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Abstract: Detecting vehicles in aerial images is an important task for
many applications like traffic monitoring or search and rescue work. In
recent years, several deep learning based frameworks have been proposed
for object detection. However, these detection frameworks were developed
and optimized for datasets that exhibit considerably differing characteristics
compared to aerial images, e.g. size of objects to detect. In this report, we
demonstrate the potential of Faster R-CNN, which is one of the state-of-the-
art detection frameworks, for vehicle detection in aerial images. Therefore,
we systematically investigate the impact of adapting relevant parameters.
Due to the small size of vehicles in aerial images, the most improvement
in performance is achieved by using features of shallower layers to localize
vehicles. However, these features offer less semantic and contextual infor-
mation compared to features of deeper layers. This results in more false
alarms due to objects with similar shapes as vehicles. To account for that,
we further propose a deconvolutional module that up-samples features of
deeper layers and combines these features with features of shallower layers.

1 Introduction

Vehicle detection in aerial images is an important task for many applications like
traffic monitoring or search and rescue work. Conventional approaches applied to
detect vehicles in aerial images are generally comprised of hand-crafted features
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and a classifier within a sliding window approach [LM15, CH16, MM14]. In re-
cent years, several authors applied convolutional neural networks (CNNs) to ex-
tract features at each sliding window position [CXLP14, KPF16]. In [CXLP14],
improved results are achieved for vehicle detection in satellite images by ap-
plying convolutional features instead of hand-crafted features. However, the
computation of convolutional features for each candidate window separately is
computational expensive [Gir15].

In recent years, deep learning based detection frameworks like Faster R-
CNN [RHGS15], which achieves top performing results on common detection
benchmark datasets, have been proposed to reduce the computational effort.
Therefore, a convolutional feature map is computed for the entire image at once
and shared for all candidate windows [Gir15, RHGS15]. However, such detec-
tion frameworks are developed and optimized for common detection benchmark
datasets that exhibit considerably differing characteristics compared to aerial
images, e.g. size of objects to detect.

In the context of this report, we demonstrate the applicability of Faster R-CNN
for vehicle detection in aerial images. Therefore, several adaptions are performed
to account for the characteristics of the aerial images and the impact on the de-
tection performance is evaluated. The DLR 3K Munich Vehicle Aerial Image
Dataset [LM15] that comprises objects in the range of 15×30 pixels is used for
all experiments.

The main improvement is achieved by adapting the resolution of the output of
the last convolutional layer, which is used as feature map to localize and classify
objects. The resolution of the standard feature map is only 1/16 of the input
image and consequently insufficient for object sizes between 15 and 30 pixels. To
provide a sufficient feature map resolution, the output of shallower convolutional
layers is used as feature map. However, these features offer less semantic and
contextual information compared to features of deeper layers. This results in
more false alarms due to objects with similar shapes as vehicles. To account for
that, we further propose a deconvolutional module that up-samples features of
deeper layers and combines these features with features of shallower layers.
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Figure 2.1: Schematic illustration of the Region Proposals Network (RPN) used to
generate a set of candidate regions that are likely to contain an object.

2 Faster R-CNN

In the following, the functional principle of the Faster R-CNN detection frame-
work as proposed by Ren et al. [RHGS15] is introduced. Faster R-CNN is com-
prised of two modules: an initial deep learning based object proposals method
called Region Proposals Network (RPN) and the subsequent Fast R-CNN mod-
ule [Gir15] used to classify the generated proposals. Both the RPN and the Fast
R-CNN module share the convolutional layers to reduce the computational effort.

Figure 2.1 shows schematically the RPN. The RPN uses the output of the last
convolutional layers as feature map. Then, a small network is shifted over the
feature map to generate a set of candidate regions. The small network comprises
a 3×3 convolutional layer followed by a classification layer (cls layer) and a
bounding box regression layer (reg layer). The classification layer outputs a con-
fidence score at each position, which is used to rank the proposals. The bounding
box regression layer is used to compute the corresponding coordinates. For this,
a set of fixed scaled anchor boxes k are used as bounding box reference.

The top 300 region proposals (highest confidence score) are forwarded to the
Fast R-CNN module. The Fast R-CNN module classifies each region proposal
into various object classes or background. Therefore, each region proposal is
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projected onto the feature map. Then, the corresponding features are extracted by
the so called Region of Interest (RoI) pooling layer to generate a vector of fixed
length as required for the subsequent fully connected layers. After a sequence
of fully connected layers, a classification layer and a bounding box regression
layer are used for classification and to refine the coordinates of the corresponding
candidate region, respectively.

