
Virtual Test Method for Complex and Variant-Rich Automotive Systems

Andreas Lauber, Houssem Guissouma, and Eric Sax
Karlsruher Institute of Technology (KIT)

Institute for Information Processing Technologies (ITIV)
76131 Karlsruhe, Germany,

{lauber, houssem.guissouma, sax}@kit.edu

Abstract— The fast development of embedded automotive
systems in form of connected Electronic Control Units (ECUs)
has led to complex development processes. Especially for safety-
critical functions, the testing activities are essential to check if
the designed system complies with the requirements.

Nowadays, the continuous development of mobile electronic
devices through software updates is performed almost on a daily
basis. This trend is now starting to be observed in cyber-physical
systems with higher safety priorities. In the automotive field,
the rising software portion in the vehicles and the shortening
technology life-cycles are accentuating the need for Software
Over The Air (SOTA) updates. Despite the opportunities offered
by SOTA updates, the current test processes and methods must
be adapted to manage the resulting complexity throughout
the life-cycle of the vehicles. Especially the typical variants
abundance in automotive product lines is considered as an
important challenge, which cannot be solved only by ”classical”
testing methods such as Hardware-In-the-Loop.

In this paper, we present a testing method for variant-
rich systems, which can be applied for automotive software
updates. It uses virtual platforms for automated delta testing to
handle the abundance of system configurations. Virtual testing
is introduced as a powerful tool to reduce the amount of real
tests and allow efficient variants verification. As a proof of
concept, an Adaptive Cruise Control (ACC) composed of two
ECUs has been implemented both in real hardware and using
a virtual platform. With this approach, virtual delta tests, i. e.
specific test-benches targeting the differences to a basic variant,
can be rapidly executed for various system configurations. To
prove the feasibility of the presented test method in more
complex systems, a scalability study has been conducted.

I. INTRODUCTION

Nowadays, modern premium cars have more than one
hundred micro-controllers on-board [1] while the portion
of embedded hardware and software has been continuously
increasing in the last few decades [2]. In addition to that,
complex communication schemes are commonplace [3]. The
evolution of integrated electronic and software in automotive
systems since the introduction of the first ECUs in the
seventies is presented in [4] and shown in Figure 1.

Due to this complexity, early investigation of the system
can improve the detection of design errors before implement-
ing and integrating into the real hardware. It can also facil-
itate different design activities such as distributed function
definition and integration, or hardware-software Co-Design
of Electronic Control Units (ECU) [5].

However, when software is developed for embedded sys-
tems, no hardware prototypes are available in the early stages
of development. Therefore, the control devices are built as

1975 1985 1995 2005 2015 2025

Electronic fuel injection
Anti-lock brakes

Gearbox control
Traction control
CAN

Hybrid powertrain
Electronic stability 
control
Active body control
Emergency call
Electric power steering
FLEXRAY

Electric powertrain
Adaptive cruise control
Lane Assistant
Stop-/start automatic
Emergency break assist
Head-up display
Electronic brake 
control
Tele diagnostics
Online software 
updates
AUTOSAR

Mobility services
Autonomous driving
Steer-by-wire
Car2X
Cloud computing
5G communication
Fuel-cell technology
Laser-sourced lighting
3D displays
Gesture HMI
Ethernet/IP

Complexity drivers

Fig. 1. Evolution of IT complexity drivers in vehicles [4]

mathematical models and the behavior of the software is
simulated [6]. This means that development and testing of the
software can begin at an early stage, which helps discovering
problems at the design phase of the development process.

