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Abstract 

Relief generation in non-glaciated regions is largely controlled by river incision into 

bedrock but datable fluvial terraces that allow quantifying incision rates are not always 

present. Here we suggest a new method to determine river incision rates in regions 

where low-relief surfaces are dissected by streams. The approach consists of three 

steps and requires the 10Be concentrations of a stream sediment sample and a regolith 

sample from the low-relief surface. In the first step, the spatial distribution of 10Be 

surface concentrations in the given catchment is modelled by assuming that 

denudation rates are controlled by the local hillslope angles. The slope-denudation 

rate relation for this catchment is then quantified by adjusting the relation between 

slope angle and denudation rate until the average 10Be concentration in the model is 

equal to the one measured in the stream sediment sample. In the second step, curved 

swath profiles are used to measure hillslope angles adjacent to the main river channel. 

Thirdly, the mean slope angle derived from these swath profiles and the slope-

denudation relation are used to quantify the river incision rate (assuming that the 

incision rate equals the denudation rate on adjacent hillslopes). We apply our 

approach to two study areas in southern Tibet and central Europe (Black Forest). In 

both regions, local 10Be denudation rates on flat parts of the incised low-relief surface 

are lower than catchment-wide denudation rates. As the latter integrate across the 
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entire landscape, river incision rates must exceed these spatially averaged denudation 

rates. Our approach yields river incision rates between ~15 and ~30 m/Ma for the 

Tibetan study area and incision rates of ~70 to ~100 m/Ma in the Black Forest. Taking 

the lowering of the low-relief surfaces into account suggests that relief in the two study 

areas increases at rates of 10-20 and 40-70 m/Ma, respectively.  

 

1. Introduction 

River incision into bedrock is a process that exerts a fundamental control on the 

evolution and shape of landscapes (e.g. Ahnert, 1970; Whipple et al., 1999; Burbank 

and Anderson, 2012). The quantification of river incision rates is therefore crucial to 

reconstruct the pace and patterns of landscape formation. However, measuring the 

rate at which rivers incise into bedrock is notoriously difficult and requires favorable 

conditions such as the preservation of datable geomorphic markers. Previous studies 

that determined river incision rates have, for instance, applied surface exposure dating 

to strath terraces (e.g. Burbank et al., 1996; Reusser et al., 2004; Jansen et al., 2011) 

or to the steep sidewalls of bedrock gorges (e.g. Schaller et al., 2005, Valla et al., 

2010; Saillard et al., 2014). In another approach, river incision rates were quantified 

by dating the basal loess on flights of loess-covered strath terraces using 

luminescence techniques (e.g. Pan et al., 2003 and 2009).  

 In regions where datable geomorphic markers recording fluvial incision are absent 

or poorly preserved, it is difficult to place quantitative constraints on river incision. Still, 

evidence for river incision and the growth of relief has been obtained from 

concentrations of cosmogenic nuclides in samples of bedrock, regolith, and stream 

sediment, which allow calculating local and catchment-wide 10Be denudation rates. 

For example, low 10Be denudation rates for ridge crests and flat mountain summits 

and their comparison with catchment-wide denudation rates suggests that active river 

incision and relief production occur at rates of a few tens of meters per million year in 

the Appalachians and in mountain ranges of the western United States (Small et al., 

1997; Hancock and Kirwan, 2007). A similar study in central Europe used 10Be 

denudation rates from paired ridge crest and stream sediment samples to estimate 

relief growth in the footwall of the Upper Rhine Graben (Meyer et al., 2010). The 

estimate was broadly consistent with independent constraints on long-term erosion, 

which were derived from stratigraphic data, apatite fission track ages, and thermal 

modelling of track length distributions (Meyer et al., 2010).  
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 Here we suggest a new approach to quantify river incision into low-relief surfaces, 

which relies on 10Be concentrations of stream sediment and outcrop samples. Our 

study is motivated by the observation that low-relief surfaces developed in bedrock 

occur in many mountain belts around the world (see Calvet et al., 2015 for a review). 

The possibility to measure river incision rates in these regions would help to gain 

insight into the persistance of these geomorphic features and to better understand the 

pace of landscape evolution in these areas. More generally, we hope that our simple 

model will stimulate further efforts to extract quantitative information on landscape 

development by determining both local and catchment-wide denudation rates in 

individual catchments. In the following section, we describe the new method and the 

preconditions that need to be met in order to apply it. In section 3, we illustrate the 

approach by applying it to two low-relief surfaces located in southern Tibet and central 

Europe.  

 

2. A new method to measure river incision into low-relief surfaces 

2.1 General considerations and assumptions 

The incision of streams into low-relief surfaces will increase local relief and lead to the 

dissection of the respective surfaces. River incision is commonly the result of a falling 

base level, which may be caused by sea-level fall, river capture, or rock uplift. In the 

vicinity of incising rivers, hillslopes will be relatively steep, whereas the other portions 

of the low-relief region will have more gently-dipping slopes (Fig. 1a). As a 

consequence of the incision process, steeper hillslopes near the rivers will erode faster 

than the low-relief surface. The basic idea of our approach is that the denudation of 

the relatively steep hillslopes adjacent to a river must proceed at the same rate as the 

river incision (Fig. 1a). Therefore, it is possible to determine the river incision rate by 

quantifying the relation between hillslope angle and local denudation rate for the 

respective catchment, and by measuring the slope angles adjacent to the river using 

a digital elevation model. We will show below that the first goal can be achieved if 10Be 

concentrations in quartz from one stream-sediment sample and from one sample on 

the low-relief surface are available (Fig. 1a). From the former a spatially-averaged 

denudation rate for the respective catchment can be calculated, whereas the latter 

provides a local denudation rate for the low-relief surface (note that we use the term 

denudation rather than erosion, because concentrations of cosmogenic nuclides 

reflect the removal of material from the Earth´s surface by both physical erosion and 
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chemical weathering; cf. Riebe et al., 2003; for details see Dunai, 2010 p. 119).  

 Generally, it can be expected that denudation on the low-relief surface is slower 

than the denudation on the hillslopes (Fig. 1a). Therefore, catchment-wide 10Be 

denudation rates will exceed local denudation rates on the low-relief surface. The 

incision rate of the river (which we aim to quantify) will, however, be higher than the 

catchment-wide denudation rate, because river sediment not only contains quartz 

grains with relatively low 10Be concentrations delivered from the valley slopes but also 

grains with high 10Be concentrations originating from the low-relief surface (Fig. 1a). 

The difference between the catchment-wide denudation rate and the rate of river 

incision will depend on the fractional area of the slowly-denuding terrain.  

