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Abstract

Despite being present in the atmosphere at very low levels, volatile organic compounds

(VOCs) have profound effects on the atmosphere, it’s self-cleansing capacity as

well as on climate change and human health. Nevertheless, many unknowns and

uncertainties remain concerning their emissions, atmospheric fate and impact, as

reliable atmospheric measurements of these compounds are challenging and thus, not

routinely conducted.

This work contributes to rectifying this deficiency by providing a new proton transfer

reaction mass spectrometer (PTR-MS), fully customized for airborne measurements

of VOCs and about two times more sensitive and light-weight than previously used

PTR-MS. Such instrumental developments are of crucial importance, as instruments

suited for VOC measurements onboard aircraft are not commercially available.

This thesis reports on the final set-up and first successful airborne deployment of the

new device as well as well as on the steps, which were necessary to achieve them. The

outstanding instrumental performance in terms of precision, sensitivities, detection

limits and the range of detectable species is demonstrated based on the data of

first airborne measurements and a thorough laboratory characterization. With the

new instrument considerably more species of interest can be measured now in the

upper troposphere and lowermost stratosphere (UTLS). This is also of great value for

future measurements onboard the CARIBIC passenger aircraft, on which an adapted

version of the new device will be regularly deployed starting in October 2017.

Another focus of this study is the assessment of emissions of acetone and acetonitrile

by analyzing data collected during 214 flights of the CARIBIC passenger aircraft

between 2006 and 2015. New top-down estimates for North American and Southeast

Asian acetone sources are provided and compared to bottom-up estimates. The strong

discrepancy found between two biomass burning emission inventories of acetonitrile,

one of which generated in this work, is evaluated by comparing model simulations

with the CARIBIC in-situ observations in the UTLS.
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1. Volatile Organic Compounds

(VOCs) in the atmosphere

The air we breathe comprises 78 % nitrogen and 21 % oxygen in terms of volume.

The remaining 1 % is composed of a variety of trace gases including volatile organic

compounds (VOCs) (e.g. Möller, 2014). These are carbon containing substances with

a high vapor pressure that easily evaporate at room temperature and, as a result,

are predominantly found in the gas phase. Although several definitions are in use,

most of them have in common that ”volatile” means a vapor pressure above 10 Pa

at 20–25°C (e.g. Spengler et al., 2011).

Carbon monoxide (CO), carbon dioxide (CO2) are commonly excluded from the group

of VOCs, as they are considered to be inorganic compounds. Also methane (CH4) is

usually considered apart from other VOCs due to its role as direct greenhouse gas.

To emphasize this, the more accurate term non-methane volatile organic compounds

(NMVOCs) is sometimes used synonymously.

Besides the above-mentioned exceptions, the number of VOCs is large and not

conclusively known. The number of organic compounds that has been identified in

the atmosphere so far is assumed to be in the range of 104 to 105 (Goldstein and

Galbally, 2007). However, a much larger number of atmospheric VOCs may exist

(National Research Council, 1991; Goldstein and Galbally, 2007).

Despite being present at extremely low concentration, many VOCs have profound

impacts on atmospheric chemistry affecting air quality and climate. The objective of

this chapter and the two following sections is to reflect the current knowledge about

the sources and sinks of VOCs and their role in atmospheric chemistry. The third

section reviews different measurement techniques and platforms to detect VOCs

in the atmosphere. In the last part of this chapter, the framework of atmospheric

modeling to evaluate the current knowledge about VOCs and to assess the impact of

individual compounds and sources is introduced.
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1. Volatile Organic Compounds (VOCs) in the atmosphere

1.1. Sources

About 1300 Tg of non-methane VOCs are on average released into the atmosphere

each year (see Table 1.1). With regard to other oxidizable compounds in the at-

mosphere, this amount is above the direct emissions of CO (∼1100 Tg a−1) and

more than twice as large as the global CH4 emissions (∼550 Tg Tg a−1). Biogenic

emissions (85 %) constitute the by far largest source of VOCs on the Earth’s sur-

face, followed by anthropogenic emissions (10 %) and release from biomass burning

(5 %) (see Table 1.1). Nevertheless, the source allocation for specific VOCs (see Ta-

ble 1.2) as well as the composition of emission on regional scales can be quite different.

Source Type Annual Emissions [Tg a−1] Proportion [%] References

Anthropogenic 129± 19 10± 2 1 – 12
Biogenic 1107± 150 85± 12 13 – 16
Biomass burning 61± 32 5± 3 1 – 3, 17 – 20

Total 1297± 201 100 1 – 20

Table 1.1.: Estimates of global annual VOC emissions from different sources (mean
and standard deviation of literature values including emission inventories).
[1] Lamarque et al., 2013; [2] EDGARv4.2 (Janssens-Maenhout et al., 2011); [3] EDGARv3.2FT200
(Olivier et al., 2005); [4] Piccot et al., 1992; [5] Müller, 1992; [6] ACCMIP (Lamarque et al., 2010);
[7] ECLIPSE Gains 4a (Höglund-Isaksson, 2012; Klimont et al., 2013) ; [8] HYDE1.3 (van Aardenne
et al., 2001); [9] Middleton, 1995; [10] Seinfeld and Pandis, 2016; [11] Peeters and Fantechi, 2009;
[12] Seinfeld and Pandis, 1998; [13] Guenther et al., 1995; [14] Guenther, 2002; [15] Guenther et al.,
2012; [16] Sindelarova et al., 2014; [17] Andreae and Merlet, 2001; [18] MACCity (van der Werf et al.,
2006; Lamarque et al., 2010; Granier et al., 2011; Diehl et al., 2012; Heil et al., 2012); [19] GFASv1.0
(Kaiser et al., 2012); [20] GFED3 (van der Werf et al., 2010).

Biogenic emissions

Isoprene accounts for almost half of the total biogenic source in terms of mass (see

Table 1.2) and is almost exclusively emitted by vegetation (Guenther et al., 2012;

Wagner and Kuttler, 2014). The same is true for the group of terpenes including mono-

and sesquiterpenes. However, many other VOCs emitted by plants are also released

by human activities and biomass burning (e.g. ethanol, methanol and acetone).

The reasons why plants emit VOCs and the factors regulating it (e.g. temperature,

humidity, light) have been object of intensive research (Kesselmeier and Staudt, 1999;

Peñuelas and Llusià, 2001; Kegge and Pierik, 2010; Possell and Loreto, 2013; Vivaldo

et al., 2017) and are well described in the reviews of Laothawornkitkul et al. (2009)

and Loreto et al. (2014).
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1.1. Sources

Group or Example Annual Emissions [Tg a−1]
Compound Compound BIO†) ANT‡) BB?) Total

Isoprene – 535 535
Monoterpenes α-Pinene 162 162
Ethanol – 21 6 ∗) 1 ∗) 28
Methanol – 100 2 8 110
Acetone – 44 1 2 47
Alkenes Ethene 51 16 8 75
Alkanes Ethane 40 5 45
Aromatics Toluene 8 �) 30 3 41
Acids Acetic acid 7 10 20 37
Aldehydes Formaldehyde 26 5 9 40
Nitriles Acetonitrile 2 2
Other 153 19 3 175

All 1107 129 61 1297

Table 1.2.: Estimated primary emissions of VOCs according to their sources: Bio-
sphere (BIO), anthropogenic activities (ANT) and biomass burning (BB).
The total emissions in the last row are taken from Table 1.1. The estimates
for other VOCs are the difference between the total emissions and the
sum for the specified groups and individual VOCs.
†) Guenther et al. (2012); ‡) MACCity (van der Werf et al., 2006; Lamarque et al., 2010; Granier

et al., 2011; Diehl et al., 2012; Heil et al., 2012); ?) GFED3 (van der Werf et al., 2010); ∗) Kirstine

and Galbally (2012); �) Guenther et al. (2012) and Misztal et al. (2015).

Figure 1.1.: Spatial distribution of biogenic VOC emissions, exemplarily shown for
isoprene and the year 2008 (last available year in the database). For
each pixel, the total annual emissions are displayed in terms of mass
as specified in the MEGAN-MACC inventory (Sindelarova et al., 2014).
Map created with the data visualization tool of the ECCAD database
(ECCAD, 2013).

In Figure 1.1, the geographical distribution of biogenic emissions is shown for the

case of isoprene. Throughout the year, emissions dominate in the tropics due to the

3



1. Volatile Organic Compounds (VOCs) in the atmosphere

generally higher temperatures and solar radiation fluxes there (e.g. Guenther et al.,

1999). The tropical rainforests and the (sub-)tropical savannas are particularly large

sources of biogenic emissions. However, due to the decline of rainforests in response

to climate change, the Northern Hemisphere is expected to become a more significant

source of biogenic emissions in future (Lathière et al., 2005).

Anthropogenic emissions

Although biogenic emissions dominate globally, the anthropogenic contribution to

local or regional VOC emissions can be substantial, in particular in urban and

industrialized regions (e.g. Baker et al., 2008; Borbon et al., 2013). Anthropogenic

VOC emissions originate from a wide variety of sources including the production,

storage and usage of fossil fuels and solvent use in paints, consumer products and

industrial processes. With a proportion of about 70 %, the exploitation of fossil fuels

constitutes by far the largest source on a global scale (Lamarque et al., 2010). As

natural gas, crude oil and refined products thereof contain large amounts of VOCs, a

considerable fraction already evaporates during production and storage (e.g. Harley

and Kean, 2004; Tamaddoni et al., 2014).

During combustion, hydrogen and carbon atoms of the fuel compounds are oxidized

to water and carbon dioxide (CO2), respectively. However, in practice, incomplete

Figure 1.2.: Spatial distribution of anthropogenic (non-methane) VOC emissions,
exemplarily shown for 2008. For each pixel, the total annual emissions
are shown in terms of mass as specified in the EDGARv4.2 inventory
(Janssens-Maenhout et al., 2011). Map created with the data visualization
tool of the ECCAD database (ECCAD, 2013).

4



1.1. Sources

combustion leads to the formation of CO and a variety of VOCs as by-products

(e.g. Wallington et al., 2006; Russell, 2013; Mellouki et al., 2015). Further VOC

emissions result from unburned fuel that is carried over to the exhaust (Wyatt, 2013).

Consequently, the actually emitted VOCs and their relative abundances strongly

depend on the chemical composition of the fuel and the combustion conditions

(Harley and Kean, 2004).

Typical VOCs, which are predominately emitted by anthropogenic sources, include

the group of alkanes (e.g. ethane, propane and butane) and aromatic compounds

such as benzene and toluene (see Table 1.2; for airborne measurements of benzene

see Section 3.4.2).

At least in industrialized nations, a large share of emissions from internal combustion

engines is nowadays avoided due to the reformulation of fuels and the deployment of

emission control systems (e.g. von Schneidemesser et al., 2010; Borbon et al., 2013;

Huang et al., 2017). In Germany, the VOC emissions from motor vehicles have been

reduced by a factor of 12 in the last 15 years (Umweltbundesamt, 2017).

However, on a global scale, such achievements are compensated due to the fact that

major sources of anthropogenic VOCs have moved from industrialized nations to

developing countries (Grubler et al., 2012; Crippa et al., 2016; Huang et al., 2017).

In Figure 1.2, the global distribution of anthropogenic VOC emissions is shown.

Particularly large quantities of anthropogenic VOCs are emitted in Southeast Asia

and China.

Biomass Burning

Another strong source of VOCs attributable to the combustion of carbonaceous

”fuels” is the burning of biomass. Although biomass burning occurs naturally in the

form of wild fires ignited by lightning strikes, human-induced fires, including open

and domestic biomass burning (e.g. for heating and cooking), dominate globally (e.g.

Innes, 2000).

In Figure 1.3, the global distribution of emissions from biomass burning is shown.

Similar to the biogenic source of VOCs (cf. Figure 1.1), biomass burning emissions

dominate in the tropics (e.g. Seiler and Crutzen, 1980; Crutzen and Andreae, 1990).

In this part of the world, fire is widely used e.g. for deforestation, cultivation of fields

(slash-and-burn agriculture), burning of agricultural residues and domestic cooking

5



1. Volatile Organic Compounds (VOCs) in the atmosphere

Figure 1.3.: Spatial distribution of (non-methane) VOC emissions from biomass
burning, exemplarily shown for 2008. For each pixel, the total annual
emissions are displayed in terms of mass as specified in the MACCity
inventory (van der Werf et al., 2006; Lamarque et al., 2010; Granier et
al., 2011; Diehl et al., 2012). Map created with the data visualization
tool of the ECCAD database (ECCAD, 2013).

(Hao and Lio, 1994). Besides in the tropics, larger emissions from biomass burning

also occur at high latitudes in the Northern Hemisphere due to boreal forest fires

(e.g. Harden et al., 2000; Turetsky et al., 2011).

In general, VOCs are emitted from the burning of biomass and biofuels as a result

of incomplete combustion. The chemical composition varies widely and depends

strongly on the fuel type, moisture content and the form of combustion (e.g. smol-

dering or flaming) (Lobert et al., 1990; Simoneit, 2002; Williams, 2004). Impressive

compilations of species known to be emitted by biomass burning have been provided

by Andreae and Merlet (2001) and Akagi et al. (2011). A compound that has been

given special attention to in many studies is acetonitrile. Although not being emitted

in particularly large quantities, acetonitrile belongs to the very few VOCs, which are

almost exclusively emitted by biomass burning (Lobert et al., 1990; Holzinger et al.,

1999) and thus, constitutes an ideal tracer (Akagi et al., 2011).

Uncertainties

Although the characterization of emissions has significantly improved during the

last decades, estimates of compound-specific global emissions are still subject to

considerable uncertainty due to the poor data coverage in many regions and the lack
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1.2. Atmospheric fate and impact

of continuous measurements (e.g. Michel et al., 2005; Harley et al., 2007; Guenther

et al., 2012; Messina et al., 2016; Li et al., 2017).

While the ranges given in Table 1.1 only reflect the variation among different studies,

the uncertainty of emission estimates for specific sources and VOCs commonly lies

between a factor of 1.5 and 4 (Lamb et al., 1987; Olivier et al., 2003; Streets et al.,

2003; Guenther et al., 2012).

Constraining these estimates is of upmost importance to better assess the impact of

VOCs on climate and air quality, addressed in the next section. It is also important

to note that so far only sources on the Earth’s surface have been considered. In the

next section, a further substantial source of atmospheric VOCs will be introduced.

1.2. Atmospheric fate and impact

Following emission, atmospheric transport and dispersion processes distribute the

VOCs in the atmosphere, where they are involved in a series of chemical reactions

and physical processes leading to their eventual removal. Consequently, the extent to

which individual VOCs are distributed in the atmosphere strongly depends on their

reactivity and atmospheric sinks. Short-lived VOCs like e.g. isoprene (∼1-2 h lifetime

according to Atkinson, 2000) can only be found in the vicinity of their sources in the

lowest part of the atmosphere, the planetary boundary layer with an altitude range

of approximately 0–2 km∗. Other VOCs have sufficiently large atmospheric lifetimes

(days to weeks) to cross the boundary layer temperature inversion and enter the free

troposphere (2–12 km)? above it. Very long-lived species with tropospheric lifetimes

exceeding several months (e.g. acetonitrile, see Chapter 6) even penetrate into the

stratosphere (12-50 km)? although convective transport across the tropopause, which

constitutes the boundary between the troposphere and stratosphere, is significantly

impeded (e.g. Vardavas and Taylor, 2007). In general, the atmospheric lifetime of a

species and thus, its distribution depends on its physical properties, its reactivity

and the presence of reaction partners.

Physical processes such as dry and wet deposition onto the Earth’s surface lead to

an instantaneous and complete removal from the atmosphere, but due to the low

polarity and water solubility of many primary emitted species, these processes only

∗The given altitudes are only approximate values, as the boundaries of the different atmospheric
layers vary substantially depending on time and location.
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1. Volatile Organic Compounds (VOCs) in the atmosphere

constitute a minor sink for them (e.g. Mullaugh et al., 2015). Instead, the by far

dominating loss mechanism of atmospheric VOCs is (photo-)chemical degradation.

The gas phase oxidation by hydroxyl radicals (OH) is the most important sink in

this respect, but also photolysis and reactions with O3, NO3 and halogen radicals

play a role (e.g. Williams and Koppmann, 2007).

In general, the atmosphere acts as a giant photochemical reactor, in which VOCs

are gradually broken down to carbon dioxide and water. However, this overall

process involves many reactions and inevitable leads to the (secondary) formation of

oxygenated VOCs (for an overview, see Jenkin et al., 1997; Atkinson and Arey, 2003;

Atkinson et al., 2006).

For some of these compounds (e.g. formaldehyde, formic and acetic acid), the

secondary produced amounts exceed the primary emissions (Koppmann and Wildt,

2007; Paulot et al., 2011), e.g. it is believed that each year ∼1600 Tg of formaldehyde

are produced in-situ due to the oxidation of methane, isoprene and other VOCs

(Stavrakou et al., 2009).

Subsequent products of the photochemical degradation of individual VOCs generally

decrease in volatility, resulting in an increased probability of these compounds to

condense onto pre-existing particles or create new particles through nucleation (e.g.

Budisulistiorini et al., 2015). Furthermore, the presence of VOCs, or rather deviations

in their concentrations, may shift entire photochemical equilibria and thus, influence

the concentrations of key species in atmospheric chemistry (e.g. radicals, ozone and

other greenhouse gases).

It is primarily this impact on other atmospheric constituents that makes VOCs so

important for atmospheric research. Several trace gases formed by chemical reactions

involving VOCs or being influenced by them are known to have profound effects on

air quality and climate (e.g. Koppmann, 2010). The most familiar ones are ozone

and organic aerosol (e.g. Ebi and McGregor, 2008).

VOCs as precursors of ozone and organic aerosol

Ozone is formed in the troposphere when atomic oxygen (O(3P)) resulting from

the photolysis of nitrogen dioxide (NO2) combines with molecular oxygen (O2). The

reverse reaction, which converts ozone and nitrogen oxide (NO) to O2 and NO2,

also takes place. However, in the presence of VOCs, there are further reactions that

8



1.2. Atmospheric fate and impact

convert NO to NO2 and thus, the overall equilibrium between ozone and nitrogen

oxides (NOx = NO + NO2) is shifted towards an enhanced ozone production (e.g.

Thornton et al., 2002). As a greenhouse gas, ozone has a direct radiative forcing

effect leading to global warming when tropospheric ozone concentrations increase (e.g.

Shindell et al., 2006). Due to its role as primary source of OH, the most important

oxidizing agent of the atmosphere, ozone, more specifically changes in the ozone

concentrations, may also influence the lifetimes of other greenhouse gases (e.g. Fiore,

2014). Near the surface, it is a key constituent of photochemical smog and known to

have adverse effects on human health and ecosystems if present at high concentration

(Haagen-Smit, 1952; Mellouki et al., 2015).

The impact of organic aerosol on public health is believed to be even greater (e.g.

Alves et al., 2017). It has been estimated that air pollution due to particulate

matter, to which organic aerosol is a major contributor (e.g. Cabada et al., 2004),

leads to 3.3 million premature deaths per year (Lelieveld et al., 2015). In addition,

organic aerosols have a direct radiative effect on climate by reflecting or absorbing

incoming light and an indirect one by influencing cloud formation and properties as

cloud condensation and ice nuclei (e.g. Haywood and Boucher, 2000). Overall, the

interaction of aerosols with radiation and clouds leads to a slightly negative radiative

forcing, but the uncertainty associated with it is large (Myhre et al., 2013).

Besides the production of ozone and organic aerosol, the degradation of VOCs

has profound effects on the atmosphere’s self-cleansing capacity, which is largely

determined by the hydroxyl radical (e.g. Prinn, 2003; Lelieveld et al., 2016). Reaction

with OH is the main loss mechanism of organic trace gases from the atmosphere

(e.g. Williams, 2004). While the initial reaction consumes OH radicals, subsequent

(photo-)oxidation steps may lead to either a regeneration of OH (e.g. Lelieveld et

al., 2008) or a net production of HOx (= OH and HO2). The contribution of this

secondary source to the overall HOx budget can be significant, especially in the

dry upper troposphere, where the primary source of OH – the photolysis of ozone

followed by the reaction of O(1D) with water vapor – is rather ineffective (Singh et

al., 1995; Jaeglé et al., 1998; Regelin et al., 2013; Neumaier et al., 2014).

Upper Troposphere and Lowermost Stratosphere (UTLS)

The upper troposphere (UT) is also of interest in another respect: Together with the

lowermost stratosphere (LS), it forms the UTLS, an atmospheric region particularly

9
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sensitive to climate change (e.g. Lackner et al., 2009). Conversely, changes in the

structure and trace gas composition of the UTLS may have a strong feedback on

climate (e.g. Riese et al., 2012). As the processes controlling it, including the role

of VOCs, are not yet fully understood, frequent and comprehensive measurements

of the composition of the UTLS (i.e. comprising as many relevant atmospheric

constituents as possible and covering the full spatial extent of the UTLS) are of vital

importance.

Concurrent measurements of secondary air pollutants and their precursors will help

to better understand the underlying formation mechanism. The platforms suitable

to perform such measurements and the techniques used to measure VOCs in the

atmosphere are presented in detail in the next section.

1.3. Measurement techniques and platforms

The composition of the atmosphere can be monitored using two different approaches:

(i) in-situ measurements and (ii) remote sensing observations. In situ (Latin expression

for ”on site”) refers to measurements conducted directly at the point of interest.

This requires the instrumentation to be transported to the atmospheric region under

investigation and to be in direct contact with the air masses.

In contrast, remote sensors acquire information about air masses far away (remote)

from the sensor without being in physical contact with them. Instead the technique

uses the fact that the natural electromagnetic radiation traveling through the atmo-

sphere interacts with the atmospheric constituents, e.g. each type of molecule absorbs

and emits radiation at characteristic wavelengths. Therefore, the electromagnetic

radiation propagated by an atmospheric region allows direct conclusions about its

molecular composition.

Optical spectrometers (e.g. Fourier transform or differential optical absorption spec-

trometers) are used on the Earth’s surface, onboard aircraft, balloons and satellites

(e.g. Friedl-Vallon et al., 2004; Bernath et al., 2005; Fischer et al., 2008; Wunch et al.,

2011; Friedl-Vallon et al., 2014). In order to identify the presence of a species with

these instruments, its spectral signature needs to be well known (e.g. documented in

the high-resolution transmission molecular absorption database HITRAN; Rothman

et al., 2012), strong enough and relatively free of interferences from other gases,

which limits the number of detectable species.
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Satellite observations have the great advantage that a quasi-global coverage is

obtained with a single instrument – a fact ensuring a uniform quality of the data set.

To achieve a similar data product with ground-based observations, a large number of

spectrometers have to be globally distributed and regularly calibrated against each

other. Despite this unique advantage of satellite platforms, the spatial and temporal

resolution of atmospheric trace gas profiles derived from satellite data is rather coarse

(> 3 km vertical resolution: ∼300 km horizontal resolution for limb sounder and

∼10 km for nadir sounders; Bernath, 2017) and does not allow to investigate local

dynamics over short timescales.

Here, in-situ measurements provide a more detailed insight in the atmospheric

composition and its variability on smaller time and spatial scales. The latter is

particularly important as the variability in the spatial and temporal distribution

of atmospheric trace gases in the UTLS can be quite large (Fischer et al., 2008).

Aside from reasons related to the atmosphere (e.g. mixing timescales, atmospheric

transport barriers such as the tropopause), the high variability in atmospheric VMRs

is also due to the fact that most VOC emissions on the Earth’s surface are highly

variable in time and space (cf. Figures 1.1–1.3). To better assess these emissions and

small-scaled atmospheric processes (e.g. stratospheric-tropospheric exchange), in-situ

measurements are indispensable.

Another advantage of in-situ measurements is the large range of available measurement

techniques (for an overview see Heard, 2008, and Nozière et al., 2015), allowing for

the detection of far more species than it is possible with remote sensing. Nevertheless,

measurements of VOCs are still less common than measurements of other atmospheric

constituents (e.g. NO, NO2, CO, CO2, O3), because their accurate quantification is

more difficult (e.g. Apel et al., 2008). Besides being present at very low concentrations

(volume mixing ratios in the UTLS typically range from several ppb† to less than

1 ppt†) and thus, requiring highly sensitive instruments, there are VOCs that tend

to stick to surfaces of the sampling system, whereas others are erratically formed in

the measurement system (e.g. Apel et al., 2003).

The most established and widespread technique for in-situ measurements of VOCs

is gas chromatography (GC). Compounds are separated in columns coated with

a fine film of a stationary phase according to their interaction strength with the

phase. The longer a compound interacts with the stationary phase, the more time

it takes to migrate through the column. Coupled to some form of detector, it is a

†1 ppb = 1000 ppt = 10−9 mol mol−1, i.e. 1 VOC molecule in 109 air molecules, cf. Section 2.1.
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highly specific method to identify a variety of hydrocarbons and oxygenated VOCs

in complex gas mixtures. However, for the detection of low concentrations, a complex

pre-concentration of the sample is necessary.

When deployed onboard aircraft, the long retention times of compounds in conven-

tional GC columns become a major obstacle. Even for the newly-developed Fast-GC

systems (Apel et al., 2003; Wenk et al., 2010; Jäger et al., 2014; Wenk, 2016; Bourt-

soukidis et al., 2017), the chromatographic runtimes (∼3–5 min) are still above the

desired time resolution, which is necessary to investigate small scale variabilities

using aircraft.

Meanwhile, another analytical method overcoming this problem has been widely used

to detect VOCs in atmospheric research: Proton transfer reaction mass spectrometry

(PTR-MS) (Lindinger et al., 1998) allows real time monitoring of most VOCs, as

it requires no sample pre-treatment and offers a much better time response than

GC (in the order of a few seconds), while being sufficiently sensitive for atmospheric

measurements of many VOCs. This combination of a high time resolution and a high

sensitivity makes PTR-MS an ideal candidate for airborne in-situ measurements in

the remote atmosphere, where concentrations are low, but highly variable.

The measurement technique of PTR-MS relies on soft chemical ionization of VOCs

by proton transfer from hydronium ions (H3O+). Although this limits the range of

detectable species to those having proton affinities greater than that of water, most

VOCs of atmospheric interest can be detected by PTR-MS (for details, see review

by de Gouw and Warneke, 2007).

For more than a decade after its introduction, PTR-MS instruments have been

commonly equipped with quadrupole mass filters, which have a good sensitivity, but

need to scan through the mass spectrum and cannot resolve isobaric compounds, i.e.

two VOCs of the same nominal mass but different accurate mass. The application

of time-of-flight (TOF) mass analyzers overcomes this problem, as the entire mass

spectrum is simultaneously acquired with high resolution. However, without further

modifications, current PTR-TOF-MS are still about one order of magnitude less

sensitive compared to quadrupole-based systems (Warneke et al., 2015). Advanced

PTR-TOF instruments, which compensate this deficiency by making use of additional

ion guides in front of the mass spectrometer (e.g. Sulzer et al., 2014; Yuan et al.,

2016; Breitenlechner et al., 2017), have just begun to find their way into the market

(TofWerk, 2017).

12



1.3. Measurement techniques and platforms

Aircraft platforms

Both techniques, GC and PTR-MS have been successfully deployed onboard aircraft,

which are a key platform for measurements in the upper troposphere and lower

stratosphere (UTLS). As aircraft can move freely in the lower atmosphere, they are

particularly well suited to investigate the dynamics of the UTLS and bridge the gap

between ground-based and space-borne observations.

Both, research and passenger aircraft may be considered as platforms. Research

aircraft are ideally suited for case and process studies, as they allow for targeted

measurements at controllable times and places (Schumann et al., 2013). The instru-

mental payload as well as the time and region, in which flights are performed, are

adapted to the scientific objectives. Flight routes can be chosen according to forecasts

and observations during flight. It is thus possible to chase atmospheric phenomena

(Schumann et al., 2013) or to repeatedly sample the same air masses to investigate

their temporal evolution (Stohl et al., 2004). However, flight hours are expensive and

measurements are usually restricted to dedicated short term campaigns over defined

regions. Due to this fact and changing payloads, research aircraft observations hardly

complement each other and are not suited for long term analysis.

In contrast, deployment onboard passenger aircraft is less expensive and enables

regular observations with the same instrumentation over several years. Due to the

various flight routes of commercial aircraft, a good geographical coverage can even

be obtained with a single aircraft. In this respect, passenger aircraft observations

combine several advantages of satellite platforms (good coverage in terms of space and

time and comparability of data) with the high resolution and precision of airborne

in-situ measurements.

Moreover, commercial aircraft provide an ideal platform to investigate the UTLS,

as their cruising altitude coincides with this important region at midlatitudes. Due

to the variable height of the tropopause, commercial airliner frequently cross the

tropopause, which ensures sampling of both tropospheric and stratospheric air.

The use of commercial aircraft for atmospheric research goes back to the late

1960s: Seiler and Junge (1969) measured atmospheric carbon monoxide onboard a

Lufthansa Boeing 707 in 1968. Several projects followed measuring either ozone,

carbon monoxide, water vapor, nitrogen oxides or a combination of these onboard

passenger aircraft (Fabian and Pruchniewicz, 1977; Holdeman et al., 1977; Brunner

et al., 1998, Marenco et al., 1998).
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A more comprehensive set of instruments for simultaneous measurements of a larger

number of species was first deployed onboard commercial aircraft in the framework of

the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere

Based on an Instrument Container; e.g. Brenninkmeijer et al., 1999).

As the data used in this study mainly originates from CARIBIC measurements and

a new mass spectrometer for VOC measurements has been developed for deployment

within this project (see Section 3.5), the project will be described in more detail

in the following section. The subsequent section is dedicated to the new German

research aircraft HALO, on which the new mass spectrometer has been successfully

deployed for the first time (see Section 3.4).

1.3.1. CARIBIC project

In former projects using commercial aircraft as platform for atmospheric measure-

ments, only a few selected species were measured. This is due to the fact that only

relatively small sensors, which are capable of autonomous operation over longer

time periods, but limited to the detection of single species, can be permanently

installed in the aircraft fuselage. However, to learn more about the origin of observed

variations, e.g. contributions of different pollution sources or complex coupling of

atmospheric processes and chemistry, it is of decisive importance to simultaneous

measure a larger number of species and aerosol properties, which complement and

supplement each other. The CARIBIC project aims to measure such a large set of

species and properties using passenger aircraft.

For this purpose, more sophisticated instruments and sample collecting systems,

which cannot be permanently installed in the fuselage due to their overall size, weight

and need for regular maintenance, are required. The CARIBIC project overcomes this

problem by accommodating a comprehensive suite of such instruments – provided

by different research institutes across Europe – in a modified airfreight container

(see Figure 1.5), which can be flexibly deployed on selected flights in the cargo

bay of a passenger aircraft. Only the dedicated air inlet system, which supplies the

instruments with ambient air during measurements flights, is permanently installed

in the aircraft’s fuselage.

The operation of the CARIBIC container started in 1997 using a Boeing 767 of LTU

Airlines as platform (Brenninkmeijer et al., 1999). Measurements were conducted once

or twice per months on two consecutive long-haul flights, i.e. on a flight from Germany
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1.3. Measurement techniques and platforms

to the Caribbean, South Africa, Sri Lanka or the Maldives and the subsequent return

flight. However, this first phase, also referred to as CARIBIC I, ended in 2002 due to

the decommissioning of the aircraft.

The second phase (CARIBIC II) started in December 2004 with a larger and more

advanced version of the container (3.2 × 1.5 × 1.6 m, current weight: 1.6 t) being

deployed for the first time onboard the Lufthansa Airbus A340-600 ”Leverkusen”

(Brenninkmeijer et al., 2005 and 2007). This aircraft exclusively serves long-range

routes from Germany to North and South America, South Africa and Asia, which

enables to sample a variety of different source regions with the CARIBIC container.

Since May 2005, the enhanced CARIBIC container is regularly deployed onboard

this aircraft on 4–6 consecutive flights per month.

Meanwhile, it accommodates 15 instruments for in-situ measurements and a differen-

tial optical absorption spectrometer (DOAS) for remote sensing of atmospheric trace

gases (Dix et al., 2009). In total, about 100 trace species and aerosol parameters

can be simultaneously monitored with the container, including O3, total and gaseous

H2O, NO, NOy, CO, CO2, CH4, mercury and e.g. the number size distribution of

aerosol particles. VOCs such as acetone and acetonitrile are measured with a strongly

modified commercial PTR-MS (Ionicon, Innsbruck, Austria; see Sprung and Zahn,

2003, 2005 and 2010). In addition, air and aerosol samples are collected for post-flight

analysis (Schuck et al., 2009; Baker et al., 2010; Martinsson et al., 2014).

Until April 2014, flights started in Frankfurt, but since then the aircraft is stationed

in Munich and measurements are done on flights from and to Munich. Figure 1.4

shows the routes of all flights, on which the CARIBIC container was deployed until

February 2016. As the aircraft only performs flights in- and outbound of its home

base, the flight pattern is naturally centered around Germany and there are regions,

which were sampled less frequently (mainly in the Southern Hemisphere) or not

at all (e.g. the Pacific Ocean). Despite this limitation, large parts of the Northern

Hemisphere midlatitudes have been frequently sampled during all seasons.

In March 2016, a larger modification of the container was started entailing the tem-

porary suspension of measurement flights. The modification includes the installation

of several new instruments and e.g. the exchange of the above-mentioned PTR-MS

by a completely new version, based on this work (see Section 3.5). A recently made

picture of the container including the new PTRMS-CARIBIC is shown in Figure

1.5. First measurement flights with the new payload are expected to take place in

October 2017.
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1.3. Measurement techniques and platforms

Figure 1.5.: Front side view of the CARIBIC container interior as of 11 September
2017. The new PTRMS-CARIBIC is installed in the lower left corner
(cyan dash-lined box). The connections to the air inlet system perma-
nently installed in the aircraft’s fuselage are positioned on the right-hand
side next to the PTRMS in the bottom plate. Image courtesy of Simon
Heger (KIT).

1.3.2. HALO aircraft

The high altitude and long range research aircraft (HALO) is the current flagship

of German research aircraft (Krautstrunk and Giez, 2012). It is a Gulfstream G550

business jet, which has been strongly modified to accommodate various instruments

in the cabin and under the fuselage and wings. With a maximum payload of ∼3 tons,

it can carry much more scientific instrumentation than most other research aircraft,

thus enabling a more comprehensive investigation of complex atmospheric processes

(e.g. Schumann, 2007; Mech et al., 2014).

Moreover, the high range of up to 12500 km (depending on the scientific payload)

allows measurements over continental scales and in remote regions, which are not

accessible with smaller aircraft. With a maximum ceiling altitude of 15-16 km, it

belongs to the few available research aircraft suited for sampling the lower stratosphere

(e.g. Schumann, 2007). It is in service since 2010 and operated by the Flight Facility

of the German Aerospace Center (DLR) in Oberpfaffenhofen. Meanwhile, several

scientific campaigns have been performed with HALO (e.g. Wendisch et al., 2016;

Stevens et al., 2016; Voigt et al., 2017; Gottschaldt et al., 2017).
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1.4. Modeling tools and emission inventories

In the past, much has been learnt about the atmosphere from in-situ and remote

sensing observations. These observations motivated further laboratory studies, inves-

tigating single atmospheric reactions under controlled conditions and initiated the

development of numerical models to simulate the behavior of the atmosphere. As

controlled experiments to test a certain hypothesis are not possible in the large-scale

atmosphere, atmospheric models provide a powerful tool to study the atmosphere.

Moreover, models offer the possibility to test the current understanding of atmospheric

processes and chemistry by comparing the simulations with observations. If the model

reproduces major features of the atmosphere, it can be used to predict its future

state. As simulations can be easily done for different scenarios, models also allow to

assess the impact of specific changes in the atmospheric system.

However, the capability of a model to reproduce the behavior of trace gases in the

atmosphere strongly depends on the range of processes included in the model and the

model input, such as the parametrization of chemical reactions, physical processes

and trace gas emissions. The latter is commonly based on the data of emission

inventories, providing geographically and temporally allocated (gridded) emission

estimates for a specific category of sources. In Figures 1.1–1.3, such emission data

is shown for the three major sources (biogenic, anthropogenic and biomass burning

emissions).

As it is not possible to monitor each individual emission source on Earth, inventories

extrapolate the emissions found at a few sources at a specific date to many other

sources and time periods by making various assumptions. It is for this reason, that

emission inventories have large uncertainties (Guenther et al., 2006; Frey, 2007;

Guenther et al., 2012; Messina et al., 2016).

Comparison of model results with in-situ measurements or inverse model studies are

therefore crucial to constrain the emissions and help to find errors in the inventories

(e.g. Hein et al., 1997; Jacob et al., 2002; Palmer et al., 2003; de Foy et al., 2007;

Song et al., 2015). In this work, CARIBIC in-situ measurements of acetone (Section

5.8f.) and acetonitrile (Section 6.5) are compared to a variety of emission inventories

(see Sections 5.3.1 and 6.2.2).

18



1.5. Focus of this work

1.5. Focus of this work

The first focal point of this study lies in the completion of a new, innovative PTR-

MS for the measurement of atmospheric VOCs onboard aircraft. As instruments

meeting the technical and scientific requirements for operation onboard aircraft are

commercially not yet available, the development of such an instrument is an essential

necessity to continue research in the field of atmospheric sciences and fill the gaps

in the current knowledge and understanding of atmospheric VOCs. The budgets of

many organic compounds are not yet closed. The new instrument contributes to this

task by exploring the distribution of VOCs in specific regions of interest (research

aircraft campaigns) and by monitoring it on much larger spatial and temporal scales

during its future deployment onboard the CARIBIC passenger aircraft.

The underlying measurement principle is introduced in Chapter 2. A detailed de-

scription of the instrumental development and the final set-up is given in Chapter

3. The focus here lies on the unique custom-made developments and the many

adaptions made upon mechanical completion to pass the aeronautical certification

and enable an autonomous and successful operation onboard aircraft. First results of

its deployment onboard the research aircraft HALO are shown and discussed. The

topic is completed by an intensive laboratory characterization of the instrument and

a detailed outlook on future measurements in Chapter 4.

The second part of this work deals with the evaluation of data from a total of 214

CARIBIC flights conducted between 2006 and 2015. In Chapter 5, the frequently

observed correlation between acetone and CO is systematically investigated in terms

of its spatial and temporal variation in the UT and with regard to its temporal

evolution inside plumes. The results are utilized to derive acetone emission fluxes

for two important source regions, North America and Southeast Asia, and these

top-down estimates are compared with bottom-up inventories.

Another focus lies on constraining the emissions from biomass burning to better

assess their impact on climate change (Chapter 6). For this purpose, acetonitrile

as a trace gas almost exclusively emitted by biomass burning is implemented into

the chemistry climate model ICON-ART, which is subsequently utilized to model

its atmospheric distribution. Multi-annual simulations based on different emission

scenarios (inventories) are performed and compared among each other as well as

with the extensive data set of CARIBIC in-situ observations.
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2. Proton Transfer Reaction Mass

Spectrometry (PTR-MS)

Proton transfer reaction mass spectrometry (PTR-MS) is a well-developed analytical

technique for detecting and identifying small quantities of organic compounds in

air. The measurement principle and the wide-ranging applications of PTR-MS have

been extensively described in the literature, e.g. in the reviews of Lindinger and

Jordan (1998), de Gouw and Warneke (2007), Blake et al. (2009) and more recently

in a book by Ellis and Mayhew (2014). In this chapter, the basic principle and its

technical realization are explained.

2.1. Basic principle

All types of mass spectrometers have in common that the compounds of interest

must be ionized. In PTR-MS, this ionization process is based on a proton transfer

XH+ + M MH+ + X, (2.1)

where XH+ is the proton donor, also referred to as reagent ion, and M is some

neutral molecule, which shall be detected (e.g. Hansel et al., 1995). The reaction is

exothermic and thus takes place spontaneously, if the proton affinity of M is higher

than that of X. In PTR-MS, this fact is used by choosing a reagent ion (namely

protonated water, H3O
+) that selectively ionizes most compounds of interest, but

not the main constituents of air such as N2, O2, Ar and CO2 (e.g. Lindinger et al.,

1997).

In Table 2.1, the proton affinities of selected gases, including the main constituents

of air, are compared to the one of water, which is the base of the reagent ion H3O
+.

In principle, all compounds listed below water can be detected by PTR-MS. This
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Compound Chemical Proton affinity
formula [kJ mol−1]

Helium He 178
Neon Ne 201
Argon Ar 369
Krypton Kr 427
Oxygen O2 421
Hydrogen H2 422
Nitrogen N2 494
Nitric oxide NO 531
Carbon dioxide CO2 541

∗ Methane CH4 544
Nitrous oxide N2O 540
Carbon monoxide CO 594

∗ Ethane C2H6 596
∗ Propane C3H8 626

Ozone O3 626
∗ Acetylene C2H2 641
∗ Isobutane C4H10 678
∗ Ethene C2H4 681

Water H2O 691

∗ Hydrogen cyanide HCN 713
∗ Formaldehyde CH2O 713
∗ Formic acid CH2O2 742
∗ Benzene C6H6 750
∗ Propene C3H6 752
∗ Methanol CH4O 754
∗ Acetaldehyde C2H4O 769
∗ Toluene C7H8 784
∗ Acetic acid C2H4O2 784
∗ Propanal C3H6O 786
∗ Ethanol C2H6O 776
∗ 1-Propanol C3H8O 787
∗ Acetonitrile CH3CN 788
∗ p-Xylene C8H10 794
∗ Acetone C3H6O 823
∗ Isoprene C5H8 826
∗ Dimethyl sulfide C2H6S 831

Ammonia NH3 854
∗ Limonene C10H16 875
∗ α-Pinene C10H16 878

Table 2.1.: Proton affinities of the main constituents of air and selected trace gas
species. Organic compounds are marked with an asterisk. Table adopted
from Ellis and Mayhew (2014) with values taken from Hunter and Lias
(1998).
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2.1. Basic principle

includes the majority of volatile organic compounds present in the atmosphere except

for some low-molecular hydrocarbons (e.g. ethane, propane and isobutane).

After their ionization by proton transfer, different VOCs can be separated according

to their mass-to-charge ratio and registered by an ion detector. As will be shown

below, in PTR-MS, the frequency of detected MH+ ions, the count rate i(MH+), is

directly proportional to the concentration of M in the sample air.

As the proton transfer reaction (2.1) is first-order in both reactants (Lindinger et al.,

1998), it will satisfy the rate equation

d[M]

dt
= −kM [M] [H3O

+], (2.2)

where kM is the compound-specific reaction rate constant. For exothermic proton

transfers, the reaction rate constant is at or close to the collisional rate constant

(∼10−9 cm3 s−1) (Lindinger and Jordan, 1998). When assuming that the conditions of

the reaction are chosen such that the concentration of H3O
+ ions does not significantly

change with time, Equation 2.2 becomes a first-order differential equation. Subsequent

integration leads to

[M](tr) = [M]t=0 e
−kM[H3O

+]tr , (2.3)

where [M](tr) is the concentration of the compound M after the reaction time tr and

[M]t=0 is the (initial) concentration of M in the sample air. In turn, the concentration

of MH+ ions produced within the time tr can be expressed as

[MH+](tr) = [M]t=0 − [M](tr). (2.4)

Inserting Equation 2.3 into 2.4 leads to

[MH+](tr) = [M]t=0 − [M]t=0 e
−kM[H3O

+]tr = [M]t=0

(
1− e−kM[H3O

+]tr
)
, (2.5)

whereby the term in brackets can be further simplified by approximating the expo-

nential function with a first-order Taylor polynomial around t = 0:

[MH+] = [M]t=0

(
1− 1 + kM [H3O

+] tr

)
= kM tr [M]t=0 [H3O

+]. (2.6)

Rearranging the terms leads to the equation

[M]t=0 =
1

kM tr

[MH+]

[H3O
+]
, (2.7)
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which is frequently shown in the literature. The measured count rates i(MH+) and

i(H3O
+) are proportional to the concentrations of MH+ and H3O

+, respectively.

However, due to the mass-dependent transmission behavior of the mass spectrometer

(for details see Section 4.5), the proportional factor Γ is not the same (Steinbacher

et al., 2004). Taking this into account, Equation 2.7 changes to

[M]t=0 =
1

kM tr

Γ(H3O
+)

Γ(MH+)
· i(MH+)

i(H3O
+)
. (2.8)

This simple relationship between the concentration of a trace gas M and the count

rates of MH+ and H3O
+ ions is used within PTR-MS to determine the concentrations

of organic compounds in the sampled air. The ratio

i(MH+)

[M]t=0

= kM tr i(H3O
+)

Γ(MH+)

Γ(H3O
+)
, (2.9)

being the ion yield associated with a specific concentration of M, is also referred to

as sensitivity αM.

Volume mixing ratios

As the reaction rate is pressure- and temperature-dependent, the rate constant kM is

conventionally expressed in mol cm−3 s−1. Consequently, the concentration [M]t=0 in

Equations 2.8 and 2.9 is a number density, which also depends on the pressure and

temperature. In particular, this means that the concentrations derived with these

equations are only valid for the pressure and temperature inside the instrument,

where the reactions take place, and not equal to the concentrations in the sample

outside of the instrument, where pressure and temperature are different.

To solve this issue, it has become common practice in the PTR-MS community (as

well as in atmospheric sciences) to express concentrations in volume mixing ratios

(VMR) and sensitivities as the quotient of count rate and VMR (e.g. Vlasenko et al.,

2009)

The VMR of a gas is defined as the ratio of the number density of the gas and

the number density of the surrounding air. The ratio has the advantage that it

remains constant if the temperature or pressure changes (e.g. Schwartz and Warneck,

1995; Ellis and Mayhew, 2014, Seinfeld and Pandis, 2016). The VMR of M can be
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2.1. Basic principle

calculated as follows, using the ideal gas law and Equation 2.8:

VMR(M) =
[M]t=0

[air]
=

[M]t=0R T

pNA

=
R T

kM tr pNA

Γ(H3O
+)

Γ(MH+)
· i(MH+)

i(H3O
+)

(2.10)

where [air] is the number density of air inside the instrument, p and T are the

pressure and temperature during the reaction, NA is the Avogadro constant and R is

the gas constant. The VMR is dimensionless and equals the mole fraction. However,

in trace gas analysis the following size units are common

1 ppm = 10−6 mol mol−1

1 ppb = 10−9 mol mol−1

1 ppt = 10−12 mol mol−1

1 ppq = 10−15 mol mol−1

with ppm, ppb, ppt and ppq being the abbreviations of parts per million, billion,

trillion and quadrillion. Due to the pressure reduction in the sample air within the

instrument, the sensitivity αM is commonly expressed as counts per second (cps) per

ppb:

αM =
i(MH+)

VMR(M)
=
kM tr p NA

R T

Γ(MH+)

Γ(H3O
+)

i(H3O
+). (2.11)

When the sensitivity is known, the VMR of a compound in the sample can be easily

determined by dividing the measured count rate by the sensitivity. Nevertheless,

the equation also shows that the overall outcome of the proton transfer reactions

strongly depends on the following controllable parameters:

� the abundance of H3O
+ ions

� the pressure and temperature during the reaction

� the transmission of protonated VOCs relative to H3O
+ ions

� the reaction time.

