
27

C
h

ri
st

ia
n

 S
ti

er

Adaptation-Aware Architecture
Modeling and Analysis of Energy
Effi ciency for Software Systems

Christian Stier

The Karlsruhe Series on
Software Design

and Quality

27

A
d

ap
ta

ti
o

n
-A

w
ar

e
A

rc
h

it
ec

tu
re

 M
o

d
el

in
g

 a
n

d

A
n

al
ys

is
 o

f
En

er
g

y
Ef

fi
ci

en
cy

 f
o

r
So

ft
w

ar
e

Sy
st

em
s

I O

Christian Stier

Adaptation-Aware Architecture Modeling and
Analysis of Energy Efficiency for Software Systems

The Karlsruhe Series on Software Design and Quality
Volume 27

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Adaptation-Aware Architecture
Modeling and Analysis of Energy
Efficiency for Software Systems

by
Christian Stier

Print on Demand 2019 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-0851-9
DOI: 10.5445/KSP/1000086089

This document – excluding the cover, pictures and graphs – is licensed
under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Dissertation, Karlsruher Institut für Technologie
KIT-Fakultät für Informatik

Tag der mündlichen Prüfung: 09. Mai 2018
Gutachter: Prof. Dr. Ralf H. Reussner, Prof. Dr. Colin Atkinson

Abstract

This thesis presents an approach for the design time analysis of energy

efficiency for static and self-adaptive software systems.

The quality characteristics of a software system, such as performance and

operating costs, strongly depend upon its architecture. Software architecture

is a high-level view on software artifacts that reflects essential quality charac-

teristics of a system under design. Design decisions made on an architectural

level have a decisive impact on the quality of a system. Revising architectural

design decisions late into development requires significant effort. Architec-

tural analyses allow software architects to reason about the impact of design

decisions on quality, based on an architectural description of the system. An

essential quality goal is the reduction of cost while maintaining other quality

goals. Power consumption accounts for a significant part of the Total Cost

of Ownership (TCO) of data centers. In 2010, data centers contributed 1.3%

of the world-wide power consumption. However, reasoning on the energy

efficiency of software systems is excluded from the systematic analysis of

software architectures at design time. Energy efficiency can only be evalu-

ated once the system is deployed and operational. One approach to reduce

power consumption or cost is the introduction of self-adaptivity to a software

system. Self-adaptive software systems execute adaptations to provision

costly resources dependent on user load. The execution of reconfigurations

can increase energy efficiency and reduce cost. If performed improperly,

however, the additional resources required to execute a reconfiguration may

exceed their positive effect.

Existing architecture-level energy analysis approaches offer limited accuracy

or only consider a limited set of system features, e.g., the used communication

style. Predictive approaches from the embedded systems and Cloud Com-

puting domain operate on an abstraction that is not suited for architectural

analysis. The execution of adaptations can consume additional resources.

i

Abstract

The additional consumption can reduce performance and energy efficiency.

Design time quality analyses for self-adaptive software systems ignore this

transient effect of adaptations.

This thesis makes the following contributions to enable the systematic con-

sideration of energy efficiency in the architectural design of self-adaptive

software systems: First, it presents a modeling language that captures power

consumption characteristics on an architectural abstraction level. Second, it

introduces an energy efficiency analysis approach that uses instances of our

power consumption modeling language in combination with existing perfor-

mance analyses for architecture models. The developed analysis supports

reasoning on energy efficiency for static and self-adaptive software systems.

Third, to ease the specification of power consumption characteristics, we

provide a method for extracting power models for server environments. The

method encompasses an automated profiling of servers based on a set of

restrictions defined by the user. A model training framework extracts a

set of power models specified in our modeling language from the resulting

profile. The method ranks the trained power models based on their predicted

accuracy. Lastly, this thesis introduces a systematic modeling and analysis

approach for considering transient effects in design time quality analyses.

The approach explicitly models inter-dependencies between reconfigura-

tions, performance and power consumption. We provide a formalization

of the execution semantics of the model. Additionally, we discuss how our

approach can be integrated with existing quality analyses of self-adaptive

software systems.

We validated the accuracy, applicability, and appropriateness of our approach

in a variety of case studies. The first two case studies investigated the accu-

racy and appropriateness of our modeling and analysis approach. The first

study evaluated the impact of design decisions on the energy efficiency of a

media hosting application. The energy consumption predictions achieved

an absolute error lower than 5.5% across different user loads. Our approach

predicted the relative impact of the design decision on energy efficiency with

an error of less than 18.94%. The second case study used two variants of

the Spring-based community case study system PetClinic. The case study

complements the accuracy and appropriateness evaluation of our modeling

and analysis approach. We were able to predict the energy consumption of

both variants with an absolute error of no more than 2.38%. In contrast to the

first case study, we derived all models automatically, using our power model

ii

Abstract

extraction framework, as well as an extraction framework for performance

models. The third case study applied our model-based prediction to evaluate

the effect of different self-adaptation algorithms on energy efficiency. It

involved scientific workloads executed in a virtualized environment. Our

approach predicted the energy consumption with an error below 7.1%, even

though we used coarse grained measurement data of low accuracy to train

the input models. The fourth case study evaluated the appropriateness

and accuracy of the automated model extraction method using a set of Big

Data and enterprise workloads. Our method produced power models with

prediction errors below 5.9%. A secondary study evaluated the accuracy

of extracted power models for different Virtual Machine (VM) migration

scenarios. The results of the fifth case study showed that our approach for

modeling transient effects improved the prediction accuracy for a horizon-

tally scaling application. Leveraging the improved accuracy, we were able

to identify design deficiencies of the application that otherwise would have

remained unnoticed.

iii

Zusammenfassung

Diese Arbeit präsentiert einen Ansatz zur Entwurfszeit-Bewertung der Ener-

gieeffizienz von statischen und selbst-adaptiven Software-Systemen.