 Our method is based on the assumption that spatially variable denudation rates 

are controlled by the local hillslope angle. This assumption was also used in previous 

studies, which aimed to infer the spatial variability of denudation rates from the 

frequency distributions of cosmogenic nuclides in individual quartz clasts and in olivine 

grains (Codilean et al., 2008 and 2010; Gayer et al., 2008). The assumption is 

supported by a global analysis of 10Be denudation rates, which shows that denudation 

rate and mean basin slope have the strongest bivariate correlation (Portenga and 

Bierman, 2011). Other factors such as mean annual temperature, precipitation, or 

seismicity may also affect denudation rates, but are unlikely to vary in a significant 

degree in small catchments. Catchment-wide 10Be denudation rates acquired in 

mountaineous regions indicate that for hillslope angles up to ~20–25° the relation 

between slope and denudation rate is approximately linear (e.g. Binnie et al., 2007; 

Ouimet et al., 2009; DiBiase et al., 2010; Palumbo et al., 2010). For steeper slopes, 

denudation rates increase nonlinearly with slope angle (e.g. Roering et al., 2001, 2007; 

Binnie et al., 2007; Ouimet et al., 2009). This nonlinear relation can be described by 

the following equation (cf. Montgomery and Brandon, 2002):  

 

   

D = D0 +
K S

1- S /Sc( )
2   (1) 

where D is the denudation rate, D0 is the background denudation rate (i.e. denudation 

on surfaces with a slope of zero), S is the slope angle, Sc is the critical slope angle 

(typically 45–50°), and K is a rate constant, which defines the shape of the nonlinear 

relation (cf. Roering et al., 2001; Montgomery and Brandon, 2002). Note that it is 

important to distinguish the critical slope Sc from the threshold slope. Sc is the angle 
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at which the denudation rate becomes infinite according to equation 1; hence slope 

angles equal to Sc should not be observable in the field (Roering et al., 1999). Sc can 

be approximated from a non-linear fit of catchment-wide denudation rates and mean 

hillslope angles (e.g., DiBase et al., 2010). In contrast, the threshold slope is the 

maximum slope angle observable in the field and will always be smaller than Sc 

(Strahler, 1950; Roering et al., 1999). If hillslopes have reached their threshold angle 

– above which shear stresses will exceed the hillslope strength and cause 

landsliding – the rate of denudation is no longer controlled by the slope angle (e.g. 

Schmidt and Montgomery, 1995; Burbank et al., 1996). As a consequence, our 

approach should only applied to landscapes in which local denudation rates are slope-

dependent and hillslope angles have not yet attained their threshold values. These 

pre-conditions must be fulfilled for headwater and channel-adjacent hillslopes. Note 

that a distinction between the actual processes of erosion, which might be different for 

headwater and channel-adjacent slopes, is not necessary as long as erosion is slope-

dependent and hillslopes are beneath threshold. The threshold slope (commonly 

about 30–40°) depends on the bulk rock strength, which sets the upper limit for 

hillslope gradients (Burbank, 2002). In lithologies that differ in rock strength, threshold 

slopes and slope-denudation rate relations will be different as well. Therefore, our 

approach should only be applied to catchments underlain by one rock type or by rocks 

which possess a similar strength. A certain degree of spatial variability may always be 

present, because bulk rock strength is also controlled by rock structure (i.e. by the 

orientation and spacing of bedding, joints or fractures), which likely varies within a 

catchment. With respect to this point, we argue that at least small-scale variations in 

strength will be averaged out, because slope-denudation rate relations are derived for 

entire catchments and hillslope angles along rivers will be measured on swaths with a 

length of at least a kilometer.  

 Our new method to determine river incision rates involves three steps (Fig. 1b), 

which we describe in the following sections. Before we begin, we note that the model 

used in the first step has some similarities with the numerical model of Codilean et al. 

(2008, 2010), which describes cosmogenic nuclide generation during bedrock erosion 

and sediment transport in a catchment. Codilean et al. (2008, 2010) investigated how 

frequency distributions of 21Ne concentrations in individual detrital clasts depend on 

geomorphological processes in a catchment, but their model was not intended to 

determine river incision rates.  



 

 
This article is protected by copyright. All rights reserved. 

 

2.2 Modelling the spatial distribution of 10Be surface concentrations (step 1) 

In the first step, we derive a quantitative relationship between local denudation rate 

and hillslope angle for a catchment. We begin by generating a slope map for the 

catchment using a digital elevation model (DEM) with a spatial resolution of 30 m 

derived from SRTM data (Rabus et al., 2003). This is done with ArcGIS (version 

10.2.2) and yields the local slope for every pixel of the catchment. We then use a 

Matlab function to model the spatial distribution of 10Be surface concentrations in the 

catchment. The Matlab function calculates the 10Be surface concentration C in each 

cell of the DEM using the equation for steady-state erosion (Lal, 1991):  

 

   

C =
P

e m + l
  (2) 

where P is the local (elevation-dependent) 10Be surface production rate corrected for 

topographic shielding,  is the local denudation rate, µ is the absorption mean free 

path length for nuclear interacting particles in the target material (defined as the ratio 

of target density and effective attenuation length), and  is the decay constant of 10Be 

(i.e. 4.997 x 10-7 1/a; Chmeleff et al., 2010; Korschinek et al., 2010). In our model we 

use a density of 2.7 g/cm3 and an effective attenuation length of 160 g/cm2. The local 

10Be surface production rate P for each cell of the DEM is calculated with the scaling 

model of Stone (2000) and a sea-level high-latitude 10Be production rate by neutrons 

of 4.01 at/g/a (Borchers et al., 2016). The topographic shielding factor for each pixel 

of the DEM is determined with the Matlab function toposhielding of the TopoToolbox 

(Schwanghart and Scherler, 2014), which in turn is based on the studies by Dunne 

(1999) and Codilean (2006). Following Gayer et al. (2008) and Codilean et al. (2010), 

we neglect the production of cosmogenic nuclides by muons, which is justified 

because at low denudation rates muons are only responsible for a very small fraction 

of the 10Be surface concentration. The reason for this is that a significant portion of the 

muogenic 10Be produced at depth has already decayed when the rock reaches the 

surface.  