All these parameters need to be held constant during measurements to ensure the

validity of the previously made assumptions and derived equations (e.g. the simple

relationship between count rates and VMRs). Furthermore, a high yield of H3O
+

ions needs to be generated. The next chapter deals with the question how this is

technically realized.
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2. Proton Transfer Reaction Mass Spectrometry (PTR-MS)

H2O vapor
Sample air

Ion source

ISDR

Drift tube

Quadrupole

Ion Lenses

Ion Deflection

Detector

H3O+ + VOC ⇄ H2O + VOC–H+ VOC–H+

Figure 2.1.: Simplified structure of a quadrupole-based PTRMS. The drawing was
mainly adopted from de Gouw and Warneke (2007).

2.2. Basic structure of a PTR-MS

To perform proton transfer reactions and detect the ionized VOCs, PTR-MS instru-

ments consist of the following parts:

� An ion source, which generates the H3O
+ reagent ions in high yield.

� A drift tube, which serves as a reaction chamber and enables proton transfer

reactions under controlled conditions.

� A mass analyzer, which separates the generated ions according to their

mass-to-charge ratio.

� A detector, which converts the impacting ions into an electrical signal with

an amplitude proportional to the number of ions per time.

In Figure 2.1, the schematic structure of a PTR-MS instrument is illustrated. In the

following, the major components of a PTR-MS are presented.
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2.2. Basic structure of a PTR-MS

2.2.1. Ion source

The standard ion source in PTR-MS is a hollow cathode, which is continuously flushed

with water vapor at typical flow rates of 5–10 sml min−1 (e.g. de Gouw and Warneke,

2007). The application of a sufficiently high voltage (typically 400–600 V) across

the electrodes leads to electron impact ionization of the traversing H2O molecules

yielding a plasma of H+, H +
2 , O+, OH+ and H2O

+ ions (e.g. Cappellin et al., 2013;

Ellis and Mayhew, 2014). The ions created this way are not stable and rapidly react

with further H2O molecules to H2O
+ and H3O

+ ions via the following pathways (e.g.

Hansel et al., 1995):

H+ + H2O H2O
+ + H (2.12)

H +
2 + H2O H3O

+ + H (2.13)

�

H2O
+ + H2 (2.14)

O+ + H2O H2O
+ + O (2.15)

OH+ + H2O H3O
+ + O (2.16)

�

H2O
+ + OH (2.17)

H2O
+ + H2O H3O

+ + OH (2.18)

Reaction 2.18 also consumes the H2O
+ ions generated in Reactions 2.12, 2.14, 2.15

and 2.17, which means that all above reactions ultimately lead to the formation of

H3O
+ ions.

The resulting production rate of H3O
+ is in the order of ∼1010 Hz (Brito, 2011).

However, not all reactions fully take place before the ions emerge from the hollow

cathode source through an orifice in the bottom electrode. Consequently, some

unwanted ions and neutral molecules remain in the ion beam. Moreover, some

fraction of the water vapor is not ionized in the source.

To remove parts of the excessive water vapor and to minimize the number of unwanted

ions (e.g. Hansel et al., 1995), a further chamber, named ion source drift region

(ISDR), is positioned between the hollow cathode source and drift tube (see Figure

2.1). While the water vapor is removed via a lateral connection to a pump, the ions

are guided by an electrical field to the exit orifice. The short residence time of ions

in the ISDR (∼1-2 µs) allows for further Reactions 2.12–2.18, enhancing the purity

of the H3O
+ ion beam to levels of about 99.5 % or better (Hansel et al., 1995).
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2. Proton Transfer Reaction Mass Spectrometry (PTR-MS)

2.2.2. Drift tube

The drift tube (DT) is the core of the PTR-MS instrument, where the proton transfer

reactions, as introduced in Section 2.1, take place. It consists of typically 10 stacked

cylindrical stainless steel electrodes, which are separated by insulating spacers and

connected to a resistor chain (e.g. de Gouw and Warneke, 2007; House, 2008). In the

present PTR-MS instruments used at KIT the inner diameter and length of the DT

are 1.2 cm and about 8.8 cm, resulting in a volume of ∼10 cm3.

At the top of the DT, reagent ions and sample air are fed into the DT via an orifice

and a capillary, respectively. At the downstream end of the drift tube, ions and

neutral molecules exit the DT via a small critical orifice into the high vacuum system.

Due to pumping below the DT, a pressure of ∼2 hPa and a constant flow of sample

air (depending on the size of the exit orifice; typically 15–30 sml min−1) through

the DT is obtained (de Gouw and Warneke, 2007; Ellis and Mayhew, 2014). This

ensures that the air in the DT is refreshed in less than 100 ms and results in short

instrumental response times.

A pressure of ∼2 hPa results in a mean free path of about 0.04 mm, enabling sufficient

collisions and thus, proton transfers. A voltage of about 400–600 V is applied across

the DT. The resulting potential gradient (∼60 V cm−1) guides the ions towards the

end of the DT and enables the fragmentation of unwanted H3O
+(H2O)n cluster ions

that might otherwise form and compete with H3O
+ as proton donor. On the other

hand, a too high energy may lead to fragmentation of protonated VOCs, which then

challenges compound identification and quantification (Ellis and Mayhew, 2014).

The critical parameter in this respect is the ratio E/N , where E is the electric field

strength and N the number density of neutral molecules. It is also referred to as

reduced electric field and commonly expressed in the alternative unit Townsend,

where 1 Td = 10−17 V cm−2. The choice of the E/N ratio is always a compromise

between minimizing the presence of cluster ions and fragmentation (e.g. Hansel et

al., 1995). Typically, E/N values in the range of 100–140 Td are used (Kajos et al.,

2015).

The electric field and pressure (p ∝ N) also influence the kinetics of the proton transfer

reactions. Due to the frequent collisions with neutral molecules and acceleration in

between, the ions ”drift” on average with a mean drift velocity (Revercomb and

Mason, 1975)

vd = µ× E = µ0N0 × (E/N), (2.19)
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2.2. Basic structure of a PTR-MS

where µ is the ion mobility in the DT, µ0 the ion mobility at standard conditions

(p0 = 1013.25 hPa, T0 = 273.15 K) and N0 the gas number density at standard

conditions. The mean drift velocity vd and the length l of the DT determine the

travel time of H3O
+ ions through the DT, and thus, the reaction time

tr =
l

vd
=

l

µ0N0

·
(
E

N

)−1

=
l2

µ0Ud
·
(
T0

T

)(
p

p0

)
, (2.20)

in which proton transfers can take place. The term on the right side is the result of

the following substitutions: E = Ud/l, N = RT/p and N0 = RT0/p0.

Being proportional to the instrumental sensitivity (see Equation 2.9), the reaction

time tr needs to be hold constant during measurements. This is achieved by actively

controlling temperature and pressure in the DT, using a PID-controlled heating and

a pressure controller. The heating also prevents wall losses of sticky compounds.

Typical reaction times are in the range of 90–120 µs (e.g. Hewitt et al., 2003; Taipale

et al., 2008; Sarkar et al., 2016).

At the end of the drift tube, a fraction of the product and remaining reagent ions is

extracted via a series of apertures into the mass spectrometer, the major components

thereof being described in the following two sections.

2.2.3. Mass analyzer

As an ion detector cannot distinguish between different ions, it is necessary to

separate the ions prior detection in order to deduce the count rates i(MH+) for

different compounds M and the one for H3O
+ ions (see Equation 2.10). This is done

by a mass analyzer, which separates the ions according to their mass-to-charge ratio

m/z. As only simply charged (z = 1) cations occur in PTR-MS (e.g. Steeghs et al.,

2004), the m/z ratio directly reflects the ion mass.

Since its advent in 1995 (Hansel et al., 1995), PTR-MS instruments have been

equipped with quadrupole mass analyzers (QMA) and for more than a decade, the

QMA was the only available mass analyzer in commercial PTR-MS. This changed

in 2008, when the first instrument with a time-of-flight (TOF) analyzer became

commercially available (Jordan et al., 2009a). Although PTR-TOF-MS are becoming

increasingly popular, the QMA is still widely used and often preferred due to its

compact size, robustness and simpler handling.
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2. Proton Transfer Reaction Mass Spectrometry (PTR-MS)

𝜙+(t)
𝜙–(t)

y

x

z

r0

Figure 2.2.: Schematic drawing of the quadrupole rod system and its internal electrical
connections. Adopted from Gross (2013).

Also the PTR-MS instruments presented in this work use a QMA. As the technique

is well established and a commercial QMA (Pfeiffer Vacuum, Asslar, Germany) is

used, only a short phenomenological description will be provided. For details, please

refer to the comprehensive literature (e.g. Dawson, 1976; Douglas, 2009).

In general, a QMA consists of four parallel rods, which are equidistantly spaced

around a virtual center axis (see Figure 2.2). In the installed version, the rods have

a diameter of 8 mm and a length of 200 mm, whereas the distance r0 between the

rods and the center axis is about 9 mm.

For mass analysis, the potentials applied to the rods have a static and an oscillating

component that can be expressed as (e.g. Campana, 1980; de Hoffmann and Stroobant,

2007)

φ±(t) = ±
(
U + V cos(ωt)

)
, (2.21)

where U is a direct current (DC) voltage and V the amplitude of the oscillating
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2.2. Basic structure of a PTR-MS

part, which alternates with a radio frequency ω (here: 2.25 MHz). Opposite rods are

maintained at the same potential, that is φ+ for the rods in x-direction and φ− for

the rods in y-direction. This way, an oscillating quadrupolar field is generated in

the x-y-plane, which causes ions to oscillate in these directions as they pass through

the quadrupole along the z-axis (Ellis and Mayhew, 2014). As has been shown

elsewhere, the temporal evolution of the amplitude of this 2-dimensional oscillation

can be described based on the terms (e.g. Dawson, 1976; de Hoffmann and Stroobant,

2007)

a =
8e

r2
0

U

ω2

(
m

z

)−1

and b =
4e

r2
0

V

ω2

(
m

z

)−1

, (2.22)

where e is the elementary charge. Depending on the values of a and b, the amplitude

of the ion oscillation either remains small or increases exponentially with time while

the ion traverses through the quadrupole (Douglas, 2009). In the former case, ions

can pass the quadrupole, whereas in the latter case, the ions diverge and strike one

of the rods, i.e. they lose their charge and get lost for detection. The stability of the

ion trajectories thus depends on the m/z ratio of the ions, the amplitudes U and V

and the frequency ω – a fact, which is used in QMA to distinguish between different

ions.

The radio frequency ω is typically kept constant while the amplitudes U and V are

subsequently varied so that only ions within a specific m/z window can pass the

quadrupole and reach the detector at a time (Douglas, 2009).

2.2.4. Ion detector

If ions pass the quadrupole, they are subsequently deflected towards the ion detector,

which is positioned off-axis to avoid counting of ultraviolet photons from the ion

source discharge (see Figure 2.1). Due to its ability to detect even low ion currents

at high speed, a secondary electron multiplier (SEM) (e.g. Allen, 1939; Geno, 1992)

is commonly used in quadrupole-based PTR-MS instruments (e.g. Beauchamp and

Zardin, 2017). The SEM used here (SEV 217; Pfeiffer Vacuum, Asslar, Germany)

consists of a series of 18 successively arranged cylindrically shaped dynodes, made of

copper beryllium and connected to a network of 18 MΩ resistors (see Figure 2.3).

Whereas the last dynode is grounded, a high negative voltage (2.0–3.5 kV) is applied

to the first dynode (called conversion dynode), so that the positively charged ions

exiting the quadrupole are accelerated towards it (e.g. de Hoffmann and Stroobant,

2007).
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c-shaped
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Figure 2.3.: Secondary electron multiplier SEV 217.

Whenever an ion hits the conversion dynode, several secondary electrons are released

from atoms in the surface layer. As the subsequent dynode lies on a potential about

100-200 V below the conversion dynode, these electrons are then accelerated to the

next dynode, where they release further secondary electrons. In this way, each ion

generates an avalanche of secondary electrons and the low incoming ion current is

amplified by several orders of magnitudes (the manufacturer specifies a gain rate

greater than 108 for new detectors operated at 3.5 kV). Due to the voltage drop at a

resistor, the amplified current generates an output pulse (of typically 0.5 V over a

time period of ∼3 ns), which, if the amplitude exceeds a certain threshold, is counted

by the internal electric circuit board to calculate the ion count rate.
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2.2. Basic structure of a PTR-MS

Counting statistics

As shown elsewhere (e.g. Hayward et al., 2002; de Gouw and Warneke, 2007), the

measured count rates follow a Poisson distribution

Pµ(X = n) =
µn

n!
e−µ, (2.23)

where Pµ(X = n) is the probability of detecting n ions in a certain time interval if,

on average, µ ions are observed within this period. As the standard deviation of a

Poisson distribution is given by

σµ =
√
µ, (2.24)

the statistical noise of an ion count rate

i(MH+) =
µ

tdwell

, (2.25)

where µ is the number of MH+ ions observed within the measurement time tdwell, is

given by

σi(MH+) =
σµ
tdwell

=

√
µ

tdwell

. (2.26)

Rearranging Equation 2.25 and substituting it into Equation 2.26 leads to the

important relationship

σi(MH+) =

√
i(MH+) · tdwell

tdwell

=

√
i(MH+)

tdwell

, (2.27)

from which follows that the relative uncertainty in a measured count rate

σi(MH+)

i(MH+)
=

1√
i(MH+) · tdwell

, (2.28)

decreases when the count rates and/or measurement time are increased. The reciprocal

of the relative uncertainty is known as the signal-to-noise-ratio

S

N
=
i(MH+)

σi(MH+)

∝
√
i(MH+) · tdwell, (2.29)

which increases with the square root of the count rate and measurement time.
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Detection limit

The smallest quantity of a compound that can be reliably measured, i.e. distinguished

from the background signal within a stated confidence interval, is commonly referred

to as limit of detection (LOD) (e.g. Armbruster and Pry, 2008; Amann et al., 2010).

It becomes crucial when measuring very low concentrations as it is the case for VOCs

in the upper troposphere and lower stratosphere. Although several definitions of

the LOD exist (Currie, 1997), here the LOD is derived from the smallest measure

xLOD as defined by the International Union of Pure and Applied Chemistry (IUPAC,

Goldbook, 2014):

xLOD = x̄blank + k σblank (2.30)

where x̄blank and σblank are the mean and standard deviation of the background

(blank) detector signal and k is a factor chosen according to the desired confidence

interval. However, when converting xLOD into a VMR using the compound-specific

sensitivity α (in ppb cps−1), the background signal needs to be subtracted (Long

and Winefordner, 1983) and one obtains

VMR(xLOD) =
(x̄LOD − x̄blank)

α
= k

σblank

α
= k VMR(σblank), (2.31)

i.e. the LOD equals k-times the noise of the background measurement expressed as

VMR. Hence, the factor k specifies the signal-to-noise-ratio (S/N). The observed

noise is usually dominated by statistical fluctuations in the ion count rate (Poisson

noise), but further contributions from instabilities in the DT pressure or electrode

voltages may exist (Ellis and Mayhew, 2014).

In Chapter 4, these findings are used to quantify the performance of the new airborne

PTR-MS instrument, presented in this work, including an assessment of atmospheric

trace gases that can be reliable measured with it in the UTLS. The development

of the instrument and its most distinctive features compared to other PTR-MS are

subject of the next chapter.
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airborne measurements

The use of PTR-MS at the Institute of Meteorology and Climate Research (IMK)

started in the early 2000s, when a commercial instrument (IONICON, Innsbruck,

Austria) was modified for the use onboard the CARIBIC passenger aircraft (Sprung

and Zahn, 2003; Sprung and Zahn, 2005). In 2007, the development of more lightweight

and more sensitive instruments was initiated, the first to be deployed onboard the

new research aircraft HALO (Zahn et al., 2009; Brito et al., 2009).

A higher sensitivity potentially enlarges the number of detectable species and the

temporal resolution of measurements, which is essential for a better understanding

of the chemical processes and budgets of these compounds in the atmosphere. Also a

lightweight construction is advantageous in many regards. Less weight is not only

associated with lower deployment costs, but can also decide on the deployment itself,

namely when the payload of the aircraft is close to its full capacity.

As a matter to save weight and to become more flexible for future modifications, it

was soon decided to replace the individual commercial control and supply units by a

new integrated control system, named after its V25 microcontroller†. Developed at

the Max Planck Institute for Chemistry (MPI-C) in Mainz, the V25 is a compact

and robust modular system comprising an embedded computer and a large number

of slots for different input/output (I/O) modules. However, the modules necessary

for control of PTR-MS still had to be developed by the MPI-C.

The first airborne operation of the new instrument, here named PTRMS-HALO, was

originally scheduled for summer 2009 as part of the scientific HALO mission OMO

(Oxidation Mechanisms Observations), which will be described in more detail in

Section 3.4. However, in 2009 the integrated V25 system was far not yet sufficiently

advanced to take over any of the envisaged functions. The main functions, such as the

†built-in microcontroller by NEC (Nippon Electric Company), sold between 1985 and 2003
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2009 2010 2011 2012 2013 2014 2015

E&E UBWOS

MUSICA

CASA C-212

mobile lab

HALO

OMO-EU/-ASIA

Field operation

Cancelled field campaign

OMO OMO

OMO

MUSICA

2016 2017

CARIBIC

EMERGE

PTRMS-CARIBIC

PTRMS -HALO

AIRBUS A340-600

Figure 3.1.: Chronological sequence of postponed and completed field campaigns
involving the largely identical instruments PTRMS-CARIBIC (green
timeline) and PTRMS-HALO (yellow timeline) and four different plat-
forms (mobile lab, CASA C-212 turboprop aircraft, HALO jet aircraft
and CARIBIC passenger aircraft).

control of the mass spectrometer, the turbo-molecular pumps, the drift tube and the

ion source as well as the acquisition of the mass spectra were still not implemented.

Fortunately, due to numerous problems with the certification of HALO, the OMO

campaign was postponed, initially to summer 2011 and thereafter in further steps to

the actual date in summer 2015.

In Figure 3.1, a timeline of the campaign planning and the several postponements of

OMO are shown. The considerable delay eventually allowed to finalize the development

of PTRMS-HALO with the last steps being taken at the end of 2014.

In Figure 3.2, the different development stages are chronologically illustrated. The

instrumental development until mid of 2013 and its first test/field deployment on

ground during the E&E UBWOS (Energy & Environment - Uintah Basin Winter

Ozone Study) campaign in 2012 were part of previous PhD projects (Brito, 2011;

Geiger, 2015) and will be briefly summarized in the following section. The debugging

of the new hardware, the finalization and optimization of the control software and
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Figure 3.2.: Milestones in the development of the lightweight PTRMS-HALO. The
contributions of the involved PhD projects are marked in different colors.
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the implementation of all changes requested by the certification company were done

within the present PhD project.

Also due to the considerable work spent over the last almost 10 years within three

PhD projects, it is worth to list the two most important achievements and unique

features of the new instrument at first:

� It is by far the most compact and lightweight PTR-MS in airborne research at

the moment. As will be shown later, its sensitivity and low detection limits

can easily keep up with larger PTRMS instruments and outdo most values

reported in the literature.

� It is the first PTR-MS worldwide having a custom-made control unit, which

is capable of mass spectra acquisition. This unique feature allowed to fully

automatize the measurement process and thus, to develop the first PTR-

MS, which can be deployed onboard research aircraft without being actively

controlled by an operator. Due to its modular design and open software, it

can also be easily extended and adapted to future missions and instrumental

developments, some of which are currently in planning. This is a further decisive

advantage compared to instruments using the commercial hard- and software.

After the successful deployment onboard HALO during OMO-Asia in summer 2015

(see Figure 3.1), the instrument was thoroughly characterized in the laboratory (see

Chapter 4) to demonstrate its excellent performance and to point out further areas

for improvement.

Besides PTRMS-HALO, the build-up of a largely identical instrument, here named

as PTRMS-CARIBIC, started in 2012 to replace the somewhat aged and partially

commercial PTRMS deployed in the CARIBIC laboratory since 2005. In a not fully

working status, the PTRMS-CARIBIC was deployed for the first time in summer

2013 (see Figure 3.1) during the airborne field campaign MUSICA (MUlti-platform

remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water),

which will be described in Section 3.2. The technical experiences gathered during the

campaign led to a partial redesign of the instrument, which is presented in Section

3.5. The resulting modified device will go into operation onboard the CARIBIC

passenger aircraft in October 2017 (see Figure 3.1).
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3.1. Previous projects

In 2011, Brito presented a first prototype of the PTRMS-HALO, which is subject

of the first subsection. Later in 2011, the OMO campaign was again cancelled and

it became clear that the campaign would not take place before 2013. Therefore,

alternative ways of deployment were considered, leading to the participation in

the E&E UBWOS campaign, described in the second subsection. The third part is

dedicated to instrumental changes until mid of 2013 and the instrument’s status

when it was taken over by the author.

3.1.1. The PTR-IF-MS (2007 – 2011)

The PTR-IF-MS was the first prototype of the PTRMS-HALO for deployment

onboard the research aircraft HALO (Brito, 2011) and was finished in spring 2011

(see Figure 3.2). It was already ∼35 kg lighter than the instrument used onboard the

CARIBIC aircraft and included several promising new in-house developments:

� A lightweight vacuum chamber system. The used commercial quadrupole

mass spectrometer (Pfeiffer Vacuum, Asslar, Germany) is by default installed

in a heavy stainless steel vacuum chamber system. Being an absolute novelty

in PTR-MS, this chamber system was replaced by a much lighter custom-made

version, entirely made out of aluminum and extensively processed (e.g. honed)

to obtain a comparably smooth inner surface. At the time of writing, the PTR-

MS of IMK are still the only ones worldwide equipped with such a lightweight

vacuum chamber.

� An unheated permeation device for in-flight calibration (Brito and

Zahn, 2011). While increasing the overall data accuracy, calibration-induced

measurement gaps could be completely avoided by using isotopically labelled

compounds. Another benefit of this technique is the possibility to calibrate

compounds, which are not stable in gas cylinders.

� An ion funnel (IF) enhanced drift tube, which led to the title PTR-IF-MS.

The idea of an ion funnel is to refocus the ion beam towards the end of the

drift tube to enhance the number of ions reaching the mass spectrometer. This

ion focusing is realized by applying a RF potential to the funnel’s electrodes,

being a set of cylindrical plates arranged in distances of 1–2 mm. The generated

electric field creates an effective electric potential, which radially focuses the
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ions towards the critical orifice at the end of the drift tube and thus, leads

to a higher proportion of ions entering the mass spectrometer (Shaffer et al.,

1997; Kelly et al., 2009; Barber et al., 2012). A laboratory version of the funnel

increased the instrument’s sensitivity by 30 % (Brito, 2011). Only recently,

this technique found its way in commercially available PTR-MS (Jordan et al.,

2017).

� A chemically inert proportional valve in the sample inlet line. The purpose

of the valve was to obtain a constant pressure in the inlet system for different

ambient pressures, which vary strongly during airborne operation. Compared

to the conventional solution – a flow restriction followed by a branch-off to the

spectrometer and a pressure controller – a proportional valve does not only

save weight, but also significantly reduces the load of the backing pump. In

order to avoid wall losses of VOCs, the standard body of the commercially

available valve (Parker Hannifin, Cleveland, Ohio) was replaced by an in-house

manufactured version made of PEEK (polyether ether ketone).

Despite all these promising new features, the PTR-IF-MS was still far away from

being ready for deployment onboard aircraft. Measurements were only possible in

the laboratory using additional hardware. The ion funnel was operated using an

external sine wave generator (Agilent Technologies, US) and a broad range RF power

amplifier (17 kg; 28× 16× 41 cm; BEKO Elektronik, Germany) (see Figure 5.11 in

Brito, 2011). At that time, no commercial RF supply was suited for the intended

field usage (i.e. small-sized, light-weight, power-saving and optimized with respect

to electromagnetic interferences) and the development of a customized solution was

still at the beginning.

But even in the absence of the funnel, reliable measurements were only possible

when connecting the mass spectrometer to its commercial control unit QMS 700

(10 kg; 48× 38× 13 cm; Pfeiffer Vacuum, Germany) and a Windows-PC running the

commercial control software (Inficon AG, Liechtenstein). Major parts of the newly

developed V25 control unit, which was supposed to take over this task, were still at

an early prototype stage in 2011 (Brito, personal communication).

3.1.2. E&E UBWOS (2011–2012)

The E&E UBWOS (Energy & Environment – Uintah Basin Winter Ozone Study)

campaign took place between January and March 2012 in the Uintah Basin, a region
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in the northeast corner of Utah, where high surface concentrations of ozone had

been observed during wintertime (Edwards et al., 2014). Containing large deposits of

unconventional hydrocarbon resources, the basin has experienced a renaissance in oil

and gas drilling since the advances in horizontal drilling made hydraulic fracturing

increasingly popular in the early 2000s.

However, hydraulic fracturing is a highly controversial technique and suspected to

threaten the environment in various ways, including air pollution (e.g. Howarth

et al., 2011; Goldstein et al., 2014; Jackson et al., 2014). VOCs released by these

activities can react with sunlight and nitrogen oxides, emitted from the diesel-

powered compressor stations, to form ozone. However, the strongest ozone events

occurred during cold periods and snow cover, when solar radiation was at a minimum.

Therefore, understanding the chemistry causing the high wintertime ozone levels

was the main objective of the E&E UBWOS study. To achieve this objective, it was

essential to characterize the emission sources of ozone precursors in the basin.

The PTR-MS contributed to this task by monitoring eight specific VOCs, eight

isomeric groups and nine masses indicative of (cyclo-)alkanes (see Table 4.2 in Geiger,

2015). Measurements were conducted onboard a van, modified to a mobile laboratory

(see Figure 3.1). Enabling flexible measurements in the proximity of different point

sources, the latter was well suited to characterize the spatial variability of VOC

concentrations in the basin and to quantify individual emission source footprints.

Sometimes extremely high mixing ratios of methanol (up to 1 ppm), aromatics and

cycloalkanes were observed downwind of oil and condensate tanks (see details in

Warneke et al., 2014 and Geiger, 2015).

For acetone, Geiger reported a detection limit of 168 ppt at 1 s integration time and

a sensitivity of 172 cps ppb−1. For all other compounds, the detection limit was not

stated and the sensitivity somewhat lower (38–158 cps ppb−1).

Prior to the campaign, the prototype PTR-IF-MS was strongly modified. The ion

funnel and the calibration unit were removed, as they were both not yet mature

enough for field operation. The commercial control unit of the mass spectrometer was

provisionally integrated into the rack and measurements had to be done manually

using a laptop and the commercial software. In the inlet system, the proportional

valve was replaced by the more common solution of a flow-restricting capillary and

a pressure controller, which is easier to handle and less prone to contamination

compared to the proportional valve.
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3.1.3. The ULW-PTR-MS (2013–2014)

The set-up used during E&E UBWOS was only provisional and not suited for

airborne usage. Therefore, the instrument was literally rebuilt from scratch after

the campaign to meet the stringent requirements for operation onboard HALO. To

point out the particular low weight of the instrument, the instrument was renamed

to ”ultra-light-weight PTRMS (ULW-PTRMS)”.

The commercial control unit QMS 700 was again abandoned in favor of the much

smaller and lighter V25 system. The internal structure of the sub-rack accommodating

the V25 system was strongly modified to enable front-site access to all analog

input and outputs, which is particularly useful in the adjustment phase and during

troubleshooting.

The inlet system, formerly mounted onto an open panel, was redesigned and integrated

into a sub-rack to simplify its certification. Between the internal branch-off to the

spectrometer and the exhaust line, a bypass was added to enable a higher (ram

pressure driven) flow in the inlet line and to reduce the overall reaction time of

the spectrometer. A venting line including a capillary was introduced for automatic

venting of the vacuum system after power switch-off, e.g. before landing. To cope with

the varying inlet pressures during flight (between 1000 hPa and 150 hPa), a set-up

of two critical orifices was integrated by the author. The second orifice is opened at

higher altitudes or lower ambient pressures, respectively, to maintain the required

sample flow. In addition, all connections between the sub-racks and other parts were

made separable so that the two sub-racks can be easily removed for maintenance.

In June 2013, after 6 years of continuous development and shortly before the envisaged

start of the HALO campaign OMO, a decisive breakthrough could be achieved. For

the first time, the new V25 system was able to control the commercial quadrupole

system and acquire mass spectra (see Figure 3.2).

Although being almost ready for field operation, the ULW-PTR-MS could not be

deployed within this previous PhD project (by F. Geiger), as the HALO campaign

OMO was once again postponed at short notice for another two years. Instead, the

new V25 system was tested for the first time – under the supervision of the author –

during the forthcoming field campaign MUSICA, which is described in detail in the

next section.
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3.2. MUSICA

Main objective of the MUSICA (MUlti-platform remote Sensing of Isotopologues

for investigating the Cycle of Atmospheric water) field campaign was the valida-

tion of satellite- and ground-based remote-sensing measurements of water vapor

isotopologues on Tenerife by in-situ measurements onboard aircraft (Schneider et al.,

2015; Dyroff et al., 2015; Christner, 2015; Schneider et al., 2016). Although initially

planned for winter 2012, the campaign finally took place in July and August 2013

involving the remote-sensing instruments:

� Infrared Atmospheric Sounding Interferometer (IASI) onboard the Meteorolog-

ical Operational Satellites (MetOp) A and B (Clerbaux et al., 2009; Herbin et

al., 2009; Schneider and Hase, 2011; Wiegele et al., 2014) and

� Fourier Transform Infrared Spectrometer (FTIR)∗ stationed at the Izaña

meteorological observatory on Tenerife (Schneider et al., 2005; Schneider et al.,

2010)

and the following in-situ instruments:

� two commercial Cavity Ring-Down Spectrometer (CRDS)† for the measurement

of the isotopic composition of water vapor, one located in Izaña and the other

one at the top of Mount Teide (Schneider et al. 2015; González et al., 2016),

� the airborne tunable diode laser absorption spectrometer ISOWAT II, which

likewise measures the isotopic composition of water vapor (Dyroff, 2009; Dyroff

et al., 2010; Dyroff et al., 2015),

� the airborne Fast and Accurate In-situ Ozone instrument (FAIRO) (Zahn et

al., 2012),

� the airborne Passive Cavity Aerosol SPectrometer (PCASP)‡ for the measure-

ment of aerosol size distributions,

� the airborne PTRMS-CARIBIC for VOC measurements.

∗IFS 120/5 HR (Bruker Corporation, Billerica, Massachusetts, US)
†L2120-i (Picarro Incorporated, Sunnyvale, California, US)
‡PCASP-100X (Droplet Measurement Technologies Incorporated, Longmont, Colorado, US)
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Figure 3.3.: Measurement set-up and sites during the airborne MUSICA campaign.
Picture adopted from Schneider (2015).

The 4 airborne instruments were deployed onboard a medium-sized turboprop aircraft

(CASA C-212-200) operated by the Instituto National de Technica Aeroespacial

(INTA). For the PTRMS-CARIBIC, the deployment offered the unique chance to

identify and eliminate potential deficiencies well before its intended use onboard the

CARIBIC passenger aircraft.

The installation of all in-situ instruments and three test flights were done at the

aircraft’s home base in Torrejón de Ardoz near Madrid, Spain. In July 2013, the

aircraft was transferred to the airport of Gran Canaria for the campaign MUSICA.

In total, seven measurement flights were conducted from Gran Canaria into the

viewing field of the ground-based FTIR, i.e. off the southeast coast of Tenerife (see

Figure 3.3). All flights were scheduled to coincide with the morning overpasses of the

IASI satellites and consisted of race track patterns at different altitudes (0–7 km) to

derive vertical trace gas and aerosol profiles.
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3.2.1. The PTRMS-CARIBIC as used during MUSICA

In autumn 2012, the MUSICA campaign had to be postponed to summer 2013,

which at that time meant that the campaign would coincide with the HALO mission

OMO (see Figure 3.1). This two-fold obligation led to the ambitious goal to already

start the construction of the (largely identical) PTRMS-CARIBIC, which was mostly

assembled by the author himself.

The assembly was finished in time, but due to severe problems with the I/O-modules

of the PTRMS-HALO, which had priority, manufacturing of a second set of modules

for the MUSICA instrument was delayed. As a coincidence, the OMO campaign was

postponed for another two years, so that the control unit of the PTRMS-HALO

could be used in the PTRMS-CARIBIC instrument during MUSICA. Figure 3.4

shows the PTRMS-CARIBIC with the control unit of the PTRMS-HALO installed

in the cabin of the CASA C-212-200. All parts of the instrument were integrated

into an aircraft certified rack, mounted on shock-absorbing rails.

Figure 3.4.: PTRMS-CARIBIC installed in the cabin of the CASA C-212 aircraft
(left side) and CAD view of its rear side (right side)
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From the very beginning, the campaign’s output of the PTRMS-CARIBIC in terms

of data quality was uncertain, as the short-term merger of the control unit and mass

spectrometer basically did not allow any characterization and functional tests in the

laboratory. Also, the new modules in the control unit had never been tested for a

longer time period and under field conditions. Indeed, during the campaign, electrical

ground problems and electrical malfunctions turned out to be a major issue. The

problems mainly affected the accuracy of mass flow and pressure signals needed for

instrument control and monitoring, but also drifts and jumps in the signals of the

mass spectrometer occurred from time to time. Therefore and because of the missing

reliability of further house-keeping (sensor) data, other malfunctions (e.g. leakages)

remained unnoticed for a longer time.

Another problem was insufficient cooling of heat-generating components during this

early status. As the campaign took place in Spain in summer, temperatures inside

the aircraft cabin were considerably higher compared to the laboratory. The high

temperatures of sometimes above 40° C led to failures of the I/O modules in the

control unit (in particular, the module controlling the mass flow controllers turned

out to be sensitive to temperature) and of the turbopumps. This problem could be

provisionally solved by adding three fans to the affected components.

Also some other electrical problems could be solved during the integration phase in

Madrid, where the instruments were installed into the aircraft, but it took ∼10 days

before the instrument could be switched into measurement mode for the first time.

In the absence of a chemical laboratory, the condition of the mass spectrometer was

provisionally checked by analyzing ambient air and the head-space of a diluted liquid

ethanol sample. In Figure 3.5, the corresponding mass spectra are shown.

In general, the distinctive allocation of two peaks to certain compounds allows an

initial assessment of the mass-to-charge assignment. In the head-space spectrum

(panel a), the peaks of protonated ethanol (m/z =47) and its fragment ions at

m/z = 45 (loss of H2) and m/z = 29 (loss of H2O) (Brown, 2012) are significantly

higher than in ambient air (panel b). The omnipresent peaks of the water dimers

(m/z= 37) and the ion source impurities NO+ (m/z = 30) and O+
2 (m/z = 32) (e.g.

de Gouw and Warneke, 2007) are also visible in the usual pattern, indicating that

the ion detection and mass assignment worked.

However, the spectrum reveals that the operation parameters of the ion source and

drift tube were not well adjusted. The peaks of the oxygen ions and dimers, which
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Figure 3.5.: Profile spectrum of a) the ethanol head-space and b) ambient air.

undergo their own reactions with VOCs, are too high compared to the primary ion

signal, which is measured via the isotopologue H3
18O+ (m/z = 21). This could be

improved during the campaign by adjusting the electrical fields between the ion

source and quadrupole.

Although many problems could be solved during the campaign, reliable measurements

allowing a scientific analysis were not obtained. Figure 3.6 shows the acetone data of

a typical flight during MUSICA. The aircraft flew racetracks over the sea between

Tenerife and Gran Canaria (see Figure 3.3) while frequently changing its altitude to

gain vertically resolved data.

The PTRMS-CARIBIC conducted background measurements every 33 minutes for

3 minutes by diverting the sample air through a zero air generator (Pt catalyst). It

is worth noting that the background-corrected acetone signal does not show much

variability and the expected altitudinal gradient did not show up. The temporal

course of the background signal can be caused by one of the following circumstances:

(a) After switch-on, the air flow ”flushes” impurities from the walls of the newly

assembled inlet system. (b) The zero air generator is inefficient, i.e. only a part of

acetone is destructed. (c) There is a leakage between the zero air generator and the

quadrupole’s entrance.
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Figure 3.6.: (a) Altitude profile and (b) time series of acetone signal for the flight
on 31st of July 2013. The data is normalized to 106 cps of primary ions
(ncps, cf. Section 4.2.2).

The first case for itself cannot explain the slight simultaneous increase of the back-

ground signal and ambient signal. The latter two cases are hard to distinguish.

However, the almost uniform spacing between ambient and background signal makes

case (c) more likely, as the suspected leakage adds on to both signals. A superposition

of all three effects also remains possible. Consequently, the PTR-MS data of the

MUSICA campaign had to be rejected for further scientific evaluation. However,

the experience gained during the campaign benefitted the further development and

operation of all other instruments.

3.3. The PTRMS-HALO

Although the instrument was almost completely assembled in the previous PhD

project (Geiger, 2015; see Section 3.1.3), a lot of work was still ahead to bring

the instrument into an operational state. The individual and newly developed

components had neither been extensively tested nor attuned or harmonized with each

other. During the test phase, the high-voltage supply and control of the mass flow

controllers and pressure sensors turned out to be prone to error and required time-
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consuming troubleshooting and repairs. Also, the control software was far away from

being complete. Still, a variety of processes had to be integrated and automatized to

enable a safe and reliable deployment onboard aircraft.

Furthermore, the instrument still had to be certified to obtain the permission for

operation onboard the HALO aircraft – a process that was not necessary for the

MUSICA aircraft campaign. The certification required a multitude of partially time-

consuming modifications, which did not improve the instrumental performance, but

were solely done to fulfill the requirements of airworthiness and safety.

Also for this reason, it is renounced here to give a complete list of changes (im-

plemented by the author). Instead, this section focuses on the outcome, i.e. on

the final instrumental set-up as it has been certified and used onboard the HALO

aircraft since then (e.g. during the scientific campaigns OMO and EMERGE). Special

emphasis is placed on those custom-made components, which have not yet been

described in detail elsewhere. This includes the sophisticated inlet system (Section

3.3.1) and the control software (Section 3.3.3), running on the central control unit

(Section 3.3.2). The last part of this section (Section 3.3.4) deals with an integral

part of the aeronautical certification, which turned out to be particularly challenging

to comply with – the electromagnetic compatibility of the instrument.

3.3.1. Gas inlet system

Main purpose of the gas inlet system is to transfer analyte air from the gas inlet,

where it has atmospheric pressure, into the drift tube (DT), where the pressure

is ∼2–3 hPa. Besides reducing the pressure in the sample flow, the complex inlet

system of PTRMS-HALO also takes over the following functions:

� control of the pressure in the DT

� supply of the ion source with a constant flow of water vapor

� generation of zero air used to determine the system’s chemical background

� venting the vacuum system with clean air after shut-down of the pumps

The set-up developed for these purposes is fully custom-made and has been fitted

into a 19” subrack called ”flow box” (48.3 cm × 35.5 cm × 13.3 cm; 10.4 kg). Figure

3.7 shows a schematic drawing of its main components and flow paths.
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When installed in the aircraft, ambient air enters the flow box through the trace gas

inlet (Enviscope, Frankfurt, Germany) and the subsequent inlet line (1/4” PFA).

As the length of the inlet line is at least 1.5 m (the actual length depends on the

installation configuration of the cabin), the inlet system must allow for a high flow

of air through the sampling line in order to keep the instrument’s response time

short.

In PTRMS-HALO, this was realized by implementing a bypass between the sampling

and exhaust line. In this case, the flow is simply driven by the pressure difference be-

tween inlet and exhaust (ram pressure) and requires no weight- and power-consuming

additional pump. However, to avoid an altitude-dependence, the bypass flow is lim-

ited and controlled to ∼1 sl min−1 using an off-branch mass flow controller (MFC;

Bronkhorst, Ruurlo, Netherlands).

In previous versions of the control software, the mass flow controller was always left

open. This has been changed so that the bypass line is only active during flight, i.e.

when the airspeed is greater than 20 m s−1 and the ram pressure is greater than

10 hPa, and closes when the conditions are not fulfilled. With this step, a back-flow

of contaminated air from the exhaust line through the bypass into the instrument

due to the higher cross section of the exhaust line (3/8” PFA) compared to the inlet

line is avoided.

Upstream of the bypass mass flow controller, a fraction of the incoming sample

flow (∼55–190 sml min−1, the actual flow rate depends on the inlet pressure) is

branched-off to the instrument (red line in Figure 3.7). From here on, only 1/8” PFA

tubing are used and the flow path is determined by the position of the five solenoid

valves (NResearch, West Caldwell, New Jersey, US).

Status I II III IV V

Measurement of ambient air • ◦ • ◦
Measurement of zero air ◦ • • ◦
Purging of the inlet system ◦ • ◦ • ◦
Venting of the vacuum system ◦ ◦ ◦ ◦ •
•: open

◦: closed

: open if pamb < 400 hPa, otherwise closed

Table 3.1.: Position of the valves I-V installed in the inlet system at different operation
modes.
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In Table 3.1, the valve positions corresponding to the different operation modes are

summarized. In previous versions, the valves were continuously operated at their

rated voltage of 24 V, whereby much of the power was converted into heat. To

prevent this, the control software was modified so that the holding voltage is reduced

to 12 V after switching the valve.

Directly after the branch-off from the inlet line, the sample air is either diverted

through a custom-made catalytic converter (cyan branch in Figure 3.7) or directed

past it (violet branch). Filled with a Pt catalyst (Shimadzu Corp., Japan) kept

at 350 °C, the converter oxidizes all VOCs into H2O and CO2 and thus, produces

zero air, which can be used to determine the chemical background of the system

(downstream of the converter) or to vent the vacuum system with VOC-free air.

The diverted sample air or produced zero air is then injected through orifice I into

the intermediate pressure stage (IPS, green lines in Figure 3.7), which is controlled

to about 50 hPa. From here, a small fraction (∼25 sml min−1) of the sample flow is

diverted into the DT via capillary I. The pressure in the DT can be regulated by

the pressure in the IPS, which is controlled by an off-branch pressure controller (PC;

Bronkhorst, Ruulo, Netherlands). A software PID-controller continuously adjusts the

set-point of the PC so that the pressure in the DT (measured by a pressure gauge

installed in the flow box) is kept constant.

The critical point in this system is the flow into the IPS, which varies with ambient

pressure. Due to the high ceiling altitude of HALO, the ambient pressure can vary

by almost one order of magnitude (120–1050 hPa). However, the flow into the inter-

mediate stage must be kept between 50 and 160 sml min−1 for the following reasons:

If the flow is higher, the pump load of the diaphragm pump (MD1; Vacuubrand,

Wertheim, Germany) increases to such an extent that the high vacuum in the mass

spectrometer collapses and the mass spectrometer is switched off to avoid damages.

If the flow is lower, the PC in the intermediate stage is not supplied with enough air

to work properly and control of the DT pressure fails.

Installing a mass flow controller would be the obvious solution of this problem,

but due to expected interactions between the VOCs and the surfaces of the MFC,

this was not an option. Instead, a sophisticated set-up of two custom-made orifices

made of inert PEEK, which has been developed and tested within this work, was

implemented in the sampling line.

Orifice I is dimensioned to reduce the flow into the intermediate stage to∼160 sml min−1
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Figure 3.7.: Final set-up of the PTRMS-HALO gas inlet system (also called ”flow
box” due to its enclose in a subrack). Ambient air enters the ”flow
box” through the trace gas inlet (top left) in the aircraft’s fuselage and
the subsequent inlet line, whereby a bypass to the exhaust line ensures
a high flow. In front of the bypass, a small proportion of the air is
branched off into an arborescent tube system, from which a capillary
leads into the drift tube (right). The system has the following purposes:
(a) generation of zero air by diverting ambient air through a catalyst,
(b) maintaining a constant pressure in the drift tube of ∼2.25 hPa, (c)
reducing the pressure of incoming ambient air (150–1000 hPa) to the
drift tube pressure and (d) venting the mass spectrometer in a controlled
manner after shut-down.

at 1050 hPa. However, at maximum flight altitude of HALO (pamb = 120 hPa), the

flow through the orifice will decrease by almost one magnitude to ∼17 sml min−1.

Therefore, a second orifice (orifice II) is needed, which supplies the intermediate

stage with an additional flow of at least 35 sml min−1 at 120 hPa. The optimal

diameters of orifice I and II were calculated to be 130 µm and 190 µm. Tests of
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the custom-made laser-drilled orifices (Fraunhofer Institute for Laser Technology,

Aachen, Germany) revealed that the best performance is achieved when using drilling

diameters of 120 µm and 180µm, respectively.
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Figure 3.8.: Flow into the intermediate pressure stage for different inlet pressures.
The error bars indicate the flow range if the diameter of the orifice
deviates by less than ±5 µm. Areas, where the flow into the intermediate
stage is out of its range (50–160 sml min−1) are shaded.

In Figure 3.8, the calculated flows through each orifice and the resulting net flow

through both orifices are plotted against the inlet pressure. Between 350 and 1100 hPa,

the flow through orifice I (Mode I) is in the correct range (50–160 sml min−1) and

between 125 and 375 hPa, the same is true for the net flow through orifice I and

orifice II (Mode II). Therefore, the valve in front of orifice II needs to be opened

(ascent) or closed (descend) at ∼350–375 hPa. Besides the necessary calculations, also

the pressure-dependent valve control was implemented within this study. Separate

thresholds for opening and closure of the valve were chosen to avoid permanent

opening and closing when the inlet pressure (within the noise of the sensor) coincides

with the threshold value.

53



3. Development of PTR-MS for airborne measurements

Modification of the zero air generation

Compared to previous versions, also the accuracy of background measurements could

be improved. The catalytic converter was replaced by an improved version with a

greater internal volume and a better thermal insulation. The former enhances the

efficiency of the VOC removal process (larger surface of the catalyst and longer reten-

tion time), whereas the latter reduces heat dissipation and thus, power consumption

and the warm-up time.

Furthermore, the position of the converter was changed. In previous versions, it

was located downstream of orifice I and II in the intermediate pressure stage. The

new position of the converter directly after the branch-off from the inlet line (see

Figure3.7) has two advantages: 1. As impurities upstream of the converter are not

captured, it is reasonable to position it at the beginning of the gas inlet system,

which is now the case. 2. At the beginning of the gas inlet system, the pressure

is higher compared to the former position behind the orifices I and II (∼50 hPa).

The higher pressure results in a higher collision rate of molecules with the catalyst’s

surface and thus, in a better efficiency.

To avoid a contamination of the converter when the sample air is diverted past it,

the converter is continuously flushed with a small flow of sample air (∼5 sml min−1),

induced by the pressure gradient at orifice III.

Venting of the vacuum system

As mentioned earlier, another purpose of the gas inlet system is to vent the vacuum

chamber with clean air to avoid undesired contamination during periods, in which

the chamber is not pumped. In the previous version, the venting line branch-off

was positioned upstream of the bypass MFC. In this configuration, the air used for

venting could not be fed through the catalytic converter used for zero air generation

and an additional charcoal filter had to be installed in the venting line to remove

contaminants. Besides the additional space and weight of the filter, the charcoal had

to be frequently regenerated to maintain the efficiency of the filter.

In the modified version, presented here, usage of the charcoal filter could be completely

avoided by placing the venting line downstream of the catalytic converter (see

Figure 3.7). The venting is started by the shutdown-command, which opens valve V

and closes all other valves (see Table 3.1). The capillary in front of valve V restricts
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the flow through the venting line, as the turbomolecular pumps can be damaged by

a too fast pressure increase (15 hPa s−1) in the vacuum chamber. Furthermore, the

catalytic converter becomes inefficient at too high flow rates. However, the venting

time should be also kept as short as possible, as the catalytic converter is no longer

powered after switch-off and loses its operation temperature after some time.