Software-Architektur hat einen wesentlichen Einfluss auf nichtfunktionale

Qualitätseigenschaften von Software-Systemenwie Performanz und Betriebs-

kosten. Architekturmodelle bilden die für architekturelle Entscheidungen

relevantenQualitätseigenschaftenmit angemessener Abstraktion ab.Mithilfe

von analytischen Modellen können auf Basis dieser Modelle Architekturent-

scheidungen bezüglich ihrer Auswirkungen auf Qualität bewertet werden.

Durch eine frühzeitige Bewertung können Architekturentscheidungen ziel-

orientiert getroffen werden. Energieeffizienz ist ein wichtiges Qualitätsziel

für Software-Systeme, da sich die Effizienz maßgeblich auf die Betriebskosten

von Software-Systemen auswirkt. 2010 betrug der Anteil von Rechenzentren

am weltweiten Energieverbrauch 1.3%. Ein möglicher Ansatz zur Erhöhung

der Energieeffizienz von Systemen ist die Einführung von Selbst-Adaptivität.

Selbst-adaptive Systeme können Rekonfigurationen ausführen, um die ver-

wendeten Ressourcen an schwankende Nutzerlast anzupassen. Allerdings

können Rekonfigurationen auch die Energieeffizienz verschlechtern. Dies ist

insbesondere dann der Fall, wenn der Mehraufwand durch das Ausführen

einer Rekonfiguration mögliche Verbesserungen überwiegt.

Bereits vor der Implementierung hat der Architekturentwurf wesentlichen

Einfluss auf die Energieeffizienz von Software-Systemen. Architekturent-

scheidungen sollten deshalb schon frühzeitig bezüglich ihrer Auswirkungen

auf Energieeffizienz bewertet werden. Für Performanz und Zuverlässigkeit

gibt es etablierte Analysemodelle, die zur Entwurfszeit eingesetzt werden

können. Bestehende Techniken zur Bewertung der Energieeffizienz auf Archi-

tekturebene konzentrieren sich auf den Vergleich von spezifischen Entwurfs-

mustern, oder bestimmen die Effizienz anhand von Messungen erst nach

Inbetriebnahme. Analysemodelle für die Qualitätsbewertung selbst-adaptiver

v

Zusammenfassung

Systeme aus bisherigen Arbeiten berücksichtigen die Mehraufwände durch

Rekonfigurationen nicht.

Ziel meiner Arbeit ist es, den systematischen Entwurf von energieeffizienten

Software-Systemen zu ermöglichen. Dazu entwickle ich einen Ansatz zur Mo-

dellierung und Analyse der Energieeffizienz von Software-Architekturen. Der

Ansatz ist neben klassischen statischen auch für selbst-adaptive Software-

Systeme anwendbar. Neben der Beurteilung der Energieeffizienz von Ge-

samtsystemen kann er zur Beurteilung der Auswirkung einzelner Entwurfs-

entscheidungen genutzt werden. Um die systematische Berücksichtigung

von Energieeffizienz beim Architekturentwurf von Software-Systemen zu

unterstützen, liefert meine Dissertation die folgenden Beiträge:

1. Konzeption einer Modellierungssprache zur Beschreibung
der Energieverbrauchseigenschaften von Software-Systemen.
Das entwickelte Metamodell unterstützt die Modellierung der

Verbrauchseigenschaften von Software-Systemen. Das Metamodell

komplementiert etablierte Architekturmodellierungssprachen wie

das Palladio Component Model (PCM).

2. Entwicklung einer Energieeffizienz-Analyse zum Einsatz auf
Architekturebene. Die Analyse nutzt Instanzen des entwickelten

Metamodells in Kombination mit etablierten Methoden zur

Performanzvorhersage, um den Energieverbrauch eines Systems zu

schätzen. Auf Grundlage der Verbrauchs- und

Performanzvorhersagen kann dann die Auswirkung von

Entwurfsentscheidungen auf die Energieeffizienz bewertet werden.

Der Ansatz unterstützt sowohl die Analyse von statischen

Software-Systemen als auch die Analyse selbst-adaptiver Systeme.

3. Methode zur Extraktion von Energieverbrauchsmodellen.
Voraussetzung für die Analyse der Verbrauchseigenschaften sind

genaue Verbrauchsmodelle. Um diese Modelle bestimmen zu können,

werden aussagekräftige Messdaten von Servern benötigt, die für den

Betrieb des Systems in Frage kommen. Die entwickelte Methode

umfasst ein automatisiertes Verfahren zum Ausmessen des

Verbrauchsprofils eines Servers. Das Verfahren trainiert mit dem

Profil eine Menge in Frage kommender Verbrauchsmodell-Typen,

und bewertet deren geschätzte Vorhersagegenauigkeit.

vi

Zusammenfassung

4. Entwicklung eines systematischen Modellierungs- und
Analyseansatzes zur Berücksichtigung des Mehraufwandes
von Rekonfigurationen. Das Metamodell dient der Beschreibung

der Mehraufwände, die beim Ausführen von Rekonfigurationen

entstehen. Mit dem Metamodell können explizit Beziehungen

zwischen Rekonfigurationen, Performanz und Energieverbrauch

beschrieben werden. Die von mir entwickelte Analyse kann mit

bestehenden simulativen Analysen für selbst-adaptive Systeme

gekoppelt werden. Dadurch kann die Genauigkeit dieser

Analyseverfahren gesteigert werden.

