Development of a Spatial Domain Decomposition Scheme for Monte Carlo Neutron Transport

Karlsruher Institut für Technologie

M. García ${ }^{1}$, D. Ferraro ${ }^{1}$, L. Mercatali ${ }^{1}$, V. Sanchez ${ }^{1}$, J. Leppänen ${ }^{2}$, V. Valtavirta ${ }^{2}$

26th ICONE - International Conference on Nuclear Engineering London, UK, July 22-26, 2018
${ }^{1}$ Karlsruhe Institute of Technology (KIT),
${ }^{2}$ Technical Research Centre of Finland (VTT)

Motivation

- McSAFE project:
- Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
- Steady-state, depletion and transient problems.
- High performance Monte Carlo neutron transport (Serpent2).
- Multiphysics: thermalhydraulics and fuel performance feedback.

Motivation

- McSAFE project:
- Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
- Steady-state, depletion and transient problems.
- High performance Monte Carlo neutron transport (Serpent2).
- Multiphysics: thermalhydraulics and fuel performance feedback.
- Main challenges for Monte Carlo codes:
- Efficient variant reduction for steady-state and transient problems.
- Massive parallelization with MPI-OpenMP (speedup optimization).
- Huge memory demand (memory footprint reduction or distribution).

Motivation

- McSAFE project:
- Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
- Steady-state, depletion and transient problems.
- High performance Monte Carlo neutron transport (Serpent2).
- Multiphysics: thermalhydraulics and fuel performance feedback.
- Main challenges for Monte Carlo codes:
- Efficient variant reduction for steady-state and transient problems.
- Massive parallelization with MPI-OpenMP (speedup optimization).
- Huge memory demand (memory footprint reduction or distribution).
- Parallel schemes for Monte Carlo particle transport:
- Particle-based parallelism.
- Data decomposition.
- Spatial domain decomposition.

Motivation

- McSAFE project:
- Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
- Steady-state, depletion and transient problems.
- High performance Monte Carlo neutron transport (Serpent2).
- Multiphysics: thermalhydraulics and fuel performance feedback.
- Main challenges for Monte Carlo codes:
- Efficient variant reduction for steady-state and transient problems.
- Massive parallelization with MPI-OpenMP (speedup optimization).
- Huge memory demand (memory footprint reduction or distribution).
- Parallel schemes for Monte Carlo particle transport:
- Particle-based parallelism.
- Data decomposition.
- Spatial domain decomposition.

Overview of SDD

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Overview of SDD

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Overview of SDD

- Key issues:
- Geometry partition.
- Fission source scaling.
- Particle domain crossings.
- Tracking loop termination.
- Gathering of results.

Overview of SDD

- Key issues:
- Geometry partition.
- Fission source scaling.
- Particle domain crossings.
- Tracking loop termination.
- Gathering of results.
- Potential benefits:
- Distribution of the memory demand across nodes (MPI).
- Data locality (nuclear properties, material compositions, tallies).
- Very good speedup.

Overview of SDD

- Key issues:
- Geometry partition.
- Fission source scaling.
- Particle domain crossings.
- Tracking loop termination.
- Gathering of results.
- Potential benefits:
- Distribution of the memory demand across nodes (MPI).
- Data locality (nuclear properties, material compositions, tallies).
- Very good speedup.

Domain crossing

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Domain crossing

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Domain crossing

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Domain crossing

- Particle transfers:
- Data: $\vec{r}, \vec{\Omega}, E, t, w$, etc.
- Asynchronous (MPI_ISend(), MPI_IRecv()).
- Buffered.

Tracking termination

- Termination condition:
- All local histories have to be completed.
- All sent particles have to be recieved.
- Global operation.
- Not trivial due to asynchronous particle communications.

Tracking termination

- Termination condition:
- All local histories have to be completed.
- All sent particles have to be recieved.
- Global operation.
- Not trivial due to asynchronous particle communications.
- Synchronization:
- A correct particle balance is obtained.
- As few as posible for performance.

Tracking termination

- Termination condition:
- All local histories have to be completed.
- All sent particles have to be recieved.
- Global operation.
- Not trivial due to asynchronous particle communications.
- Synchronization:
- A correct particle balance is obtained.
- As few as posible for performance.
- Asynchronous estimation:
- The particle balance can be estimated without synchronization.
- Synchronization can be requested when this estimation matches.

Implementation

Particle tracking loop

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Test program

- No transport.
- Neutrons born in a domain escape with probability p_{e}.

- Uniform source.
- Average tracking time taken from Serpent2.

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Serpent2

- VVER-440 pin-by-pin fuel assembly.
- Pure MPI (no OpenMP).
- Simplified algorithm.

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Current status and future work

- Current status:
- SDD communications scheme implemented, tested and optimized.
- Implementation in Serpent2 underway.
- Geometry partition being developed.
- Future work:
- Development of an MPI-OpenMP optimized algorithm.
- Further optimization and verification.
- McSAFE project:
- Potential capabilities for pin-by-pin full-core simulation.
- Optimization of parallel multiphysics schemes.

KIT
 Questions?

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Appendices

Particle communications

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Tracking termination

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