One way to test applications at an early stage is to simulate
them on the computer. For this purpose, graphical models of
the algorithms, e. g. in the form of state charts, are generated
or described on a text basis. These models can be simulated
on a PC as Model-in-the-Loop (MiL) or Software-in-the-
Loop (SiL). The aim of the simulation on the computer is to
investigate the robustness and applicability of the algorithms
used in the system [6]. Rapid control prototyping (RCP)
is a process to quickly test and iterate control strategies.
It consists in importing models of the software on a pow-
erful real-time machine with I/O interfaces to connect to
real-world systems. In contrast to RCP, virtual prototyping
focuses on the system simulation on a computer, including
the simulation of the hardware (virtual platform). For the
virtual platform simulation, the models of the hardware and
the application run on a host computer. However, unlike
simulation on the computer, the same compiled code is
executed on the virtual platform and the real world control
unit [7]. Through integration of these virtual platforms into
heterogeneous multi-domain simulation systems, powerful
co-simulation environments can be developed building some
kind of virtual Hardware-in-the-Loop (HiL) [8].

In this work, we show the use of a testing method based on
virtual platforms to verify a new software for a high number
of system variants. This is seen as an important step towards
validating a new software release, which fixes for example



some serious bugs, for all the variants of the system. As it is
very costly and time-consuming to configure and test each
variant on real hardware, virtual platforms offer support and
can reduce the validation effort significantly for closed-loop
systems in an economical way [9].

This paper is structured as follows: after explaining the
terms variant and version and presenting the state of the
art of current test methods and virtual platform technology
in section II, we analyze some of the challenges in the
validation process of complex software/hardware systems in
section III. Thereafter, the virtual test method is considered
in section IV. The used proof of concept system for the
suggested test method for variant-rich systems including its
virtualization is introduced in section V. The scalability
analysis of the used virtual platform simulator is topic of
section VI. At the end, the results are evaluated considering
different criteria in section VII before finishing with a
conclusion and future work in section VIII.

II. STATE OF THE ART

A. Variants and Versions

System variants in software engineering, as defined
in [10], describe intentional variations that exist in parallel;
this is also called variation in space, while a revision is
an ordered variation over time. Versions encompass both
revisions and variants.

The growing software complexity and customization pos-
sibilities of automotive systems has led to the introduction
of software product lines, where multiple products of a
manufacturer share substantial similarities and are developed
and maintained together [10]. A product line could be a
family of car models including many configurations and
equipment combinations. In order to deal with the immense
variant space, different methods to model the variability
like the feature-models, are used. Feature models allow the
developer to capture commonality and variability within a
software product line and define the relations and constraints
between them [11]. In addition to managing variants, an
efficient version control system is essential. Especially in the
case of frequent software updates. The software changes of a
module or system are usually documented and tracked inside
a codeline diagram, where the temporal evolution of the
system is documented, and parallel development for different
purposes is possible through branching of the mainline [1].

In automotive product lines, variants are usually defined
on the vehicle level. In this paper, we concentrate on ECU
variants: i. e. the existing configurations for an ECU network
realizing a specific distributed function, such as the case for
advanced driver-assistance systems.

B. Current Test Methods

Testing requires a systematic approach with preconditions,
stimuli and expected outcomes [12], which are defined in test
cases. The definition of these test cases is very important
for a successful test phase. Since an exhaustive testing
covering all possible scenarios and use cases of a system

is not possible, a test strategy is required to reduce this
incompleteness as much as possible.

Current Test methods differentiate between three strate-
gies: Blackbox, Greybox and Whitebox. In the so-called
Blackbox-Test, the test engineering has only knowledge about
the interfaces. The internal behavior of the program or the
module is not considered. The test data is generated from
the specifications of the system. Having information about
the interfaces and the internal behavior leads to the so-
called Greybox-Test. When using the internal program logic
to define the test data, the strategy is called Whitebox-Test.

Due to the decoupling of the applications from the hard-
ware within ECU software as defined by the AUTOSAR
standard [13] making the same application usable for dif-
ferent hardware platforms, the development is simplified and
the individual logical behavior of one device is defined by the
software modules of the application layer. For this reason,
function and integration tests for application modules are
usually carried out long before the software is integrated in
the corresponding hardware platforms [12]. Depending on
the maturity level of the system and the form of its external
logic, different kinds of test methods can be employed. These
are described in Figure 2. The external logic in Figure 2
includes the environment of the vehicle, additional ECUs,
sensors, and actuators.

