

Foreseen capabilities, bootlenecks identification and potential limitations of Serpent MC transport code in large-scale Full 3-D Burnup Calculations

<u>Diego Ferraro</u>¹, M. García¹, L. Mercatali¹, V. Sanchez¹, Jaakko Leppänen² and Ville Valtavirta²

¹ Institute for Neutron Physics and Reactor Technology (INR) ² VTT Technical Research Centre of Finland

KIT – The Research University in the Helmholtz Association 26th ICONE – International Conference on Nuclear Engineering London, England, July 22 – 26, 2018

www.kit.edu

Presentation Overview

- Introduction & motivation
- Modelling goals for high fidelity calculations
- Screening of capabilities and bottlenecks in MC codes:
 - Burnup instabilities for large problems
 - Memory consumption bottlenecks
 - Preliminary testing in HPC (parallelization & resources)
- Discussions of main findings
- Conclusions (& further work)

1 – Introduction & motivation

- Increasing effort to develop high accurate multi-physics approach for nuclear reactor analysis of complex phenomenology.
- Increasing demand from designers, operators, regulators and other stakeholders.
- Several projects around the world oriented to provide *high-fidelity results* -> improvement of local phenomena calculation & provide reference solution).
- Under this framework, *McSAFE* project started in 2017 under Horizon 2020 (EU):

McSAFE: High – Performance **M**ontecarlo Methods for **SAFE**ty Demonstration:

- **Cooperation** between code developers, methods developers and industry stakeholders.
- 12 partners from 9 countries around EU and an extended community of users around world.

2 - McSAFE: goals for high fidelity calculations

- Move towards high fidelity multi-physics calculations using advanced codes and methodologies.
- High performance Montecarlo (MC) codes to become valuable tools for core design, safety analysis and industry like applications for LWRs of gen II and III.
- Final scope: NPP core level calculations including depletion and TH-feedback in a full scope approach (i.e. pin level):

Develop MC coupled TH calculations including burnup in an HPC environment for a full core LWR:

 \rightarrow Assessment of capabilities and bottlenecks

3 – Screening of capabilities Problem analysis approach for this work

- Advanced MC code Serpent 2 is considered (developed by VTT-Finland)
- High performance state-of-the-art MC code → key part of McSAFE
- Increasing complexity approach \rightarrow basis BEAVRS 193 FA PWR benchmark
- Identification of issues, bottlenecks and resources requirements

1. Burnup instabilities in MC codes

- Tests based on BEAVRS FA with 20BP were developed:
- Simplified 17x17 FA 3.1% wt with 20 BP.
- A 340 axial length symmetrical w/o axial details (spacers or grids) 34 axial divisions Axially reflected (water).
- Guide tubes and Instrumentation tubes modelled as empty tubes (i.e filled with coolant water and air respectively).
- An overall total fission power of 17MW was considered to model approximate HFP case.
- Surnup up to 12.5MWd/kgU \rightarrow 9656 burnable zones.
- - Due to burnup step bigger that traditional cell-core approach.
 - Due to MC statistical nature \rightarrow induced Xe oscillations.

1. Burnup instabilities in MC codes

Observed axial profiles w/ and w/o Xe in equilibrium (final step-qualitative):

- Power profile oscillations are clearly observable
- ✓ Foreseen for other isotopes of high XS
- ✓ High statistical convergence levels required
- ✓ Advanced methodologies under analysis

2. Memory consumption bottlenecks

- High number of depletion zones → increasing RAM requirement
- Usually HPC have high number of processors and low RAM → in KIT FH2 cluster is available → ~20000 cores but 64GB RAM
- How much RAM memory should we expect?
- To analyze this → parametric study w/FA fully divided, investigating total RAM

- \rightarrow Number of depletion zones is # FA x 9656
- → ~ Conservative approach for Full core 193 FA PWR (as BEAVRS) → BP positions replaced by guide tubes
- \rightarrow An ad-hoc cluster node with ~400GB RAM was considered

8 D. Ferraro et al - 26th ICONE

Introduction Goals

Screening of capabilities Discussion Conclusions & Outlook

3 – Screening of capabilities & limitations 2. Memory consumption bottlenecks

RAM requirements for this increasing of fully divided FA

- \rightarrow RAM requirement increase linear with depletion zone \rightarrow <u>~400kB per burn material</u>
- \rightarrow Maximum foreseen case in our available HPC \rightarrow ~12FA
- \rightarrow Biggest HPC worldwide have just ~10GB per node We need ~1TB for full PWR)

Fit the problem in memory represents a bottleneck!