Die Beiträge wurden in mehreren Fallstudien validiert. Genauigkeit und

Anwendbarkeit der Modellierungssprache und Energieeffizienz-Analyse

sind Gegenstand der ersten zwei Fallstudien. Die erste Fallstudie untersuch-

te die Auswirkung einer Entwurfsentscheidung für eine Medienvertriebs-

Anwendung. Dabei konnte die relative Auswirkung der Entscheidung auf

die Energieeffizienz mit einem Fehler niedriger als 18.94% vorhergesagt wer-

den. Für absolute Verbrauchsvorhersagen lag der Fehler unter 5.5%. In der

zweiten Fallstudie habe ich den Analyseansatz auf zwei Varianten des Spring

Fallstudiensystems PetClinic angewendet. Im Gegensatz zur ersten Fallstudie

wurden die verwendeten Modelle mit meinem Ansatz zur Modellextraktion

in Kombination mit einem Werkzeug zur automatischen Architekturmodell-

extraktion erstellt. Dabei konnte ein absoluter Vorhersagefehler von weniger

als 2.38% erreicht werden. Die dritte Fallstudie hat meinen Vorhersageansatz

auf die Bewertung unterschiedlicher Ressourcenverwaltungs-Algorithmen

für Rechenzentren angewendet. Obwohl als Eingabedaten nur grob aufge-

löste Daten mit großer Messungenauigkeit verfügbar waren, erzielte mein

Ansatz absolute Vorhersagefehler von höchstens 7.08%. In der vierten Fall-

studie habe ich untersucht, ob die Methode zur Extraktion von Energiever-

brauchsmodellen zu genauen Modellen führt. Dazu habe ich die Genauigkeit

der resultierenden Modelle für unterschiedliche Big Data-Anwendungen

und das SPECjbb2015-Fallstudiensystem ausgewertet. Die mittels der Me-

thode ausgewählten und trainierten Modelle erreichten für die betrachteten

Systeme einen Fehler von unter 5.9%. In einer weiterführenden Fallstudie

habe ich den Vorhersagefehler der Modelle für unterschiedliche Migrati-

onsszenarien von Virtuellen Maschinen (VMs) untersucht. Die Ergebnis-

se der fünften Fallstudie zeigen, dass mein Ansatz zur Modellierung von

Rekonfigurations-Mehraufwänden die Vorhersagegenauigkeit bei der Be-

vii

Zusammenfassung

wertung selbst-adaptiver Systeme erhöht. Für das untersuchte horizontal

skalierende System konnte aufgrund der erhöhten Genauigkeit ein Mangel

im Entwurf identifiziert und gelöst werden.

viii

Danksagungen

Im Laufe meines Dissertationsvorhaben haben mich viele Personen unter-

stützt. Zuallererst möchte ich mich bei meinem Doktorvater Prof. Dr. Ralf H.

Reussner bedanken, der mir die Möglichkeit zur Mitarbeit und Promotion in

seiner Gruppe gegeben hat. Neben fachlichen und methodischen Ratschläge

bin ich ihm insbesondere für die exzellente Arbeitsatmosphäre in seiner

Gruppe dankbar, die er durch seine faire und aufgeschlossene Haltung und

einen vertrauensvollen Umgang prägt. Herrn Prof. Dr. Colin Atkinson dan-

ke ich für die Übernahme des Korreferats meiner Arbeit. Seine hilfreichen

Rückfragen und konstruktiven Hinweise ermöglichten es mir, meine Arbeit

zu verbessern.

Frau Jun.-Prof. Dr.-Ing. Anne Koziolek danke ich herzlich für Ihr Engagement

in der Mitbetreuung meiner Arbeit. Insbesondere von unserer Zusammenar-

beit bei wissenschaftlichen Publikationen habe ich methodisch sehr profitiert.

Zusätzlich vermochte sie es, mir bei Schwierigkeiten in meiner wissenschaft-

lichen Arbeit stets mit passenden Ratschlägen mögliche Wege aufzuzeigen.

Philipp Merkle möchte ich für die hervorragende Betreuung meiner Mas-

terarbeit danken, mit der er mir den Weg in die Gruppe von Herrn Prof.

Dr. Reussner eröffnet hat. Danken möchte ich außerdem meinem früheren

Abteilungsleiter Dr.-Ing. Henning Groenda. Er hat sich stets dafür eingesetzt,

dass meine Forschungsinteressen in Projekten Raum fanden und war auch

in wissenschaftlichen Fragen eine wichtige Ansprechperson für mich.

