we can

choose ξ P r0, 1s and charge an amount of 4ξ at node 2 as well as an amount of 4p1 ´ ξq

at node 3. Obviously, this directly implies that in period 2 the two storage facilities charge

additional electricity amounting to 4p1 ´ξq and 4ξ, respectively. Ultimately, this allows to

discharge 4 units at the two nodes in period 3. Together with the production in period 3, a

demand of 6 units can be served both at node 2 and at node 3; see also Fig. A.3.

Most important, the non-uniqueness of storage activities in periods 1 and 2 translates in

corresponding ambiguous north-south transmission flows. In particular, the choice ξ “ 0

implies in period 1 a flow on line (2, 3) in the amount of 4 units. In periods 2 and 3 the

corresponding north-south flows are given by 0 and 2, respectively. However, if a solution

with ξ “ 0.5 is realized, line (2, 3) is characterized by flows amounting to 2 in each of the

three periods. Note that under the latter solution north-south flows aggregated over the

three periods are again 6. In view of congested networks and possibly needed transmission

facility investments, a solution with ξ“ 0.5 may somehow indicate a reduced need for grid

extensions on the first level as opposed to a lower-level solution relating to ξ “ 0. Finally,

observe that in line with Theorem 2, a deletion of the first time period would result in unique

charging and discharging quantities in the corresponding two-period model. In particular,

in the resulting two-period model storage facility investments would amount to 2 at node 2

and node 3, respectively. The two storage facilities would be charged in the off-peak period

and discharged in the on-peak period, which does not yield the problem of multiplicity of
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solutions.

Given the above discussion on multiplicity of solutions, in the following we will assume

the optimistic bilevel case, where for non-unique optimal lower level solutions the solution

that maximizes the first-level objective will be realized on the second level. From our point

of view such an assumption seems appropriate, as competitive firms should in general not

have any incentives that leads them to choose a solution out of their indifference set with a

welfare-diminishing effect.

Therefore, we can now equivalently describe the second-level problem by its KKT formula-

tion6, which comprises primal and dual feasibility as well as complementary slackness.

Figure A.3: East-west zonal pricing system: non-unique optimal solution with ξ P r0, 1s. (a) Period 1, (b) Period 2,
(c) Period 3.

6 Note that for the case of presentation, we neglect supply functions in Eq. (A.20).
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We first state the corresponding primal-dual pairs of complementarity, where the symbol K

denotes orthogonality:

0 ď fl ,t ` f l Kδlow
l ,t ě 0 @ l P L z L inv, t P T , (A.45)

0 ď ´ fl ,t ` f l Kδ
up
l ,t ě 0 @ l P L z L inv, t P T , (A.46)

0 ď fl ,t ` p f l wl q K εlow
l ,t ě 0 @ l P L inv, t P T , (A.47)

0 ď ´ fl ,t ` p f l wl q K ε
up
l ,t ě 0 @ l P L inv, t P T , (A.48)

0 ď fl ,t ´ Bl pΘn ,t ´Θm ,t q ` M p1 ´ wl q Kϖlow
l ,t ě 0

@ l “ pn , mq P L inv, t P T , (A.49)

0 ď M p1 ´ wl q ´ p fl ,t ´ Bl pΘn ,t ´Θm ,t qq Kϖ
up
l ,t ě 0

@ l “ pn , mq P L inv, t P T , (A.50)

0 ď f `

l ,t K∆l ,t ě 0 @ l P L , t P T , (A.51)

0 ď f ´

l ,t K Υl ,t ě 0 @ l P L , t P T , (A.52)

0 ď f abs
l ,t ,k KΛl ,t ,k ě 0 @ k P K , l P L , t P T , (A.53)

0 ď f̄lϕ
TSO
k ´ f abs

l ,t ,k Kφl ,t ,k ě 0 @ k P K , l P L , t P T , (A.54)

0 ď z̄s Kχs ě 0 @ n P N , s P Sn , (A.55)

0 ď z `
s ,t Kρs ,t ě 0 @ n P N , s P Sn , t P T , (A.56)

0 ď z ´
s ,t Kϕs ,t ě 0 @ n P N , s P Sn , t P T , (A.57)

0 ď zs ,t Kτs ,t ě 0 @ n P N , s P Sn , t P T , (A.58)

0 ď ´z `
s ,t ` z̄s K ζs ,t ě 0 @ n P N , s P Sn , t P T , (A.59)

0 ď ´z ´
s ,t ` z̄s Kηs ,t ě 0 @ n P N , s P Sn , t P T , (A.60)

0 ď ´zs ,t ` z̄s K ϵs ,t ě 0 @ n P N , s P Sn , t P T , (A.61)

0 ď zs ,t ´1 ´ z ´
s ,t Kµs ,t ě 0 @ n P N , s P Sn , t P T : t ě 2, (A.62)

0 ď xd ,t Kυd ,t ě 0 @ d P D , t P T , (A.63)

0 ď yg ,t K νg ,t ě 0 @ n P N , g P Gn , t P T . (A.64)
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Note that these complementarity pairs correspond exclusively to inequalities of the primal

problem, while primal equality constraints are only equipped with unrestricted dual vari-

ables:

0 “
ÿ

g PGn

yg ,t `
ÿ

l Pδin
n pLq

fl ,t ´
ÿ

l Pδout
n pLq

fl ,t `
ÿ

s PSn

z ´
s ,t ´

ÿ

s PSn

z `
s ,t ´ xn ,t

and αn ,t PR @ n P N , t P T , (A.65)

0 “ Bl pΘn ,t ´Θm ,t q ´ fl ,t and βl ,t PR @ l P L z L inv, t P T , (A.66)

0 “ f `

l ,t ` f ´

l ,t ´
ÿ

kPK

f abs
l ,t ,k and ωl ,t PR @ l P L , t P T , (A.67)

0 “ f `

l ,t ´ f ´

l ,t ´ fl ,t and ϱl ,t PR @ l P L , t P T , (A.68)

0 “Θ1,t and γt PR @ t P T , (A.69)

0 “

t
ÿ

i “1

es z `
s ,i ´

t
ÿ

i “1

z ´
s ,i ´ zs ,t and ιs ,t PR @ n P N , s P Sn , t P T , (A.70)

0 “ z ´
s ,1 and κs PR @ n P N , s P Sn , (A.71)

0 “ pn ,t pxn ,t q ´ pm ,t pxm ,t q and ωt ,n ,m PR

@ t P T , i P t1, . . . , r u,tpn , mq : n , m P Zi , n ă mu. (A.72)

We complement the KKT system with the set of dual feasibility requirements that corre-

spond to the partial derivates with respect to the primal variables:

´δlow
l ,t `δ

up
l ,t `

ÿ

nPN : l Pδin
n pLq

αn ,t ´
ÿ

nPN : l Pδout
n pLq

αn ,t ´βl ,t ´ϱl ,t “ 0

@ l P L z L inv, t P T , (A.73)

´εlow
l ,t `ε

up
l ,t ´ϖlow

l ,t `ϖ
up
l ,t `

ÿ

nPN : l Pδin
n pLq

αn ,t ´
ÿ

nPN : l Pδout
n pLq

αn ,t ´ϱl ,t “ 0

@ l P L inv, t P T , (A.74)

k ´Λl ,t ,k `φl ,t ,k ´ωl ,t “ 0 @ k P K , l P L , t P T , (A.75)

´∆l ,t `ωl ,t `ϱl ,t “ 0 @ l P L , t P T , (A.76)

´Υl ,t `ωl ,t ´ϱl ,t “ 0 @ l P L , t P T , (A.77)
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ÿ

l Pδout
1 pL invq

Blϖ
low
l ,t ´

ÿ

l Pδin
1 pL invq

Blϖ
low
l ,t ´

ÿ

l Pδout
1 pL invq

Blϖ
up
l ,t `

ÿ

l Pδin
1 pL invq

Blϖ
up
l ,t

`
ÿ

l Pδout
1 pLzL invq

Blβl ,t ´
ÿ

l Pδin
1 pLzL invq

Blβl ,t `γt “ 0 @ t P T , (A.78)

ÿ

l Pδout
n pL invq

Blϖ
low
l ,t ´

ÿ

l Pδin
n pL invq

Blϖ
low
l ,t ´

ÿ

l Pδout
n pL invq

Blϖ
up
l ,t `

ÿ

l Pδin
n pL invq

Blϖ
up
l ,t

`
ÿ

l Pδout
n pLzL invq

Blβl ,t ´
ÿ

l Pδin
n pLzL invq

Blβl ,t “ 0

@ n P N : n ě 2, t P T , (A.79)

´ρs ,t `ζs ,t ´αnps q,t `

t
ÿ

i “1

es ιs ,i “ 0 @ s P S , t P T , (A.80)

´ϕs ,1 `ηs ,1 `αnps q,1 ´ ιs ,1 `κs “ 0 @ s P S , (A.81)

´ϕs ,t `ηs ,t `µs ,t `αnps q,t ´

t
ÿ

i “1

ιs ,i “ 0 @ s P S , t P T : t ě 2, (A.82)

´τs ,t ` ϵs ,t ´µs ,t `1 ´ ιs ,t “ 0 @s P S , t P T : t ď 23, (A.83)

´τs ,24 ` ϵs ,24 ´ ιs ,24 “ 0 @ s P S , (A.84)

Is ´χs ´ζ,t ´ηs ,t ´ ϵs ,t “ 0 @ s P S , t P T , (A.85)

´ pd ,t pxd ,t q ´υd ,t ´αd ,t `
ÿ

tZi PZ : d PZi u

ÿ

tmPZi : d ămu

Bpd ,t pxd ,t q

Bxd ,t
ωt ,d ,m

´
ÿ

tZi PZ : d PZi u

ÿ

tnPZi : năd u

Bpd ,t pxd ,t q

Bxd ,t
ωt ,n ,d “ 0 @ d P D , t P T , (A.86)

Vg ,t pyg ,t q ´νg ,t `αnpg q,t “ 0 @ n P N , g P Gn , t P T . (A.87)
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A.5.4 Linearization of complementary slackness conditions and final

single-level problem reformulation

In the above KKT reformulation, all constraints except from the complementary slackness

conditions are linear. Exploiting the disjunctive structure of these complementary slackness

conditions, in this section we use a Fortuny-Amat-like linearization to handle these non-

convexities in Eqs. (A.45)-(A.64); see Fortuny-Amat and McCarl (1981). For example, KKT

condition (A.63) can be linearized as

0 ď xd ,t ď M d ,t md ,t @d P D , t P T , (A.88)

0 ďυd ,t ď M d ,t p1 ´ md ,t q @d P D , t P T , (A.89)

where md ,t P t0, 1u is a binary auxiliary variable and M d ,t , M d ,t are sufficiently large con-

stants denoted as ”big-M”. Note that from a computational point of view it is important

to choose adequate big-M parameters that are as large as necessary but as small as pos-

sible. For instance, in the above example we could set M d ,t “ pd ,t p0q, which gives the max-

imum consumption possible at demand node d in period t . In an analogous way we also

linearize and reformulate all complementarity constraints in (A.45) - (A.64), which yields a

more tractable problem formulation. Applying the results of the present and the previous

section, the single-level reformulation of our bilevel model is given by the first-level objec-

tive that is subject to

(1) the original first-level constraints,

(2) the primal constraints of the second-level problem,

(3) the linearization constraints for the absolute flow value and the non-convex flow prod-

uct,

(4) the linearized complementary slackness conditions, and

(5) the dual feasibility constraints.

We implemented this single-level mixed-integer program in Zimpl [see Koch (2004)] and

used CPLEX [see CPLEX (2013)] as a solver.
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A.6 On the effects of storage facilities on optimal pricing: A
case study based on Chao and Peck (1998)

A.6.1 Six-node network

In this section we analyze the economic interdependencies between transmission and stor-

age facility investments under different market environments including variants of our

bilevel market model. We consider the standard six-node example of Chao and Peck (1998)

that has frequently been used for various policy-related analysis including Ehrenmann and

Smeers (2005) and Oggioni and Smeers (2013), or Grimm et al. (2016a). To this standard

example we add storage as well as transmission facility investments in order to elaborate on

these two investment dimensions.

As can be seen in Fig. A.4, the network consists of three demand nodes (node 3, node 5,

and node 6) and three production nodes (node 1, node 2, and node 4) that are intercon-

nected by 8 existing transmission lines. Storage facilities with constant losses of 10% may

be built at the three demand nodes, respectively. Only the two lines that interconnect the

north with the south have a limited capacity of 200 and 250 MWh, respectively. As the three

nodes in the north (node 1 to node 3) are characterized by relatively low generation cost and

a low demand, with the south (node 4 to node 6) having the opposite characteristics, trade

will naturally take place from the north to the south. Therefore, we assume that each of the

2 constrained north-south transmission corridors can be strengthened by 4 new candidate

lines with a capacity of 200, 220, 240, and 260 MWh, respectively. Corresponding invest-

ment cost amount to 17,500, 19,057.5, 20,580, and 22,067.5 $. In line with our theoretical

framework introduced in the previous sections, we consider 24 periods that resemble fluc-

tuations of a typically day. All relevant demand and production input data that characterizes

the respective market participants is given in Fig. A.4.
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3

1 2

6 5

4

f 13 “ 8 MWh

B13 “ 1 MWh

f 12 “ 8 MWh

B12 “ 1 MWh

f 16 “ 200 MWh

B16 “ 0.5 MWh

f 23 “ 8 MWh

B23 “ 1 MWh

f 25 “ 250 MWh

B25 “ 0.5 MWh

f 56 “ 8 MWh

B56 “ 1 MWh

f 64 “ 8 MWh

B64 “ 1 MWh

f 45 “ 8 MWh

B45 “ 1 MWh

Demand:

p3,t px3,t q “ a3,t ´ 0.05x3,t

Storage:

Is pz̄ q “ 2 ` 0.0005 z̄

Production:

V py q “ 42.5 ` 0.025y

Production:

V py q “ 10 ` 0.05y

Demand:

p6,t px6,t q “ a5,t ´ 0.1x6,t

Storage:

Is pz̄ q “ 2 ` 0.0005 z̄

Production:

V py q “ 15 ` 0.05y

Demand:

p5,t px5,t q “ a5,t ´ 0.1x5,t

Storage::

Is pz̄ q “ 2 ` 0.0005 z̄

Figure A.4: Six-node network of Chao and Peck (1998) (demand fluctuations are modeled using location- and time-
varying intercepts).

In particular, in this section we identify the optimal long-term combination of storage- and

transmission-facility investments as to maximize welfare of an electricity system. In this

context, we will evaluate

• the single-level nodal-pricing model (first benchmark),

• the single-level zonal pricing model (second benchmark), and

• the bilevel zonal pricing model
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for the two cases of a traditional no-storage world as well as a world with endogenous storage

facility investments, respectively. In the zonal pricing models, we will consider different

zonal configurations and their effects on long-run investment behaviour.

A.6.2 Benchmark results

Integrated planning and nodal pricing

Let us first consider the nodal pricing, reference solution; see also Table A.2. In the no-

storage case, the TSO invests in 4 out of the 8 candidate transmission lines. Welfare amounts

to 2,373,564.93$. In the case where storage facility investments are possible, storages are

built at all three nodes. Storage capacity investments at node 3 amount to 918.96 MWh,

while at node 5 storage facility investments of 1590.42 MWh take place. At node 6 we ob-

serve storage investments of 1928.46 MWh. Thus, most storage capacities are installed in

the consumption-intense south. Ultimately, these high storage facility investments in the

south reduce line extensions as compared to the no-storage case, i.e., both the number of

constructed transmission lines and their capacity reduces. Observe that these findings are

in line with the results found in Conejo et al. (2017).
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Table A.2: Solutions of the investment benchmark models.

Nodal Z 3´3

Storages No Yes No Yes
Welfare 2,373,564.93 2,419,114.32 2,370,417.08 2,415,994.50
Line investment (1,6)

Capacity 200 MWh Yes Yes Yes Yes
Capacity 220 MWh Yes Yes Yes Yes
Capacity 240 MWh Yes No Yes No

Capacity 260 MWh No No No No
Line investment (2,5)

Capacity 200 MWh No No No No
Capacity 220 MWh No No No Yes
Capacity 240 MWh No Yes No No
Capacity 260 MWh Yes No Yes No

Storage investment
Node 3 - 918.96 - 470.69
Node 5 - 1590.42 - 1751.21
Node 6 - 1928.46 - 1750.01

Z 4´2

Storages No Yes
Welfare 2,370,924.24 2,407,291.61
Line investment (1,6)

Capacity 200 MWh Yes Yes
Capacity 220 MWh Yes Yes
Capacity 240 MWh Yes Yes
Capacity 260 MWh No No

Line investment (2,5)
Capacity 200 MWh No No
Capacity 220 MWh No No
Capacity 240 MWh No Yes
Capacity 260 MWh Yes No

Storage investment
Node 3 - 321.81
Node 5 - 1732.96
Node 6 - 1105.91

Ultimately, we note that under storage facilities welfare rises to 2,419,114.32 $. As expected,

Fig. A.5 shows that the inclusion of storage facilities yields a smoothened inter-temporal

price development at all three demand nodes.
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Figure A.5: Effects of storage facilities on nodal prices. (a) Node 3, (b) Node 5, (c) Node 6.

This reduction in the price volatility is mainly driven by the efficient use of the available

storage facilities that are charged and discharged throughout the planning horizon as shown

in Fig. A.6.

Figure A.6: Stored electricity (nodal pricing).
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Therefore, storage facilities can serve as a prosumer to meet time-varying demand / gener-

ation and thus reduce high-peak period prices.

Single-level zonal pricing

In the case of our single-level zonal market model, similar to Oggioni and Smeers (2013),

we evaluate both a 3-3 and 4-2 configuration, i.e., we consider the two cases of Z 3´3 “

tt1, 2, 3u,t4, 5, 6uu and Z 4´2 “ tt1, 2, 3, 6u,t4, 5uu. Note that under the two zonal designs at

least one inter-zonal line has a limited transmission capacity, which directly yields a region-

ally differentiated demand and generation structure; see also the thick lines in Fig. A.7.

(a) Zonal Design Z 3´3 (b) Zonal Design Z 4´2

3

1 2

6 5

4

3

1 2

6 5

4

Figure A.7: Zonal design taken from Oggioni and Smeers (2013). (a) Zonal design Z 3´3, (b) Zonal design Z 4´2.

Like in the case of nodal pricing, in our single-level zonal pricing models storage facility in-

vestments allow for a welfare increase as compared to the case where no storage facilities are

available. This holds for both zonal designs. Given the two zonal choices, in the no storage

case the 4-2 zonal configuration is welfare maximizing. In contrast, in the case of storage

facility investments, the 3-3 zonal design yields a higher welfare level as compared to the

4-2 configuration.

As can further be seen, zonal pricing disturbs optimal storage facility investment behaviour
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of firms. In particular, in the north we observe an underinvestment in storage facilities,

while at the southern nodes 5 and 6 we have both an over- and underinvestment in storage

capacity, respectively. Ultimately, these inefficient storage facility investments are accom-

panied by inefficient transmission line investments. However, despite being inefficient, line

investments tend to decrease in the presence of storages.

Table A.3: Solutions of the bilevel zonal pricing model.

Z 3´3 Z 4´2

Storages No Yes No Yes
Welfare 2,069,757.71 2,414,564.02 2,370,854.89 2,407,165.54
Network fee 0.84 0.89 1 0.46
TSO revenues 47,066.43 716,951.16 82,612.56 567,532.36
TSO expenses 17,500 57,137.50 79,205 79,205
TSO profits 29,566.43 659,813.66 3407.56 488,327.36
Line investment (1,6)

Capacity 200 MWh Yes Yes Yes Yes
Capacity 220 MWh No Yes Yes Yes
Capacity 240 MWh No No Yes Yes
Capacity 260 MWh No No No No

Line investment (2,5)
Capacity 200 MWh No No No No
Capacity 220 MWh No No No No

Capacity 240 MWh No Yes No No
Capacity 260 MWh No No Yes Yes

Storage investment
Node 3 - 0 - 599.07
Node 5 - 2020.89 - 1476.41
Node 6 - 1698.21 - 989.16

A.6.3 Bilevel zonal market model

As in our reference models, under both zonal configurations storage facilities allow for a

welfare increase as compared to the no-storage case; see also Table A.3. However, in the 3-3

zonal design no storage facility investments take place in the north. At the southern node 5

overinvestment in storage capacity increases to 2020.89 MWh. In direct consequence, the

TSO increases his line investments as compared to the bilevel, no-storage case in order to

being able to efficiently use the southern storage. Thus, storage facility investments may
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also imply increased transmission facility investments. Accordingly, transmission fees in-

crease in the case of storage facilities. Note that even though the constructed transmission

lines are identical to nodal pricing line extensions, we observe inefficient private storage

facility investments. Therefore, investment efficiency of one party does not ensure efficient

investments of the other party.

If we consider the 4-2 configuration, storage facility investments now take place at all three

nodes. However, storage facility investments are again inefficient as compared to the bench-

marks. Interestingly, line investments are identical for the storage and for the no-storage

case.

Again, as in the single-level zonal pricing model, the optimal zonal design changes with the

introduction of storages. In the no-storage case the 4-2 zonal configuration is welfare maxi-

mizing over the two zonal choices. In contrast, in the case of storage facility investments the

3-3 zonal design yields a higher welfare level as compared to the 4-2 configuration. Thus,

with the introduction of storage, the 3-3 zonal design becomes the welfare-maximizing con-

figuration. This underlies that markets with increased storage facility investments may re-

quire an adjustment and reconfiguration of the current zonal design in order to ensure and

maintain efficient market structures.