External logic
Simulation Real

Te
st

 O
b

je
ct

Sy
st

em
So

ft
w

ar
e

Software-in-the-Loop Rapid Prototyping

Hardware-in-the-Loop On-board Test

Fig. 2. Different test technologies used in the automotive field [12]

There are four different ways to test an embedded system:
Software-in-the-Loop, Hardware-in-the-Loop, Rapid Proto-
typing and on-board Test.

Using the software together with a simulated external logic
in an automated test loop is called Software-in-the-Loop
(SiL). This technique has been subject to different research
works, such as studied by [14]. It allows for verifying the be-
havior of automotive software early during the development
process, saving costs and improving quality.

Subsequently to the SiL, the resulting ECU is tested within
a simulated environment. This technique is called Hardware-
in-the-Loop (HiL) and is an essential method on the way to
validate the system, allowing to discover inconsistencies and
different kinds of system-related errors [1].

When algorithms are used for the first time in prototypes
with the real external logic, the technique is called Rapid



Prototyping. The algorithms are implemented and tested on
powerful hardware inside a real world prototype [6]. The
programmed high-performance hardware is either tested in
HiL test-benches or directly in the real environment.

For the on-board test, the system is build into a vehicle and
tested on dedicated test sites or public roads. Therefor the
test object and the external logic including the environment
of the vehicle are real.

A newer approach consists of emulating the target hard-
ware platform and executing the cross-compiled software
modules directly on it. Using this concept as a virtual
Hardware-in-the-Loop (vHiL) can be found in [8]. This
enables to emulate the behavior of the embedded system with
more precision than traditional SiL simulation considering
also hardware and communication artifacts. The placement
of such tests in Figure 2 is between SiL and HiL.

C. Virtual Platforms

For testing the system with a vHiL, a virtual platform
of the ECU or the hardware is needed. A virtual platform
is a model that contains all components of the hardware.
This includes the processor, memory, peripherals and the
connecting bus structures (local busses).

For the simulation of embedded systems in a vHiL, diverse
virtualization tools exist. The different platforms will be
compared below. An overview of typical use cases for these
can be found in [15].

GXemul [16] is a paravirtualization that supports ARM,
MIPS and PowerPC. Paravirtualization is a virtualization
technique that uses a software interface, which is similar but
not identical to the hardware interface. Therefore, the soft-
ware for the paravirtualization needs to be adapted compared
to the one running on the embedded system.

Simics [17] supports a high number of processors and
operating systems. The simulation environment gives the
possibility to run the same code on the virtual platform
as on the real platform. However, the interfaces to control
the system architecture can’t be build by the programmer.
Therefore, no customized view inside the architecture is
possible.

QEMU [18] is a fast simulation of the overall hardware
platform (including interfaces). It supports several automo-
tive ECUs and different operating systems and has the
possibility to build own control software in the platform.
However, the supported list of operating systems does not
include automotive operating systems complaint with as
AUTOSAR.

Synopsys Virtual Platform [19] is a virtual prototyping
platform that supports different processor architectures and
operating systems. The tool simulates the overall system with
peripherals and memory. The simulation can be adapted with
different files.

OVPSim [20] is a fast processor and platform modeling
tool. It supports a high number of processors and operating
systems (including custom build processors and operating
systems). Further, it allows to build a platform with all com-

ponents, memory and peripherals. Adapting the simulation
files, the simulation gives a deep view in the processor.

The best adaption of the simulation is given in OVPSim,
therefore this paper will focus on this tool for its results.
Nevertheless other simulation tools (e.g. Synopsys Virtual
Platform or QEMU) can be used as well.

The used simulator is instruction accurate. Although it
does not simulate the exact time behavior, the execution time
can be recalculated by the Instruction Set Architecture (ISA),
taking this into account it is even possible to meet real time
requirements.