Meinen Kollegen Dominik Werle und Sebastian Krach möchte ich für die

Unterstützung bei der Implementierung und der Zusammenarbeit bei Pu-

blikationen danken. Diesen beiden und Max Scheerer danke ich für ihre

hilfreichen Anmerkungen zu dieser Arbeit. Ich danke den von mir betreuten

Studenten Florian Rosenthal und Daniel Hassler für ihre Unterstützung bei

Implementierungsarbeiten.

ix

Danksagungen

Weiterhin möchte ich meinem Kollegenkreis am FZI Forschungszentrum

Informatik und Lehrstuhl Software Design and Quality (SDQ) für die Zu-

sammenarbeit in Projekten, Unterstützung und Rückmeldung innerhalb und

außerhalb von Doktorandenrunden und Forschungstreffen danken. Neben

meinen Kollegen am FZI und SDQ gilt mein Dank auch den mit uns be-

freundeten Forschungsgruppen von Herrn Prof. Dr. Samuel Kounev und

Herrn Prof. Dr. Steffen Becker. Jóakim von Kistowski, Sebastian Lehrig und

Jürgen Walter danke ich für die Zusammenarbeit bei Publikationen und die

Unterstützung in Infrastrukturbelangen.

Meiner Schwester Carolin danke ich für Ihre Hilfestellung bei sprachlichen

Fragen, Ihrer Unterstützung in Promotionsfragen und allen weiteren Berei-

chen des Lebens.

Mein besonderer Dank gilt meinen Eltern, die mir seit Beginn meines Lebens

Rückhalt geben, und von früh auf meine Interessen und Ausbildung gefördert

haben.