 In order to derive the relation between hillslope angle and denudation rate, the 

10Be concentrations of at least one sample from a flat part of the low-relief surface and 

one stream-sediment sample at the catchment outlet are required (Fig. 1a). The local 

denudation rate derived from the sample on the low-relief surface constrains the 
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background denudation rate D0 for a slope of zero (i.e. the y-intercept of the relation 

between denudation rate and slope angle that we aim to quantify) (Fig. 1b). The 10Be 

concentration of the stream-sediment sample is used to determine the slope-

denudation rate relation – which is not a priori known – in the following way. We first 

define an arbitrary slope-denudation rate relation (in which denudation depends either 

linearly or nonlinearly on slope) and calculate the 10Be surface concentration in each 

cell of the DEM using equation 2. The resulting mean 10Be concentration for all cells 

in the catchment can be higher or lower than the 10Be concentration measured in the 

respective stream sediment sample. Now we adjust the slope-denudation rate relation 

until the mean 10Be concentration across the catchment is equal to the 10Be 

concentration measured in the stream sediment sample (Fig. 1b). This adjustment is 

done iteratively for either a linear or a nonlinear slope-denudation relation. In case of 

a linear relation, the free parameter to be adjusted is the gradient of the slope-

denudation relation; in case of the nonlinear relation the rate constant K, which defines 

the shape of the nonlinear curve (see equation 1), needs to be adjusted. As critical 

slope angle Sc we use a value of 45° (cf. Montgomery and Brandon, 2002; Roering et 

al., 2007). The two Matlab functions, which we use to determine the linear or nonlinear 

slope-denudation rate relations, are available in the Supplementary data.  

 In the procedure described above, we do not exclude stream channels, because 

their fractional area in the catchment is commonly very small (<2% in the two case 

studies presented below). As a consequence, a minor fraction of the 10Be in our 

numerical model is generated in the channel network. This is not unreasonable, 

because in reality cosmogenic 10Be will also be produced in bedrock underlying the 

channels. We also make no attempt to quantify the amount of 10Be that is generated 

during sediment transport in the fluvial system, as this component is very small in 

catchments where sediment storage is negligible (e.g. Belmont et al., 2007; Codilean 

et al., 2010; Wittmann et al., 2011).  

 

2.3 Hillslope angles from swath profiles along river channels (step 2) 

Having established the relation between slope angle and denudation rate for a 

catchment, we proceed by measuring hillslope angles adjacent to the main river 

channel. The reason for this second step is that the denudation rate on the relatively 

steep hillslopes near the river is expected to be the same as the river incision rate (Fig. 

1a), because rates of channel lowering, rates of hillslope lowering, and changes in 



 

 
This article is protected by copyright. All rights reserved. 

hillslope angles are all linked (cf. Burbank, 2002). Hence, our aim in step 2 is to derive 

a slope angle that is representative for the steep parts of the hillslopes adjacent to the 

river (Fig. 1b). For measuring slope angles along channels, we use curved swath 

profiles located upstream of the stream-sediment sample, avoiding areas where 

distributaries enter the main channel and cause slope angles to be low.  When a 

stream incises a low-relief region, the slope angles along the river will generally 

decrease upstream (i.e. towards the flat surface). Therefore, the spatial extent of the 

swath profiles along the channels should be limited to areas with similar slope angles. 

For extracting the swath profiles from the DEM, we use a recently developed ArcGIS 

add-in (Pérez-Peña et al., 2017), which is based on Hergarten et al. (2014). The width 

of the swath profiles should ensure that the steep parts of the hillslopes along the 

channel are covered by the swaths. Hence, the swath width that needs to be chosen 

will depend on channel width and valley size in the target area. We recommend that 

the swaths should cover the lower third to half of the hillslopes adjacent to the river 

channel. It is not necessary that the swaths cover the entire hillslopes, because 

hillslopes along rivers that incise low-relief regions will be steeper near the rivers (see 

Fig. 1). As the shape of the hillslopes along each stream will be somewhat variable, 

we calculate average slope curves for each swath on both valley sides. The steepest 

slope values of this average curve (i.e. one on each valley side) are then used to 

calculate a mean slope value and its standard deviation for each catchment.  

 Regarding the width of the stream channels we add the following note. In regions 

where rivers incise bedrock, stream channels will commonly be relatively narrow and 

there will usually be a good connectivity between hillslopes and channels. This 

hillslope-channel connectivity is an inherent assumption of our model, which does not 

consider the production of cosmogenic nuclides during sediment transport. Therefore, 

our model should not be applied to rivers with broad floodplains where sediment may 

be stored and irradiated by cosmic rays for considerable periods of time.  

 

2.4 Quantifying river incision rates (step 3) 

The mean slope angle derived from the swath profiles is now used to determine the 

river incision rate from the slope-denudation rate relation (Fig. 1b). As outlined above, 

we assume that the river incision rate is similar to the denudation rate on the relatively 

steep valley slopes adjacent to the river. In this third step the linear or the nonlinear 

slope-denudation relation can be used. For mean slope angles below ≤25°, the linear 
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slope-denudation relation is probably more appropriate, whereas for slopes above 25° 

the nonlinear rate relation may be better suited. In any case, we recommend to 

determine the incision rate using both the linear and the nonlinear relation and 

compare the results with each other. As the uncertainties of the slope-denudation rate 

relations are difficult to quantify, we adopt a conservative uncertainty of two standard 

deviations for the mean slope angle when calculating the river incision rate.  

 

3. Application of the approach 

We now illustrate the procedure outlined above for two case studies. The respective 

study areas are located in the Lhasa terrane (southern Tibet) and in the Black Forest 

(SW Germany). In both regions, a low-relief bedrock surface is incised by rivers. 

Previously published local and catchment-wide 10Be denudation rates are available for 

both areas (Meyer et al., 2010; Strobl et al., 2012). We have recalculated all these 

rates with the current version 2.3 of the CRONUS-Earth online calculator (Balco et al., 

2008) using the time-invariant production rate scaling model of Lal (1991) – Stone 

(2000) (Tables 1, 2). Sampling locations, 10Be concentrations, and all other information 

required for calculating the denudation rates are provided in the two tables.  

 

3.1 Study area in southern Tibet 

The low-relief surface investigated in southern Tibet is located in the northern part of 

the Lhasa terrane at an elevation between ~5200 and ~5400 m (Fig. 2) (Strobl et al. 

2010, 2012). This region is characterized by an arid climate with an annual 

precipitation of ~300 mm and a mean annual temperature near 0°C. The low-relief 

surface is best preserved in Cretaceous granitoids with U-Pb zircon ages between 130 

and 100 Ma (Hetzel et al., 2011; Haider et al., 2013). Streams incising the surface 

have generated a local relief of several hundred meters and divide the low-relief 

surface in different parts (Fig. 2) (Strobl et al., 2010; Haider et al., 2015). The flat areas 

above the incised valleys are typically covered by block fields with intervening regolith 

or soil, although fractured bedrock outcrops partly covered by granite grus do also 

occur. The observation that local bedrock outcrops are commonly dissected by 

polygonal fractures filled with grus and that bedrock progressively disintegrates into 

angular blocks with increasing fracture density suggests that frost cracking is an 

important mechanism for regolith production and the formation of the block fields (cf. 