3 Adaption to Aerial Images

The detection performance is mainly affected by adapting the resolution of the
feature map used to compute proposals and for classification and by adapting the
parameters of the RPN.

The original Faster R-CNN utilizes VGG-16 [SZ14] as base architecture. The
VGG-16 comprises 13 convolutional layers with a kernel size of 3×3 followed
by 3 fully-connected layers. To reduce the amount of parameters and to make
the network invariant to small translations of the input, max-pooling layers are
inserted after the 2nd (conv1 2), 4th (conv2 2), 7th (conv3 3), 10th (conv4 3),
and 13th (conv5 3) convolutional layer. In case of Faster R-CNN, the output of
the last convolutional layer is used as feature map. As illustrated in Figure 3.1,
the dimensions of the feature map are only 1/16 of the dimensions of the in-
put image. Thus, the feature map resolution is insufficient to accurately localize
objects in the range of 15 to 30 pixels or even smaller. To account for that, we re-
place the initially used VGG-16 architecture by a network architecture optimized
for handling small instances. The network is inspired by the network proposed
in [HWB16] and comprises 4 convolutional layers followed by 3 fully connected
layers. Max-pooling layers are inserted after the 1st, 2nd, and 4th convolutional
layer. We performed optimization of all relevant network parameters including
number of layers, number of filters per layer, kernel size and dropout. Analogous
to the original Faster R-CNN, the output of the last convolutional layer is used as
feature map. As depicted in Figure 3.2, the dimensions of the feature map are 1/4
of the dimensions of the input image. Thus, a finer localization of small objects
is feasible due to the higher resolution of the feature map.

In addition to increasing the feature map resolution, adapting the parameters of
the RPN mainly affects the detection performance. The benchmark datasets used
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Figure 3.1: Schematic illustration of the convolutional part of VGG-16 and the resulting
feature map.
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Figure 3.2: Schematic illustration of the convolutional part of the proposed network
architecture optimized for handling small objects and the resulting feature map.

for developing Faster R-CNN contain objects that are generally in the range be-
tween 50 and 200 pixels. Thus, the parameters of the RPN are adjusted for these
object dimensions. First, we reduce the minimal height and width of considered
proposals (RPN MI SIZE) from 16 to 4, in order to account for the smaller ob-
ject sizes in case of aerial images. Initially, the top 300 region proposals are
considered for classification. This is enough to localize objects in the bench-
mark datasets, which generally contain only one or a few objects per image.
Multiple proposals are typically located around the same object. Aerial images
can contain clearly more objects per image and furthermore can contain more
potentially disturbing objects, e.g. trailers or solar cells on buildings. There-
fore, we set the number of proposals considered for classification to 2,000. As
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Figure 4.1: Schematic illustration of the Faster R-CNN extended by the deconvolutional
module (DFRCNN).

described in Section 2, anchor boxes are used as reference for bounding box
regression. The initially used anchor scales are chosen to account for the size
of objects in the benchmark datasets. The ANCHOR BASE SIZE is set to 16
and the ANCHOR SCALE factors are set to 8, 16 and 32, which results in an-
chor boxes with dimensions in the range between 128 and 512 pixels. We set
the ANCHOR BASE SIZE to 2 while the ANCHOR SCALE factors are kept
unchanged.

4 Deconvolutional Module

To achieve a higher feature map resolution that is sufficient to localize small ob-
jects as in case of aerial images, small networks as described in Section 3 or
shallow layers of standard architectures like VGG-16 are applicable. However,
high-resolution feature maps offer less semantic and contextual information com-
pared to features of deeper layers. The less semantic and contextual information
make the detection framework more prone to false alarms due to objects with
shapes similar to vehicles.

In order to achieve a high-resolution feature map and semantic and contextual
informative features, we extend the Faster R-CNN by a deconvolutional module.
The deconvolutional module up-samples low-dimensional feature maps of deep
layers and combines the up-sampled features with the features of shallow layers
while the feature map resolution is kept sufficiently high to localize small objects.
The network architecture of the Faster R-CNN extended by the deconvolutional
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module (DFRCNN) is schematically illustrated in Figure 4.1. We use VGG-
16 as base network architecture. First, the features of conv5 3 are up-sampled
by a factor of 2 and then concatenated with the features of conv4 3. Then, the
combined features are up-sampled by a factor of 2 and then concatenated with the
features of conv3 3. Thus, the features of conv4 3 and conv5 3 are up-sampled
by a factor of 2 and 4, respectively. We use deconvolutional layers with a kernel
size of 4×4 and a stride of 2 to up-sample the features. The combined features
of conv3 3, conv4 4 and conv5 3 are used as feature map. The feature map
dimensions are 1/4 of the dimensions of the input image. To adapt the number
of output channels of the feature map required as input for the fully connected
layers, we insert an additional convolutional layer with kernel size 1×1.