9 D. Ferraro et al - 26th ICONE Introduction Goals Screening of capabilities Discussion Conclusions & Outlook

3 – Screening of capabilities & limitations 3. Testing in a HPC environment

- The most demanding problem that can be nowadays fitted in FH2 HPC was considered:
 - ✓ A 12 FA array, fully divided (~1e5 burnable zones) was modeled
 - ✓ Burn calculations (~1e5 burnable zones)
 - 2e9 active histories (2000 active cycles, 1e6 histories each)
 - Up to 100 MPI nodes, 20 CPUs each (up to 2000 cores in total)
 - A PIN by PIN dummy multi-physics feedback was included for fuel and coolant to estimate overhead
 - Power and thermal flux detectors by pin
- Requirements and convergence analyzed
- Multi-physics overhead was analyzed
- Scalability in HPC analyzed

Goals

3. Testing in a HPC environment: Resources

Main results (qualitative):

Power x-y profile midplane:

Thermal neutron flux x-y midplane:

Main run parameters:

Parameter	Value	Comment			
RAM memory (Total)	50.456 GB	Includes all. The node limit is 64GB. Additional			
		memory is to be used by other codes in coupling			
RAM memory (materials)	46.063 GB	~1e5 burnable zones			
Running time @ 2.6 GHz CPU	~8e4 mins ¹	Per Iterator or corrector step			
Running time @ 2.6 GHz CPU w/o MP	~5e4 mins ¹	Per Iterator or corrector step			
Calculation time overhead due to MP	~60%				
Total active histories	2e9	2000 active cycles of 1e6 histories each			
¹ 4.4E4 mins ~1 month CPU					

HPC

11 D. Ferraro et al - 26th ICONE

Introduction Goals

Screening of capabilities Discussion Conclusions & Outlook

3. Testing in a HPC environment: Convergence & scalability

Statistical convergence reached:

Poromotor	Value				
Farameter	Max	Min	Average	Stdev	
Effective multiplication factor statistical convergence	-	-	-	2.9e-5	
Thermal flux detector (tally) statistical convergence	0.0723	0.0032	0.0071	0.0040	
power flux detector (tally) statistical convergence	0.0260	0.0000	0.0075	0.0035	

Massive parallelization scalability:

HPC

3 – Discussion of main findings

- Burnup instabilities found: face this issue with improved algorithms and methodologies (under development). Specific criteria for some isotopes to be applied.
- Memory bottlenecks:
 - Improve RAM management for each burnable zone (under development).
 - ✓ Implement Domain Decomposition (collision based) → Please refer to "Development of a spatial domain decomposition scheme for Montecarlo neutron transport" - ICONE26-82144.
- Scalability to HPC preliminary results are promissory.
- High fidelity MC calculations with burnup is feasible.

5 – Conclusions

- Increasing demand from designers, operators, regulators and other stakeholders of advanced tools and methods in reactor analysis.
- Several projects around the world oriented to tackle this demand → McSAFE (EU Horizon 2020) started 2017.
- Main aspects of capabilities and bottlenecks of using High performance MC codes (Serpent) for large-scale burn-up calculation problems have been discussed.
- Main aspects analyzed:
 - ✓ Xenon oscillations (induced by MC approach).
 - ✓ CPU and RAM requirements for large scale burnup problems.
 - Resource estimation for the big burnup problems.
- Solutions to deal with detected issues are under development in McSAFE
- **Outlook**: Domain Decomposition \rightarrow Implementation & testing

www.kit.edu

HPC architecture

HPC used is FH2

- MPI+OMP hybrid calculations are mandatory
- RAM is a bottleneck

- ✓ 1152 20-way Intel Xeon compute nodes.
- ✓ Each w / two Intel Xeon E5-2660
 v3 (Haswell)@ 2.6 GHz + 64 GB
 RAM + 480 GB local SSD.
- ✓ FDR adapter to connect to the InfiniBand 4X EDR interconnect.

Close-up of ForHLR II © KIT (SCC) - https://wiki.scc.kit.edu/hpc/index.php/Category:ForHLR