Therefore, the optimum dimension of the capillary has been determined as follows:

In a first step, it was measured how fast the normal operation temperature of the

converter (350°C) drops to its minimum operation temperature (300°C) after power

switch-off (∼10 minutes).

In the next step, the venting times for different capillaries were estimated using a

numerical model. At first, the volume flow through each capillary was calculated for

a maximum pressure gradient ∆p = 1013.25 hPa using the law of Hagen-Poiseuille.

This volume flow was then integrated over a sufficiently short time step ∆t = 1s to

determine the amount of moles added to the vacuum chamber. Using the ideal gas

law, the total amount of moles in the vacuum chamber were converted to a pressure,

which was then taken to calculate the flow through the capillary within the next

time step. These calculations were repeated until the pressure gradient fell below

1 %.

Optimal conditions were found for a diameter of 230 µm and a length of 9 mm.

The corresponding venting time is 8.4 minutes and the maximum flow through the

converter is 1.3 sl min−1. The pressure change rate is ∼5 hPa s−1 at the beginning,

which is three times below the permissible rate for the turbomolecular pumps (HiPace

80; Pfeiffer Vacuum, Asslar, Germany).

Heatings

The entire tubing from the trace gas inlet to the drift tube must be heated to

minimize memory effects as well as the tubing of the ion source water supply (blue

line in Figure 3.7) to prevent the formation of water droplets (which would disturb

the flow regulation of MFC II).

When the instrument was taken over, only the heating inside the flowbox was already

realized. Therefore, all other heatings (inlet line, ion source water supply, drift tube)

including temperature sensors have been subsequently added and integrated into the

control software within this study. Due to the requirements of airborne operation, the
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power supply of the heatings had to be equipped with irreversible temperature fuses

to prevent uncontrolled heating in case control fails. As there were no temperature

fuses available for temperature above 200°C, the fuse for the catalytic converter

was positioned in some distance to the heating element in the converter’s isolation

shield.

The correct position of the fuse and the relationship between the temperature of

the heating element and the one of at the fuse’s positions were experimentally

determined.

3.3.2. The control unit

A unique selling point of PTRMS-HALO is its new custom-made control unit, which

is fully integrated into a compact 19” subrack (48.3 cm × 29.5 cm × 13.3 cm)

weighing only 11 kg. At the moment, no other PTRMS worldwide is equipped with

such a compact and light-weight control unit, capable of powering and controlling all

instrumental components, including the quadrupole mass spectrometer. These unique

characteristics could be achieved thanks to the modular V25 system, developed at

the MPI-C.

In general, the V25 system consists of the following components:

� a main unit, which comprises the embedded NEC V25 controller (microcom-

puter), a memory card slot for data storage and connections for remote control

and network connectivity

� a control panel, equipped with a display (4 lines x 20 characters) and keyboard

(6 control buttons) for interaction with the operator

� user-specific I/O-modules, providing the interface between the V25 system

and the instrumental components

� a backplane, which connects the modules with the main unit and supplies all

V25 components with power.

In PTRMS-HALO, the V25 system is equipped with 11 I/O-modules. Figure 3.9 shows

a schematic drawing of the installed components. The control panel is integrated

into the front plate of the subrack, whereas the main unit and the I/O modules

are installed inside the subrack. All connection sockets of the I/O modules are

internally connected with sockets (LEMO, Ecublens, Switzerland) on the rear panel
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Figure 3.9.: Schematic illustration of the main components of the V25 system used
in PTRMS-HALO. The control panel (left side) is installed in the front
plate of the control unit, whereas the main unit and the I/O modules
(right side) are installed in the inside.

of the subrack, from where shielded cables lead to the individual instrumental

components.

Two identical modules provide in total 16 separately controllable DC outputs (0–24 V)

to supply the diaphragm pump, heatings, cooling fans and to actuate the valves in

the gas inlet system. Another two identical modules have the same number of analog

inputs, used to read out temperature sensors. A newly developed module supplies

and controls the RF generator of the quadrupole mass spectrometer and processes

the signals from the ion detector. In total five modules provide the high voltages for

the ion source, drift tube, ion lenses and detector. The last module has 6 channels,

which combine power supply (24 V DC), a controllable DC output (0–10 V) and an

analog input (0–10 V). Three of them are used to power and regulate the MFCs and
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the PC in the gas inlet system. The other 3 channels take over the power supply and

signal acquisition of the pressure gauges.

One great advantage of this custom-made modular system is, that modules can be

easily replaced or added by the user. This is particularly important during airborne

campaigns, where time-consuming repairs of defective hardware are not possible.

Furthermore, the possibility to extend the system offers great potential with regard

to future modifications (e.g. the ion-funnel enhanced DT)

3.3.3. Control software

A key component, to which the author contributed considerably, is the instrument

software, controlling all components and parameters and handling the data acquisition.

In contrast to commercial systems, the software is available in the form of a source

code, which has the great advantage that all processes and interfaces can be adapted by

the user. This flexibility opens up entirely new possibilities for a customized intelligent

instrument control, commercial instruments are unable to provide. Furthermore, it

allows the user to directly implement changes in the process workflows, which might

become necessary after modifications.

The source code itself can be divided into two parts: In the first one, variables and

functions are declared and the menu structure of the visual interface is defined. The

visual interface is displayed on the control panel (see Figure 3.9) and allows the

operator to monitor all system parameters (e.g. pressures, temperatures, flow rates)

and to view the recorded measurement data. Furthermore, it enables the operator

to manually control the instrument and to change the measurement and control

settings.

The second part of the program contains the process workflows. As soon as the

V25 is supplied with power, a comprehensive workflow is started, which successively

switches on the individual components of the instrument and activates different

control procedures to avoid unstable measuring conditions and to prevent damages

of the mass spectrometer components in case of malfunctions (e.g. leakages in the

vacuum system).

Before the HALO campaign OMO, the existing control software had to be adapted to

the needs of airborne operation. The prime objective was to achieve a fully automated

operation. Even though 3–4 scientists (operators) are onboard HALO to operate
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all (typically 12–15) instruments, a highly automatized instrument relieves their

workload and simultaneously avoids potential loss of data due to delayed or wrong

user inputs and other user errors. However, also a fully automated instrument is not

safe from failures and an early detection is essential during a campaign, as flights

cannot be repeated. Therefore, a sophisticated and intelligent software that realizes

malfunctions is required.

Start-up procedure

In Figures 3.10 and 3.11, the workflow during start-up of the instrument is schemati-

cally illustrated. In previous versions, not all operational parameters were read out

or logged, which complicated trouble-shooting. During the MUSICA campaign, for

instance, the turbo pumps shut down due to high temperatures, but the temperature

sensors of the pumps were not read out by the software. This was changed in the latest

version. As soon as the control unit is switched on, all acquired system parameters

are periodically written into a log file, if not deactivated by the user.

At this early stage, also the (not yet implemented) activation of the heatings was

integrated into the workflow to ensure that all components are heated up to their

operation temperature before the instrument reaches the measurement mode. Fur-

thermore, a new procedure continuously checks whether the inlet pressure is below

900 hPa. If this is the case, the software assumes that a measurement flight takes

place and MFC I is opened to allow flushing of the inlet line (see Figure 3.7).

As a next step, the diaphragm pump (MD1; Vacuubrand, Wertheim, Germany) is

started to generate the pre-vacuum necessary for operation of the turbomolecular

pumps (HiPace 80; Pfeiffer Vacuum, Asslar, Germany). A threshold of 12 hPa, below

the maximum permitted pre-vacuum (22 hPa) specified by the manufacturer, was

implemented. If the threshold pressure is not obtained within 2.5 minutes, everything

points to a leakage in the system and the start-up procedure is automatically

aborted.

A similar control mechanism is implemented during the start of the three turbo-

molecular pumps (see Figure 3.10). To avoid unnecessary power consumption, the

pumps are sequentially turned on. The first one is the turbo pump evacuating the

drift tube and the subjacent pressure stage. If the pressure in the drift tube drops

below 10−3 hPa within 5 minutes, which indicates that the pump has reached its full

speed (1500 Hz), the two remaining turbo pumps are switched on to pump the mass
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Status “Vacuum OK”

< 2.5 min≥ 2.5 min

Turn on diaphragm pump

< 12 hPa Pressure
in DT

≥ 12 hPa

Elapsed 
time

Close all valves in gas 
inlet system

Turn on all heatings
and cooling fans

Start V25

Establish backing vacuum

Shutdown

< 5 min≥ 5 min

Turn on turbo pump DT

< 10-3 hPa Pressure
in DT

≥ 10-3 hPa

Elapsed 
time

Evacuate DT

Shutdown

< 5 min≥ 5 min

Turn on turbo pumps MS

< 10-5 hPa Pressure
in MS

≥ 10-5 hPa

Elapsed 
time

Evacuate MS

Shutdown

Record operating parameters
Write pressures, temperatures 
valve positions,…, into logfile

Wait 1..10 seconds

Flush inlet line

Inlet
pressure

Open MFC I

< 900 hPa≥ 900 hPa
≥ 900 hPa

Figure 3.10.: Flow chart of the first processes after starting the software. The pumps
are switched on one after another if the pressure condition of the
respective level is fulfilled. As soon as all pumps are running and the
pressure in the mass spectrometer (MS) region falls below 10−5 hPa,
the instrument turns into a status named ”Vacuum OK”. If a condition
is not fulfilled in the given time, the start-up procedure is aborted.
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Gradually open MFC II

Actual 
flow

< 0.8 (setpoint)

Shutdown
Elapsed 

time
< 30 s≥ 30 s

≥ 0.8 (setpoint)

Open Valve II and PC

Open Valve IV

Wait 5 Minutes

Wait 5 Minutes

Turn on High Voltage 
Ion Source, DT, Detector

Start Measurement

Pressure
in DT

Reduce 
setpoint of PC

> 2.25 hPa < 2.25 hPa

Increase 
setpoint of PC

= 2.25 hPa

Regulate
DT pressure

Flush ion source

Flush inlet system

Monitor H2O supply of ion source

Monitor vacuum

Pressure
in MS

> 10-5 hPa≤ 10-5 hPa

Shutdown

Status “Vacuum OK”

Regulate flow into IPS

Inlet
pressure

Open Valve III Close Valve III

< 370 hPa > 400 hPa

Wait 5 Minutes

Figure 3.11.: Program flow chart of the processes after evacuation (status ”Vacuum
OK”) until a measurement can be started.
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spectrometer (MS). These two pumps are operated at rotation speeds of 1300 Hz. At

this stage, a pressure of at least 5 10−5 hPa must be reached within 5 minutes to

continue the workflow. If this condition is fulfilled, the instrument switches into a

status called ”Vacuum OK”.

This status also activates a continuous pressure monitoring of the mass spectrometer

(see cyan box in Figure 3.11) to ensure that the pressure in the MS is kept below

the maximum operation pressures of the quadrupole (10−4 hPa) and ion detector

(10−5 hPa). When operated at higher pressures, both components can be severely

damaged due to the occurrence of electric arcs and gas discharges between the rods

of the quadrupole or the dynodes of the detector. Therefore, the control software

switches off the entire instrument if the pressure in the MS exceeds 10−5 hPa.

After 5 minutes, MFC II is gradually opened to remove air in the water vapor supply

of the ion source. This is done to ensure that only pure water vapor enters the ion

source during subsequent operation. Starting at this point, also the actual flow rate of

the MFC is continuously monitored to recognize if the reservoir runs out of water. In

this case, the actual flow through the MFC declines, as the pressure in the reservoir

adapts itself from the vapor pressure of water (23 hPa at 20°C) to the pressure in

the ion source (∼1 hPa). To prevent the ion source from running dry, the control

software automatically shuts down the instrument if the actual flow rate falls below

80 % of the set value (7 sml min−1) for more than 30 seconds.

In the last step of the start-up phase, the gas inlet system and drift tube are flushed

with zero air for 5 minutes to remove potential wall impurities before measurement.

To ensure a sufficient flow into the IPS regardless of the aircraft’s altitude, a pressure-

dependent actuation of valve III (red box in Figure 3.11) has been added to the

latest version of the control software. As soon as the drift tube is flushed, also the

PID-controlled regulation of the DT pressure (orange box in Figure 3.11) becomes

activate. After the flushing procedure, the high voltage is applied to the ion source,

DT and mass spectrometer, and the instrument is ready for measurements.

Acquisition of QMS mass spectrum

Only if the start-up procedure is completed without errors, the control software starts

the measurement process illustrated in Figure 3.12. As knowledge of the instrumental

background is essential, this process involves time-controlled actuation of valves I

and II in the gas inlet system (see Figure 3.7) so that ambient air is fed through the
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Start measurement

x = 1

Create/switch to directory 
DD_MM_YY

Create data file 
hh_mm_ss.pks

Write time + mass + counts 
into data file

Open Valve II
Close Valve I

Wait specified ilde time

Read measurement 
settings in file peaks.dat

Wait for 3 minutes

Open Valve I 
Close Valve II

Wait for 40 minutes

Periodic change between gas supply

Zero air Ambient air

Scan mass specified in row x
of peaks.dat file

Measurement cycle:

x = 
number of 

rows 

x = x+1

no

yes

Width in row x 
of peaks.dat

≤ 1

y = mass-(width-1)/2

Scan mass y

> 1

Write time + mass + counts 
into data file

Wait specified ilde time

y	=	mass
+(width-1)/2

yes

y=y+1

Full spectrum mode:Selected ion mode:

Figure 3.12.: Flow chart of the measurement process.

1 number name mass width dwel l t ime dwe l lwa i t
1 H3O 21 .0 0 .25 125 100

3 2 Formaldehyde 31 .0 0 .25 125 100
3 Oxygen 32 .0 0 .25 12 100

5 4 Methanol 33 .0 0 .25 125 100
5 Dimer 37 .0 0 .25 12 100

7 6 A c e t o n i t r i l e 42 .0 0 .25 125 100
7 Acetaldehyde 45 .0 0 .25 125 100

9 8 Acetone 59 .0 0 .25 125 100
9 DMS 63 .0 0 .25 125 100

11 10 spectrum 50 .0 61 .0 125 100

Figure 3.13.: Example of a peaks.dat file
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catalytic converter for 3 minutes every 40 minutes (or any other interval specified by

the user; see yellow box in Figure 3.12).

All parameters required to control the data acquisition of the quadrupole mass

spectrometer (QMS) are stored in an ASCII file named peaks.dat, read in before the

first data acquisition. In Figure 3.13, the structure of a peaks.dat file is exemplarily

shown. Each row contains a specific instruction, which can be the measurement

of a specific mass (selected ion mode) or the subsequent measurement of adjacent

masses (continuous spectrum mode). During measurement, these instructions are

sequentially executed in a continuous loop as illustrated in the cyan box in Figure

3.12.

Selected ion mode

In the selected ion mode, the quadrupole sequentially measures the masses of interest,

regardless whether they are adjacent or not. This mode becomes active, if the widths

w specified in the peaks.dat file are less or equal unity (see lines 2-10 in Figure 3.13).

In this case, the measurement of each mass m is divided into 8 steps at

mi = m+

(
i− 9

2

)
· w

8
, i = 1, ..., 8, 0.125 < w ≤ 1, (3.1)

where w is the associated width. If the width is set to its minimal value of 0.125

amu, the measurement at m is simply repeated 8 times (F. Helleis, personal commu-

nication). Each single measurement is performed for the variable dwell time tdwell (in

milliseconds) specified in thepeaks.dat file, resulting in an overall measurement time

of 8 · tdwell per mass. If all 8 measurements have been made, the software writes the

following output

CurTime CurMass CountInt Counts1 Counts2 Counts3 ... Counts8

into the data file and jumps to the next mass. CurTime states the V25 time at the end

of the 8 measurements corresponding to CurMass. The signal of each measurement

is given as Counts1 to Counts8, whereas CountInt states the sum. The correct start

and halfway time of all 8 measurements can be calculated as follows, using the dwell

time tdwell:

tstart = CurT ime− 8 · tdwell

tmean = CurT ime− 4 · tdwell.
(3.2)
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If the masses to measure are not close to each other, the manufacturer recommends

to give the hardware some waiting time (dwellwait, also in milliseconds)

tw ≈ 2 ms + |m2 −m1| · 0.02
ms

amu
(3.3)

to ”jump” from mass m1 to m2 and stabilize (Pfeiffer Vacuum, 2001).

Continuous spectrum mode

To measure a continuous mass spectrum over a certain mass range, the center mass m

and an uneven integer width w larger than 1 amu must be specified in the peaks.dat

file (see line 11 in Figure 3.13). In this case, the above-mentioned 8 measurements

are sequentially done for each nominal mass within the range[
m− w − 1

2
,m+

w − 1

2

]
. (3.4)

In-flight data downlink to ground

Since 2014, HALO is equipped with a Satcom interface enabling communication

between aircraft and the scientific crew on ground via instant messaging and data

transfer. This feature is extremely useful, as the downlink can be directly accessed by

the instruments, connected to the Satcom interface via the onboard network. During

OMO, the principal investigator of the mission requested real-time acetone data to

be able to direct HALO according to the observations. Until then, the V25 did not

buffer the raw counts, but directly wrote them into the output file.

In the new version, the V25 preprocesses the raw counts and computes preliminary

concentrations of acetone and acetonitrile. This preliminary data is not background-

corrected and based on the set sensitivities (usually inferred from the last calibration).

However, with the framework provided by the author, an automatic (but preliminary)

background subtraction should be easily integrated in future.

The V25 control program generates an ASCII string with these preliminary data and

additional operational parameters in the following prescribed format (defined in the

PLANET Technical Notes):

NAME,yyyy-mm-ddThh:mm:ss,value,value,value,value,value,value
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Pos. Parameter 1 Parameter 2

1 Flag [1] Flag [2]

2 Signal of H3O+ [106 cps] Flow through bypass [sml min−1]

3 Ratio of O+
2 and H3O+ [%] Flow into the ion source [sml min−1]

4 Ratio of H2OH3O+ and H3O+ [%] Pressure at the sample inlet [hPa]

5 Concentration of acetonitrile [ppb] Pressure in the drift tube [101 Pa]

6 Concentration of acetone [ppb] Concentration of acetone [ppb]

Table 3.2.: Parameters sent by the PTR-MS via Satcom interface.

According to the NAME variable (the PTR-MS uses HKMS as identifier), the Satcom

software assigns the strings to the individual instruments and collects the data in

separated ASCII files for each instrument. As the data rate of the satellite connection

is limited, it was decided to alternately send two strings with different parameters

and use the first value as flag. Table 3.2 lists the parameters, their units and position

in the string for both packages.

During the OMO campaign, the string with flag 1 was provisionally triggered by the

measurement at m/z = 21 (i.e. the last cycle was complete), whereas the second

string was triggered by the measurement at m/z = 37. In the following, a typical

sequence of ASCII strings sent by the PTRMS-HALO during flight is shown:

HKMS,2015-08-06T06:21:23,1,12.4,1.47,1.44,0.36,1.04

HKMS,2015-08-06T06:21:36,2,991.,7.00,492.,2251,1.04

HKMS,2015-08-06T06:22:02,1,12.3,1.48,1.47,0.36,1.32

HKMS,2015-08-06T06:22:15,2,991.,7.00,500.,2250,1.32

HKMS,2015-08-06T06:22:41,1,12.6,1.43,1.40,0.37,1.27

HKMS,2015-08-06T06:22:54,2,991.,7.00,501.,2250,1.27

In this example, the inlet pressure was between 492 hPa and 501 hPa and the

inlet line was flushed with 991 sml min−1 (not considering the flow through the

instrument). The pressure in the drift tube and the flow of water vapor into the ion

source were controlled to 2.25 hPa and 7 sml min−1, respectively.
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Pos. Parameter Condition

1 All pressures in given limits VacuumState = Ready

2 Alternating sample and background Process = on
measurements

3 High voltage applied to IS/DT/MS HV = on

4 Operational parameters are recorded Logger = on

5 Spectrum acquisition is active ACQMode = Peak

6 Ion source is active m21 > 2 · 106 cps

7 Negligible photon signal m25 < 10 cps

8 Negligible oxygen-to-primary ion ratio m32 < 5 %

9 Negligible dimer-to-primary ion ratio m37 < 5 %

Table 3.3.: List of automatically monitored parameters

Status indication and monitoring

A new subroutine gives feedback to the operator that the instrument is in the correct

measurement mode. If all conditions specified in Table 3.3 are met, the light of the

status photodiode, installed in the front panel of the electronics subrack, turns to

green. In all other cases, it is red.

In addition, monitoring of all temperature sensors used for controlling heatings was

implemented. In the past, overheating was possible when a negative temperature

coefficient (NTC) thermistor was broken or disconnected, as the software interpreted

the infinite resistance as low temperature. In consequence, the heat output was

permanently set to the maximum. To prevent such scenarios, the new software offers

the possibility to define temperature ranges for each sensor. If the actual value is out

of range, the corresponding heating is automatically switched off.

3.3.4. Electromagnetic compatibility

Any electrical component emitting electric or magnetic fields (radiated via air and/or

conducted via cables) is a potential source of electromagnetic interference (EMI)

with other electronic devices. A device is referred to as being electromagnetically

compatible, when the electromagnetic field interactions are tolerable within the

specific environment.
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Figure 3.14.: Measurement of vertical radiated emissions from the rear side of the
instrument in the anechoic chamber of the test laboratory Mectronic
Prüflabor GmbH, Weiterstadt, Germany. The test was done according
to the DO-160 standard, version G (RTCA, 2010).

In aircraft, disturbances of onboard electrical systems and the radio communication

between cockpit and ground directly affect the safety of the aircraft and must

therefore be avoided in any case. Stringent requirements are imposed to any electrical

component to be installed onboard aircraft. The test procedures and limits are

specified in the DO-160 regulation, which is regularly updated by the Radio Technical

Commission for Aeronautics (RTCA). The different versions are denoted by ascending

characters beginning with the letter A (first revision of the initial regulation) to G

(currently valid version, published in 2010).

Within the scope of their certification, all scientific instruments used in HALO have

to be tested for conducted (via the power cables) and radiated emissions in an

accredited test laboratory according to the DO-160 standard prior to installation.

Figure 3.14 shows PTRMS-HALO in such a laboratory (Mectronic Prüflabor GmbH,

Weiterstadt, Germany) in an anechoic test chamber.

When the author took charge of the PTRMS-HALO, the instrument did not fulfill the

specifications of the DO-160. The radiated emissions with frequencies between 0.1 GHz
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Figure 3.15.: Radiated emissions of HALO PTR-MS before (black) and after (blue)
the changes made by the author (see text). The threshold of the DO-
160 regulations is shown in red. Data courtesy of Mectronic Prüflabor
GmbH.

and 1 GHz exceeded the threshold of the DO-160 at many frequencies (136, 144,

152, 168, 184, 216, 224, 232 MHz, see black spectrum in Figure 3.15). Please note

that the threshold is lower for the bandwidths used for radio communication and

aeronautical radio-navigation (108–152 MHz and 960–1215 MHz). The field strength

E in Figure 3.15 is given as level L relative to 1 µV/m in decibel (dB):

L = 20 lg

(
E

1µV
m

)
dB. (3.5)

Electromagnetic interferences are typically caused by electronic components operating

with a certain frequency. In this case, the threshold overruns occurred at intervals

of 8 MHz (or multiplies thereof), corresponding to the working frequency of the

quartzes used in the modular V25 system to synchronize different digital circuits. As

a consequence, all redundant quartzes were removed and the V25 main board was

put in a separate shielded housing. However, this measure did not solve the problem

completely, also as not all oscillators could be removed. Thus, further improvements

were required.

To understand them, it is necessary to know how high-frequent parasitic currents

propagate. The load current propagates in the differential mode, i.e. the magnetic
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fields of the bidirectional currents cancel each other out (e.g. Ozenbaugh and Pullen,

2016). In contrast, the high-frequent parasitic currents propagate in the common

mode and produce an impedance (e.g. Vasilescu, 2005). A ferrite toroid enhances

this impedance (at higher frequencies above ∼100 MHz) and thus, suppresses the

common-mode noise, whereas the impedance of the differential-mode current remains

unaffected (e.g. Mardiguian et al., 2014). Therefore, ferrite toroids were implemented

at the output of each DC/DC converter. In addition, capacitors were installed at

the outputs to short-circuit the interferences against ground. The capacitors simply

return the noise to its source and prevent its propagation (e.g. Martin, 2013). These

measures mainly reduced inferences from the converters. The remaining radiated

emissions originated to a large extent from the cables between the different units.

In particular, the coaxial cables were critical as the components were grounded.

Therefore, the overall shielding was improved by using additional grids on each side

of the rack.

Unfortunately, all these changes increased the conducted emissions for frequencies

greater than 1 MHz (see Figure 3.16). This problem was solved by replacing the inlet

filter (Procond Oy GFHF) by a more efficient version (Schaffner FN2090). With

all of these measures, the instrument passed the EMI test without objections on

9 October 2014. The aeronautical certification was completed in November 2014.
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Figure 3.16.: Conducted electromagnetic emissions of PTRMS-HALO before (orange)
and after (black) the changes made to reduce the radiated emissions
compared to the threshold of the DO-160 regulations (red). Exchanging
the instrument’s net filter led to the final spectrum (blue). Data courtesy
of Mectronic Prüflabor GmbH.
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3.4. First airborne deployment

After attaining its aeronautical certification, PTRMS-HALO was first deployed

onboard aircraft within the framework of the scientific HALO (see Section 1.3.2)

mission Oxidation Mechanism Observations (OMO).

In the following section, the scientific objectives and the time schedule of the mission

are addressed. The second part (Section 3.4.2) focuses on the VOC measurements

made during OMO. Based on the data of an individual flight, the very good per-

formance of PTRMS-HALO and the scientific value of the measurement data are

demonstrated. A more comprehensive evaluation of the data will be objective of a

separate manuscript (in preparation).

3.4.1. The OMO campaign

Main objective of the OMO mission was to improve the understanding of the oxidation

processes in the UTLS downwind of the Asian summer monsoon. Within the monsoon,

deep convection leads to a rapid uplift of polluted boundary layer air into the UTLS,

where much of the pollution is confined in a strong anticyclonic vortex, spanning

from Asia to the Middle East (e.g. Randel et al., 2010).

The rates at which the air pollutants are removed from the UTLS strongly depend

on the abundance of HOx radicals, which in turn affects the lifetime and thus,

distribution of many air pollutants and greenhouse gases. Various studies revealed

considerable discrepancies between measured and modeled HOx levels, indicating

that radical chemistry is still poorly understood (e.g. Jaeglé et al., 1998, Wennberg et

al., 1998; Jackson et al., 2009; Stone et al., 2012; Regelin et al., 2013). Consequently,

a major objective of the OMO campaign was to constrain the levels, sources and

sinks of HOx radicals in the Asian summer monsoon anticyclone. In addition, the

influence of convective and long-rang transport of air pollutants on the composition

and oxidation capacity of the atmosphere was addressed.

The PTRMS-HALO contributed to these objectives by measuring VOCs that are

either precursors of HOx (e.g. acetone, formaldehyde) or allow conclusions about the

origin or age of air mass (e.g. acetonitrile, benzene, toluene). In Figure 3.18, the final

cabin installation of PTRMS-HALO together with the ozone measurement device

of KIT (Zahn et al., 2012) is shown. Due to the low weight and compact size of

PTRMS-HALO, the ozone instrument could be mounted into the same rack, which
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was positioned in first place behind the cockpit (see right picture of Figure 3.18).

Both instruments shared a trace gas inlet (TGI; Enviscope, Frankfurt, Germany)

mounted on top of the aircraft’s fuselage on one of the various aperture plates. The

cabin-internal interface of the aperture plate is also depicted in Figure 3.18.

In January 2015, a short test campaign was carried out. Three flights were conducted

outbound of Oberpfaffenhofen (Germany) to test the only recently completed instru-

mentation under airborne conditions. Due to the experimental nature of these flights

and the fact that flights were restricted to Europe, this part of the campaign is also

referred to as OMO-EU/-Test.

The intensive main phase of the OMO campaign (OMO-Asia) took place in July

and August 2015. In total 19 measurement flights were performed over the Eastern

Mediterranean, the Arabian Peninsula and the Arabian Sea. Except for a period of

10 days, during which HALO was stationed on Gan (Maledives), the mission base

was in Paphos (Cyprus).

Figure 3.17.: Flight track of HALO performing a flight from Bahrain to Gan (Male-
dives) on 6 August 2015 (colorcoding: flight altitude). The part of the
flight, in which measurements were not permitted, is shown in white.
Satellite image courtesy of NASA’s Earth Observing System (EOS).
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Trace gas inlet feedthrough
Rack power distribution unit

Heated inlet tubingO3 instrument

PTRMS-HALO O3 instrumentControl unit Gas inlet system

Figure 3.18.: Installation of PTRMS-HALO (and the ozone instrument of KIT) in
the cabin of HALO during the campaign OMO.

The stopover in Gan had been initially planned as starting point for flights into the

Asian monsoon over the Gulf of Bengal. However, due to construction work at the

airport of Gan, the full length of the runway was not available and HALO could not

take off with the fuel amounts required for extended flights over the Gulf of Bengal.

Instead, flights were carried out over the Arabian Sea including refueling stops in

Bahrain (for an exemplary flight track see Figure 3.17). The mission was completed

on 27 August 2015 when HALO returned to its home base in Oberpfaffenhofen.
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3.4.2. Flight from Bahrain to Gan

PTRMS-HALO conducted successful measurements during all mission flights, which

is a remarkable achievement for the first airborne deployment of a newly developed

instrument. Here, the very good performance is shown based on an individual flight

from Bahrain to Gan on 6 August 2015. The corresponding flight track and altitude

profile are illustrated in Figure 3.17 and 3.19a, respectively.

HALO took off in Bahrain at 07:45 and landed in Gan at 12:55 (all times are given

in Universal Time Coordinated, UTC). No measurements were permitted between

08:12 and 08:35, when HALO crossed the air space of the United Arab Emirates.

Technical performance of PTRMS-HALO

PTRMS was switched on at 08:00 to avoid contamination during taxiing and take-off

(see Figure 3.19a). However, the start-up procedure of PTRMS-HALO (see Section

3.3.3) was completed well before measurements were (again) permitted at 08:35, as

can be seen from the temporal evolution of the DT pressure (see Figure 3.19b). The

first pressure increase (08:07) is attributed to the opening of MFC II, which supplies

the ion source with water vapor (see Figure 3.7). The second and larger pressure

increase (08:12) is due to the last step of the start-up procedure. The inlet system is

flushed for 5 minutes after opening Valve IV (see Figure 3.7) and activating the DT

pressure regulation (set value: 2.25 hPa).

However, accurate (i.e. background-corrected) measurements are only possible when

the VOC catalyst reaches its operating temperature (here 300°C). This was the case

at 08:23 (see Figure 3.19a). Furthermore, the DT temperature and pressure have to

be kept as constant as possible, as both parameters affect the instrumental sensitivity

α ∝ p2/T 2 (this relationship emerges from inserting Equation 2.20 into 2.11 in

Section 2.1). The excellent performance of the temperature- and pressure-regulation

is displayed in Figure 3.19b and 3.19c. The relative standard deviation (RSD) of the

DT pressure and temperature is only 0.03 % and 0.11 %, respectively. These values

are ∼30 times lower than the ones of the CARIBIC-PTRMS, which will be soon

replaced by a version similar to PTRMS-HALO (see Section 3.5). The visible swings

in the DT pressure of PTRMS-HALO are except for one case solely caused by the

valve actuation when switching between ambient and zero air.
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Figure 3.19.: Time series of background-corrected VMRs and parameters during a
mission flight from Bahrain to Gan on 6 August 2015.
Ambient VMRs are displayed as open circles and oriented on the left-hand axis. Background
measurements are marked in black (filled circles). The estimated overall uncertainty of VMRs is
exemplarily shown for one measurement per substance. The dark blue solid and cyan dashed line
represent the running mean over 5 measurements and the detection limit (S/N = 3), respectively.
(a) Altitude profile of HALO (black line) and temperature of the VOC catalyst (red line, right
axis). (b) Acetone VMR (open circles, left axis) and DT pressure (orange line, right axis). (c)
Acetonitrile VMR (open circles, left axis) and DT temperature (red line, right axis). (d) Methanol
VMR. (e) Benzene VMR. Measurements coinciding with methane VMRs larger than 1879.8 ppb
(see Equation 3.6) are marked in red. The grey shaded segments of the flight (I, II and, III) are
used for trajectory analysis (see Figures 3.20 and 3.21).
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In panel b–e of Figure 3.19, the background-corrected VMRs of acetone, acetonitrile,

methanol and benzene are shown. During ambient measurements, the instrumental

background was estimated using a (step-wise) linear interpolation based on the

means of each background measurement. This procedure is commonly used (e.g.

Custer and Schade, 2007; Jordan et al., 2009b; Vlasenko et al., 2010), as there is

no indication for a physical process that leads to a specific temporal course of the

background. To illustrate the timing of the background measurements (3 minutes at

intervals of 40 minutes), the respective measurements (subtracted by the interpolated

background) are also displayed. Please note that due to the background correction

and finite precision of the measurements also negative VMRs initially occur. However,

this is not a problem, as values below the LOD (see Section 2.2.4) are in any case

excluded from further analysis.

For each substance, the LOD (dashed light blue line in Figure 3.19) was calculated

as three times the standard deviation of the background measurements during

flight and linearly interpolated in between. For acetone and acetonitrile, all ambient

measurements are above the LOD. Methanol VMRs are close to the LOD between

10:30 and 12:00, when the aircraft’s altitude was 14300 m. At the same time, the

measured benzene VMRs are almost evenly distributed around the LOD. However,

in contrast to methanol, benzene does not show an increase in VMRs after HALO

descended to 7600 m at 12:10. In total, 6 and 32 % of the methanol and benzene

measurements were below the LOD. In theory, the LOD can be still retrospectively

improved – on the expense of the temporal resolution – by merging successive

measurements. However, further analysis, which would have gone beyond the scope

of this study, is required to process the data this way.

Air mass characterization

To determine the approximate origin and age of sampled air masses, 12-day back-

ward trajectories were calculated using the atmospheric transport and dispersion

model HYSPLIT 4 (Hybrid Single-Particle Lagrangian Integrated Trajectory model)

(Draxler and Hess, 1997 and 1998; Draxler, 1999; Stein et al., 2015). The model

was integrated with 3-hourly meteorological fields derived from the Global Data

Assimilation System (GDAS) of the National Center for Environmental Prediction

(NCEP), provided on 55 hybrid sigma-pressure surfaces and a 0.5°× 0.5° horizontal

grid.
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In order to automatically calculate a large number of trajectories (as required when

analyzing one or more complete flights), the author developed a Matlab script, which

processes the flight track data of HALO and directly controls the HYSPLIT model

using its batch mode (for the respective code see Appendix B). Trajectories were

started along the flight path at intervals of 1 min (minimum time step of the model),

while the output frequency of trajectory points was set to 1 hour.

Nevertheless, for reasons of clarity and due the scope of this section, not all trajectories

calculated for flight on 6 August 2015 can be shown here. Instead, three interesting

flight segments (gray-shaded sections in Figure 3.19) have been selected. The first

segment is characterized by elevated VMRs of benzene, the second shows the highest

methanol and acetone VMRs of the flight and the third one stands out with relatively

low concentrations for all species measured with PTRMS-HALO. In the following,

the pathways of the backward trajectories calculated for the three segments (see

Figures 3.20 and 3.21) are discussed:

Segment I: During this part of the flight, elevated benzene VMRs (50–100 ppt)

coincide with enhanced methane concentrations (see Figure 3.19e). Due to the high

contribution of anthropogenic sources to its total emissions, benzene is often used

as tracer for anthropogenic pollution (e.g. Holzinger et al., 2007). Major sources of

methane include emissions from livestock farming and rice cultivation, biomass burn-

ing and natural gas production and handling (e.g. Johnson and Johnson, 1995; Garg

et al., 2001). Tomsche et al. (2016b, 2017) showed that due to its long atmospheric

lifetime in the order of years, methane is well suited to determine whether sampled

air was influenced by the Asian summer monsoon or not. Based on the mean and

standard deviation of observed free tropospheric background VMRs of methane over

Europe (Cyprus, Italy and Germany) they derived a threshold value

[CH4]threshold = [CH4]bgnd + 2 σ([CH4]bgnd) = 1879.8 ppb (3.6)

to tentatively assess whether an air parcel corresponding to a specific VMR was

affected by deep convection in the Asian summer monsoon (see also Bourtsoukidis

et al., 2017). With a likelihood (confidence level) of 95 %, methane VMRs above

this threshold cannot be explained by the natural variability of the free tropospheric

background and are thus, associated with rapid upward transport in the Asian

summer monsoon.

In Figure 3.19, the benzene VMRs coinciding with methane VMRs exceeding this

threshold are marked in red. During this flight, the threshold was only exceeded in
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this segment. About 70 % of the methane VMRs measured in the segment (data

courtesy of Tomsche et al., 2016a, not shown here) are higher than the threshold. The

trajectory analysis reveals that 48, 40, 36 and 26 % of the trajectories corresponding

to this flight segment crossed the 550, 650, 750 and 850 hPa pressure level, respectively,

within the last 12 days.

According to the trajectory pathways shown in Figure 3.20a, the majority of air

masses, which had contact with the planetary boundary layer within this period,

originated from Bangladesh and Myanmar. Deep convection frequently occurs over

these countries during the Asian summer monsoon due to the southwesterly mon-

soonal flow encountering the Himalayan foothills in this region. Orographic lifting of

the potentially unstable flow then triggers convection (e.g. Li et al., 2005; Medina et

al., 2010; Reeve, 2015).

Further analysis of the trajectory data shows that the affected air masses were

transported into the free troposphere on average 7.9 (±1.1) days ago (± standard

deviation). While methane has such a long atmospheric lifetime that only negligible

amounts degrade within this period, the short atmospheric lifetime of benzene in

the order of ∼10 days suggests that substantially more benzene has been injected

into the free troposphere than measured here. Still, the benzene VMRs observed in

theses relatively aged air masses exceed the mean VMR (∼10 ±4 ppt) of CARIBIC

observations over this region and during this time of the year (Baker et al., 2014) at

least by a factor of five.

Segment II: In this flight segment, consistently higher methanol VMRs (1500–

2000 ppt) than during the rest of the flight were observed (see Figure 3.19d). Methanol

is known to be emitted by biogenic and anthropogenic sources including biomass

burning (see Table 1.2) and is also produced in the atmosphere by the oxidation

of other VOCs and methane (e.g. Razavi et al., 2011). While the emissions from

anthropogenic sources and biomass burning only constitute a minor source (∼10 %),

methanol is the second largest contributor to the total biogenic VOC source after

isoprene (Guenther et al., 2012). However, due to its longer lifetime (∼5–22 days

compared to ∼1–2 hours), it is more abundant in the troposphere than isoprene

and any other non-methane VOC (Tie et al., 2003; Jacob et al., 2005; Millet et al.,

2008). Therefore, the VMRs observed here are not unusually high. Although biogenic

emissions are thought to be the largest terrestrial source of methanol, elevated VMRs

are not per se an indicator of strong biogenic contributions, as other sources may

dominate on regional scales. Enhancements due to biogenic emissions would imply
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Figure 3.20.: Backward trajectories for air masses sampled on 6 August 2015 between
8:35 and 8:56 UTC (panel a) and between 9:07 and 9:58 UTC (panel
b). For the corresponding measurements see Figure 3.19 (segments I
and II). Colorcoding denotes the maximum pressure of the trajectory.
If applicable, trajectories have been cut at 850 hPa (= assumed mean
pressure height of the planetary boundary layer). The positions of these
cut-offs are highlighted as color-filled circles. The flight track of HALO
is shown in red. Satellite image courtesy of NASA’s Earth Observing
System (EOS).

that also other biogenically emitted species such as acetone (see Section 5.1) are

likewise elevated. However, the acetone VMRs measured here remain on the same

level as observed in segment I (see Figure 3.19b).
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Also, a contribution from biomass burning is unlikely, as this would be accompanied

with elevated VMRs of acetonitrile being a common tracer of biomass burning (see

Chapter 6). Here, regional anthropogenic emissions might have been the cause for

the enhancement. This is supported by the concurrent measurements of benzene

and CO, which are common tracers for air masses of anthropogenic origin. In this

segment, measured VMRs of CO (data courtesy of Tomsche et al., 2016; not shown

here) increase from ∼80 ppb to ∼130 ppb, well above the regional tropospheric

background of 82 (± 14) ppb determined from CARIBIC observations (Baker et al.,

2014).

The trajectory analysis particularly agrees with the CO measurements but does not

show a completely unambiguous picture with regard to the methanol measurements. In

the first half of the segment, the mean atmospheric pressure level of the trajectories

is on average 265 (±64) hPa (± standard deviation). Except for one trajectory

originating from the marine boundary layer of the Gulf of Bengal (∼90° E, 20° N,

see Figure 3.20b), maximum pressure values of the trajectories indicate that air

masses sampled in this part did not ascend from the planetary boundary layer within

the last 12 days. However, in the second half of the segment, where also the CO

VMRs are highest, the trajectories suggest that 93 % of the air masses had recently

contact with the planetary boundary layer, on average 3.3 (±1.9) days before the

measurements (mean ± standard deviation). Most of the trajectories originate from

central India and the Indo-Gangetic Plain (see Figure 3.20b), where one seventh of the

world’s population lives (Sinha et al., 2014). In this region, Sinha et al. (2014) found

surface VMRs of methanol consistently higher than observed in urban environments

elsewhere in the world. The authors concluded that the high methanol concentrations

were likely due to the emission from anthropogenic sources such as water treatment

and chemical plants (Galbally and Kirstine, 2002; Tata et al., 2003).

Segment III: In this segment, VOC VMRs reach their minimum values for this

particular flight. Likewise, the concentrations are on the lower side of the range

of what has been measured during the campaign (data courtesy of Safadi and

Neumaier, 2016). Also, the VMRs of CO observed in this segment are exceptionally

low (∼50–60 ppb). It can therefore be readily assumed that very clean air masses

have been sampled and that the measured VMRs (acetone: ∼500 ppt; acetonitrile:

∼150 ppt; methanol: ∼500 ppt; benzene: ∼20 ppt) reflect tropospheric background

concentrations. In general, this is also supported by the trajectory analysis shown in

Figure 3.21.
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Figure 3.21.: Same as Figure 3.20, but for the time period between 10:36 and 12:00
UTC (segment III in Figure 3.19). Satellite image courtesy of NASA’s
Earth Observing System (EOS).

The mean/maximum pressure level of the trajectories calculated for this segment

is 316 hPa and 487 hPa, respectively, on average. Only 6 % of the trajectories

indicate that air masses had contact with the planetary boundary layer within the

last 12days. These air masses originated from central India and Myanmar and left the

boundary layer on average 8.2 (±1.1) days ago (mean ± standard deviation). The

other trajectories, which constitute the great majority, end at pressure levels of on

average 395 (±169) hPa 12 days before the flight. Unfortunately, it is not discernible

in Figure 3.21 that about 35 % of them end over the Arabian Sea (mean position at

65° E, 15° N) after having made a larger turnaround over the Gulf of Bengal. The

remaining 65 % are not affected by this change in direction and mostly end over the

remote Pacific Ocean (mean position: ∼125° E, 15° N).

3.5. Outlook: The new PTRMS-CARIBIC

Since 2005, a strongly modified version of a commercial PTR-MS instrument (Ionicon,

Innsbruck, Austria) has been regularly deployed onboard the CARIBIC passenger

aircraft (see Section 1.3.1) for VOC measurements with high time resolution (Sprung

and Zahn, 2010). In contrast to the commercial version, it is e.g. equipped with

a more light-weight backing pump, a 24–28 V DC power supply system and a

LabVIEW-based software (National Instruments, Austin, Texas), controlling all
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instrumental components and thus, enabling an unattended deployment (for details

see Sprung and Zahn, 2003 and 2005; Zahn et al., 2013). However, it soon turned out

that only ∼2–3 VOCs (acetone, acetonitrile and to some extend methanol) can be

readily measured with this device in the UTLS. Nevertheless, instrumental changes

to fix this problem were hardly possible during regular operation of the container,

which had just started then. This is partially due to certification issues, the short

time periods between subsequent flight series and also due to the complexity of the

control software, which made any adaption difficult and lengthy.

Therefore, in 2012 the construction of a completely new instrument was started,

using the PTRMS-HALO described in Section 3.3 of this chapter as standard. As

the completion of PTRMS-HALO was not finished before the end of 2014 (see

Section 3.3.4), also the construction of the new PTRMS-CARIBIC had been delayed.

In 2013, a first prototype was deployed within the framework of the MUSICA

aircraft campaign to test the V25-based control unit under airborne conditions (see

Section 3.2.1), but it was clear from the very beginning that still a lot of engineering

was necessary to adapt the prototype shown in Figure 3.4 to the installation and

deployment conditions of the CARIBIC container (e.g. with respect to the rack

dimensions and envelope).

Although the final completion of PTRMS-HALO was done by others, the planning

thereof was to large extent made in this work and greatly benefitted from the

experiences gained during the MUSICA campaign and the subsequent completion

and operation of PTRMS-HALO.

During troubleshooting, it e.g. turned out that the compact height of the 19” sub-

racks used in PTRMS-HALO and the prototype of PTRMS-CARIBIC considerably

complicated removal and insertion of I/O modules. The exchange of modules was

hardly possible without removing the cabling of all modules and disassembling the

subrack to a certain extent.

In addition, the space-constrained installation in the subrack led to an overheating

of the electronics during deployment onboard aircraft (see Section 3.2.1), as the air

could not circulate sufficiently around the modules. Therefore, larger subracks with

an additional height of ∼4.5 cm are used in the final version of PTRMS-CARIBIC.

The resulting additional space enables sufficient air ventilation for cooling and allows

for the easy exchange of all modules including the microcontroller unit.
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Figure 3.22.: CAD drawing of the modified electronics subrack used in the new
PTRMS-CARIBIC. Please note that the picture is not complete. Some
parts and accessories are missing to give a better insight, e.g. the missing
front panel enables the view at the I/O interface of the V25 control
system. The main unit comprising e.g. the V25 microcontroller and
the memory card slot is installed on the very right. The individually
combined I/O modules are mounted to the left of it. The majority of
their inputs and outputs is connected by cable with the sockets on the
left exterior side of the subrack. Image courtesy of Simon Heger (KIT).

Further operating difficulties originated from the connectors on the rear side of the

electronics subrack. These connectors were difficult to access in the prototype, as

the above mounted subrack (the ”flowbox”) had a greater depth. Therefore, the

connectors have been relocated to the left side of the subrack, where they are more

easily accessible. In Figure 3.22, a CAD drawing of the resulting new electronics

subrack is shown. A drawing of the complete instrument, installed in the instrument

rack, is presented in Figure 3.23.

Another deficiency of the prototype was that largely identical sockets and plugs were

used directly next to each other. In particular, there was the risk that a sensor cable

is accidentally plugged in a power output. To avoid this, only non-interchangeable

plugs (LEMO, Ecublens, Switzerland) are used next to each other in the final version

of PTRMS-CARIBIC.
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Although the subracks of PTRMS-CARIBIC and -HALO are not interchangeable,

attention was paid to mainly use the same electrical components in both instruments.

As a result, the control software of PTRMS-HALO, which has been extensively

elaborated in this work (see Section 3.3.3), also runs on the new PTRMS-CARIBIC.

Only the part controlling the satellite-based transmission of preliminary data in

HALO had to be adopted to the network communication with the master PC in the

CARIBIC container (Brenninkmeijer et al., 2007).