x

Contents

Abstract . i

Zusammenfassung . v

Danksagungen . ix

1. Introduction . 1

1.1. Motivation . 1

1.2. Problem Statement . 4

1.3. State of the Art . 7

1.4. Challenges and Research Questions 8

1.4.1. Modeling and Analysis of Software System Power

Consumption Characteristics 9

1.4.2. Extraction of Power Models 10

1.4.3. Transient Effects of Reconfigurations 11

1.5. Contributions . 12

1.5.1. Prerequisites . 14

1.5.2. Application Scenarios 15

1.5.3. Supported Design Decisions 17

1.6. Outline . 19

2. Foundations . 23

2.1. Power Models and Energy Consumption Estimation 23

2.1.1. Bookkeeping Energy and Power Models 24

2.1.2. System Metric-Based Power Models 25

2.1.3. Power State Machine (PSM) 26

2.2. Energy Efficiency . 27

2.3. Power Management . 30

2.3.1. ACPI . 30

xi

Contents

2.3.2. Power Capping . 31

2.4. Self-Adaptive Software Systems 32

2.4.1. Adaptation Point Models 33

2.4.2. Strategies, Tactics, Action (S/T/A) 34

2.5. Palladio . 35

2.5.1. Palladio Component Model (PCM) 36

2.5.2. SimuLizar — Modeling and Analyzing Self-Adaptive

Software Systems with Palladio 42

2.5.3. Software Performance Simulation 47

2.5.4. Quality Analysis Workflow with Palladio 48

2.6. Model Selection and AIC 50

2.7. Validation Foundations . 51

2.7.1. Goal Question Metric Approach 52

2.7.2. Validation Levels . 53

2.7.3. Kernel Density Estimation (KDE) 54

2.7.4. Correlation Coefficients 55

3. Describing Power Consumption Characteristics of Software
Systems . 57

3.1. Challenges . 57

3.2. A Metamodel for Specifying Power Consumption

Characteristics . 59

3.2.1. Specification Viewpoint 62

3.2.2. State Viewpoint . 70

3.2.3. Binding Viewpoint 73

3.2.4. Infrastructure Viewpoint 77

3.2.5. Application of Power Consumption Model to Different

ADLs . 83

3.3. Assumptions and Limitations 87

3.4. Summary . 90

4. Architecture-Level Energy Efficiency Analysis 93

4.1. Power Consumption Evaluation Based on Software

Performance Predictions 95

4.1.1. Select Required Metric Providers 96

4.1.2. Instantiate Derived Metric Providers 97

4.1.3. Power Model Calculators 98

4.1.4. Power Consumption Analysis Algorithm 100

xii

Contents

4.1.5. Calculating Energy Consumption 103

4.2. Consideration of Power Consumption in Design Time

Analyses of Self-Adaptive Systems 104

4.2.1. Extending the Runtime Model by the Power

Consumption Model 106

4.2.2. Consideration of Power State Changes in the Power

Consumption Analysis 107

4.2.3. Integration of Power Consumption Analysis and

SimuLizar . 108

4.3. Effect of Design Decisions on Energy Efficiency 110

4.4. Toolkit Architecture . 112

4.5. Assumptions and Limitations 116

4.6. Summary . 118

5. Power Model Extraction . 121

5.1. Challenges . 122

5.2. Power Model Extraction by Systematic Experimentation . 124

5.2.1. Server Profiling . 124

5.2.2. Model Training . 132

5.2.3. Model Selection . 133

5.3. Deriving Power Models from Historical Measurements . . 134

5.4. Implementation . 135

5.4.1. Server Profiling . 135

5.4.2. Model Training and Selection 137

5.4.3. Power Model Extraction from Historical Measurements 137

5.5. Assumptions and Limitations 139

5.6. Summary . 141

6. Transient Effects . 143

6.1. Motivation . 143

6.2. A Metamodel for an Architecture-Level Description of

Transient Effects . 146

6.2.1. Action Behavior Specification and Instantiation . . 148

6.2.2. Action Parameters 149

6.2.3. Synchronous and Asynchronous Execution 150

6.2.4. Identification of Running Actions 150

6.2.5. Adaptation Steps . 151

6.2.6. A Process for the Definition of Actions 153

xiii

Contents

6.2.7. Examples . 154

6.3. Transient Effect Model Semantics 164

6.4. Coupled Evaluation of Transient Effects in Model-Driven

Software Quality Analyses 170

6.4.1. Integration Architecture 171

6.4.2. Use and Execution of Actions 172

6.4.3. Execution of AdaptationSteps 176

6.4.4. Reconfiguration Engine Support 179

6.5. Assumptions and Limitations 180

6.6. Summary . 181

7. Validation . 183

7.1. Validation Goals and Overview 184

7.1.1. GQM Plan . 184

7.1.2. Case Study Systems 190

7.1.3. Validation Coverage 191

7.2. Energy Efficiency Analysis 195

7.2.1. Media Store . 195

7.2.2. Spring PetClinic . 206

7.2.3. Virtual Machine Placement in Data Centers 218

7.3. Automated Extraction of Power Models 224

7.3.1. Profiling Setup . 225

7.3.2. Metric Selection and Considered Power Model Types 226

7.3.3. Workload Selection and Definition of Profiling Ranges 226

7.3.4. Discussion of the Server Profile 228

7.3.5. Prediction Accuracy Evaluation for the Case Study

Systems . 230

7.3.6. Prediction Error of Trained Models 231

7.3.7. Comparison with State of the Art 236

7.3.8. Model Selection . 239

7.3.9. Accuracy of Power Models in VM Migration Scenarios 240

7.4. Transient Effect Analysis 252

7.4.1. Case Study System 253

7.4.2. Experiment Setup 255

7.4.3. Evaluation Scenarios 256

7.4.4. Experiment Results 257

7.5. Discussion of Results . 267

7.5.1. Goal Fulfillment . 268

xiv

Contents

7.5.2. Future Work . 270

8. RelatedWork . 273

8.1. Power Consumption Modeling and Estimation 273

8.1.1. Runtime Power Estimation 274

8.1.2. Design Time Power Estimation 275

8.1.3. Implementation Time Methods 278

8.2. Power Model Extraction 279

8.3. Green Software Engineering 280

8.3.1. Repository Mining and Comparison of Energy

Consumption across Software Releases 281

8.3.2. Detection and Resolution of Design Deficiencies . . 282

8.3.3. SECoMo Estimation Model 283

8.4. Energy Efficiency Benchmarks and Classification 284

8.4.1. Benchmarks . 285

8.4.2. Profiling of Existing Applications 286

8.5. Cloud Simulators . 288

8.6. Modeling and Analysis of Self-Adaptive Software Systems 290

8.6.1. Runtime Models and Analyses 290

8.6.2. Architecture-Level Design Time Analyses 292

8.6.3. Performance and Energy Models of VM Migrations 293

8.7. Performance Model Completions 294

9. Integration with Existing Software Engineering Processes 295

9.1. Using Energy Efficiency Modeling and Analysis with Palladio 295

9.2. Engineering Energy-Conscious Self-Adaptive Systems with

SimuLizar . 297

9.3. Integration with Software Development Approaches . . . 299