5 Evaluation

In the following section, we evaluate the impact of the adaptions described in
Section 3 and of the deconvolutional module proposed in Section 4. We use Av-
erage Precision (AP) computed as defined in [EVGW+10], precision and recall
as evaluation metrics. Ground truth (GT) objects are considered as recalled, if
the Pascal-overlap criterion [EVGW+10] is satisfied. For all experiments, we
use the publicly available DLR 3K Munich Vehicle Aerial Image Dataset. The
dataset comprises 20 aerial images with a resolution of 5616×3744 pixels and
a ground sampling distance (GSD) of approximately 13 cm. Due to the limited
memory capacity of the used GPUs, each image is divided into tiles of 936×624
pixels. Image sections are exemplarily depicted in Figure 5.1. We further align
the provided GT annotations at image edges as required for the Faster R-CNN
detection framework.

5.1 Adaption to Aerial Images

The impact of increasing the feature map resolution on the detection performance
is shown in Figure 5.2. The blue line corresponds to the precision-recall curve for
an IoU threshold value of 0.5 used to accept GT objects as recalled (PASCAL-
criterion). In case of using the VGG-16 architecture (feature map 1/16), both
precision and recall are considerably worse compared to using the optimized net-
work architecture (feature map 1/4). Precision values close to 1 and recall values
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Figure 5.1: Image sections of the DLR 3K Munich Vehicle Aerial Image Dataset [LM15]

above 0.95 are achieved for the optimized network architecture. Reason for the
improved performance is the higher feature map resolution as the detections are
better localized around the GT elements. The better localization of the detections
is illustrated in Figure 5.2 by plotting precision-recall curves for various IoU
threshold values used to accept GT objects as recalled. For a resolution of 1/4
of the input image, the performance is only slightly decreasing with increasing
IoU thresholds up to 0.5, which indicates a good localization of the detections. In
contrast, the performance for lower resolutions decreases stronger with increas-
ing IoU threshold values. The worse localization results in worse classification
into object or background though the features comprise more semantic and con-
textual information. To highlight the difference in localization quality, qualitative
detection examples are given for both feature map resolutions (see Figure 5.3 and
Figure 5.4, respectively). For a resolution of 1/16 of the input image, the bound-
ing box positions of the detections (red boxes) clearly differ from the GT anno-
tations (green boxes). Furthermore, multiple detections are often generated due
to the poor localization. In contrast, the detections for a feature map resolution
of 1/4 of the input image overlap very well with the GT annotations.

The impact of adapting the RPN is illustrated in Figure 5.5 and Figure 5.6. Fig-
ure 5.5 depicts the proposals’ quality for various anchor box sizes. Therefore,
we plot the recall achieved for the proposals with respect to the IoU threshold
value used to accept the GT objects as recalled. The mean anchor box dimen-
sions are given in the legend. Reducing the anchor box sizes clearly improves
the proposals’ quality. For anchor box dimensions in the range between 14 and
28 pixels, which is roughly the size of present objects, the best recall values are
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Figure 5.2: Precision-recall curves for various IoU threshold values used to accept GT
objects as recalled. Higher feature map resolutions result in better localization quality as
the performance decreases clearly less with increasing threshold values.

Figure 5.3: Qualitative detections (red boxes) and corresponding GT annotations (green
boxes) for a feature map resolution of 1/16 of the input image. The detections show a rel-
atively poor overlap with the GT annotations and multiple detections are often generated
for one GT object.

achieved. The relation between proposals’ quality and detection performance is
shown in Figure 5.6. Therefore, we plot AP with respect to Average Best Overlap
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Figure 5.4: Qualitative detections (red boxes) and corresponding GT annotations (green
boxes) for a feature map resolution of 1/4 of the input image. The detections overlap very
well with the GT annotations.

(ABO), which is an evaluation metric for the localization quality. ABO is calcu-
lated by averaging the best overlap between each GT annotation gi ∈ G and the
corresponding set of object proposals L:

ABO =
1

|G|
∑
gi∈G

max
lj∈L

IoU(gi, lj) .