III. RESEARCH CHALLENGES FOR TESTING
VARIANT-RICH SYSTEMS

ECUs in automotive systems do not only vary in time
with different versions of the software functions. They also
vary in space (see section II-A) through the various hardware
configurations realizing the distributed ECU function. The
amount of variants for a simplified ACC function resulting
from the combinations of two different micro-controllers,
sensors and actuators is depicted in Figure 3. These variants
need to be separately verified for compatibility for each new
software update. Using more hardware components, adding
communication, or changing the ECU will even increase the
number of variants for a modern vehicle. And adding to
these considerations the variation in time through different in
parallel existing software applications, the variants problem
becomes even more serious.

ACC_v1

ACC_v2

µC 1

µC 2

µC 2

Sens 1

Sens 2

Sens 
1+2

Act 1

Act 2

Act 1

Act 2

Act 1

Act 2

Sens 1

Sens 2

Sens 
1+2

Act 1

Act 2

Act 1

Act 2

Act 1

Act 2

Δ 

Δ 

Δ 

Δ 

Δ 

Δ 

Δ 

Δ 

Δ 

Δ 

Δ 

Δ 

Basic Variant

Fig. 3. Considered Variants of the System Under Test

In addition: If one takes the fast changing software for
cybersecurity updates into account, that is updated multiple
times per month on mobile devices, the number of variants
with different software is increasing even more. Such a high
software update rate can only be achieved by adding SOTA.
However adding SOTA will increase the testing effort, since
more software variants have to be tested in a shorter time
frame.



Usually variant-rich systems are verified through testing
all relevant variants by running automated test cases for
each variant; these test cases have to support variability on
the different abstraction levels [21]. This can be achieved
by testing the basic variant with HiL and focusing other
tests on the deltas to decrease the test effort. A model-
based testing framework based on a delta-oriented Software
Product Line (SPL) test model and regression-based test
artifacts is, for example, introduced in [22]. Nevertheless,
the delta tests have to be executed on a physical hardware
inside the HiL. I. e. the physical hardware for all variants
needs to be present for testing [21]. Putting this effort of delta
testing into simulation using a vHiL approach (as discussed
in section IV), the physical hardware can be replaced by
virtual platforms.

IV. VIRTUAL TESTING METHOD

The main use-case of virtual platforms is design verifica-
tion allowing to discover design and implementation errors
early within classical development processes such as the V-
model. We consider the use of this method for the case of
continuous development, such as for regular SOTA updates,
as powerful support to deal with the enormous variants
numbers in the automotive field. Within the virtual system, an
ECU including its internal architecture and communication
schemes can be modeled. Adding an adequate co-simulation
including the environment of the network under test, all
variants of the system can be reproduced virtually. These
variants can subsequently be tested in a complete virtual
environment based on the delta, i. e. differences, to the basic
system configuration, which should have been thoroughly
verified and validated before. The considered system and its
variants represent the distributed ECU network realizing a
common vehicle function, and not the whole vehicle.

Basic variant

validated through HiL 
and on-board tests

Delta_variant-1

Delta_variant-2

Delta_variant-n

Delta Tests-1

Delta Tests-2

Delta Tests-n

Virtual HiL

pass

fail

regression tests

debugging / 
delta develpment

new 
version

... ..
.

...

Fig. 4. Virtual delta tests methodology

If the delta-tests are passed successfully, final regression
tests should be conducted to make sure the changes did
not lead to unexpected errors within the system. As to
the question whether only virtual tests are enough for the
validation of the variants, the answer is mainly depending on
the safety criticality of the considered system or sub-system.

Instruction set simulators like OVPSim [20] can be used to
model a processor with the corresponding peripherals and run
the cross-compiled application. Running the cross-compiled
application inside an instruction set simulator gives the same
behavior as on the target platform.