Besides the above-mentioned improvements, the new PTRMS-CARIBIC is the first

instrument equipped with a technically more sophisticated version of the unheated

permeation device originally presented by Brito and Zahn (2011). While the hitherto

used CARIBIC instrument could only be calibrated in the laboratory, this new device

enables quasi-continuous in-flight calibration and thus, contributes to a reduction of

uncertainties. As will be shown in Chapter 6, these becomes crucial when comparing

observations of different years with each or with the results of model simulations in

order to assess bottom-up emission estimates of VOCs.

The first airborne deployment of the new device is expected to take place in October

2017. A picture of the instrument, readily installed in the CARIBIC container, is

shown in Figure 1.5 (Section 1.3.1).

3.6. Conclusion

Within this work, the development and aeronautical certification of a fully customized,

innovative PTRMS system for airborne VOC measurements has been finalized. The

resulting two new instruments, PTRMS-HALO and PTRMS-CARIBIC, are by far

the most compact and lightweight PTRMS instruments deployed onboard aircraft

and can easily compete with larger devices.

The most striking feature of the new development is the customizable control unit

and software. For the first time, the entire instrument including the commercial

quadrupole mass spectrometer, is controlled by one and the same system. Due to

its modular and open design, the new system can be easily adapted to various

deployment conditions and upgraded if new instrumental developments become

available.

Moreover, the presented results of the first scientific airborne deployment demonstrate

that the new device is fully capable of the envisaged VOC measurements in the upper
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Figure 3.23.: CAD drawing of the new PTRMS-CARIBIC installed in the instrument
rack. Please note that the picture is not complete. Some parts and
accessories are missing to give a better insight. In contrast to the
hitherto used PTRMS, the new device saves so much space and weight
that a further instrument can be installed in the rack. Image courtesy
of Simon Heger (KIT).

troposphere and lower stratosphere. Due to its enhanced sensitivity and reduced

detection limits, more species can be detected than has hitherto been the case. The

instrument also turned out to be highly reliable. PTRMS-HALO was one of the few

instruments within the payload of OMO, that delivered data for all mission flights in

consistently high quality. The promising results will be objective of a separate paper,

currently in preparation.

Besides further missions onboard HALO, the new system will soon replace the

currently deployed PTRMS onboard the CARIBIC passenger aircraft. Combined

with the high spatial coverage and long-term operation of CARIBIC, the enlarged

set of detectable species will significantly contribute to a better understanding of the

composition and processes of the UTLS.
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PTRMS-HALO

Instrumental performance is commonly assessed in terms of precision, accuracy,

sensitivity and limit of detection and determining these characteristics is not only

important for comparison purposes. Although many scientists refrain from publishing

these parameters along with their data, they are crucial for correct interpretation of

the data. However, please note that the characterization presented here has been

done under laboratory conditions, which may be not comparable to the conditions

during airborne measurements. Nevertheless, such a characterization is of great value,

e.g. as a reference for future calibrations. Here, it is used to document the final state

of the instrument after its long-term development and to assess it by comparing

the results with the ones of former development stages of PTRMS-HALO as well as

others instruments.

4.1. Reagent ion signals

Typical count rates of reagent ions as observed in November 2016 are summarized

in Table 4.1. To prolong the lifetime of the detector (e.g. Taipale et al., 2008) and

because of possible saturation effects observed at high count rates (Ammann et al.,

2004), the primary ion signal (H3O+, m/z = 19) is typically obtained from the count

rates of its 18O-isotope on m/z = 21 multiplied by a factor of 500 reflecting the

isotope ratio. This factor is commonly used in the PTR-MS literature, but there are

a few studies, which also consider less abundant combinations of isotopes, including

hydrogen. Using the on-line isotope pattern calculator of Junhua (2001), Taipale et

al. (2008) derived a factor of 487. However, as long as a factor is consistently applied

to all measurements including calibrations, it does not matter which value is used.
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m/z Reagent ion Mean count rate Ratio to Comments
[cps] H3O+ [%]

19 H3O+ 1.6× 107 100.0 calculated value

21 H3
18O+ 3.1× 105 0.2 used to determine H3O+

25 12.6 0.0 detector noise, photons

30 NO+ 3.0× 104 0.2 parasitic reagent ion

32 O+
2 4.6× 105 2.9 parasitic reagent ion

37 H3O+(H2O) 2.6× 105 1.7 1st water cluster

Table 4.1.: Typical count rates of reagent ions affecting the performance of the
instrument. Shown are mean values as observed in November 2016 and
their percentages relative to the primary ion signal.

The signal at m/z = 25 is used as an indicator of ’pure’ detector noise, as no

compound or any fragment ion has been reported at that mass (e.g. Steinbacher et

al., 2004; Custer and Schade, 2007; Amann et al., 2010). The background signals

of other masses typically comprise of the detector noise and of ions originating

from impurities inside the mass spectrometer, but it is impossible to separate the

individual contributions.

Energetic photons, which are produced in the glow discharge ion source, are held

responsible for the detector noise (e.g. Mikoviny et al., 2010; Kalogridis et al., 2014)

and it is therefore reasonable to assume that the noise is also present on other masses.

However, any avoidable noise on masses, which are assigned to compounds of interest,

is disadvantageous, as a high noise level impedes the distinction of a weak compound

signal from the background. As such, the noise determines the detection limit, i.e. a

lower noise level enables the detection of lower VOC concentrations. The transmission

of the photons into the detector region strongly depends on the geometry of the ion

source and drift tube and can be e.g. reduced by tilting the drift tube (Brito, 2011).

The detector noise observed here for the PTRMS-HALO is relatively high compared

to other devices (e.g. Amann et al., 2010). Therefore, further counteractions should

be considered in the future (e.g. a different bending of the ion source).

The observed NO+ and O+
2 ions are generated in the ISDR by charge transfer from

H2O
+ ions to O2 and NO molecules originating from the DT or, if they reach the

discharge region, by electron ionization in the source. As both have lower ionization

energies than H2O, they are unable to undergo charge-transfer reactions with H2O in

the ISDR and will be retained within the PTR-MS (Lindinger et al.,1998). However,
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they can undergo unwanted reactions with many analyte molecules, leading to a

potential underestimation of their VMRs and interferences on masses affected by the

product ions of NO+- and O+
2 -reactions (e.g. Knighton et al., 2009). Therefore, it is

common practice to tune the parameters of the ion source in such a way that the

contribution of NO+- and O+
2 are negligible. It has been recommended elsewhere to

keep the O+
2 /H3O+-ratio below 3 % (ACTRIS, 2014), which the instrument complies

with.

In the drift tube, the presence of water vapor from the ion source or the analyte

air leads to the formation of water dimers H3O
+(H2O), which have a high proton

affinity (808 ± 6 kJ mol−1; Goebbert and Wentold, 2004) and can undergo other

reactions than proton transfer (e.g. ligand switching). Furthermore, the sensitivity

of those compounds that do not react with H3O+(H2O) potentially decreases when

more primary ions are tied up in the formation of the less reactive water ion clusters

(Warneke et al., 2001; Ellis and Mayhew, 2014). Effects on the determination of

concentrations are expected whenever the abundance of water dimers varies greatly

between sampling and calibration.

Please note, that the percentages of reagent ions relative to H3O
+ shown in Table 4.1

are not transmission-corrected. As will be shown in Section 4.5, H3O
+ ions are less

efficiently transmitted through the quadrupole than O +
2 , NO+ and H3O

+(H2O) ions.

Consequently, the abundance of these ions in the DT compared to H3O
+ is actually

lower than specified.

4.2. Sensitivity

Determination of the instrumental sensitivity is essential for accurate measurements

of VMRs, as it is used to convert measured ion count rates into VMRs. The proper

definition of sensitivity is that of an instrumental response measured per amount of

VOC molecules in the analyzed sample air (Busch, 2002).

As shown in Section 2.2.4, a high sensitivity improves the precision of the mea-

surements. Consequently, a specific precision can be obtained in a shorter time

interval, which improves the temporal resolution. In addition, the signal-to-noise

ratio increases with sensitivity (see Equation 2.29), which means that signals of lower

VMRs can be distinguished from the background noise and thus, be detected (see

Section 4.4).
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4. Instrumental characterization of PTRMS-HALO

Both effects are particularly useful for airborne measurements in the upper tropo-

sphere and lower stratosphere, where VMRs of VOCs are in the ppt-range and fast

measurements are necessary to resolve the high spatial variation, because of the high

speed of aircraft.

4.2.1. Calibration method

For the determination of the sensitivity, calibration against appropriate gas standards

continues to be the method of choice, although it relies on the temporal stability of

the gas standard and the instrument’s sensitivity (de Gouw et al., 2003b; Ammann

et al., 2004; Ellis and Mayhew, 2014).

In this study, a gas standard containing 13 VOCs in known concentrations (Apel

Riemer Environmental Inc., Denver, Colorado, USA; stated accuracy: ±5 % per com-

pound) was dynamically diluted in synthetic air (Alphagas; AirLiquide, Paris, France)

to VMRs between 0.5 and 30 ppb per compound. In Figure 4.1, the corresponding

set-up is shown.

The gas standard and the synthetic air are connected with the inputs of the mass

flow controllers MFC1 and MFC2, respectively. The regulated gas flows are then

mixing at the subsequent t-piece, which is connected to the gas sample inlet of the

”flowbox” of PTRMS-HALO. To obtain an approximate pressure of 950 hPa in the

sample line, the flow through the bypass was manually adjusted by alternating the

setpoint of MFC3 until a steady-state was reached. All tubes used in the set-up

were made of PFA (Perfluoroalkoxy alkane). In principle, the same set-up was also

used during the OMO campaign, but with much longer tubing between the external

MFCs (Bronkhorst, Ruurlo, Netherlands) and gas bottles, as the latter had to be

positioned outside of the aircraft.

The VMRs of the compound inside the diluted VOC mixture are defined by the

flows through the mass flow controllers MFC1 and MFC2. The above-mentioned

range of 0.5–30 ppb was chosen according to typical VMRs of VOCs during actual

measurements (Ellis and Mayhew, 2014), i.e. in the free troposphere. For the exact

composition of the gas standard please refer to Table 4.2.
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Figure 4.1.: Simplified diagram of the calibration set-up consisting of two external
mass flow controllers (MFC) regulating the flow of synthetic air and the
gas standard, respectively. The outputs of the MFCs are connected to
the sample inlet of the flowbox via a t-piece and PFA tubing.

For each chosen mixing ratio, the diluted gas standard was measured sufficiently

long enough to obtain stable count rates (see Figure 4.2a). The means of these

(stable) count rates for each dilution step were plotted over the respective VMRs

and linearly fitted (see Figure 4.2b). The slope of the resulting line represents the

absolute sensitivity.

Here, the Williamson-York fit algorithm (York, 1966; Williamson, 1968) was applied

as recommended by Cantrell (2008). In contrast to the standard least-squares fit, it

considers the uncertainties in x- and y-direction and, hence, leads to more reliable

results. Please note, that only the (equally distributed) statistical uncertainties of the

dilution process and count rates should be considered in the linear fit, as a deviation

of the VMRs in the gas standard leads to a shift of all calculated VMRs into the

same direction. To estimate the uncertainty for this case, the linear fit was repeated

using minimal and maximum possible VMRs (worst case analysis).
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Figure 4.2.: Calibration measurement and subsequent determination of the sensitiv-
ity exemplarily shown for benzene: (a) Time series of count rates on
m/z = 79 (protonated benzene) including hourly changes of the dilution
ratio of the calibration gas. Before each dilution ratio change, zero air
was measured to determine the instrumental background. For reasons
of clarity only every 10th measurement is shown; (b) Plot of means of
count rates for each dilution ratio over the corresponding VMRs. The
horizontal error bars represent the uncertainty of the VMRs including
the accuracy of the gas standard and the uncertainty related to the
dilution process. The grey-shaded area indicates the possible range of
regression lines as estimated by a worst-case analysis.

4.2.2. Normalized vs. absolute sensitivity

The above-mentioned procedure for determining sensitivities is often be done with

normalized count rates resulting in normalized sensitivities. The choice whether to

use absolute or normalized sensitivities heavily depends on the objective.

To assess the performance of an instrument, its unaltered response to a known

concentration or VMR (commonly expressed in cps ppb−1) is of interest. As shown

in Section 2.1 (Equation 2.9), this absolute sensitivity is directly proportional to the

primary ion signal i(H3O
+) and thus, only valid for a particular i(H3O

+) value.

However, it is well known that the i(H3O
+) signal can vary considerably with time

(Ellis and Mayhew, 2014). Due to this fact, a once determined absolute sensitivity is

not suited to accurately derive VMRs from count rates measured over longer time

periods.
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To avoid this dilemma, sensitivities and count rates are commonly normalized to a

particular ion count rate (106 cps) and one can assume that these values remain valid

even if the absolute primary ion signal changes (Ellis and Mayhew, 2014). Therefore,

it is practical to use the normalized sensitivities for calculation of the VMRs.

4.2.3. Results

With the previously described method the current absolute sensitivities of the

PTRMS-HALO were quantified for each compound of the calibration gas standard.

In Table 4.2, the results are summarized and compared with mean sensitivities found

in the literature and the one of the other PTRMS in the group, which was deployed

onboard the CARIBIC aircraft between 2005 and 2016. Please note that the ensemble

of considered studies may neither be complete nor representative, but on the other

hand studies were not selected according to the reported sensitivities. As the latter

mainly represent snapshots (or even upper limits) of instrumental sensitivity (e.g.

they are based on the maximum primary ion signal instead of the primary ion signal

during measurement or the sensitivity for fragment ions was added to the ones

of the protonated parent ion), the sensitivities of the PTRMS-HALO and the old

PTRMS-CARIBIC presented here are solely based on a single calibration, whereas

the reproducibility is discussed in the next section.

The results show that the new PTRMS-HALO is on average twice as sensitive

as PTR-MS instruments that have been characterized in the literature. However,

it has to be pointed out that publications usually lag behind technical advances,

i.e. the majority of currently available studies was conducted with less sensitive

instruments.

This may also be related to the increasing deployment of PTR-Time-of-flight (TOF)

instruments, which are known for their lower sensitivity compared to quadrupole-

based PTR-MS. Warneke et al. (2015) found that their PTR-TOF is on average

by a factor of ∼ 20 less sensitive than their quadrupole instrument. However, this

drawback could be recently compensated by implementing a quadrupole or hexapole

ion guide between the drift tube and mass spectrometer (Sulzer et al., 2014; Yuan et

al., 2016, Ionicon, 2017).

With such an instrument, Yuan et al. (2016) reached sensitivities similar to the

quadrupole instrument described in Warneke et al. (2011, 2015), which represents

the current benchmark for PTR-MS (to the author’s knowledge). Sulzer et al. (2014)
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4. Instrumental characterization of PTRMS-HALO

reported even 5–6 times higher sensitivities for benzene, toluene and xylene taking

advantage of the fact that the transmission of a TOF-MS steadily increases with mass

whereas the one of a quadrupole passes a maximum at typically 60–100 amu and

decreases afterwards (Taipale et al., 2008; Kim et al., 2009; Halbritter, 2011). The

general progress in PTR-MS sensitivity over the last two decades and a comparison

of the different types of PTR-MS is well illustrated in Yuan et al. (2016).

It should be pointed out that the PTRMS-HALO was not designed to compete with

the latest laboratory instruments and the comparison of sensitivities only may be

misleading in this case. The development of the PTRMS-HALO aimed at constructing

an instrument being perfectly adapted to the limitations and conditions of airborne

deployment, but still sensitive enough to reach the intended scientific goals. These

criteria were perfectly fulfilled as will be shown later.

The quadrupole- or hexapole-enhanced PTR-TOF-MS are 2-3 times as heavy as the

PTRMS-HALO and require about 3 times more space and power (Ionicon, 2017),

making a deployment on common airborne platforms questionable.

As the PTR-MS deployed onboard the CARIBIC passenger aircraft is soon to be

replaced by a version based on PTRMS-HALO (see Section 3.5), the sensitivities

of the two instruments are also compared with in Table 4.2. The values of the

CARIBIC-PTR-MS do not exceed the literature averages except for isoprene, which

is not relevant in the UTLS due to its short lifetime. The PTRMS-HALO is on

average by a factor of 2.7 more sensitive, which clearly justifies the replacement of

this instrument by a version based on the high sensitivity PTRMS-HALO. Besides

that, there are further reasons for the exchange: The hardware of the CARIBIC

instrument is already 13 years old and becomes increasingly susceptible to failures.

A problem that already became apparent in the last few years, is a periodical shift

of the reference potential of most analog signals. As these signals are used to control

the conditions of the drift tube (e.g. pressure) and ion source (water flow into the

ion source), the oscillations are also visible in the data and increase the noise levels.

Identifying the causes for this behavior would require a complete disassembly of the

electronics and extensive troubleshooting. Moreover, for many components spare

parts are not available anymore and the companies do not repair them.

It is also noteworthy that the sensitivity of the PTRMS-HALO could be considerably

improved during the last 6 years, to large extent within this project by carefully

optimizing the drift tube parameters and ion lens voltages. In Figure 4.3, the overall

increase in sensitivity between 2010 and 2016 is exemplarily shown for 6 compounds.
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4.2. Sensitivity

Calibration gas standard Sensitivities [cps ppb−1]

m/z Compound VMR [ppb] HALO† CARIBIC‡ Literature?

31 Formaldehyde 1040.3 217 92

33 Methanol 476.9 234 91 124

42 Acetonitrile 514.9 553 164 169

45 Acetaldehyde 494.0 491 160 260

59 Acetone 483.4 571 201 267

63 DMS 488.6 369 136 173

69 Isoprene 486.3 200 83 98

71 MVK 450.1 521 229

73 MEK 512.1 521 308

79 Benzene 494.6 341 123 158

93 Toluene 491.0 362 133 186

107 p-Xylene 478.2 368 135 200

137 α-Pinene 494.1 117 79

Table 4.2.: Composition of the calibration gas standard used in this study (left) and
compilation of compound-specific sensitivities for different instruments
(right). The sensitivities of the PTRMS-HALO (bold) as derived within
this study are compared with the ones of the group’s PTR-MS deployed
onboard the CARIBIC aircraft between 2005 and 2016 and means of
sensitivities found in the literature.

† Sensitivities taken from calibration on 20 November 2016.
‡ Sensitivities derived from calibration on 25 September 2015. Please note
that a different gas standard containing less compounds was used. Due to
instrumental modifications, the given sensitivities are not representative
for the whole operation period of the CARIBIC-PTR-MS.
? Averages based on 16 randomly selected studies providing instrumental
sensitivities, namely: Sprung et al. (2001), de Gouw et al. (2003b), Karl
et al. (2009), Jordan et al. (2009a), Vlasenko et al. (2009), Graus et al.
(2010), Inomata et al. (2010), Warneke et al. (2011), Fares et al. (2012),
Beauchamp et al. (2013), Yang et al. (2013), Karl et al. (2013), Müller
et al. (2014), Jardine et al. (2015), Shaw et al. (2015), and Yuan et
al. (2016). Normalized sensitivities were converted into cps ppb−1 by
multiplication with the given mean primary ion signal.
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This restriction is mainly caused by the fact that previous studies did not provide

sensitivities for all compounds. The first sensitivities of the PTRMS-HALO were

reported by Brito (2011), who used an ion funnel enhanced drift tube to increase ion

transmission and, thus, sensitivity. The lowest sensitivities were observed during the

UBWOS campaign in 2012 (Geiger, 2015), with values not only below the literatures

averages, but also below the sensitivity of the CARIBIC instrument (see Table 4.2).

The removal of the ion funnel may have contributed to the strong decrease, but

since Brito (2011) attributed only a 30 % sensitivity boost to the ion funnel, it can

be assumed that other circumstances led to the poor performance. In 2014, the

instrument was taken over by the author and the sensitivity could be subsequently

improved.

Before the OMO-Asia campaign, the orifice in the exit plate of the drift tube (0.9 mm

�) was replaced by a larger one (1.2 mm �) to enhance ion transmission into the

quadrupole. As a result, the sensitivities obtained with the ion funnel (Brito, 2011)

could be reproduced without it. The recent boost in sensitivity between 2015 and

2016 could be partially archived by further fine-tuning of the instrument settings,

but may be also due to more favorable measurement conditions in the laboratory

compared to the field (e.g. in the laboratory instruments can be operated continuously

and calibrations can be performed after much longer running-up times). Differences

in the calibration procedure might have also contributed to the differences.

The achievement of this PhD project becomes particularly clear when comparing the

results of this study with the sensitivities of the instrument during UBWOS, when

the instrument was fielded for the first time. The sensitivity could be increased on

average by a factor of 4 dependent on species. For toluene (not shown in Figure 4.3)

the detection sensitivity is 5 times higher than during UBWOS, whereas for acetone

an increase by a factor of 3.3 could be achieved. In absolute terms, the sensitivity

could be enhanced from values well below average to outstanding ones, which can

compete with other PTR-MS instruments deployed onboard aircraft. Due to the

work of all involved, the lengthy and challenging development could be turned into a

very successful one. The new level of sensitivity offers new opportunities, e.g. more

sophisticated measurements, and thus, ensures the ability to compete with the top

of international science.
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Figure 4.3.: Absolute sensitivity of the PTRMS-HALO for methanol, acetonitrile,
acetone, DMS, benzene and isoprene measured during different develop-
ment phases of the instrument. The sensitivities in 2010, 2012 and 2015
are taken from Brito (2011), Geiger (2015) and Safadi (PhD thesis in
preparation). The ion funnel enhanced drift tube was removed between
2010 and 2012 (dashed vertical line). Before the laboratory measurement
in December 2014, the instrument was taken over by the author.

4.3. Reproducibility

The accuracy of measurements strongly relies on the reproducibility of calibration

results. To achieve a high reproducibility, it is essential to know which systematic

errors affect calibration and which are negligible. This question also emerged when

defining the calibration procedure needed for instrumental characterization. Here,

the discussion is limited to initial observations, as the focus of this study and chapter

lies on the characterization of the instrument. More sophisticated experiments, which

are out of the scope of this study, are required to fully identify systematic errors and

to rule out misinterpretations of the observations. However, it is believed that the

discussion, although not being conclusive, can provide valuable suggestions for further

investigations and raise the awareness for potential errors during calibration.
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4.3.1. The choice of flow rates

As shown in Section 4.2.1, the calibrations within this study are based on dynamic

dilution of the gas standard. As different combinations of the flow rates for the

calibration gas and zero air lead to the same dilution mixing ratio, at the beginning

the question was raised whether the choice of flow rates has an influence on the

calibration result. Therefore, the first calibrations were done with different flow rates:

The first one with low flow rates of zero air (197 sml min−1) and calibration gas

(0.9–6.2 sml min−1) and the second one with maximal possible flows (967 sml min−1

and 1.9–30 sml min−1, respectively).

In Figure 4.4, the results of this experiment are exemplarily shown for acetone and

methyl ethyl ketone, but the picture is similar for all compounds (see Table 4.3).

The observed count rates increased with the analyte flow to the instrument and the

increase was larger for high VMRs, leading to apparently higher sensitivities at first

sight.

Compound Sensitivity [cps ppb−1] Increase
low flow high flow [%]

Formaldehyde 75± 2 175± 8 136

Methanol 119± 21 120± 5 1

Acetonitrile 355± 20 488± 1 37

Acetaldehyde 405± 2 456± 4 12

Acetone 438± 7 529± 4 19

Dimethyl Sulfide 313± 2 345± 1 10

Isoprene 166± 1 182± 1 9

Methyl Vinyl Ketone 361± 2 460± 6 24

Methyl Ethyl Ketone 386± 2 469± 3 24

Benzene 283± 2 313± 1 11

Toluene 315± 14 333± 2 6

p-Xylene 282± 4 331± 3 16

α-Pinene 92± 1 103± 0 12

Table 4.3.: Derived Sensitivities (standard deviation in parentheses) from two prelim-
inary calibrations on 11 November 2016, and their relative differences are
given. The former was conducted with inlet flow rates of 198–278 sml min−1

(”low flow”) and the latter with ones of 967–997 sml min−1 (”high flow”).
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Figure 4.4.: Calibration scatter plots for acetone (left) and methyl ethyl ketone (right)
and two different inlet flow regimes: (198 – 278) sml min−1 (red squares)
and (969 – 997) sml min−1 (black diamonds). The horizontal error bars
represent the uncertainty of the calculated VMRs including the accuracy
of the gas standard and the uncertainty related to the dilution process.
The vertical error bars represent the 95 % confidence interval of the
count rates observed during each dilution step. The dashed lines indicate
the 95 % confidence interval of the Williamson-York-fit (solid lines). The
open red square labeled measurement was discarded from the fit as the
observed count rates were not in steady state.

The strongest increases were observed for formaldehyde (136 %) and acetonitrile

(28 %), whereas for methanol, the count rates were evenly shifted to higher values at

the higher flow rate, resulting in a very similar slope of the regression line.

As a dependence of the instruments sensitivity on the inlet flow rate is unlikely (e.g.

Hayward et al., 2002), sampling line losses due to surface-VOC interactions are more

plausible. Physical adsorption on surfaces or dissolution of soluble compounds in

condensed water are an issue in trace gas analytics (e.g. Neuman et al., 1999). A

higher flow rate decreases the time of interaction with the surfaces and, thus, wall

losses. In turn, more molecules per time reach the instrument resulting in higher count

rates, whereas the sensitivity stays the same. For this reason, the higher flow rate

regime was selected for all subsequent measurements. However, further investigations

(e.g. of a possible temperature and pressure dependence or interferences from previous

measurements), which are out of the scope of this study, are necessary to review this

effect. In particular, the critical surfaces in the used set-up need to be identified and
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subsequently minimized.

In other studies, PFA tubing did not lead to significant wall losses and memory

effects (Karl et al., 2003; de Gouw and Warneke, 2007; Schnitzhofer et al., 2009; Hu

et al., 2011). Kajos et al. (2015) found apparently larger sensitivities when adjusting

the flows with needle valves instead of mass flow controllers. The stainless steel

surfaces of flow controllers are suspected to cause such deviations (de Gouw et al.,

2003b; Taipale et al., 2008; Mikoviny et al., 2010).

For this reason, de Gouw et al. (2003b) maintained a constant flow of the calibration

gas through the pressure reducer, tubing and flow controller, even when no calibration

was performed. During calibration, only the zero air flow rate was varied to change

the dilution mixing ratio. With these measures, the authors achieved a very good

reproducibility of calibration results, even for problematic compounds.

However, the advantages of continuous purging of the calibration gas line with the

expensive gas standard must be carefully weighed against the costs. It might be only

justified when calibrations are done regularly and frequently (e.g. during continuous

field measurements).

The variation of the zero air flow rate instead of the calibration gas flow rate or

both seems reasonable, but unfortunately this could not be realized with the present

set-up, as the pressure at the instrument’s inlet is not actively controlled. Instead the

pressure has to be manually adjusted by balancing the inlet and bypass flow. Any

significant change of one of the flow rates could disturb the balance to such an extent

that the pressure runs out of the operation range and causes an unwanted shut-down.

However, this could be easily changed in future by implementing a function in the

software that holds the inlet pressure constant.

4.3.2. The choice of measurement times

The calibration measurements also revealed that the equilibration times, being the

time until count rates were in steady state, varied considerably between the com-

pounds and different calibration measurements. In general, the longest equilibration

times were found for methanol, but also other compounds showed a similar behavior

at high VMRs (> 10 ppb).

The first methyl ethyl ketone measurement of the experiment shown in Figure 4.4

(open red square) had to be discarded, as the count rates were not stable. This
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Figure 4.5.: Time series of normalized count rates during calibration (shown here are
3 dilution steps) for formaldehyde (scaled to avoid overlap), methanol
and isoprene. For formaldehyde, the scale on the right side) was used.

becomes already evident from the large standard deviation, which rather reflects the

range of the count rate as its statistical noise.

In Figure 4.5, a typical temporal evolution of count rates during an extended

calibration is shown for formaldehyde, methanol and isoprene. For most compounds

of the gas standard (see Table 4.2), count rates were found to be very stable throughout

the different dilution steps, as it is exemplarily shown here for isoprene.

Methanol shows a very slow and pronounced transient response for all three dilution

steps. As discussed in the previous section, surface effects might be related to this and

methanol is known to be particularly affected (de Gouw et al., 2003b). Another cause

might be the low humidity of the diluted calibration gas. Apel et al. (2008) stated

that methanol is not efficiently transferred through tubing under dry conditions. This

is consistent with the findings of Eerdekens et al. (2009), who observed substantially

lower methanol calibration factors for dry conditions. Calibrations using humidified

zero air, which will be part of another PhD thesis (by L. Safadi), will help to

understand such issues in more detail.

It is also noteworthy that the direction from which the methanol count rates approach

the steady state changes after the first step. At the beginning of the second and third

step, count rates peak shortly and then converge to lower count rates. This suggests

that the sequence of VMRs (from high to low values) might play a role. However, the
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same behavior was observed when calibrating in reverse order (Sonderfeld, 2014). For

formaldehyde, only the count rates of the first dilution step (∼ 20 ppb) show a trend,

but in contrast to the methanol signal, the drift is more linear and less pronounced.

It can be assumed that such a drift could be not derived from significantly shorter

measurements.

Although these observations might be not transferable to other calibration set-ups and

instruments and further investigations are essential, it is still conspicuous and should

be pointed out that such calibration time series are rarely shown in the literature.

Instead, only the mean count rates of dilution steps are frequently presented and

plotted versus the respective VMRs to demonstrate the linearity of the instrument’s

response. However, without the disclose of standard deviations for the mean count

rates and the measurement times per dilution step, it is hardly possible to assess

the quality of the calibration from these plots. The very good linearity and high

correlation coefficient may discard from the fact that the measurements can still be

affected by systematic errors.

Kajos et al. (2015) recommended to adjust the duration of each dilution step to

the compound with the longest equilibration time. However, as the flow rates were

manually adjusted in this set-up, significantly longer calibration measurements as the

ones shown in Figure 4.5 were not feasible. In consequence, the number of dilution

steps was reduced to 3, as accuracy was considered more important than quantity.

4.3.3. Results of recurring calibrations

As mentioned earlier, the use of discontinuous calibration methods relies strongly on

the assumption that the instrumental sensitivity does not change between calibrations

(Ammann et al. 2004). However, there is no agreement about the frequency of

calibrations. For continuous field measurements, reported calibration intervals vary

between hours (Custer and Schade, 2007; Brito, 2011; Fares et al., 2012) and weeks

(Jordan et al., 2009b; Kontkanen et al., 2016; Rantala et al., 2016; Hellen et al., 2017).

There are also studies, which rely on a few calibrations and the argument that other

PTR-MS instruments were reported to be very stable (e.g. Sarkar et al., 2016).

Besides this huge discrepancy, it is conspicuous that the variation of derived sen-

sitivities and the handling of data between the calibrations is rarely discussed in

the literature. The studies of de Gouw et al. (2003), Custer and Schade (2007) and

Taipale et al. (2008) constitute exemplary exceptions in this regard.
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Figure 4.6.: Normalized sensitivities derived from 5 calibrations in November – De-
cember 2016. The sole purpose of the dashed lines is to show which
data belong together. The data of methyl vinyl ketone (m/z = 71) and
p-Xylene (m/z = 107) are not displayed, as they are almost identical
to the ones of methyl ethyl ketone (m/z = 73) and toluene (m/z = 93),
respectively. No data is available for methanol on 18 November, as the
count rates did not reach equilibrium within the dilution steps. Error
bars indicate the 95 % confidence interval of the Williamson-York-fit
results. The open diamonds show the mean count rates of H3O

+ (black),
the dimer (H2O)H3O

+ (blue) and O +
2 (red) during the respective cali-

brations.

To assess the reproducibility, the instrument was calibrated 5 times within one month

at intervals of 2 – 10 days. However, in contrast to the above-mentioned studies,

the instrument did not run continuously and was even transported by car between

the first two calibrations, which may have negatively influenced the instrumental

stability.

The results of the recurring calibrations are shown in Figure 4.6. Here, the normalized

sensitivity was used to correct for slight performance drifts of the ion source over the

reviewed time period. However, the picture for the raw count rates is similar, as the
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4. Instrumental characterization of PTRMS-HALO

mean primary ion signal hardly changed.

For most compounds, the calibrations show a good reproducibility with sensitivities

varying by 3 – 6 % relative standard deviation (RSD). There is an apparent increase

in sensitivity between the first two calibrations and a decrease between the last two

calibrations. The sensitivities of methanol (m/z = 33) and formaldehyde (m/z = 31)

follow this general trend, but stand out with much higher differences between the

first two (methanol) and the last two calibrations (methanol and formaldehyde). For

these compounds, the overall variability is found to be considerably higher with 46 %

and 36 % RSD, respectively.

The results of the 3 successive calibrations conducted at 2 day intervals around 20

November 2016 show substantially less variability. Excellent agreement is found for

benzene (0.6 % RSD), toluene (0.6 % RSD) and acetone (0.8 % RSD). Methanol

and formaldehyde again stand out with 10 % and 8 % RSD. The sensitivities of all

other compounds vary by 1 – 3 % RSD from the 4-day average.

The reasons for the higher variability in formaldehyde and methanol sensitivities are

difficult to assess retrospectively. The recorded operational parameters provide no

indication for instrumental changes, e.g. the primary ion yield, the percentages of

other reagent ions and the conditions of the drift tube were stable over the considered

time period.

Changes in humidity of the analyte air could be an issue, as the detection sensitivity

for formaldehyde (Hansel et al., 1997; de Gouw et al., 2003a; Vlasenko et al., 2010;

Warneke et al., 2011) and the transport efficiency of methanol through tubing (Apel

et al., 2008; Eerdekens et al., 2009; Hanson et al., 2009) are known to be humidity

dependent. However, for all calibration zero air of the same quality was taken from

gas cylinders and the percentage of water dimers, a known proxy for ambient water

concentration (Ammann et al., 2006), did not change between calibrations.

As the count rates of both compounds were affected by long and varying equilibration

times during calibration (see Section 4.3.2), it is only reasonable to suspect that the

variance is related to systematic errors during calibration. This assumption is also

shared by several studies reporting high variations in methanol and formaldehyde

calibration results.

Already Spanel and Smith (1997) reported of problems in obtaining reliable mixture

concentrations of methanol due to an unpredictable degree of adsorption on stainless

steel surfaces in selected ion flow tube experiments. De Gouw et al. (2003b) observed
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4.3. Reproducibility

erroneously high and strongly varying calibration results for methanol during the

first days of a field campaign, which they attributed to impurities in the pressure

regulator and/or mass flow controller in the calibration gas line.

Custer and Schade (2007) observed a considerable structure in methanol sensitivities,

when performing calibrations every 8 hours over a period of 3 weeks. Despite some

abrupt shifts related to changes of the instrumental settings, the overall precision of

the methanol sensitivity was estimated to be only 20–30 %.

Hanson et al. (2009) reported that methanol sensitivities for different humidities

were not reproducible when using stainless steel fittings in the calibration set-up.

Also Sonderfeld (2014) observed large differences in methanol calibrations results.

Normalized sensitivities varied between 9.4 and 17.5 ncps ppb−1 without showing a

clear trend.

Kajos et al. (2015) were the first ones investigating the problem more systematically

by comparing a calibration set-up with mass flow controllers to one using stainless

steel needle valves to adjust the flow rates. Subsequent calibrations of two PTR-

MS revealed that the methanol sensitivities were apparently higher for the set-up

consisting of needle valves, which supports the assumption of large wall losses in the

mass flow controllers. Furthermore, the subsequent calibrations with the mass flow

controller set-up showed on average a higher variability in methanol sensitivities (44 %

RSD) compared to the set-up with needle valves (17 % RSD), which substantiates

the unpredictability of the wall effects.

Formaldehyde was not measured in the above-mentioned studies, but Wisthaler et al.

(2008) found a 40 % difference in calibration factors obtained during two successive

days following identical calibration procedures.

Further measurements, which would have gone beyond the scope of this study, are

absolutely necessary to clarify the problem of reproducibility for methanol and

formaldehyde calibration factors.

Continuous calibration methods, simultaneous measurements with another PTR-

MS and measurements with different tubing materials may help to diagnose the

problem. In any case, the known reproducibility and the required uncertainty of the

measurements have to be taken into account when determining the frequency of

calibrations and the usability of collected data. When measuring these compounds

in the field, short calibration intervals are necessary.
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4.4. Limit of detection

According to Equation 2.24 in Section 2.2.4, the statistical noise can be expressed

as

σblank =

√
x̄blank

tdwell

(4.1)

where x̄blank is the mean count rate of the background measurement. Substituting

Equation 4.1 into 2.31 and using x̄blank = α× VMR(x̄blank) leads to the important

relationship

VMR(xLOD) ∝ k

√
VMR(x̄blank)

tdwell · α
, (4.2)

indicating that the LOD can be in generally reduced in three different ways:

� Reduction of the chemical background VMR(x̄blank)

� Extension of the measurement time tdwell

� Enhancement of the instrumental sensitivity α

In the following, the individual options are discussed with regard to their use in

PTRMS-HALO.

Minimizing the chemical background

As the LOD is approximately proportional to the square root of the background

signal, it is essential to keep the chemical background of the instrument as low as

possible. For this reason, the gas inlet system of PTRMS-HALO has been designed

so that the sampled air is not exposed to mass flow or pressure controllers, which

have some non-passivated surfaces (see flow paths in Figure 3.7 and discussion

in Section 4.3.1). In addition, only relatively inert and impermeable tubing and

fitting materials (PFA, PEEK, PVDF) have been used. To remove remaining organic

residues (e.g. human skin oils) from the surfaces, the entire system was purged several

hours with O3-enriched air (500–1000 ppb) to oxidize contaminants attached at the

inner surfaces of the sampling system (cf. Wisthaler et al., 2005; Wisthaler and

Weschler, 2010).

The chemical background can be further minimized by continuous pumping. However,

for airborne instruments like PTRMS-HALO, this is hardly possible, as aircraft power

is only available for a limited time before and after flights. To avoid that contaminants
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4.4. Limit of detection

enter the vacuum system and settle on the surfaces while the instrument is switched

off, filling the vacuum system with clean air represents a viable alternative. However,

the effect strongly depends on the purity of the air. To improve this, the previous

version of gas inlet system has been modified so that air used for venting is passed

through the catalytic converter before entering the mass spectrometer. Furthermore

the design and the position of the catalytic converter have been changed so that

the degradation process of VOCs, which could settle down on the surfaces, is more

effective (see Section 3.3.1).

Extending the measurement time

Lower detection limits can always be obtained by enhancing the measurement or

dwell time tdwell. As the statistical noise is inversely proportional to the square root

of tdwell, the LOD can be ideally reduced by half when increasing the dwell time by

a factor of 4. Although this can be easily realized, the considerable drawback of such

changes is the lower time resolution of measurements. A decrease of the dwell times

for all masses reduces the time resolution by the same factor.

Here, most stationary ground-based measurements benefit from the rather slow

alterations of ambient VOC concentrations. However, there are a few exceptions: For

the determination of surface–atmosphere fluxes, sampling frequencies in the order

of 5–20 Hz are necessary to resolve all eddies contributing to the vertical transport

(Lenschow, 1995; Langford et al., 2009).

Similar time resolutions are required for measurements onboard driving vehicles

(Roger et al., 2006; Zavala et al., 2006; Geiger, 2015). Roger et al. (2006) used dwell

times of 0.1 s, resulting in a temporal resolution of ∼1 Hz and detection limits

between 1 ppb (toluene) and 5 ppb (methanol). Still, these detection limits were

more than sufficient to detect the intercepted diluted exhaust plumes of cars driving

in front of the mobile laboratory.

However, the challenge of airborne measurements in the upper troposphere lies in the

coincidence of low VMRs (from a few hundred ppt to less than 10 ppt) and the high

speed of aircraft (50–260 m s−1). The latter directly converts the time resolution of

the device into the spatial resolution of the measurements.

As the HALO and CARIBIC aircraft are both jet aircraft with normal cruising speeds

of 236 and 251 m s−1, a high sampling frequency is particularly crucial. Therefore,
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a general extension of the dwell times to achieve lower detection limits is not an

option for instruments like PTRMS-HALO, as it significantly deteriorates the spatial

resolution of the measurements.

Maximizing the sensitivity

As shown in Section 4.2, the sensitivity of PTRMS-HALO could be significantly

improved within the last years due to modifications of the ion source design, orifice

diameters and optimization of electrode voltages. According to Equation 4.2, the on

average achieved fourfold increase of the sensitivity reduced the LOD by a factor

of 2, from a purely mathematical point of view. If this is indeed the case, this is a

substantial step forward towards expanding the number of species detectable in the

upper troposphere and lower stratosphere.

Looking at all above-mentioned options, it also becomes clear that the only possibility

to further improve the LOD, if the chemical background is reduced to its minimum,

is to find new measures to enhance the instrumental sensitivity.

4.4.1. Measurement method

According to the definition of the IUPAC, the LOD can be experimentally obtained by

measuring the background signal (see Equation 2.31). However, a few considerations

are necessary:

To determine the LOD for a specific measurement, sample air must be fed through

the catalytic converter of the gas inlet system for the same measurement times

tdwell per mass as for sample measurement. However, as the objective of this chapter

is not to determine the LOD of individual measurements, but to characterize the

current status of the instrument in a reproducible manner, synthetic air (Alphagas;

AirLiquide, Paris, France) was fed through the catalytic converter and tdwell was set to

5 seconds for all masses. Furthermore, it must be decided on the signal-to-noise-ratio

k of interest (see Equation 2.31). Although ratios of 2 and 3 are commonly used in

the PTR-MS community to determine the LOD, here, the more conservative factor

3 is used, corresponding to a confidence interval of 99.7 (Ellis and Mayhew, 2014).

When determining the LOD, the duration of the considered background mea-

surement may also influence its value, as drifts in the signal increase the LOD.
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Figure 4.7.: Time series of a one-day acetonitrile background measurement (upper
panel) using synthetic air fed through the internal catalytic converter
(tdwell = 5 s). In the lower panel, 3 times the moving standard deviation
is shown for 4 different window length (15, 30, 60, 120 minutes).

Taipale et al. (2008) chose a ”representative period” of 48 successive measurements,

corresponding to a duration of 30 minutes.

As the choice seems to be somewhat arbitrary, a one-day measurement was conducted

to investigate the variation of the LOD with time and the number of selected measure-

ments. The temporal evolution of the LOD was calculated using a moving standard

deviation with window lengths of 12, 24, 48 and 96 subsequent 5s-measurements

(corresponding to overall time periods of 15, 30, 60 and 120 minutes, as several

compounds were measured in a ”duty cycle”).

In Figure 4.7, the results are exemplarily shown for acetonitrile. As expected, the

overall variability decreases with the number of measurements considered for each

LOD. When using only a small number of measurements, but having the choice to

select a period within a longer measurement series, it can be tempting to choose

one of the periods with lower noise. However, it is evident that such a minimum
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window length of the moving standard deviation
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Figure 4.8.: Variation of the mean LOD with the window length of (i.e. the number
of adjoined 5s-measurements included in) the moving standard deviation
for acetonitrile (left panel) and methanol (right panel). The calculation
of the mean LODs are based on a one-day background measurement,
including the first two hours (black curves) and without the first two
hours (red curves).

LOD is not applicable to most measurements and thus not representative of the

overall instrumental performance, in particularly during a field measurement, which

typically lasts several hours. The same is true when selecting only the period showing

the highest noise, although this would lead to a conservative estimate of the LOD.

Here, the on average obtained LOD seems to be the appropriate parameter to describe

the true performance of the instrument over a longer measurement. In contrast to the

minimum and maximum LOD, the mean value is also less sensitive to the window

length of the moving standard deviation.

In Figure 4.8, the variation of the mean LOD with the window length is exemplarily

shown for acetonitrile and methanol. For both compounds, the mean shows a strong

increase at small window lengths and reaches a plateau at∼20 measurements. Changes

in the background signal lead to a further increase at larger window lengths.

For acetonitrile, the abrupt increase at very large window lengths is caused by the

decline of the background signal during the first two hours, as the analysis without

the first two hours shows (red curve). For methanol, the plateau ends earlier at a

windows length of ∼100 5s-measurements, which indicates that the background signal
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is affected by drifts of the same time scale (∼2 hours). In contrast, too small windows

lengths are mainly affected by poor statistics, as the large changes show. Therefore,

the window length corresponding to the begin of the plateau (20 measurements)

seems to be an adequate choice.

4.4.2. Results

The mean LOD was calculated for each compound based on the moving standard

deviation of 20 measurements. In Table 4.4, the results are shown and compared

with literature values and typical background concentrations observed in the upper

troposphere.

LOD [ppt] UT Background
Compound HALO CARIBIC Literature? VMRs [ppt]

Formaldehyde 170 318 20–230

Methanol 353 619 428 200–2000

Acetonitrile 15 50 76 100–200

Acetaldehyde 42 108 255 60–200

Acetone 27 72 85 200–900

DMS 18 53 44 < 5

Isoprene 32 60 86 < 20

MVK 14 47 < 10

MEK 19 112 < 15

Benzene 19 42 73 < 30

Toluene 18 44 97 < 8

p-Xylene 33 73 122 < 4

α-Pinene 48 218 < 20

Table 4.4.: Mean detection limits of PTRMS-HALO, the hitherto used CARIBC-
PTRMS and of other PTR-MS reported on in the literature. All values
refer to 5 s dwell time and a S/N ratio of 3.
? Averages based on 14 randomly selected studies providing limits of detection, namely: Warneke

and de Gouw et al. (2001), de Gouw et al. (2003), Karl et al. (2009), Taipale et al. (2008), Vlasenko

et al. (2009), Graus et al. (2010), Inomata et al. (2010), Sjostedt et al. (2011), Fares et al. (2012),

Brilli et al. (2014), Copeland et al. (2014), Müller et al. (2014), Jardine et al. (2015), and Yuan et

al. (2016). Dwell times tdwell were extrapolated to 5 seconds using a correction factor of
√
tdwell/5 s,

as derived from Poisson counting statistics.
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The PTRMS-HALO stands out with detection limits of only a few tens of ppt for

most compounds, which is considerably lower than the average of values reported for

PTR-MS in the literature. The higher detection limits of PTR-MS described in the

literature are not surprising; Most PTR-MS instruments are used for ground-based

measurements, where VMRs are at least 1–2 orders of magnitude higher than in the

upper troposphere and, thus, the necessity of lower detection limits is not given.

Quantification of the background VMRs in the UTLS is particularly important to

derive climatologies. When comparing the detection limits of the PTRMS-HALO

to known background VMRs in the upper troposphere, it becomes clear, that for

acetonitrile, acetaldehyde, acetone and benzene the atmospheric background can be

quantified with high certainty for all seasons and regions. The detection limits for

formaldehyde and methanol lie in the range of reported background VMRs. It is

therefore worth considering to enhance the dwell times of the latter species, whereas

the dwell times of acetonitrile and acetone could be decreased (e.g. to 1 second)

without great disadvantages except a larger noise. For the shorter-lived species,

detection limits are mainly below the background VMRs. Measurement of these

species in the UTLS are rare and the stated background values partly rely on very

few measurements.

