Development of a Spatial Domain Decomposition Scheme for Monte Carlo Neutron Transport

M. García¹, D. Ferraro¹, L. Mercatali¹,

V. Sanchez¹, J. Leppänen², V. Valtavirta²

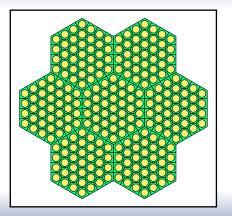
26th ICONE - International Conference on Nuclear Engineering London, UK, July 22-26, 2018

¹Karlsruhe Institute of Technology (KIT),

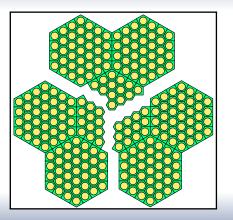
²Technical Research Centre of Finland (VTT)

- McSAFE project:
 - Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
 - Steady-state, depletion and transient problems.
 - High performance Monte Carlo neutron transport (Serpent2).
 - Multiphysics: thermalhydraulics and fuel performance feedback.

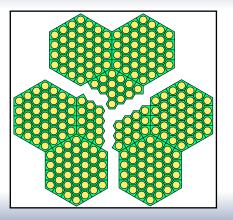
- McSAFE project:
 - Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
 - Steady-state, depletion and transient problems.
 - High performance Monte Carlo neutron transport (Serpent2).
 - Multiphysics: thermalhydraulics and fuel performance feedback.
- Main challenges for Monte Carlo codes:
 - Efficient variant reduction for steady-state and transient problems.
 - Massive parallelization with MPI-OpenMP (speedup optimization).
 - Huge memory demand (memory footprint reduction or distribution).


- McSAFE project:
 - Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
 - Steady-state, depletion and transient problems.
 - High performance Monte Carlo neutron transport (Serpent2).
 - Multiphysics: thermalhydraulics and fuel performance feedback.
- Main challenges for Monte Carlo codes:
 - Efficient variant reduction for steady-state and transient problems.
 - Massive parallelization with MPI-OpenMP (speedup optimization).
 - Huge memory demand (memory footprint reduction or distribution).
- Parallel schemes for Monte Carlo particle transport:
 - Particle-based parallelism.
 - Data decomposition.
 - Spatial domain decomposition.

- McSAFE project:
 - Full-core pin-by-pin LWR analysis based on the Monte Carlo method.
 - Steady-state, depletion and transient problems.
 - High performance Monte Carlo neutron transport (Serpent2).
 - Multiphysics: thermalhydraulics and fuel performance feedback.
- Main challenges for Monte Carlo codes:
 - Efficient variant reduction for steady-state and transient problems.
 - Massive parallelization with MPI-OpenMP (speedup optimization).
 - Huge memory demand (memory footprint reduction or distribution).
- Parallel schemes for Monte Carlo particle transport:
 - Particle-based parallelism.
 - Data decomposition.
 - Spatial domain decomposition.

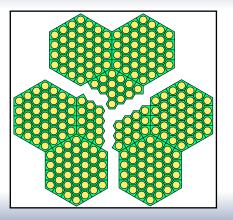

Overview of SDD

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK


Overview of SDD

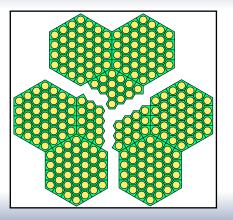
M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Overview of SDD

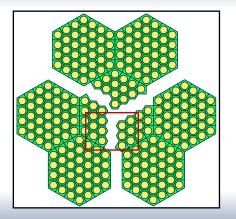


- Key issues:
 - Geometry partition.
 - Fission source scaling.
 - Particle domain crossings.
 - Tracking loop termination.
 - Gathering of results.

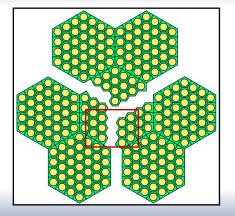
M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

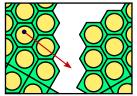

Overview of SDD

- Key issues:
 - Geometry partition.
 - Fission source scaling.
 - Particle domain crossings.
 - Tracking loop termination.
 - Gathering of results.
- Potential benefits:
 - Distribution of the memory demand across nodes (MPI).
 - Data locality (nuclear properties, material compositions, tallies).
 - Very good speedup.


