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Abstract: Optical product inspection plays an important role in today’s
industrial manufacturing. Therefore, design of optimized solutions corre-
sponding to the industrial requirements are essential for efficient product
quality assurance. To configure an inspection setup one requires to deter-
mine the position and orientation of the cameras and illuminations as well
as the optical configurations. This problem is commonly known as inspec-
tion planning. Today’s optical inspection setups are mostly being designed
based on trial and error requiring a lot of engineering experience and experi-
mental work. As the design space is high dimensional, the empirical designs
typically lead to suboptimal solutions and compromise between contrary re-
quirements. In today’s industry we are missing a generic automatic method
to translate the inspection requirements into optimized inspection solutions.
In this report we propose an optimization framework to automatically pro-
pose optimized setup solutions, by minimizing the number of acquisitions
which fulfil the inspection requirements. As an example, we consider max-
imizing the surface coverage for the inspection of a cylinder head in a laser
triangulation setup. We characterize the design space and propose differ-
ent approaches to solve the problem. We finally demonstrate the planning
results which successfully cover hard to reach areas on the object.

1 Introduction

A fast, automated, and precise quality inspection process is of high importance
in today’s industrial production. Automated inspection first made its way into
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industry with Coordinate Measuring Machines (CMMs) [WPH06], the tactile
probes which scan the product in a number of key points. Although CMMs
deliver precise measurements, they are being more and more replaced by optical
inspection techniques due to two main reasons: the very low inspection rate and
their requirement to touch the object [NJ95]. The optical inspection techniques,
on the other hand, offer fast touchless scans even with lower hardware costs.

The very benefits that optical methods offer are however not without an extra
cost: the inspection planning. If the configuration of CMMs needed a pre-
selection of the target key points on the surface, designing an optical inspection
setup which would deliver the same measurement quality is not a trivial task
[CBL02]. Apart from choosing among the existing inspection techniques such as
fringe projection, laser triangulation, deflectometry, interferometry, and etc. (see
[BLF15]), one requires to determine the position and orientation of the cameras
and illuminations as well as their optical configurations. This problem is com-
monly referred to as inspection planning in the literature [SRR03, TTA+95]. As
the design space is high dimensional, today’s optical inspection setups are mostly
being designed based on a trial and error process requiring a lot of engineering
experience and experimental work. In addition to the high design costs, the em-
pirical designs typically lead to suboptimal solutions and a compromise between
contrary requirements. In today’s industry we are missing a generic automatic
method to translate the inspection requirements for a given industrial product
into optimized inspection solutions. Especially for precise inspection of geomet-
rically complex products, such as an engine block in figure 1.1, the need for an
automatic inspection planning is more evident.

In this report we try to address this question by proposing an optimization method
for planning the inspection of a cylinder head in a laser triangulation setup. The

Figure 1.1: Cylinder head illuminated with a laser line
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input to this optimization framework is the CAD model of the product with the
desired region of interest and the inspection requirements for each region. For
the automatic setup planning, we associate each design configuration to a fitness
value which enables us to optimize the designed cost function to come up with
optimal solutions according to the industry requirements.

The content of this report is organized as follows. In section 2 we formally
define the problem of inspection planning as an optimization problem. Section 3
discusses the parameter space of a typical laser triangulation setup. In section 4,
we further search for the solution of the optimization problem using two different
approaches, the greedy and the combinational approach, with each of them using
the Particle Swarm Optimization [BK07] method for the global optimization. In
section 5 the achieved planning results will be discussed.

2 Inspection Planning Problem

Let us assume the parameter vector c determines all the parameters to specify a
particular measurement constellation. This means parameter c includes all the in-
formation regarding the positioning and optical configuration of the setup. Sim-
ilarly, we can define a sequence of k measurements {c1, ..., ck}. Let’s further
assume there is a cost function f(c1, ..., cj) ∈ R which associates each sequence
of measurements to a fitness value corresponding to the quality of the measure-
ment with a maximum value of fopt. In a real measurement setup there are of
course always constraints. Therefore, not every sequence of measurement can
be realizable. Let’s quantify all the constraints as a function r(c1, ..., cj) which
takes positive values if the constraints are met.

With the above definitions, the planning problem can be defined as finding the
minimum number of N measurements {c∗1, ..., c∗N} which optimize the cost
function and at the same time meet the constraints. Therefore

f(c∗1, ..., c
∗
N ) = fopt,

s.t. r(c∗1, ..., c
∗
N ) > 0.