With the current detection limits for the shorter-lived species, only events of strong

convection might be observed in the UTLS. But even if it is not possible to detect

the upper tropospheric background of these compounds at all times, the detection

in pollution plumes with elevated VMRs provides valuable information about the

sources of the pollution. In this regard, toluene might be particularly interesting, as

it has a considerably longer atmospheric lifetime (∼ 2 days) compared to the other

short-lived compounds in the calibration gas and the same emission sources as the

longer-lived benzene (∼ 10 days), namely vehicle exhaust and fuel evaporation (Bravo

et al., 2002; Li et al., 2011; Correa et al., 2012). Due to the known emissions ratios, but

different atmospheric lifetimes, the ratio of benzene and toluene in photochemically

aged pollution plumes can be used to derive the age of air mass (e.g. Roberts et al.,

1984; de Gouw et al., 2005; Vlasenko et al., 2009; Warneke et al., 2013).

4.4.3. Interferences on m/z = 33

The by far highest detection limit was encountered for methanol (353 ppt). The

main reason for this is the high background signal (∼ 3800 cps) at the mass of
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Figure 4.9.: Schematic section through the region between the drift tube (DT) and
the entrance of the quadrupole. The electrodes, whose voltages were
alternated, are colored differently.

protonated methanol (m/z = 33), which has been also observed for other PTR-MS

(Ruuskanen, 2009; Misztal et al., 2011). Using a high resolution PTR-TOF, Müller et

al. (2014) identified protonated molecular oxygen, HO+
2 , as the main contributor to

the background signal on m/z = 33. The 16O17O+ isotopologue could not be resolved

from the HO+
2 peak, but its contribution to the HO+

2 -signal was estimated to be in

the order of 15 %. For PTRMS-HALO, the 16O17O+ contribution was calculated to

be about 11 % of the background signal based on the 16O17O+/16O+
2 -ratio and the

observed count rate of 16O+
2 .

As oxygen has a lower proton affinity than that of water, HO+
2 can only be formed

endothermically. Therefore, the production must take place in one of the extraction

regions underneath the drift tube (see Figure 4.9), where the pressure is sequentially

reduced from 2.3 hPa to values below 10−5 hPa (Müller et al., 2014; Li et al., 2014).

In PTR-MS, there are two stages of ion extraction, one directly at the exit of the

drift tube and another one at the nose cone.

In order to investigate the effect of HO+
2 formation in this regions, the electric fields

in the two stages were varied, whereas all other fields were left constant. So far, the

”standard settings” resulted in a potential difference ∆U1 = 16.5 V between the drift

tube exit and nose cone and ∆U2 = 104 V between the nose cone and first ion lens.

For variation of ∆U1, the voltages of the nose cone and the quadrupole’s reference

potential were changed to the same extent. For variation of ∆U2, only the reference
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potential of the quadrupole was changed.
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Figure 4.10.: Variation of the background signal on m/z = 33 and the H3O+ signal
for different potential differences between the drift tube exit and nose
cone (∆U1) and between the nose cone and first ion lens (∆U2).

In Figure 4.10 it is shown how the background signal at m/z = 33 varies when

∆U1 (left panel) or ∆U2 (right panel) are reduced compared to the standard values,

which have been found to be optimal for the detection of acetone. The signal shows

a clear dependence on both ∆U1 and ∆U2 and decreases strongly (assumably with

an exponential rate) when ∆U1 or ∆U2 is reduced. A decrease of either ∆U1 or ∆U2

by 4 V or decreasing both by 2 V has a similar effect on the background.

In general, the decrease can be a cumulative effect of two causes: The reduction

of the fields can decrease the production of HO+
2 and the overall ion transmission.

To investigate, which effect dominates, the transmission of other ions has to be

analyzed. Therefore, in Figure 4.10, the loss in transmission is exemplarily shown

for the primary ions, but all other masses were affected likewise. For both ∆U1 and

∆U2, the ion transmission shows a plateau towards higher field strengths, which

is attained at 12.5 V and 100 V, respectively. Consequently, also the contribution
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Compound Sensitivity [cps ppb−1] Relative change [%]
∆U1 = 16.5 V 12.5 V 10.5 V 16.5–12.5 V 16.5–10.5 V

Formaldehyde 217 195 114 10 48

Methanol 243 218 119 10 51

Acetonitrile 553 453 260 19 58

Acetaldehyde 491 396 209 19 58

Acetone 571 426 229 25 60

DMS 369 284 151 23 59

Isoprene 200 169 91 15 54

MVK 521 393 204 25 61

MEK 521 375 191 28 63

Benzene 341 235 123 31 64

Toluene 362 243 115 33 68

p-Xylene 368 214 105 42 72

α-Pinene 117 72 35 39 70

Table 4.5.: Variation of the sensitivities for different potential differences ∆U1 between
the drift tube exit and nose cone.

of the 16O17O+ isotopologue (not shown in the figure) to the background signal is

relatively stable (∼ 375 cps) for ∆U1 > 12.5 V and ∆U2 > 100 V. Therefore, it can

be concluded that the strong changes of the background signal between 12.5–16.5 V

(∆U1) and 100–104 V (∆U1) are mainly related to changes in the production rate of

HO+
2 .

As the detection limit is closely linked to both the background level and the transmis-

sion efficiency, a compromise between the reduction of the HO+
2 production and the

decrease in transmission, which affects the instrument’s sensitivity for all compounds,

has to be found. In order to fully assess the impact, calibrations were conducted for

three values of ∆U1 (10.5 V, 12.5 V, 16.5 V). The absolute sensitivities and relative

changes are given in Table 4.5.

The decrease in sensitivity due to a reduced electrical field was lowest for light-weight

compounds and increased with mass. The same behavior was observed for calibrations

with different values of ∆U2. However, due to the instability of the methanol signal,

the latter calibration measurements could not be fully evaluated and, thus, are not

shown here.
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Compound LOD [ppt]
∆U1 = 16.5 V 12.5 V 10.5 V

Formaldehyde 170 162 237

Methanol 353 188 270

Acetonitrile 15 23 41

Acetaldehyde 42 54 83

Acetone 27 36 61

DMS 18 33 64

Isoprene 32 54 101

MVK 14 22 47

MEK 19 26 54

Benzene 19 39 79

Toluene 18 37 81

p-Xylene 33 59 108

α-Pinene 48 114 272

Table 4.6.: Variation of the detection limits for different potential differences ∆U1

between the drift tube exit and nose cone.

The alteration of both electrical fields probably changed the ion beam shape at the

entrance of the quadrupole. According to Muntean (1995), a larger beam divergence

at the quadrupole entrance shifts the maximum transmission to small values, which

is consistent with the results.

In the following, the sensitivities were used to calculate the mean detection limits

using 12-hour background measurements for each ∆U1. The results are summarized

in Table 4.6. Except for methanol and formaldehyde, all detection limits considerably

increased when ∆U1 was reduced. As the background signals of the other compounds

were not affected by HO+
2 and thus did not significantly alter with ∆U1, the increase

of the detection limit is mainly caused by the lower sensitivities.

For methanol, the initial reduction of ∆U1 by 4 V led to a decrease in LOD by

a factor of ∼2. Further reduction of ∆U1 led to an increase of the LOD, as the

transmission loss starts to dominate over the reduction of HO+
2 . Therefore, a further

improvement of the LOD for methanol due to adjustment of the electrical fields in

the extraction region seems to be unlikely. However, adjusting the electrical fields

to improve the detection limits for the compounds of interest should be considered
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in the future. Changing ∆U1 to 12.5 V should not affect UTLS measurement of

acetonitrile, acetaldehyde and acetone, but detection of benzene and toluene becomes

even more challenging (see Table 4.4). An alternative might be to switch between

12.5 V and 16.5 V within the measurement cycle, but response times have to be

carefully evaluated.

4.5. Detection of other compounds

As shown in Section 4.2, the sensitivities of many VOCs can be inferred by calibration

relative to a standard, without knowing the proton transfer reaction rate coefficients

k or transmission efficiencies Γ of these VOCs (cf. Equation 2.10). However, this

limits quantification to the compounds contained in the gas standard. Ideally, it

contains all species of interest. Unfortunately, there are compounds, which are either

not stable in gas cylinders or not compatible with other gases of the mixture. In

such cases, calibration with permeation tubes is an alternative (Wyche et al., 2009;

Brito and Zahn, 2011; Haase et al., 2012), but requires a more sophisticated set-up

and proper handling.

Another, in the early days of PTR-MS frequently applied, but less accurate way to

determine the sensitivity, is to use reaction rate constants reported in the literature

and instrument-specific transmission coefficients. The latter can be experimentally

determined using a calibration with a gas standard. For the compounds present in

the standard, the relative transmission coefficients can be calculated by rearranging

Equation 2.10 as follows:

Γ[MH+]rel =
Γ[MH+]

Γ[H3O
+]

=
R T

k tr p NA VMR(M)
· i(MH+)

i(H3O
+)

(4.3)

The relationship between the VMR of M and the count rates of MH+ and H3O
+

is determined by the calibration. The reaction time tr is calculated according to

Equation 2.20 and the compound-specific reaction rate constant kM is taken from

the literature (Zhao and Zhang, 2004). The reaction rate constants used here are

summarized in Table 4.7.

The derived transmission coefficients are then used to determine the relative trans-

mission curve, which describes how the transmission varies with m/z for the given

instrument. For quadrupole mass spectrometers, this relationship can be approxi-

117



4. Instrumental characterization of PTRMS-HALO

m/z Compound k[10−9 cm3 s−1]

31 Formaldehyde 2.92

33 Methanol 2.33

42 Acetonitrile 4.74

45 Acetaldehyde 3.36

59 Acetone 3.00

79 Benzene 1.97

93 Toluene 2.12

93 p-Xylene 2.27

137 α-pinene 2.44

Table 4.7.: Proton transfer reaction rate constants for different VOCs (taken from
by Zhao and Zhang, 2004).

mated with a curve of the empirical form

Γ[MH+]rel =
c
(
1 + ax−b

)−0.25

1 + exp(x−b
d

)
(4.4)

with x = m/z (Halbritter, 2011). Figure 4.11 shows the typical form of this curve for

quadrupole mass spectrometer (Halbritter, 2011) and the ones derived for the PTRMS-

HALO based on three different calibrations. The calculated relative transmissions of

the PTRMS-HALO agree moderately well with the known transmission behavior

of quadrupole mass analyzer. Nevertheless, for some compounds, deviations of at

least ∼30 % are observed between the fitted curve and the underlying calculated

transmission coefficients (filled squares and open diamonds).

Based on the relative transmission curve and zero air measurements it is e.g. possible

to estimate the detection limits of compounds, which are not present in the gas

standard, but planned to be measured in the future. For the instruments of the

author’s group, this includes acetic acid, formic acid and peroxyacetyl nitrate (PAN),

which are important photoproducts of other trace gases and have been measured by

PTR-MS in other studies.

In Table 4.8, the used reaction rate constants, derived transmission coefficients and

the resulting sensitivities as well as detection limits are summarized. Protonated

PAN has a m/z value of 122, but Hansel and Wisthaler (2000) found that ∼95 % of
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Figure 4.11.: Relative transmission curves: The black dashed line shows the trans-
mission behavior of another quadrupole-based PTR-MS (Halbritter,
2011). The colored solid lines are the result of fitting Equation 4.4 to
the transmission values (filled squares and open diamonds) calculated
with Equation 4.3 using the reaction rate constants in Table 4.7.

m/z Compound kH3O+ Trel bgnd Sensitivity LOD
[10−9 cm3 s−1] [cps] [cps ppb−1] [ppt]

47 Formic acid 2.02 2.6 834 327 117

61 Acetic acid 2.27 3.6 78 513 27

77 Peroxyacetyl nitrate 4.50 3.7 28 1046 5

Table 4.8.: Calculation of sensitivities and detection limits based on the fundamental
physical conditions in the drift tube for selected compounds, which are
not present in the currently used gas standard. The relative transmission
coefficients were determined from a mean transmission curve. The proton
transfer reaction rates are taken from Zhao and Zhang (2004), except for
the one of peroxyacetyl nitrate, which was taken from Hastie et al. (2010).
The detection limits are stated for a S/N ratio of 3 and dwell times of 5 s.

119



4. Instrumental characterization of PTRMS-HALO

the protonated PAN reacts with water in the drift tube to form CH3C(O)OOHH+,

which can be detected at m/z = 77.

The derived detection limit for formic acid (117 ppt) suffers from a large chemical

background on the channel, where protonated formic acid (m/z = 47) is detected,

consistent with the finding of de Gouw et al. (2003b). Reported VMRs of formic

acid are comparable to or below the estimated LOD. For the upper troposphere at

Northern Hemisphere mid latitudes, Grutter et al. (2010) derived mean monthly

formic acid VMRs of 100-110 ppt in summer and ∼45 ppt in winter from MIPAS

spectra, which is consistent with the ACE-FTS observations (González Abad et al.,

2009). Reiner et al. (1999) measured mean UTLS VMRs of 59–216 ppt during an

aircraft campaign in fall 1999 over Germany. To observe the upper tropospheric

background of formic acid during all seasons, it is therefore important to eliminate

the high instrumental background or to further increase the sensitivity.

For the other two compounds, the chemical background is 10–30 times smaller and

estimated detection limits are considerably lower. For the case of acetic acid, the

derived LOD is 27 ppt. In the free troposphere, acetic acid is present in amounts

comparable to or larger than formic acid (Madronich et al., 1990; Seinfeld, 1999;

Treadaway, 2015). Talbot et al. (1990) found concentrations of 200 ppt in the

free troposphere above the Amazonian rain forest. Reiner et al. (1999) observed

mean values of 110-357 ppt in the UTLS. This is in good agreement with recently

obtained vertical profiles above the US (Treadaway, 2015). As the estimated LOD is

significantly lower than the reported values, acetic acid can be probably detected

with PTRMS-HALO.

The same is true for PAN, which has been more frequently measured in the UTLS

than acetic acid. Moore and Remedios (2010) used MIPAS measurements of 2003

to retrieve PAN VMRs between 300–600 ppt in the Northern Hemisphere UTLS in

summer and mean VMRs of less than 250 ppt in winter. The VMRs derived from

ACE-FTS measurements are generally lower with zonal means of 200-300 ppt in

summer and 50 ppt in winter at Northern Hemisphere midlatitudes (Tereszchuk et

al., 2013b). The summer value is in good agreement with the in-situ measurements

of Alvarado et al. (2010) and Roiger et al. (2011), who observed PAN VMRs of

∼300 ppt in the upper troposphere. A few studies have demonstrated that PAN can

be detected by PTR-MS at m/z = 77 (Hansel and Wisthaler, 2000; de Gouw et

al., 2003b; Kaser et al., 2013). As the typical VMRs in the UTLS are much higher

than the estimated LOD, PAN should be detectable with the HALO PTR-MS, but
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calibration must be given particular attention. Due to the instability of PAN, it

needs to be synthesized in-situ.

4.6. Summary and conclusions

In this chapter, the performance of the final version of PTRMS-HALO is determined

and compared to other instruments in terms of compound-specific sensitivities and

detection limits.

Comparisons with earlier development stages of PTRMS-HALO reveal that the

sensitivities could be improved by a factor between 3 and 5, depending on species.

In general, the completed instrument features sensitivities, which are twice as large

as the averages of sensitivities reported in the literature.

This achievement is of great importance for the intended airborne measurements

in the UTLS. This is due to the fact that an increase in sensitivity is commonly

accompanied by an improvement of the signal-to-noise ratio, which in turn is beneficial

for two reasons. First, measurements with a specific precision can be obtained more

rapidly and secondly, the detection limits become smaller. Both effects are of great

significance for airborne measurements in the UTLS, where VOC concentrations are

particularly small. A high time resolution directly implies a high spatial resolution,

enabling the detection of small-scaled atmospheric processes, while lower detection

limits allow for the measurement of further species, which have been not quantifiable

so far. The final version of PTRMS-HALO stands out with detection limits below

50ppt (using a dwell time of 5 s and a confidence level of 99.7 %) for all considered

species except formaldehyde (170 ppt) and methanol (353 ppt).

As much of the knowledge about the atmosphere so far has been driven by what

can be measured and, if so, how fast it can be measured (Williams and Koppmann,

2007; Roscoe and Clemitshaw, 1997), the new airborne PTRMS-HALO is of great

value for the community of atmospheric sciences and its ongoing striving for a better

understanding of the atmosphere.

Besides the instrumental characterization of PTRMS-HALO, the existing calibration

set-up und procedure is evaluated with regard to potential error sources. Subsequent

calibrations performed on 5 days within a time period of 3 weeks show that apparently

the sensitivities for formaldehyde and methanol vary considerably with time (36–

46 % RSD). However, as the signals of these compounds also need significantly more
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4. Instrumental characterization of PTRMS-HALO

time to stabilize after a change in concentration, it is assumed that uncontrollable

wall losses of these species led to this situation. Further investigations as well as a

modification of the calibration set-up, if the assumption turns out to be true, are

strongly recommended.
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5. Acetone–CO enhancements in the

upper troposphere

The presence of acetone (CH3COCH3) in the UTLS was first detected in the early

1980s by Arnold and coworkers (Hauck and Arnold, 1984; Arnold and Hauck, 1985;

Arnold et al., 1986). Since then it has been measured during several research aircraft

campaigns (e.g. Singh et al., 1994, 1995; Scheeren et al., 2003). Besides being

the second most abundant non-methane VOC in the troposphere after methanol

(Koppmann and Wildt, 2007), it is considered to be a key species in UT chemistry

(Singh et al., 1995; Arnold et al., 1997; Fischer et al., 2012; Neumaier et al., 2014).

In the dry extratropical UT, acetone constitutes an important source of HOx radicals

(e.g. Singh et al., 1995; McKeen et al., 1997; Folkins and Chatfield, 2000; Neumaier et

al., 2014). At high-NOx levels, acetone can form peroxyacetyl nitrate (PAN), which

acts as a temporary reservoir for NOx and thus, enables long-range transport of

reactive nitrogen (Singh et al., 1986, 1992; Folkins and Chatfield, 2000; Fischer et

al., 2014).

Consequently, acetone has an important impact on the budgets of HOx and NOx,

which both play a central role in atmospheric processes, including the formation of

tropospheric ozone, the production of secondary organic aerosols and the removal

of greenhouse gases (e.g. Monks, 2005). However, to assess these effects, the spatial

and temporal variability of tropospheric acetone must be well known.

During several research aircraft campaigns, a high variability of acetone VMRs has

been observed. Nevertheless, due to the limited temporal and spatial coverage of the

campaigns, it was not possible to derive a global acetone climatology.

To tackle this problem, efforts have been made to retrieve acetone from ACE-FTS

(Coheur et al., 2007; Harrison et al., 2011; Tereszchuk et al., 2013; Dufour et al.,

2016) and MIPAS (Moore et al., 2012) satellite data, but the signature of acetone is

hard to detect (Stiller et al., 2004; Waterfall et al., 2004) and the vertical resolution
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5. Acetone–CO enhancements in the upper troposphere

of the respective instruments is limited to 2–3 km (Moore et al., 2012; Dufour et al.,

2016). Therefore, limited acetone data have been provided this way.

By contrast, all these deficiencies do not apply to the CARIBIC project (see Section

1.3.1). Already since 2006, atmospheric acetone is regularly measured onboard the

CARIBIC passenger aircraft with high spatial resolution and coverage. As a result,

the knowledge about the seasonal and spatial distribution could be significantly

improved (Sprung and Zahn, 2010; Elias et al., 2011; Baker et al., 2014). In general,

acetone VMRs are highest in the Northern hemisphere with mean values between

200 ppt in winter and 1200 ppt in summer in the extratropical UT (Sprung and

Zahn, 2010; Neumaier et al., 2014; Dufour et al., 2016).

Despite these achievements, studies about the global acetone budget diverge consider-

ably with regard to their source and sink estimates (e.g. Jacob et al., 2002; Fischer et

al., 2012; Khan et al., 2015). Current global source estimates range from 42.5 Tg a−1

(Arnold et al., 2005) to 127 Tg a−1 (Elias et al., 2011). Therefore, it is important to

further constrain the total acetone source and its contributors. In this chapter, the

large CARIBIC in-situ data set of acetone and CO is used for this purpose. During

several research aircraft campaigns in the 1990s, a good correlation between acetone

and CO VMRs has been observed (de Reus et al., 2003). To the author’s knowledge,

Singh et al. (1994) were the first that reported on this correlation and utilized it to

better assess the acetone sources.

In Section 5.1, the current knowledge about the sources and sinks of acetone is

reviewed. The concept of enhancement ratios is introduced in Section 5.2. In Section

5.3, a new approach to detect physically meaningful correlations of acetone and

CO in the CARIBIC data set is presented. The temporal evolution of acetone-CO

enhancement ratios is discussed in Section 5.4. The sections thereafter comprise

the results of the comprehensive data analysis including top-down estimates for the

North American (Section 5.8) and Southeast Asian (Section 5.9) acetone sources.

The study is concluded in Section 5.10 by providing a summary and outlook.

Please note that this study has been published under the title ”Acetone–CO en-

hancement ratios in the upper troposphere based on 7 years of CARIBIC data: new

insights and estimates of regional acetone fluxes” by Fischbeck et al. (2017) in the

Journal of Atmospheric Chemistry and Physics (ACP)†. The following parts of this

chapter have been therefore mainly adopted from this publication.

†The interactive discussion (review process) is available on the following website:
https://www.atmos-chem-phys.net/17/1985/2017/acp-17-1985-2017-discussion.html
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5.1. Sources and sinks of acetone

5.1. Sources and sinks of acetone

Acetone is directly emitted into the atmosphere by anthropogenic and biogenic

sources as well as formed in situ by the oxidation of precursor compounds (e.g. Jacob

et al., 2002)

Biogenic sources (including secondary production from biogenic precursors) are

believed to account for ∼ 50–70 % of the total acetone emissions (Jacob et al., 2002;

Fischer et al., 2012; Hu et al., 2013; Khan et al., 2015). This is also supported by

CARIBIC observations in the extratropical UTLS (see Figure 5.1). The observed

mean VMRs of acetone follow the same seasonal cycle as the biogenic emissions

provided in the MEGAN-MACC inventory (Sindelarova et al., 2014).

Figure 5.1.: Seasonal variation of acetone VMRs around the chemical tropopause
(dashed line) as observed with IAGOS-CARIBIC at Northern Hemi-
sphere midlatitudes (23.5°N – 66.5°N). The underlying data are monthly
averages using 500 m altitude bins. Superimposed, the seasonal cycle
of biogenic acetone emissions (grey line) is shown as derived from the
MEGAN-MACC (Sindelarova et al., 2014) averaged over the period
2000–2010. Figure adopted from Sprung and Zahn (2010).
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5. Acetone–CO enhancements in the upper troposphere

Direct biogenic emissions have been identified from trees (Isodorov et al., 1985),

grasslands (Kirstine et al., 1998) and decaying plant matter (Warneke et al., 1999).

The terrestrial biosphere also emits methylbutenol (Goldan et al., 1993; Harley et al.,

1998) and large amounts of monoterpenes (Guenther et al., 2012), which are rapidly

oxidized in the atmosphere and lead to the production of secondary acetone. Several

laboratory studies have been conducted to determine the acetone yields from biogenic

precursors (e.g. Calogirou et al., 1999; Orlando et al., 2000; Lee et al., 2006).

Direct anthropogenic emissions of acetone include contributions from solvent use

(Singh et al., 1994), landfills (Brosseau and Heitz, 1993), car exhaust (Smith et al.,

2002, 2004) and industrial processes, that produce or use acetone to manufacture

plastics, fibers and other chemicals. The direct emissions are however considered to

account for less than 5 % of the total acetone source (Singh et al., 1994, 2000; Jacob

et al., 2002). Most anthropogenic acetone is produced in-situ in the atmosphere

by the OH oxidation of isoalkanes. Until recently, propane was thought to be the

dominant acetone precursor accounting for ∼ 30 % of the total acetone budget (Fischer

et al., 2012). However, the latest STOCHEM-CRI model calculations by Khan et

al. (2015) suggest that oxidation of short-lived biogenic monoterpenes such as α-

pinene and β-pinene could account for more than 60 % of atmospheric acetone with

propane oxidation being much less important (∼ 12 %). The contribution from C4-

to C5-alkanes is expected to be 6–7 % (Jacob et al., 2002; Fischer et al., 2012).

Beside the above-mentioned sources, acetone and its precursors are also emitted from

biomass burning (BB) (Holzinger et al., 1999, 2005) with an estimated contribution

of ∼ 4–10 % to the global source (Jacob et al., 2002; Singh et al., 2004; Fischer et al.,

2012). Furthermore, several studies inferred a large oceanic source of acetone (Kieber

et al., 1990; Nemecek-Marshall et al., 1995; Zhou and Mopper, 1997; Singh et al.,

2001). Meanwhile, the role of the ocean as a source has been reconsidered (Marandino

et al., 2005). It was found that the ocean can be a source and sink of acetone, but on

a global scale, it is thought to be in near-equilibrium with the atmosphere (Fischer

et al., 2012).

The main tropospheric sinks of acetone are oxidation by OH and photolysis. Dry

deposition is considered to be a further relevant sink (e.g. Jacob et al., 2002).

Altogether, the sinks lead to an overall tropospheric mean lifetime (Equation 6.2) in

the range of 14–35 days (Jacob et al., 2002; Schade and Goldstein, 2006; Fischer et

al., 2012; Hu et al., 2013; Khan et al., 2015; Weimer et al., 2017).
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5.2. Emission and enhancement ratios

A powerful tool for quantifying emissions is the analysis of enhancement ratios

(EnRs) in plumes (e.g. Singh et al., 2004; Lai et al., 2011). The EnR is obtained by

dividing the plume enhancement of a species X (above to the background) by the

enhancement of another species Y (Lefer et al., 1994; Lee et al., 1997; Mauzerall et

al., 1998):

EnR =
[X]plume − [X]bgnd

[Y ]plume − [Y ]bgnd

. (5.1)

In practice, it is either determined by measuring the VMRs of X and Y inside

and outside the plume (e.g. Simpson et al., 2011) or from continuous airborne

measurements during plume passage (see Figure 5.2) (Yokelson et al., 2013). With
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Figure 5.2.: Left: Schematic drawing of a biomass burning plume and its trans-
port from the planetary boundary layer (PBL) into the upper tropo-
sphere (UT), where sampling takes place. Adapted from Mauzerall et al.
(1998). Right: Acetone plotted versus CO concentrations. Black-filled
square (plume PBL): acetone–CO concentration in the fresh plume near
the ground, which initially mixes with adjacent background (bgnd) air of
the PBL (open square, bgnd PBL). When the resulting plume (full circle)
rises into the UT, the enhancement of acetone and CO are reduced as
the plume mixes with background air of the UT (open circle, bgnd UT).
In an ideal case, concentrations measured during plume passage lie on
the UT mixing line. The slope of the mixing lines, equivalent to EnR
(see Eq. 5.1), may differ considerably in the PBL and the UT. Adopted
from Fischbeck et al. (2017).
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ER Air mass, location, time References
[ppt ppb−1]

0.06–0.25 Biofuel burning Andreae and Merlet (2001)
0.84 Vegetation from the southwest USA; laboratory experiment Warneke et al. (2011)
1.1 Indonesian Peat fires Stockwell et al. (2016)
1.2 Savanna biomass burning Akagi et al. (2011)
1.6 Canadian boreal forest fire Simpson et al. (2011)
1.7–2.05 North American wildfires Friedli et al. (2001)
1.9–4.6 Savanna and grassland biomass burning Andreae and Merlet (2001)
2.3–2.7 Extratropical forest biomass burning Andreae and Merlet (2001)
1.93 Vegetation from the southeast USA; laboratory experiment Warneke et al. (2011)
1.94 Pines spruce; laboratory experiment Warneke et al. (2011)
2.1 Peat burning, laboratory experiment Stockwell et al. (2015)
2.2 Rocket cook stove, laboratory experiment Stockwell et al. (2015)
2.8 Boreal forest biomass burning Akagi et al. (2011)
2.9 Peatland burning Akagi et al. (2011)
2.9 Tropical forest biomass burning Andreae and Merlet (2001)
2.9 Charcoal burning Andreae and Merlet (2001)
2.9 Residential heating Kaltsonoudis et al. (2016)
3.0 Extratropical/boreal forest biomass burning Akagi et al. (2011)
3.3 Tropical forest biomass burning Akagi et al. (2011)
4.1 Temperate forest fire Müeller et al. (2016)
4.5 Boreal forest wood, laboratory experiment Stockwell et al. (2015)
4.8 Fresh African savannah fire Jost et al. (2003b)
5.4 Savanna grass, laboratory experiment Holzinger et al. (1999)

2.5± 1.4 Mean acetone–CO ER (± standard deviation)

Table 5.1.: Literature values of acetone–CO emission ratios (ERs). Adopted from
Fischbeck et al. (2017).

regard to acetone, it has become common practice to use CO as reference species Y ,

because both gases are emitted during incomplete combustion (Andreae and Merlet,

2001; Wisthaler et al., 2002; Greenberg et al., 2006; Warneke et al., 2011).

When an EnR is measured at the source, it equals its molar emission ratio (ER)

(Yokelson et al., 2013) (see Table 5.1 for a compilation of acetone–CO emission ratios

reported in the literature). Downwind from the source, the EnR remains equal to

the ER as long as production or removal of X and Y in the plume are negligible and

as long as the plume mixes in the same fixed background (Mauzerall et al., 1998;

Yokelson et al., 2013). This is due to the fact that dividing the enhancement of X by

the enhancement of Y normalizes for dilution, as both species dilute at the same rate

(Akagi et al., 2012; Yokelson et al., 2013). Whenever it cannot be excluded that the

ratio has changed since emission, the term EnR should be preferred over the term

ER. As shown in Figure 5.2, this is particularly the case for measurements in the UT.

Plume air initially mixes with planetary boundary layer (PBL) air and subsequently

enters the “cleaner” UT. Plume ratios observed in the UT significantly differ from

the PBL EnR value simply because the UT background has a different acetone–CO

ratio as the PBL background.

128



5.2. Emission and enhancement ratios

The most comprehensive overview of acetone–CO EnRs to date has been given

by de Reus et al. (2003), using data of five research aircraft campaigns. For each

campaign, the authors split the data into measurements from the marine boundary

layer (0–1 km), free troposphere (1–12.5 km) or lower stratosphere (O3> 150 ppb,

CO< 60 ppb) and derived one EnR per layer. Please note, that in this way, data of

different flights, i.e. data of “unrelated” measurements in terms of distance and time

span, were used to derive a single EnR estimate. The authors found different EnRs

for the different layers, but, surprisingly, consistent values among the campaigns.

Since then, EnRs have been frequently reported for individual plumes and various

conditions.

In Tables 5.3 and 5.2, an overview is given of literature acetone–CO EnRs reported

for non-biomass burning plumes and those impacted by biomass burning (without any

claim to completeness). It is worth noting that ERs (see Table 5.1) are only available

for biomass and biofuel burning and are generally lower (mean: 2.5 ppt ppb−1) than

the observed free-tropospheric EnRs, which are on average 9.9 ppt ppb−1 for biomass

burning plumes and 12.5 ppt ppb−1 for other plumes.

In order to understand the underlying processes that change the EnR, it is worth

estimating how fast plumes usually mix with background air masses. In simple models,

this mixing is prescribed with a constant dilution rate. In a few studies, dilution

rates were determined experimentally; the results are summarized in Table 5.4.

EnR Air mass, location, time References
[ppt ppb−1]

1.57 Urban air, central eastern China, March–April 2011 Yuan et al. (2013)
3.18 Urban air, London, winter 2012 Valach et al. (2014)
3.4 Free troposphere, Indian Ocean, February–March 1999 Reiner et al. (2001)
3.59 Urban air (with vehicular emissions), Sao Paolo, February–April 2013, Brito et al. (2015)
5.0 Mount Tai, China, June 2006 Inomata et al. (2010)
5.8 Fresh urban plumes, eastern USA, July–August 2004 Warneke et al. (2007)
6.12 High-altitude (> 9km), Pacific Ocean, February–March 1994 McKeen et al. (1997)
13–16 Marine boundary layer De Reus et al. (2003)
13.4–17.2 Ship measurements, Indian Ocean, March 1999 Wisthaler et al. (2002)
14 Marine boundary layer, Indian Ocean, March 1999 Reiner et al. (2001);
14.2 Los Angeles, April–May 2002 Warneke et al. (2007)
18.3 Urban plumes, summer 2008 Singh et al. (2010)
19.5 Aged high-altitude plumes, Surinam, March 1998 Andreae et al. (2001)
21–25 Free troposphere De Reus et al. (2003)
∼ 22 Los Angeles Basin, May–June 2010 Warneke et al. (2012)
30 Troposphere, eastern Canada, July–August 1990 Singh et al. (1994)

12.5± 8.6 Mean acetone–CO EnR (± standard deviation)

Table 5.2.: Literature values of acetone–CO enhancement ratios (EnRs) in air masses
unaffected by biomass burning in ppt ppb−1. Adopted from Fischbeck et
al. (2017).
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5.3. Data analysis

Dilution rate Location, time References
[day−1]

0.1 Atlantic air masses, summer Arnold et al. (2007)
0.1 Inside smoke plume, July Pisso et al. (2009)
0.16 (0.05–0.2) Biomass burning plume, North Atlantic, summer Real et al. (2007)
0.24 Free troposphere, April Price et al. (2004)
1 Outside smoke plume, July Pisso et al. (2009)
1.44 Planetary boundary layer, South Africa, winter Igbafe et al. (2006)
1.5 Mexico City plateau, March Voss et al. (2010); Shrivastava et al. (2011)

5.5 Planetary boundary layer, California, summer Dillon et al. (2002)
4.8–10.3 Planetary boundary layer, Germany Kramp and Volz-Thomas (1997)

2.0± 2.7 Mean dilution rate (± standard deviation)

Table 5.4.: Dilution rates reported in the literature. Adopted from Fischbeck et al.
(2017).

5.3. Data analysis

Data from the individual IAGOS–CARIBIC instruments are combined into single

“merge” files for each flight with a time binning of 10 s. Data with a sampling frequency

greater than 0.1 Hz, such as the CO measurements (1 Hz), are averaged over the

10 s intervals, whereas low-frequency data (< 0.1 Hz), like the acetone measurements

(0.03 Hz), are assigned to the corresponding 10 s interval. The correlation analysis is

restricted to UT air masses. Data from ascend and descend are rarely available because

of the long run-up time of the PTR-MS after take-off and an automatic equipment

shutdown procedure well before landing. Stratospheric acetone–CO correlations are

not well suited for the intended investigation of source patterns, because of the

long transport times. To exclude stratospheric data, the threshold of the chemical

tropopause as proposed by Zahn and Brenninkmeijer (2003) and Zahn et al. (2004)

and verified by Thouret et al. (2006) and the concomitant CARIBIC ozone data are

used. Air masses with an ozone concentration above the threshold value of

[O3]TP
ppb = 97 + 26 sin

(
2π

doy − 30

365

)
, (5.2)

where doy denotes day of the year, are identified as stratospheric and excluded. In

the rare event of ozone data being unavailable, potential vorticity (PV) calculated

from the ECMWF model is used. Measurements of air masses associated with a PV

greater than 2 pvu, a value commonly used to define the dynamical tropopause (e.g.

Hoskins et al., 1985; Holton et al., 1995), are discarded. In this way, 42 % of the

acetone–CO data were identified as stratospheric.

In the remaining dataset, physically meaningful correlations are searched for in

all possible subsets of data fulfilling the following two requirements adapted from
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5. Acetone–CO enhancements in the upper troposphere

Zahn et al. (2002) and Brito (2011): (i) The subset consists of at least 10 successive

measurements that are no further apart from each other than 50 km and cover less

than 500 km flight path; (ii) The range of CO VMRs in the subset is greater than 10

times the average measurement uncertainty of CO. These criteria ensure that only

temporal and spatial coherent events with a “fresh” source signature are considered

and will be discussed in more detail in Section 5.4. For each possible subset, Pearson’s

linear correlation coefficient r and corresponding p value are calculated. A good

linear correlation is assumed in the event r > 0.5 and p< 0.05 (5 % significance level).

In such a case, the slope is calculated using the bivariate least-squares method of

Williamson–York (York, 1966; Williamson, 1968; York et al., 2004) as suggested by

Cantrell (2008). The Williamson–York fit has the advantage in that it accounts for

the different uncertainties of both acetone and CO measurements and precludes a

dependence of EnR on the axis assignments.

A high Pearson’s correlation coefficient can also arise when respective acetone–CO

VMRs form two clusters. To exclude such physically meaningless correlations, a

cluster analysis based on Gaussian mixture models (GMMs) was implemented (Everitt

and Hand, 1981; McLachlan and Peel, 2000). In this way, two GMMs are fitted to

the acetone–CO subset. The first model expects only one cluster and the second two

clusters. In order to choose the best-fitting model, the corrected Akaike’s information

criterion (AICC) (Sugiura, 1978; Hurvich and Tsai, 1989) is used. Subsets with an

AICC suggesting two clusters (AICC,n=2<AICC,n=1) are discarded.

Figure 5.3 shows two exemplary subsets; the first subset shows no clustering, whereas

the second is affected by a strong clustering into two groups with no measurements

in-between to support the correlation. Although the correlation coefficient (r= 0.79)

suggests a good correlation, the cluster analysis reveals that two well-separated

air masses were measured. Such a subset is excluded from further analysis as the

above-mentioned rejection criterion is fulfilled.

In general, the EnR-based approach used here differs from the “classical” straight-

forward approach in that the diagnosed correlations are by definition limited to

temporally and spatially coherent events. The enhancement ratios detected with the

EnR-based approach mainly characterize the mean partitioning of acetone and CO

sources in the boundary layer on a regional scale. The spread of these source regions

depends on the time the analyzed air parcel spends in the boundary layer before

it is released into the free and upper troposphere. Therefore, one could interpret

the correlations derived from the approach presented here as “event-based” EnRs,
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Figure 5.3.: Scatter plots of two exemplary subsets of subsequently measured acetone
and CO VMRs. (a) Shows a subset with highly correlated data (r= 0.97)
and no visible clustering, which is also confirmed by the cluster anal-
ysis (AICC,n= 1≤AICC,n= 2). (b) Two distinct clusters are visible and
automatically identified by the cluster analysis (AICC,n= 1>AICC,n= 2).
Although the Pearson’s correlation coefficient indicates a good correla-
tion (r = 0.79), this subset is rejected for determination of EnR. Adopted
from Fischbeck et al. (2017).

whereby the “event” is the release of an individual air parcel out of the boundary

layer into the free troposphere. In contrast to this analysis, non-coherent correlations

detected in former studies will often mirror spatial (e.g. latitudinal) gradients of

acetone and CO, respectively, or imply differences of the trace gas composition of

different air masses, but not enhancement ratios that characterize pollution sources

and the chemical processing between emission in the boundary layer and sampling

in the upper troposphere. For this reason, it is believed that this approach is best

suited for the analysis of source patterns utilizing tropospheric EnRs.

In Figure 5.4, the differences between the two approaches and fit algorithms are

illustrated based on the data of 17 selected flights. The flights were chosen in such

a way that larger overlaps of data were kept at a minimum. The diversity of the

event-based EnRs, ranging from 1.3 to 77.2 ppt ppb−1, is clearly visible. Furthermore,

it is shown that initial averaging over the total data (classical approach) instead
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5. Acetone–CO enhancements in the upper troposphere

Figure 5.4.: Scatter plot of tropospheric acetone and CO data of 17 selected CARIBIC
flights. Detected correlations are shown as regression lines plotted in the
range of the underlying data. Color coding denotes to which flight data
and correlations belong to. Data, which did not fall into the event-based
correlation criteria, are shown as filled black circles regardless of their
flight affiliation. The solid black and the grey dashed line represent the
results of a Williamson–York fit (EnR: 9.8 ppt ppb−1) and of a standard
least-squares fit (EnR: 11.2 ppt ppb−1), respectively, applied to all data
of the 17 flights. The minimum, mean and maximum value of the event-
based EnRs are 1.3, 18.6 and 77.2, respectively (all values in ppt ppb−1).
Adopted from Fischbeck et al. (2017).

of averaging over the individual EnRs of coherent events makes a difference. The

mean of the individual EnRs (18.6 ppt ppb−1) is a factor of 1.9 larger than the slope

of the classical approach (9.8 ppt ppb−1). In addition, the EnR of the Williamson–

York fit (9.8 ppt ppb−1) is smaller than the one of the standard least-squares fit

(11.2 ppt ppb−1), as the former puts (more) weight on the small VMRs due to their

lower uncertainties. Less weight is put on the large VMRs, in particular the acetone

VMRs, as they have larger uncertainties than the CO VMRs.

5.3.1. Emission inventories

In this study, surface emission data from different inventories is used, available in the

ECCAD (Emissions of atmospheric Compounds & Compilation of Ancillary Data)
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database (Granier et al., 2013) of the French Atmospheric Chemistry Data Centre

ESPRI (formerly Ether; http://eccad.sedoo.fr/). The objective is to derive the

total acetone flux from the boundary layer into the upper troposphere for different

regions and compare this flux with the acetone source strengths derived from the

enhancement ratios and CO inventory data.

The ideal case would be to use inventory data of exactly the same years for which

CARIBIC data were used in this study (2006–2008; 2012–2015), but not all data

in the ECCAD database is yet available for the full period. Therefore, the last

6 years with complete data coverage (2005–2010) were chosen as reference period.

This period has a similar duration as the CARIBIC periods and at least covers

the first CARIBIC data period. Except for biomass burning emissions, there is

currently only one possible inventory for each source type for the given period. Hence,

anthropogenic emissions are taken from the MACCity inventory (van der Werf et al.,

2006; Lamarque et al., 2010; Granier et al., 2011; Diehl et al., 2012) and biogenic

emissions from MEGAN-MACC (Sindelarova et al., 2014). For biomass burning

emissions, it was decided to use the GFED3 inventory (van der Werf et al., 2010)

instead of GFASv1.0 for reasons of easier data handling, as GFED3 data in ECCAD

has the same temporal and spatial resolution as MACCity and MEGAN-MACC.

Furthermore, Kaiser et al. (2012) found that the budgets of GFED3(.1) are consistent

with GFASv1.0.

As the interest here lies on the total fluxes of acetone, i.e. primary emissions and

secondary production, also emission data from the major precursors of acetone and

CO are included. According to Jacob et al. (2002) and Fischer et al. (2012), the three

dominant precursors of acetone are propane (13–22 Tg a−1 acetone), higher alkanes

(4–7 Tg a−1 acetone) and monoterpenes (5–6 Tg a−1 acetone).

In order to estimate the acetone source from propane oxidation, propane emission

data from MACCity and GFED3 and a molar acetone yield of 72 % (Jacob et al.,

2002; Pozzer et al., 2010) are used. For isobutane and isopentane, the “butanes and

higher alkanes” data of MACCity are taken. The respective mass proportion of the

two species (5.7 % for isobutane and 9.7 % for isopentane) is calculated according to

the VOC speciation of Passant (2002) and Calvert et al. (2008). The resulting amount

of acetone is derived using the means of the yields suggested by Jacob et al. (2002)

and Pozzer et al. (2010), which are 0.96 mol mol−1 for isobutane and 0.72 mol mol−1

for isopentane.
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5. Acetone–CO enhancements in the upper troposphere

For the monoterpenes, the emission data for the sum of monoterpenes are taken from

MEGAN-MACC inventory (Sindelarova et al., 2014). To calculate the emissions of

the individual monoterpene species (α-pinene, β-pinene, limonene, trans-β-ocimene,

myrcene, sabinene and 3-carene), the relative contributions provided in Sindelarova

et al. (2014) are used. For each species, a mean acetone yield is derived based

on the available literature. In this respect, the two main degradation processes of

monoterpenes, reaction with OH and O3, are considered, i.e. the yields are weighted

according to the respective reaction rates.

For the secondary production of CO, only precursors with an annual global contribu-

tion of more than 25 Tg CO (according to the inventory of Duncan et al., 2007) and

an atmospheric lifetime shorter than that of acetone are considered. This includes

isoprene, methanol, monoterpenes, (≥C4) alkanes, (≥C3) alkenes and ethene. The

respective CO production yields are taken from the same study and do not account

for loss of intermediate trace gases by deposition, which might over-predict the

contribution from longer-lived precursors (Duncan et al., 2007). As uncertainties

are not provided for all yields and emission inventory fluxes, it is refrained from

performing a comprehensive uncertainty analysis. However, considerable uncertainties

might exist and estimates based on these data have to be taken with care. In the

analysis, performed here, at least the statistical uncertainties of fluxes are strongly

reduced by averaging over large regions and time periods.

5.4. Temporal evolution of EnR between emission

and sampling

For the CARIBIC measurements in the UT, it is important to consider the possible

temporal evolution of the EnR, because transport timescales and typical tropospheric

lifetimes of acetone and CO are of a comparable range. So far, the combined influence

of dilution and chemical transformation on acetone–CO EnRs has not been addressed

in previous studies.

In order to better assess their impact, the temporal evolution of EnRs is initially

examined from a theoretical point of view. A simple one-box model is applied, in

which the box represents the volume of the plume at time t= 0. Whereas the plume

expands with time, the considered box volume is held constant to take dilution into

account. The temporal evolution of the mixing ratio of a compound X inside the
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5.4. Temporal evolution of EnR between emission and sampling

plume can then be approximated by (McKeen and Liu, 1993; McKeen et al., 1996)

d [X]plume

dt
= −LX [X]plume −D

(
[X]plume − [X]bgnd

)
+ PZ,X [Z]plume , (5.3)

where LX is the overall chemical loss rate of X, D is the first-order dilution rate and

PZ,X is the production rate of X from the oxidation of the precursor compound Z.

The overall chemical loss rate LX is the sum of all loss mechanisms, which are for

acetone reaction with OH and photolysis (LAc = kAc [OH] + JAc) and for CO reaction

with OH (LCO = kCO [OH]). As the lifetimes of both species are at least weeks, it can

be assumed that the reaction and diluted rates are constant over the considered time

period. Consequently, daily averaged photolysis rates obtained from the tropospheric

ultraviolet and visible radiation model (TUV version 5.0; Madronich and Flocke,

1999; Madronich et al., 2010) are used. Quantum yields for the photodissociation

of acetone are taken from Blitz et al. (2004). For the concentration of OH, the

monthly means provided in Spivakovsky et al. (2000) are used. The OH reaction rates

and uncertainties thereof are taken from the latest recommendations of the IUPAC

(International Union of Pure and Applied Chemistry) Task Group on Atmospheric

Chemical Kinetic Data Evaluation (Atkinson et al., 2004 and 2006). The latter are

reported to be ∼ 20 %. The same was assumed for the acetone photolysis rate (see

Neumaier et al., 2014).

As the evolution of [X]plume(t) is of interest, Equation 5.3 needs to be integrated.