Delunel et al., 2010; Strobl et al., 2012). From the low-relief surface towards the river 
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valleys (i.e. with decreasing elevation), hillslope gradients generally increase (Strobl 

et al., 2010). Hillslopes near the rivers are largely covered by a thin mantle of regolith, 

although bedrock outcrops are locally present as well; in particular where the hillslopes 

steepen near ephemeral streams. The material removed from the low-relief region by 

rivers is either deposited on broad floodplains, which lie at an elevation of ~4600 m, 

or is transported to lakes such as Bam Co, which is situated in an actively subsiding 

N-S-trending graben (Fig. 2). The absence of moraines or erratic boulders indicates 

that the study area was not covered by ice during past glaciations and this inference 

is supported by cosmogenic 10Be and 21Ne concentrations, which indicate a simple 

exposure history for the respective samples without significant periods of burial (Strobl 

et al., 2012).  

 We apply our approach to five catchments (C1-C5; Fig. 2) that are located entirely 

in granitic rocks, except for catchment C5, which also contains Jurassic 

metasediments in ~10% of its area (cf. Strobl et al., 2012). Slope maps for catchments 

C1-C3 and topographic profiles extending across the river valleys are shown in 

Figures 3 and 4 (note that C3 is a subcatchment of C2). Similar maps and topographic 

profiles for C4 and C5 are provided in the supplement (Figs. S1, S2). The local and 

catchment-wide 10Be denudation rates, as well as the respective sampling sites and 

sample numbers, are shown in the slope maps of the five watersheds. Seven grus 

samples and one sample consisting of quartz clasts yielded local denudation rates on 

the low-relief surface that cluster tightly between 5.7 ± 0.5 and 7.4 ± 0.7 m/Ma, with 

an average of 6.3 m/Ma (Table 2). Importantly, such amalgamated samples are better 

suited to determine representative rates of denudation than bedrock samples, which 

often yield much more variable denudation rates (Strobl et al., 2012). The respective 

sampling sites on the low-relief surface have dips of 1° to 5°, and a linear extrapolation 

of the slope-denudation rate data to a dip of 0° yields a background denudation rate 

D0 of 5 m/Ma. Stream sediment samples taken at the outlets of the five catchments 

yielded spatially averaged denudation rates between 9.2 ± 0.9 and 14.5 ± 1.3 m/Ma 

(Table 1).  

 The slope-denudation rate relations obtained for the catchments C1-C5 are shown 

in Figure 5. The linear and the nonlinear relation are quite similar for all five 

catchments. For example, with an assumed slope angle of 20°, the linear relation gives 

denudation rates between 16 and 26 m/Ma (Fig. 5a), whereas the nonlinear relation 

yields denudation rates between 18 and 30 m/Ma (Fig. 5b). For measuring slope 
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angles near the river channels, we use swath profiles along three or four river 

segments in the lower portions of the five catchments (black rectangles in Figs. 3a, 

4a, S1a, S2a), avoiding areas where tributaries enter the main channel and cause 

slope angles to be low (Fig. S3). As the steepest slopes occur within a distance of 

about 300 m from the rivers, we use a swath width of 600 m except for swath 4 in C2, 

for which we set the width to 1200 m because the river channel is wider downstream 

of the junction with a major tributary (Fig. 4a,c). The black line in each of the swath 

profiles shows the average slope for each river segment, whereas the quartiles and 

the minimum and maximum slope values are depicted by areas shaded in dark and 

light grey (Figs. 3c, 4c). The slope angles reported on both sides of the channels are 

the largest angles of the average curve (i.e. the black line). In order to derive one 

representative slope value for each catchment, we calculate the mean and the 

standard deviation from these slope values. These slope estimates are given in each 

of the respective figures and are also reported in Table 3.  

 Using the mean slope values from the swath profiles and the slope-denudation 

relations for the five catchments we can calculate river incision rates. Using catchment 

C1 as example, the procedure is illustrated for the linear slope-denudation relation 

(Fig. 6a) as well as for the nonlinear relation (Fig. 6b). As noted in section 2.4, we 

adopt a conservative uncertainty of two standard deviations for the mean slope values 

and propagate this uncertainty when calculating the incision rates. Hence, the mean 

slope for C1 is 18 ± 6°, which results in river incision rates of 23 ± 6 m/Ma and 24 (+10/-

7) m/Ma (Fig. 6a,b). For all five catchments, we obtain river incision rates between 

15 ± 2 and 28 ± 5 m/Ma for the linear slope-denudation relation and incision rates of 

16 (+4/-3) to 33 (+12/-9) m/Ma for the nonlinear relation (Table 3). As the mean slope 

angles for all catchments are smaller than 25°, we prefer the results obtained with the 

linear slope-denudation rate relation. 

 

3.2 Study area in the Black Forest 

In the second case study we apply our approach to a region in the Black Forest, which 

constitutes the eastern flank of the southern Upper Rhine Graben (Fig. 7) (e.g. Dèzes 

et al., 2004). The crystalline bedrock in the Black Forest consists of Carboniferous 

granites that intruded Precambrian gneisses at a late stage of the Variscan orogeny. 

Following the exhumation of these basement rocks in the Late Carboniferous and 

Permian, the region became part of the central European basin and up to 1500 m of 
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Triassic and Jurassic sediments were deposited on the crystalline basement (Geyer 

and Gwinner, 1991). Uplift and tilting of the Black Forest during formation of the Upper 

Rhine Graben led to the removal of these Mesozoic sedimentary rocks in the area of 

the rift flanks and the formation of a low-relief surface incised by rivers (Laubscher, 

1992; Schumacher, 2002; Dèzes et al., 2004; Meyer et al., 2010). GPS and leveling 

data indicate that the Upper Rhine Graben is still tectonically active (Rózsa et al., 

2005). 

We apply our approach to one catchment (C6) with three subcatchments (C7-C9) 

located in the central part of the Black Forest (Figs. 7, 8a). The availability of 10Be data 

for three subcatchments within a larger catchment enables us to estimate river incision 

rates for different parts of the main catchment. The study area is largely covered by 

coniferous forest, which is locally interrupted by small meadows (Meyer et al., 2010). 

It receives an annual precipitation of ~1200 mm and has a mean annual temperature 

of ~8°C. The studied catchment is largely underlain by Carboniferous granite and to a 

minor extent by Precambrian gneiss (<15% of its area) (Meyer et al., 2010). The 

hillslopes are covered by thin soils (10-20 cm) above a poorly exposed regolith layer 

whose thickness is not well known.  