The best ABO is achieved for anchor box sizes in the range of present objects.
The best AP is achieved for anchor boxes in the range of present objects as well.
Thus, we assume that better proposals result in better detection performance.

To sum up the impact of the adaptions, the detection performance for both adap-
tions and the original Faster R-CNN is given in Figure 5.7. The performance
of the original Faster R-CNN is poor. Both precision and recall are clearly less
than 1. Applying the adapted RPN results in clearly improved precision and
recall (VGG-16 adapted). However, the detection performance is still poor. Re-
placing the VGG-16 architecture with the optimized network architecture and
consequently increasing the feature map resolution results in a significantly im-
proved detection performance. It is to mention, that both adaptions are necessary
to achieve the best detection results.
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Figure 5.5: Recall-IoU curves for various anchor box sizes used as bounding box
reference. The mean anchor box dimensions are given in the legend.

5.2 Deconvolutional Module

The impact of our proposed deconvolutional module on the detection perfor-
mance is given in Table 5.1. We compare the detection results of our proposed
Deconvolutional Faster R-CNN (DFRCNN) to baselines on the DLR 3K dataset
for various GSDs. For this, we re-scaled the input images for training and testing
by factors 1, 0.75, and 0.5. As baseline, we consider Faster R-CNN with different
convolutional layers of VGG-16 used as feature map. For each GSD, the anchor
box sizes are adapted for all Faster R-CNNs to the size of present objects. As dis-
cussed above increasing the feature map resolution from 1/16 of the input image
(VGG-16 conv5 3) to 1/4 of the input image (VGG-16 conv3 3) clearly
improves the detection performance especially for tiny objects as for a GSD of
26 cm. The performance is improved though the used features are less seman-
tically and contextually informative. To account for the smaller receptive fields
and less semantic information, we use our DFRCNN which combines features
of conv3 3, conv4 3, and conv5 3 as described in Section 4. The performance is
improved for all GSD especially for a GSD of 26 cm and consequently smaller

––
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Figure 5.6: Average Precision (AP) w.r.t. Average Best Overlap (ABO) for various
anchor box sizes used as bounding box reference. Applying region proposals with better
ABO results in higher AP.

objects. In case of GSD 26, the number of false positive detections is reduced by
a factor of 33.4% compared to VGG-16 — conv3 3, while the number of false
negative detections remains almost unchanged.

To illustrate the impact of adding more semantic information, qualitative detec-
tion examples for Faster R-CNN using conv3 3 as feature map (left column) and

Table 5.1: Average Precision of our proposed DFRCNN compared to baselines on the
DLR 3K dataset for various GSDs (in cm).

Method GSD 13 GSD 19.5 GSD 26
VGG-16 — conv5 3 0.770 0.558 0.207
VGG-16 — conv4 3 0.967 0.896 0.601
VGG-16 — conv3 3 0.979 0.944 0.836
DFRCNN 0.980 0.957 0.864
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Figure 5.7: Precision-recall curves of the original Faster R-CNN and for both adaptions.

our proposed DFRCNN (right column) are given in Figure 5.8. Therefore, we use
a classification threshold value of 0.5. For Faster R-CNN using conv3 3, several
false positive detections are caused by objects with shapes similar to vehicles
such as solar cells or chimneys on buildings. Integrating more semantic infor-
mation clearly reduces the number of false positive detections caused by such
objects.

6 Summary

In this report, the applicability of Faster R-CNN for vehicle detection in aerial
images was demonstrated. Therefore, we have systematically evaluated the im-
pact of adapting relevant parameters of Faster R-CNN to the characteristics of
aerial images. The most improvement in detection performance was achieved by
adapting the size of the anchor boxes used for bounding box regression and by
increasing the feature map resolution as the initial resolution is insufficient to lo-
calize small objects. To achieve high feature map resolutions that are sufficient to
localize small objects, small networks or shallow layers of standard architectures
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Figure 5.8: Qualitative detections (red boxes) and corresponding GT (green boxes) for
Faster R-CNN using conv3 3 (left column) and our proposed DFRCNN (right column)
on DLR 3K indicate that false alarms due to objects with shapes similar to vehicles are
reduced by integrating more semantic information.
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like VGG-16 are applicable, which offer less semantic and contextual informa-
tion compared to features of deeper layers. In order to overcome this drawback,
we extended the original Faster R-CNN by a deconvolutional module. Therefore,
features of deeper layers are up-sampled and combined with features of shallower
layers. The detection performance is improved by integrating features with more
semantic information especially for tiny objects as the number of false positive
detections due to objects with shapes similar to vehicles is reduced.
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