A.7 Conclusion and policy implications

Since storage and transmission facility investments can both potentially help to serve peak

loads in times of a low-carbon transformation of the energy system, these two investment

dimensions are highly interdependent. Therefore, in this paper we are the first to analyze

the interplay of network extensions and storage facility investments in a multistage game.

We translate the investment game into a mathematical bilevel model. In particular, on the

first level we assume a transmission system operator (TSO) that decides on optimal network

extensions and on a corresponding optimal network fee. On the second level we consider

competitive firms that trade energy on zonal spot markets and invest in new storage facili-

ties.

As we show, adequate storage investments of firms may in general have the potential to

reduce line investments of the TSO. However, investments in a (zonal) market environment
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may yield suboptimal results as compared to an integrated planning (nodal pricing) solu-

tion. As zonal pricing is currently applied in different regions and countries all around the

world (see, e.g., Australia or Europe), these results call for a careful design of market struc-

tures that ensure efficient investment incentives of the different market players. In addition,

in order to avoid inefficiently large grid investment, cost-intense network extension plans

that are currently developed in various countries including Germany should take the inter-

dependencies of line and storage facility investments into account.

Appendix: Sets, parameters, and variables

Tables A.4, A.5, and A.6 summarize the main sets, parameters, and variables used in this

paper.

Table A.4: Sets.

Symbol Description

G Electricity network

N Set of network nodes

D Set of demand nodes

L Set of all transmission lines

L inv Set of candidate transmission lines

T Set of time periods

Z Price zone configuration

G Set of generators

Gn Ă G Set of generators located at node n

S Set of storage facilities

Sn Ă S Set of storage facilities located at node n

K Set of network fees

109



A Optimal storage and transmission investments in a bilevel electricity market model

Table A.5: Parameters.

Symbol Description Unit

an ,t Intercept of inverse demand function pn ,t $/MWh

es Storage efficiency of facility s %

f l Transmission capacity of line l MWh

Bl Susceptance of line l MWh

r Number of price zones 1

il Line investment cost for l P L new $

Table A.6: Variables and Derived Quantities.

Symbol Description Unit

xn ,t Electricity demand at n in period t MWh

pn ,t Electricity price at n in period t $/MWh

yg ,t Electricity generation of g in period t MWh

z `
s ,t Amount of electricity stored in at s in period t MWh

z ´
s ,t Amount of electricity stored out at s in period t MWh

z̄s Invested storage capacity of facility s MWh

zs ,t Amount of stored electricity in s in period t MWh

fl ,t Power flow on line l in period t MWh

| fl ,t | Absolute flow value on line l in period t MWh

Θn ,t Phase angle value at node n in period t rad

wl Decision variable for candidate line l P L inv 1

ϕTSO Network fee 1

I TSO Income of TSO $

E TSO Expenses of TSO $

P TSO Profits of TSO $

Is Storage investment cost function $/MWh

Vg ,t Marginal generation cost function $/MWh

W Aggregated welfare $
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Abstract

In the past, the load-following operation of conventional power plants was a key charac-

teristic of electricity systems and a main ingredient for system stability. In recent times,

however, the steady growth of the share of highly-variable renewable energy sources has

lead to a loss in electricity-production flexibility. To compensate for such a loss and ensure

a successful low-carbon transformation with a secure electricity supply, electricity systems

face a flexibility puzzle of deciding how to invest in (and exploit) alternative flexibility op-

tions in a highly uncertain environment, with uncertainties stemming from, e.g., unknown

CO2 prices. Among other, the main flexibility options in such a puzzle include: (i) transmis-

sion flexibility, (ii) storage flexibility, (iii) generation flexibility, and (iv) demand flexibility.

In this paper, we address the flexibility puzzle by proposing a multi-stage Stackelberg game

in which different players with different risk attitudes operate under uncertainty. Stage I

accounts for public line investments made by a transmission system operator (TSO) in an-

ticipation of private investments in storage and conventional backup generation facilities.

These private investments take place at stage II and are based on expected spot-market prof-

its, which are determined within a zonal spot market at stage III. Finally, stage IV accounts for

the redispatch actions the TSO undertakes in the case he contracted spot market quantities

can not be feasibly transmitted through the electricity network. We translate our proposed

four-stage Stackelberg game into a four-level (equilibrium-finding) optimization problem

and, from it, derive an equivalent single-level reformulation which we then solve to global

optimality with a state-of-the-art spatial branch-and-bound solver. By means of a widely-

adopted case study, we use our model to analyze the effects of different risk attitudes of

public and private decision makers on long-run investments in the flexibility options we

considered. Our work highlights the importance of taking uncertainties into account when

making private flexibility investment decisions as well as within public policy making to en-

sure sufficient flexibility with an adequate mix of different flexibility options.

B.1 Introduction

Modern electricity systems are changing rapidly. While, in the past, the number of flexi-

bly adjustable conventional power plants was sufficient to adapt electricity production to a

time-varying consumer demand, the ongoing decarbonization of energy systems is leading

to an increased share of volatile renewable energy sources. Despite their contribution to

cleaner energy production with reduced carbon emissions, renewable sources are hardly
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controllable and their production is not always available in the required quantity, at the

needed place, and at the right time. For instance, the wind does not always blow with the

predicted intensity and the sun does not always shine bright enough to satisfy the demand

of electricity. Ultimately, the adoption of renewable sources leads to a loss of flexibility on

the electricity-production side. Its mitigation requires finding future sources of flexibility

to bridge the flexibility gap that an increasing share of renewables – together with a simul-

taneous phase-out of conventional power plants and the increased policy focus on energy

independence – is causing.

In general terms, flexibility is defined as the capability of handling uncertainty and vari-

ability on the electricity demand or on the supply side (Ma et al., 2013; Lund et al., 2015).

There are different options to increase the degree of flexibility in modern electricity systems.

They typically ascribe to four categories: (i) transmission flexibility, (ii) storage flexibility, (iii)

generation flexibility, and (iv) demand flexibility.

As for transmission flexibility, traditionally electricity grids were designed to connect a few

large conventional power plants to the centralized high-voltage grid. In contrast to such

traditional network structures, the emergence of many small-scale renewable sources has

increased the need for a decentralised transportation system and for identifying new trans-

mission corridors to supply new consumers and accommodate the additional (possibly

bidirectional if storage is considered) energy flows that are due to the increased share of

renewables. Transmission investments are, thus, needed to meet the requirements of mod-

ern electricity systems, and discussions around their development are ongoing in many

countries worldwide (ENTSO-E, 2023). In Germany, for instance, north-south grid exten-

sions are planned in order to allow for an increased transportation of a large portion of the

electricity produced by Northern Germany wind farms to be delivered to Southern Germany

consumption centres (German Transmission System Operators, 2017).

Large network expansion projects are inherently very cost-intensive. Besides this, expan-

sion plans are often met with skepticism by the general public (often due to fear of a negative

impact on the general population’s health), which can lead to severe delays in carrying out

network-expansion works (Komendantova and Battaglini, 2016). On the contrary, privately-

invested, decentralized storage facilities can be utilized to supply additional flexibility to

the system by better balancing consumer demand with an intermittent supply without ex-

panding its transmission capacity. In particular, by allowing for shifting the production and

demand of energy between different time periods, storage facilities can partially decouple
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demand and supply in cases where the two cannot be matched in one point in time (Weite-

meyer et al., 2016; Wogrin and Gayme, 2014). Despite significant technological progress in

the past years, however, storages are currently quite expensive, limiting their market pene-

tration.

Crucially, even in an optimal mix of storage and transmission flexibility, conventional gener-

ators may still be needed to guarantee some (flexibly-adjustable) conventional production

as a form of backup to mitigate the variability of the renewable sources. Such conventional-

production flexibility can be offered, for instance, by fast-responding technologies such

as gas power plants, which can rapidly compensate for quick variations in power sup-

ply (Stolten et al., 2013).

Switching perspectives from generation to demand, a flexible demand can naturally fol-

low an intermittent generation in a much better way than a completely inelastic one. As

a consequence, an increased demand flexibility could directly improve the balancing of

demand and supply within a preexisting electricity network. The role of demand-side man-

agement shows great promise, and it is indeed gaining a growing relevance in the current

times of low-carbon transition (Fridgen et al., 2016; Fridgen et al., 2022; Heffron et al., 2020).

Demand-side management can be helpful in both spot and redispatch markets. In spot

markets, a flexible load allows for either shaving peaks of demand or for increasing the de-

mand in periods with a low electricity price and a high supply of renewables (Keller et al.,

2020). In redispatch markets, demand-side flexibility allows for altering the consumers’

consumption profile whenever the spot market outcomes result in infeasible transmission

flows. Although, in many countries, Transmission System Operators (TSOs) are still only

implementing redispatch on the supply side (Grimm et al., 2021), demand flexibility has an

enormous potential for a more efficient congestion management. Against this backdrop,

demand-side flexibility will play a key role in the electricity systems of the future, especially

for redispatch.

Given the high importance of choosing the right mix of flexibility options in modern elec-

tricity systems, policy makers must actively incentivize the efficient integration of new flexi-

bility. Electricity-market regulation and the corresponding market design should, therefore,

ensure an efficient short-run use of existing flexibility and support new long-run flexibility

investments. The latter is of special relevance, as high investments will be needed to build

and activate new flexible assets in near future. For example, in its annual report 2022, the
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German Council of Economic Experts explicitly highlighted the need for flexibility invest-

ments 1, which was also stressed by the recent Report on Security of Supply of the German

Network Agency 2. The German Federal Government also announced that in its "Climate-

neutral electricity-system" platform, the expansion and integration of flexibility options will

be one of four key policy-relevant topics. At the European level, for example, the European

Network of Transmission System Operators for Electricity (ENTSO-E) or the Agency for the

Cooperation for Energy Regulators (ACER) regularly stress the importance of following a

road-map to unlock sufficient flexibility potentials within the European energy transition

and ensure corresponding investments 3 Here, policy makers must take the complex in-

terdependencies between the different flexibility options into account and solve the corre-

sponding flexibility puzzle in order to find a future-proof flexibility mix. In this paper, we

call flexibility puzzle the problem of choosing the ”right” mix of flexibility options, which

each have their own characteristics are described above.

As energy systems undergo fast and far-reaching transformations, they face many uncer-

tainties regarding, e.g., the actual path to decarbonization or the speed and scale of elec-

trification. For private investors, their risk attitude plays a major role in deciding on future

flexibility investments. The role of risk was recently also stressed by the EU in its proposal to

improve the Union’s electricity market design.4 Indeed, the level of risk aversion of the many

players involved in the electricity market can drastically affect the number and location of

flexibility assets that the players are actually willing to invest in. In such an investment

context, a model that is purely risk-averse may not always be appropriate, as some private

investors accept facing a certain level of risk to increase their profits. On the contrary, a

risk-seeking attitude could cause excessive investments that, due to their risk nature, may

not always be "robust". In order to appropriately model the flexibility-investment behavior

of different market players, it is, therefore, crucial to incorporate the level of risk aversion of

the involved players into energy-market models in an accurate and realistic manner (Am-

brosius et al., 2022; Grimm et al., 2021; Grimm et al., 2019; Ambrosius et al., 2020).

In this paper. we analyze the flexibility puzzle in a liberalized electricity market under un-

certainty as an investment game. In particular, we assume that the involved players form

1 https://www.sachverstaendigenrat-wirtschaft.de/en/annualreport-2022.html
2 https://www.bmwk.de/Redaktion/DE/Downloads/V/versorgungssicherheitsbericht-

strom.pdf?__blob=publicationFile&v=4
3 https://acer.europa.eu/Official_documents/Acts_of_the_Agency/Framework_

Guidelines/FrameworkGuidelines/FG_DemandResponse.pdf
4 https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52023PC0148
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rational expectations on the optimal response made by the players who make decisions af-

ter them in the form of a multi-stage Stackelberg game. This yields a multi-stage Stackelberg

game in which the different players with different risk attitudes make decisions under un-

certainty. It accounts for public line investments made by a TSO in anticipation of private

investments in storage and conventional backup generation facilities (first stage). These

private investments take place in the second stage based on expected spot-market profits,

which are determined within a zonal spot market in the third stage. The fourth stage ac-

counts for redispatch actions of a TSO in the case where contracted spot market quantities

can not be transmitted through the electricity network.

We formulate the problem of computing an equilibrium in our four-stage Stackelberg game

as a four-level optimization problem, which we then reformulate and solve to global opti-

mality via a spatial branch-and-bound method. By relying on a well-known case study from

the literature, we utilize our model to study the impact of the different options of flexibility

investments under different risk attitudes and quantify possible inefficiencies.

The paper is organized as follows. Our modeling framework is introduced in Section B.2.

Section B.3 presents our four-stage game. Section B.4 illustrates our approach for solving

the equilibrium-finding problem. Section B.5 elaborates on different modeling approaches

to account for the risk attitude of the players. The main results of our analysis are illustrated

in Section B.6. Section B.7 concludes the paper and highlights its main policy implications.

B.2 Notation and economic quantities

This section introduces the main sets, parameters, and variables that are used throughout

the paper. For the reader’s convenience, a summary is provided in the Appendix in Ta-

bles B.4, B.5, and B.6.

We denote by T “ t1, . . . , |T |u the finite planning horizon under consideration. Ω denotes a

discrete set of scenarios, each of which may for example be given by discrete CO2 paths, de-

velopment in renewables capacity expansions, or the degree of electrification. pω ą 0 is the

probability that scenarioω PΩ realizes. In the following, we will assume that the realization

of a scenario is completely known to each player at time t “ 1.

Throughout the paper, decision variables reported without subscripts are assumed to be
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vectors. For vectors of variables or constants that pertain to a specific scenario ω P Ω, the

scenarioω they belong to is denoted by the subscriptω. For instance, the post-redispatch

consumption of customer c under scenario ω in period t is denoted by dc tω, and it may

be either smaller, equal, or larger that the corresponding pre-redispatch consumption dc tω.

For convenience, the scenario setΩ is used as a subscript to denote the collection containing

a vector per scenario.

B.2.1 Electricity network and network expansion

We consider an electricity network G “ pN , Lq consisting of a set N of network nodes (or

buses) linked by different transmission lines L . In the context of zonal pricing, which is

widely used in different regions such as Europe or Australia, we further assume that the node

set N is partitioned into k connected and nonempty price zones Z1, . . . , Zk with indices in

Z “ t1, . . . , ku. The uniform pricing system with a uniform electricity price is obtained when

k “ 1.

We assume that each transmission line ℓ P L be completely characterized by its maximal

transmission capacity f̄ℓ P R` and by its susceptance Bℓ P R`. By L new Ă L we denote the

set of new transmission lines that can be installed by the TSO via a suitable investment.

L ex “ LzL new denotes the complementary set of pre-existing lines.

In order to account for the large fixed costs associated with line expansion, we consider

discrete line investment decisions modeled by a binary variable kℓ P t0, 1u, which is equal

to 1 if and only if line ℓ P L new is built. The corresponding line investment costs are denoted

by iℓ PR`.

B.2.2 Flexible electricity demand

We denote by C Ď N the set of nodes where the consumers are located at. In line with the

vast literature on energy market modeling, which includes, among others, Chao and Peck

(1996), Bjørndal and Jørnsten (2001), Bjørndal et al. (2003), Ehrenmann and Smeers (2005),

Bjørndal and Jørnsten (2007), Pechan (2017), and Weibelzahl and Märtz (2020), we assume
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an elastic long-term demand. As such, for each time period t and demand Node c P C , we

introduce the following decreasing linear inverse demand function:

πc tωpdc tωq “ ac t ´ bc dc tω,

where dc tω denotes the endogenous demand of consumer c in period t under scenario

ω P Ω. We note that changes in the demand behaviour between different time periods are

exclusively modeled by the intercept ac t ě 0. In contrast, the slope bc ě 0 is assumed to

be constant over time (it only varies between different demand nodes c ) – this is a standard

assumption in literature; see, e.g., Grimm et al. (2016) and Ambrosius et al. (2020). For no-

tational convenience, we introduce a variable dn tω for each n P N even if n R C . For all such

variables, we assume a demand function with intercept ac t “ 0.

For each scenarioω P Ω, we express the gross consumer surplus as the total monetary con-

sumer benefit aggregated over all demand nodes c P C and time periods t P T :

ÿ

t PT

ÿ

c PC

ż dc tω

0
πc tωphqdh “

ÿ

t PT

ÿ

c PC

`

ac t ´
bc

2
dc tωq.

As one can see, such function is concave and it achieves its (unique) maximum at dc tω “
ac t
bc

.

B.2.3 Electricity generation and storage

Inelastic generation of renewable energy sources

We denote by R the set of carbon-neutral, renewable power generators that are available

throughout the grid. For all n P N , the subset Rn describes the renewable generators which

are located at Node n . We denote the maximum power output in each time period t P T

and for each scenarioω P Ω of the renewable generator of index r P R by x̄r tω. We assume

that such a value is subject to the conditions captured by the scenarioω. The actual power

output is modeled by the continuous variable xr tω ě 0. As usually done in the literature, we

assume that renewable energy is produced at a zero variable cost.
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Flexible generation of conventional (backup) facilities

We denote the set of conventional generation facilities by G . Such facilities act as a backup

to compensate for the intermittent renewable energy production. For all n P N , we denote

by Gn Ď G the subset of conventional generators located at Node n .

We characterize the production of each generator g P G by the variable production cost

vg ą 0. For each generator g P G , the amount of conventionally-produced electricity in

period t P T under scenarioω PΩ is modeled by the continuous variable yg tω PR`.

We further partition the set of generation facilities G in two sets, with G “ G ex Y G new,

where G ex is the set of pre-existing generators and G new the set of candidate generators in

whose construction the private investors can invest. For each candidate generator g P G new,

we assume an investment cost of ig per unit of installed generation capacity ȳg .

Storage facilities

We denote by S “ S ex Y S new the set of storage facilities, where S ex is the set of pre-existing

facilities and S new is the set of candidate facilities which can be build via private investment.

For a given Node n P N , Sn Ď S denotes the set of storage facilities located at n .

From a technical point of view, each storage facility is completely described by its roundtrip

storage efficiency es P r0, 1s as well as by a pair of upper and lower bounds ẑs P R` and

žs PR` on the amount of electricity that can be charged into or discharged from the facility

during a single time period.

Throughout the paper, we consider four types of storage-related variables. For each s P S ,

z̄s P R` denotes the newly invested storage capacity. For each s P S , t P T , and ω P Ω,

ẑs tω P r0, z̄s s and žs tω P r0, z̄s s denote the amount of electricity discharged or charged

from/to the storage facility s in period t under scenario ω. For each s P S , t P T , and

ω PΩ, zs tω PR` denotes the storage level at the end of period t under scenarioω.

For each non pre-existing storage facility s P S new, its construction requires an investment

cost of is per unit of installed storage capacity z̄s .
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B.2.4 Zonal spot market dispatch

We assume a available transfer-capacity-based (ATC-based) market coupling, in which the

firms that belong to one of the given zonal spot markets Z1, . . . , Zk receive price signals that

incentivize them to account for the inter-zonal network capacity in such a way that the

inter-zonal transfer capacities are satisfied. Intra-zonal transmission bounds and phase an-

gles are completely ignored when the spot market clears. Such a commonly applied market

coupling – see, e.g., Grimm et al. (2016) – translates into a set of spot-market power-flow

variables fℓtω P R` defined for all lines ℓ P L that interconnect two nodes belonging to dif-

ferent zones Zi and Z j , i ‰ j . For the ease of notation, we define L inter as the set of inter-zone

transmission lines, either pre-existing or subject to investment.

As both intra-zonal capacities and phase angles are ignored at the market clearing phase,

the spot market outcome does not guarantee that the network will be balanced and, as a

consequence, a subsequent redispatch phase may be required.

B.2.5 Redispatch

On the redispatch market, the TSO adjusts all the contractually agreed spot market vol-

umes to ensure a feasible electricity flow that minimizes the arising redispatch costs. Post-

redispatch volumes may either be smaller, equal, or larger than the corresponding pre-

redispatch ones.

Throughout the paper, boldface variables describe quantities whose value is determined

after redispatch: the post-redispatch power flow for line ℓ P L , time period t P T , and sce-

nario ω P Ω is denoted by f ℓtω; the post-redispatch phase angle of a Node n P N in time

period t P T and scenario ω P Ω is denoted by Θn tω; the post-redispatch renewable and

conventional production as well as demand at Node n P N at time t P T under scenario

ω PΩ are denoted by x n tω, y n tω, and Θn tω, respectively.

As it is the case in, for instance, Germany, we assume a cost-based redispatch which is,

by design, profit neutral for both firms and consumers. For this reason, no player can make

profits on it.
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B.3 A four-level market model with zonal pricing

With the liberalization of electricity markets, private firms have become free to decide on

their own (flexibility) investments and to freely trade electricity on the market.

In this section, we introduce a four-stage investment game of Stackelberg type, which cap-

tures the interdependent and sequential nature of the decision-making structure of real-

world electricity markets. While complex, a model of such nature is necessary since, as

argued in the literature Grimm et al. (2016), a single-stage formulation that accounts for the

simultaneous decision on line, storage, and backup generation investments with a single

decision maker cannot capture the nature of the different investment dimensions.