The 10Be data of Meyer et al. (2010) yield a catchment-wide denudation rate of 

63.5 ± 6.3 m/Ma for C6, whereas the three subcatchments C7-C9 denude at rates 

between 37.8 ± 3.7 and 63.0 ± 6.2 m/Ma (Table 1). Three grus samples collected on 

the low-relief surface in the southwestern part of the catchment (Fig. 8a) yielded local 

denudation rates between 31.0 ± 2.9 and 34.3 ± 3.3 m/Ma (Table 2). The respective 

sampling sites have local slopes of 3° to 7° and a linear extrapolation of the data yields 

28 m/Ma as background denudation rate D0 in the first step of our approach. The 

resulting slope-denudation rate relations for C6 to C9 are shown in Figure 9. In the 

second step of our analysis, we measured slope angles along four swath profiles 

upstream of the four sampling sites (Fig. 8a). Again, a swath width of 600 m was 

sufficient to cover the steepest parts of the hillslopes along the rivers (Fig. 8b). The 

mean slope angles for the main catchment and the three subcatchments are between 

9 ± 2° and 26 ± 2° (Fig. 8c). The resulting river incision rates for the linear and 

nonlinear slope-denudation relations are given in Table 3. In the northern part of the 

catchment, the linear slope-denudation relation yields incision rates ranging from 

67 ± 6 to 84 ± 9 m/Ma, whereas slightly higher rates of 74 (+13/-10) to 102 (+32/-21) m/Ma 

are obtained with the nonlinear relation (Table 3). As expected, these incision rates 
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are higher than the catchment-wide denudation rates. This is not the case for 

subcatchment C9, which in the flat southern part of the main catchment. Here, the 

apparent incision rate of 30 ± 2 m/Ma is smaller than the catchment-wide denudation 

rate of 37.8 ± 3.7 m/Ma. The similarity of both values to the background denudation 

rate of 28 m/Ma suggests that no incision is occurring in this region (at least it is not 

detectable with our method).  

 

4. Discussion  

We have presented a new method for estimating stream incision into low-relief 

surfaces that can be applied to landscapes, in which denudation rates are linearly or 

nonlinearly dependent on hillslope angles (Fig. 1). The approach is applicable to 

actively incising low-relief regions that are underlain by quartz-bearing rocks of similar 

strength. In areas where lithologies with markedly different erodabilities are exposed, 

the approach should not be used, because in that case denudation will not only be 

controlled by the hillslope angle but also by lithology (cf. Palumbo et al., 2010; 

Portenga and Bierman, 2011). Our new method requires cosmogenic 10Be 

concentrations of at least one stream sediment sample and one sample on the low-

relief surface to be known. Of course, more samples should be preferred for two 

reasons. First, several samples from the low-relief surface will constrain the 

background denudation rate more reliably. Second, samples from several catchments 

or subcatchments will allow to compare river incision rates for different watersheds 

with each other.  

 

4.1 Rates of river incision for the two case studies 

For the study area in south Tibet (Fig. 2), the background denudation rate (i.e. 5 m/Ma) 

is well defined on the basis of eight samples that yielded similar local denudation rates 

(Table 2). For the five catchments on the dissected low-relief surface, our approach 

yields river incision rates between 15 ± 2 m/Ma and 28 ± 5 m/Ma, under the 

assumption of a linear relationship between slope angle and denudation rate (Table 3). 

The nonlinear slope-denudation rate relation (equation 1; Roering et al., 1999; 

Montgomery and Brandon 2002) leads to similar incision rates between ~16 and ~33 

m/Ma (Table 3). The reason for this similarity is presumably that most parts of the 

studied catchments have rather low slope angles, for which the linear and nonlinear 

relations are similar in shape (Fig. 5). As the mean slope angles derived from the 
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swath profiles are lower than 25° for all five catchments, we prefer the results obtained 

with the linear slope-denudation rate relation.  

 As the five Tibetan catchments are located in a similar position relative to the 

broad, low-lying floodplain farther north (Fig. 2), one could expect similar river incision 

rates for all of them. However, the incision rates vary from 15 ± 2 m/Ma to 

28 ± 5 m/Ma. This scatter may partly be caused by the uncertainties of the local and 

catchment-wide 10Be denudation rates. In addition, the underlying assumptions of our 

approach are probably not fully met, as discussed below (section 4.2). Despite their 

variability, the river incision rates of ~15 to ~28 m/Ma are significantly higher than the 

catchment-wide 10Be denudation rates of ~9 to ~15 m/Ma (Table 3). The average 

incision rate for the five catchments is 21 ± 4 m/Ma, which is our preferred estimate 

for the Tibetan study area.  

 In the Black Forest, similar slope-denudation rate relations were obtained for the 

main catchment C6 and two subcatchments C7 and C8 (Figs. 8, 9). Only the relations 

derived for subcatchment C9 are significantly different (Fig. 9a,b) and indicate that 

local denudation rates in this rather flat area are dominated by the background 

denudation rate D0. The latter is constrained by three grus samples with local 

denudation rates of ~31 to ~34 m/Ma (Fig. 8a). In contrast to the flat southern part of 

the study area, the northern part is more deeply incised and mean hillslope angles 

along swath profiles upstream of the three sampling sites reach 26 ± 2° (Fig. 8a,c). 

For the linear and nonlinear slope-denudation relations, the mean slope values for 

these swaths yield river incision rates of 67 ± 6 to 84 ± 9 m/Ma and 74 (+13/-10) to 102 

(+32/-21) m/Ma, respectively (Table 3). These results illustrate that with increasing 

hillslope angle the difference between the incision rates predicted with the linear and 

nonlinear relations increases. Given that for slope angles above ~25° denudation rates 

increase strongly and nonlinearly with hillslope gradients (e.g. Binnie et al., 2007; 

Roering et al., 2007; Ouimet et al., 2009; DiBiase et al., 2010), we prefer the results 

of the nonlinear model for catchment C6. The Black Forest data also illustrate that 

when hillslope angles along rivers approach their threshold value, the uncertainties of 

the incision rates derived with the nonlinear slope-denudation rate relation become 

rather large. Once threshold hillslopes are achieved, our method is no longer 

applicable because in that case the denudation rate is no longer controlled by hillslope 

gradients but by the rate of rock uplift (cf. Burbank et al., 1996; Binnie et al., 2007). 

Although in deeply dissected landscapes, catchment-wide denudation rates may still 
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be correlated with channel steepness (Ouimet et al., 2009; DiBiase et al., 2010), these 

denudation rates are commonly highly variable (e.g. Kirby and Whipple, 2012, their 

figure 3) and there is currently no way to quantify rates of river incision in such settings.  