Overview of SDD

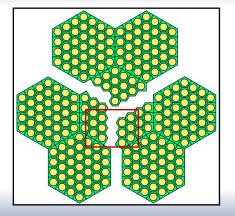
- Key issues:
 - Geometry partition.
 - Fission source scaling.
 - Particle domain crossings.
 - Tracking loop termination.
 - Gathering of results.
- Potential benefits:
 - Distribution of the memory demand across nodes (MPI).
 - Data locality (nuclear properties, material compositions, tallies).
 - Very good speedup.

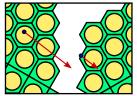

Domain crossing



M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

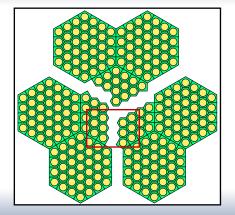
Domain crossing

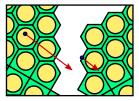




M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Domain crossing





M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Domain crossing

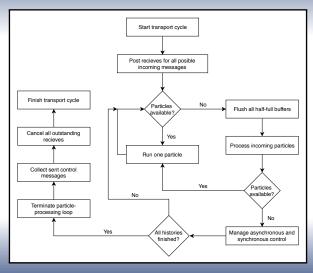
- Particle transfers:
 - Data: *r*, Ω, *E*, *t*, *w*, etc.
 - Asynchronous (MPI_ISend(), MPI_IRecv()).
 - Buffered.

Tracking termination

- Termination condition:
 - All local histories have to be completed.
 - All sent particles have to be recieved.
 - Global operation.
 - Not trivial due to asynchronous particle communications.

Tracking termination

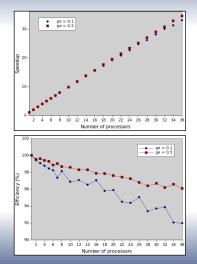
- Termination condition:
 - All local histories have to be completed.
 - All sent particles have to be recieved.
 - Global operation.
 - Not trivial due to asynchronous particle communications.
- Synchronization:
 - A correct particle balance is obtained.
 - As few as posible for performance.



Tracking termination

- Termination condition:
 - All local histories have to be completed.
 - All sent particles have to be recieved.
 - Global operation.
 - Not trivial due to asynchronous particle communications.
- Synchronization:
 - A correct particle balance is obtained.
 - As few as posible for performance.
- Asynchronous estimation:
 - The particle balance can be estimated without synchronization.
 - Synchronization can be requested when this estimation matches.

Particle tracking loop


M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Results

Test program


- No transport.
- Neutrons born in a domain escape with probability *p_e*.
- Uniform source.
- Average tracking time taken from Serpent2.

Results

Serpent2

- VVER-440 pin-by-pin fuel assembly.
- Pure MPI (no OpenMP).
- Simplified algorithm.

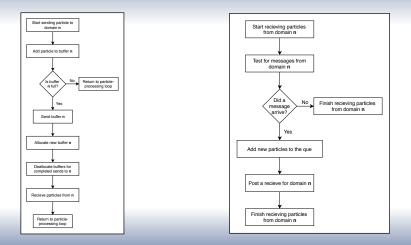
M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

Conclusions

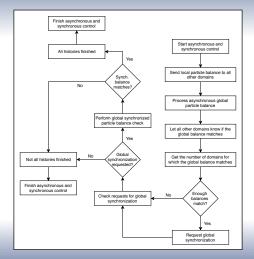
Current status and future work

- Current status:
 - SDD communications scheme implemented, tested and optimized.
 - Implementation in Serpent2 underway.
 - Geometry partition being developed.
- Future work:
 - Development of an MPI-OpenMP optimized algorithm.
 - Further optimization and verification.
- McSAFE project:
 - Potential capabilities for pin-by-pin full-core simulation.
 - Optimization of parallel multiphysics schemes.

Conclusions


Questions?

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK


Appendices

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK

M. Garcia - A SDD Scheme for Monte Carlo Transport - ICONE26, London, UK