At Stage I, a benevolent decision maker (the TSO) decides on a set of network extensions

with the aim of maximizing the expected welfare. The TSO forms rational (in the game-

theoretic sense) expectations on how the other players (private firms and consumers) will

make their decisions in reaction to the chosen network extension plan so as to be able to

quantify its impact on welfare. In doing so, the TSO directly influences the expected future

returns on the investment in storage and backup generation facilities that are made by the

private investors at Stage II as well as, indirectly, the outcome of the two markets at Stages III

and IV. The monetary returns on the private firms’ investments made at Stage II are deter-

mined as a consequence of the result of the competitive zonal spot market, which is modeled

to explicitly take into account the inter-regional line extensions made by the TSO at Stage I.

Such a market is cleared at Stage III. If the spot market volumes that were determined at the

market-clearing stage are technically infeasible (i.e., electricity cannot be feasibly transmit-

ted through the network as doing so would violate one or more transmission capacities),

the TSO undertakes a cost-based redispatch action to balance supply and demand in such a

way that the network constraints are satisfied and the network is balanced. The redispatch

that the TSO organizes to do so is modeled at Stage IV.

The sequential decision-making structure of the four-stage Stackelberg game we propose

is summarized as follows:

• Stage I: The TSO decides on a network extension plan by which new transmission lines

are added.

• Stage II: Private firms make investment decisions w.r.t. their storage and backup gen-

eration capacity.
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• Stage III: For each scenario in Ω and time period t P T , the electricity-production and

electricity-storage firms trade electricity on the corresponding spot market.

• Stage IV: For each scenario in Ω and time period t P T , redispatch takes place.

We consider two options for modeling the risk attitude of the decision makers involved in

the game: risk-neutrality, which we model via stochastic optimization techniques, and risk-

aversion, which we model via robust optimization techniques. For a in-depth overview of

these techniques, we refer the reader to Shapiro et al. (2021). For the relationship between

robust/stochastic optimization and multi-stage/multi-level problems, see the survey Bolu-

sani et al. (2020).

B.3.1 Stage I: public line investments

For a given scenarioω PΩ, at Stage I the benevolent TSO chooses a line expansion plan that

maximizes the following scenario-dependent post-redispatch welfare function:

φ1
ωpk , ȳ , z̄ , yω, dωq “

ÿ

t PT

ˆ

ÿ

c PC

ż dc tω

0
πc tωphqdh ´

ÿ

g PG

vg yg tω

˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

qωpy ω,dωq

´
ÿ

ℓPL new

iℓkℓ
looooomooooon

hpkq

´
ÿ

g PG new

ig ȳg ´
ÿ

s PS new

is z̄s

loooooooooooooomoooooooooooooon

g p ȳ ,z̄ q

.

The function consists of three terms: the post-redispatch endogenous gross consumer ben-

efit qωpy ω, dωq, which depends on the consumer demand variables dω and the (variable)

post-redispatch production cost y ω, the fixed costs hpkq associated with the public line ex-

pansions, and the private investment costs g p ȳ , z̄ q in generation (y ) and storage (z ).

The k variables (which are the only variables that are directly controlled by the TSO at Stage I)

are constrained to satisfy a set of integrality constraints by belonging to the following feasible

region:

F1 “ tkℓ P t0, 1u,ℓ P L newu .

We remark that, for each scenarioω PΩ, the first-level utility function φ1
ω does not depend

just on the k variables, but also on those variables whose value is set by the decision makers
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that control the subsequent levels of the four-stage Stackelberg game, e.g., the variables ȳ ,

z̄ , yω, and dω.

B.3.2 Stage II: private storage and generation investments

The second stage accounts for the flexibility investments that are made by the private firms.

In line with Boucher and Smeers (2001), Daxhelet and Smeers (2007), Grimm et al. (2016),

and Weibelzahl (2017), we assume that every firm acts in a perfectly competitive environ-

ment as a price taker, which implies that none of them can strategically affect the prices.

This assumption is realistic as the energy transition comes with a large number of new ac-

tive players on electricity markets, and has been established as an economic standard to

keep complex electricity market models computationally tractable and assess possible de-

viations from the perfect competition benchmark (Jenabi et al., 2013; Grimm et al., 2016).

As the cost-based redispatch that we will model at Stage IV is, by design, profit neutral for

both firms and consumers, all the private investment decisions that are made at Stage II

are independent of the redispatch action. It follows that, besides the first-stage investments

in generation and storage, only the anticipation of the spot market profits (determined at

Stage III) will have an impact on the decisions taken at Stage II by the private firms.

For a given scenario ω P Ω, the decision-making problem collectively faced by the private

firms at Stage II calls for maximizing the following spot-market welfare function:

φ2
ωp ȳ , z̄ , yω, dωq “

ÿ

t PT

ˆ

ÿ

c PC

ż dc tω

0
πc tωphqdh ´

ÿ

g PG

vg yg tω

˙

looooooooooooooooooooooomooooooooooooooooooooooon

qωpyω,dωq

´
ÿ

g PG new

ig ȳg ´
ÿ

s PS new

is z̄s

loooooooooooooomoooooooooooooon

g p ȳ ,z̄ q

.

In contrast to the Stage I post-redispatch welfare functionφ1
ω, the spot-market welfare func-

tion φ2
ω depends via the endogenous gross consumer benefit function qω on the spot-

market volumes rather than on the post-redispatch ones (i.e., on yω, dω rather than on

dω, yω) and it ignores the line expansion costs (which, from the perspective of the Stage II

decision makers, are sunken). The dependence on the investment costs via the function g

is retained. Notice thatφ2
ω depends on the yω and dω variables, whose value is determined

129



B The flexibility puzzle in liberalized electricity markets: Understanding flexibility investments under different

risk attitudes

at the next stage and which, in turn, is affected by ȳ and z̄ .

The investment variables ȳ , z̄ are constrained to take nonnegative values by belonging in

the following feasible region:

F2 “

$

&

%

p ȳ , z̄ q PR|G new| ˆR|S new| : ȳg ě 0 g P G new

z̄s ě 0 s P S new

,

.

-

.

B.3.3 Stage III: spot market trade

At Stage III, competitive spot market trade takes place for each time period t P T and sce-

narioω PΩ. The market quantities that are revenue-relevant at this stage and whose value is

determined at this stage are yω and dω, together with the corresponding storage quantities

zω, ẑω, žω and the inter-zonal spot-market flow variables fω.

As already mentioned, we assume that the scenario reveals itself completely at time t “ 0 to

each player. As such, we assume that the bids made by the private companies for each time

period are all collected before the market-clearing phase starts. Due to this assumption, we

assume w.l.o.g. that a single market-clearing problem which encompasses the whole time

horizon is solved. Other assumptions of considering, for instance, a rolling-horizon model

where the market is cleared at each time t P T with a discounted penalty on the future

states t `1, . . . , |T | could clearly be taken into account (albeit at the cost of complicating the

model).

As it is standard in the literature Hasan et al. (2008) and Sensfuß et al. (2008), we assume

a merit order ranking. According to it, the spot-market outcomes of each scenario are deter-

mined by the market by maximizing the difference between the gross consumer benefit and

the variable costs of power production. This coincides with maximizing for each scenario

ω PΩ the following spot-market welfare function:

φ3
ωpyω, dωq “

ÿ

t PT

ˆ

ÿ

c PC

ż dc tω

0
πc tωphqdh ´

ÿ

g PG

vg yg tω

˙

looooooooooooooooooooooooomooooooooooooooooooooooooon

qωpyω,dωq

.
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We remark that, for a given scenario ω P Ω, such a function also coincides with the spot-

market welfare functionφ2
ω that is maximized at level two after dropping the sunken gener-

ation and storage investment costs.

As the scenarios in Ω are independent at this stage, we have |Ω| individual and indepen-

dent problems, one per scenario, each of which is parametric in the first- and second-stage

variables.

Since, as mentioned before, the cost-based redispatch at Stage IV is assumed to be profit

neutral for both firms and consumers, the decisions made at Stage III are independent from

it and, thus, no Stage IV variables appear at this stage.

The spot-market trading variables must belong in the following feasible region, which is

parametric in k , ȳ and z̄ , and also dependent on the scenarioωdue to featuring the scenario-

dependent constant term x̄r tω:

F 3
ωpk , ȳ , z̄ q “

"

pxω, yω, dω, fω, zω, ẑω, žωq PR|G new|
ˆR|G ren|

ˆR|G con|
ˆR|S |

ˆR|S |
ˆR|C | :

ÿ

nPZi

ˆ

ÿ

r PRn

xr tω`
ÿ

g PGn

yg tω`
ÿ

s PSn

žs tω´
ÿ

s PSn

ẑs tω

˙

“

“
ÿ

nPZi

dn tω´
ÿ

ℓPδout
Zi

pLq

fℓtω`
ÿ

ℓPδin
Zi

pLq

fℓtω i PZ , t P T , (B.1)

zs tω “

t
ÿ

i “1

es ẑs iω´

t
ÿ

i “1

žs iω s P S , t P T , (B.2)

žs tω ď zs ,t ´1,ω s P S , t P T , (B.3)

zs 0ω “ 0 s P S , (B.4)

´ f ℓ ď fℓtω ď f ℓ ℓ P L ex
X L inter, t P T , (B.5)

´ f ℓkℓ ď fℓtω ď f ℓkℓ ℓ P L new
X L inter, t P T , (B.6)

0 ď xr tω ď x̄r tω r P R , t P T , (B.7)

0 ď yg tω ď ȳg n P N , g P Gn , t P T , (B.8)

0 ď zs tω ď z̄s s P S , t P T

*

. (B.9)
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Constraints (B.2)–(B.4) are the storage constraints. Constraints (B.5)–(B.9) impose suitable

bounds on the spot market demand, generation, storage, and inter-zonal flow variables.

Zonal balance is modeled by introducing a balance equation for each zone of the network

via Constraints (B.1). These constraints involve the consumer demand, the electricity gen-

erated by both renewable and conventional sources, the electricity which is charged and

discharged in each zone, and the inter-zonal power flows. We note that, while the zs tω

variable can be dropped by backward substitution, doing so would make the formulation

denser, leading, according to our preliminary experiments, to a harder to solve problem.

Since, as mentioned before, intra-zonal power flows and phase angles are ignored at this

stage, an ex-post redispatch may be necessary.

B.3.4 Stage IV: redispatch

At Stage IV, the TSO undertakes a minimum-cost redispatch activity for each scenarioω PΩ:

ÿ

t PT

ˆ

ÿ

c PC

ż dc tω

dc tω

πc tωphqdh ´
ÿ

g PG

vg pyg tω´ yg tωq

˙

.

For each point in time t P T and consumer c P C , the term
şdc tω

dc tω
πc tωphq accounts for the

loss of gross consumer benefit if dc tω ď dc tω or for its increment if dc tω ě dc tω caused by

the redispatch adjustment. In addition, each term vg pyg tω ´ yg tωq takes into account the

additional variable production costs of the firms that are called on the redispatch market if

yg tω ě yg tω or the associated production-cost reduction if yg tω ď yg tω.

Since minimizing the above redispatch cost is equal to maximizing its opposite, we define

the following Stage-IV utility function:

φ4
ωpyω, dω, yω, dωq “

ÿ

t PT

ˆ

ÿ

c PC

ż dc tω

dc tω

πc tωphqdh ´
ÿ

g PG

vg pyg tω´ yg tωq

˙

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

qωpy ω,dωq´qωpyω,dωq

,

which, by nature, coincides with the difference between qωpy ω, dωq and qωpyω, dωq.
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Assuming the widely adopted Direct Current (DC) power flow formulation, for each sce-

narioω PΩ the Stage IV feasible region reads:

F 4
ωpk , ȳ , ẑω, žωq“

"

pxω, y ω, dω, f ω,Θωq PR|G con|
ˆR|C |

ˆR|L|
ˆR|N | :

d n tω“
ÿ

r PRn

x̄r tω`
ÿ

g PGn

y g tω`
ÿ

s PSn

pžs tω´ ẑs tωq`

`
ÿ

ℓPδin
n pLq

f ℓtω´
ÿ

ℓPδout
n pLq

f ℓtω n P N , t P T , (B.10)

´ f ℓ ď f ℓtω ď f ℓ ℓ P L ex, t P T , (B.11)

´ f ℓkℓ ď f ℓtω ď f ℓkℓ ℓ P L new, t P T , (B.12)

f ℓtω “ BℓpΘn tω´Θm tωq ℓ“ pn , mq P L ex, t P T , (B.13)

´ M ´

ℓ p1 ´ kℓq ď f ℓtω´ BℓpΘn tω´Θm tωq ď M `

ℓ p1 ´ kℓq

ℓ“ pn , mq P L new, t P T , (B.14)

Θ1tω “ 0 t P T , (B.15)

0 ďΘn tω ď 2π n P N , t P T , (B.16)

0 ď x r tω ď x̄r tω r P R , t P T , (B.17)

0 ď y g tω ď ȳg n P N , g P Gn , t P T , (B.18)

d c tω ě 0 c P C , t P T , (B.19)

d n tω “ 0 n P N zC , t P T

*

. (B.20)

Constraints (B.11) and (B.12) guarantee that the power flow f ℓtω on each line ℓ P L does

not exceed the line’s transmission capacity (also accounting for any potential transmission

extensions). Constraints (B.13) and (B.14) rely on Kirchhoff’s Second Law to determine the

value of the power flow for each line ℓ“ pn , mq via the corresponding phase angle variables

Θn tω andΘm tω. In Constraints (B.14), M `

ℓ and M ´

ℓ are two "big M" parameters large enough

to guarantee that the constraints corresponding to the lines ℓ P L new are inactive whenever

wℓ “ 0. Both are set to tight values. Indeed, we set M `

ℓ :“ f ℓ (which is an upper bound on

f ℓtω´BℓpΘn tω´Θm tωq attained at f ℓtω “ f ℓ andΘn tω´Θm tω “ 0) and M ´

ℓ :“ ´ f ℓ´Bℓ2π

(which is a lower bound on f ℓtω´BℓpΘn tω´Θm tωq attained at f ℓtω “ ´ f ℓ,Θn tω “ 2π, and

Θm tω “ 0). In order to ensure that the power flows are unique, Constraints (B.15) set to 0 the

phase angle of Node 1, which is an arbitrary node chosen w.l.og. as reference. According to

Kirchhoff’s First Law, Constraints (B.10) model the power balance at every node, explicitly
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accounting for nodal injections and withdrawals. In such constraints, δin
n pLq and δout

n pLq

are the sets of, respectively, ingoing and outgoing lines from each Node n P N .

We remark that, in line with many real-world markets, our formulation does not encom-

pass the post-redispatch adjustment of the storage values.

B.4 Problem formulation under different risk attitudes

We assume that the risk attitude of each player is public so that, when anticipating a player’s

decision, every other player knows it.

The role of the decisions taken at Stages III and IV is to assign a return on investment to

the Stage-I and Stage-II investment variables, scenario by scenario. In this sense, Stages III

and IV are only instrumental insomuch as they allow the decision makers of the game (the

TSO and the firms) to predict the outcome of the spot and redispatch markets in each sce-

nario as a function of the strategic decisions they make at Stages I and II. Therefore, rather

than considering an instance of the Stage-III and Stage-IV problems for each scenarioω PΩ,

we can w.l.o.g. consider the only scenarios that are relevant to match the player’s Stage-I and

Stage-II risk attitude. In particular, the risk attitude of Stage III and Stage IV will match the

risk attitudes of, respectively, the Stage I and Stage II.

We introduce the the following generalized formulation of our four-stage game:

k P argmax

$

’

’

’

’
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’

’

’

’

’
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’
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A I
`

tqωpy ω, dωquωPΩ

˘

` hpkq ` g p ȳ , z̄ q

s.t. k PF 1

p ȳ , z̄ q P argmax

$

’

’

’

’

’

’
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’

’

&

’

’

’

’

’

’

’
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’

’

%

A I I
`

tqωpyω, dωquωPΩ

˘

` g p ȳ , z̄ q

s.t. p ȳ , z̄ q PF 2

¨

˚

˚

˝

xω, yω,

zω, ẑω,

žω, dω

˛

‹

‹

‚

P argmax

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

qωpyω, dωq

s.t. pxω, yω, zω, ẑω, žω, dωq PF 3
ωpk , ȳ , z̄ q

¨

˚

˚

˝

xω, y ω,

dω, f ω,

Θω

˛

‹

‹

‚

P argmax

"

qωI V py ω, dωq ´ rqωpyω, dωqs

s.t. pxω, y ω, dω, f ω,Θωq P

F 4
ωpw , ȳ , ẑ , ž q
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(B.21)

In the formulation, A I
`

tqωpy ω, dωquωPΩ

˘

and A I I
`

tqωpyω, dωquωPΩ

˘

model the risk at-

titude of, respectively, the TSO (Stage I decision maker) and the firms (Stage II decision

makers). The letterA stands for attitude as in "risk attitude" and, based on the risk attitude

of the TSO and the firms, the two functionsA I andA I I coincide with either the expected
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or the minimum value over Ω of, respectively, qωpy ω, dωq (for the TSO) and qωpyω, dωq (for

the firms).

In the formulation, the additive term qωpyω, dωq of Stage IV is reported in brackets as, due

to it being constant w.r.t. the variables of this stage, it cannot affect the optimality of its

solutions and, thus, it can be w.l.o.g. dropped.

B.5 Equilibrium-finding approaches

In this section, we show how to simplify the hierarchical nature of the proposed four-stage

game into that of a two-stage game, and propose a bilevel-programming formulation for

computing its equilibria. We will then recast the obtained bilevel problem into an equivalent

(in terms of globally optimal solutions) single-level problem solvable to global optimality via

a state-of-the-art spatial branch-and-bound method.

B.5.1 Understanding the internal relationships of the model

To better analyze the interplay between the different stages of the four-stage game, their

decision variables, and the anticipation that is made at any stage of index i on the outcome

of any stage of index j ą i , we introduce the notion of a Hierarchical Interaction Diagram

(HID). The HID of the proposed four-stage game is reported in Figure B.1. We compactly

refer to the corresponding game as rI | I I | I I I | I V s.
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Figure B.1: HID of the proposed four-stage game rI | I I | I I I | I V s.

The diagram displays the set of decision variables that are controlled at each stage of index i

and what utility functions and constraint sets belonging to any stage of index j , with either

j ą i or j ă i , depend on them. The diagram is vertically split across stages. In each stage,

the upper gray block represents the stage’s utility (objective) function and the lower gray

block its constraints set. The variables controlled at each stage are reported below the latter

block.

In the diagram, a forward arc (i.e., left to right) between a variable of stage i and either

the utility function or the constraint set of a stage of index j ą i indicates that stage j is

parametric w.r.t. such a variable and that, in particular, stage j can observe the value that

stage i assigns to such a variable before making its utility-maximizing decisions. A back-

ward arc (i.e., an arc from right to left—we report it in a thicker line for greater readability)

between a variable of a stage j and either the utility function or the constraint set of a stage

of index i ă j indicates that the decisions at stage i are made in anticipation of the value

that will be set at stage j for such a variable.

In the HID in Figure B.1, the forward arc between the py , d q variables of Stage-III and the

Stage-IV utility function is reported as a dashed line and labeled "const" as these variables

only contribute to the Stage-IV utility function by an additive term which does not depend
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on the Stage-IV variables. As such, the corresponding arc can (and will from now on) be

dropped.

From the HID, we observe that there are no backward arcs from Stage IV to Stage III, which

signifies that no Stage-III decisions are made in anticipation of the outcome of Stage IV.

We also observe the lack of backward arcs not only from Stage IV to Stage III, but also from

Stage IV to Stage II. Therefore, the only stage that anticipates the outcome of Stage IV is Stage

I.

B.5.2 Equivalent two-stage game

In the following, we make the optimistic assumption that, if a stage admits several optimal

solutions, the one that yields the best objective function value for the preceding stage(s) is

chosen.

We start our analysis with the following proposition:

Proposition 1 The four-stage game rI | I I | I I I | I V s reported in Figure B.1 can be trans-

formed into the equivalent three-stage game rI | I I ` I I I | I V s reported in Figure B.2, where

Stages II and III are aggregated into the single Stage I I ` I I I whose utility function coincides

with the one of Stage II and whose constraint and variable set is the union of those of Stages II

and III.

Proof 1 The result is proven by showing that any equilibrium sub-strategy pz ˚, y ˚, d ˚, z ˚, ẑ ˚, ž ˚q

of the game rI | I I ` I I I | I V s is optimal not only for its (combined) Stage I I ` I I I , but also

for Stage III of the original game rI | I I | I I I | I V s (notice that, as Stage IV does not depend

on Stage III, the Stage IV strategy is irrelevant and, hence, ignored here).

Let us assume by contradiction that this is not the case and that there is a Stage-III equilibrium

sub-strategy of the original game rI | I I | I I I | I V s which satisfiesA I I
`

tqωpy ˚˚
ω , d ˚˚

ω quωPΩ

˘

ą

A I I
`

tqωpy ˚
ω , d ˚

ωquωPΩ

˘

. If this is the case, the Stage-II utility function of the game rI | I I `

I I I | I V s takes valueA I I
`

tqωpy ˚˚
ω , d ˚˚

ω quωPΩ

˘

´ g p ȳ ˚˚, z̄ ˚˚q ąA I I
`

tqωpy ˚
ω , d ˚

ωquωPΩ

˘

´

g p ȳ ˚, z̄ ˚q (notice that g is scenario-independent and, thus, it does not depend on the risk

attitude of the players). This implies that pz ˚, y ˚, d ˚, z ˚, ẑ ˚, ž ˚q leads to a unilateral de-

viation and, as such, it does not belong to an equilibrium strategy of the three-stage game

rI | I I ` I I I | I V s, leading to a contradiction.