 

4.2 Uncertainty of slope-denudation relations and river incision rates 

If local and catchment-wide 10Be denudation rates were accurately known and the 

assumptions underlying our approach were fully met, the slope-denudation rate 

relations obtained for different catchments should be identical. This is almost the case 

for three of the catchments in the Black Forest (C6-C8; Fig. 9), whereas the slope-

denudation relations for the five Tibetan catchments are more variable (Fig. 5). As 

these catchments are all underlain by granitic bedrock and possess a similar relief, it 

seems quite unlikely that the scatter in the river incision rates is caused by differences 

in lithology or local relief (even though the lowest incision rate was indeed determined 

for the catchment with the lowest relief). We note, however, that even minor spatial 

variations in mineralogical composition may lead to different fracture densities during 

rock weathering (e.g. Goodfellow et al., 2016), and may thus contribute to the 

observed variations in the slope-denudation relations. Other reasons for the observed 

variability may be related to the fact that some of the assumptions underlying the 

calculation of catchment-wide denudation rates are not fully met (e.g. a temporally 

constant denudation rate, homogeneous distribution of quartz in the crystalline 

bedrock, complete sediment mixing in the channels). A detailed discussion on the 

various sources of uncertainties is beyond the scope of this study but can be found in 

Dunai (2010, p. 121ff), who outlines that catchment-wide denudation rates probably 

have an accuracy of ±20–30%. Hence, the important assumption that the spatial 

variability of denudation rates is solely controlled by the hillslope angle may be not 

fully met. As a consequence, the slope-denudation rate relations for the five Tibetan 

catchments (Fig. 5) and those for the Black Forest (Fig. 9) have uncertainties that are 

difficult to quantify but translate directly into the river incision rates.  

 

4.3 Relief production in the two study areas 

In order to estimate the rate of relief production in the two study areas, it is necessary 

to take the background denudation rate (i.e. the lowering rate of the low-relief surfaces) 

into account and subtract it from the river incision rate. Given the average rate of river 

incision of 21 ± 4 m/Ma for the five Tibetan catchments and a background denudation 
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rate of 5 m/Ma, suggests that local relief increases at a rate of about 16 m/Ma. At this 

rate, it would have taken a few tens of millions of years to generate the present-day 

catchment relief of 670 to 870 m. Given that the low-relief surface was interpreted to 

have formed in the Early Tertiary based on low-temperature thermochronological data 

(Hetzel et al., 2011; Haider et al., 2013), this seems not unreasonable. We emphasize, 

however, that the timescale over which our local and catchment-wide 10Be denudation 

rates integrate is about 50–100 ka (Tables 1, 2). Extrapolating rates of denudation, 

river incision and relief production farther back in time is not straightforward, because 

the impact of climate changes and the history of base-level fall on the geomorphic 

evolution of the low-relief surface is poorly known. Nevertheless, we suggest that the 

rates of river incision and relief production are roughly representative for the glacial-

interglacial cycles of the Quaternary period.  

 For the study area in the Black Forest, the inferred background denudation rate is 

28 m/Ma. Subtracting this rate from the river incision rates for catchments C6-C8 

indicates that local relief is growing at rates of 39 ± 6 to 74 (+32/-21) m/Ma. These rates 

are higher than the growth rate of 24 ± 12 m/Ma suggested by Meyer et al. (2010), 

because Meyer et al. (2010) calculated the relief increase as the difference between 

local and catchment-wide 10Be denudation rates. This approach provides a minimum 

estimate for the rate of relief growth, because – in contrast to the new method 

proposed here – it does not account for the fact that river incision rates are greater 

than catchment-wide denudation rates (see Fig. 1a). At the current growth rate, the 

present-day relief of 270 to 520 m in the catchments C6–C8 could have been 

generated in the last 5 to 10 Ma. When considering the available apatite fission track 

data (Meyer et al., 2010), this seems to indicate that rates of denudation and river 

incision have increased since ~20 Ma, i.e. after onset of graben formation and uplift of 

the Black Forest in the Miocene (e.g. Dèzes et al., 2004; Timar-Geng et al., 2006). 

 

4.4 Validation of new approach and potential improvements  

It would be desirable to validate our model in a region where a river incision rate over 

the last 104 to 105 years is well constrained from independent data. Unfortunately, 

there currently seems to be no region where both an accurate incision rate as well as 

local and catchment-wide 10Be denudation rates are available. Although there are a 

few case studies that reported river incision rates, such data stem either from steep 

bedrock gorges (e.g. Valla et al., 2010; Saillard et al., 2014), from high-relief areas 
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that have attained threshold hillslopes (e.g. Himalaya; Burbank et al., 1996; Taiwan; 

Schaller et al., 2005), or from regions that were completely covered by ice during the 

last glaciation (e.g. Reusser et al., 2004). In these cases, our model is not applicable. 

Although there are many studies that reported catchment-wide denudation rates (see 

for instance the compilation by Portenga and Bierman, 2011), nearly all of these 

studies lack data on outcrop-scale erosion rates and none reports a river incision rate. 

These considerations may help to guide future sampling campaigns, either in low-relief 

regions where the rate of river incision is known (and our method could be tested) or 

in areas where our approach could be employed to measure river incision rates.  

 Another possibility to improve our method would be to obtain cosmogenic nuclide 

concentrations from depth profiles on hillslopes or the low-relief surface. Such data 

are not available for our study areas. In other regions, depth profiles were used to 

constrain rates of regolith production and hillslope denudation (cf. Small et al., 1999; 

Jungers et al., 2009; Godard et al., 2016). For example, cosmogenic 10Be and 26Al 

concentrations in the Wind River Range (Wyoming) and the Great Smoky Mountains 

(North Carolina) indicate a steady state between regolith production and denudation 

and the presence of a well-mixed regolith layer (Small et al., 1999; Jungers et al., 

2009). By acquiring similar data in our study areas or in other case studies, one could 

determine how rates of regolith production and denudation vary as a function of 

hillslope angle. Such data could be compared to the slope-denudation rate relations 

obtained with our numerical model and could help to decipher the functional relation 

between slope angle and denudation rate more accurately.  

 To evaluate the dependence of our results on DEM resolution, we have redone 

our analysis for two catchments using DEMs with a pixel size of 60 x 60 m. The lower 

DEM resolution does not change the results in any significant way (see Supplementary 

Data). Still, we recommend that future applications of our method should test the 

influence of DEM resolution, in particular for DEMs with a much higher spatial 

resolution (e.g. ≤5m).  

 

5. Conclusions 

We have described a new method to quantify rates of river incision in low-relief 

regions, which is based on cosmogenic-nuclide concentrations measured in stream 

sediment and surface samples. The approach can be applied to landscapes in which 

local denudation rates are slope-dependent and hillslope angles have not yet attained 
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their threshold values. We envision that our new method is applicable to regions with 

relatively low relief that currently experience active river incision. Such regions include, 

for example, the margins of the Tibetan Plateau and the Altiplano, elevated passive 

margins with retreating escarpments, or continental interiors which are underlain by 

mantle plumes that cause a long-wavelength uplift. Application of the new method to 

our two case studies indicates that both linear and nonlinear relations between slope 

angle and denudation rate yield similar results, as long as the mean slope angle 

adjacent to the rivers is ≤25°. River incision rates in both areas are significantly higher 

than catchment-wide 10Be denudation rates, because denudation rates are spatially 

variable. For five catchments in southern Tibet, we obtain a mean river incision rate of 

21 ± 4 m/Ma, whereas in the Black Forest incision rates range from ~70 to ~100 m/Ma. 