Intercepting the application as defined in [7] can cause the
simulation to stop the application and run test and verification
code in the simulation environment. This includes among
others the interception of the virtual platform before each
instruction is morphed, specific instructions are executed and
a specific address range is read or written. This method
helps to check the output of the stimuli against the specified
and expected output and detects undefined behavior due to
change in variants.

In this way, clearly defined delta-tests from variant man-
agement methods using the deltas to the basic variant can be
defined in test-benches and run for each-variant. If the tests
are successful, the same software update can be released
for the considered variant. Otherwise, delta development
based on the debugging of the considered test cases must
be conducted.

V. AUTOMOTIVE TEST SYSTEM

To overcome the issues having physical hardware for the
delta tests, the behavior of the hardware is modeled with
virtual platforms and simulated with OVPSim. As a system
under test (SUT), we consider an adaptive cruise control
(ACC), which communicates with a motor controller (MC),
as described in Figure 5. The connected ECUs represent the
distributed character of an automotive embedded systems.
The considered use-case is a simple longitudinal control
maintaining a safe distance ds to a leading vehicle. Besides
the two ECUs (ACC and MC), the system includes a distance
sensor to measure the range to a leading car, a speed sensor,
a motor to control the system dynamics and an LED display
to indicate if the car is accelerating or decelerating. The
communication between the two ECUs is realized through a
CAN bus.

In order to apply the testing method for variant-rich
systems, we defined features for the SUT which result in
different variants. These features are the number of ECUs
(one or two), the used sensors (Sens 1, Sens 2, Sens 1+2) and
the required actuator (Act 1 or Act 2), as depicted in Figure 3.
The software variants change according to the used hardware
configuration and deltas are generated by the features. For
simplification, we do not consider different software versions
as feature, however this could be done as well. The SUT
is defined as the basic variant, and all other variants are
described by the deltas.

The SUT is build in two different ways:
1) Using physical hardware
2) Simulation with virtual platform

A. Physical Hardware Device

The SUT was build using two Tiva C Series TM4C123G
micro-controllers [23] using a ARM Cortex-M4F according
to the schematic shown in Figure 5. The micro-controllers are



ACC MC

Distance
Sensor

Speed 
Sensor

CAN

Motor
vs

a a

LED

d
va

User

Object

d ≥ safe distance ds

ds, vc

System Under Test 
(SUT)

Fig. 5. Concept of the system under test

connected via CAN each other, distance sensors, and motors.
The test data are fed into the distance sensor to check the
function of the ACC.

B. Virtual Test Platform

In addition to the physical device the system was build
as a virtual platform with two processors, memory and a
common bus as shown in Figure 6. Using a virtual platform
requires a sufficiently accurate model of the hardware. For
the tests, models provided by Imperas were used. The CAN
bus has been simplified to a common bus with access to a
shared memory. The sensor models have been replaced by
the object list of the lead car. This object lists are used as a
testbench data and no co-simulation is used.

Processor
Cortex M4F

Local Bus 0

Local 
Memory

Shared Bus 0

Shared 
Memory

Processor
Cortex M4F

Local Bus 0

Local 
Memory

Control System 1 Control System 2

acc.ARM_CORTEX_M4.elf motor.ARM_CORTEX_M4.elf

Fig. 6. Simplified virtual platform for the simulation of the ACC system

The platform above can be extended with peripheral
models, bridges to connect the different busses, co-simulation
for models of sensors, actuators, bus communication and
environment. Also the simulation can contain more ECUs
leading to the virtual test system depicted in Figure 7.

C. Co-Simulation for External Logic

Co-simulation can combine the advantages of different
simulators to replicate the behavior of the system in a more
accurate way. The required co-simulation can also include
precise models of the internal bus communication using
e. g. CANoe and real-world test scenarios including the
entire surrounding environment using e. g. CarMaker. With
a database including all variants of the models involved
in the co-simulation, each system variant can be virtually

reproduced and tested without the need of configuring a
multitude of instances in real hardware.