137



B The flexibility puzzle in liberalized electricity markets: Understanding flexibility investments under different

risk attitudes

Figure B.2: HID of the three-stage game rI | I I ` I I I | I V s.

Next, we establish the following:

Proposition 2 The three-stage game rI | I I ` I I I | I V s reported in Figure B.2 can be trans-

formed into the equivalent two-stage game rI ` I V | I I ` I I I s reported in Figure B.3, where

Stages I and IV are aggregated into the single Stage I ` I V whose utility function coincides

with the one of Stage I and whose constraint and variable set is the union of those of Stages I

and IV.

Proof 2 First, we note that, as one can see from the diagram in Figure B.2, Stage I I `I I I does

not anticipate Stage I V . This implies that, w.l.o.g., Stage I I ` I I I of the game rI | I I ` I I I |

I V s can be further combined with Stage IV into the single Stage I I `I I I ´I V , where the dash

´ signifies that the merged Stage I I `I I I and Stage I V take place simultaneously. This leads

to the game rI | I I ` I I I ´ I V s.

Next, we show that, in any equilibrium of the two-stage game rI ` I V | I I ` I I I s of the

claim, the sub-strategy py ˚, d ˚, f ˚,Θ˚q is optimal for Stage IV of the game rI | I I ` I I I ´

I V s. Let us assume by contradiction that this is not the case and that there is an equi-

librium pk ˚, ȳ ˚, z̄ ˚, z , y ˚, d ˚, z ˚, ẑ ˚, ž ˚, y ˚˚, d ˚˚, f ˚˚,Θ˚˚q of the game rI | I I ` I I I ´

I V s where the Stage IV strategy py ˚˚, d ˚˚, f ˚˚,Θ˚˚q satisfies A I
`

tqωpy ˚˚
ω , d ˚˚

ω quωPΩ

˘

ą

A I
`

tqωpy ˚
ω, d ˚

ωquωPΩ

˘

. If this is the case, the utility function of Stage I ` I V in the game rI `
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I V | I I `I I I s takes valueA I
`

tqωpy ˚˚
ω , d ˚˚

ω quωPΩ

˘

´hpk ˚q´g p ȳ ˚, z̄ ˚q ąA I
`

tqωpy ˚
ω, d ˚

ωquωPΩ

˘

´

hpk ˚q´g p ȳ ˚, z̄ ˚q. This implies that py ˚, d ˚, f ˚,Θ˚q does not belong to an equilibrium strat-

egy of the game rI ` I V | I I ` I I I s: a contradiction.

Figure B.3: Hierarchical interaction diagram of the two-stage game rI ` I V | I I ` I I I s.

B.5.3 Equilibrium-finding bilevel problem and single-level reformulation

Thanks to the previous propositions, we obtain the following theorem:

Theorem 3 The problem of computing an equilibrium in the proposed four-stage game can

be cast as the following bilevel optimization problem:
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y Ω, d Ω,
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A I
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The second-level problem in the bilevel problem (B.22) features a concave objective func-

tion (to be maximized), continuous variables, linear constraints, and linear or quadratic-

convex constraints. Therefore, the lower-level problem is a convex optimization problem.

This implies that its KKT conditions are both necessary and sufficient, and that every feasi-

ble solution of its KKT system is a global optimum of the problem.

Thanks to this, we can reformulate the bilevel problem as an equivalent single-level prob-

lem by substituting for the second-level problem its KKT system. For the sake of brevity, we

do not report the whole KKT system here under the different choices of risk attitudes.

We, nevertheless, point out a peculiarity that occurs in the case where the Stage II play-

ers have a risk-averse attitude. In such a case, the equilibrium-finding problem features the

following constraint:

ηď

ˆ

ÿ

t PT

ˆ

ÿ

c PC

ż d s p o t
c tω

0
πc tωphqdh ´

ÿ

g PG

vg w y s p o t
g tω

˙

`

´
ÿ

g PG new

ig ȳg ´
ÿ

s PS new

is z̄s

˙

@ω PΩ, (B.23)

where η is a new variable (being maximized) which is constrained to be no larger than the

value taken by the welfare function under each scenario ω P Ω. Letting ϖω be the dual

variable of such a constraint, the corresponding complementarity constraint featured in the

KKT system of the lower-level problem reads:

0 ď

ˆ

ÿ
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ˆ

ÿ
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c tω

0
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`

´
ÿ

g PG new

ig ȳg ´
ÿ

s PS new

is z̄s

˙

´ηKϖω ě 0 @ω PΩ. (B.24)

Due to the worst-case nature of risk-aversion, Constraint (B.23) features among its terms

what would otherwise be an objective function in the risk-neutral case (the welfare func-

tion under scenario ω P Ω). Differently from the latter (risk-neutral) case, in which the

KKT system contains the first derivative of such a function, in the risk-averse case the func-

tion shows up in its original (undifferentiated) form within Constraint (B.24). If the corre-

sponding complementarity constraint is formulated as

ˆ

ř

t PT

ˆ

ř

c PC

şd s p o t
c tω

0 πc tωphqdh ´
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ř

g PG vg w y s p o t
g tω

˙

´
ř

g PG new ig ȳg ´
ř

s PS new is z̄s ´η

˙

ϖω “ 0 for allω PΩ, one obtains a (non-

convex) constraint of degree 3, which will make solving the problem computationally much

harder. We will discuss a way to circumvent such an issue in the next section.

B.6 Case study: Numerical results and discussion

Our model is coded in the Zimpl algebraic modeling language (Koch, 2001) and solved to

global optimality with the spatial branch-and-bound method implemented in Gurobi 9.5.

The experiments are run on an Intel(R) Core(TM) i7-6500U with 8 GB of RAM using 4 threads.

From a computational perspective, we formulate the complementarity conditions in the

KKT system of the lower level problem as special ordered set of type 1 (SOS1) constraints.

This allows for stating them without the need for introducing any further non-linearities to

the formulation thanks to letting the (spatial) branch-and-bound solver branch on each pair

of expressions involved in a complementary constraint without having to introduce binary

variables to model their intrinsic disjunction and potentially incorrect big-M terms—for an

in-depth discussion of this aspect, we refer the reader to Kleinert et al. (2020). This, in par-

ticular, circumvents the issue we mentioned at the end of the previous section related to the

3rd degree convex constraint.

B.6.1 Description of the six-node network of Chao and Peck (Chao and

Peck, 1998)

Our case study is based on the widely adopted six-node network of Chao and Peck (1998),

which has been established as a standard in many policy-related studies. Examples of such

studies include, among others, Ehrenmann and Smeers (2005), Oggioni and Smeers (2013),

Grimm et al. (2016), and Weibelzahl and Märtz (2020).

The six-node network is depicted in Figure B.4. As one can see from it, the network features

six nodes linked by eight (pre-existing) transmission lines. Nodes 1, 2, and 3 are located

in the North, while nodes 4, 5, and 6 are located in the South. The northern and southern

subnetworks are connected by the two transmission lines ℓ “ p1, 6q and ℓ “ p2, 5q, with a

transmission capacity of 200 MWh and 250 MWh, respectively. The transmission capacity

of the other lines is assumed to be infinite. The three nodes 3, 5, and 6 (highlighted in gray
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1 2

6 5

4

f 13 “ 8 MWh

B13 “ 1 MWh

f 12 “ 8 MWh

B12 “ 1 MWh

f 16 “ 200 MWh

B16 “ 0.5 MWh

Candidate line 1 :
f 16 “ 200 MWh
B 16 “ 0.5 MWh

C Inv
16 “ 1.750 =C

f 23 “ 8 MWh

B23 “ 1 MWh

f 25 “ 250 MWh

B25 “ 0.5 MWh

Candidate line 2 :
f 25 “ 200 MWh
B 25 “ 0.5 MWh

C Inv
25 “ 1.750 =C

f 56 “ 8 MWh

B56 “ 1 MWh

f 64 “ 8 MWh

B64 “ 1 MWh

f 45 “ 8 MWh

B45 “ 1 MWh

Demand:
P 1px q “ 28.125 ´ 0.05x

P 2px q “ 37.5 ´ 0.05x

Generation:
C Inv “ 4 =C/MW

C Var “ 49.19 =C/MWh

Generation:
C Inv “ 12 =C/MW

C Var “ 28.39 =C/MWh

Demand:
P 1px q “ 60 ´ 0.1x
P 2px q “ 80 ´ 0.1x
Storage:

Is pz̄ q “ 2 =C

Generation:
C Inv “ 10 =C/MW

C Var “ 31.08 =C/MWh

Demand:
P 1px q “ 56.25 ´ 0.1x

P 2px q “ 75 ´ 0.1x

Figure B.4: Six-Node Network of Chao and Peck (1998) in the base scenario.

in the figure) are the three consumption centres of the network. Electricity generation can

take place at the remaining nodes 1, 2, and 4.

To be able to analyze the flexibility puzzle described in this paper, we extend the original

six-node network of Chao and Peck (1998) by several aspects, such as fluctuating demand

as well as generation and grid investments, as described in the following.
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In our case study, we consider |T | “ 2 time periods, reflecting an on-peak and off-peak pe-

riod. The demand functions of the on-peak time period (t “ 2) are taken from the original

six-node network, as described in Chao and Peck (1996). We create the demand functions

of the off-peak time period (t “ 1) from real-world demand data of the German electricity

market, by adjusting the intercepts of the original demand functions by a factor 0.75 and in

this way inducing the corresponding demand variation. Note that, in our setup, the total

consumption at the two southern nodes 5 and 6 exceeds the consumption at the north-

ern node 3. As a consequence, the southern subnetwork acts as a stylized version of the

Southern-German demand centres consisting of Bavaria and Baden-Würtemberg.

With respect to the conventional generation side, in our case study we assume that there

are no existing conventional generators, but we explicitly model conventional back-up gen-

eration investments. Similarly to the real-world German electricity system, in the six-node

network the two northern generation nodes 1 and 2 are characterized by cheaper conven-

tional generation technologies compared to the southern one (node 4). In line with Grimm

et al. (2016), we assume that the three generators at nodes 1, 2, and 4 are candidate conven-

tional generation facilities that can attract investments from private firms.

In contrast, renewable capacities are given as parameters at node 1, 2, and 4. The corre-

sponding time-dependent, renewable generation availability (as a percentage of the given

installed capacity), which is for instance driven by weather conditions, is modeled by the

temporal availability factors. We use real-world data from the feed-in of renewables from

the four German TSOs (50 Hertz, Amprion, TenneT, and TransnetBW). Overall, we assume

that, out of a total installed renewable capacity of 100 MW, 44% takes place at node 1, 31%

at node 2, and 25% at node 4.

We also assume that the private firms may decide to invest in new storage facilities at node 6

to inter-temporally balance volatile electricity feed-in across time periods.

Finally, we assume that two new transmission lines can be built in parallel to lines l “ p1, 6q

and l “ p2, 5q to strengthen the north-south links. More detailed information on the de-

mand, generation, storage, and transmission parameters is given in Figure B.4.
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B.6.2 Uncertainties and related scenario definition

We consider five scenarios with a uniform probability distribution (pω “
1
5 for all ω P Ω).

Scenario ω “ 1 is taken as the base scenario. We assume three sources of long-run uncer-

tainty (i.e., three uncertainty dimensions) that affect the investments in generation, storage,

and transmission facilities, and construct Scenarios ω “ 2 to ω “ 5 along these three di-

mensions, as better described in the following.

The first uncertainty dimension refers to the exogenous development of installed capac-

ity of renewable energy sources at nodes 1, 2 and 4. Driven by the goals defined in the Paris

Agreement, many nations worldwide are increasing their investments in renewable energy

sources. Therefore, in addition to our base scenarioω“ 1, we introduce a second scenario

ω “ 2 featuring an increased overall installed capacity of 400 MW. Following the shares of

renewable generation capacities across the individual nodes that we introduced before, this

results in (increased) renewable capacities of 176 MW, 124 MW, and 100 MW for, respec-

tively, nodes 1, 2, and 4.

The second uncertainty dimension that we model is an exogenous change in the demand at

nodes 3, 5, and 6 caused by an increased electrification across different sectors such as, e.g.,

an increased penetration of electric vehicles and/or heat pumps. As such an electrification

leads to a higher node-specific demand for electricity, in our third Scenario ω“ 3 we con-

sider an overall demand increased by 50% in each of the three demand nodes, i.e., nodes 3,

5, and 6.

The third uncertainty dimension we consider is the exogenous development of CO2 prices.

Different policy makers make use of CO2 prices in different ways. Currently, the German

CO2 price is 48 € per ton. However, research on the environmental costs of CO2 indicates

that, in general, the prices should/will be even higher in future than the German ones (Ren-

nert et al., 2022). Therefore, our fourth scenarioω“ 4 features a higher CO2 price compared

to our base case of, namely 174 € per ton (Rennert et al., 2022), which has a direct impact

on variable costs of production.

Finally, in scenarioω“ 5 we consider an increase in all three uncertainty dimensions.

Table B.1 summarizes the features of the five scenarios we consider across the three un-

certainty dimensions.
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Table B.1: Scenario definitions for the three uncertainty dimensions.

Installed RES capacity Level of Demand CO2 prices

Scenarioω“ 1 Base Base Base

Scenarioω“ 2 High Base Base

Scenarioω“ 3 Base High Base

Scenarioω“ 4 Base Base High

Scenarioω“ 5 High High High

Node 1: 44 MW
Base Node 2: 31 MW 100 % 48 € per ton

Node 4: 25 MW

Node 1: 176 MW
High Node 2: 124 MW 150 % 174 € per ton

Node 4: 100 MW

B.6.3 On the interplay between transmission, storage, and backup

generation investments

In this section, we discuss the equilibrium outcomes considering two different spot market

designs and four different settings of risk attitudes, as described below.

In particular, for the four different settings of risk attitudes we vary the public (Stage I) and

the private (Stage II) risk attitude between a risk-neutral (”N”) and a risk-averse (”A”) deci-

sion maker. In this way, we arrive at four different cases of risk attitude, namely ”NN”, ”NA”,

”AN”, and ”AA”, where the first letter stands for the public investors’ risk attitude and the

second letter stands for the private investors’ risk attitude.

Regarding the spot market designs, we analyze the impact of uniform and zonal spot market

designs by applying both to our model.

The results obtained with the four variations of the model are reported in Tables B.2 and

B.3.

B.6.3.1 On the effects of different risk attitudes

First, we analyze and discuss our results comparing the different cases of risk attitudes, i.e.,

”NN”, ”NA”, ”AN”, and ”AA”.
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Table B.2: Results for uniform spot market design.

Generation Generation Generation Storage
Risk- Objective Capacity Capacity Capacity Capacity Line 1 Line 2

attitudes Function Node 1 Node 2 Node 4

NN 69,612 471 229 0 228 1 1
NA 62,312 0 0 0 180 1 0
AN 23,035 0 285 1,150 0 0 0
AA 28,736 0 98 0 182 0 0

Table B.3: Results for zonal spot market design.

Generation Generation Generation Storage
Risk- Objective Capacity Capacity Capacity Capacity Line 1 Line 2

attitudes Function Node 1 Node 2 Node 4

NN 70,896 144 318 249 168 1 0
NA 65,362 0 98 0 182 1 0
AN 26,205 0 262 395 184 0 0
AA 28,736 0 98 0 182 0 0

Looking at the results from our case study reported in Tables B.2 and B.3, we see that, for the

case of "NA" and applying uniform spot market pricing, there is no investment in back-up

generation capacities. This suggests that the investments in line 1 are sufficient for allowing

a sufficient amount of electricity to be charged and discharged to/from the storage facility,

which have been subjected to a capacity investment, and for balancing the overall electricity

system.

Assuming a uniform market design and comparing the ”AA” case to the ”NA” case, a neutral

risk attitude at Stage I results in zero investments in transmission lines and in some (small)

investments in generation capacity at node 2. The results indicate that a risk-avers attitude

for both the private and the public investor seems to result in overall lower investments.

However, when the risk attitude of the public investor changes and the ”NA” case is consid-

ered, the investments increase and so does welfare. With a further change in the risk attitude

of the private investors to ”NN” case, we observe higher investments also from the public

side.

Overall, risk-averse attitudes seem to hamper investments in both new transmission lines

and private flexibility options. As an extreme case, risk aversity of private investors can yield

no conventional backup generation investments.
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B.6.3.2 On the effects between uniform and zonal prices

In general and as expected, our results indicate that welfare is higher (or at least not lower)

under zonal pricing than under a uniform spot market design. This is in line but also extends

previous results of the literature to the case where different levels of risk aversion are con-

sidered. The corresponding welfare effects are generally driven by a change in investments

in generation and storage: For instance, the ”NA” case results in slightly higher investments

under a zonal market design as compared to the uniform market design, which leads to an

increased welfare. However, we also see that, for both designs, an averse risk attitude on

both stages I and II , i.e., the ”AA” case, similarly results in low investments. Consequently,

in the case of exclusively risk-averse decision makers on both stages, none of the two market

designs can repair inefficiently-low flexibility investments.

For the ”NN” case, our results also illustrate that a zonal market design (that considers

inter-zonal transmission constraints) can lead to a generally lower need for expansion of

the network.

B.7 Conclusion

With an increasing penetration of renewable energy sources, supply-side variability and

its natural uncertainty pose new challenges for the balancing of demand and supply. In

particular, the loss of production flexibility which is due to the growing predominance of

renewable energy production leads to a so-called flexibility gap. In order to fill this gap, new

forms of flexibility are required, ranging from new transmission flexibility to storage flexi-

bility.

To solve the arising flexibility puzzle and answer the question of how to offer an adequate

flexibility mix, we have proposed a multi-stage investment game under uncertainty. At

Stage I of the game, the TSO invests in welfare-enhancing line extensions while forming

rational expectations on the private investments in storage and conventional backup gen-

eration capacity that will take place at Stage II. In turn, these private flexibility investments

depend on the anticipation of the zonal spot market outcomes taking place at Stage III,

which are followed by a redispatch market at Stage IV.

Modeling and analyzing different types of risk attitudes and thanks to a widely adopted case
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study, we have shown that a lower risk-aversion for a public investor results in increased in-

vestments and in an increased welfare even when the risk attitude of the private investor is

still averse to risk. Comparing uniform and zonal market designs, our results indicate that,

thanks to considering inter-zonal transmission lines, a zonal market design may exhibit a

lower need for network expansion and consequently leads to an increase in regional invest-

ments in generation capacities as well as storage.

When discussing our first computational results, the case study also illustrates that, due

to the urgent need for proper investments in flexibility, it is important to consider risk atti-

tudes of different investors in addition to the market design itself. We find that, in the case

study, different risk attitudes of private and public investors (such as firms and network op-

erators) lead to different investments, which can be more or less welcome from a system

perspective. Therefore, to purposefully incentivize (flexibility) investments, it is important

to understand how policy makers can deal with different risk attitudes in order to support

purposeful investments in flexibility.

Our work provides a basis for steering up an academic discussion on integrating risk at-

titudes into investment-decision making. In particular, it highlights that research and prac-

tice should reflect on the interplay of the risk attitude of public and private investors alike

combination with different market designs when choosing the right mix of flexibility.

Our paper provides a range of future research. A future model extension could for example

account for different types of demand flexibility (including, e.g., demand shifting), post-

redispatch changes in storage values, or a market-based redispatch mechanism. This may

further help policymakers to pave the way to a flexible, climate-neutral electricity system.

As our work provides a basis for steering up an academic discussion on integrating risk-

attitudes into decision making for investment incentives, further research might also extend

our model with regard to, e.g., possibilities for investments at each node and the range of

time periods. Finally, our paper notes that research and practice may reflect on the inter-

play of public and private investment risk-attitudes in combination with different market

designs when choosing the right mix of flexibility within a flexibility puzzle.
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Table B.4: Sets

Symbol Description

G Electricity network

N Set of network nodes

C Ď N Set of consumer nodes

L Set of transmission lines

L new Ď L Set of candidate transmission lines

L ex Ď L Set of existing transmission lines

T Set of time periods

Ω Scenario set

G Set of generators

Gn Ď G Set of generators located at node n

G new Ď G Set of new conventional generators

R Set of renewable generators

Rn Ď R Set of renewable generators located at n

S Set of storage facilities

Sn Ď S Set of storage facilities located at node n

S new Ď S Set of new storages
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Table B.5: Parameters

Symbol Description Unit

ac tω Intercept of demand function c in period t under scenarioω €/MWh

bc Slope of demand function c €/MWh2

vg Variable cost of generator g €/MWh2

ig Generation investment cost for g €/MWh

x̄r tω Maximum power output of r in period t under scenarioω €/MWh2

es Storage efficiency of facility s %

z `

s Maximum percentage of capacity at s available to store energy in a period %

z ´

s Maximum percentage of capacity at s available to discharge energy in a period %

is Storage investment cost for s €/MWh

f ℓ Transmission capacity of line l MWh

Bℓ Susceptance of line l MWh

iℓ Line investment cost for l P L new €

pω Probability for scenarioω 1
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Table B.6: Variables and Derived Quantities

Symbol Description Unit

dc tω Electricity demand at c in period t under scenarioω MWh

yg tω Electricity generation of g in period t under scenarioω MWh

ȳg Invested generation capacity of facility g MWh

z `
s tω Amount of electricity stored at s in period t under scenarioω MWh

z ´
s tω Amount of electricity discharged at s in period t under scenarioω MWh

zs tω Amount of stored electricity at s in time period t under scenarioω MWh

z̄s Invested storage capacity of facility s MWh

fℓtω Power flow on line l in period t under scenarioω MWh

Θn tω Phase angle value at node n in period t under scenarioω rad

πd ,t ,ω Electricity price at d in period t under scenarioω €/MWh

Wω Welfare under scenarioω €

W Welfare aggregated over all scenarios minus line investment costs €

d c tω Final consumption of c in period t under scenarioω MWh

z s tω Final amount of stored electricity at s in period t under scenarioω MWh

z `
s tω Final amount of electricity stored in in period t under scenarioω MWh

z ´
s tω Final amount of electricity discharged in period t under scenarioω MWh

x r tω Final electricity generation of renewable r in period t under scenarioω MWh

y g tω Final electricity generation of g in period t under scenarioω MWh

f l ,t ,ω Final power flow on line l in period t under scenarioω MWh

Θn tω Final phase angle value at node n in period t under scenarioω rad
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Abstract

Plug-in electric vehicles (PEVs) are a promising option for greenhouse gas (GHG) mitigation

in the transport sector – especially when the fast decrease in carbon emissions from electric-

ity provision is considered. The rapid uptake of renewable electricity generation worldwide

implies an unprecedented change that affects the carbon content of electricity for battery

production as well as charging and thus the GHG mitigation potential of PEV. However, most

studies assume fixed carbon content of the electricity in the environmental assessment of

PEV and the fast change of the generation mix has not been studied on a global scale yet.