Considering the current relief of both areas as well as their background denudation 

rates suggests that the incision in Tibet has been active since a few tens of millions of 

years, whereas in the Black Forest incision may have occurred since 5 to 10 Ma. This 

interpretation is broadly consistent with published low-temperature thermochronologic 

data, which indicate that the bedrock in the Tibetan study area has already been 

exhumed to near-surface conditions (i.e. <40 °C) in the Early Tertiary, while the 

basement rocks in the Black Forest cooled to similar temperatures in the mid to late 

Miocene.  
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Fig. 1: (a) Sketch of low-relief surface incised by a river. The length of the vertical 

arrows illustrates that low denudation rates prevail on the low-relief surface, whereas 

denudation rates increase towards the river. As a result 10Be concentrations in quartz 

will be relatively high in samples from the low-relief surface, whereas river sediment 

samples will have a lower 10Be concentration. Importantly, the river incision rate is 

greater than the spatially averaged catchment-wide denudation rate. (b) Brief 

description of new method to determine the rate of river incision in a catchment. In 

step one, the relationship between denudation rate and hillslope angle is quantified by 

adjusting this relation until the 10Be surface concentration in the modelled catchment 

equals the one measured in the respective stream sediment sample. In step two, slope 

angles along the river are measured on a swath profile. In the third step, the mean 

slope angle derived from the swath profile and the slope-denudation rate relation are 
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used to quantify the river incision rate.  

 

Fig. 2: Colour-coded digital elevation model of study area in the Lhasa terrane. The 

extent of the low-relief surface is indicated by dashed black lines. The five studied 

catchments, C1-C5, are shown by blue lines. Inset shows the position of the study 

area in southern Tibet.  
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Fig. 3: (a) Slope map for catchment C1. The positions of a stream sediment sample 

(08T21) at the catchment outlet and a grus sample (08T24) from the low-relief surface 

are indicated by white circles. 10Be denudation rates for these samples are also given. 

(b) Topographic profile illustrating the steepening of the hillslopes towards the main 

river. Profile is shown by black line in (a). (c) Swath profiles with a width of 600 m 

along four river segments (vertical exaggeration is 2). Swath position is indicated in 

the slope map. All swaths show mean elevations (black line), quartiles (dark grey), and 

min-max values (light grey), and are oriented such that the viewing direction is 

downstream (n is the number of profiles across the channel). The slope angles are the 

maximum values of the mean (i.e. the black line) on both sides of the river. The mean 

slope angle (with one standard deviation) obtained from the four swaths is 18 ± 3°.  
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Fig. 4: (a) Slope map of the catchments C2 and C3 (note that C3 is a subcatchment 

of C2) showing the position of two stream sediment samples and four samples from 

the low-relief surface with their respective 10Be denudation rates. (b) Topographic 

profile illustrates that hillslopes steepen towards the rivers. Profile is shown by black 

line in (a). (c) Swath profiles along four river segments (vertical exaggeration is 2). 

Swath position is indicated in the slope map. All swaths show mean elevations (black 

line), quartiles (dark grey), and min-max values (light grey), and are oriented such that 

the viewing direction is downstream (n is the number of profiles across the channel). 

The slope angles are the maximum values of the mean (i.e. the black line) on both 

sides of the river. The mean slope angles for the swaths in the two catchments are 

20 ± 4° (C2) and 22 ± 2° (C3).  
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Fig. 5: Two plots showing the relation between hillslope angle and denudation rate for 

catchments C1-C5, which were obtained by modelling the spatial distribution of 10Be 

concentrations. The intercept on the vertical axis at 5 m/Ma is the background 

denudation rate D0 based on local 10Be denudation rates from the low-relief surface. 

(a) Relationship based on the assumption of a linear relation between hillslope angle 

and denudation rate. (b) Relationship assuming a nonlinear relation of the form given 

by equation 1.  
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Fig. 6: Plots illustrating (for catchment C1) how we determine river incision rates from 

the slope-denudation rate relations (Fig. 5a,b) and the mean hillslope angles along the 

rivers. Note that we adopt a conservative uncertainty of two standard deviations (std) 

for the mean slope angle (i.e. 18 ± 6°). (a) When using the linear slope-denudation 

rate relation, the river incision rate for C1 is 23 ± 6 m/Ma. (b) For the nonlinear slope-

denudation relation, we obtain an incision rate of 24 (+10/-7) m/Ma.  
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Fig. 7: Colour-coded digital elevation model of study area in the Black Forest, which 

constitutes the footwall of the southern Upper Rhine Graben. The studied catchment 

C6 is outlined by the black line. Inset shows the position of the study area in southwest 

Germany.  
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Fig. 8: (a) Slope map for catchment C6 and three subcatchments (C7, C8, and C9). 

The positions of four stream sediment samples and three grus sample from which 

catchment-wide and local denudation rates were calculated (Tables 1, 2) are indicated 

by white circles. (b) Topographic profile illustrates that hillslopes steepen towards the 

rivers. Profile is shown by black line in (a). (c) Swath profiles along four river segments 

(vertical exaggeration is 2) upstream of the four sediment samples. All swaths show 

mean elevations (black line), quartiles (dark grey), and min-max values (light grey), 

and are oriented such that the viewing direction is downstream (n is the number of 

profiles across the channel). The slope angles are the maximum values of the mean 

(i.e. the black line) on both sides of the river. The mean slope angles are given above 

each swath.  

  



 

 
This article is protected by copyright. All rights reserved. 

 

Fig. 9: Plots showing the relationship between hillslope angle and denudation rate for 

catchments C6-C9, which were obtained by modelling the spatial distribution of 10Be 

surface concentrations. The intercept on the vertical axis at 28 m/Ma (i.e. the 

background denudation rate) is based on local 10Be denudation rates from three grus 

samples. (a) Relation assuming a linear slope-denudation rate relation. (b) Relation 

assuming a nonlinear slope-denudation relation (i.e. equation 1).  
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Table 1: Characterisation of catchments in the Lhasa terrane and the Black Forest, and their 10Be denudation rates (based on data 
from Meyer et al., 2010 and Strobl et al., 2012).  