In the case of using virtual platforms, co-simulation with
other tools like MatLab Simulink or even real hardware
as demonstrated in [24] can be implemented. Poppen et
al. [25] presented a proof-of-concept implementation of a co-
simulation interface between a c-based system and MatLab
Simulink. OVPsim uses an interception mechanism to stop
the simulation and run a Simulink model representing the
environment of the embedded system.

VI. SCALABILITY OF VIRTUAL TESTING

To use the virtual platforms for the simulation of multiple
control units the scalability is an important factor. Therefore
we run a simple application for 750 seconds on the platforms
shown in Figure 7, where the control systems communicate
with each other. For the scalability tests only testbenchs
without co-simulation were used.

Processor Memory

Bridge

Control System 1

Communication
(e. g. CAN)

Peripherals

Processor Memory

Bridge

Control System 2

Peripherals

Processor Memory

Bridge

Control System n

Peripherals

…

Co-Simulation Testbench

Fig. 7. System for the Virtual Testing and Scalability Measurement

Compiling the application for different kind of processors
will lead to different binary outputs, since the instruction
set depends on the processor architecture (see Figure 8).
Using a processor with reduced instruction set (OR1K) will
lead to the highest number of instructions and therefore
to longer execution times for the same application. Taking
the aforementioned ARM-Cortex M4F with an complex
instruction set a small number of instructions is achieved.

ARC60
0

Cort
ex

-M
0

Cort
ex

-M
4F

M
PC82

X
OR1K

V85
0

2,000

4,000

6,000

8,000

N
um

be
r

of
in

st
ru

ct
io

ns

Fig. 8. Comparison of the instruction count of different processor types

For the measurement of the scalability the ARM Cortex-
M4F is used, because the hardware tests are done with the
same model. Therefore the following section only revers to
this processor type.



Using a Linux PC (Quad-Core with 1.2 Ghz, 8 GB RAM)
the results of Figure 9 can be measured. The graph shows
the real time ratio (see logarithmic axis on right in Figure 1),
taking user time (left axis in Figure 9) as the time needed
for the simulation at the computer and simulated time as
the real time on the hardware (which is 750 seconds for
ARM Crotex-M4F).

real time ratio =
simulated time

user time
(1)

The real time ratio stays above one using up to 60
processors simulating with the Linux PC mentioned above.
I. e. simulating less processors leads to a speed up in tests
compared to physical devices. Simulating only one controller
gives a speed-up of 50 times faster than real time. In-
creasing the computation power will proportionally increase
the real time ratio. Increasing the computation power gives
the possibility to simulate whole electric-electronic (E/E)
architectures of a vehicle and co-simulate the corresponding
external logic.

0 20 40 60 80

0

200

400

600

800

1.000

Number of processors

M
IP

S
an

d
Ti

m
e

100

101

R
ea

l
Ti

m
e

R
at

io

MIPS
User Time (in s)
Real Time Ratio

Fig. 9. Real time ration over number of processors

Also shown in Figure 9 are the million instructions per
second (MIPS) which stays almost constant independent of
the processor count. This means the simulation overhead is
not increasing with the numbers of processors.

VII. EVALUATION

For ACC testing, only the relevant ECUs were simulated
(see Figure 5 and Figure 6).

The testing is based on the cross-compiled code for the
target platform. I. e. the instructions order and the behavior
is the same as on the real platform, since no optimization
of the compiler will be done. Further, the executable and
linkable format (elf) file used for the testing can be flashed
to the target device without any additional changes.

Running the simulation for a testbench with a simple
stimuli of three intervals of constant velocities of a lead car
delivers the results represented in Figure 10 for the physical
hardware and the virtual platform.