Furthermore, the inclusion of up-stream emissions remains an open policy problem. Here,

we apply a reduced Life Cycle Assessment (LCA) approach including the well-to-wheel emis-

sions of PEV and taking into account future changes in the electricity mix. We compare fu-

ture global energy scenarios and combine them with PEV diffusion scenarios. Our results

show that the remaining carbon budget is best used with a very early PEV market diffusion;

waiting for cleaner PEV battery production cannot compensate for the lost carbon budget

in combustion vehicle usage.

C.1 Introduction

Transport is responsible for about one quarter of global energy related greenhouse gas

(GHG) emissions and transport is the only energy-related sector with emissions still growing

compared to 1990 (International Energy Agency (IEA), 2018; European Comission, 2017).

Road vehicles contribute the largest share to these emissions and current projections in-

dicate a doubling of the passenger vehicle fleet until 2050 (Bunsen et al., 2018). Conse-

quently, an increased market share of alternative fuel vehicles, such as plug-in electric vehi-

cles (PEVs), including plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles

(BEVs), powered from renewable energy sources (RES) seems essential for significant GHG

mitigation in passenger road transport. There are already many studies comparing GHG

emissions of PEVs to internal combustion engine vehicles (ICEV) on a life-cycle basis (Bun-

sen et al., 2018; Cox et al., 2018; Creutzig, 2016).

Past studies have shown that life-cycle PEVs emissions depend heavily on the assumed elec-

tricity mix, driving patterns and ambient weather conditions (Yuksel et al., 2016; Tamayao

et al., 2015; Nordelöf et al., 2014; Gómez Vilchez and Jochem, 2020). These factors vary re-

gionally, so PEV emissions can also vary regionally.
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Yuksel et al. (2016) consider regional differences due to marginal grid mix, ambient temper-

ature, patterns of vehicles miles travelled, and driving conditions. They find that PEVs can

have larger or smaller carbon footprints than gasoline vehicles, depending on these regional

factors and the specific vehicle models being compared. However, Yuksel et al. (2016) use

fixed historic carbon intensities and mention it as drawback in the discussion themselves.

The exact results vary widely depending on the input assumptions and the source of elec-

tricity used for recharging. Nevertheless, the impacts can be highly uncertain. Cox et al.

(2018) quantify parametric uncertainty and include changes to driving patterns due to the

introduction of autonomous and connected vehicles. They perform a very comprehensive

analysis of the uncertainty of many parameters with carbon intensity of the grid electricity

in several scenarios. Yet, they use fixed intensity for the vehicle lifetime with 2017 or fu-

ture 2040 values and neglect the changes in between. Likewise, Tamayao et al. (2015) study

different charging patterns and local grid mixes, but neglect the future evolution of carbon

intensity. Xu et al. (2020) considered the emissions from the whole PEV life cycle by a Life

Cycle Assessment (LCA) and combined this with a sophisticated consideration of charging

times in the European energy system. They concluded that on the European scale, a reason-

able replacement of ICEVs by PEVs can lead to a substantial reduction in GHG emissions,

but still depending on some uncertainties such as charging patterns. Kim et al. (2016) report

the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial

BEV and compared the cradle-to-gate GHG emissions to an ICEV.

However, a major advantage of PEVs overlooked in most parts of the literature is the fast

transformation of the energy system: A reduction in carbon intensity of electricity leads

directly to lower upstream emissions and accordingly to lower emissions from the fuel per-

spective (i.e. well-to-wheel emissions) and lower emissions from vehicle and battery pro-

duction (i.e. life-cycle perspective). For ICEVs this is only possible if low-carbon fuels, such

as biofuels or synthetic renewable fuels are introduced in large quantities, which is highly

uncertain (Brynolf et al., 2018).

Cox et al. (2018) show that it is imperative to consider changes to the electricity sector when

calculating upstream impacts of PEVs, as without this, results could be overestimated. They

included the impacts of changes to the electricity sector on the environmental burdens of

producing and recharging future PEVs. Electricity used for charging is the largest source

of variability in results. Woo et al. (2017) state that the reduction of greenhouse gas emis-

sions by PEVs is strongly dependent on the country-specific electricity mix. In this regard,
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Brynolf et al. (2018) focus on the reduced fossil carbon intensity by the introduction of low-

fossil-carbon fuels. Accordingly, we do not consider low-carbon or carbon-free fuels in the

following but focus on the indirect emissions from PEV and the changes with respect to the

energy transition in electricity generation, i.e. lower GHG emissions for battery production

and lower upstream emissions for electricity generation, which impacts the vehicle usage

phase of all current PEVs (Cox et al., 2018; Kim et al., 2016).

The overall GHG emission reductions from PEVs are mainly driven by the development

of vehicle stock and specific emissions from electricity generation. In the present study, we

combine two PEV market scenarios with one electricity generation scenario, all scenarios

are taken from the International Energy Agency (IEA) (2018). The first PEV market diffusion

scenario is the IEA’s EV30@30 market diffusion scenario (i.e. 30% sales share in 2030). This

rather ambitious scenario is compared to a second PEV market scenario, the New Policy

Scenario (NPS) that includes policies currently in action and policies that have been an-

nounced. The PEV sales shares according to these scenarios are translated to absolute sales

in the most important markets globally and aggregated to a vehicle stock. Our vehicle stock

model for PEVs differentiates between BEVs and PHEVs. Our analysis covers China, the US,

Europe, India, and Japan. Jointly, these markets presently cover 80% of global passenger car

sales and this share is expected to grow further in the future (Gómez Vilchez and Jochem,

2020).

The carbon intensity of the electricity is taken from the Sustainable Development Scenario

(SDS) 1. This scenario is consistent with the Paris Agreement, i.e. it respects the ‘well-below 2

degrees’ target. The carbon intensity of the grid declines in all major regions and is expected

to be close to 0 g CO2/kWh in 2050 (cf. Figure C.1). Please note that we have to choose an

additional scenario for the carbon content of electricity, as the PEV diffusion scenarios alone

do not make statements about the carbon content of the electricity.

1 In the SDS only values for the whole EU are given. We, therefore consider country specific values from EU
Reference Scenario (Capros et al., 2016) for European countries instead.
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Figure C.1: Carbon intensity of grid electricity in g CO2/kWh in major global economies according to the SDS of
the IEA’s World Energy Outlook (International Energy Agency (IEA), 2018).

Even without low-carbon fuels, ICEVs could improve their fuel efficiency further in the fu-

ture but the reduction potential seems limited (Edenhofer, 2015). We assume that tailpipe

emissions will decrease to 85 g CO2/km but – even with mild hybridisation – no further (Fritz

et al., 2019). Similar to PEVs, the upstream emissions from fuel production and transport are

included in our well-to-wheel emissions of ICEVs.

C.2 Methods

We applied a reduced LCA approach including manufacturing emissions (for vehicle and

battery) of PEVs (cf. Figure C.6). The focus lies on the usage phase, with additional con-

sideration of emission factors from literature resulting from battery and vehicle production

(International Energy Agency, 2017; Dunn et al., 2015; Egede et al., 2015; Hao et al., 2017). As

the experience with PEV disposal is still limited we decided not to consider vehicle disposal

in our analysis.

Our analysis focuses on the impact from GHG emissions in the electricity sector on the

LCA (Yuksel et al., 2016). We investigate a future energy scenario for different global mar-

kets (China, Europe, Japan, United States and India) with high passenger car sales and link

them to two different PEV market diffusion models (International Energy Agency (IEA), 2018;

Gnann, 2015; Gnann et al., 2015; Wietschel et al., 2014). Because of the decarbonisation of
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electricity generation, PEVs have the potential to emit less GHG than ICEVs with conven-

tional fuels in all countries considered. Therefore, we assess the potential influence of the

combined consideration of electricity generation mix and PEV market diffusion in Europe,

China, Japan, US and India emphasizing the usage phase under consideration of battery

and vehicle production.

C.2.1 Calculation of GHG emissions

C.2.1.1 GHG emissions from vehicle production

In a first step, the manufacturing GHG emissions for vehicle and battery production were

calculated. All vehicles considered were assumed to be identical, with the exception of the

addition of the batteries for PEVs. The associated assumptions are explained in the follow-

ing and are also shown in Table C.1 in the appendix. The average battery capacity for BEV

counts 25 kWh in 2017 and increases to 35 kWh (2030) (International Energy Agency (IEA),

2018; Ellingsen et al., 2016; Bunsen et al., 2018). Similarly, for PHEVs, the average battery

capacity increases from 12 kWh in 2017 to 20 kWh in 2030 (Bunsen et al., 2018). The indirect

battery emissions included decline from 140 kg CO2 per kWh in 2017 to 75 kg CO2 per kWh in

2030 (Kim et al., 2016). The GHG emissions for vehicle production are assumed 35 g CO2/km

in the period from 2017 to 2030. From 2030 on, they decrease linearly to 0 g CO2/km in

2050 (Hawkins et al., 2012). Hence, only emissions from production of batteries and vehi-

cles are covered. In addition, it is assumed that the vehicles have a lifetime of 12 years or

150,000 km of vehicle kilometres travelled for all countries until 2050 and that battery and

vehicle production in 2050 will be completely carbon-free (Kawamoto et al., 2019). Due to

the international production sites, the same emissions for production are assumed in the

international comparison.

C.2.1.2 GHG emissions in the usage phase

In the vehicle usage phase, a distinction is made between emissions from fuel consumption

for ICEVs and emissions from the supply of electricity for PEVs. Regarding the emissions

from fuel consumption, a well-to-wheel GHG emission factor of 3.183 kg CO2 per litre of

gasoline (including upstream emissions) and a fuel economy of 0.07 litres per kilometre

(7 litres/100km or 33.6 MPG) are assumed (International Energy Agency (IEA), 2017). Since

the real fuel consumption of new ICEVs is on average about 40% higher than stated by the
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vehicle manufacturer, a GHG emission factor of 297 g CO2/km was assumed for 2017 (Fritz

et al., 2019; The International Council on Clean Transportation (ICCT), 2017). From the year

2030, a GHG emission factor of 85 g CO2/km is used (Fritz et al., 2019). This assumption re-

mains valid until the year 2050. The relevant calculations of the country-specific emissions

of the well-to-wheel phase for PEV are based on the emissions of electricity generation and

derived from the SDS (International Energy Agency (IEA), 2018). Electricity production effi-

ciency and GHG emissions per kWh electricity differ significantly among countries. This is

also true for their development over time. The specific emissions from electricity generation

for different countries are given in Figure C.1.

Including the emissions for each energy source (Turconi et al., 2013), the GHG emissions

during the BEV usage phase are derived. Hence, BEV electricity efficiency was assumed to

be 0.205 kWh/km, i.e. 20.5 kWh/100km (Jochem et al., 2015), and fixed over time. Multiply-

ing the specific emissions from electricity generation by the BEV electricity efficiency results

in the emissions for BEVs in the usage phase. For the PHEVs, the emissions from the usage

phase are calculated using an utility factor, i.e. the share of kilometres driven on electricity.

As the PHEV battery sizes increases from 12 to 20 kWh between 2017 and 2030, the utility

factor is assumed to increase from 0.5 in 2017 to 0.75 in 2030 in line with existing studies

(Plötz et al., 2020).

C.2.1.3 Overall GHG emissions

Taking into account the emissions from the vehicle production and the vehicle usage phase

as well as the mileage of 150,000 km, the overall GHG emissions are obtained (cf. Figure C.2).

Here, the emissions from the vehicle use phase are summed over a period of 12 years to

take into account the change in emissions from electricity generation. The annual GHG

emissions of PEVs in stock are reduced with every year of operation when the generation

mix improves. This is fundamentally different from ICEVs – at least when not considering

biofuels. This effect might even become stronger when disposal of PEVs is included in the

analysis, because current disposal processes are still in an initial phase.
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C.2.2 Market diffusion scenarios of PEVs

At the same time, the uncertainty of PEV market penetration is high. Consequently, we con-

sider an ambitious scenario (EV30@30) and an alternative scenario with a decelerated mar-

ket take-up of PEVs (NPS). The EV30@30 scenario pursues the ambitious goal of a market

share of 30% for PEVs by 2030 (Bunsen et al., 2018). Current and future PEV market share

and stock in 2017 up to 2050 for BEVs, PHEVs, and ICEVs are based on these scenarios (cf. Ap-

pendix Figures C.7 and C.8).

C.3 Results

We combine the scenarios for future PEV stock in the major car markets with values from

literature on their life-cycle GHG balances and the impact from the decreasing carbon in-

tensity of electricity over time. Consequently, the development of specific GHG emissions

of PHEVs and BEVs in g CO2/km shows a fast decrease until 2050 (cf. Figure C.2). While we

assume that all newly registered PEVs show the same GHG footprint for a given year and for

all regions (highly internationalized car market), the overall emissions are lower for those

regions with low grid carbon intensities.

Today, these emissions of BEVs are in the range of 111 – 176 g CO2/km (lowest for the Eu-

ropean average and highest for India). For PHEVs, the emissions are slightly higher in the

range of 183 – 216 g CO2/km due to the additional part-time operation of the combustion

engine. BEV life-cycle emissions can reach almost zero until 2050 whereas PHEVs are as-

sumed to use conventional gasoline and thus their life-cycle emissions saturate at slightly

higher levels in 2050.

Both, the future emissions of BEVs and PHEVs show a note-worthy change and clear de-

cline due to the fast grid decarbonisation in many countries of the world.

Within the ranges of well-to-wheel emissions, the speed of GHG reduction varies among

the countries. This becomes obvious even for European countries, where values may dif-

fer significantly from the European average (which is considered in Fig. C.2): E.g. while in

Germany, current PHEVs and BEVs life-cycle emissions are closer to the European average,

Polish emissions show higher values throughout the time-horizon considered.
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Figure C.2: Left: Overall GHG emissions for (a) BEVs and (b) PHEVs for different global markets. Right: Life-cycle
CO2 emissions in g CO2/km for newly sold PEVs over time. The range indicates the range of emission
values among major global markets (i.e. China, the United States, European average, India, and Japan).

The remaining emissions in 2050 stem from the usage phase only, which makes the carbon

intensity of electricity to the dominant factor. Due to the assumptions from the SDS, the

GHG emissions from battery production are close to zero by 2050. Near-zero GHG emis-

sions from all passenger cars are in line with the ambition CO2 mitigation required to limit

global warming to well below 2°C (Axsen et al., 2020).

The results in Figure C.2 demonstrate that PEVs can lead to the required reduction. How-

ever, the full car stock needs to be near zero emission operation. Accordingly, policies have

to make sure that full car stock is electric by 2050 or that the remaining fuel used to power

ICEVs is carbon neutral. Thus, potential policies need to address the two aspects of (a) PEV

diffusion and (b) low-carbon fuels simultaneously. Potential policies to address these topics

are CO2 fleet targets and PEV mandates for the first aspect and low-carbon fuel standards

for the second aspect (Axsen et al., 2020).

The above-mentioned fast mitigation potentials by PEVs over time should, however, not

be interpreted as an argument for postponing the PEV market penetration by hoping to

165



C Global perspective on CO2 emissions of electric vehicles

profit from the younger (i.e. less expensive and smaller carbon footprint) fleet in the fu-

ture. For further investigation of this argument, we constructed two additional scenarios

for China, as an example, based on the ambitious EV30@30 scenario. We assumed that the

Chinese PEV market diffusion could deviate from the ambitious governmental market plans

by postponing the market take-up by 10 years (i.e. the market share of the EV30@30 scenario

in 2030 is achieved not before 2040).

After 2040, the market penetration may accelerate significantly to still achieve the same

aggregated number of PEVs sold by 2050. We refer to this scenario as ’CHNlagged/ambitious’.

In a second scenario, the market penetration may increase smoothly and similarly to the

EV30@30 scenario, we refer to this as ’CHNlagged/realistic’. The resulting mitigation potentials

compared to a pure ICEV fleet with conventional fuel are calculated and shown in Figure C.3.

Figure C.3: Different mitigation potentials for China by PEV against conventional ICEV.

In comparison of the two additional scenarios to the original EVS30@30 scenario for China,

it is clear that neither the ’CHNlagged/realistic’ scenario nor the ’CHNlagged/ambitious’ scenario

achieve the same mitigation potential as the EV30@30 scenario until 2050. In terms of Fig-

ure C.3, the blue area (150 Mt CO2) exceeds the green area (46 Mt CO2) significantly. Con-

sidering the annual mitigation potentials in Figure C.3, it seems more than challenging to

overcompensate the missed mitigation even until 2060. Calculations for other markets show

similar results. Hence, in our analysis the CO2 budgets of accelerated PEV market scenarios

always undercut those of lagged market scenarios.
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C.4 Sensitivity analysis

We perform a sensitivity analysis to investigate how changes in electricity mix and battery

capacity affect the LCA emissions from PEVs. First, we compare the results from the previ-

ous section to a model with constant GHG emissions from electricity generation over time

by keeping the current electricity mix (2017) constant. The resulting LCA emissions are flat

in the beginning and show a slight decrease after 2030 as the emissions from vehicle produc-

tion are assumed to decrease linearly from 2030 onwards. This applies to both PHEVs and

BEVs. Hence, assuming the constant electricity mix from 2017, the LCA emissions for BEVs

results in poor values (between 121 g CO2/km (EU) and 197 g CO2/km (India) in 2030 and

in a range of 69 – 144 g CO2/km (lowest for the European average and highest for India) in

2050). For PHEVs, the emissions are higher in the range of 226 – 266 g CO2/km for 2030 and

between 183 g CO2/km and 221 g CO2/km in 2050 due to the additional partial operation of

the combustion engine. Consequently, the difference to the scenarios considering rapid de-

carbonisation of the electricity system (see above) becomes obvious (cf. Figures C.4 and C.2).

Figure C.4: Life-cycle CO2 emissions in g CO2/km for newly sold PEVs over time assuming constant GHG emissions
from electricity generation over time. The range indicates the range of emission values among major
global markets (i.e. China, the United States, European average, India, and Japan).

Second, the impact from battery capacity is analysed. From the current perspective it is un-

clear how the increasing habit with EV and further automatization of vehicles may have an

influence on battery capacities. With increasing battery capacities (i.e. from 35 to 50 kWh),

the resulting LCA emissions in the initial year increase, too. This can be explained by the

increased manufacturing emissions of the higher battery capacity. However, due to the de-

carbonizing electricity mix over time, this effect becomes marginal until 2050 (cf. Figure C.5).
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Figure C.5: Life-cycle CO2 emissions in g CO2/km for newly sold PEVs over time for different battery capacities
for BEVs. The range between two lines of the same colour reflects the range of emission values among
major global markets (i.e. China, the United States, European average, India, and Japan).

C.5 Discussion

Our findings come with a number of uncertainties and future parameters may evolve other

than expected. First, the scenarios and GHG mitigation potentials rely on a set of assump-

tions, which we based on current literature. However, all relevant electricity scenarios as-

sume a future decarbonisation of electricity generation, although at different speeds. Thus,

the observed effect on carbon budget is robust against variation of the chosen scenario, yet

the magnitude of the effect may vary. For example, current carbon content of battery pro-

duction is about 75 kg CO2/kWh. However, the future carbon content of the battery from

production is expected to decline further (International Energy Agency (IEA), 2020) as the

share of renewable electricity is growing in major battery producing countries and newer

and larger factories have higher utilisation. For the long-term until 2050, several major

battery-manufacturing countries (US, China, Japan and Europe) have declared to achieve

climate neutrality by 2050 or 2060. Accordingly, carbon content of battery production will

likely be very low in 2050. Interestingly, we identified that the share of emissions from pro-

duction differs among countries – depending mainly on the national electricity mix. And

there is again a dynamic effect: Over time the share of emissions during the production

phase increases. However, the increase in battery capacities has only a marginal impact

on the change in the life-cycle CO2 emissions. This can be explained by the shares of the

battery production emissions of the life-cycle CO2 emissions. In 2030, these have a share

of between 16% and 22% for a 35 kWh battery and rise to a share of between 21% and 29%

for a 50 kWh battery. But there are still some uncertainties about future developments (Wu

et al., 2018; Temporelli et al., 2020). Hence, while an improve in the national electricity mix
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(where the car is used) seems more significant today, it might be desirable to focus more on

emission reductions for vehicle production later, but far before 2050.