For dimensional inspection, the cost function f usually encompasses either of
the surface coverage, the scan resolution, or the measurement uncertainty. In
our previous works [MBI+17, MBI+16] we have studied different useful cost
functions for this problem.
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One can easily verify that the optimization problem defined above is at least as
hard as the ”Set Cover” problem which is known to be NP-hard [Cor07]. The
planning problem would be exactly equivalent to the set cover problem when we
only consider a discrete set of constellations C for possible solutions, and the
surface coverage as the cost function with no further constraints. In this scenario
each constellation can cover a subset of the surface. Let us assume the union
of all measurable areas by any of the constellations in C is the total area A. In
the planning problem, we look for the minimum number of constellations which
cover A. In the general case however, the problem is more complex. Often the
number of valid constellations are not finite and the cost function is based on
complex quantities such as the measurement uncertainty. The optimum value
fopt is also often unknown.

For large and complex object surfaces, one is often not able to search the whole
parameter space and therefore, needs to resort to approximations. For the set
cover problem there is a simple greedy approximation which is actually shown
to be the best possible polynomial approximation to the problem [LY94]. In the
context of inspection planning, the idea of the greedy approximation is to choose
a constellation which covers the most of the surface (or achieves the best fitness
values) and continue choosing next best constellations in the same manner. Later
in section 5 we discuss the results of the greedy and non-greedy approach.

2.1 Simulations

Typical optimizations require evaluation of many different constellations which
are of course not possible to be evaluated in a real setup. Therefore inspec-
tion planning always relies on simulations. The planning cost function is
consequently based on evaluating the simulation results which is in general a
multi-modal non-derivable function.

Evaluation of different cost functions may require different levels of realism
in the simulations. The coverage of the surface can be, for instance, esti-
mated by means of fast rasterization-based [AMHH08] simulations (millisec-
onds per frame), whereas evaluation of the resulting measurement uncertainty
requires physically correct image formation simulations using advanced tech-
niques [DBB16]. In such simulations, the emitted photons from the light sources
are traced as they get differently scattered by the objects in the scene, all the way
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to reaching the camera sensor and being converted to intensity values. In our pre-
vious work [IBM+17] we have discussed and compared the results of different
simulation techniques for simulation of the images of a laser triangulation setup.

3 Design Space

In this section we discuss the degrees of freedom for the planning of a laser tri-
angulation inspection. In such an inspection setup, we have at least one camera
and one laser line projector which illuminates a profile on the object (see figure
1.1). The camera captures images of the illuminated profile which are further
processed for obtaining the 3D information [MBI+16]. To scan the whole sur-
face, the laser and camera can follow an arbitrary trajectory around the object
and capture image frames all along the trajectories. Figure 3.1 depicts the cylin-
der head CAD model in an arbitrary constellation. For now we assume that the
optical parameters of the laser and the camera (e.g. laser power, shutter time, ob-
jective f-number, etc.) are already set and are not supposed to be optimized. We
solely consider the determination of the geometrical degrees of freedom of the
setup. Positioning the camera and the laser as two rigid bodies has a total of 12
degrees of freedom, which can arbitrarily change along the trajectories for each
single image frame. To cover a typical product with an average area comparable
with the cylinder head, one needs thousands of frames. Obviously this general
parametrization leads to an enormous optimization complexity.

One can however make meaningful simplifications to reduce the complexity. For
instance, we can assume the scan trajectory to be a linear motion along a particu-
lar axis but allow the object instead to freely position under the sensor. The effect
of laser distance to the surface can be neglected as lasers can be later focused to
any particular distance. We may also parametrize the space in a way that the laser
and camera both look towards a common point so that the laser always remains
in the camera field of view.

Figure 3.2 illustrates the proposed 9-dimensional degrees of freedom for
parametrization of one acquisition. Each acquisition is defined as completely
scanning the object along the predefined scan direction. Therefore, instead of
planning for each single frame we plan for a number of N acquisitions. In
the proposed design space, we dedicate four parameters to sensor placement
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Figure 3.1: Camera and laser can move along arbitrary trajectories gc and gl to scan the
whole surface.