9.4. Combination with Green Software Engineering Approaches 300

9.4.1. GREENSOFT Model 300

9.4.2. Software Eco-Cost Model (SECoMo) 301

9.5. Consideration of Transient Effects in Self-Adaptive Systems

Design with SimuLizar . 303

10. Conclusion . 305

10.1. Summary . 305

10.2. Benefits . 309

10.3. Assumptions and Limitations 310

xv

Contents

10.4. Future Work . 313

Acronyms . 317

A. Prediction Error per Power Model for Combined Profiling 321

B. Bibliography . 327

xvi

List of Figures

2.1. Power State Machine (PSM) of StrongARM SA-1100 processor. 27

2.2. MAPE-K control loop introduced by Kephart et al. [105]. . . . 32

2.3. Adaptation points meta-model proposed by Huber et al. [95]. . 34

2.4. Illustration of modeling constructs supported by the Repository

viewpoint. 38

2.5. Illustration of modeling construct subset supported by the

System viewpoint. 39

2.6. Resource Environment and Resource Type viewpoints. 41

2.7. Usage Evolution viewpoint. 46

2.8. Quality analysis workflow of the Palladio approach. 49

2.9. Overview of Goal Question Metric (GQM) structure. 52

3.1. Overview of the designed Power Consumption model. 60

3.2. Power State Model example of a server with two power states. 61

3.3. Overview of Specification viewpoint used for defining power

model types . 63

3.4. Subtypes of orthogonal power model types for specifying power

model types . 64

3.5. Linear power type Plin defined in the Specification viewpoint . 66

3.6. Distribution power model type PDC defined in the Specification

viewpoint . 68

3.7. Power State Model viewpoint of the Power Consumption model 71

3.8. Power State Model example of a server with two power states 72

3.9. Binding viewpoint of the Power Consumption metamodel . . 74

3.10. Resource Binding of example linear power model for R815 server 75

3.11. Stateful Resource Binding example of an R815 server with on and

off states . 78

3.12. Overview of the classes in the Power Infrastructure metamodel

package. 79

xvii

List of Figures

3.13. Power Consumption metamodel integration with CACTOS

Infrastructure Model. 85

3.14. Power Infrastructure extension to model redundancy 88

4.1. Activity diagram of the power consumption analysis for static

software systems . 95

4.2. Class diagram view of extension point definition for registering

additional metric providers . 98

4.3. Class diagram view calculator super type and calculator factory

extension point type definitions 99

4.4. Activity diagram of the power consumption analysis coupling

with SimuLizar . 109

4.5. UML Activity diagram of process for evaluating the impact of

design decisions on energy efficiency 110

4.6. UML component diagram of PCA architecture and integration

with Palladio tooling. 113

5.1. Overview of the power model model extraction process. . . . 125

5.2. Example profiling run for target level

(lucpu, ltpwrite) = (0.55, 24 MB/s). 129

5.3. UML component diagram of model training and selection

architecture. 138

6.1. Class diagram overview of Adaptation Action metamodel . . 147

6.2. Detailed class diagram view of the coupled behavior specification

in the Adaptation Action metamodel. 152

6.3. Object diagram view of scale-out expressed as an instance of

Adaptation Action metamodel. 156

6.4. Object diagram view of component migration adaptation

expressed as an instance of Adaptation Action metamodel. . . 159

6.5. Object diagram view of power state change adaptation expressed

as an instance of Adaptation Action metamodel. 163

6.6. Simplified integration architecture of the Transient Effect

Interpreter and SimuLizar. 171

6.7. Class diagram overview of Transient Effect Interpreter. 175

6.8. Activity diagram of the Resource Demanding step execution. . 178

6.9. Sketch of model extension with explicit Action instantiation. . 181

xviii

List of Figures

7.1. System diagram view of Media Store 196

7.2. Resource-Demanding Service Effect Specification (RDSEFF) of

the LAME Encoder component implementation. 198

7.3. Per core power model based on microbenchmarking for R815

server. 199

7.4. Single core power model based on microbenchmarking for R815

server. 200

7.5. Excerpt of Power Consumption model instance for deployment

environment used in Media Store case study. 202

7.6. System diagram view of the PetClinic architecture of the Spring

Boot variant. 208

7.7. Simplified system diagram view of the PetClinic microservices

architecture. 209

7.8. Activity diagram view of the browsing usage scenario behavior

for PetClinic . 211

7.9. Excerpt of Power Consumption model instance for deployment

environment used in PetClinic case study. 213

7.10. Power consumption per completed User Scenario Behavior for

the Spring Boot baseline. 214

7.11. Power consumption per completed User Scenario Behavior for

Microservice system variant 216

7.12. Scatter plot of power measurements from profiling run. 229

7.13. Two-Dimensional Kernel Density Estimation (KDE) of CPU

utilization and write throughput for profiling run. 237

7.14. Power consumption prediction error for collocated SOR

workload executed on S1. Migration from S2 to S1. 244

7.15. Power consumption prediction error for collocated SOR

workload executed on S1. Migration from S1 to S2. 245

7.16. Power consumption prediction error for SOR workload executed

in migrated VM. Migration from S2 to S1. 246

7.17. Power consumption prediction error for SOR workload executed

in migrated VM. Migration from S1 to S2. 247

7.18. Power consumption prediction error for SOR workload executed

in VM. Migration from S2 to S1. Power models from VM internal

profiling. 247

7.19. Power consumption prediction error for SOR workload executed

in VM. Migration from S1 to S2. Models from VM internal

profiling. 248

xix

List of Figures

7.20. Power consumption prediction error for SOR workload executed

in VM. Migration from S1 to S2. Models from VM internal

profiling. 249

7.21. Power consumption prediction error for SOR workload executed

in VM. Multi-core power models from combined profiling. . . 250

7.22. Power consumption prediction error for SOR workload executed

in VM. Multi-core power models from combined profiling.