Second, there are other options apart from PEVs to reduce GHG emissions in transporta-

tion such as non-motorised or active modes as well as biofuels and synthetic fuels. Our

results do not show that PEVs are preferable to these other measures but that if one chooses

market diffusion of PEVs as a path for CO2 reduction in passenger cars and expect the de-

carbonisation of electricity generation, one should not wait but increase market diffusion

as soon as possible. Accordingly, any replaced conventional ICEV provides savings in the

carbon budget if the energy transition in electricity generation proceeds as expected.

C.6 Conclusion

GHG emissions from PEVs exhibit a strong temporal change due to grid decarbonisation

in many countries. The common assumption of fixed carbon intensity in the grid in many

studies highly underestimates this change. Furthermore, if PEVs are chosen as a key option

to reduce passenger car GHG emissions, then PEV market diffusion should not be postponed

as improvements in electricity carbon intensity can immediately increase the remaining car-

bon budget. Our results demonstrate that a postponement of PEV market diffusion nega-

tively influences the remaining carbon budgets.
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Appendix

Table C.1: Vehicle characteristics (reference vehicle).

ICEV (gasoline) PHEV BEV

Average battery

capacity
2017 12 kWh 25 kWh
2030 20 kWh 35 kWh

Indirect battery

emissions
2017 140 kg CO2eq/kWh
2030 75 kg CO2eq/kWh
2050 0 kg CO2eq/kWh

Vehicle

manufacturing

emissions
2017 35 kg CO2eq/kWh
2030 35 kg CO2eq/kWh
2050 0 kg CO2eq/kWh

Fuel economy 7l/100km

Emission factor

gasoline
2017 3.183 kg CO2/L
2030 1.214 kg CO2/L
2050 1.214 kg CO2/L

Utility factor
2017 50%
2030 75%

Electricity

efficiency

20.5 kWh/100 km

Annual mileage 12,500 km/a

170



C.6 Conclusion

Figure C.6: Framework used in this contribution.
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Figure C.7: Sales Shares for BEV, PHEV (EV30@30 and NPS scenario) and ICEV.
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C.6 Conclusion

Figure C.8: Stock for BEV, PHEV (EV30@30 and NPS scenario) and ICEV.
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Abstract

The increasing adoption of battery electric vehicles (BEVs) is leading to rising demand for

electricity and, thus, leading to new challenges for the energy system and, particularly, the

electricity grid. However, there is a broad consensus that the critical factor is not the ad-

ditional energy demand, but the possible load peaks occurring from many simultaneous

charging processes. Hence, sound knowledge about the charging behavior of BEVs and the

resulting load profiles is required for a successful and smart integration of BEVs into the

energy system. This requires a large amount of empirical data on charging processes and

plug-in times, which is still lacking in literature. This paper is based on a comprehensive

data set of 2.6 million empirical charging processes and investigates the possibility of iden-

tifying different groups of charging processes. For this, a Gaussian mixture model, as well

as a k-means clustering approach, are applied and the results validated against synthetic

load profiles and the original data. The identified load profiles, the flexibility potential and

the charging locations of the clusters are of high relevance for energy system modelers, grid

operators, utilities and many more. We identified, in this early market phase of BEVs, a sur-

prisingly high number of opportunity chargers during daytime, as well as switching of users

between charging clusters.

D.1 Introduction

On the one hand, the increasing adoption of battery electric vehicles (BEVs) may pose chal-

lenges for the power grid, especially for the low-voltage distribution grid where charging

infrastructure for BEVs is typically located (Jochem et al., 2018). On the other hand, the

batteries of BEVs represent a flexibility potential that might become more and more valu-

able to the energy system in the face of the rollout of renewable energy sources (RES), and

the concomitant phase-out of coal and nuclear energy sources (Xu et al., 2020). On average,

passenger cars are typically parked 23 h a day (Ecke et al., 2020). Thus, BEVs’ idle times often

exceed the charging duration. The resulting flexibility could be used, for example, for post-

poning or interrupting charging processes, or even feeding back into the grid (Ried, 2021).

By applying controlled charging strategies, charging costs can be reduced or RES usage in-

creased (Seddig et al., 2019).

In order to address future challenges and opportunities associated with BEV adoption from
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an energy system perspective, distribution system operators (DSOs) need to quantify im-

pacts on grid infrastructure and necessities for grid reinforcement. Therefore, sound fore-

casts of new load by BEV charging are required. Moreover, new market players of the energy

system, such as aggregators, need insights into BEVs’ flexibility potential for determining

smart charging or load shifting strategies. Consequently, meaningful data is required for

energy systems analyses.

As is today’s best practice, synthetic load profiles or empirical data from field tests are used

as input data to energy system models (Heinz, 2018; Schäuble et al., 2017). However, with the

growing application of BEVs, it is of great significance to have a deep understanding of BEV

users’ driving and charging patterns for forecasting both their charging processes and the

associated flexibility potential. A detailed insight into the complexity of spatial and tempo-

ral charging behavior has enormous significance for the future dimensioning and flexibility

assessment of local grids and charging infrastructure or for the use of the flexibility potential

of BEVs for the integration of RES.

For this reason, our contribution is twofold. Firstly, we provide insights into real-world

charging behavior, based on a comprehensive real-world data set of 2.6 million charging

processes in 2019. We particularly focus on the charging process, especially the charging

patterns and charging power used, and the plug-in times, i.e., the corresponding charging

flexibility potential. The aim is to investigate what insights can be gained using the temporal

individual charging behavior of BEVs’ users. For this purpose, we used a two-stage cluster

algorithm procedure to identify charging user groups and to derive a standard charging pat-

tern for each user group. We subsequently validated and mapped the BEVs user groups

to charging locations, such as at home, at work and in public, supported by synthetic load

profiles. In addition, this paper also provides the statistic parameters to replicate and reuse

the underlying real-world data set. Thus, on the one hand, the paper allows the drawing of

conclusions about real charging behavior and, at the same time, reduces the lack of data, by

providing the possibility to replicate the underlying data set, which supports current energy

system modelers to consider the load flexibilities of BEVs in much more detail.

To address the above-mentioned research contribution, this work is divided into five parts.

Section D.2 provides a short overview of the existing literature. Section D.3.1 describes the

characteristics of the analyzed real-world data set as the basis for the subsequent analyses,

as well as describing the necessary data adjustments. Section D.3.2 presents the applied

methodology of the two cluster algorithms (Gaussian Mixture Model clustering, k-Means
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clustering). Section D.4 describes the results, particularly the assignment of the single

charging events to temporal charging clusters and the investigation of the homogeneity

of these temporal charging clusters. Based on these temporal charging clusters, we derive

user groups and address the associated charging behavior. For validation, we use results

from a synthetic load profile generator for BEVs. Section D.5 discusses the findings of this

work and Section D.6 provides the conclusion.

D.2 Literature review

The individual charging pattern of BEVs represents a large uncertainty in many analyses

due to lack of real-world data (ElNozahy and Salama, 2013; Kong and Karagiannidis, 2016),

while individual charging behavior has an influence on numerous aspects. In order to pro-

vide grid stability, even with a high penetration of BEVs, DSOs are particularly interested in

the individual charging behavior and the resulting load peaks to quantify impacts on grid

infrastructure and necessities for grid reinforcement (Knezović et al., 2017). Ge et al. (2020)

determine a random based spatial-temporal prediction of BEV charging to obtain more

precise insights. Crozier et al. (2021) apply a stochastic model based on two different data

sources (travel survey data as well as vehicle usage data) to evaluate the BEV charging load

and the impacts on the electricity network. One of their key findings is that peak charging

demand varies strongly among regions and that representative data is required. Individual

charging behavior of BEVs also plays a key role in determining the need for charging infras-

tructure (Chakraborty et al., 2019; Kavianipour et al., 2021). There is a substantial amount of

literature on the prediction of individual charging behavior. One commonly used method is

the application of machine learning algorithms to predict charging behavior (Chung et al.,

2019; Huber et al., 2020). An alternative method to machine learning algorithms is sim-

ulation (Pagani et al., 2019; Zhang et al., 2020). Zhang et al. (2020) investigated charging

profiles of electric vehicles presenting a sophisticated simulation method that takes peo-

ple’s demographic and social characteristics into account. Pagani et al. (2019) developed

and applied a novel agent-based simulation framework, which takes the charging behavior

of individual electric vehicle users as well as the spatial distribution of electric vehicles into

account. Knowing the individual charging behavior and the resulting flexibility potential is

also crucial for aggregators for defining load shifting strategies. Others, like Sohnen et al.

(2015), use BEVs’ flexibility potential to evaluate greenhouse gas emissions of BEV charging

processes on a dispatch model, based on temporal and spatial effects. Flath et al. (2014) an-

alyzed the importance of BEV charging and underlined the possibility of area pricing. This
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possibility is particularly relevant for real world application if the load flexibilities of EVs are

offered and used by energy providers. Deng et al. (2020) found that the flexibility provided

by BEVs could be used for power reserves and accordingly modeled an BEV aggregator to

elaborate this potential of BEVs. Gunkel et al. (2020) consider EV flexibility in detail and with

respect to the transmission system development. The review paper of Venegas et al. (2021)

goes one-step further and identifies the services which can be provided through BEVs along

the value chain. Thereby, possible barriers are classified for active BEV integration. Conse-

quently, meaningful data based on real-world data is required for a successful integration of

EVs into the energy power system (Das et al., 2020).

Cluster analysis is increasingly applied to smart meter electricity demand data to identify

patterns in electricity consumption. The aim is to improve load forecasting, to increase the

alignment of demand response programs or to improve the performance in distribution

grids (Ma et al., 2017; Xiang et al., 2020). Clearly, the scope of the focus in the literature is

not only on load profiles for BEVs. In Ma et al. (2017) different cluster analysis strategies are

examined to identify typical daily heating energy usage profiles. With respect to BEVs, the

cluster algorithm is often applied to the charging power profiles. A dataset of hourly load

profiles was investigated in Satre-Meloy et al. (2020) and clustering applied to cumulative

load profiles to model power consumption during evening peak hours. In Yang et al. (2018)

the driving and charging behavior of BEVs’ drivers in Shanghai were investigated. They used

a machine learning approach as a classifier to analyze the related habitual driver behavior. It

is worth emphasizing that clustering is often applied to charging profiles, but not exclusively

to the temporal charging behavior. This is the reason why the focus of this contribution is

exclusively on the latter.

Up to now, only a few papers have considered empirical data from BEVs to generate BEV

load profiles. Among them one is by Schäuble et al. (2017), who gained empirical EV load

profiles based on three electric mobility studies. The derived charging load profiles gave a

realistic understanding of the BEV energy demand. Another data source are the charging

stations, where the dataset from Elaad (elaad.nl) is used in literature (Amara-Ouali et al.,

2021; Helmus et al., 2018). In the absence of real data, one approach is to use synthetic load

profiles derived from the driving behavior of conventional vehicle users, like in Heinz (2018)

In this case, real-world data from BEVs’ charging and mobility behavior are lacking. As an al-

ternative, previous studies often rely on numerous assumptions for uncontrolled individual

charging behavior (Kong and Karagiannidis, 2016; Gadea et al., 2018; Li and Lenzen, 2020;

Fernandez et al., 2010; Plagowski et al., 2021; Shafiee et al., 2012; Shahidinejad et al., 2011).
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Thus, the individual charging behavior of BEVs plays an important factor in numerous re-

search aspects. Due to the frequent lack of representative real-world data, this paper aims to

contribute data and provide insights into the charging behavior based on temporal data of

a real-world charging data set of BEV users. At the same time, the possibility of reproducing

the underlying dataset is given.

D.3 Materials and methods

D.3.1 Materials

D.3.1.1 Data characteristics

The analyzed dataset includes real BEV mobility and charging data from the German vehicle

manufacturer BMW. All charging events are associated with the i3 model. The dataset com-

prises about 2.6 million charging processes, each giving information on the location (ap-

proximate GPS coordinates), plug-in time, plug-out time, the time of the end of the charging

process, starting state-of-charge (SoC) of the battery, ending SoC, and charged energy. The

data for our analysis was collected from 1 January 2019 until 31 December 2019 and covers

all of Germany and approximately 21,000 BEVs. The identifiers of the individual vehicles

are pseudonymized identification numbers so matching the charging activity to the vehicle

is possible. The dataset is the largest dataset on charging patterns from a BEV perspective

known in literature.

D.3.1.2 Charging behavior

The following subchapter presents and discusses the evaluation of the data and the 2.6 mil-

lion charging processes. Figure D.1 shows the distribution of plug-in and plug-out times

within a day. It is visible that a larger share of BEVs were connected to the grid in the after-

noon and evening hours and the majority of BEVs were unplugged in the morning. It is also

noticeable that the frequency of plug-out times was higher than the frequency of plug-in

times.
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Figure D.1: (a) Distribution of plug-in times over all Germany; (b) Distribution of plug-out times over all Germany.

The average distance driven between two charging processes amounted to 67 km. The re-

maining battery’s SoC at the beginning of a charging process was 53% on average. The

average charging frequency was 96 charging events per BEV over the registration period in

the year 2019. Adjusted for the number of weeks in which the vehicle was charged, this

corresponded to an average of 3.11 charging processes per week. Therefore, a BMW i3 was

charged approximately every two days on average. Compared to Schäuble et al. (2017), the

charging frequency per BEV in the i3 dataset was higher.

During each charging process, an average of 9.24 kWh of electricity was charged. This meant

that, in total, all i3 generated an additional energy demand of 24,595 MWh over one year.

The distribution of the additional energy demand of all i3 BEVs for all of Germany in hourly

resolution is shown in Figure D.2.

Figure D.2: Charged energy of all i3 BEV for all of Germany in hourly resolution.

For all BEVs, the cumulative average charged energy represents a typical pattern. In order

to consider spatial aspects, the plug-in and plug-out times of the different federal states in
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Germany are shown in Appendix D.7.1 (cf. Figure D.9). The main trend was very similar, but

there were differences in the number of BEVs and the related spatial charged energy (cf. Fig-

ure D.10).

In general, the challenge of integrating BEVs into the power grid lies mainly in the potential

load peaks, rather than in the provision of the additional energy. These load peaks depend,

in particular, on the individual charging behavior, the charging power used and, thus, the

associated simultaneity of the charging processes (Jochem et al., 2018; Märtz et al., 2019).

Therefore, we analyzed the real charging behavior and real charging load profiles of to-

day’s BEV users. Based on the entire i3 dataset, a cumulative, as well as an average (per

BEV), charging load profile were generated. The resulting power curves for both all consid-

ered charging processes over all of Germany and the per vehicle average are presented in a

weekly average in Figure D.3(a). A classic average load curve could be seen over the period

of a week with load peaks in the morning and evening hours. In general, more charging

processes took place during the week than on weekends. On average, the load peak for one

vehicle was 0.19 kW on weekdays and 0.15 kW on weekends. It is noticeable that there was

also a basic charging load during the night hours.

Figure D.3: (a) Average power profile, aggregated (left axis) and proportional (right axis); (b) Average charging pro-
file differentiated by the charging power used.

Since the used charging rate also has an influence on the charging patterns, we consid-

ered the used charging power as well. Figure D.3(b) shows the average charging power used
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over time. Here, the assumption was made that the identification of the used charging rate

is possible based on the average charging power of each charging process, calculated by:

average charging poweri [MW]“
charged energyi [MWh]
charging durationi [h]

(D.1)

for each charging process i. It was noticeable that especially lower charging power rates

(3.7 kW and 11 kW) were used for the majority of charging processes.

D.3.1.3 Flexibility potential

The flexibility potential of charging processes is of high interest for energy system modelers.

Whenever the plug-in time is longer than the charging time a flexibility can be assumed.

There are different definitions of load flexibilities of BEVs. In the following we took a conser-

vative approach and defined the shiftable load as follows: If the plug-in duration exceeds the

charging time (i.e., there is a temporal flexibility), it is assumed that the load during the tem-

poral flexibility can be increased by the average charging power (cf. Equation (D.1)) of the

charging process. However, if the temporal flexibility is shorter than the charging time only

the corresponding fraction is considered and for temporal flexibility this fraction is set to 1.

The energy demand during the plug-in period remains the same and the necessary reduced

charging at another time is not considered. Hence, other approaches for considering load

flexibilities of BEVs, e.g., considering also load shifting potentials between charging events

might show significant higher load shifting potentials. Consequently, according to our ap-

proach the flexible load is always below the overall load. The average flexibility potential

considering the temporal aspects is shown in Figure D.4(a).
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Figure D.4: (a) Average power profile and flexible (shiftable) power; (b) Flexible (shiftable) power per charging
power used.

The absolute flexible, shiftable load that could potentially be offered to the grid was quite ho-

mogeneous on weekdays and reduced on weekends. The potential flexibility is, of course,

always below the load curve, since there are also load processes that do not offer the pos-

sibility of shifting the load over time. In the analyzed dataset, about 63% of the charging

processes had a flexibility potential. In the remaining charging processes, the vehicles were

either not fully charged, i.e., the plug disconnected earlier, or the BEV user terminated the

charging process exactly when a SoC of 100% was reached. The temporal flexibility was 8

h on average. It could be seen that there was a comparatively high flexible, shiftable load

share, particularly in the morning hours and during the night. BEVs being charged either at

the workplace or at home during the night might explain this. Figure D.4(b) shows the flex-

ible, shiftable load in relation to the average charging power used. It was obvious that there

was a correlation: the higher the charging power used, the lower the flexible (shiftable) load.

This could lead to the conclusion that for numerous charging processes that are associated

with a high idle time, lower charging rates are more likely to be used. In addition, the tempo-

ral pattern of the shiftable power (which is strongly dependent on the charging power used)

can also give an indication of the charging location. In particular, home charging or work-

place charging is most likely to be associated with a high idle time and a lower charging rate.

This could also be an explanation for the related load peaks.

D.3.1.4 Data adjustment

The data involves the date and time of both BEV plug-in and plug-out. These continuous

values are difficult to cluster as they do not concentrate on one single day and, therefore, are
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spread across the whole year. Hence, the dataset was adjusted to enable useful clustering.

The first step was based on the assumption that all charging activities started at the same day.

The plug-in time was implemented as plug-in time at minute of the day. This approach had

the shortcoming that the considered period started at 12 am and ended at 11:59 pm. Early

and late plug-in times might not be clustered into one cluster because they lost their spatial

proximity. The distribution of the plug-in times is shown in Figure D.5. It is visible that the

charging activities decreased in early morning hours and increased again later; forming a

turning point at around 3 am (red dashed line). To restore the spatial proximity, all charging

activities with a plug-in time below this minimum (purple bars) were moved to the right

side (blue bars) to continue the time after 12 pm (green dashed line). The data covered by

the purple bars was removed to avoid repetition. The second feature used for the clustering

Figure D.5: Distribution of the plug-in times (taking into account data adjustment).

approach was the plug-in duration. However, the plug-in duration of the different charging

activities differs significantly. Some BEVs are plugged-out after a few minutes, while others

are plugged-in for several days. Such a dataset repeats itself, creating a cloud of data points

for each day (one cloud for the BEVs disconnecting on the same day, one cloud for BEVs

disconnecting on the second day, one for the third day, and so on) and making it impossible

to gain meaningful clustering results because the clustering might only concentrate on the

daily clouds instead of intraday activities. Therefore, we adjusted the data in such a way that

all charging activities, which neither ended on the same day nor the next day, ended on the

next day, but kept the original plug-out time. This way, two clouds occurred: one for the

same day charging activities and one for the overnight charging activities. In addition, the

plug-in duration was comparable. The final adjusted data is depicted in Figure D.6. The

y-axis covers the plug-in duration and, therefore, added dashed lines depict the plug-out
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Figure D.6: Final adjusted data depending on plug-in time and plug-in duration, red dashed line represents mid-
night.

time. Two clouds can be observed. All data points above the midnight line (red dashed line)

represented charging activities, which ended on another day; all below represented same-

day charging activities.

D.3.2 Methods

In a first step, we examined the temporal charging behavior and investigated whether a ho-

mogeneous charging behavior could be derived and whether conclusions could be drawn

about the charging location and charging type. The aim was to examine if BEV user groups,

having similar plug-in time and plug-in duration switch, existed, as they would therefore,

have similar temporal charging patterns.

D.3.2.1 Gaussian Mixture Model clustering

Due to the sheer amount of data points, it was difficult to recognize clusters immediately,

making it difficult to choose the clustering approach right away. Therefore, in a first step the

distribution of the data was analyzed, shown in Figure D.7. The high concentration of the

data is a common indicator for the application of density-based approaches. In addition,

the clustering approach needs to perform well with large datasets regarding computation

time and memory limitations (Patel and Kushwaha, 2020). Based on these limiting factors,
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Figure D.7: Density distribution of the final dataset.

the Gaussian Mixture Model (GMM) clustering was applied. The GMM clustering is an un-

supervised approach, which decomposes complex distribution of a database p px q into K

Gaussian distributionsN px |µk , C o vk q, so called components, with a mean µk , covariance

C o vk and weightπk each (Bishop and Nasrabadi, 2006); each distribution represents a clus-

ter:

p px q “

K
ÿ

k“1

pπk N px |µk , C o vk qq (D.2)

Before choosing the final number of clusters, the clustering approach was conducted with

several different numbers of clusters and the Aikaki Information Criterion (deLeeuw, 1992)

and the Bayesian Information Criterion (Schwarz, 1978) were calculated. Both criteria

helped to assess the fit of the developed model, and to avoid overfitting of the data. Based

on the analysis of these two criteria, the GMM clustering was conducted with seven clusters.