However, this is impeded by the additional time-dependent variable [Z]plume. In

order to derive an analytical solution, the following steps are, therefore, shown

without the production term PZ,X [Z]plume . However, in the examples given in

Figure 5.5, the full equation including PZ,X [Z]plume has been solved numerically,

by progressively calculating the changes of [X]plume and [Z]plume at hourly intervals,

which are short compared to the net reaction rates. Integration of Equation 5.3

without the production term PZ,X [Z]plume leads to

[X]plume (t) =

(
[X]plume,t=0 −

D

LX +D
[X]bgnd

)
e−(LX+D)t +

D

LX +D
[X]bgnd. (5.4)

Since the function does not consider the quasi-equilibrium of the background, it

allows for unphysical low mixing ratios in the plume ([X]plume< [X]bgnd). Thus,
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5. Acetone–CO enhancements in the upper troposphere

Equation 5.4 is only valid for times

0 < t < tmax =

ln

(
[X]plume,t=0

[X]bgnd

(
1 + D

LX

)
− D

LX

)
LX +D

. (5.5)

Placing Equation 5.4 into the definition of EnR in Equation 5.1 leads to the time-

dependent function:

EnR (t) =

(
[X]plume,t=0 −

D
LX+D

[X]bgnd

)
e−(LX+D)t − LX

LX+D
[X]bgnd(

[Y ]plume,t=0 −
D

LY +D
[Y ]bgnd

)
e−(LY +D)t − LY

LY +D
[Y ]bgnd

. (5.6)

In the case of no chemical processing (LX = L = 0) or if LX , LY � D, Equation 5.6

simplifies to

EnR =
[X]plume,t=0 − [X]bgnd

[Y ]plume,t=0 − [Y ]bgnd

= const., (5.7)

i.e. in contrast to the ratio [X]plume/[Y ]plume, the EnR remains constant as long as the

plume mixes into the same background. In turn, any temporal change of EnR points

to chemical processing inside the plume. However, as soon as chemical decomposition

takes place, the assumption LX =LY = 0 used in Equation 5.7 is no longer valid and

the combined impact of both chemical transformation and dilution has to be taken

into account in the model.

In contrast to most previous studies, both processes are considered here. Moreover,

the background reservoir is excluded from any chemical degradation (quasi-steady-

state), as changes in the total balance of all sources and sinks are negligible on

these short timescales. Based on the evaluation of the model, it is found that the

direction of change of EnR without secondary production not only depends on

the chemical lifetimes of X and Y , as stated in former studies, but also strongly

depends on the initial concentrations of X and Y relative to their background (see

Equation 5.6). If the enhancement of X approaches zero faster than the enhancement

of Y , the EnR decreases and ultimately becomes zero. For the opposite case, the

EnR increases and tends towards infinity when approaching the singularity caused

by the denominator.

In Figure 5.5, the temporal evolution for two initial EnR values at different conditions

(season, atmospheric layers and secondary production of acetone) is illustrated. For

reasons of clarity, the range of uncertainty based on the uncertainties of the main
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Figure 5.5.: Evolution of acetone–CO enhancement ratios (EnRs) in the mid-
latitudinal planetary boundary layer (PBL) and free troposphere (FT)
for summer and winter in the Northern Hemisphere calculated numeri-
cally (full equation including production term). In the grey dashed lines,
only chemical decay of acetone and CO is considered. In the solid black
lines dilution is considered in addition. The red lines represent the EnR
evolution if acetone is additionally produced by the oxidation of propane.
For selected curves, the range of uncertainty is exemplarily shown in light
grey color. The terminating condition for the EnR calculation is a CO
enhancement of 5 ppb. The open circles indicate an CO enhancement of
10 ppb. The underlying rates and concentrations are given in Table 5.5.
Adopted from Fischbeck et al. (2017).

reaction rates is provided only for selected curves. The underlying mixing ratios and

rates are given in Table 5.5. The free-tropospheric background concentrations are

derived from CARIBIC data (see also Figure 5.8). For the PBL, estimates based

on year-round measurements in Minnesota (Hu et al., 2013), California (Schade

and Goldstein, 2006) and at Mace Head (Novelli et al., 2003) are used. The plume

enhancements are scaled according to the selected EnR values. The chemical degra-

dation rates are calculated as described above for 44° N, 1000 hPa (PBL) and 500 hPa

(FT) for January (winter) and July (summer). The dilution rates are taken from

Table 5.4 except for the value displayed for the FT in winter, which had to be

estimated (as half the value reported for the FT in summer), as no observational

data was available. Propane volume mixing ratios are estimated using data from

Pozzer et al. (2010), Lewis et al. (2013) and Baker et al. (2014).
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5. Acetone–CO enhancements in the upper troposphere

Summer Winter

PBL FT PBL FT

Acetone 2.0 0.6 0.5 0.3

Background [ppb] CO 100 70 150 80

Propane 0.1 0.1 1.0 0.2

Acetone 4.2/2.0

Enhancement [ppb] CO 140/200

Propane 0.5

Acetone 0.029± 0.004 0.049± 0.007 0.002± 0.000 0.004± 0.001
(5.0± 0.7) (2.9± 0.4) (82.9± 11.8) (37.0± 5.2)

Chemical loss rate [d−1] CO 0.026± 0.005 0.039± 0.008 0.002± 0.000 0.003± 0.001
(lifetime [weeks]) (5.5± 1.1) (3.6± 0.7) (94.0± 18.8) (49.3± 9.9)

Propane 0.111± 0.023 0.154± 0.031 0.005± 0.001 0.009± 0.002
(1.3± 0.3) (0.9± 0.2) (26.7± 5.3) (15.2± 3.0)

Dilution rate [d−1] 4.80 0.10 1.44 0.05

Table 5.5.: Mixing ratios, chemical loss and dilution rates used for the simulation of
the temporal evolution of acetone–CO EnRs shown in Figure 5.5. Adopted
from Fischbeck et al. (2017).

In the PBL, EnR (without secondary production) hardly changes until dissolution of

the plume, as dilution is the dominant loss process and the approximation used in

Eq. 5.7 is valid. Taking the dilution rates (Table 5.5) as best estimate, the initially

applied enhancements ratios will be completely dissolved in the PBL within less

than 1 day in summer and 3 days in winter. Consequently, it is very likely that

emissions of different adjacent sources may have mixed before the release into the

free troposphere. This means that the free-tropospheric EnR as observed during

IAGOS–CARIBIC flights will largely reflect a mean value representing the release

of regionally well-mixed PBL air into the troposphere and not the emission ratios

of single point sources of acetone and CO. In other words, the mixing in the PBL

ensures that air masses released into the free troposphere have a specific signature

that on average represents the general proportion of acetone and CO emissions within

a certain radius. As already noted in Section 5.3, the spread of this source region

depends on the residence time of the air mass in the PBL. Furthermore, the footprint

is not restricted to sources that simultaneously emit both acetone and CO, but

includes sources emitting only acetone or CO and also secondary production from

precursors, if the residence time in the PBL is long compared to their lifetime.

As this study focuses on the pure signatures, which are necessary to assess the

sources, the question arises as to how long the unaltered EnR is conserved in the free

troposphere. The examples given in Figure 5.5 clearly show that the EnR changes
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stronger and faster in summer due to shorter lifetimes. In any case, changes become

largest in aged plumes, in which the CO enhancements in the denominator of the EnR

become small. As the EnR tends towards infinity when the denominator converges

towards zero, the CO enhancement is more sensitive than the acetone enhancement

and, therefore, better suited, e.g., to define the dissolution of the plume. In Figure 5.5,

a CO enhancement of 5 ppb is used as dissolution criterion for the calculated evolution

of EnRs. In the given examples for the free troposphere in summer, the change of

EnR is as high as ∼ 300 % at the time of dissolution, strongly depending on the

initial CO enhancement and the presence of secondary acetone production.

As no information about the actual age of the plumes observed in CARIBIC is

available, it is not possible to correct for the temporal changes. Therefore, the

analysis done here is limited to plumes with a CO enhancement greater than 10 ppb

(more specifically, 10 times the mean measurement uncertainty of CO; see Section

5.3). This threshold (open circles in Figure 5.5) clearly represents a trade-off between

maximizing the number of detected correlations to achieve good statistics and

minimizing the consideration of EnRs, which have been changed by chemistry and

dilution to such an extent that conclusions about the source signature are not possible

anymore. This problem and the sensitivity of results to the chosen threshold are

further addressed in Appendix A.

In former studies, the observation of high acetone–CO EnRs was often associated

with secondary production of acetone in the plume (Wisthaler et al., 2002; Holzinger

et al., 2005). Propane is considered as the major precursor in this context, as it

is co-emitted by biomass burning (Jacob et al., 2002; Fischer et al., 2012). If this

source of acetone is considered in the model presented here, the loss of acetone is

partly compensated and may lead to an increase in EnR. For plumes in the PBL,

the temporal increase in EnR is therefore an indicator for secondary production

of acetone. In the free troposphere, the situation is more complex and the model

predicts an increase of EnR in three of four cases even without the presence of

propane, although one has to admit that the range of uncertainty is very large in one

case. Especially in summer, when the curves of the higher EnR with and without

secondary production do not differ significantly, it seems to be hardly feasible to

distinguish between the different reasons of increasing EnRs.

As mentioned earlier, another reason for possible changes in EnR between emission

and measurement is the subsequent mixing with different backgrounds (e.g. Mauzerall

et al., 1998; Yokelson et al., 2013). Equation 5.6 is only valid as long as the terms
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5. Acetone–CO enhancements in the upper troposphere

[X]bgnd and [Y ]bgnd are constant. Whenever the background mixing ratios change, e.g.

the plume enters the free troposphere, the EnR becomes larger under the condition(
[X]bgnd,old − [X]bgnd,new

)
> EnRold

(
[Y ]bgnd,old − [Y ]bgnd,new

)
(5.8)

and smaller for the reverse inequality. Figure 1 illustrates this common scenario and

the resulting change of the slope of the mixing line.

5.5. Observation of EnR within IAGOS–CARIBIC

5.5.1. Temporal and spatial distribution of data

The analysis of acetone–CO EnR relies on the availability of the simultaneous

measurement of acetone and CO in the troposphere. At the time of this study,

tropospheric acetone data were available for 105 CARIBIC flights between 20 Febru-

ary 2006 and 13 December 2008 and for 109 CARIBIC flights between 6 March 2012

and 16 July 2015. The gap is due to a larger modification of the instrument and

subsequent re-certification.

As shown in Figure 5.6, about 90 % of simultaneous tropospheric acetone and CO

measurements were carried out in the Northern Hemisphere, mainly in the subtropics

and mid-latitudes along the routes between Germany and Caracas/Bogota, Sao

Paolo, Chennai, Bangkok and Guangzhou/Hong Kong. Although IAGOS–CARIBIC

flights to North America took place frequently, mainly stratospheric air was sampled

due to the lower tropopause heights there. To obtain statistically reliable results, the

following evaluation is therefore constrained to the subtropics and mid-latitudes.

5.5.2. Frequency distribution of EnR

In Figure 5.7, frequency distributions of the acetone–CO EnR are compared for

summer (JJAS) and winter (DJFM). The commonly used months JJA (June–July–

August) and DJF (December–January–February) are extended by the subsequent

month to improve the statistics.

Compared to the airborne and ground observations by others (see Tables 2–3),

the CARIBIC observations provide a surprisingly clear picture. To quantify the
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5.5. Observation of EnR within IAGOS–CARIBIC

Figure 5.6.: Latitudinal (left) and geographical distribution (right) of simultaneous
tropospheric acetone and CO measurements in the time periods February
2006–December 2008 and March 2012–July 2015. Grid cells without data
are left bank. Adopted from Fischbeck et al. (2017).
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Figure 5.7.: Comparison of (a) the mean literature values for biomass burning plumes
and for plumes of other origin with the distribution of EnR observed
with CARIBIC in the Northern Hemisphere subtropics and mid-latitudes
(23.5–66.5° N) in (b) winter (DJFM) and (c) summer (JJAS). The grey
lines represent Gaussian curves fitted to the histograms. The values of
the most important statistical variables describing the distributions are
given in Table 5.6. Adopted from Fischbeck et al. (2017).
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5. Acetone–CO enhancements in the upper troposphere

Season JJAS DJFM

Slope/EnR
[ppt ppb−1]

Arithmetic mean ±σ 27.2± 17.0 11.6± 7.2
Median 22.9 9.4
Gaussian line center ±σ 19.3± 12.9 8.5± 3.5
Number of correlated measurements 4747 4137
Number of all measurements 12896 10311

Table 5.6.: Mean and median values of EnR frequency distributions and center of
the fitted Gaussian distributions. Adopted from Fischbeck et al. (2017).

distributions, Gaussian profiles are used. In Table 5.6, the parameters resulting from

the curve fitting are summarized. In winter, the approximated Gaussian profile has

its center at 8.5 ppt ppb−1 (Full Width at Half Maximum (FWHM) = 8.2 ppt ppb−1).

Thus, the center is slightly lower than the mean literature values derived for plumes

with and without biomass burning influence (9.9 and 12.5 ppt ppb−1, respectively;

see Table 5.3–5.2), but both values lie within the 1σ range. It is clear that the real

distribution differs from a normal distribution, as 33 %/21 % of the EnRs exceed

the 1σ/2σ range of the Gaussian profile. This asymmetry is probably a result of the

sampling of aged plumes as discussed in Section 5.4.

In summer, observed EnRs are on average ∼ 2.3 times larger compared to winter.

The center of the Gaussian profile (19.3 ppt ppb−1) is higher than the mean literature

values, but again the values lie within the 1σ range. The FWHM of the Gaussian

profile is even ∼ 3.7 times greater (∼ 30.4 ppt ppb−1), reflecting the larger natural

variability in summer. As in winter, the real distribution of CARIBIC EnRs is shifted

towards larger values (mean: 27.2 ppt ppb−1). About 30 %/∼ 16 % of the EnRs exceed

the 1σ/2σ range of the Gaussian profile. The great majority of high EnRs in summer

was sampled in air masses measured above or originating from North America (see

next section).

To identify the reason for the considerable seasonal variation of the acetone–CO EnR

in the upper troposphere, the regression lines for the mean and median parameters

(as derived from the observed EnR distributions, see Table 5.6) are plotted alongside

the VMRs of the total measurements (see Figure 5.8). It becomes clear that the

factor of ∼ 2.3 between summer and winter EnR is mainly the consequence of the

considerable seasonality of acetone. The mean CO VMRs between JJAS and DJFM

differ by only 6 %, simply as the CO maximum and minimum in the UT occur in

March–April and September–October, respectively (Zahn et al., 2002; Zbinden et al.,

2013; Petetin et al., 2016; Osman et al., 2016).

144



5.6. Regional differences in EnR
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Figure 5.8.: Regression lines for summer (red) and winter (blue), using mean slope
(solid line) and median slope (dotted line) given in Table 5.6. The filled
squares represent the mean VMRs of the total measurements, whereas
the open circles (diamonds) are the mean of all values lying in the 5th to
25th (75th and 95th) percentile, respectively. Adopted from Fischbeck
et al. (2017).

5.6. Regional differences in EnR

In this subsection, sample location and 5-day ECMWF backward trajectories calcu-

lated every 3 min along the flight track (van Velthoven, 2016) are used to assign EnR

to specific source regions. If a correlation is found in a subset of data (see Section

5.3), the derived EnR is assigned to each acetone–CO data pair of the subset and to

the closest 5-day back trajectory thereof.

According to the box model (see grey dashed line in Figure 5.5), in the free tropo-

sphere chemical decay (no dilution) does not significantly alter the EnR within 5

days; in the given examples, changes are below 5 % in summer and below 1 % in

winter. Therefore, each EnR is assigned to the full path of the corresponding 5-day

back trajectory, which is given with a temporal resolution of 1 h. In practice, this

means that for each hourly waypoint of the trajectory, the assigned EnR is duplicated

and the coordinates of the sample location are exchanged by the ones of the waypoint.
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5. Acetone–CO enhancements in the upper troposphere

This domain-filling technique is also known as trajectory mapping and has been

applied elsewhere for similar in-situ datasets (Stohl et al., 2001; Osman et al.,

2016). In Figure 5.9, the resulting geographical distribution and frequency of EnRs

duplicated this way are shown based on a 5°× 5° grid. It is recognized that the back

trajectories have limited reliability. However, random trajectory errors should be

negligible here, with respect to the large number of trajectory-mapped EnRs.

The assignment of EnRs to source regions is done as follows. In a first step, longitude–

latitude boxes are defined for the regions of interest. In this case, North America,

Europe, East Asia and Southeast Asia have been selected (see Figure 5.9). All

EnRs with coordinates inside a box, including the duplicates from the trajectory

mapping, are assigned to the corresponding region. This means, that an EnR is

initially assigned to a region regardless of whether the trajectory passed through the

box only for 1 h or the entire 5 days. However, when it comes to averaging over all

EnRs of a certain region, the different situations shall be considered. For this purpose,

the duplicates created by the trajectory mapping are not eliminated. Consequently,

an EnR associated with a trajectory passing the box only for 1 h, is represented only

once in the regional subset, whereas an EnR with a trajectory staying in the box

for 5 days is represented in the subset 120 (= 5× 24 h) times. When averaging over

EnRs of a certain region, this naturally leads to a weighting based on the trajectory’s

residence time above the region.

The altitude of the trajectory is not considered here, simply due to the fact that

not all transport processes are represented by single trajectory calculations (e.g.

convection; see Stohl et al., 2002). Furthermore, in single trajectory calculations

infinitesimally small air parcels are assumed (e.g. Stohl et al., 2002), whereas the

volumes of sampled air masses are extended. For these reasons, it is believed that

even though a trajectory passes a region at high altitudes, there is a certain likelihood

that the sampled air mass had contact with convected air masses from the boundary

layer of the underlying region. As the probability of such an incident increases with

time, weighting according to the trajectory’s residence time over the region seems to

be the most reasonable choice.

In Figure 5.10, the weighted-mean EnRs and box plots are shown for each source

region and the months JJAS and DJFM, respectively. The numbers of the underlying,

unique (i.e. non-duplicated) EnRs and percentages of the total number of EnRs are

given in Table 5.7. Please note that single EnRs can be assigned to multiple regions,

when the trajectories pass through more than one region.
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5.6. Regional differences in EnR

Figure 5.9.: Geographical distribution of EnRs duplicated along the waypoints of the
assigned 5-day back trajectories. Grid cells without data are left bank.
Four areas of interest (rectangles) are considered: North America (NA),
Europe (EU), Southeast Asia (SEA) or East Asia (EA). Adopted from
Fischbeck et al. (2017).
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Figure 5.10.: Mean and standard deviation (SD) (blue) and box plots (black) of EnR
summer (JJAS) and winter (DJFM) distributions for four selected re-
gions as shown in Figure 5.9. In the underlying distributions, individual
EnRs have been duplicated along the hourly waypoints of the assigned
5-day back trajectories to consider the residence time of the samples
above the region. The numbers of individual, unique EnRs as well as
percentages related to the total number of EnRs are given in Table 5.7.
Adopted from Fischbeck et al. (2017).
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5. Acetone–CO enhancements in the upper troposphere

North America Europe East Asia Southeast Asia Global

JJAS 3060 15 % 1218 6 % 1272 6 % 992 5 % 6535 32 %
DJFM 1725 8 % 1688 8 % 685 3 % 2255 11 % 7686 37 %
Other months 2085 10 % 1344 7 % 1343 7 % 2262 11 % 6431 31 %

All months 6870 33 % 4250 21 % 3300 16 % 5509 27 % 20 652 100 %

Table 5.7.: Numbers and percentages of individual EnRs for different months and
regions. EnRs are associated with a specific region, when the assigned
trajectory passes through the box of the region. For the assignment
it does not matter whether only one waypoint or the entire trajectory
lies inside the box. Assignment to multiple regions occurs, when the
trajectory crosses more than one box. The boxes of the respective regions
are indicated in Figure 5.9. Adopted from Fischbeck et al. (2017).

The best coverage is archived for North America (33 %) and Southeast Asia (27 %),

which is also why these regions are evaluated in more detail in the following sections.

North America stands out with the highest EnRs observed in IAGOS–CARIBIC.

In summer, the median EnR (31.7 ppt ppb−1) is ∼ 3.4 times larger than in winter

(9.4 ppt ppb−1) and the interquartile range is even ∼ 5.4 times larger compared to

winter. The significantly higher EnR in summer compared to winter can be explained

by the following reasons: (i) the much stronger biogenic source strength in summer,

(ii) the more frequent sampling of younger (acetone-rich) plumes due to strong

convection and (iii) the faster increase in EnR due to shorter chemical lifetimes

(see Section 5.4 and Figure 5.5). The seasonality is less pronounced (in descending

order) above Europe, Southeast Asia and East Asia. In contrast to the mean EnRs,

individual low EnRs are observed throughout the year in all regions, as can be seen

from the overlap of the lower whiskers in Figure 5.10. Low EnR in summer might

be an indication of rapidly ascended plumes from sources with low acetone–CO

emission ratios, such as smoldering fires and other incomplete combustion processes

(see Table 5.1).

5.7. Acetone emission rates in North America

As a next logical step towards identifying the cause for the high EnRs over North

America in summer, bottom-up source estimates provided by emissions inventories

(see Section 5.3.1) are utilized. In general, these inventories provide separate emission

estimates for the major sources (e.g. anthropogenic, biogenic and biomass burning

emissions) and thus, allow for an assessment of the individual contributions of the
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5.7. Acetone emission rates in North America

individual sources to the total emissions (the same was done in Section 1.1 to

determine the contributions specified in Table 1.1). It is exactly this information

that might provide a decisive hint for further interpretation of the observed seasonal

variability in EnR.

To enable comparisons with observed EnR, the ratio of total emissions of acetone

and CO provided in the inventories needs to be calculated in terms of volume. For

reasons of simplicity, this ratio is referred to as Total Emissions volume Ratio (TER)

in the following. It is defined as

TER =
MCO

MAc

·

∑
i

SAc,i∑
i

SCO,i

, (5.9)

where M is the molar mass of the respective compound and S is the emission flux of

the individual source averaged over the reference time period 2005–2010.

In Figure 5.11, the seasonal variation of (a) the acetone emission rates, (b) the

CO emission rates and (c) the monthly means of TERs and EnRs are shown. The

emissions of acetone and CO are in phase with maxima in summer and minima in

winter, but the seasonal amplitude for acetone is much stronger due to the larger

proportion of biogenic emissions. In Figure 5.11c, the inventory-based TER (with

and without the consideration of biomass burning emissions) is compared with the

monthly means of IAGOS–CARIBIC EnR identified during the two time periods

2006–2008 and 2012–2015.

It is important to note here that a direct comparison of both ratios makes only

sense if the considered CARIBIC EnRs are not significantly altered by dilution

and chemical processing. As discussed in Section 5.4, the effects of these processes

are not negligible and for this reason, the analysis is limited to events with a CO

enhancement of at least 10 times the measurement uncertainty of CO (∼ 10 ppb).

In the ideal case, this restriction ensures that CARIBIC EnRs primarily reflect the

chemical signature of the source regions.

The highest EnR are found in June and September (∼ 40 ppt ppb−1) with a temporary

decline in-between. On the first view, this seems to be an insignificant feature, but

there are some further observations that identify biomass burning as the most likely

reason:

1. Elevated acetonitrile VMRs were observed during this time period. In ∼ 53 %
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5. Acetone–CO enhancements in the upper troposphere

of the air masses with correlated acetone and CO measurements, acetonitrile

VMRs were greater than 200 ppt, which according to Sakamoto et al. (2015)

presents a threshold for the detection of biomass burning plumes. EnRs in June

appear to be unaffected by biomass burning, supported by the consistently

lower acetonitrile VMR level (< 200 ppt) compared to the following month.

2. The EnR decline is also apparent in TER with a shift of 1 month ahead,

which can be attributed to biomass burning (orange diamonds in Figure 5.11c).

The reason lies in the low acetone–CO emission ratio of boreal forest fires of

1.6–3.0 ppt ppb−1 (see Table 5.1). Warneke et al. (2006) found various plumes

attributed to biomass burning during flights along the US east coast in July

and August 2004 and concluded that 30 % of the CO enhancement is related

to forest fires in Alaska and Canada, which is in good agreement with the

emission inventory data (∼ 32 %). It is therefore assumed that the lower EnRs

in July and August (∼ 30 ppt ppb−1) are related to a then larger influence of

biomass burning.

In July, a mean (±standard deviation) EnR of (28.0± 14.0) ppt ppb−1 is found,

comparable to the ones observed during aircraft campaigns over eastern Canada, e.g.

by de Reus et al. (2003) during STREAM (Stratosphere Troposphere Experiment by

Airborne Measurements) in July 1998 (24.4 ppt ppb−1) and by Singh et al. (1994)

during ABLE3B (Arctic Boundary Layer Experiment) in July and August 1990

(30 ppt ppb−1). The higher variability in the IAGOS–CARIBIC EnR is presumably

due to the large regional and annual variations in emissions, which are only resolved

when considering local correlations over a longer time interval such as in IAGOS–

CARIBIC.

5.8. Estimation of North American acetone source

Emission and enhancement ratios are frequently used to estimate global acetone

emissions from biomass burning (e.g. Holzinger et al., 1999, 2005; Jacob et al.,

2002; Wisthaler et al., 2002; Singh et al., 2004; van der Werf et al., 2010; Akagi et

al., 2011). Singh et al. (2010) denoted that this top-down approach is often useful

in assessing the accuracy of emission inventories that are generally derived from

bottom-up data. Since the analysis was not restricted to biomass burning plumes, the

IAGOS–CARIBIC EnRs should reflect the total acetone source. In order to derive

the total acetone flux SAc from the observed EnRs, the mass-corrected CARIBIC
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Figure 5.11.: North American emission rates of (a) acetone and (b) CO according
to the ECCAD inventory database, averaged over the time period 2005–
2010. (c) Mean EnRs derived from IAGOS–CARIBIC measurements
are compared to ECCAD total emissions volume ratios (TERs) of
acetone and CO with and without consideration of biomass burning
(BB). The dashed lines show sinusoidal functions fitted to the monthly
means of EnR and TER (biomass burning excluded). 1 Includes propane,
isobutane, isopentane, seven monoterpene species and methylbutenol
as precursors of acetone and ethene, (≥C4) alkanes, (≥C3) alkenes
and monoterpenes as precursors of CO. Adopted from Fischbeck et al.
(2017).

EnR is multiplied by the total flux of CO derived from inventories:

SAc = EnR · MAc

MCO

·
∑
i

SCO,i. (5.10)
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5. Acetone–CO enhancements in the upper troposphere

For North America, a mean annual flux of (53± 27) 10−13 kg m−2 s−1 is estimated,

corresponding to total emissions of (6.0± 3.1) Tg a−1. This is in very good agreement

with the bottom-up estimate of 5.8 Tg a−1, which is the result of summing up the

mean acetone emissions given in the source-specific emission inventories (see Section

5.3.1).

In contrast, Hu et al. (2013) determined a North American acetone source of

10.9 Tg a−1 from tall-tower measurements and inverse modeling, consisting of 5.5 Tg

from biogenic sources and 5.4 Tg from anthropogenic sources. Whereas the biogenic

source is similar to the estimate of this study, simply because the same a priori source

is used (4.8 Tg), they assume a much higher anthropogenic source based on the US

EPA NEI 2005 (NEI-05) inventory (12 % primary, 88 % secondary). Please note that

anthropogenic emissions of acetone, propane and CO in NEI-05 are ∼ 3, ∼ 2 and

∼ 1.5 times higher, respectively, than the ones given by the MACCity inventory

used in this study. Several studies stated that NEI-05 overestimates anthropogenic

emissions of CO and other species (Brioude et al., 2011, 2013; Kim et al., 2013; Li et

al., 2015), whereas Stein et al. (2014) reported that the anthropogenic emissions of

CO in MACCity underestimate the source in Northern Hemisphere industrialized

countries in winter. The latter would be in accordance with the observation of lower

EnR compared to TER in winter in Figure 5.11c. A larger anthropogenic acetone

source would push EnRs in the opposite direction and is not supported by IAGOS–

CARIBIC EnR results. Further investigations are required to resolve the discrepancy

between the above-mentioned model result of Hu et al. (2013) and the bottom-up

and top-down estimates.

5.9. Acetone emission in Southeast Asia

The focus of this section is to assess regional acetone sources to the Southeast Asia

region. Due to its increasing role in global air pollution and the current shortage

of in-situ studies regarding the emissions of this region, Southeast Asia stands out

as a highly interesting region (Jaffe et al., 1999; de Laat et al., 2001; Lelieveld et

al., 2001, 2015). The rapid industrialization is accompanied by widespread biomass

burning resulting in a significantly different pollution source profile compared to

North America (e.g. de Laat et al., 2001). Here the focus is on the region of Southeast

Asia (including Pakistan, India, Bangladesh, Bhutan, Myanmar, Thailand, Laos,

Cambodia, Vietnam and the Philippines) as defined in van der Werf et al. (2006).

152



5.9. Acetone emission in Southeast Asia

ra
tio

 [p
pt

 p
pb

–1
]

a)

b)

c)

ac
et

on
e

[k
g 

m
–2

 s–
1 ]

C
O

[k
g 

m
–2

 s–
1 ]

1 2 3 4 5 6 7 8 9 10 11 12

methanol
isoprene
others1

secondary production:
EnR (this study)
TER; BB excluded
TER; BB included

ratios:
biomass burning
biogenic
anthropogenic

primary emissions:

0

10

20

30
0

2×10−9
0

2×10−11

month
1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.12.: Southeast Asian emission rates of (a) acetone and (b) CO according
to the ECCAD database for the time period 2005–2010. (c) Volume
ratio of total emissions of acetone and CO displayed for three different
scenarios and compared to EnR derived from IAGOS–CARIBIC in-
situ data. A sinusoidal function (dashed line) is fitted to the monthly
means of EnR and total emissions volume ratio (TER), respectively
(see Figure 5.11). 1 Includes propane, isobutane, isopentane and seven
monoterpene species as precursors of acetone and ethene, (≥C4) alkanes,
(≥C3) alkenes and monoterpenes as precursors of CO. Adopted from
Fischbeck et al. (2017).

In this region, the acetone emission fluxes given in the inventories (Figure 5.12a) are on

average ∼ 3 times higher than in North America and show a different seasonality due

to the different (i.e. mainly wet tropical and humid subtropical) climate. Emissions of

CO (Figure 5.12b) are mainly assigned to anthropogenic sources throughout the year,

showing a maximum in March due to biomass burning emissions and a minimum in
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July.

In Figure 5.12c, TER and IAGOS–CARIBIC EnR are plotted for comparison. As

for North America, both are in the same range and show the same seasonal vari-

ation when fitting a sinusoidal function to the monthly TER and EnR, but EnR

(annual mean: 12.2 ppt ppb−1) are on average ∼ 3 ppt ppb−1 higher than TER (an-

nual mean: 9.2 ppt ppb−1). EnR values derived from the research aircraft campaign

INDOEX (INDian Ocean EXperiment) conducted over the Indian Ocean in February–

March 1999 are even higher than mean CARIBIC EnRs for February and March

(9.7 ppt ppb−1).

De Reus et al. (2003) found a mean EnR of 21.6 and 16.2 ppt ppb−1 when inte-

grating over all flights in the free troposphere and in the marine boundary layer

air, respectively. De Gouw et al. (2001) derived an EnR of 14 ppt ppb−1 using data

from the same campaign, but averaged acetone and CO values for level flight tracks

before applying the correlation analysis. The results are consistent with the EnRs of

13.4–17.2 ppt ppb−1 found in individual plumes in the marine boundary layer over

the Indian Ocean (Reiner et al., 2001; Wisthaler et al., 2002).

The reasons for the high EnRs in INDOEX compared to the mean TER of Southeast

Asia (∼ 7.7 ppt ppb−1) and the mean CARIBIC EnR (9.7 ppt ppb−1) can be manifold.

Besides this comprehensive campaign in 1999, little data have been published on

acetone emissions in this region.

Based on the IAGOS–CARIBIC EnR and inventory data for CO and its precursors,

a mean (± standard deviation) acetone flux of (185± 80) 10−13 kg m−2 s−1 is derived,

corresponding to total emissions of (4.8± 2.1) Tg a−1. Langford et al. (2010) observed

a mean acetone flux of (33± 181) 10−13 kg m−2 s−1 above a tropical rainforest in

Malaysia in 2008, whereas Karl et al. (2004) reported a mean midday flux of

250× 10−13 kg m−2 s−1 above a tropical rainforest in Costa Rica. All three fluxes are in

the same range, but hardly comparable, because of the different spatial and temporal

scopes of the measurements. Whereas the in-situ flux measurements at individual

locations reflect local conditions, the mean CARIBIC EnRs are representative of

extended heterogeneous source regions and also capture secondary acetone production

during transport.

The inventory data for acetone and its precursors suggests a mean annual flux of

149× 10−13 kg m−2 s−1 and an annual source of 3.7 Tg a−1 for Southeast Asia, which

is lower than our estimates, but well within the standard deviation.
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5.10. Summary and conclusions

This chapter provides a major update on enhancement ratios of acetone and CO

in the upper troposphere. A new method to detect coherent correlations being

physically more meaningful than correlations based on spatially or temporally distant

measurements is presented.

This method is applied to the IAGOS–CARIBIC dataset of acetone and CO and the

concept of enhancement ratios is successfully utilized for interpretation. In former

studies, free-tropospheric acetone–CO enhancement ratios were often compared

directly with emission ratios of individual sources, although enhancement ratios are

only equivalent to the emission ratio when measured at the source. For EnRs higher

than the ERs, the respective authors assumed secondary production of acetone in

the plume.

In this work, however, it is shown that an increase in EnR is not inevitably caused

by secondary production of acetone, but strongly depends on the initial quantities

of acetone and CO in the plume. Dilution rates from other studies indicate that

common enhancements are rapidly mixed in the PBL and rather contribute to the

PBL background than being directly transported into the free troposphere. It is

concluded that an uplift of these air masses leads to tropospheric EnRs that can

be interpreted as chemical signatures of the boundary layer air, therefore rather

reflecting larger regional source patterns than distinct emissions from single point

sources.

As the sources vary by season, the seasonality of EnR is investigated. It is found that

in the Northern Hemisphere mid-latitudes EnRs are on average 2.3 times larger in

summer than in winter. Given the coverage and representativeness of the IAGOS–

CARIBIC dataset, it is also possible to investigate regional differences in EnR and its

seasonality. When comparing the seasonality of EnRs observed over North America,

Europe, East Asia and Southeast Asia, it is found that the general behavior is the

same, but the amplitude of the seasonal cycle differs from region to region. It is

assumed that these differences are mainly caused by regional differences in acetone

and CO sources and therefore enable the comparison of EnR with emission estimates

of inventories. The monthly ratios of the total acetone and CO bottom-up source

estimates lie well within the standard deviation of mean EnR observed over the

respective region and show the same seasonal course as EnR.
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Regional acetone fluxes are subsequently calculated using well-constrained CO emis-

sion data and monthly averaged EnR. For North America and Southeast Asia, mean

annual acetone fluxes of 53× 10−13 kg m−2 s−1 and 185× 10−13 kg m−2 s−1, respec-

tively, are estimated. These values reflect the dominance of biogenic acetone emissions

that are larger in tropical to subtropical Southeast Asia.

With the EnR-based approach, it will be also possible to estimate regional acetone

fluxes for other regions in the future. First preliminary evaluations for tropical South

America show that EnRs are significantly lower than the monthly total emission ratios

derived from inventories, except for months with high biomass burning emissions.

It could well be that the large biogenic source of the Amazon rainforest does not

provide sufficiently strong regional gradients (plumes) to be captured by the event-

based detection algorithm. However, the detected EnRs might be related to biomass

burning or polluted air masses from the highly populated coastal regions. Further

investigations, e.g. analysis of other tracers or evaluation of the box model adapted

to the particular conditions, are necessary to understand this potential discrepancy.

In addition, further measurements over this region would be of great value.

It is concluded that free-tropospheric EnR data with a large spatial and temporal

coverage are a powerful tool to investigate the regional and seasonal differences in

sources, to estimate the total acetone flux of specific regions and potentially to assess

the quality of acetone emission inventories.
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distribution of acetonitrile

Acetonitrile (CH3CN) is the second most abundant cyanide in the atmosphere after

hydrogen cyanide (HCN) and omnipresent in the UTLS (Singh et al., 2003). Due to

its relatively long tropospheric lifetime in the order of ∼6 months (e.g. Harrison and

Bernath, 2013) and the fact that it is almost exclusively emitted by biomass burning,

it is an ideal, unique tracer for biomass burning (Lobert et al., 1990; Holzinger et al.,

1999; Warneke et al., 2006; Akagi et al., 2011). Such tracers are essential to study

the transport to and impact of biomass burning emissions on remote atmospheric

regions, which react most sensitive to changes.

Despite the great significance of CH3CN as tracer, its atmospheric budget is subject

to considerable uncertainty. The current knowledge is based on the data of a few field

campaigns with limited spatial and temporal coverage. In the last years, CH3CN

measurements have been mainly used to identify encountered biomass burning plumes.

This allows to investigate the composition and temporal evolution of such plumes.

However, to understand the impact of biomass burning on atmospheric regions, e.g.

the UTLS, regular, longer-term measurements of CH3CN are required. Within the

CARIBIC project, CH3CN has been measured for 7 years in the UTLS. So far, the

data has only been used to identify biomass burning plumes, but the unique spatial

and temporal coverage of the data set has far more potential. Comparisons with

model simulations would allow to assess the current knowledge of the CH3CN budget

and to estimate emissions from a top-down perspective.

As CH3CN does not belong to the suite of reactive species emitted by biomass

burning, it has been rarely taken into account in model simulations and emission

inventories. Despite the large uncertainties in the budget of CH3CN, only one model

study has been conducted so far (Li et al., 2003), where evaluation is limited to a

time period of 2 months in 2001.
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Before this study, none of the chemistry transport models used at the IMK included

CH3CN and only one emission inventory containing CH3CN data was available.

However, the inventory data is only available for the first three years of the CARIBIC

operation and will not be continued.

To remedy these deficiencies, CH3CN was preliminarily implemented into the model

ICON-ART. Furthermore, the integration of the most recent available biomass

burning emission inventory was realized. This new CH3CN inventory has several

advantages, which will substantially improve the simulation of biomass burning

emissions in ICON-ART, not only with regard to CH3CN. In this chapter, the current

status of the implementation is described and first results of the model simulations

are shown.

6.1. Current knowledge about the CH3CN budget

In the troposphere, typical abundances of CH3CN are in the range of 50 to 200 ppt

(e.g. Hamm et al., 1989; Schneider et al., 1997; Crutzen et al., 2000; Singh et al.,

2003; Scheeren et al., 2003; Traub et al., 2003; Kleinböhl et al., 2005). Biomass

burning is believed to be by far the dominant source of atmospheric CH3CN (Lobert

et al., 1990; Holzinger et al., 1999; Li et al., 2003), with minor contributions from

car exhausts (Arijs and Brasseur, 1986; Holzinger et al., 2001; Moussa et al., 2016).

Emission estimates based on molar emission ratios (relative to CO) and CO emission

data, which both have large uncertainties, vary from 0.4 to 2.2 Tg per year (Lobert

et al., 1990; Hamm and Warnek, 1990; Holzinger et al., 1999; Andreae and Merlet,

2001; Singh et al., 2003; Li et al., 2003).

The sinks of CH3CN are less well known. It is well established that the reaction with

OH is the main loss mechanism in the UTLS (Arijs and Brasseur, 1986), leading

to lifetimes of 17–26 months (Singh et al., 2003; Li et al., 2003; de Gouw et al.,

2003c). In the stratosphere, the lifetime is thought to be considerably longer. Arijs

and Brasseur (1986) estimated a lifetime of 20 years at 20 km, which is consistent

with the findings (10–20 years in the lower stratosphere) of Kleinböhl et al. (2005).

Recently, Harrison and Bernath (2013) determined a stratospheric lifetime of 73years

using the linear correlation between CH3CN and CFC-11 and the lifetime of the

latter.

In the lower troposphere, the lifetime might be significantly shorter as the above-
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mentioned 17–26 months, due to oceanic uptake of CH3CN. This sink was first

suggested by Hamm et al. (1984) and again proposed by Hamm and Warneck (1990)

to balance the known emissions and the observed VMRs. Although there is no direct

evidence of this sink (Singh et al., 2003), observed vertical gradients of CH3CN in

the marine boundary layer support the presence of the proposed sink (Jost et al.,

2003a; de Gouw et al., 2003c; Singh et al., 2003). Including the oceanic sink in their

calculations, Hamm and Warneck (1990), Singh et al. (2003) and Li et al. (2003)

found overall tropospheric lifetimes in the range of 5.4 – 6.6 months.

6.2. Acetonitrile in the model ICON-ART

Chemistry transport models are a powerful tool to investigate the budget of trace

gases like CH3CN, its distribution and variability in the atmosphere on a global

and seasonal scale. To the author’s knowledge, only one global modeling study of

CH3CN has been conducted so far in order to improve the understanding of the

atmospheric CH3CN budget (Li et al., 2003). They used measurements over the

Pacific Ocean during the TRACE-P campaign between February and April 2001

to constrain the oceanic sink of CH3CN and extrapolated the observations in time

and space to derive a global budget, but also noted that far more measurements are

required to determine a more accurate and reliable global budget.

Meanwhile, CH3CN has been measured over a period of 7 years onboard the CARIBIC

passenger aircraft and at a few ground-based stations (e.g. Jordan et al., 2009b; Hu,

2014; Patokoski et al., 2015). This long-term data sets and in particularly the good

spatial coverage of the CARIBIC data set are well suited to further constrain the

global budget of CH3CN when comparing them with model simulations. Therefore, a

first attempt was made to implement CH3CN into the ART (Aerosols and Reactive

Trace gases) extension of the ICON (ICOsahedral Nonhydrostatic) model.

ICON is the result of a collaboration between the German weather forecasting service

DWD (Deutscher Wetterdienst, Offenbach, Germany) and the Max Planck Institute

of Meteorology (MPI-M; Hamburg, Germany) to develop a unified model for global

and regional weather forecasting and climate simulations (Bonaventura, 2004; Zängl

et al., 2015). It is non-hydrostatic and makes use of an icosahedral grid.

Here, only the most important details about ICON are presented. For additional

information, please refer to the extensive literature about ICON (e.g. Wan et al.,
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2013; Zängl et al., 2015, Reinert et al., 2017, Heinze et al., 2017). The usage of the

unfiltered, non-hydrostatic Navier-Stokes equations, equations allows ICON to be

operated at scales, where the hydrostatic assumption is no longer valid (≤10 km,

see Daley, 1988). As a result, physical processes such as cumulus convection can be

directly simulated and do not need to be parameterized anymore (e.g. Tomita and

Satoh, 2004)

Also the icosahedral grid has a number of advantages: As it divides the sphere into

nearly equal elements with regard to area and shape, it is better suited to numerically

integrate the motion equations in the global domain than other grids (Sadourny et

al., 1968). Furthermore, it is not affected by over-sampling near the poles as it is the

case for a conventional longitude-latitude grid. For detailed information about the

ICON model, the reader may refer to the extensive literature.

The ART module, which is currently developed at IMK, extends ICON to a chemistry

transport model by incorporating a full gas-phase and aerosol chemistry (Rieger et

al., 2015; Schröter et al., 2016; Weimer et al., 2017).

6.2.1. Implementation of sinks

In the atmosphere, the removal of a compound at a certain location commonly depends

on the abundance of the reaction partner (e.g. OH radicals) and physical properties

(pressure, temperature, light). Therefore, removal rates can vary considerably with

location and time. In this first model approach, removal of CH3CN was implemented

more simple by assuming temporally constant removal rates for the marine boundary

layer, troposphere and stratosphere. The corresponding lifetimes are summarized in

Table 6.1.

A description of the technical implementation of the sinks is provided in Section C.1

of Appendix C. To distinguish between troposphere and stratosphere, the tropopause

Atmospheric Layer Lifetime

Stratosphere 70 years
Free troposphere and continental boundary layer 22.3 months
Marine boundary layer 21 days

Table 6.1.: Implemented lifetimes of CH3CN for different atmospheric layers in ICON-
ART.
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height according to the WMO definition was determined for each model time step

and column.

The removal rate in the stratosphere was set to the inverse of 70 years similar to

the 73 years estimated by Harrison and Bernath (2013). The lifetime in the free

troposphere and the planetary boundary layer was estimated using the temperature-

dependent reaction rate recommended by the IUPAC (Atkinson et al., 2004)

k(T ) = 8.1× 10−13 exp(− 1080
T

) cm3 molecule−1 s−1 , (6.1)

a mean tropospheric temperature of 273 K (Seinfeld and Pandis, 2016) and a mean

tropospheric OH abundance of 1.1× 106 molecules cm−3 (Spivakovsky et al., 2000;

Lelieveld et al., 2016). These assumptions result in an OH-driven tropospheric lifetime

of 22.3 months, which is close to the 23 months determined by Singh et al. (2003).

The inverse of this lifetime was used as removal rate for the whole troposphere,

except for the lowest 8 model layers (0–750 meter) above the oceans, where oceanic

uptake is supposed to lead to significantly lower lifetimes. Hamm and Warneck

(1990) determined a minimum lifetime of 15 days in the marine boundary layer.

Here, 21 days were used, resulting in an overall tropospheric lifetime of 6.5 months,

consistent with the estimates of Singh et al. (2003) and Li et al. (2003).

The overall tropospheric lifetime τ̄ emerges from the consideration of the globally

integrated tropospheric sink of CH3CN

L =

∫
[CH3CN](~x)

τ(~x)
dV =

1

τ̄

∫
[CH3CN](~x) dV, (6.2)

where τ(~x) is the lifetime and [CH3CN](~x) the concentration of CH3CN at the position

~x. Integrating the latter over the tropospheric volume gives the total amount of

CH3CN, which is also referred to as tropospheric burden B. Rearranging of Equation

6.2 leads to the definition of the overall tropospheric lifetime

τ̄ =

∫
[CH3CN](~x) dV∫ [CH3CN](~x)

τ(~x)
dV

=
B

L
, (6.3)

which does not only depend on the spatial distribution of the sinks, but also on the

spatial distribution and amount of CH3CN in the troposphere (Plumb et al., 2013).

Whereas the former is prescribed, the latter is typically not known from measurements.

Therefore, the estimate of τ̄ is a model-based value using the simulated distributions

of CH3CN. The resulting tropospheric lifetime of 6.5 month for CH3CN is the mean of
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the values calculated for each monthly model output over a time period of 10 years.

6.2.2. Sources

Biomass burning is the dominant source of atmospheric CH3CN. Due to the high

spatial–temporal variation of biomass burning, a good knowledge of the geographical

and temporal occurrence of fires and the emitted amounts of CH3CN are necessary

to represent the biomass burning emissions in the model. Such information can be

obtained from emission inventories, which commonly use global satellite-derived

burned area information, vegetation fuel load models and compound-specific emission

factors to estimate emissions (van der Werf et al., 2010). The output of the inventories

are gridded emission fluxes (in kg m−2 s−1) for a suite of compounds, whereby the

temporal and spatial resolution, the covered time period and the number of included

trace gases varies from inventory to inventory. The capability of the model to simulate

the distribution of trace gases and their temporal evolution strongly depends on

these parameters and the quality of the emission data.

As CH3CN is a relatively inert trace gas, it is not often modeled and, therefore,

commonly not represented in emission inventories. In 2003, when Li et al. (2003)

conducted their model study about CHN and CH3CN, there was no inventory

including emission data of the respective species. Therefore, they derived the emission

fluxes by multiplying observed (emission) ratios of the respective gases relative to CO

with emission data of CO. For CH3CN, they used a molar ratio of 0.15 %, consistent

with the observations of Lelieveld et al. (2001). Holzinger et al. (1999) found emission

ratios between 0.04 and 0.25 % when burning different savannah grasses in laboratory

fire experiments. The broad range as well as the fact that emission ratios change

with fuel type and the combustion efficiency of the fire make this type of estimation

relatively uncertain.