Migration from S1 to S2. 251

7.23. System diagram view of horizontally scaling Media Store variant. 254

7.24. Comparison of response times (RTs) from measurements and

simulation for scenario 1. The simulation results cover the

SimuLizar baseline and our extended approach. 258

7.25. Horizontally scaling Media Store: Average response time and

scale-out actions over time for Scenario 1. 260

7.26. Horizontally scaling Media Store: Aggregated response times

from measurements and simulation for experiment B. 261

7.27. Horizontally scaling Media Store: Comparison of response times

from measurements and simulation for experiment B per

experiment interval. 262

7.28. Horizontally scaling Media Store: Average response times from

measurements and simulation for scenario 2. 264

7.29. Horizontally scaling Media Store: Aggregated response times

from measurements and simulation for the refined scale-out rule. 266

7.30. Horizontally scaling Media Store: Comparison of response times

from measurements and simulation for the refined scale-out rule. 266

9.1. Palladio quality analysis workflow extended with modeling

activities and artifacts of power consumption modeling and

analysis approach. 296

xx

List of Tables

2.1. Example of a goal formulated using the GQM approach. 53

7.1. GQM Overview. 192

7.2. Predicted and measured power consumption for mp3 and Vorbis

encoder. 205

7.4. Total energy consumption for different user scenario behavior

rates for PetClinic system. 214

7.5. Total energy consumption for different user scenario behavior

rates for PetClinic Microservice system variant. 215

7.6. Prediction error of exponential compared with linear power

model for the microservices-based PetClinic. 217

7.7. Total energy consumption for the three evaluated scenarios.

Energy Consumption in W h. Prediction error in %. 222

7.8. Overview of power models considered in power model extraction

validation. 227

7.9. Workload mixes with used target level per steered system metric. 228

7.10. Prediction error per power model and workload type, errors in

percent. Power models 1 and 2. Microbenchmarks, web search

and clustering workloads. 233

7.11. Prediction error per power model and workload type, errors in

percent. Power models 1 and 2. Analytical and server workloads. 234

7.12. Prediction error per power model and workload type, errors in

percent. Power models 4–6. Microbenchmarks, web search and

clustering workloads. 235

7.13. Prediction error per power model and workload type, errors in

percent. Power models 3–6. Analytical and server workloads. 236

7.14. Workload used in scenario 2. 257

7.15. Horizontally scaling Media Store: Response time prediction error

per interval for scenario 1. 259

xxi

List of Tables

7.16. Response time prediction error per interval for experiment B.

Error for the Baseline (Base) and our Extended (Ext) SimuLizar

implementations. The error rate was calculated by comparing 10

measurement runs and 100 simulation runs. 263

A.1. Prediction error per power model and workload type, errors in

percent. Power models 1 and 2 trained on combined profiling

measurements. Microbenchmarks, web search and clustering

workloads. 322

A.2. Prediction error per power model and workload type, errors in

percent. Power models 1 and 2 trained on combined profiling

measurements. Analytical and server workloads. 323

A.3. Prediction error per power model and workload type, errors in

percent. Power models 3–6 trained on combined profiling

measurements. Microbenchmarks, web search and clustering

(Clust.) workloads. 324

A.4. Prediction error per power model and workload type, errors in

percent. Power models 3–6 trained on combined profiling

measurements. Analytical and server workloads. 325

xxii

Listings

6.1. Example Operational QVT (QVTo) transformation snippet

executing a scale-out action . 173

6.2. Call to Transient Effect Interpreter by the execute EOperation . 174

6.3. Call to Transient Effect Interpreter by executeAsync EOperation 176

xxiii

1. Introduction

The present thesis introduces an approach for the systematic consideration

of energy efficiency in the architecture level design of software systems. The

approach enables software architects to evaluate the power consumption

of static and self-adaptive software systems from a software architecture

description. This chapter illustrates why energy efficiency is an important

software quality concern that should be considered from early design stages.

We identify a gap in state of the art that concerns the design time support

of energy efficiency. From this gap analysis, we derive a set of challenges

and research questions. We further give an overview of our contributions,

use cases and design decisions supported by our approach. The final section

concludes with an outline of the thesis.

1.1. Motivation

Energy consumption is a major cost factor in the operation of enterprise

software systems. While the interfaces of user-facing services have largely

moved to mobile devices, back-end services still run in traditional data center

server environments. Koomey [110] estimated the share of data center power

consumption from the total consumption at 1.3% worldwide, and 2% in the

US. More recent study results estimate US data center energy consumption

in 2014 at 73 TW h [190]. This accounts for 1.8% of the total US energy

consumption. Shehabi et al. [190] predicted an 8.2% increase of total US

data center energy consumption from 2010 to 2020. For data centers based

on commodity hardware, energy costs can account for up to 26% of the

Total Cost of Ownership (TCO) depending on their load [13]. The industry

adoption of the Cloud Computing paradigm has increased the importance

of data center energy consumption: Cloud-enabled enterprise applications

almost exclusively run in data centers.

1

1. Introduction

The energy consumption of a software system depends on four factors:

• The energy consumption characteristics of its execution

environment, e.g., server hardware [14],

• the types and intensity of user interactions with the systems [10, 173,

194]

• the architectural design [101] and implementation [87] of the

software, and

• the use of power management mechanisms [14].

In order to meet its purpose, a software system has to fulfill functional

and non-functional requirements. The promotion of energy-awareness can

entice users and developers to choose functional alternatives which result in

a lower energy consumption. However, it does not fundamentally change

the energy consumption characteristics of the hard- and software.

The increase of energy efficiency is an alternative strategy that can help

reduce energy consumption of software systems, while ensuring efficient

operation of the system. Energy efficiency of software systems quantifies

howmuch energy is required to offer their services. Energy efficiency is com-

monly defined as a ratio of the amount of useful work done, and the energy

consumption required to complete the work [210]. If one system manages

to process the same workload with a smaller energy consumption than an

alternative system, it is more efficient. By definition, energy efficiency thus

encompasses both performance and energy consumption.

The use of more efficient server hardware is a straightforward measure for

increasing energy efficiency of a software system. Another approach is

to increase the efficiency of the software design, and its implementation.

Example improvements can be, e.g., the use of more efficient algorithms, or

the reduction of avoidable computations.

Whether a software system meets its Quality of Service (QoS) requirements

“is largely determined by the time the architecture is chosen” [54]. Software

architecture can be defined as a set of design decisions [102], or the result of

these decisions [170]. Aside from the composition of components, software

architecture also includes the mapping of components to their execution

environment [170].

2

1.1. Motivation

Each architectural design decision affects development and operational cost,

in addition to its impact on multiple QoS dimensions. Architectural design

decisions decisively influence energy efficiency, as is illustrated in [101,

200]. Alternative decisions may require different amounts of development

resources. At runtime, design decisions affect performance and energy

consumption. Software architects have to make trade off decisions to meet

contradictory QoS goals. This also applies to energy efficiency. A deployment

of software components on slow but energy efficient servers might improve

energy efficiency. However, the resulting performance degradation might

lead to unacceptable response times.