(φ, θ, τ, d) and five to the object (α, β, γ,Δx,Δz). Similar to spherical coor-
dinates, camera placement is determined using polar angle θ, azimuthal angle
φ, and distance d. The laser holds a triangulation angle τ to the camera, with
positive values corresponding to bright field illumination and negative values for
dark field illumination. The distance of the laser to the origin is set to a prede-
fined value and does not change during the optimization. The rotation angle φ

rotates both the camera and the laser to always keep the laser line aligned with
the image rows. The object can be freely positioned under the sensor by a 3D
rotation using rotation angles α, β, γ, as well as a translational vector. The trans-
lation has however only two degrees of freedom because during the acquisition
the object is completely scanned in one direction and the translational compo-
nents parallel to the scan direction do not introduce any new constellations. In
the proposed parametrization we consider the y-axis as the scan direction and
consider it invariable. Due to rotational degrees of freedom of the sensor and the
object, variations of the scan direction within the xy plane will be redundant and
do not count as an extra degree of freedom.
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Figure 3.2: Proposed 9D design space for one acquisition

4 Optimization

After definition of the degrees of freedom, in this section we go back to the main
optimization problem in equation 2. The main difficulty with the optimization
is that we not only want to optimize the constellation parameters but also min-
imize the number of acquisitions. For a fixed number of M acquisitions, one
has an optimization problem with 9M parameters for which we can use standard
optimization algorithms. To find the optimal value for M one needs another op-
timization on possible values of M. The psudo-code in algorithm 4.1 can be a
potential solution to the problem.
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Algorithm 4.1 Inspection planning algorithm - combinational
Result: Minimum number of acquisition M∗, constellation parameters p∗

M = 0, p = [ ]

lastFitness = 0, nextFitness = 0

repeat

/* try the solution to M+1 acquisitions */

M = M+ 1

lastFitness = nextFitness

[nextFitness,p] = optimizeMultipleAcquisitions(M)

until (nextFitness− lastFitness ≤ T or surfaceIsCovered);
M∗ = M, p∗ = p

In the above algorithm, one goes through a 9(M + 1)-dimensional optimization
in each iteration to obtain the optimized fitness value and the corresponding pa-
rameter vector p, and compares the gain of having M+ 1 optimized acquisitions
compared to M optimized acquisitions. If the gain of allowing one more acqui-
sition is zero or insignificant we stop the optimization and return the result of
the previous step. Of course one can modify the linear search in this algorithm
into a binary search to significantly increase the performance; however, even for
moderate values of M like 20, the high-dimensional optimization (9× 21 = 189

free parameters) imposes a great overhead. This is not only a problem from the
performance point of view (the algorithm is in the complexity class NP), but
it makes it significantly less probable for a heuristic optimization algorithm to
find the global optimum of a non-convex non-derivable high-dimensional cost
function.

As mentioned earlier, the best polynomial approximation to the set cover problem
is the greedy approach. In this algorithm, one already uses the previously opti-
mized constellations and adds only a single constellation to the previous ones.
This keeps the optimization overhead constant with the increase of the acqui-
sitions; however, this may result in more acquisitions than the theoretical op-
timal value. For the set cover problem, the approximation factor is shown to
be bounded by a logarithmic upper-bound [LY94]. Algorithm 4.2 contains the
pseudo-code of the greedy approximation to the inspection planning algorithm.
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Algorithm 4.2 Inspection planning algorithm - greedy approximation
Result: Minimum number of scans M∗ with parameters p∗

M = 0, p = [ ]

lastFitness = 0, nextFitness = 0

repeat

lastFitness = nextFitness

/* 9-dimensional optimization */

[nextFitness, c] = findNextBestScan(p)

/* append to previous scans */

append(p, c)

M = M+ 1

until (nextFitness− lastFitness ≤ T or surfaceIsCovered);
M∗ = M, p∗ = p

4.1 Particle Swarm Optimization

Using either of the algorithms for solving the inspection planning problem, we
need a global optimizer. As mentioned earlier, the cost function is based on
evaluating simulations, taking any complex form with multiple local optimums.
Therefore, derivative-free randomized heuristic search algorithms seem to be the
right choice for the global optimization problem.

Among the many existing global optimizaters in the literature (see [Wei09] for a
good review), the Particle Swarm Optimization (PSO) has been widely applied
in many fields. PSO is a variant of swarm-based intelligent methods [BDT99]
whose main idea is to imitate the behavior of biological species which live in
colonies such as birds, ants, and bees. We observe that these species exhibit a
high intelligence in their social activities such as searching for food, although
they exhibit simple individual acts. The PSO algorithm is especially inspired
by the way birds communicate when searching a field for food [Wei09]. The
approach of PSO is very intuitive. For optimizing a cost function f(x), one ini-
tiates a number of K random particles in the parameter space (the swarm size).
The particles are not only individual searchers in the paramter space (similar to
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many parallel simulated-annealing [Wei09] optimizers), but they also communi-
cate with each other and share the results of their local searches which guides
them for the rest of the search.

Every particle in this algorithm is composed of three vectors: its current position
in the search space xi, its best individually found position so far bi, and its ve-
locity vi. The particles are also aware of the best position gi found by the rest
of the particles so far. This might be actually the globally best found position, or
the best position that the particle has so far heard from those who have commu-
nicated with it. The algorithm updates the particles at each iteration by updating
their velocities and positions according to

vi
t+1 = vi

t + ε1(b
t
i − xt

i) + ε2(g
t
i − xt

i),

xt+1
i = xt

i + vi
t.