D.3.2.2 K-Means Clustering

To analyze the charging behavior, only BEV users with more than 20 charging activities were

chosen for the second clustering approach. The number of total charging activities and

the charging activities during each of the above-derived temporal charging clusters were

counted, and the share of charging activities for each cluster for the user was calculated.

These shares for each user built the base for the next clustering step.

The unsupervised k-means clustering approach was used to derive the different temporal
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behavior clusters (Lloyd, 1982). K-Means is a simple and commonly used clustering ap-

proach for behavior analysis. Some examples where k-means is applied for driving pattern

analysis are Fugiglando et al. (2018) and Dardas et al. (2020). The aim of k-means clustering

is to find K cluster centers µk and assign each data point xn of the data set N to a cluster

center. The assignment of data point xn to a cluster center is conducted via binary variable

bn ,k . Each data point can be assigned to only one cluster center. The k-means approach

finds values for µk and bn ,k to minimize the sum of all distances between the data points

and their cluster centers. This function is sometimes called distortion measure:

J “

N
ÿ

n“1

K
ÿ

k“1

bn ,k ∥ xn ´µk ∥2 (D.3)

Due to the seven clusters in the GMM clustering, the dataset of the k-means clustering has

seven dimensions. To examine if all these dimensions are necessary for the k-means clus-

tering, the dimensions were normalized and the number of dimensions reduced by a subse-

quent principal component analysis. The final number of clusters was chosen by applying

the elbow technique for different numbers of clusters (Syakur et al., 2018). Based on this

analysis, five clusters were chosen.

D.4 Results

Based on the methodological approach described in the previous Section D.3.2.1, seven

temporal charging clusters were identified. In the following, we examine the seven clus-

ters (cf. Figure D.8) in more detail and validate them with the aim of trying to categorize

them. The already high number of seven clusters showed that the data was too complex to

be described by a few Gaussian distributions. Moreover, the following two main agglomer-

ations of charging incidents, identified in Figure D.7, were somewhat surprising: there were

many overnight chargers, who plugged-in between 6 pm and 9 pm, and another hot spot

seemed to be a huge group of opportunity chargers during the day, who stood out because

of the short charging times during the daytime. This latter group has not been considered

in most energy systems models. Besides these two hot spots, there was still a broad range of

other charging incidents. Consequently, the GMM clustering split the overnight (Clusters 2,

3, and 4), as well as the daytime (Clusters 1, 5, 6, and 7), chargers into different groups. The

mean, weight, and covariance of each cluster and the total number of samples in each clus-

ter are depicted in Table D.2 in the Appendix D.7.2. The evaluation of the identified charging
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Figure D.8: Related Clusters to the GMM-Clustering, red dashed line represents midnight.

clusters is shown in Table D.1. The associated graphs can be found in Appendix D.7.2 (Fig-

ures D.11–D.17). There, the distribution of the plug-in times, the plug-out times and the

distribution of the plug-in durations, as well as the average load profile (considering the

charging powers used), are shown.

As shown in Table D.2 and in Figures (Figures D.11–D.17) (in Appendix D.7.2), the temporal

charging clusters differed with regard to the temporal charging characteristics, such as plug-

in time, plug-out time and plug-in duration. Differences could also be identified with regard

to the charging power used, as well as the load peaks and the temporal flexibility potential.

It should be noted that the effective flexibility potential was higher due to the data adjust-

ment, since the charging processes with more than 48 h were not included. The number of

charging processes within a cluster also influenced the peak load.

Cluster 1 and Cluster 7 were characterized by plugging-in during the morning and plugging-

out after a medium plug-in duration. The charging events included in Cluster 5 were charg-

ing processes that began in the afternoon and had a medium plug-in duration. Cluster 6

contained the charging processes that took place during the day and had a rather short

plug-in duration. Clusters 1, 5, 6, and 7 were united by the fact that they were plugged-in

and plugged-out on the same day. Clusters 2 to 4 did not have plug-in and plug-out times on

the same day (represented by the red dashed line in Figure D.8) and, therefore, had a signif-

icantly longer plug-in duration. The temporal flexibility potential and the charging power

used also varied significantly per temporal charging cluster (see Table D.1). Interestingly,

while temporal charging clusters with low flexibility potential tended to be associated with

charging processes that had used high charging power (cf. Cluster 6), high temporal flexibil-

ities were mainly associated with charging processes with low charging power (cf. Clusters 2,

3, and 4).
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Table D.1: Characteristics of the temporal charging clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Mean Plug-In Time 8.28 a.m. 12.57 a.m. 7.26 p.m. 5.44 p.m.

Mean Plug-Out
Time

4.30 p.m. 8.52 a.m. 7.55 a.m. 1.43 p.m.

Mean Plug-In
Duration

8h 8min 19h 55min 12h 28min 19h 57min

Charging
Power [%]

3.7 kW: 60.21% 3.7 kW: 71.64% 3.7 kW: 77.71% 3.7 kW: 76.54%

11 kW: 39.29% 11 kW: 28.13% 11 kW: 22.21% 11 kW: 23.30%

22 kW: 4.45% 22 kW: 0.21% 22 kW: 0.07% 22 kW: 0.15%

50 kW: 0.04% 50 kW: 0.02% 50 kW: 0.01% 50 kW: 0.01%

Temporal
Flexibility

3h 58min 15h 25min 6h 45min 14h 18min

Description of
Charging Behavior

Morning to
afternoon /
Evening charging

Noon to next
morning charging

Evening to next
morning charging

Overnight rest
charging

Cluster 5 Cluster 6 Cluster 7

Mean Plug-In Time 2.37 p.m. 2.01 p.m. 9.03 a.m.

Mean Plug-Out
Time

5.53 p.m. 2.39 p.m. 12.03 a.m.

Mean Plug-In
Duration

3h 41min 48min 2h 59min

Charging
Power [%]

3.7 kW: 62.25% 3.7 kW: 38.36% 3.7 kW: 53.65%

11 kW: 36.96% 11 kW: 35.97% 11 kW: 45.00%

22 kW: 0.71% 22 kW: 9.33% 22 kW: 1.22%

50 kw: 0.09% 50 kw: 16.34% 50 kW: 0.13%

Temporal
Flexibility

56min 2min 44min

Description of
Charging Behavior

Afternoon
medium-term
charging

Short-term
charging

Morning
medium-term
charging
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D.5 Discussion

Based on the clustering results, we analyzed how homogeneous the charging behavior of

BEV users was. The results of this assessment showed that BEV users did not behave ho-

mogeneously by charging their BEVs during similar hours and for similar durations. This

finding contradicted the classification of BEV users into fixed user groups.

D.5 Discussion

The identified temporal charging clusters are not very useful for energy system modelers as

the characteristics of users and charging locations are missing. With this additional informa-

tion the modelers would be able to allocate the right charging patterns to the observed users

or charging. We, therefore, added two further analyses: first, we tried to identify whether

users switch between clusters and, second, we compared our empirically based findings

with currently applied load curves, which are usually based on empirical data from conven-

tional vehicles. If these two load curves coincide, current load curves can be further applied

in energy systems modeling.

For identifying switching car users between clusters, we applied a k-means clustering with

the original user IDs (cf. Appendix D.7.3). Surprisingly, there was quite frequent change be-

tween charging clusters. This might come from the free charging opportunities at attractive

parking places. The k-means clustering came up with 5 user groups which did not seem

as homogenous than expected. Nevertheless, they were analyzed in further detail (cf. Ap-

pendix D.7.3).

For comparing our load patterns with existing approaches in literature, which base their

charging patterns on plug-in assumptions and empirical mobility data from conventional

car usage, we applied the MobiFlex tool (Heinz, 2018) for generating synthetic load patterns

(cf. Appendix D.7.4). The comparison between the two charging curves were surprisingly

similar. Only the frequent opportunity charging during the daytime was underrepresented

in the synthetic load profiles by the MobiFlex tool. Furthermore, the switching between the

different charging incidents could not be found in the synthetic load profiles. However, in

our analyses we found that the resulting charging load patterns at the different charging lo-

cations, such as home, workplace, public or fast charging, showed surprising similar results.

As these results are of high interest for all energy system modelers, we plotted the resulting

load curves from the MobiFlex tool (cf. Figures D.24 - D.27) and provide the underlying csv

193



D Charging behavior of electric vehicles: Temporal clustering based on real-world data

files in the Supplementary Materials.

Even though our dataset was very comprehensive compared to other current available data

from BEVs, our approach relied only on the technical data, and user data was not available.

Furthermore, all data came from only one specific BEV, the i3 by BMW, and all charging was

undertaken in an early market phase of BEVs. Nevertheless, the dataset delivers significant

insights to current literature.

D.6 Conclusion

Within the scope of the analysis, the charging behavior of an empirical dataset of real-world

charging data, containing approximately 21,000 battery-electric vehicles and about 2.6 mil-

lion charging processes over a period of one year, was investigated.

In summary, our results show that, based on the exclusive consideration of individual tem-

poral charging data, conclusions could be drawn about battery-electric vehicle user groups

and related charging patterns and flexible (shiftable) load. Two main findings could be

highlighted: in this early market phase, a surprisingly high number of opportunity chargers

during the day, as well as switching users between charging clusters, were identified. More-

over, an estimation of the charging location is possible. We provided resulting load curves,

which can be used in energy system models to consider the load shifting potential of battery

electric vehicles in more detail.

For future research, further factors of the charging process should be considered in addition

to the temporal aspects. For example, the charging power, the amount of energy charged

and the charging frequency also play a decisive role. The spatial distribution should also

be taken into account in future studies. It should also be emphasized that the underlying

real-world data set can be reproduced, based on our analysis, and can, thus, be used for

further scientific studies, such as investigating numerous research questions with regard

to battery-electric vehicles and to support the successful sustainable integration of electric

vehicles into the energy system.
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D.7 Appendix

D.7.1 Charging behavioral data

a) Plug-in and plug-out times per Federal State

Fig. D.9. Cont.
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Fig. D.9. Cont.
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Fig. D.9. Cont.
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Fig. D.9. Cont.
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Figure D.9: (a-p) Plug-in and plug-out times taking into account the charging power used per state.

b) Charged energy per Federal State [MWh]

Figure D.10: Charged energy of all i3 BEVs per Federal State.
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D.7.2 Further descriptive statistical indicators

a) The mean, weight and covariance of each cluster an the total number of samples in each

cluster.

Table D.2: The mean, weight and covariance of each cluster and the total number of samples in each temporal
charging cluster.

Mean µ Covariance Matrix
ř

Cluster 1 µ =

¨

˝

535.8582

451.0746

˛

‚

ř

=

¨

˝

14, 186.4869 ´4976.5643

´4976, 5643 19, 795.8058

˛

‚

Cluster 2 µ =

¨

˝

845.9111

1132.1117

˛

‚

ř

=

¨

˝

34, 623.8945 ´32, 903.1621

´32, 903.1621 36, 569.0678

˛

‚

Cluster 3 µ =

¨

˝

1163.0563

757.6981

˛

‚

ř

=

¨

˝

23, 110.7883 ´21, 835.7093

´21, 835.7093 27, 697.1618

˛

‚

Cluster 4 µ =

¨

˝

1058.0706

1176.7476

˛

‚

ř

=

¨

˝

62, 463.0494 ´62, 508.4638

´62, 508.4638 103, 104.9956

˛

‚

Cluster 5 µ =

¨

˝

875.8100

193.8779

˛

‚

ř

=

¨

˝

29, 305.3776 ´4100.6763

´4100.6763 8072.3007

˛

‚

Cluster 6 µ =

¨

˝

848.3180

49.5780

˛

‚

ř

=

¨

˝

54, 307.5902 ´699.9006

´699.9006 982.6405

˛

‚

Cluster 7 µ =

¨

˝

559.3524

167.3003

˛

‚

ř

=

¨

˝

12, 351.5615 ´847.9476

´847.9476 6524.9913

˛

‚

Weight π Number of Samples in Cluster

Cluster 1 0.1000 252,370

Cluster 2 0.0902 215,767

Cluster 3 0.2229 660,084

Cluster 4 0.1184 272,415

Cluster 5 0.2071 396,360

Cluster 6 0.2071 617,763

Cluster 7 0.0995 247,508
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b) Charging characteristics for the identified temporal charging clusters

Figure D.11: Charging characteristics of temporal charging cluster 1: (a) Frequency of different plug-in times; (b)
Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power
used.
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Figure D.12: Charging characteristics of temporal charging cluster 2: (a) Frequency of different plug-in times; (b)
Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power
used.

202



D.7 Appendix

Figure D.13: Charging characteristics of temporal charging cluster 3: (a) Frequency of different plug-in times; (b)
Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power
used.
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Figure D.14: Charging characteristics of temporal charging cluster 4: (a) Frequency of different plug-in times; (b)
Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power
used.
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Figure D.15: Charging characteristics of temporal charging cluster 5: (a) Frequency of different plug-in times; (b)
Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power
used.
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Figure D.16: Charging characteristics of temporal charging cluster 6: (a) Frequency of different plug-in times; (b)
Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power
used.
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Figure D.17: Charging characteristics of temporal charging cluster 7: (a) Frequency of different plug-in times; (b)
Frequency of different plug-out times; (c) Frequency of different plug-in lengths; (d) Charging power
used.
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D.7.3 Clustering of user groups

To cluster users into charging groups, we applied the k-Means clustering approach (Sec-

tion D.3.2.2). The resulting five user groups are composed of the shares of the differently

used temporal charging clusters (cf. Figure D.8) and are shown in Figure D.18.

Figure D.18: Related Clusters to the k-Means Clustering.

In the following, the five identified user groups were analyzed taking into account the load

pattern, and the charging power used, as well as the flexible (shiftable) power. User Group

A included 7830 BEV users and 1,056,623 charging activities. This user group was charac-

terized by the fact that the main charging activities took place mainly at night, with a strong

focus on the afternoon/evening plug-in times and the morning unplugging times. In ad-

dition, there were short- and medium-term activities. The load pattern, as well as the as-

sociated charging power and the flexible shiftable power, are shown in Figure D.19. The

afternoon/evening plug-in times can also be seen in the load pattern, which were particu-

larly evident in the afternoon/evening hours. The charging activities mainly took place with

smaller charging powers (3.7 kW and 11 kW). Occasionally, charging powers of 22 kW or

50 kW were also in use and could be assigned to short- or medium-term charging activities.
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Figure D.19: (a) User Group A: Charging power profile as a function of the assumed charging power used; (b) User
Group A: Relation between the charging power profile and the associated flexible (shiftable) power.

User Group B consisted of 5232 BEV users and 661,683 charging activities with a strong focus

on short- and medium-term charging activities. The load pattern and the flexible (shiftable)

load are pictured in Figure D20. The peak tended to be in the morning hours and the most

used charging power in this user group was 11 kW. User Group B had a medium flexible

power shifting potential.

Figure D.20: (a) User Group B: Charging power profile as a function of the assumed charging power used; (b) User
Group A: Relation between the charging power profile and the associated flexible (shiftable) power.

User Group C had 1900 BEV users and 240,897 charging activities, which were typified by a

high share of medium-term charging activities, which mainly started in the morning hours

(cf. Figure D.21). Other short- and medium-term activities also occurred in this charging

type. This composition of the temporal charging clusters was also reflected in the load pat-

tern. In this user group, the load peaks were found in the morning hours and had a high
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temporal density. Interestingly, the extreme load peaks were only observed on weekdays.

The most frequently used charging power in this user group was 3.7 kW and 11 kW dur-

ing the week; charging processes with higher charging powers could also be assigned at the

weekend. In general, this user group had a high potential for flexible power, which was par-

ticularly concentrated in the morning hours.

Figure D.21: (a) User Group C: Charging power profile as a function of the assumed charging power used; (b) User
Group A: Relation between the charging power profile and the associated flexible (shiftable) power.

2994 BEV users and 328,562 charging activities characterized User Group D. A high share

of the charging activities took place over the night but without concentration on evening

plug-ins and morning plug-outs. Furthermore, some short-term activities took place. Nev-

ertheless, the occurrence of the charging process was more widely distributed throughout

the day. In Figure D.22, it can be seen that here, too, the focus was on the lower charging

powers (3.7 kW and 11 kW) and that there were decisive differences between weekday and

weekend. In general, there was a very high flexible (shiftable) load in this user group.
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Figure D.22: (a) User Group D: Charging power profile as a function of the assumed charging power used; (b) User
Group A: Relation between the charging power profile and the associated flexible (shiftable) power.

User Group E included 2683 BEV users and 329,998 charging activities. The users charged,

in particular, by means of short-term charging processes during the daytime hours. What

was remarkable here was the share of charging processes that were carried out with a high

charging power of 11 kW, 22 kW and 50 kW (cf. Figure D.23). The charging behavior of this

user group was quite uniform over the course of a week; only on Sundays were there slightly

fewer charging processes on average. This user group had only a very low flexible power

shifting potential.

Figure D.23: (a) User Group E: Charging power profile as a function of the assumed charging power used; (b) User
Group A: Relation between the charging power profile and the associated flexible (shiftable) power.

The five user groups described in detail above were compared to each other. The user groups

differed in terms of their average load profile and the load peak, as well as the most fre-

quently used charging power with regard to the flexible (shiftable) load.
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The load profiles resulted from the composition of the temporal charging cluster shares

(cf. Figure D.8) and, therefore, led to very different load profiles of the different user groups.

The flexibility resulting from the idle time when the BEV was connected to the grid, but the

charging process was already completed, also showed differences. Obviously, the number of

BEVs and charging processes also had a decisive influence. In particular, user group A had

the highest load peaks, which were higher on weekdays than on weekends. User Group C

showed a peak especially on weekday mornings and User Group E showed a constant load

curve over a week, in average. The charging pattern could be explained by the shares of

charging processes in the temporal charging clusters. While User Groups A and D offered a

high temporal flexibility potential, a significantly higher load could be shifted in User Group

A. The focus of the shiftable load in User Group D was also mainly on weekdays. In terms

of temporal flexibility, User Groups B and C were similar, but they differed in terms of the

shiftable load. While User Group B also had a share of shiftable loads at the weekend, the

share of shiftable loads in User Group C was particularly during the week. User Group E

generally had a very low flexibility potential in terms of time and quantity.

D.7.4 Comparison with synthetically generated charging profiles

In this section, we analyze the hypothesis that the identified temporal charging clusters

and, thus, the identified user groups could be associated to charging locations. Therefore,

the MobiFlex simulation model that generates synthetic BEV charging profiles based on em-

pirical and representative driving data of conventional passenger vehicles, was applied. For

further details, please refer to Ried (2021), Ecke et al. (2020), and Heinz (2018).

The following assumptions were made for the generation of the synthetic load profiles.

These assumptions were based on the obtained temporal charging clusters (Figure D.8 and

Table D.1). Further input data of the MobiFlex model can be found in Table D.3.

• Temporal chargings in Clusters 2 and 3 represented home charging activities because

of overnight charging events, relatively long charging durations and a peak in plug-

out-time during the morning hours (commuters).

• Temporal chargings in Clusters 1 and 7 represented workplace charging, because they

covered charging events with plug-in time in the morning and the plug-out occurring

on the same day.
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• Temporal chargings in Cluster 6 represented public charging, because of short plug-in

durations.

Table D.3: Further input data for the MobiFlex model.

Parameter Value

Average battery capacity (calculated using the analyzed dataset) 23.4 kWh

Average energy consumption 17 kWh/100 km

Charging efficiency 90%

Probability of charging power at home

3.7 kW 76.2%

11 kW 23.7%

22 kW 0.1%

50 kW 0.0%

Probability of charging power at work

3.7 kW 57.0%

11 kW 42.1%

22 kW 0.8%

50 kW 0.1%

Probability of charging power at public

3.7 kW 38.4%

11 kW 36.0%

22 kW 9.3%

50 kW 16.3%

The probabilities of charging power at the different locations were calculated based on

charging power per charging event in the respective charging location. In the following

analysis, four model configurations were carried out: (1) Home charging only, (2) Public

charging only, (3) Workplace charging only, (4) Both home and workplace charging. Dif-

ferent user groups were not pre-determined in advance. Instead, the MobiFlex model was

applied to the full dataset of all approximately 2300 passenger cars. Those vehicles that

could be replaced by BEVs under the given assumptions then determined the total charging

power. For comparability reasons, the load profiles are shown on a per vehicle basis. The
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charging profiles generated are shown below (Figures D.24 - D.27). These reflect the load

profile on the one hand and the charging power used on the other. In order to draw con-

clusions about the charging location, they were compared with the user groups obtained by

the k-means clustering.

In the first model configuration, only the possibility of home charging was considered. The

probabilities for the charging power used can be taken from Table D.3. The resulting charg-

ing pattern is shown in Figure D.24.

Figure D.24: Charging patterns for uncontrolled charging for ”home charging”.

The charging pattern of this configuration, the load peaks in the evening and the used charg-

ing power showed a congruence with User Group A (cf. Figure D.19(a)). The second config-

uration examined the case where only public charging was possible. The resulting charging

pattern (Figure D.25) showed similarities with User Group E (Figure D.23(a)). There were

two peaks on weekdays and one main peak on Saturday morning. However, the MobiFlex

model did not show any overnight charging.

Figure D.25: Charging patterns for uncontrolled charging for "public charging".
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When charging is only possible at the workplace, MobiFlex generated the charging pattern

shown in Figure D.26, which had similarities to User Group C (cf. Figure D.21(a)). Here, the

load peak in the morning hours was particularly characteristic.