As Figure 10 shows, the adaption of the distance to the
lead car at the simulation time t = 39 s was successful by

Fig. 10. Results of the virtual platform based test of the ACC system

respecting the given safe distance ds = 300mm. Although
some important physical effects like the influence of tem-
perature or weather conditions are not included in the used
simulation environment, the behavior of the virtual ACC
system is very similar to the one of the real hardware system,
as shown by the green distance curve representing real world
results. The real test has been conducted by configuring
the same velocity and distance profile on a small lead car
controlled by a micro-controller and logging the distance
information each 40ms. The higher jumps in the green curve
represent measurement errors of the used sensor. Also the
real world results were not exactly reproducible.

On the other hand, the virtual system is less abstract than a
pure Simulink simulation, which does not consider hardware
aspects. However, Simulink or other tools can add more
depth to the simulation by adding realistic models for the
sensors, actuators and dynamic environment.

After running the test for the basic variant of the system,
which is described in Figure 5, we run different other tests
for the remaining variants. These tests are supposed to be
targeting the deltas to the basic variant. We considered
the case of a different sensor, which can give additional
information to the system. This is for example the case for
a sensor measuring not only the distance d to, but also the
velocity vlead of the lead car. This change is representing one
of the variants of Figure 3 of the SUT. It has been configured
and tested on an equivalent virtual platform by changing the
software of the ACC ECU and the sensor model in the test-
bench.

In this work, we didn’t explicitly define the delta-tests
to the basic variant, but showed the feasibility of the
novel testing method for variant-rich systems. The scalability
evaluation using OVP models showed the potential of this
approach to virtually test complex ECU networks.



VIII. CONCLUSION AND FUTURE WORK

Increasing complexity and variant-rich systems (such as
SOTA) lead to a huge number of different variants that have
to be tested. Using state of the art methods, the different
variants need to be tested with the corresponding hardware
on a HiL. However, taking the increasing number of variants
and shortening life cycles, hardware tests are becoming very
costly and time-consuming.

In this work, a novel method was introduced to reduce
the hardware test effort by using virtual platforms for delta
testing. It uses virtual platforms for automated delta testing
to handle the abundance of system configurations. Virtual
testing was used to reduce the amount of physical hardware
tests and allow efficient variants verification. As a proof of
concept, an adaptive cruise control (ACC) composed of two
ECUs has been implemented both in real hardware and with a
virtual platform. Considering the increasing amount of ECUs
and processors in a vehicle we investigated the scalability and
showed that solutions with less than 60 processors can be
simulated by a desktop computer faster than real time. The
results of delta testing correlates between virtual platform
and physical hardware. This is achieved by cross-compiling
the software to run on both virtual and physical hardware.

Future work will focus on the implementation of co-
simulations and the automatic generation of test cases for
delta testing. Besides, the evaluation process will be carried
out with a distributed system including more than two ECUs
operating in various use cases. Further research topics are the
investigation of automatable parts of the Delta product line
development (from the requirement to the test) and whether
the release of functions by virtual tests is sufficient and can
replace HiL tests.

REFERENCES

[1] E. Sax, R. Reussner, H. Guissouma, H. Klare, and H. Guissouma,
“A survey on the state and future of automotive software release and
configuration management,” Karlsruhe Reports in Informatics, 2017.

[2] J. Schäuffele and T. Zurawka, Automotive Software Engineering.
ATZ/MTZ-Fachbuch, 2016.

[3] J. Quigley and K. Robertson, Configuration Management: Theory,
Practice, and Application. CRC Press, 2015.

[4] M. Staron, “Automotive software architectures : An introduction,”
2017.

[5] P. Giusto, A. Ferrari, L. Lavagno, J. Y. Brunel, E. Fourgeau, and
A. Sangiovanni-Vincentelli, “Automotive virtual integration platforms:
why’s, what’s, and how’s,” in Proceedings. IEEE International Con-
ference on Computer Design: VLSI in Computers and Processors,
pp. 370–378, 2002.

[6] D. Abel and A. Bollig, Rapid Control Prototyping. Berlin, Heidelberg:
Springer-Verlag Berlin Heidelberg, 2006.