ACCMIP–MACCity inventory

In 2008, the ACCMIP–MACCity (Atmospheric Chemistry and Climate Model In-

tercomparison Project–Monitoring atmospheric composition and climate) inventory

was released (Lamarque et al., 2010; Heil and Schultz, 2014). A thorough search of

the relevant literature yielded that this is currently the only publicly available inven-

tory containing emission fluxes of CH3CN. As the authors use the fuel-type specific
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emission factors from Andreae and Merlet (2001, with updates until 2008), the flux

data should have a better quality than the estimates with a constant CO/CH3CN

emission ratio for all fires. Data are available on a 0.5°× 0.5° grid with a monthly

resolution covering the years 1960–2008. The years 1960 to 1996 are based on raw

data (amount of biomass burned) of the RETRO wildland fire emission inventory

(Schultz et al., 2008), whereas for the years 1997 onwards the amount of burned

biomass was taken from the GFED2 inventory (Global Fire Emissions Database)

(Randerson et al., 2005 and 2006; van der Werf et al., 2006; Giglio et al., 2006).

GFED inventory

Meanwhile, the emission factors have been continuously refined and the GFED data

has been updated twice (Giglio et al., 2013). In GFED3, daily and 3-hourly resolved

emissions data became available (Mu et al., 2011). The latest version (GFED4.1s)

was further enhanced by including emissions from small fires (Randerson et al., 2012)

and by a better spatial resolution (0.25°× 0.25°) (van der Werf et al., 2017a). The

GFED project is being continued and recent data is regularly added to the existing

data set.

However, in contrast to ACCMIP–MACCity or other inventories, ready-to-use emis-

sion fluxes for trace gases are not provided. Instead, the amount of dry matter burned

per area is given for different fuel types (van der Werf et al., 2017b). This data is

the raw product of any biomass burning emission inventory and it has the great

advantage that it enables to derive emission fluxes of species, which are not included

in ready-to-use emission data sets.

The author developed a tool, which fulfills this task for CH3CN (or any other species)

and provides the derived emission fluxes in a format, which can be readily imported

into ICON-ART. With the resulting Matlab script it is possible to use the most

recent GFED inventory data in ICON-ART and to simulate emissions of species,

which are not included in ready-to-use inventory outputs. The source code of the

script is provided in Section C.4 of Appendix C.

Prior to this new development, biomass burning simulations in ICON-ART were

generally restricted to the years before 2013. Model simulations including CH3CN

were only possible until the end of 2008, as the ACCMIP-MACCity inventory is not

continued.
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The developed Matlab script also allows to simulate more recent years (meanwhile

until the end of 2016), which is of great scientific value with regard to the ongoing

CARIBIC measurements. Thus, a much larger data set of in–situ measurements

is available for model validation and in return, model simulations covering the

entire period of CARIBIC flights add more value to the data set and its scientific

evaluation.

In addition, usage of the script in combination with the GFED4.1s data provides the

following advantageous opportunities compared to ready-to-use emission fluxes of

other inventories:

� The user can choose between different compilations of emission factors and

derived emission fluxes can be easily updated, if new emission factors become

available.

� The impact of different emission factors on emission estimates and modeled

VMRs can be investigated.

� The uncertainty in emission estimates due to the large spatial and temporal

variability (van Leeuwen et al., 2013) of emission factors can be assessed.

Processing of the GFED4.1s raw data

The Matlab script takes over all necessary steps to convert the amount of burned

dry matter into emission fluxes for the trace gases of interest. In a first step, it

checks for updates on the GFED website and, if necessary, downloads the most

recent GFED4.1s raw data, which are provided in the hierarchical data format HDF5

(HDF, 2017). Each file contains data for one year. Table 6.2 shows an excerpt of the

file structure and the location of the variables needed for the emission calculations

(printed in bold). All these variables represent fields with 720 rows (latitude) and

1440 columns (longitude) according to a 0.25°× 0.25° grid. The variable DM contains

the amount of dry matter burnt in the respective month and cell in kg m−2. Element-

wise multiplication with each of the fields in the daily fraction folder (contribution

of the particular day x to the monthly amount) gives the amount of burnt dry

matter on the day x. The fuel-type specific amounts are calculated by element-wise

multiplication with each of the fields in the partitioning folder.
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/emissions
/<month>

/DM
/daily fraction

/day 1
/day 2

...
/day n (number of days in month)

/partitioning
/DM SAVA (Savannah, grassland)
/DM BORF (Boreal forest)
/DM TEMF (Temperature forest)
/DM DEFO (Tropical forest)
/DM PEAT (Peat)
/DM AGRI (Agricultural waste)

Table 6.2.: Section of the hierarchical structure of the GFED4.1s raw data (adapted
from van der Werf et al., 2017b)

For many fuel-types and trace gases, emission factors

EFx,fuel-type =
Mx,fuel-type

Mbiomass,fuel-type

, (6.4)

defining the amount of a compound emitted (Mx,fuel-type) per amount of dry biomass

matter consumed (Mbiomass,fuel-type), have been derived from laboratory fire exper-

iments or in-situ observations (for a compilation, see Andreae and Merlet, 2001,

or Akagi et al., 2011). For acetonitrile, the reported fuel-type emission factors are

summarized in Table 6.3. Using a set of these emission factors, the daily emissions

Biome/Fire type Used Andreae and Merlet Akagi et al. Stockwell et al.
Abbreviation 2001 2011 2015

Savannah EFSAVA 0.11 0.11± 0.06 0.15± 0.14
Boreal Forest EFBORF 0.19 0.61 0.13± 0.11
Temperate Forest EFTEMF 0.19 – –
Extratropical Forest – 0.61 –
Tropical Forest EFDEFO 0.18 0.41± 0.10 –
Peat EFPEAT – 3.70± 0.90 0.60± 0.26
Agricultural Waste EFAGRI 0.18 0.21± 0.06 0.23± 0.17

Table 6.3.: Compilation of CH3CN emission factors reported in the literature. All
values are given in g CH3CN per kg consumed dry matter.
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Ex in kg m−2 of a species x can be expressed as

Ex = Dayfraction ·DM (EFx,SAVA ·DM SAVA + EFx,BORF ·DM BORF

+EFx,TEMF ·DM TEMF + EFx,DEFO ·DM DEFO

+EFx,PEAT ·DM PEAT + EFx,AGRI ·DM AGRI).

(6.5)

with element-wise multiplication of the fields. In this study, the mean emission factors

provided in Akagi et al. (2011) were used, as they are most complete. For temperate

forest fires, the emission factor of extratropical forest fires was used. However, for

future studies, other emission factors can also be considered and it is possible to

investigate the effect of the uncertainties of the emission factors on the atmospheric

distribution.

Implementation of the emissions into ICON-ART

Before emissions can be read by the ICON model, they need to be converted from

the longitudinal–latitudinal grid to the native ICON grid. This is done by a script of

the DWD ICON tools, which are provided by the DWD for remapping, extracting

and querying data files.

For each year between 2004 and 2015, two GFED4.1s CH3CN emissions files were

generated: The first one containing monthly resolved emissions and the second one

daily emissions.

The further import of the emissions files is done by the emissions interface of ICON-

ART, which has been developed and described by Weimer et al. (2017). In short,

the emissions interface controls, which emission inventory is used for the individual

trace gases and emission types, interpolates the emissions to each model time step,

converts the emission fluxes to VMRs and adds them to the VMRs present in the

surface-near model layer(s).

The parameters related to the import of the CH3CN data are mostly fixed and

their usage is well described in Weimer et al. (2017). However, it might be relevant

for further model studies of CH3CN to change the emission inventory, the model

resolution and the number of lowest model layers into which emissions are inserted.

Therefore, the configuration of the emission interface as used here is described in

detail in Section C.2 of Appendix C.

The ACCMIP-MACCity inventory has the peculiarity of distinguishing between
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forest fires and grassland/savanna fires. As the emissions of the two fuel types are

provided in separate variables, the emissions interface sums up both variables.

In this study, the emissions were only added to the lowest model layer. However, due

to the heat of the fires, the warm air masses are often directly injected into the free

troposphere (e.g. Crutzen and Andreae, 1990; Leung et al., 2007). To simulate this

effect, it can be reasonable to insert the emissions into more surface-near layers in

future studies.

6.3. CH3CN global source estimates

As the emission inventory data are the key input of the model simulations, the

simulated abundance and temporal-spatial distribution of CH3CN will likely depend

on the choice of the emission inventory. In previous studies, CH3CN emissions were

solely based on extrapolated CO emissions using an observed (constant) molar

emission ratio of CH3CN and CO as scaling factor (Singh et al., 2003; Li et al., 2003).

Here, for the first time, CH3CN emissions based on fuel-type specific emission factors

are used. Therefore, it is necessary to compare the results of the two approaches –

direct (EF) and indirect (CO) – for both inventories with previous source estimates.

For this purpose, gridded emission fluxes of CH3CN and CO (in kg m−2 s−1) were

derived from the GFED4.1s raw data using the script developed in this work (see

Section 6.2.2) and the emission factors of Akagi et al. (2011). In a next step, the

fluxes were converted into total emissions for each cell (in Tg a−1) and summed up.

For the indirect (CO) approach, the total CO emissions were multiplied with a factor

corresponding to the molar emission ratio of 0.15 % used in the studies of Singh

et al. (2003) and Li et al. (2003). The same was done for the ACCMIP-MACCity

inventory, with the difference that the gridded emission fluxes of CH3CN and CO

were already calculated by the authors of the inventory.

In Table 6.4, the resulting annual emissions of CH3CN and their means are sum-

marized for each inventory and approach. In the case of the direct (EF) approach,

the ACCMIP-MACCity data yields a mean annual source (2.4 Tg) twice as high as

the GFED4.1s data (1.2 Tg). In contrast, the results of the indirect (CO) approach

are in better agreement (0.9 Tg and 0.8 Tg), indicating that the large discrepancy

in the fuel-type specific CH3CN emissions of both inventories is not related to the

underlying fire product, but rather a result of different emission factors used for
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CH3CN.

In Table 6.5, literature values of the annual CH3CN emissions are compiled. The

very first estimates were based on rather crude assumptions and involved no direct

measurements of acetonitrile. Since then, estimates have been considerably revised

upwards due to new constraints from further atmospheric measurements and the

detection of CH3CN in the emissions of controlled laboratory fires. Although there

have been no new studies since 2003, the latest estimates suggest a global source of

1.0–1.4 Tg.

Despite being based on CO emission estimates, the latest estimates of the global

CH3CN source are larger than the results of the indirect (CO) approach derived

in this study. This is due to the fact that Andreae and Merlet (2001), Singh et al.

(2003) and Li et al. (2003) included CO emissions from the combustion of biofuels

and charcoal burning in their CO emissions estimates, which are not included in the

ACCMIP-MACCity and GFED4.1s biomass burning inventories.

The combustion of biofuels mainly refers to small fires in stoves for cooking and

heating (Akagi et al., 2011), which cannot be resolved by satellites. Andreae and

Merlet (2001) assumed a CH3CN source from biofuel burning of 0.5 Tg. However,

the recently reported emission factors of CH3CN from open cooking and cookstoves

are 1–3 magnitudes smaller than the ones from other fire types (Stockwell et al.,

2015), suggesting that the source from biofuel burning is considerably smaller or

even negligible.

Comparison of the literature values with the results of the direct (EF) approach

reveals that the global CH3CN source derived from the GFED4.1s data is consistent

with previous estimates, although biofuel emissions are not included. The reason for

this presumably lies in the larger emission factors of Akagi et al. (2011) compared to

Inventory & approach 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean

MACCity
direct (EF) 3.9 2.0 1.6 1.9 3.0 2.1 2.4 2.7 3.0 1.8 1.5 2.4 ± 0.7

indirect (CO) 1.4 0.9 0.8 0.8 1.0 0.9 0.9 1.0 0.9 0.9 0.7 0.9 ± 0.2

GFED
direct (EF) 1.5 1.0 0.8 0.8 1.7 1.3 1.3 1.2 2.1 1.0 0.8 1.2 ± 0.4

indirect (CO) 1.0 0.8 0.6 0.6 0.9 0.8 0.8 0.8 0.8 0.7 0.6 0.8 ± 0.1

Table 6.4.: Annual emissions of CH3CN in Tg based on the ACCMIP-MACCity and
GFED4.1s inventory. The results of the direct (EF) approach are based
on fuel-type specific emission ratios, whereas the indirect (CO) approach
refers to the source estimates based on CO emissions of the respective
inventory and a constant molar CH3CN/CO emission ratio of 0.15 %.
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CH3CN Type of Measurement References
[Tg a−1]

0.02–0.17 assessment of total BB emissions Arijs and Brasseur (1986)

0.05 observed VMR in the LS Knop and Arnold (1987)

0.4–2.2 controlled laboratory fires Lobert et al. (1990)

0.8± 0.5 literature review & assessment Hamm and Warnek (1990)

0.4–1.0 controlled laboratory fires Holzinger et al. (1999)

1.0 literature review & assessment Bange and Williams (2000)

1.3 literature review & assessment Andreae and Merlet (2001)

1.2 ratio observed over the Pacific Singh et al. (2003)

1.4 ratio observed over the Pacific Li et al. (2003)

Table 6.5.: Literature estimates of the global annual CH3CN biomass burning source
in Tg. The table has been adopted from Singh et al. (2003) and Li et al.
(2003).

the ones of Andreae and Merlet (2001) used in previous studies (see Table 6.3).

For the ACCMIP-MACCity inventory, the direct (EF) approach (corresponding to

the provided emission fluxes of CH3CN) yields a considerably higher source than

the literature values. Only the upper range (2.2 Tg) reported in Lobert et al. (1990)

comes close to the derived mean annual source of 2.4 Tg (see Table 6.4). Therefore,

this inventory should be considered as an upper limit of CH3CN emissions. This is

also confirmed later by comparing the VMRs of the model simulations with the ones

measured onboard the CARIBIC aircraft (see Section 6.5). Further investigations,

which were out of the scope of this study, are recommended to clarify the high

CH3CN emissions in the ACCMIP-MACCity inventory. However, due to the fact that

the ACCMIP-MACCity inventory ends in 2008 and the IAGOS-CARIBIC project

continues its operation, the ACCMIP-MACCity inventory will likely play only a

secondary role in future studies.

6.3.1. Variability of the global CH3CN source

Due to its different driving forces including meteorological conditions and human ac-

tivities, biomass burning is subject to substantial seasonal and interannual variability

(e.g. Duncan et al., 2003; Pechony and Shindell, 2010; Dong and Fu, 2015). In Table
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6.4, the interannual variability of the global CH3CN source within the time period

1998 – 2008, when data of both inventories (ACCMIP-MACCity and GFED4.1s) are

available, is shown.

In Figure 6.1, the derived monthly CH3CN emissions of both inventories and ap-

proaches (direct and indirect) are plotted against time. As stated earlier, the GFED

emissions have been derived within this study, whereas for the ACCMIP-MACCity

inventory fluxes were provided for CO and CH3CN.

When comparing the emissions based on the fuel-type specific emission factors (direct

approach), two features stand out:

1. The monthly emissions of the ACCMIP-MACCity are on average 0.1 Tg larger.

2. The strongest emissions in both inventories coincide, but the temporal evolution of

the emissions in ACCMIP-MACCity shows more structure compared to the GFED

inventory. In the GFED data set, the emissions peak once a year around August

and September, but the ACCMIP-MACCity emissions show another smaller peak

around the turn of each year. In the displayed period, this second annual peak is

particularly prevalent at the beginning of 1998 and of 2005.

The CO-based emissions (indirect approach) follow the same annual cycle for both

inventories, but the absolute values slightly differ: For the case of the MACCity

inventory, the extrapolated emissions always stay below the direct (EF) estimates and

the differences are particularly high for months with strong emissions. On average,

the CO-based emissions are 0.12 Tg below the estimates deduced from the provided

CH3CN emission fluxes.

For the GFED inventory, the emissions derived from the different approaches are in

better agreement. Deviations are only visible for the months with strong emissions,

but not for all years. On average, the monthly emissions based on the indirect (CO)

approach are 0.04 Tg lower than the ones based on the direct (EF) approach.

Both inventories have in common, that the largest discrepancies between the different

approaches occur in the months with high biomass burning emissions. This leads to

the conclusion that mainly the fires contributing to the globally enhanced fire activity

in these months emit more CH3CN relative to CO as assumed by the ratio of 0.15 %.

As the interannual variability is to a large part driven by the peak annual emissions,

it is considerably and unrealistically lower when using the CO-based approach (see
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Figure 6.1.: Temporal evolution of monthly CH3CN emissions for the period 1998 –
2008. In the upper panel, the original ACCMIP-MACCity CH3CN direct
(black) and the CO-based indirect emission estimates (red) are shown. In
the lower panel, the same comparison is made for the GFED4.1s inventory.
For better comparison of the two inventories, the ACCMIP-MACCity
data are overlaid as dotted line.

also Table 6.4).

6.4. Volume mixing ratios in model simulations

The previous section revealed that the mean annual CH3CN emissions of the two

inventories (ACCMIP-MACCity and GFED4.1s) differ by a factor of 2 (see Table 6.4).

To assess the different estimates with regard to in-situ measurements, the resulting

amounts of CH3CN in the atmosphere, i.e. the mean VMRs in the troposphere, need

to be determined. As a first step, global mean tropospheric VMRs are estimated

using a one-compartment model.
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6. Global atmospheric budget and distribution of acetonitrile

6.4.1. One-compartment model

The change of the total mass m of CH3CN can be expressed by the differential

equation

ṁ(t) = S − λ m(t), (6.6)

where S is the emission mass flow of CH3CN into the troposphere and λ the mean

removal rate. Assuming a constant emission flux and removal rate, the equation can

be solved numerically and the time dependence of the total mass is described by

m(t) =

(
m0 −

S

λ

)
exp−λt +

S

λ
= (m0 − S τ) exp−

t
τ
t +S τ, (6.7)

where m0 is the total mass at time zero and τ = λ−1 is the tropospheric lifetime. In

steady state (t � τ), the total mass equals the product of the emissions rate and

the lifetime (S τ). This can be converted into a VMR

VMRCH3CN =
nCH3CN

nair

=
mCH3CN ·Mair

mair ·MCH3CN

=
Mair

mair ·MCH3CN

S τ, (6.8)

where n is the amount of moles and M is the molar mass. The total mass of the

atmosphere is ∼5140 Pg (Trenberth and Guillemot, 1994). Given that the troposphere

contains about 80 % of the mass and the mean molar mass of air is ∼29 g mol−1,

the fraction on the right side of Equation 6.8 is equivalent to 171.7 ppt per Tg

CH3CN. The overall tropospheric lifetime of CH3CN was estimated to be 6.5 months

(see Section 6.2.1). Substituting the annual emissions of MACCity (2.4 Tg a−1)

and GFED (1.2 Tg a−1) inventories into the Equation 6.8 results in the following

tropospheric VMRs:

MACCity: 223± 65 ppt

GFED: 112± 37 ppt,

where the range reflects the interannual variability of the annual source. Whereas the

former is slightly above the range of previously observed tropospheric background

VMRs (50–200 ppt; Hamm and Warneck, 1990; Singh et al., 2003; de Gouw et al.,

2003c), the latter lies well within the range. Without considering the presumed ocean

sink, the estimated VMRs would be unrealistically high (765 ppt for MACCity and

383 ppt for GFED).

Nevertheless, for comparison with in–situ measurements, simulations with a chemical

transport model such as ICON-ART are indispensable, e.g. to resolve the observed
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vertical gradient of CH3CN in the troposphere.

6.4.2. ICON-ART

To investigate the effects of the discrepancy between MACCity and GFED more

closely, ICON-ART model simulations were performed with both inventories. The

model was operated on a horizontal grid referred to as R2B04 (for a detailed

description of the notation see Zängl et al., 2015) corresponding to an effective grid

resolution of 157.8 km. In the vertical, the smooth level vertical (SLEVE) coordinate

(Schär et al., 2002, Leuenberger et al., 2010) with 90 height-based levels was used.

Model simulations were performed for the time period between 1 January 2004 and

31 October 2014 to cover the majority of IAGOS-CARIBIC CH3CN measurements

starting in 2006. As the model domain was not filled with CH3CN at the start,

the spin-up period took about one year. The meteorological conditions were once

initialized on 1 January 2004 (00:00 UTC) using ERA-Interim reanalysis data and

then left free-running. The model time step was set to 8 min. At monthly intervals,

the output of each model layer was interpolated to a 0.5°× 0.5° longitude-latitude

grid and saved in a NetCDF (Network Common Data Form; Unidata, 2014) file.

In Figure 6.2, the monthly global emissions of CH3CN (lower panel) are compared

to global mean VMRs of CH3CN (upper panel) at the surface (solid lines) and 1 km

below the tropopause (dotted lines). The latter was chosen to exclude stratospheric

air masses. For the comparison with in–situ aircraft measurements, the VMRs in the

upper troposphere are of main interest.

As the MACCity inventory only contains data until the end of 2008, the emissions

interface of ICON-ART repeatedly used the monthly emissions of 2008 for the

following years. The resulting VMRs are not shown in Figure 6.2 and have been

excluded from the following analysis to avoid a bias. In Table 6.6, the global mean

VMRs of the two model simulations and for the surface and upper troposphere are

compared with each other.

The absolute values are lower than the ones from the one-compartment model. This

is expected due to the fact that tropospheric-stratospheric exchange is not included

in the one-compartment model although the stratosphere represents a reservoir for

CH3CN. Mean VMRs of the MACCity simulation are only 1.7–1.8 times higher

than in the GFED simulation, remaining below the factor of 2 derived from the
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one-compartment model. The VMRs in the upper troposphere are on average larger

than at the ground, as large amounts of CH3CN are effectively transported into the

upper troposphere, where the lifetime is almost two years (see Table 6.1). The spatial

variability of the VMRs in the upper troposphere is on average ±20 % (RSD) of the

mean values for both inventories.

Near the surface, the oceanic sink reduces the global mean lifetime, which explains

the on average lower VMRs at the ground. However, as the lifetime in the continental

boundary layer is the same as in the free troposphere, this effect strongly depends on

the amount of CH3CN being transported into the marine boundary layer, which in

turn depends on the location of the fire and the prevailing meteorological conditions.

The spatial variability of the surface VMRs is considerably higher than in the UT

and therefore not displayed in Figure 6.2.

Figure 6.2 also reveals that the VMRs both at the surface and in the UT follow a

distinct annual cycle, which is prescribed by the emissions at the surface and shifted

by 1–2 months in the UT due to the upward transport time scales. The amplitude

of this cycle in the VMRs is more pronounced in the GFED simulation, which is

due to the different emissions pattern. As discussed in the previous section, the

global emissions in GFED only peak once a year in August–September, whereas the

MACCity emissions have another, yet smaller peak around the turn of each year,

which reduces the amplitude in the emissions and VMRs.

Besides the quantities and temporal evolutions of the emissions, also the source

locations within the two inventories are of great importance, as they predetermine

the propagation of the plumes and thus, the spatial distribution of CH3CN. Most

biomass burning worldwide occurs in the tropics (e.g. Seiler and Crutzen, 1980,

Crutzen and Andreae, 1990; Duncan et al., 2003). However, due to the subtropical

transport barriers (e.g. Haynes and Shuckburgh, 2000; Stohl et al., 2002), exchange

MACCity GFED
time period surface below TP surface below TP

2005–2008 163± 26 190± 28 97± 18 107± 23

2009–2014 91± 24 98± 18

Table 6.6.: Global mean volume mixing ratios of CH3CN (in ppt) at the model
surface and 1 km below the model tropopause (TP) for the respective
time periods and emission inventories. The shown uncertainties represent
the temporal variability (standard deviation).
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Figure 6.2.: Monthly emissions (lower panel) and global mean VMRs of CH3CN in
the model simulations (upper panel) at the surface (solid lines) and 1 km
below the tropopause (dashed lines). The spatial variability of the upper
tropospheric VMRs is indicated by vertical lines. For reasons of clarity,
the one of the surface VMRs is not shown.

of air masses between the tropics and the extratropics is slow (weeks to months)

compared to mixing within the tropics and extratropics (days to weeks) (Bowman,

2006).

When comparing the results of the model simulations with CARIBIC measurements,

as it is done in the next section, it is therefore important to consider that CH3CN

VMRs in the midlatitudes, where most of measurements have been done, will be

most immediately affected by emissions in the midlatitudes and to a much lesser

extent by emissions in the tropics and vice versa (Cooper et al., 2007).
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6.5. Comparison with CARIBIC measurements

The model simulations of this study do not allow for a one-to-one (spatially and

temporally coherent) comparison of simulated VMRs and the ones measured onboard

the CARIBIC aircraft. Such a comparison would require frequent adjustments of the

simulated meteorological conditions to observations (a so called ”nudging”) and an

output mechanism, which stores the simulated VMRs at high frequency along the

flight paths during flight. However, frequent nudging over longer time periods is not

yet possible within ICON-ART and such an individual output mechanism still has

to be developed.

Despite these limitations, comparisons with CARIBIC observations are most promis-

ing, as they comprise the worldwide largest set of upper tropospheric CH3CN

measurements available at the moment. Moreover, the CARIBIC data set is unique

in terms of its spatial and temporal coverage. As the observations have been made

remote from the sources, they are also representative for much larger regions com-

pared to ground-based measurements. Therefore, model-measurement comparison of

the annual means and the frequency distribution of VMRs seems to be an adequate

analysis method.

6.5.1. Annual distributions

In contrast to the model, the CARIBIC data set is limited to the flight altitude and

the spatial coverage of the flight routes (see Figure 1.4). With regard to the spatial

variability, which can be considerable, it is not reasonable to compare mean VMRs,

which were mainly measured in the Northern Hemisphere with globally averaged

VMRs of the model. Therefore, a volume needs to be selected, which on the one

hand has a good data coverage in both data sets (model and measurements) and

on the other hand is well suited to assess the source strength of biomass burning

emissions.

About 50 % of the CARIBIC measurements have been done in the stratosphere.

However, as the stratosphere is far away from the sources and advection is very slow

compared to the troposphere (e.g. Plumb, 2002), it does not represent a well-mixed

reservoir for CH3CN and the spatial variability will be rather driven by differences

in the age of the air mass than by the sources (Jobson et al., 1999). Consequently,

stratospheric observations are not well suited to estimate the surface emissions of
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CH3CN. Furthermore, the simulated stratospheric VMRs have to be taken with care,

as the stratospheric domain needs considerably more spin-up time than the time

period considered in the simulation.

Conversely, surface-near concentrations of CH3CN are dominated by local emissions

and sinks, which likewise impedes the estimation of a global biomass burning source

strength. A large number of measurements at various places would be required to

assess the high spatial variation of fires, but the CARIBIC data set only contains

very few surface-near measurements made during ascent and descent confined to the

proximity of some airports.

Therefore, the atmospheric region best suited for the intended comparison and source

assessment lies in between: The upper troposphere constitutes a well-mixed reservoir

for CH3CN and is regularly probed by the CARIBIC aircraft. To distinguish between

tropospheric and stratospheric measurements, the concomitant ozone data and the

threshold of the chemical tropopause are used (for details see Section 5.3). The few

measurements during ascent and descent are excluded with an upper pressure limit

of 280 hPa.

In the model, the WMO tropopause was used to either assign the tropospheric or

stratospheric lifetime of CH3CN to the respective model layers. Therefore, the height

relative to the WMO tropopause is also used here to define the lower and upper limit

of the reference volume in the model environment. As a first approach, the limits are

set to 3 km and 1 km below the tropopause.

With regard to the spatial coverage of the flight routes, it seems most reasonable to

restrict the horizontal expanse of the volume to the Northern Hemisphere midlatitudes

(23.5°N–66.5°N) and the longitudinal range between -135°E to 135°E. This covers

the majority of the CARIBIC measurements and excludes the Pacific Ocean, which

was not sampled by the CARIBIC aircraft.

In Figure 6.3, the annual distributions of VMRs contained in the defined reference

volume are shown for the CARIBIC measurements and the model simulations. All

distributions lie within the same range of VMRs starting from 50 ppt to 300 ppt,

but differ from each other with regard to the shape, center and width.

In general, the distributions of the CARIBIC measurements are more symmetric

than the ones of the simulated VMRs. All distributions are skewed to the right

(positive skewness factor, see Table 6.7), but this shape is much more pronounced
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number of skew- mean VMR (±1σ) [ppt] proportion
year data set data points ness all values background of bgnd. [%]

2006
CARIBIC 2783 1.2 107± 32 100± 24 75
GFED 3059347 4.0 115± 36 89± 6 38
MACCity 3059347 3.1 196± 26 178± 13 52

2007
CARIBIC 3331 0.3 122± 36 117± 33 80
GFED 3059347 1.4 119± 20 108± 12 54
MACCity 3059347 1.1 182± 27 158± 9 37

2008
CARIBIC 8185 0.6 125± 36 114± 27 71
GFED 3059347 7.2 98± 25 91± 8 71
MACCity 3059347 6.1 152± 20 143± 9 58

2012
CARIBIC 6153 1.3 148± 34 122± 15 43
GFED 3059347 3.5 122± 54 86± 6 37

2013
CARIBIC 8616 2.5 160± 29 155± 20 79
GFED 3059347 20.1 109± 29 92± 6 31

2014
CARIBIC 5558 1.7 212± 61 157± 18 29
GFED 2353347 5.8 121± 45 91± 6 47

2015 CARIBIC 6720 0.3 185± 45 178± 40 78

Table 6.7.: Parameters of the distributions shown in Figure 6.3 and additionally
included the CARIBIC measurements in 2015 (not shown). The mean
background CH3CN VMRs were determined as center µ of a Gaussian
function fitted to the left flank of the distributions. The proportion of
background (bgnd.) VMRs was defined as the percentage of VMRs lower
than the sum µ+ 1σ of the Gaussian fit parameters.

for the simulated distributions. The latter have a distinct maximum at low VMRs,

which can be related to the atmospheric background reservoir of CH3CN, and an

extended tail towards elevated VMRs caused by in-mixing of fresh biomass burning

plumes into the UT background. In some years (e.g. 2007, 2012, and 2014), this tail

has 1–2 local maxima, which are most likely the result of temporally and spatially

extended biomass burning episodes.

In the CARIBIC measurements, such clearly resolved structures are not visible except

for 2014, where a local peak is present at ∼210 ppt. In the other years, including

also measurements from 2015 (not shown), the shape of the distributions is close

to a normal distribution with a flat tail towards enhanced VMRs observed within

178



6.5. Comparison with CARIBIC measurements

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

CH3CN [ppt]
0 50 100 150 200 250 300

2006

2007

2008

2013

2014

2012

%
 in

 b
in

CARIBIC data
MACCity simulation
GFED simulation

Figure 6.3.: Annual distribution of CH3CN VMRs measured with CARIBIC (black)
and simulated using the MACCity (red) or GFED (blue) emission in-
ventory. All three data sets were restricted to the upper troposphere in
the Northern Hemisphere midlatitudes (see text for details). Statistical
parameters of the distributions are summarized in Table 6.7.
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encountered biomass burning plumes.

Depending on the frequency of observed plumes and their degree of mixing, the

tail is more or less pronounced and the arithmetical mean may be shifted towards

higher VMRs and deviate from the maximum of the distribution. However, one

has to consider that the frequency of fresh biomass burning plumes encountered

by the CARIBC aircraft strongly depends on the selected flight routes, as global

fire activities are subject to a distinct seasonal and spatial pattern. Likewise, the

propagation of biomass burning plumes in the model may be distorted, as emissions

are currently only injected into the lowest model layer neglecting the influence of

pyroconvection. Consequently, the annual means do not provide a profound basis to

assess the global source and discrepancy between the two inventories.

By contrast, the background VMRs should be much more robust and less affected

by the chosen flight routes and plume propagation in the model, as the hemispheric

mixing timescales (few months) are short compared to the UT lifetime of CH3CN

(∼2 years). Several methods exist to estimate the atmospheric background VMR.

In Section 5.5.2, air masses with acetone and CO VMRs between the 5th and 25th

percentile were attributed to the background.

For CH3CN, the longer lifetime suggests a higher proportion of background mea-

surements. However, the high variability in emissions makes it difficult to specify a

constant inter-percentile range for all years. Therefore, a Gaussian function fitted to

the left flank of the distributions is used here to determine the mean background

VMR (center µ of the Gaussian function) and the proportion of measurements

attributed to the background (all VMRs lower than µ+ 1σ).

In Figure 6.4, the approach is exemplarily shown for the CARIBIC measurements

in 2012 and 2014, which were affected by a considerably higher variation in VMRs

compared to other years. The widths of the overall distributions suggest another

mode with enhanced VMRs, which were comparably often (2012) or even more often

(2014) sampled as the clean background. Also the distributions of the GFED model

simulation (see Figure 6.3) are much broader in the two years and show at least one

further mode of elevated VMRs, indicating the occurrence of strong biomass burning.

Accordingly, the derived percentage of background air sampled with CARIBIC are

relatively low (43 % in 2012 and 29 % in 2014).

In all other years, the shape of the CARIBIC distributions is much closer to a normal

distribution suggesting that mostly clean or well-mixed, aged air masses with VMRs
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Figure 6.4.: Histograms of the CARIBIC CH3CN data for 2012 (left panel, yellow)
and 2014 (right panel, green).

close to the background value were sampled. This is also reflected in the derived

background proportions ranging between 70–80 %.

In Table 6.7, the results for all years and data sets (CARIBIC, GFED and MACCity)

are summarized together with the annual means. In the years 2006–2008, the back-

ground of the CARIBIC measurements (on average 110 ppt) and of the GFED

simulations (on average 96 ppt) do not show significant differences within the 1σ-

range of the Gaussian fit. However, one has to consider that the observed and

simulated VMRs are also subject to the accuracy of the measurements and the

uncertainties associated with the sinks included in the model, respectively. With

regard to the former, an upper limit of 15 % can be assumed, whereas the latter is

assessed as follows:

For the lifetime τOH against reaction with OH, an uncertainty of 5.6 months, corre-

sponding to 23 %, is found when considering the uncertainties of the mean annual OH

density (15 %; Spivakovsky et al., 2000; Lawrence et al., 2001) and the temperature-

dependent reaction rate (20 % resulting from the uncertainty of the parameterization

and the mean temperature ±10° C).

The lifetime τocean against oceanic uptake depends on the deposition velocity of

CH3CN and the assumed height of the marine boundary layer. The range of published

values indicates an uncertainty of 20.5 days.

As both sinks affect well-separated atmospheric layers, the mean tropospheric lifetime
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τ̄ derived from the model results can be considered as weighted sum of the two

lifetimes:

τ̄ = xOH · τOH + (1− xOH) τocean, (6.9)

where xOH denotes the proportion of the reaction with OH relative to the total

tropospheric sink of CH3CN. Rearranging of Equation 6.9 and inserting the lifetimes

(see Section 6.2.1) yields a proportion of xOH ≈ 0.27, meaning that most of the

CH3CN is removed by oceanic uptake.

Nevertheless, the oceanic sink has only a very limited influence on the mean tropo-

spheric lifetime and thus, the VMR in steady-state (see Equation 6.8). This is due

to the fact that the difference in lifetimes of the two sinks is much larger than the

difference in their contributions to the total sink. Consequently, the weighting of the

two sink terms on the right side of Equation 6.9 is dominated by the lifetimes. As

τOH is 33 times larger than τocean, the mean tropospheric lifetime is mainly driven by

the OH sink.

This also holds true for the model uncertainty, which is ∼30 % based on linear error

propagation. According to Equation 6.8, this uncertainty can be directly transferred

to the simulated VMRs. With regard to the comparison with CARIBIC observations

(see Table 6.7), the determined uncertainty enables the following conclusions:

For the time period 2006–2008, the CARIBIC observations support the mean annual

background VMRs of the GFED simulation and thus, the biomass burning source

strength included in this inventory. In contrast, the high background VMR of 178 ppt

in the MACCity simulation in 2006 is in contradiction to the CARIBIC measurements.

Comparison of the annual emissions with previously reported estimates already

revealed that the MACCity inventory has to be taken with care and considered as

an upper limit for CH3CN emissions. The high discrepancy between observed and

simulated VMRs in 2006 seems to confirm this. However, in the following two years,

the simulated background VMRs decrease and fall into the range, which can be

explained by the measurement accuracy and uncertainty of the sinks.

In the second period beginning in 2012, the comparison is restricted to the CARIBIC

measurements and the GFED model simulations. The mean background VMRs in

the simulation continue to be around 90 ppt, whereas the CARIBIC observations

suggest a continuous increase. The mean background VMR changed from 122 ppt in

2012 to 155 ppt in 2013 and from 157 ppt in 2014 to 178 ppt in 2015. Except for

2012, the large differences between model and observations cannot be explained by
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6.5. Comparison with CARIBIC measurements

the considered uncertainties.

Possible reasons for this are: a) The GFED inventory underestimates the emissions in

2012–2014, b) the background determined from the observations is not representative,

c) the measurements accuracy is lower than expected or d) the uncertainty associated

with the sinks implemented in the model is higher than estimated.

In this context, it has to be mentioned that the CARIBIC instrument was strongly

modified between 2008 and 2012. Before the modification, the instrument was

frequently calibrated in-flight by diluting a gas standard into the sample line at

intervals of 35 minutes. However, as a matter to save weight, the gas cylinder

containing the gas standard was removed during the modification and calibrations

were subsequently done in the laboratory between flights. This enlarges the overall

uncertainty of the measurements, as instrumental drifts may occur and not be

corrected for.

Another important aspect is the change in flight routes between the two periods. In

the first one (2006–2008), the CARIBIC container was primarily deployed on flights

to Asia, whereas in the 2nd period (2012–2014), flights to North or South America

dominate depending on season. Consequently, the seasonal sampling is very different

between the two periods and may explain the different VMRs. Based on this finding,

the seasonal variability of CH3CN within the model simulations and observations is

examined more closely in the next section.

6.5.2. Annual cycle

In the previous section, only the annual CH3CN distributions were compared regard-

less of a seasonal variability due to the limited number of CARIBIC measurements in

each individual month. If such a variability exists, it might explain the observed rather

broad distributions of measured VMRs and the different modes in the distributions

of the simulated VRMs.

To investigate the seasonal variability in the CARIBIC data set, it is again important

to focus on a region with good data coverage. In accordance with the previous section,

the analysis is thus restricted to the Northern hemisphere midlatitudes (23.5°–66.5°N).

Furthermore, to obtain a statistically sufficient number of measurements per month,

the monthly data of several years have to be merged. This was done for the two

continuous periods 2006–2008 and 2012–2016. The data set of the first period is
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consistent and measurements were frequently calibrated in-flight. The data set of

the second period is characterized by generally increasing VMRs and two leaps in

VMRs due to instrumental maintenance and changes, which complicate the merging

of data of different years.

The leaps, which occurred between September and October 2012 (change of detector

and adjustments of the ion lens voltages) and between November 2014 and January

2015 (re-adjustment/calibration of the mass axis), are clearly related to instrumental

issues. The questions, why the maintenance and modification caused such leaps in the

2012–2015 time series of the CARIBIC CH3CN measurements despite calibrations (in

total 16 calibrations were done at irregular intervals in the considered time period)

and whether the observed increase is related to this, is certainly worth investigating

but is out of the scope of this study. However, to combine the monthly data of

different years for analysis, it is inevitable to correct the data for the two leaps and

the resulting temporal trend in the 2012–2016 CH3CN time series.

For this purpose, a linear function f(t) = a · t+ b was fitted to each subset of the

data (i.e. all data before the first leap, between the leaps and after second leap). To

remove the temporal trend and to normalize all VMRs to a comparable level (the

mean VMR observed in the period 2006–2008), the following correction was applied

to each measurement xi,meas conducted at the time ti,meas:

xi,corr = xi,meas − (a · ti,meas + b) + x̄meas,2006–2008. (6.10)

In Figure 6.5, the resulting seasonality is shown relative to the chemical tropopause

for both periods. With regard to the considerable differences in the histograms (see

Figure 6.3), the good agreement of the annual cycle between the two periods is

remarkable.

In both periods, there is a distinct maximum of median tropospheric VMRs around

May (∼145 ppt) and a minimum in the winter months (∼85 ppt). In the years

2006–2008, the period of enhanced VMRs lasts until July, whereas in the 2nd period

it continues until September. In August, higher VMRs were measured directly above

the tropopause. The lowest tropospheric VMRs are found in January and December,

which is consistent with the observations during the first period.

In the lowermost stratosphere (LMS), a seasonal variation is only visible during the

second period. The lowest VMRs are obtained in late spring. This is consistent with
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6.5. Comparison with CARIBIC measurements

the concurrent observation of maximum ozone and minimum CO VMRs indicating

that aged stratospheric air masses control the composition of the LMS at this point

of the year. In late summer CH3CN-rich air masses penetrate into the LMS, where

the distribution of CH3CN is largely influenced by transport as a result of the long

chemical lifetime of ∼70 years. As transport is slow in the stratosphere, the injected

amounts of CH3CN are not effectively removed from the LMS in the following

months.

In Figure 6.6, a similar plot is shown for the GFED model simulation. In the interest

of comparability, the data was restricted to the same latitude (23.5°–66.5°N) and

longitude range (-135°–135°E) of the CARIBIC measurements. However, due to the

completion of the simulation at the end of 2014, the second period of the CARIBIC

measurements is not fully covered.

Figure 6.5.: Median CH3CN VMRs relative to the chemical tropopause measured
with the CARIBIC aircraft in the time periods 2006–2008 (left panel)
and 2012–2016 (right panel). The data of the latter period has been
corrected for a linear trend and shifted to the mean VMR observed
between 2006 and 2008 (see text for details). Only measurements in the
Northern hemisphere midlatitudes (23.5°–66.5°N) have been included.
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Figure 6.6.: Median CH3CN VMRs relative to the WMO tropopause in the GFED
model simulation. The underlying data is restricted to the Northern
hemisphere midlatitudes (23.5°–66.5°N) and the longitude range (-135°–
135°E) covered by the CARIBIC measurements.

Figure 6.7.: Same as Figure 6.6, but for the MACCity model simulation. Please note
the different scale of the colorbar.
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Compared to the CARIBIC measurements, the distributions of the simulated VMRs

show significantly less small-scaled structures. Reasons for this are the homogeneous

distribution of sinks in the model, the coarse resolution of the model compared

to the measurements and the better statistics of the underlying data. The GFED

model simulation also show a seasonal variation in upper tropospheric CH3CN

VMRs, but the occurrence of minima and maxima is very different compared to the

measurements.

In the years 2006–2008, there is a minimum (∼90 ppt) around March and a maximum

(∼120 ppt) in July–August. The second period (2012–2014) is characterized by low

VMRs (∼95 ppt) from January to June and an extended period of enhanced VMRs

(∼135 ppt) between July and the end of October. Between both periods strong

gradients are present.

The distributions of both periods have in common that the amplitude of the annual

cycle decreases towards the tropopause, which can be explained by the increasing

distance to the dominating sources and sinks. Moreover, this negative vertical gradient

suggests that the VMRs in the northern hemisphere UT are largely influenced by

regional emissions.

The strong annual increase of CH3CN VMRs in spring, as observed with CARIBIC, is

not present in the GFED model simulation. Likewise, the extended period of enhanced

VMRs in fall, which occurs in the GFED model simulation between 2012 and 2014,

coincides with the period of decreasing VMRs in the CARIBIC measurements.

For the model simulation using the MACCity inventory, a comparison is only possible

for the first period of CARIBIC measurements, as the inventory data is only available

until 2008. In Figure 6.7, the resulting distribution of median VMRs is shown. Please

note that due to the generally higher VMRs in the MACCity simulation, the colorbar

was adjusted.

In contrast to the GFED simulation, the median VMRs are highest at the turn

of the year (∼195 ppt) and have a minimum around October (∼160 ppt) in the

UT. In the first months of the year, the VMRs increase towards the tropopause

and maximum VMRs are found directly above the tropopause in the LMS. This is

a strong indication that the enhancement during this period of the year was not

caused by emissions in the considered area (Northern hemisphere midlatitudes), but

by transport of polluted air masses from the tropics into the extratropical UTLMS.

As the transport processes are the same for the GFED and MACCity simulation,
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Figure 6.8.: Mean monthly emissions of CH3CN in 2006–2008 (left panel) and 2012–
2014 (right panel) for the MACCity (red lines) and GFED (blue lines)
inventory.

not only the quantities of emissions must be different between both inventories, but

also their geographical and temporal distribution.

To further investigate this, the mean monthly emissions in GFED and MACCity are

compared for three different latitude ranges (global, entire NH and NH midlatitudes)

in Figure 6.8. Interestingly, the GFED emissions in the NH midlatitudes between

2006 and 2008 are higher than the corresponding MACCity emissions, but in the

model simulations, the VMRs of the NH midlatitudinal UT/LMS show the opposite

behavior. This is a further indication that in the selected region – the midlatitudinal

UT/LMS – the VMRs in the MACCity simulation are less influenced by regional

emissions, but seem to be dominated by emissions in the tropics.

For the overlapping period (2006–2008), both inventories have in common that the

emissions in the NH midlatitudes are negligible between November and February.

They start to increase in March and have their annual maximum in July. However,

between April and July the NH midlatitudinal emissions in the GFED inventory are

on average twice as large as in MACCity. Also the relation between the total NH

emissions and the midlatitudinal ones is different between the two inventories.
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In the GFED inventory, 80 % of the NH emissions between April and October are

released in the midlatitudes, whereas in the MACCity inventory, the midlatitudes

only contribute 40 % to the total NH emissions in this period. However, the strongest

difference between the two inventories occurs between November and March. In this

period, the NH emissions in the MACCity inventory are three times larger than in

the GFED inventory. The additional quantities of CH3CN are released in the NH

tropics and subsequently mix into the extratropical UTLS.

Compared to these amounts, the midlatitudinal emissions are small (18 % of the

annual emissions in the NH). Therefore, the VMRs in the MACCity simulation rather

follow the annual cycle of the emissions in the entire NH (red dotted line in Figure

6.8) than the one of the midlatitudinal emissions.

In the GFED inventory, the tropical emissions are lower and the simulated VMRs in

the midlatitudinal UT/LMS indicate that they are linked to the regional emissions.

For the period 2006–2008, the annual increase of simulated VMRs in April and the

maximum VMRs in July match with the annual cycle of the regional emissions. In

2012–2014, there are less emissions in spring and considerably more emissions in July

and August according to the inventory. This is also reflected by the median VMRs

of the GFED simulation in Figure 6.6.

To illustrate the differences between both inventories further, the geographical

distribution of the GFED-based emissions and their deviations from the emissions

in the MACCity inventory are shown in Figure 6.9. In the NH winter months, the

higher MACCity emissions in NH Africa are the main difference. In NH spring, global

emissions are almost balanced, but the MACCity inventory does not capture the

intense Russian wild fires to the same extent as GFED. This is also the case for

the majority of fires in the southeastern part of Russia in boreal summer, whereas

emissions from fires in the more northern regions of Russia are larger in the MACCity

inventory. During the same period of the year, emissions from Canadian forest fires

are strongly underestimated in the MACCity inventory compared to GFED-based

values. In autumn, this statement may be reversed, at least for the region at the

Canadian west coast, where the only major deviation is present. During this time of

the year, however, strong deviations occur in Africa, where the MACCity emissions

are generally higher. In South America, there are deviations in the magnitude of

local emission fluxes, but otherwise emissions seem to be rather balanced on the

continental scale.
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Figure 6.9.: (a) Geographical distribution of GFED-based CH3CN emissions averaged
over the respective months (DFJ, MAM, JJA, SON) in 2006–2008. (b)
Differences between the three-month seasonal mean emission fluxes of
the MACCity and GFED inventory.
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With respect to the CARIBIC measurements, both model simulations do not fully

reproduce the annual cycle observed within CARIBIC. Although the midlatitudinal

biomass burning emissions included in both inventories coincide with the period

of elevated CH3CN VMRs observed by CARIBIC in the midlatudinal UTLS, the

annual cycles of the model simulations deviate from the observations in terms of

absolute values (MACCity) and the occurrence of maxima and minima (GFED and

MACCity).