Figure D.26: Charging patterns for uncontrolled charging for ”workplace charging”.

If both home charging and workplace charging were included in the charging processes, it

resulted in the load profile illustrated in Figure D.27. However, this charging pattern did not

resemble any of the above user groups.

Figure D.27: Charging patterns for uncontrolled charging for ”home and workplace charging”.

This might lead to the hypothesis that the temporal charging in Clusters 2 and 3 mainly

covered home charging, temporal charging in Clusters 1 and 7 mainly workplace charging,

and in Cluster 6 public charging. Since the user groups were composed of the shares of the

temporal charging clusters (see Figure D.18), User Group A might be rather home chargers,

User Group C workplace chargers, and User Group E mostly public short-term chargers.

Thus, possible charging locations could be assigned to the three user groups.
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Abstract

In this paper, an open-source tool for the calculation of simultaneity factors of electric ve-

hicles (i.e. battery electric vehicles and plug-in hybrid electric vehicles) charging processes

is presented. In addition, the peak loads of EV and households can also be displayed, taking

into account the EV and household specific simultaneities. In the following, the underlying

input parameters and calculations of the tool are explained. Based on this, different results

are generated and discussed in detail.

E.1 Introduction

One challenge of electric vehicles (EV) is the relatively high additional load compared to

other domestic appliances and the resulting effects on the power grid. This effect of EV (i.e.

battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV)) have already

been analysed and discussed in numerous studies (Jochem et al., 2018; Rolink, 2013; Stöckl,

2014; Probst, 2014). One factor that has been often neglected in previous analyses is the

simultaneity of charging processes (Vennegeerts et al., 2018). It is often assumed that all

EV are charged simultaneously at a constant charging rate throughout the entire charging

process. However, this reflects an empirically unrealistic simultaneity factor for EV. In other

studies, the simultaneity factor is based on current mobility behaviour or is limited to se-

lected applications (e.g. EV can only charge with a charging rate of 3.7 kW), see for instance

Rolink (2013) and Heinz (2018).

If the simultaneity of the charging processes is analysed, a distinction must be made be-

tween two different simultaneity factors. Firstly, there is the simultaneity factor which de-

scribes the percentage of EV charged at the same day. This considers the fact that not each

EV is charged on a daily basis. On the other hand, the simultaneity of the charging processes

taking place within one day must also be taken into account.

With regard to the simultaneity of the charging processes taking place within one day, a

tool is developed which will be offered as an open-source tool to download from a public

website (https://doi.org/10.5281/zenodo.3364366). The tool calculates the simultaneity of

the charging processes within one day taking into account the number of EV, arrival and de-

parture time, vehicle class (small, medium, or large), various charging rates (3.7 kW, 7.4 kW,
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E.2 Input data

11 kW, 22 kW and 44 kW), battery capacity, and State of Charge (SoC) at arrival as well as de-

sired SoC at departure. The percentage of EV charging on the same day might be included,

too. The user of the tool can chose to either use the included data or individual adjusted

data. Thus, it is also possible to consider future trends. Especially for analysing the resulting

grid impacts (e.g. transformer or cables), household loads with the specific simultaneities

in combination with the associated simultaneities of EV charging play a decisive role and

are therefore incorporated in the tool. Hence, using the tool, different simultaneity factors

(i.e., EV alone or EV plus household) can be easily displayed.

The paper is structured as follows. Chapter E.2 gives an overview of the default input data

on which the tool is based. Chapter E.3 presents the calculations of the tool in detail. The re-

sults generated by the tool are analysed and discussed in Chapter E.4. Chapter E.5 concludes

our contribution.

E.2 Input data

The default data set is based on different sources (e.g. Stöckl (2014), Probst (2014), and Zim-

mer et al. (2011)) and each value can be modified by the user. Most values can be changed

directly in the user interface. Specific input data (e.g. average charging durations) can only

be changed in the program code.

All input profiles in this paper have time intervals of 15 minutes as the household load pro-

files used are only available in 15 min intervals. This can be changed in the code, but makes

the according adjustment of the time resolution of input load profiles necessary.

One input parameter is the number of simulated days. The tool calculates the maximum

simultaneity factor on a daily basis. This calculation is then repeated to determine the prob-

ability of the occurrence of a specific simultaneity factor. Consequently, a higher amount of

simulated days increases the accuracy of the results, but also increases the simulation time.

The influence of the number of repetitions on the results is examined in Chapter E.4.

223



E Development of a tool for the determination of simultaneity factors in PEV charging processes

E.2.1 Households

For the households in the regarded power grid, only the number of households and the

yearly energy consumption per household in kWh have to be entered as input data. To repre-

sent the load of a household, a profile is chosen randomly out of a database with 365,000 pro-

files. This database was generated using Uhlig, M. (2019). All profiles in the database have a

yearly energy consumption of 1000 kWh. Hence, the chosen profile is scaled according to the

yearly energy consumption per household. The preset value is 3216 kWh, which was the av-

erage yearly energy consumption of a two-person household in Germany in 2017 according

to Statistisches Bundesamt (2019) and in the basic settings 10 households are considered.

E.2.2 Electric vehicles

Regarding the EV many different parameters influence the calculations. One main param-

eter is the number of EV considered. The tool differentiates between PHEV and BEV and

three vehicle classes (small, medium, big). The share of the individual vehicle classes was

calculated from Zimmer et al. (2011). The battery capacity data for BEV and PHEV for the

underlying setting are taken from EVBox (2019). The default data is presented in Tab. E.1.

Table E.1: Default values for EV.

BEV

small medium big

Share EV class [%] 7 3 5

Battery capacity [kWh] 30.46 37.9 75

PHEV

small medium big

Share EV class [%] 5 40 40

Battery capacity [kWh] 8.4 12.26 8.4

As already mentioned, the tool distinguishes between two simultaneity factors. The simul-

taneity factor, which describes the percentage of EV charged at the same day is set to 78%.

This value is based on Figenbaum and Kolbenstvedt (2016) and is preset for the basic setting.

The arrival time is randomly assigned to the EV according to the distribution of Stöckl (2014).
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It was assumed, that every used EV is charged as soon as it arrives at home. During the charg-

ing process, a distinction is to be made between 2 variants. Either the SoC limits (SoC at the

beginning and SoC at the end of the charging process) are set individually or the SoC at the

beginning of the charging process is determined according to the distribution of Leou et al.

(2013). For the latter, the final SoC is always set to 100%.

Since different charging rates occur simultaneously in reality, an additional aspect covered

in the tool is the possibility taking into account simultaneously different charging rates.

The default charging power distribution follows Probst (2014) and the calculations are per-

formed on the average charging rate. In the presettings, the tool differentiates between

3.7 kW, 7.4 kW, 11 kW, 22 kW and 44 kW with a share of 73.7%, 0%, 21.5%, 3.5% and 1.3%,

respectively.

E.3 Calculations in the tool

E.3.1 Start

The number of vehicles per vehicle class i is calculated by multiplying the given share of

each vehicle class i S Veh,i with the total number of EV N EV,Total (see Equation (E.1)).

N EV,i “ N EV,Total ¨ S Veh,i (E.1)

The main part of the tool is the calculation of the different maximum simultaneity factors

and peak powers on a daily level. For example, the calculation of the simultaneity factor of

EV for one day k S F EV,k is repeated accordingly to the entered number of simulated days

N Days.

E.3.2 Daily simultaneity factor for electric vehicles

First, an arrival time TArrival is assigned to each EV randomly accordingly to the distribution

in Chapter E.2. As the accuracy of the distribution is one hour, we assume a uniform dis-

tribution in each hour. Next, the charging duration TCharging for each EV is calculated. If

the EV is charging on the considered day, the SoC before SoCChar.,Start and after SoCChar.,End
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the charging process are determined. The formula for the calculation of the average energy

capacity of all EV’s batteries is given in Equation (E.2).

E EV,Avg. “

6
ÿ

i “1

E EV,i ¨ S EV,i (E.2)

In Equation (E.2), EEV,i is the average energy capacity of vehicle class i . EEV,i and SEV,i are input

parameters. The necessary charging energy ECharging is calculated as given in Equation (E.3).

E Charging “ pSo C Char.,End ´ So C Char.,Startq ¨ E EV,Avg. (E.3)

The charging time TCharging is calculated by multiplying the necessary charging energy ECharging

and the average charging duration per kWh TChar.,Avg. (see Equation (E.4)).

T Charging “ E Charging ¨ T Char.,Avg. (E.4)

TChar.,Avg. is defined as given by

T Char.,Avg. “

5
ÿ

j “1

S Char.Power,j ¨ T Char.,j (E.5)

SChar.Power,j is the share of charging power j on the total amount of EV and TChar.,j is the cor-

responding average charging duration per kWh for charging power j. Using the charging

duration TCharging, the end time of the charging process can then be calculated using

T End “ T Arrival ` T Charging (E.6)

Finally, the charging profile of each EV is defined. The profile contains the information

whether the EV is charging or not for each time step of the day (e.g. 96 time steps per day

for a 15 min resolution).

In order to obtain the collective profile NEV,Collective, the profiles of all individual vehicles are

summarised. This delivers the number of maximum simultaneously charging EV NEV,Simul..

NEV,Simul. is then used to calculated the maximum daily simultaneity factor SFEV,k (see Equa-

tion (E.7)).

S F EV,k “ N EV.,Simul.{N EV,Total (E.7)

The arrival time TArrival and the SoC (depending on the option chosen) are assigned randomly

(see Chapter E.2 for more information). In contrast to that, for the energy capacity of the EV
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EEV,Avg. as well as the charging duration per kWh TChar.,Avg. average values are used and the

values are not assigned randomly. The reason for that is that these values are EV dependend

and should be constant for all simulated days.

E.3.3 Unbalanced charging

If the option that considers unbalanced charging is chosen, the calculation for the daily si-

multaneity factor is equal until Equation (E.6). Here, the profiles are not added to get the col-

lective profile NEV,Collective, but divided between the different phases. If the charging power

is 3.7 kW one-phase charging is assumed, for 7.4 kW two-phase charging and for all addi-

tional charging powers three-phase charging (which is provided by the German electricity

grid). If less than three phases are used, the selection of the phases is uniformly distributed.

Now, the profiles for each phase (NEV,Ph1, NEV,Ph2, and NEV,Ph3) are generated by adding up

the profiles of the EV charging for each phase individually. The profiles are multiplied with a

weighting factor (1 for one-phase charging, 1/2 for two-phase charging, 1/3 for three-phase

charging) before adding up the profiles.

Out of the profiles NEV,Ph1, NEV,Ph2, and NEV,Ph3 the maximum number of simultanously charg-

ing vehicles for each phase NEV,Simul.,Ph1, NEV,Simul.,Ph2, and NEV,Simul.,Ph3 are determined. These

results are then used to calculate the maximum daily simultaneity factor SFEV,k,PhO for each

phase O (see Equation (E.8)).

S F EV,k,PhO “ N EV.,Simul.,Ph0{N EV,Total (E.8)

E.3.4 Load profile of the households

For each household l , a randomly chosen energy consumption profile EHousehold,1000,l,k is

applied. This profile is scaled to an annual electricity consumption of 1000 kWh. Accord-

ingly, the profile has to be scaled according to the average annual electricity consumption

of households considered ECon (cf. Equation (E.9)).

E Household,l,k “ E Household,1000,l,k ¨
E Con

1000
(E.9)

Finally, the profiles of all households are added to a collective profile EHousehold,Collective. For

this profile, the peak power is determined and saved in PHousehold,k.
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E.3.5 Total peak power on daily level

To determine the total peak power, a collective profile ETotal including the EV and households

is calculated using Equation (E.10).

E Total “ E Household,Collective ` E EV,Collective (E.10)

with

E EV,Collective “ N EV,Collective ¨ P Char.,Avg. (E.11)

and

P Char.,Avg. “

5
ÿ

j “1

S Char.Power,j ¨ P Char.,j (E.12)

With EEV,Collective, the collective profile of EV, PChar.,Avg., the average charging power, and PChar.,j

the individual charging power j. The maximum power of the collective profile ETotal is the

total peak power PTotal,k. Finally, the daily maximum values for SFEV,k, PHousehold,k, and PTotal,k

are determined for day k .

E.3.6 Calculation of the final results

As the last step, the result on a daily level (SFEV,k, PHousehold,k, and PTotal,k) for each of the NDays

days are sorted in order to determine the maximum value as well as the quantiles. Addition-

ally, the result plots are generated.

E.4 Results

In the following exemplary results for the default data are provided (see Chapter E.2). It is as-

sumed that each of the 10 households (with an annual energy consumption of 3216 kWh/a)

is endowed with an EV. The probability that a car is charged on the selected day amounts 78%

and the simulation considers 1000 days. The distribution of the charging power, the share

of EV classes, and the energy capacity can be found in Chapter E.2. The following results

assume that So C Char.,Start “ 0% and So C Char.,End “ 100%. This represents an extreme sce-

nario and explains the (possibly) higher simultaneity factors. Based on the default data and

especially caused by the high share of PHEV, the average battery capacity per EV amounts to
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15.7 kWh. The average charging power based on the preset charging rates is 6.43 kW. These

values are used for further calculations.

E.4.1 Simultaneity factor of EV

The main objective of the tool is to calculate the simultaneity of EV charging processes. In

Fig. E.1, an exemplary distribution of the simultaneity factor of EV is presented.

Figure E.1: Distribution of the simultaneity factor of EV.

The x-axis describes the simultaneity factor of EV and the y-axis the number of simultane-

ities occurred per year. In addition to the simultaneity factor for EV, various percentiles are

also mapped, see Tab. E.2.

Table E.2: Results of simultaneity factor of EV.

Tool results

Max. simultaneity factor 0.8

Prob. max. simult. factor [%] 0.2

99.9th percentile 0.8

99th percentile 0.7

95th percentile 0.6

90th percentile 0.5

50th percentile 0.4
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In the exemplary results, the maximum simultaneity factor amounts 0.8. Since 10 vehicles

were assumed in the example, in maximum 8 EV charge in parallel. However, this case only

occurs with a probability of 0.2%. Considering the different percentiles, it can be seen that

the 50th percentile is already at 0.4 and thus significantly below the maximum simultaneity

factor.

E.4.2 Peak power of EV and household

In addition to the EV specific simultaneity factor, the EV peak power and the household peak

load are calculated within the tool, see Fig. E.2 and Fig. E.3. Since EV loads are affected by

different simultaneities than household loads, these different simultaneities are explicitly

taken into account.

Figure E.2: Distribution of EV peak power.

The EV peak load in this exemplary calculation is 51.44 kW. This is calculated by the maxi-

mum simultaneity factor, the number of EV and the average charging power. The household

peak power results from the summation of the individual load profiles and amounts for the

default values to 30.95 kW. In addition to the calculations of the household peak power, the

99th, the 90th and the 50th percentile are also calculated.
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Figure E.3: Distribution of household peak power.

E.4.3 Total peak power

For grid analyses, it is important to consider the total peak load, i.e. both the EV and house-

hold loads. In order to calculate the total peak load, the individual household and EV loads

are summated. It must be mentioned, that for both load curves the specific simultaneities

are included. Therefore, total peak load is calculated from the sum of these two load curves.

The distribution of the exemplary total peak load is presented in Fig. E.4.

Figure E.4: Distribution of total peak power.

Tab. E.3 shows the different peak loads. As the peak load times of EV and households diverge,

the total peak load is lower than the sum of the individual peak loads.
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Table E.3: Peak Loads.

EV Household Total

Peak Power [kW] 51.44 30.95 56.70

E.4.4 Sensitivity analysis

Within the framework of this subchapter E.4.4, the number of simulated days, the number of

EV, and the distribution of the charging rate is varied and the corresponding results analysed.

In Tab. E.4 the results for a different number of simulated days is presented. A differentiation

is made between 1000, 10,000, and 100,000 days. As it can be seen in Tab. E.4, the maximum

simultaneity factor and the relative percentiles are quite similar. However, the probabil-

ity of the maximum simultaneity factor decreases significantly. The household peak load is

30.95 kW, 31.97 kW, and 36.07 kW, respectively. The associated total load peak differ between

56.70 kW, 60.06 kW, and 66.73 kW.

Table E.4: Tool results for various numbers of simulated days.

Simulated days 1,000 10,000 100,000

Max. simultaneity factor 0.8 0.8 0.9

Prob. max simult. factor [%] 0.2 0.09 0.007

99.9th percentile 0.8 0.7 0.8

99th percentile 0.7 0.6 0.7

95th percentile 0.6 0.6 0.6

90th percentile 0.5 0.5 0.5

50th percentile 0.4 0.4 0.4

EV peak load [kW] 51.44 51.44 57.87

Household peak load [kW] 30.95 31.97 36.72

Total peak load [kW] 56.70 60.06 66.73

Second, the number of EV is varied. Fig. E.5 shows the simultaneity factor if just one EV is

considered. In this case, the simultaneity of the charging processes is either 1 or 0.
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Figure E.5: Distribution of the simultaneity factor for one EV.

By increasing the number of EV, the simultaneity factor decreases, but the total load in-

creases, see Tab. E.5.

Table E.5: Results for different number of EV.

Number of EV 1 10 20

Max. simultaneity factor 1 0.8 0.6

Prob. max simult. factor [%] 78 0.2 0.1

EV peak load [kW] 6.43 51.44 77.16

Household peak load [kW] 24.40 30.95 25.59

Total peak load [kW] 30.83 56.70 85.71

Third, since the limitation of the charging power is seen as a possibility to reduce the network

loads, the simultaneity factors at different charging rates are shown in the following. Fig. E.6

shows the corresponding simultaneities if EV can only be charged with a charging power of

3.7 kW.
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Figure E.6: Distribution of simultaneity factor of EV if EV can only be charged with 3.7 kW.

In comparison, Fig. E.7 shows the simultaneities when all EV are charged with 11 kW. It can

be seen that due to the shorter charging duration at 11 kW, the maximum simultaneities

decrease.

Figure E.7: Distribution of simultaneity factor of EV if EV can only be charged with 11 kW.

However, the change in average charging power also influences the EV peak load. Compared

to the default charging rate distribution (see E.2.2) the EV peak load decreases from 51.44 kW

to 33.30 kW at a charging rate of 3.7 kW and increases to 77 kW at a charging rate of 11 kW.

Consequently, the charging power is a very decisive parameter for the grid impact, which

can be seen also on the level of total peak load (see Tab. E.6).
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Table E.6: Results for different distributions of charging rates.

Charging rate [kW] (100%) 3.7 11

Max. simultaneity factor 0.9 0.7

Prob. max simult. factor [%] 0.1 0.1

EV peak load [kW] 33.30 77

Household peak load [kW] 29.28 27.32

Total peak load [kW] 40.38 82.18

E.4.5 Unbalanced charging

An additional feature of the Tool is the differentiation between balanced and unbalanced

charging of EV. At previous results it was assumed, EV are charged symmetric at all phases.

Now, we assume a three-phase system like it exists in Germany and other countries. In order

to represent the more realistic case that the individual EV are distributed unbalanced over

the three phases, this can be explicitly taken into account in the tool. However, due to the

lack of data, the household loads remains symmetrically spread over the three phases.

If the unbalanced charging setting is selected, the simultaneity factors for the individual

phases are calculated (cf. Fig. E.8).

Figure E.8: Distribution of simultaneity factor in a three-phase system (unbalanced charging).

As can be seen in Fig. E.8, the simultaneities for each of the three phases are now shown (see

Tab. E.7). Due to the unbalanced distribution of the EV between the three phases, the load
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on the individual phases is different. This is also reflected in Fig. E.9, which represents the

EV peak power per phase.

Figure E.9: Distribution of EV peak power in a three-phase system (unbalanced charging).

If one compares the results between unbalanced and balanced charging (cf. Tab. E.7), con-

siderable differences can be identified. If the maximum simultaneity factor of the individual

phases are summed up (0.43/ 0.43/ 0.5), they rise above the maximum value for balanced

loading (0.8).

Table E.7: Balanced vs. unbalanced charging.

Charging Unbalanced Balanced

Max. simultaneity factor 0.43 / 0.43 / 0.5 0.8

Prob. max sim. factor [%] 0.1 / 0.1 / 0.1 0.2

99.9th percentile 0.43 / 0.4 / 0.47 0.8

99th percentile 0.37 / 0.37 / 0.33 0.6

95th percentile 0.3 / 0.3 / 0.3 0.6

90th percentile 0.23 / 0.27 / 0.23 0.5

50th percentile 0.13 / 0.13 / 0.13 0.4

The consideration of the unbalanced distribution is particularly important for the network

analyses with regard to grid voltage and cable limitations.
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E.5 Conclusion

In summary, the simultaneity of charging processes plays a significant role in the analysis

of the network effects of EV. However, it is important to consider whether the EV are dis-

tributed balanced or unbalanced between the three phases. In general, it can be said that

the simultaneity of the charging processes is in any case below the empirically unrealistic

but frequently assumed simultaneity factor of 1. As can be seen in the results, concurrences

of 0.8 occur sporadically, but with a very low probability for 10 EV. Since the total peak load

is important for grid analyses, the household loads should also be included in the analy-

sis in addition to the EV loads. However, since the times of household peak loads and EV

peak loads fall apart, this should also be taken into account in the calculation of the total

peak load. Due to the time difference between EV peak loads and household peak loads,

this peak load is lower than the sum of the individual peaks. As shown, in particular the

charging power and the number of EV taken into account have a strong influence on the

simultaneity factors. However, when using the tool and the resulting simultaneities or peak

loads, it should be noted that extreme values can occur empirically by accident.
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