[7] A. Lauber and E. Sax, “Testing Security of Embedded Software
through Virtual Processor Instrumentation,” in Online engineering &
internet of things // Online engineering & Internet of Things (M. E.
Auer and D. G. Zutin, eds.), vol. 22 of Lecture notes in networks
and systems, pp. 85–94, Cham, Switzerland: Springer and Springer
International Publishing, 2018.

[8] R. L. Bucs, L. G. Murillo, E. Korotcenko, G. Dugge, R. Leu-
pers, G. Ascheid, A. Ropers, M. Wedler, and A. Hoffmann, “Vir-
tual hardware-in-the-loop co-simulation for multi-domain automotive
systems via the functional mock-up interface,” in 2015 Forum on
Specification and Design Languages (FDL), pp. 1–8, Sept 2015.

[9] D. Andreas Junghanns, R. Serway, D. Thomas Liebezeit, and
M. Bonin, “Building virtual ecus quickly and economically,” vol. 7,
06 2012.

[10] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer
Publishing Company, Incorporated, 2013.

[11] J. Zhou, Y. Lu, K. Lundqvist, H. Lnn, D. Karlsson, and B. Liwng,
“Towards feature-oriented requirements validation for automotive sys-
tems,” in 2014 IEEE 22nd International Requirements Engineering
Conference (RE), pp. 428–436, Aug 2014.

[12] E. Sax, ed., Automatisiertes Testen eingebetteter Systeme in der
Automobilindustrie. München: Hanser, 2008.

[13] “Automotive open system architecture (autosar),” 2018.
https://www.autosar.org/, last accessed: 23.02.2018.

[14] S. Jeong, Y. Kwak, and W. J. Lee, “Software-in-the-loop simulation for
early-stage testing of autosar software component,” in 2016 Eighth In-
ternational Conference on Ubiquitous and Future Networks (ICUFN),
pp. 59–63, July 2016.

[15] S. Werner, A. Lauber, J. Becker, and E. Sax, “Cloud-based Remote
Virtual Prototyping Platform for Embedded Control Applications:
cloud-based infrastructure for large-scale embedded hardware-related
programming laboratories,” in Proceedings of 2016 13th Interna-
tional Conference on Remote Engineering and Virtual Instrumentation
(REV), IEEE, 2016.

[16] “GXemul,” 2018. http://gxemul.sourceforge.net/, last accessed:
12.02.2018.

[17] Wind River Systems Inc., “Wind-River-Simics: Product-Overview,”
2015.

[18] “QEMU: the FAST! processor emulator,” 2018.
https://www.qemu.org/, last accessed: 12.02.2018.

[19] Synopsys Inc., “Virtual Prototyping,” 2018.
https://www.synopsys.com/verification/virtual-prototyping.html,
last accessed: 12.02.2018.

[20] Imperas Software Limited, “Open Virtual Platforms: The source of
Fast Processor Models & Platforms Open Virtual Platforms - the
source of Fast Processor Models & Platforms,” 2016.

[21] A. Leitner, R. Mader, C. Kreiner, C. Steger, and R. Weiß, “A develop-
ment methodology for variant-rich automotive software architectures,”
e & i Elektrotechnik und Informationstechnik, vol. 128, pp. 222–227,
Jun 2011.

[22] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity, “Incremental
model-based testing of delta-oriented software product lines,” in Tests
and Proofs (A. D. Brucker and J. Julliand, eds.), (Berlin, Heidelberg),
pp. 67–82, Springer Berlin Heidelberg, 2012.

[23] T. Instruments, “Arm cortex-m4f based mcu tm4c123g launchpad
evaluation kit,” 2016.

[24] S. Werner, L. Masing, F. Lesniak, and J. Becker, “Software-in-the-
loop simulation of embedded control applications based on virtual
platforms,” 2015.

[25] F. Poppen and K. Grüttner, “Co-simulation of c-based soc simulators
and matlab simulink,” 01 2012.