Catchment Sample Latitude Longitude Sample Mean catchment Catchment 10Be Catchment-wide Time 
number number WGS 84 elevation elevation relief concentration a denudation rate b scale c 

  (°N) (°E) (m) (m) (m) (104 at g-1) (m/Ma) (ka) 

Lhasa terrane, southern Tibet 

C1 08T21 31.4854 89.9299 4694 5067 747 315.6 ± 9.6 14.5 ± 1.3 41 

C2 09T27 31.3450 90.0392 4776 5164 863 476 ± 14 9.84 ± 0.90 61 

C3 09T26 31.3224 90.0513 4804 5212 815 437 ± 13 11.0 ± 1.0 54 

C4 08T14 31.3293 90.1526 4714 5216 714 518 ± 16 9.23 ± 0.85 65 

C5 09T44 31.0626 90.7469 4781 5074 676 445 ± 13 10.04 ± 0.92 60 

Black Forest, central Europe 

C6 08D22 48.1492 8.2392 532 923 521 10.70 ± 0.67 63.5 ± 6.3 9 

C7 06D10 48.1315 8.2536 648 875 389 10.41 ± 0.63 63.0 ± 6.2 10 

C8 07D9 48.1344 8.2172 768 940 269 11.85 ± 0.64 58.0 ± 5.5 10 

C9 06D11 48.1080 8.2116 936 1013 164 19.0 ± 1.1 37.8 ± 3.7 16 

a The 10Be concentrations of quartz in samples from the Lhasa terrane (data from Strobl et al., 2012, their table 2) are normalised to the secondary 
standard S2007N (Kubik and Christl, 2010), whereas the 10Be concentrations of the samples from the Black Forest (Meyer et al., 2010, their table 1) 
are normalised to the secondary standard S555 (Kubik and Christl, 2010).  
b Catchment wide-denudation rates were re-calculated from 10Be concentrations of stream-sediment samples reported by Strobl et al. (2012) and by 
Meyer et al. (2010) with the CRONUS-Earth 10Be – 26Al online calculator (http://hess.ess.washington.edu/; version 2.3) using the time-invariant 
production rate scaling model of Lal (1991) – Stone (2000), a density of 2.7 g/cm3 and the mean catchment elevation. The reported uncertainties 
(1σ) are external uncertainties and include analytical uncertainties as well as the uncertainty of the sea-level high-latitude 10Be production rate. We 
note that the denudation rates published by Strobl et al. (2012) were also calculated with the scaling model of Lal (1991) – Stone (2000), whereas 
those reported by Meyer et al. (2010) are based on the scaling model by Dunai (2000).  
c The time over which the denudation rate integrates is calculated by dividing the absorption depth scale of 60 cm by the denudation rate.  
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Table 2: Characterisation of samples from the two study areas and 
their local 10Be denudation rates (based on data from Meyer et al., 
2010 and Strobl et al., 2012). 

Sample Latitude Longitude Sample 10Be  Denudation External Time 

number WGS 84 elevation concentration a rate b 1σ error scale c 

  (°N) (°E) (m) (104 at g-1) (m/Ma) (m/Ma) (ka) 

Lhasa terrane, southern Tibet    

Grus samples     

08T10 31.2690 90.0759 5306 832 ± 25 5.86 0.55 102 

08T12 31.2741 90.0842 5351 827 ± 25 6.02 0.57 100 

08T13 31.2703 90.0852 5358 868 ± 26 5.74 0.54 105 

08T24 31.4293 89.9033 5203 765 ± 23 6.15 0.58 98 

09T13 31.0370 90.7095 5099 642 ± 19 6.95 0.65 86 

09T28 31.2614 90.1071 5434 776 ± 23 6.68 0.62 90 

09T30 31.2885 90.1044 5333 755 ± 23 6.58 0.61 91 

Amalgamated quartz clasts    

08T27 31.2848 90.1544 5070 600 ± 18 7.42 0.69 81 

Black Forest, central Europe    

Grus samples    

08D14 48.0922 8.2544 1084 21.4 ± 1.3 33.9 3.4 18 

08D15 48.0856 8.2039 1050 22.7 ± 1.2 31.0 2.9 19 

08D16 48.1161 8.1742 1002 19.6 ± 1.1 34.3 3.3 17 

a The 10Be concentrations of quartz in samples from the Lhasa terrane 
(data from Strobl et al., 2012, their table 1) are normalised to the 
secondary standard S2007N (Kubik and Christl, 2010), whereas the 
10Be concentrations of quartz in samples from the Black Forest (Meyer 
et al., 2010, their table 1) are normalised to the secondary standard 
S555 (Kubik and Christl, 2010).  

b Production rates and local denudation rates were calculated with the 
CRONUS-Earth 10Be – 26Al online calculator 
(http://hess.ess.washington.edu/; version 2.3) using the time-invariant 
production rate scaling model of Lal (1991) – Stone (2000) and a density 
of 2.7 g/cm3. The reported errors (1σ) are external uncertainties and 
include analytical uncertainties as well as the uncertainty of the sea-
level high-latitude 10Be production rate. 

c The time over which the denudation rate integrates is calculated by 
dividing the absorption depth scale of 60 cm by the denudation rate. 
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Table 3: Denudation rates, slope angles, and river incision rates for the studied catchments. 

 

Catchment-wide 
denudation rate 

[m/Ma] 

Mean slope angle 
from swath profiles 

[°] a 

River incision rate 
(linear relation) 

[m/Ma] b  

River incision rate 
(nonlinear relation) 

[m/Ma] b  

Lhasa terrane, southern Tibet 

C1 14.5 ± 1.3 18 ± 3 23 ± 6 24 (+10/-7) 

C2 9.8 ± 0.9 20 ± 4 20 ± 5 22 (+13/-8) 

C3 11.0 ± 1.0 22 ± 2 28 ± 5 33 (+12/-9) 

C4 9.2 ± 0.9 23 ± 3 21 ± 4 25 (+13/-8) 

C5 10.0 ± 0.9 18 ± 2 15 ± 2 16 (+4/-3) 

Black Forest, central Europe 

C6 63.5 ± 6.3 26 ± 2 84 ± 9 102 (+32/-21) 

C7 63.0 ± 6.2 24 ± 2 68 ± 5 76 (+14/-10) 

C8 58.0 ± 5.5 21 ± 2 67 ± 6 74 (+13/-10) 

C9 37.8 ± 3.7 9 ± 2 30 ± 2 30 (+2/-2) 

a The uncertainty is given as one standard deviation. 
b The uncertainty is given as two standard deviations.  
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Quantifying river incision into low-relief surfaces using local and catchment-
wide 10Be denudation rates 

Reinhard Wolff *, Ralf Hetzel, Marcus Strobl 
 

In the first step of our method, we find the relationship between local hillslope angle 
and denudation rate by modelling the spatial distribution of 10Be concentrations until it 
is equal to the one measured in a stream sediment sample. Second, we measure 
hillslope angles adjacent to rivers by swath profiles. Third, we use this hillslope angle 
and the slope-denudation relation to quantify the river incision rate. River incision rates 
in two low-relief surfaces (Tibet, Black-Forest) are 15-30 and 70-100 m/Ma, 
respectively. 
 
 

 
 