The random factors ε1 and ε2 weight tendencies of the particle to search further
towards the local and global optimum. A particle also has a tendency to keep its
previous direction, therefore we also add the vi

t term to the velocity update rule.
The position is simply computed as moving from the previous position along the
updated velocity.

Since the introduction of PSO, there have been a few standardizations proposed
which give recommendations on choosing the parameters of the algorithm like
the swarm size, the communication structure, and weightings. In this work, we
have orientated the PSO implementation based on the standardization given in
2007 [BK].

5 Coverage Planning Results

The cylinder head object contains hard to reach areas such as deep intake and
exhaust manifolds. Therefore, maximizing the surface coverage with minimized
number of scans is a non-trivial problem which is of high interest for the indus-
try. In this section, we present the inspection planning results with the goal of
maximizing the surface coverage. For evaluating the surface coverage, we use
a fine mesh model of the object as shown in figure 5.1. The granularity of the
mesh elements must correspond to the required inspection resolution. The sur-
face coverage can be then evaluated as the area of all the patches which have been
measured with at least one point.
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For the optimization, we have used the proposed parameter space in figure 3.2
with a simplification of setting the camera distance d to a constant value of 0.5
meter. This choice can be justified by the fact that the object translation com-
ponent along the z-axis introduces very similar effects to changing the camera
distance. However, in the future we intend to get the results with the full degrees
of freedom. As optimization constraints, we assume valid ranges for each of the
parameters, based on the degrees of freedom of the real physical setup. For the
current results we have bounded the parameters to

φ ∈ [0◦, 360◦), θ ∈ [0◦, 80◦], τ ∈ [−80◦,−10] ∪ [10◦, 80],

α, β, γ ∈ [0◦, 360◦), Δx ∈ [−0.4, 0.4]m, Δz ∈ [−0.5, 0.5]m.

Many parameters can already take their full range, such as φ. Others such as the
triangulation angle τ must be constrained to deliver meaningful measurements.

Figure 5.2 compares the results of the greedy vs. the combinational approach.
This chart displays the optimized measurable area for each number of acquisi-
tions. The orange line determines the full area of the object, which is however
not fully measurable because some areas are either completely unreachable or
require constellations which violate the optimization constraints. The blue dot-
ted graph displays the improvements of the greedy surface coverage planning
vs. the number of acquisitions. One can see that the algorithm makes rather big
improvements at the beginning; however, the contribution of the next acquisi-
tions gradually reduces until it falls below the threshold for the 30th acquisition.
For comparison, we have also applied the combinational planning algorithm for

Figure 5.1: Cylinder head fine mesh model for evaluating surface coverage
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5, 10, 15, and 20 acquisitions, where we allow the optimizer to combinationally
optimize all the acquisitions together. In theory the combinational approach is
able to find the global optimum as it looks for every possible combination of
constellations. The greedy approach however, might be trapped in local opti-
mum solutions as the constellations are optimized in a non-reversible approach.
In practice, however, we see that the results of the combinational approach can
even underperform the greedy method. This is due to the fact that it is less prob-
able for a heuristic random optimizer to find the optimum of a high dimensional
problem, compared to a problem with significantly less degrees of freedom.

Figure 5.3 illustrates the resulting point cloud of the object after applying the
30 optimized acquisitions obtained by the greedy planning. As it can be seen,
the deep cavities corresponding to the intake and exhaust manifolds have been
covered.

6 Summary and Future work

In this report we proposed and implemented an optimization framework for
automatic optimization of industrial inspection setups. We went through the

Figure 5.2: Optimized surface coverage vs. number of acquisitions
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Figure 5.3: Point cloud of the resulting measurement after applying 30 optimized
acquisitions obtained by the greedy planning.

parametrization of the design space for inspecting a cylinder head in a laser tri-
angulation setup and compared different approaches for finding the minimized
number of acquisitions which maximize the surface coverage.

It is very insightful to calculate the actual measurable area on the cylinder head
to better evaluate the achieved coverage results. As a future work, we plan to
apply methods for calculating ambient occlusion [Mil94] to calculate the area
measurable for a given set of inspection constraints. In addition, there is also
potentials to combine the greedy and the combinational optimization approaches
to benefit from both. In a hybrid approach, one can use the greedy approach to
come up with good starting points with less optimization overhead and further
apply the combinational approach on the achieved suboptimal results to globally
improve the results.
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