Regardless of the selected inventory, the observed maximum of UT CH3CN VMRs

around May, which is clearly visibly in both periods of CARIBIC observations, is

not reproduced by the model simulations. At least for the GFED inventory and the

time period 2006–2008, the NH midlatitudinal emissions around May are comparable

to the ones, coinciding with the maximum of the simulated annual cycle in July.

A potential reason for this might be the missing pyroconvection in the model. In

summer, there is more regular convection, so that the biomass burning emissions,

injected into the lowest model layer, are more efficiently transported in the UTLS.

Comparing the annual cycle derived from the CARIBIC observations with the one

of the MACCity simulation reveals that the CH3CN emissions in MACCity are

not only shifted to higher VMRs, but also subject to a very different geographic

distribution with considerably more emissions in the tropics and SH (see Figure

6.9b). In contrast, the VMRs observed within CARIBIC seem to be more influenced

by regional emissions.

6.6. Daily resolved emission data

The majority of available biomass burning emission inventories provides data with

monthly resolution, although the duration and the spatial expansion of fires commonly

change on much shorter time scales. In the model simulation, the emissions data are

interpolated to the time steps of the model. This means that the monthly emissions

of each grid cell are uniformly distributed over the month, which should also lead

to a more uniform distribution of trace gases in the modeled compared to the real

atmosphere. Furthermore, in the case of monthly resolved emissions, large quantities

of trace gases and aerosols may be released under meteorological conditions that

considerably differ from those that were prevalent during the time of the fires (Mu

et al., 2011).
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To overcome this issue, inventories with daily and hourly resolution have been devel-

oped (Heald et al., 2003; Mu et all, 2011; Giglio et al., 2013). Also the GFED4.1s

inventory used in this study provides daily-resolved emissions data (see Section

6.2.2). To investigate the effect of the temporal resolution on the simulated VMRs,

another simulation using the daily-resolved GFED emissions was conducted. The

set-up of this simulation was identical to the one with the monthly-resolved GFED

emissions, i.e. the simulation started on 1 January 2004 with the same homogeneous

CH3CN distribution of 1 ppt in the entire model domain and was left free-running.

Furthermore, the provision of daily fractions in the GFED raw data (see Table 6.2)

ensures that in total the same amounts of CH3CN are released each month in both

simulations, regardless of the temporal resolution of the emissions.

This is also evident when comparing the global mean tropospheric VMRs of both

simulations accessed at monthly intervals over a time period of 10 years (see Figure

6.10). The minor deviations can be explained by the fact that the monthly outputs of

the simulation with daily emissions are influenced by the presence or absence of recent

fire activities whereas the ones of the monthly emissions reflect the homogenous

release of CH3CN over the month.

Although the mean tropospheric VMRs are very similar, the differences in the spatial

distribution of CH3CN at the dates of the model outputs are remarkable (see lower

panel in Figure 6.10). On average, the standard deviation of the global mean VMRs

is 13 % higher in the troposphere when using the daily instead of the monthly

resolved emissions. However, fluctuations are high and for a full assessment, the

output intervals (once per month) are too large compared to the temporal resolution

of the emissions, at least in the case of daily resolved emissions.

Therefore, the simulations based on daily and monthly emissions were repeated with

the same set-up, except that the output interval was reduced to one day for a selected

period of two months starting on 31 August 2005. However, this also means that

the spatial distribution of CH3CN is already different between the two simulations

(daily vs. monthly resolved emissions) at the beginning of the two months period.

Nevertheless, the differences are solely caused by the different temporal resolution of

the emissions.

In Figure 6.11, the difference in upper tropospheric (∼8 km above ground) VMRs,

averaged over the two months, is shown next to the absolute mean VMRs of the

simulation with monthly emission data. The enhancement is stronger pronounced in
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Figure 6.10.: Comparison of globally averaged tropospheric CH3CN VMRs (upper
panel) of the simulations with daily (blue circles) and monthly (black
circles) resolved emissions. The differences in spatial variability of
tropospheric CH3CN between the two simulations are expressed by the
ratio of the respective standard deviations (lower panel). The dashed
line shows the mean ratio (1.13).

the simulation using daily resolved emissions (see right panel). This indicates that

major amounts of the monthly released CH3CN in these source regions were actually

emitted over a time period considerably shorter than one month.

It also means that considerably larger quantities of trace gases emitted by biomass

burning are rapidly transported into the UT than the simulation with monthly

emissions suggests. This finding is of particular importance for the distribution of

shorter-lived species, which account for a large proportion of total biomass burning

emissions. Moreover, many short-lived trace gases emitted by biomass burning act as

precursors of ozone and secondary organic aerosols (Keywood et al., 2013; Monks et

al., 2015). As a greenhouse gas, ozone has a direct radiative forcing effect on climate.

In addition, it indirectly influences the lifetimes of other greenhouse gases due to its

role as primary source of OH radicals.
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Figure 6.11.: Mean CH3CN VMRs at model level 60 (∼8 km above ground) in
the model simulation with monthly emission data (left panel) and
differences in VMRs to the model simulation with daily emission data
(right panel). In both panels, the VMRs of each grid cell have been
averaged over the period from 31 August 2005 to 31 October 2005.

Also aerosols affect climate directly and indirectly (Ramanathan et al., 2001). The

direct effect refers to the scattering and absorption of radiation (e.g. Atwater, 1970;

Chýlek and Coakley, 1974). But they also interact with clouds in a way that they

modify their radiative properties and lifetime resulting in an indirect radiative forcing

(e.g. Twomey, 1974; Lohmann and Feichter, 2005).

The net effect of all these interactions strongly depends on the transport of precursors

into regions where conditions are in favor of the processes. Long-range transport

mainly occurs in the UT, where the colder and drier conditions reduce photochemical

processing (e.g. Cain et al., 2012). To assess the impact of biomass burning on climate,

it is therefore crucial to reproduce the actual distributions of these trace gases in the

UT. However, in the simulation with monthly emissions the relevant precursor species

would be largely removed chemically before being transported into the UT. Therefore,

simulations with daily resolved biomass burning emissions are indispensable in this

respect and CH3CN measurements provided by IAGOS-CARIBIC could help to

evaluate the transport of biomass burning emissions into the UT.

With regard to the simulations conducted here, the temporally coherent (daily

resolved) emissions lead to enhanced VMRs in the outflow, whereas the uniformly

distributed release of the same amount at least partially increases the hemispheric

background. This can be observed in the VMRs over remote regions (e.g. the region

southward of 40°S and large parts of the SH Pacific Ocean), where the mean VMRs

of the simulation using monthly resolved emissions are higher.
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Figure 6.12.: Standard deviation ratio of daily CH3CN VMRs at model level 60
(∼8 km above ground) in the model simulation with monthly and daily
emission data in the period of 31 August 2005 to 31 October 2005. The
colorbar is saturated at a factor of 2.

Also the temporal evolution of VMRs within the two month period shows a higher

variation when using the daily resolved emission data. In Figure 6.12, the ratio of

the standard deviations of daily VMRs in the two simulations is shown for the same

model layer as in Figure 6.11. In 92 % of the grid cells in layer 60 (∼8 km above

ground) the ratio is above unity. As expected, the temporal variation is highest over

the source regions and in the outflow, where also the difference in mean VMRs is

high between the two simulations. However, even in most of the regions, which did

not show a deviation in mean VMRs (see Figure 6.11), the temporal variation in

daily upper tropospheric VMRs is higher in the simulation with daily emissions.

On a global scale, the increase in the day-to-day variability, restricted to the considered

model layer, is 14 %. In the tropics, the mean increase is 33 % and over the tropical

rainforest of South America, the temporal variability is on average 88 % higher. At

the surface (not shown), the relative difference in the standard deviations of both

simulations is about twice as high.
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Also the spatial variation increased in the considered two months (September and

October 2005) when using the daily emissions. For each grid cell of model level 60,

the standard deviation of the VMRs in neighboring grid cells and the grid cell itself

was calculated. The global average ranges from 32 % on 23 September 2005 to 69 %

on 16 September 2005.

All the above-mentioned findings indicate that the real-world variability in the

distributions of trace gases emitted by biomass burning is far better reproduced

when using daily instead of monthly resolved emissions data. Although the actual

variability is probably still much higher than simulated, the integration of better

resolved biomass burning emission fluxes into ICON-ART is an important step

towards the intended point-to-point comparisons with CARIBIC observations and a

more realistic simulation of the propagation of biomass burning emitted trace gases

and aerosols into the highly climate sensitive tropopause region.

In addition, the improved reproducibility of the spatial variability has direct im-

plications on the simulation of nonlinear atmospheric processes. In the presence

of nonlinear chemical reactions, it does for instance matter whether adjacent air

parcels mix with each other before or after chemical processes take place (Esler et

al., 2001; Stohl et al., 2003). The merger of two reactants due to mixing can modify

the abundance of other reactive species (e.g. the OH radical) and thus, accelerate or

slow down chemical processing (e.g. Esler et al., 2001). Consequently, the temporal

evolution of trace gas concentrations averaged over the volumes of both air parcels

depends on the rate of mixing and the contrast in composition between the adjacent

air parcels (Esler, 2003; Stohl et al., 2003). Although the dynamics, i.e. the rate of

mixing, are the same in both model simulations, the homogenous distribution of

monthly emissions can be equated to some form of premixing. This means that non-

linear atmospheric processes like stratospheric-tropospheric exchange or secondary

aerosol formation are not correctly simulated quantitatively, when using the monthly

resolved biomass burning emissions.

The sensitivity of simulated trace gas distributions to mixing processes becomes par-

ticular relevant with respect to process studies, which are intended in the near future

to better understand the processes that lead to the observed chemical composition

of biomass burning plumes encountered by CARIBIC.
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6.7. Summary and conclusions

The integration of acetonitrile (CH3CN) into the chemistry transport model ICON-

ART allows for a systematic study of biomass burning and its influence on the

chemical composition of the UTLS. Nevertheless, simulations rely on the provision

of up-to-date and accurate emission data. At the beginning of this study, CH3CN

emissions were only available in the ACCMIP-MACCity inventory, restricted to the

years before 2009 and a coarse temporal resolution.

In order to take full advantage of comparisons with CARIBIC observations, which

constitute the longest time series of CH3CN measurements in the UTLS and are

ongoing, more recent emission fluxes of CH3CN have been derived from the raw data

of the latest GFED emission inventory (GFED4.1s).

For the years, in which both inventories and CARIBIC measurements are available

(2006–2008), the emissions derived from GFED4.1s reproduce the CARIBIC observa-

tions within the uncertainties. However, the ACCMIP-MACCity inventory leads to

considerably higher VMRs. In 2006, the enhanced VMRs cannot be explained by the

CARIBIC observations and considered uncertainties. Strong deviations also occur in

the annual cycle of CH3CN VMRs in the extratropical UTLS. The strong discrepancy

is mainly caused by the fact that the ACCMIP-MACCity includes considerably larger

emissions of CH3CN in the NH tropics compared to GFED. In contrast, the annual

cycles of GFED and CARIBIC may deviate because of the missing pyroconvection

in the model.

In the 2nd, more recent period (2012–2014), observations show a continuous increase

in CH3CN VMRs, whereas the remaining GFED simulation does not support such

an increase. As the measurement instrument was strongly modified between 2008

and 2012 and the calibration procedure was changed from in-flight calibration

to laboratory calibrations between two flight series, it must be assumed that the

uncertainty associated with the measured VMRs is actually higher than estimated.

In the last part of the chapter, the effect of the temporal resolution of emissions on the

distribution of CH3CN VMRs in the UT was investigated. The spatial variability in

the UT increased between 32 and 69 % when using daily instead of monthly resolved

emissions. The homogeneous distribution of monthly emissions can be equated with

stronger mixing. This has important impacts for future process studies, considering

shorter-lived species emitted by biomass burning. As the simulated distributions of

such gases are sensitive to mixing, model results and predictions can be subject to
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substantial systematic errors when using monthly resolved emissions.
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This work reports on the completion of a new mass spectrometer developed for

airborne VOC measurements, its first deployment in the UTLS onboard the research

aircraft HALO and on two studies assessing the sources of atmospheric acetone and

acetonitrile, respectively.

The instrument, named PTRMS-HALO in its final version, is the most compact

and lightweight PTR-MS that has been deployed onboard aircraft so far. Moreover,

it is the first PTR-MS worldwide that is completely controlled by a custom-made

system including mass spectra acquisition. In contrast to the commercial controls,

this new system has the great advantage that it can be easily modified and expanded

by the user, e.g. with the latest instrumental developments. In addition, it is more

lightweight and compact, which makes it well suited for deployment in environments

with limited space such as aircraft.

Besides its unique control, this new instrument belongs to the very few PTR-MS

devices worldwide fully customized to the conditions of atmospheric measurements

onboard aircraft. As such, it is the result of 10 years of development and a total of 3

PhD projects. While the components development and assembly were accomplished

in the previous projects, focus of this work was to finalize the control software (e.g.

expanding it to autonomous operation onboard aircraft) and gas inlet system, to

achieve the aeronautical certification necessary for operation onboard HALO, and

to test and optimize the instrument in terms of reliability, sensitivity, usability and

detection limits.

As a result, the instrument performed remarkably well during its first airborne

deployment within the framework of the HALO campaign OMO. Main goal of the

campaign was to examine the Atmosphere’s self-cleaning capacity in the vicinity

of the Asian summer monsoon. PTRMS-HALO fully contributed to this objective

by measuring VOCs that are either known precursors of HOx or tracers allowing

conclusions about the origin or age of air mass. In this study, the high value of the
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7. Summary and conclusions

resulting data set is exemplarily shown based on a flight, on which outflow of the

Asian summer monsoon has been presumably sampled, whereas the evaluation of

the complete data set is objective of a separate manuscript (in preparation).

Following airborne deployment, the instrument was thoroughly characterized in the

laboratory with the result that PTRMS-HALO is twice as sensitive as the average of

instruments reported in the literature. This enhanced sensitivity is of great value for

airborne measurements in the UTLS, as it enables the measurement of considerably

more species of interest and data acquisition with a higher spatial resolution. As

much of the knowledge about the atmosphere so far has been driven by what can

be accurately measured and, if so, how fast it can be measured, the development of

more sensitive devices such as PTRMS-HALO constitutes the foundations of future

atmospheric research.

In this respect, the combination of the enhanced sensitivity achieved with PTRMS-

HALO and the high spatial and temporal coverage achieved with the CARIBIC

passenger aircraft appears particularly promising. As a result, the build-up of a

largely identical instrument for deployment onboard the CARIBIC aircraft was

started in this work. Although not being completed in this work, the new instrument

considerably benefited from the experiences gained during testing and operating

PTRMS-HALO. The data set generated with this new instrument among others will

be of high relevance e.g. for top-down emission estimates and model validation.

Besides a description of the technical achievements, a major update on tropospheric

enhancement ratios (EnRs) of acetone and CO is provided in this work. A new method

to detect coherent correlations is applied to the CARIBIC data of acetone and CO

and it is found that free tropospheric EnRs can be rather seen as chemical signatures

of well-mixed boundary layer air and thus, of larger regional source patterns instead of

distinct emissions from single point sources. Consequently, acetone-CO enhancement

ratios are well suited to derive top-down estimates of regional emissions. In this study,

the acetone emissions of two important source regions, North America and Southeast

Asia, are assessed with this new approach. The top-down estimate for the North

American sources (6 Tg a−1) agrees well with bottom-up inventories (5.8 Tg a−1),

whereas the estimate for Southeast Asia (4.8 Tg a−1) is ∼30 % higher than the one

based on inventories (3.7 Tg a−1), indicating that the latter might underestimate

acetone emissions or overestimate CO emissions in this region.

With regard to the large uncertainties associated with bottom-up estimates of

VOC emissions, an extension of this new approach to other source regions (e.g.
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South America and Africa, which in sum account for about half of the global

emissions of biogenically emitted VOCs and approximately two thirds of the global

emissions from biomass burning) and species (e.g. methanol and acetonitrile) is

highly recommended.

In the last part of this study, acetonitrile as a tracer for biomass burning is im-

plemented into the chemistry transport model ICON-ART. Moreover, a tool for

generating daily resolved emission data of acetonitrile and other species, subsequently

used as model input, is developed. While previous biomass burning simulations in

ICON-ART were generally restricted to the years before 2013, the new tool enlarges

this time period until the end of 2016 at the time of writing.

Multi-annual simulations based on two different emission scenarios (ACCMIP-

MACCity and GFED4.1s) are performed and compared among each other as well

as with CARIBIC in-situ observations. One of the foremost results is that the two

emissions scenarios lead to very different acetonitrile VMRs in the model simulations

(190 ppt vs. 97 ppt in the upper troposphere).

For the years 2006–2008, the CARIBIC observations support the mean VMRs modeled

based on the GFED4.1s emission scenario. In contrast, the high VMRs associated

with the ACCMIP-MACCity emission scenario in 2006 cannot be explained by the

observations within the respective uncertainties.

In the years following 2008, CARIBIC measurements apparently indicate an overall

increase in tropospheric acetonitrile, which is not consistent with current biomass

burning emission inventories. Modifications of the instrument and a change in the

calibration procedure from in-flight calibration to laboratory calibrations might have

led to an unconsidered increase in the uncertainties of measured VMRs. Further

investigations, which are out of the scope of this study, are strongly recommended.

This situation also clearly exemplifies that there is an urgent need for new and more

precise instruments such as PTRMS-HALO and PTRMS-CARIBIC to assess the

overall emissions of VOCs and their impact on climate change and air quality.
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A. Sensitivity of EnR-based source

estimates to the CO threshold

In Section 5.4, the choice to restrict the analysis to EnR with a CO enhancement

greater than 10 times the measurement uncertainty of CO is motivated. Here, the

analysis for North America (see Section 5.8) is repeated with thresholds for CO of

exactly 10 ppb and 15 ppb.

In Table A.1, the results are compared with the previous analysis. The annual acetone

source of (6.1± 3.1) Tg is in excellent agreement with the (6.0± 3.1) Tg derived when

using 10 times the measurement uncertainty of CO as threshold.

Increasing the threshold to15 ppb reduces the dataset for North America by ∼ 75 %,

leading to the situation that there is not enough data for November and December,

although North America is the region with the best coverage (see Table 5.7).

The mean of the monthly EnR decreases from 21.3 to 18.4 ppt ppb−1, which can be

explained as follows. The exclusion of events with CO enhancements of 10–15 ppb

puts more emphasis on the events with high-CO enhancements, but the high-CO

enhancements are not completely compensated by high-acetone enhancements; i.e.

the EnRs of this subset are lower. Nevertheless, the means for all three requirements

are still in the standard deviations of each other.

When changing the threshold to significantly lower CO enhancements, the monthly

mean EnRs increase. However, in such a situation it apparently becomes impossible

to distinguish between an increase caused by shifting the weight of certain EnRs

and an increase related to the temporal evolution of EnRs, which we discussed in

Section 5.4. Consequently, only the sensitivity of results to higher CO thresholds can

be investigated. Thresholds higher than 15 ppb are not feasible with regard to the

number of such events in our dataset.
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A. Sensitivity of EnR-based source estimates to the CO threshold
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B. Matlab code used for HYSPLIT

trajectory analysis

1 f i d = fopen ( ’ t r a j e c t o r i e s . bat ’ , ’wt ’ ) ; % c r e a t e s the f i l e which w i l l

% automat i ca l l y execute HYSPLIT on a Windows PC

3 f o r i =1:17277 % loop through the matrix ” f l i g h t r o u t e ” conta in ing

% the f l i g h t data . For each l i n e a t r a j e c t o r y i s c a l c u l a t e d .

5 % 1 s t column o f f l i g h t r o u t e : seconds s i n c e midnight (UTC)

% 2nd column o f f l i g h t r o u t e : l a t i t u d e o f a i r c r a f t

7 % 3rd column o f f l i g h t r o u t e : l ong i tude o f a i r c r a f t

% 4th column o f f l i g h t r o u t e : a l t i t u d e o f a i r c r a f t in m

9 hour = f l o o r ( f l i g h t r o u t e ( i , 1 ) /3600) ;

min = round ( ( f l i g h t r o u t e ( i , 1 ) −hour ∗60∗60) /60) ;

11 a = s p r i n t f ( ’%s%02d%s%02d%s ’ , ’ echo 15 08 06 ’ , hour , ’ ’ ,min , . . .

’ >CONTROL’ ) ; % s t r i n g d e f i n i n g the t r a j e c t o r y s t a r t time .

13 b = s p r i n t f ( ’%s %0.5 f%s %0.5 f%s %0.5 f%s ’ , ’ echo ’ , . . .

f l i g h t r o u t e ( i , 2 ) , ’ ’ , f l i g h t r o u t e ( i , 3 ) , ’ ’ , . . .

15 f l i g h t r o u t e ( i , 4 ) , ’ >>CONTROL’ ) ; % s t r i n g d e f i n i n g the s t a r t i n g

% p o s i t i o n and a l t i t u d e o f the t r a j e c t o r y c a l c u l a t i o n

17 c = s p r i n t f ( ’%s%d%s ’ , ’ echo ’ , f l i g h t r o u t e ( i , 1 ) , . . .

’ . tx t%1 >>CONTROL’ ) ; % c r e a t e s the s t r i n g f o r each

19 % HYSPLIT output f i l e ( one f o r each t r a j e c t o r y )

f p r i n t f ( f i d , ’%s \n ’ , a ) ;

21 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 1 >>CONTROL’ ) ; % d e f i n e s

% the number o f s t a r t i n g p o s i t i o n s

23 f p r i n t f ( f i d , ’%s \n ’ ,b ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo −288 >>CONTROL’ ) ; % s e t s the

25 % time per iod o f the c a l c u l a t i o n to 288 hours (=12 days )

f p r i n t f ( f i d , ’%s \n ’ , ’ echo 0 >>CONTROL’ ) ; % s e t s the

27 % v e r t i c a l motion method to 0 (= use input model data )

f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20000.0 >>CONTROL’ ) ; % s e t s the

29 % top o f the model to 20000 m

f p r i n t f ( f i d , ’%s \n ’ , ’ echo 12 >>CONTROL’ ) ; % s e t s the

31 % the number o f input f i l e s . Fi lenames are g iven in the next l i n e s

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

33 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150806 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

35 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150805 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ )

37 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150804 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

39 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150803 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

41 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150802 gdas0p5 >>CONTROL’ ) ;
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B. Matlab code used for HYSPLIT trajectory analysis

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

43 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150801 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

45 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150731 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

47 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150730 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

49 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150729 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

51 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150728 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

53 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150727 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo C: / h y s p l i t 4 / working / >>CONTROL’ ) ;

55 f p r i n t f ( f i d , ’%s \n ’ , ’ echo 20150726 gdas0p5 >>CONTROL’ ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ echo . / >>CONTROL’ ) ;

57 f p r i n t f ( f i d , ’%s \n\n ’ , c ) ;

f p r i n t f ( f i d , ’%s \n ’ , ’ \ h y s p l i t 4 \ exec \ hyt s s td ’ ) ; % execute s the model

59 f p r i n t f ( f i d , ’%s \n\n ’ , ’ \ h y s p l i t 4 \ exec \ t r a j p l o t −itdump.%1 −op lo t%1 ’ ) ;

end ;

61 f c l o s e ( f i d ) ; % c l o s e s the ” ’ t r a j e c t o r i e s . bat” f i l e

Figure B.1.: Matlab code used for HYSPLIT trajectory analysis

1 IF ( j sp == iTRCH3CN) then
DO jb = i s t a r t b l k , i endb lk

3 CALL g e t i n d i c e s c ( p patch , jb , i s t a r t b l k , i endb lk , &
& i s t a r t i d x , i end idx , i r l s t a r t , i r l e n d )

5 DO j c=i s t a r t i d x , i end idx
CALL WMO tropopause ( 1 , 1 , nlev , &

7 & ncctop , nccbot , .FALSE. , &
& p diag%temp ( jc , : , jb ) , p d iag%pres ( jc , : , jb ) , &

9 & ptropo ( jc , jb ) , ktrpwmo ( jc , jb ) , ktrpwmop1 ( jc , jb ) )
DO jk = 1 , ktrpwmop1 ( jc , jb )

11 r a t e ( jc , jk , jb , j sp ) = 1 . wp / 2207520000. wp
ENDDO

13

DO jk = ktrpwmo ( jc , jb ) , n lev
15 r a t e ( jc , jk , jb , j sp ) = 1 . wp / 58642214. wp

ENDDO
17

IF ( ( i f o r c i n g == inwp ) .AND. ( .NOT. ext data%atm%l l sm atm c ( jc , jb ) ) )
THEN

19 DO jk = nlev −8, n lev
ra t e ( jc , jk , jb , j sp ) = 1 . wp / 1814400. wp

21 ENDDO
END IF

23

DO jk = 1 , n lev
25 ext ra 3d ( jc , jk , jb , 1 ) = ra t e ( jc , jk , jb , j sp )

END DO
27 ENDDO

ENDDO
29 ENDIF

Figure B.2.: Implemented Fortran code for the removal of CH3CN in ICON-ART.
The lines are part of the mo art chemtracer-module, which can be found
in the directory ”/src/art/chemistry/”
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C. Acetonitrile simulations in

ICON-ART

C.1. Changing the lifetime of CH3CN

As it might be necessary to adapt the selected lifetimes for future studies, the

implementation in the model code is shortly described in the following:

In ICON-ART, chemical tracer processes (production and removal) are programmed

in the ”mo art chemtracer” module, which can be found in the ”/src/art/chemistry/”

directory of the ICON-folder. Figure B.2 shows the Fortran code, which has been

inserted for the removal of CH3CN. In short, the displayed subroutine determines

the removal rate of CH3CN (in s−1) for each grid cell. The position of the grid cell in

the native ICON grid is defined by the variables jb, jc and jk.

To distinguish between the troposphere and stratosphere, the function WMO tropo-

pause is called in line 6ff. and writes for each model column (jc,jb) the lowest

stratospheric model level into the variable ktrpwmop1(jc,jb) and the highest tropo-

spheric model level into the variable ktrpwmo(jc,jb). Subsequently, the removal rate

for all model levels above the tropopause (1/70 years−1 = 1/2207520000 s−1) is set

in line 11. For the tropospheric model levels, the removal rate (1/22.3 months−1 =

1/58642214 s−1) is set in line 15. The removal rates for the grid cells in the marine

boundary layer are (1/21 days−1 = 1/1814400 s−1) subsequently overwritten in

line 20. The marine boundary layer is identified using the boolean land-sea-mask

”ext data%atm%llsm atm c(jc,jb)”, which is true for columns over land and false for

columns over the seas. The number of the lowest model levels, which are assigned

to the marine boundary layer, is given in line 19 (nlev-8,nlev). Please note, that

any modification of the parameters will only become effective after re-compiling the

model.
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C. Acetonitrile simulations in ICON-ART

C.2. Configuration of the emissions interface

Prior to a model simulation, the user has to specify the emission inventory to be

used, the location of the respective preprocessed files and the number of lowest model

layers into which the emissions shall be inserted. This is done in a TeX file, included

in the subdirectory ”/src/art/runctrl examples/emiss ctrl” of the ICON folder.

\begin { t ab l e } [ h ] \ capt ion {Chemical Tracers and t h e i r emis s ion f o l d e r s .
2 Type o f emis s ion : 10 = anthropogenic , 11 = biogen ic ,

12 = biomass burning , 13 = b iogen i c o n l i n e }\ l a b e l { emiss t r a c e r s }
4 \begin { tabu la r }{ l r c c l }\\

\ h l i n e
6 Name & number o f types / type o f emis s ion

& standard value ( in kg m$ˆ{−2}$ s $ˆ{−1}$) / number o f dimensions per
8 t imestep & vname & path \\

\ h l i n e
10 TRCH3CN chemtr & 1 & 0.00E+01 & & \\

& 12 & 2 & 1 & emiss & / p f s /imk/imk−a s f /common/
12 data remapped to ICONgrid/ emiss /CH3CN/BBE/GFED4.1 s Akagi d a i l y /R2B04 \\

14 %EOMODES <<<THIS LINE IS THE NECESSARY BREAKUP CONDITION FOR ICON READ>>>
\ h l i n e

16 \end{ tabu la r }
\end{ t ab l e }

Figure C.1.: TeX table of the ICON-ART emissions interface used to read in the
daily GFED4.1s emissions files.

In Figure C.1, the contents of the file as used for the model simulation with daily

GFED4.1s emissions is shown. All parameters related to the emissions of a specific

species are included in a TeX table and separated by separated by ampersands. For

a more general description of the structure, please refer to Weimer et al. (2017).

As only biomass burning emissions are considered, the number of emission types

(2nd argument in line 10) is set to 1. The standard emission flux (3rd argument in

line 10) is set to zero, as it is only of importance when no external emission data is

read in. The number of lowest model layers into which the emissions are inserted

(3rd argument in line 11) is set to 1 in this study.

The subsequent arguments in line 11 determine which emission inventory is used.

In the preprocessed emission files of GFED4.1s, the data is included in the variable

”emiss”. The path refers to the directory, in which the respective files are stored. As

files for different model resolutions are stored in different directories, a change of the

model resolution requires adaption of these paths.

The ACCMIP-MACCity inventory has the peculiarity of distinguishing between

forest fires and grassland/savanna fires. As the emissions of the two fuel types are
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provided in separate variables (”emiss for” and ”emiss gra”), the emissions interface

needs to sum up both variables. This is achieved by replacing lines 10–12 in Figure

C.1 by the following section:

TRCH3CN chemtr & 2 & 0.00E+01 & & \\
2 & 12 & 2 & 1 & e m i s s f o r & / p f s /imk/imk−a s f /common/ data remapped to ICONgrid /

emiss /CH3CN/BBE/MACCity/R2B04 \\
4 & 12 & 2 & 1 & emis s g ra & / p f s /imk/imk−a s f /common/ data remapped to ICONgrid /

emiss /CH3CN/BBE/MACCity/R2B04 \\

C.3. Changes of the file structure

Initial tests revealed that the DWD ICON tools expect a very specific format and file

naming and that processing already fails in the case of small deviations. As the files

of the ACCMIP-MACCity inventory were processed without errors, the file structure

was taken as reference for the GFED file generation.

Therefore, after having calculated the gridded emissions, the script adapts the

structure of the emissions and auxiliary information to the structure of the ACCMIP-

MACCity files. The respective changes are summarized in Table C.1.

GFED4.1s Raw data file File generated for ICON input

Longitudinal grid -180°E – 180°E → 0°E – 360°E
Latitudinal grid 90°N – -90°N → -90°N – 90 °N
Absolute time not specified → days since 1850-01-01 00:00
File format HDF5 → NetCDF
Exemplarily file name GFED4.1s 2015.hdf5 → GFED4.1s emissions all biomassBurning

2015 Akagi daily.nc

Table C.1.: Changes of the GFED4.1s raw data structure (left) to enable further
processing by the DWD ICON tools.

C.4. Matlab code

1 %% options , p l e a s e ad jus t

f i r s t y e a r = 2003 ; % d a i l y r e s o l v e d data i s a v a i l a b l e from 2003 onwards

3 l a s t y e a r = 2016 ;

5 %%emiss ion f a c t o r s f o r a c e t o n i t r i l e in g kg−1. Taken from Agagi e t a l . , 2011

EF SAVA = 0 . 1 1 ; % Savanna , grass land , and shrubland f i r e s

7 EF BORF = 0 . 6 1 ; % Boreal f o r e s t f i r e s

EF TEMF = 0 . 6 1 ; % Temperate f o r e s t f i r e s
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9 EF DEFO = 0 . 4 1 ; % Trop ica l f o r e s t f i r e s [ d e f o r e s t a t i o n and degradat ion ]

EF PEAT = 3 . 7 0 ; % Peat f i r e s

11 EF AGRI = 0 . 2 1 ; % A g r i c u l t u r a l waste burning

13 %% change the path to your cur rent working f o l d e r

workpath=’ / Users / Gar l i ch /Documents/MATLAB/ A c e t o n i t r i l e /GFED4 ’ ;

15 d i a l o g t i t l e=’ Please s p e c i f y the working d i r e c t o r y o f t h i s p r o j e c t ’ ;

workpath = u i g e t d i r ( workpath , d i a l o g t i t l e ) ;

17 cd ( workpath ) ;

19 %% save GFED4 HDF5−Rawdata f i l e s from webs i te

cho i c e = ques td lg ( ’ (Re−)Download raw data from webs i te ? ’ , . . .

21 ’ Download Options ’ , . . .

’ Yes p l e a s e ’ , ’No thank you ’ , ’No thank you ’ ) ;

23

switch cho i c e

25 case ’ Yes p l e a s e ’

% u r l = ’ http ://www. fa lw . vu/˜ gwerf /GFED/GFED4/ ’ ;

27 u r l = ’ http ://www. geo . vu . n l /˜ gwerf /GFED/GFED4/ ’ ; % new address

f o r i=f i r s t y e a r : l a s t y e a r

29 f i l ename = s p r i n t f ( ’GFED4. 1 s %d . hdf5 ’ , i ) ; %c r e a t e s the f i l ename

that w i l l be searched on the d i r e c t o r y

f i l e u r l = [ ur l , f i l ename ] ;

31 out f i l ename = websave ( f i l ename , f i l e u r l ) ;

end ;

33

case ’No thank you ’

35 end ;

37 %% read GFED4−data in to Matlab

counter = 0 ;

39 f o r y=f i r s t y e a r : l a s t y e a r

counter = counter + 1 ;

41 c l e a r EMISS MONTHEMISS DM DM SAVA DM BORF DM TEMF DM DEFO DM PEAT DM AGRI

43 f i l ename = s p r i n t f ( ’GFED%d . hdf5 ’ , y ) ;

doy = 0 ; % day o f the year counter

45

f o r m=1:12 % loop month

47 month = s p r i n t f ( ’%02d ’ ,m) ;

49 contentpath = [ ’ / emi s s i on s / ’ ,month , ’ /DM’ ] ;

DM = h5read ( f i l ename , contentpath ) ;

51 contentpath = [ ’ / emi s s i on s / ’ ,month , ’ / p a r t i t i o n i n g /DM SAVA’ ] ;

DM SAVA = h5read ( f i l ename , contentpath ) ;

53 contentpath = [ ’ / emi s s i on s / ’ ,month , ’ / p a r t i t i o n i n g /DM BORF’ ] ;

DM BORF = h5read ( f i l ename , contentpath ) ;

55 contentpath = [ ’ / emi s s i on s / ’ ,month , ’ / p a r t i t i o n i n g /DM TEMF’ ] ;

DM TEMF = h5read ( f i l ename , contentpath ) ;

57 contentpath = [ ’ / emi s s i on s / ’ ,month , ’ / p a r t i t i o n i n g /DM DEFO’ ] ;

DM DEFO = h5read ( f i l ename , contentpath ) ;

59 contentpath = [ ’ / emi s s i on s / ’ ,month , ’ / p a r t i t i o n i n g /DM PEAT’ ] ;

DM PEAT = h5read ( f i l ename , contentpath ) ;

61 contentpath = [ ’ / emi s s i on s / ’ ,month , ’ / p a r t i t i o n i n g /DM AGRI ’ ] ;

DM AGRI = h5read ( f i l ename , contentpath ) ;

63
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hdf5 = h5 in fo ( f i l ename ) ;

65 days per month = s i z e ( hdf5 . Groups (4 ) . Groups (m) . Groups (1 ) . Datasets , 1 ) ;

67 i f y<=2002

days per month = 365 .25/12 ; % should be improved

69 end ;

71 f o r d=1: days per month % loop days

doy = doy + 1 ;

73 day = s p r i n t f ( ’%d ’ ,d ) ;

contentpath = [ ’ / emi s s i on s / ’ ,month , ’ / d a i l y f r a c t i o n / day ’ , day ] ;

75 Dayfract ion = h5read ( f i l ename , contentpath ) ;

c l e a r DAYEMISS

77 % DAYEMISS in kg m−2 s−1

DAYEMISS = Dayfract ion .∗ DM ./(24∗60∗60) .∗ 10ˆ−3 .∗ (EF SAVA .∗
DM SAVA + EF BORF .∗ DM BORF + EF TEMF .∗ DM TEMF + EF DEFO .∗

DM DEFO + EF PEAT .∗ DM PEAT + EF AGRI .∗ DM AGRI) ;

79 DAYEMISS = v e r t c a t (DAYEMISS( 7 2 1 : 1 4 4 0 , : ) ,DAYEMISS( 1 : 7 2 0 , : ) ) ;

DAYEMISS = f l i p l r (DAYEMISS) ;

81 EMISS ( : , : , doy ) = DAYEMISS;

end ; % end o f day−loop

83 MONTHEMISS( : , : ,m) = DM . / ( days per month ∗24∗60∗60) .∗ 10ˆ−3 .∗ (

EF SAVA .∗ DM SAVA + EF BORF .∗ DM BORF + EF TEMF .∗ DM TEMF +

EF DEFO .∗ DM DEFO + EF PEAT .∗ DM PEAT + EF AGRI .∗ DM AGRI) ;

MONTHEMISS( : , : ,m) = v e r t c a t (MONTHEMISS( 7 2 1 : 1 4 4 0 , : ,m) ,MONTHEMISS

( 1 : 7 2 0 , : ,m) ) ;

85 MONTHEMISS( : , : ,m) = f l i p l r (MONTHEMISS( : , : ,m) ) ;

end ; % end o f month−loop

87

%conver t s to s i n g l e p r e c i s i o n ( as i t i s f o r ACCMIP MACCITY)

89 EMISS = s i n g l e (EMISS) ;

MONTHEMISS = s i n g l e (MONTHEMISS) ;

91

%% Create output f i l e s in netcdf−format

93

% name o f output f i l e s f o r d a i l y and monthly r e s o l u t i o n

95 f i l ename=s p r i n t f ( ’GFED4. 1 s e m i s s i o n s a l l b i o m a s s B u r n i n g %d Akag i da i l y . nc ’

, y ) ;

f i lename month=s p r i n t f ( ’GFED4. 1 s e m i s s i o n s a l l b i o m a s s B u r n i n g %

d Akagi monthly . nc ’ , y ) ;

97

% d e l e t e s prev ious output f i l e

99 d e l e t e ( f i l ename ) ;

d e l e t e ( f i lename month ) ;

101 % c r e a t e s time v a r i a b l e ; time i s g iven in days s i n c e 1850−1−1 00 : 00 : 00

y s t r i n g = s p r i n t f ( ’ 1/1/%d ’ , y ) ;

103 f i r s t d a y o f y e a r = daysd i f ( ’ 1/1/1850 ’ , y s t r i n g ) ;

time = f i r s t d a y o f y e a r : 1 : ( f i r s t d a y o f y e a r+doy−1) ;

105 time = time ’ ;

time = s i n g l e ( time ) ;

107 l e v e l = 2 ;

109 ncc r ea t e ( f i l ename , ’ date ’ , . . .

’ Dimensions ’ ,{ ’ date ’ , doy } , ’ Datatype ’ , ’ s i n g l e ’ ) ;

111 % ’ Format ’ , ’ netcdf4 ’ , . . .

% ’ De f la teLeve l ’ , l e v e l , . . .
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113 % ’ Shu f f l e ’ , true , . . .

ncwr i te ( f i l ename , ’ date ’ , time ) ;

115 ncwr i t ea t t ( f i l ename , ’ date ’ , ’ un i t s ’ , ’ days s i n c e 1850−01−01 ’ ) ;

117 month = [ daysd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 1/1/%d ’ , y ) ) , . . .

day sd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 2/1/%d ’ , y ) ) , . . .

119 daysd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 3/1/%d ’ , y ) ) , . . .

day sd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 4/1/%d ’ , y ) ) , . . .

121 daysd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 5/1/%d ’ , y ) ) , . . .

day sd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 6/1/%d ’ , y ) ) , . . .

123 daysd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 7/1/%d ’ , y ) ) , . . .

day sd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 8/1/%d ’ , y ) ) , . . .

125 daysd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 9/1/%d ’ , y ) ) , . . .

day sd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 10/1/%d ’ , y ) ) , . . .

127 daysd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 11/1/%d ’ , y ) ) , . . .

day sd i f ( ’ 1/1/2000 ’ , s p r i n t f ( ’ 12/1/%d ’ , y ) ) ] ;

129

month = month ’ ;

131 month = s i n g l e (month) ;

ncc r ea t e ( f i lename month , ’ date ’ , . . .

133 ’ Dimensions ’ ,{ ’ date ’ ,12} , ’ Datatype ’ , ’ s i n g l e ’ ) ;

% ’ Format ’ , ’ netcdf4 ’ , . . .

135 % ’ Def la teLeve l ’ , l e v e l , . . .

% ’ Shu f f l e ’ , true , . . .

137 ncwr i te ( f i lename month , ’ date ’ ,month) ;

n cwr i t ea t t ( f i lename month , ’ date ’ , ’ un i t s ’ , ’ days s i n c e 1850−01−01 ’ ) ;

139

%c r e a t e s l ong i tude v a r i a b l e f o r 0 .25 degree r e s o l u t i o n

141 l ong i tude = 0 . 1 2 5 : 0 . 2 5 : 3 5 9 . 8 7 5 ;

l ong i tude = long i tude ’ ;

143 l ong i tude = s i n g l e ( l ong i tude ) ;

145 ncc r ea t e ( f i l ename , ’ lon ’ , . . .

’ Dimensions ’ ,{ ’ l on ’ ,1440} , ’ Datatype ’ , ’ s i n g l e ’ ) ;

147 % ’ Def la teLeve l ’ , l e v e l , . . .

% ’ Shu f f l e ’ , true , . . .

149 ncwr i te ( f i l ename , ’ lon ’ , l ong i tude ) ;

n cwr i t ea t t ( f i l ename , ’ lon ’ , ’ un i t s ’ , ’ d e g r e e s e a s t ’ ) ;

151

ncc r ea t e ( f i lename month , ’ lon ’ , . . .

153 ’ Dimensions ’ ,{ ’ l on ’ ,1440} , ’ Datatype ’ , ’ s i n g l e ’ ) ;

% ’ De f la teLeve l ’ , l e v e l , . . .

155 % ’ Shu f f l e ’ , true , . . .

ncwr i te ( f i lename month , ’ lon ’ , l ong i tude ) ;

157 ncwr i t ea t t ( f i lename month , ’ lon ’ , ’ un i t s ’ , ’ d e g r e e s e a s t ’ ) ;

159 %c r e a t e s l a t i t u d e v a r i a b l e f o r 0 .25 degree r e s o l u t i o n

l a t i t u d e = −8 9 . 87 5 : 0 . 2 5 : 89 . 8 75 ;

161 l a t i t u d e = l a t i t u d e ’ ;

l a t i t u d e = s i n g l e ( l a t i t u d e ) ;

163 ncc r ea t e ( f i l ename , ’ l a t ’ , . . .

’ Dimensions ’ ,{ ’ l a t ’ ,720} , ’ Datatype ’ , ’ s i n g l e ’ ) ;

165 % ’ Def la teLeve l ’ , l e v e l , . . .

% ’ Shu f f l e ’ , true , . . .

167 ncwr i te ( f i l ename , ’ l a t ’ , l a t i t u d e ) ;

n cwr i t ea t t ( f i l ename , ’ l a t ’ , ’ un i t s ’ , ’ d eg r e e s no r th ’ ) ;
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169

ncc r ea t e ( f i lename month , ’ l a t ’ , . . .

171 ’ Dimensions ’ ,{ ’ l a t ’ ,720} , ’ Datatype ’ , ’ s i n g l e ’ ) ;

% ’ De f la teLeve l ’ , l e v e l , . . .

173 % ’ Shu f f l e ’ , true , . . .

% ’ Datatype ’ , ’ s i n g l e ’ ) ;

175 ncwr i te ( f i lename month , ’ l a t ’ , l a t i t u d e , 1 ) ;

n cwr i t ea t t ( f i lename month , ’ l a t ’ , ’ un i t s ’ , ’ d eg r e e s no r th ’ ) ;

177

%c r e a t e s d a i l y emis s ion data v a r i a b l e ; emi s s i on s g iven in kg m−2 s−1

179 ncc r ea t e ( f i l ename , ’ emiss ’ , . . .

’ Dimensions ’ ,{ ’ l on ’ ,1440 , ’ l a t ’ ,720 , ’ date ’ , doy } , ’ Datatype ’ , ’ s i n g l e ’ ) ;

181 % ’ Def la teLeve l ’ , l e v e l , . . .

% ’ Shu f f l e ’ , true , . . .

183 ncwr i te ( f i l ename , ’ emiss ’ ,EMISS) ;

n cwr i t ea t t ( f i l ename , ’ emiss ’ , ’ un i t s ’ , ’ kg m−2 s−1 ’ ) ;

185

%c r e a t e s monthly emis s ion data v a r i a b l e ; emi s s i on s g iven in kg m−2 s−1

187 ncc r ea t e ( f i lename month , ’ emiss ’ , . . .

’ Dimensions ’ ,{ ’ l on ’ ,1440 , ’ l a t ’ ,720 , ’ date ’ ,12} , ’ Datatype ’ , ’ s i n g l e ’ ) ;

189 % ’ Def la teLeve l ’ , l e v e l , . . .

% ’ Shu f f l e ’ , true , . . .

191 ncwr i te ( f i lename month , ’ emiss ’ ,MONTHEMISS) ;

ncwr i t ea t t ( f i lename month , ’ emiss ’ , ’ un i t s ’ , ’ kg m−2 s−1 ’ ) ;

193

end ; % end o f year−loop

Figure C.2.: Matlab code used to generate the GFED-based acetonitrile emission
files
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A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf,

H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS:

an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8,

2151–2188, doi:10.5194/acp-8-2151-2008, 2008.

Folkins, I. and Chatfield, R.: Impact of acetone on ozone production and OH in the

upper troposphere at high NO x, J. Geophys. Res. Atmos., 105, 11 585–11 599,

doi:10.1029/2000JD900067, 2000.

Fortner, E. C., Zheng, J., Zhang, R., Berk Knighton, W., Volkamer, R. M., Sheehy,
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Höglund-Isaksson, L.: Global anthropogenic methane emissions 2005-2030: Technical

mitigation potentials and costs, Atmos. Chem. Phys., 12, 9079–9096, doi:10.5194/

acp-12-9079-2012, 2012.

Holdeman, J., Humenik, F., and Lezberg, E.: NASA Global Atmospheric Sampling

Program (GASP) data report for tape VL0004, Technical report, 1977.

Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and

Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33, 403–439, doi:

10.1029/95RG02097, 1995.

246



Bibliography

Holzinger, R., Warneke, C., Hansel, A., Jordan, A., Lindinger, W., Scharffe, D. H.,

Schade, G., and Crutzen, P. J.: Biomass burning as a source of formaldehyde,

acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide, Geophys.

Res. Lett., 26, 1161–1164, doi:10.1029/1999GL900156, 1999.

Holzinger, R., Jordan, A., Hansel, A., and Lindinger, W.: Automobile Emissions

of Acetonitrile: Assessment of its Contribution to the Global Source, J. Atmos.

Chem., 38, 187–193, doi:10.1023/A:1006435723375, 2001.

Holzinger, R., Williams, J., Salisbury, G., Klüpfel, T., de Reus, M., Traub, M.,
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Schneider, M., González, Y., Dyroff, C., Christner, E., Wiegele, A., Barthlott, S.,
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Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S., Kästner,
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T., Krämer, M., Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C.,

Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Münch, S., Nillius,
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