In order to make informed trade off decisions, the software architect needs

to be aware of the effect of design decisions on energy efficiency and other

QoS dimensions. Systematic architecture design and analysis methods en-

able the evaluation of software systems in early design stages. Established

methods support the analysis of performance [22], reliability [33], and fur-

ther QoS characteristics [176]. Existing methods for the analysis of energy

efficiency at design time make simplifying assumptions regarding the power

consumption characteristics of software systems. These assumptions affect

the accuracy [35] and applicability [182, 184] of the approaches. This makes

it difficult for software architects to reason on the effect of design decisions

on energy efficiency.

Ideally, servers would have constant energy efficiency at all load levels. This

is, however, not the case. When modern servers are idle, they consume just

below 30% of their power consumption under full load [155].

Traditional software architecture design produces a one-size-fits-all archi-

tecture, which remains static over time. In order to meet performance goals

under peak user load, the software architect has to overprovision software

components on a large number of servers. This leaves the servers under-

utilized under average load. Since servers typically offer higher energy

efficiency at higher load levels, static software systems showcase poor en-

ergy efficiency at low to average load. This can be addressed by collocating

workloads with heterogeneous characteristics on the same server [61]. In

cases where multiple collocated workloads concurrently encounter a burst

in user demand, their performance can deteriorate. Performance measures

are commonly part of Service Level Agreements (SLAs) between system

3

1. Introduction

operators and service customers. A performance deterioration thus can lead

to SLA violations.

In recent years, the concept of self-adaptivity has gained traction. Self-

adaptive software systems can adapt their structure and deployment, as

well as functionality to changing environmental conditions. A frequent use

case of self-adaptivity is the autonomic provisioning of resources for the

application depending on its current and expected workload [84].

Self-adaptivity can also be used to increase the energy efficiency of software

systems. A notable example of an energy-conscious adaptation tactic is the

consolidation of software components on fewer servers. This frees up hosts,

which in turn may be turned off to save energy. A realization of this tactic is

VM consolidation [165]. Hereby, a self-adaptation mechanism consolidates a

set of VMs on a smaller number of servers. The emptied servers then may

be shut down to save energy. VM consolidation uses VM migration, which

moves a VM from a source to a target server. The execution of adaptations,

such as VM consolidation, does not necessarily increase energy efficiency. If

the number of servers on which components are consolidated is too small,

the servers may become overloaded. This in turn worsens performance. If

the performance degradation is too large, performance-related SLAs might

be violated. In order to reason on energy efficiency, the interplay between

performance and energy consumption needs to be considered in the design

of energy-conscious self-adaptive software systems.

The goal of this thesis is to enable the energy efficiency evaluation of software

systems in early design phases. The presented approach enables a systematic

analysis of energy efficiency for traditional static software architectures as

well as self-adaptive system architectures.

1.2. Problem Statement

We identified the following problem areas which are addressed as part of

this thesis. The areas concern the needed level of abstraction, applicability,

and accuracy of an adaptation-aware architecture modeling and analysis

approach of energy efficiency.

4

1.2. Problem Statement

RepresentationofPowerConsumptionCharacteristics. Existing powermo-

deling approaches [28, 58] for system or server level power modeling offer

a level of detail which is not suited as input for quantitative design time

power consumption predictions. Runtime power modeling and prediction

approaches often rely on low-level systemmetrics and hardware performance

counters. It is not feasible to obtain predictions of these low-level metrics at

design time. Design time approaches [35, 184] model power consumption

characteristics with a low level of detail. This restricts the accuracy of derived

predictions.

Reasoning on power consumption characteristics of large software systems

requires a model that captures the power distribution infrastructure. The

infrastructure in data centers follows a hierarchical power distribution topol-

ogy [69]. The only existing architectural abstraction [35] fails to represent

this information. Data center level modeling and simulation approaches

represent the hierarchical power distribution infrastructure. They use a

simple additive model [45], or a fixed factor abstraction [166] to evaluate

power consumption on different levels. The existing approaches, however,

fail to provide means to define power models of distribution infrastructure

and individual servers in a flexible manner. A modeling language for spec-

ifying power consumption characteristics for design time analysis needs

be expressive enough to describe heterogeneous server and data center

environments.

Power Consumption Prediction Accuracy. The frequency and type of user

requests impact both performance and power consumption of a software

system. Existing approaches for evaluating power consumption at design

time [35, 182, 184] assume an additive effect of requests on power consump-

tion, i.e., each additional request increases power consumption by the same

amount. The effect of an additional user request is not additive. This means

that its effect can not be approximated accurately as a fixed factor. An archi-

tectural analysis needs to accurately predict the effect of design decisions

on energy efficiency in order to support informed trade-off decisions with

other QoS dimensions.

Effort for Power Model Extraction. The manual construction of accurate

power models requires significant effort. It is possible to use a large set of

5

1. Introduction

system metrics at runtime to predict the power consumption of a software

system. Existing power model extraction approaches [58, 65] focus on the

construction of power models for runtime power consumption estimation.

The approaches assume that their user is able to measure low-level system

metrics and performance counters. The design time prediction of low-level

metrics and performance counters requires significant effort, or is impossible.

Even if it is possible to predict a low-level metric, it can make sense to exclude

it from the metrics considered by the power model extraction. This is the case

if the modeling effort required to predict the additional metric at design time

outweighs a potential increase in power consumption prediction accuracy.

A power model extraction approach that aims to construct models as input

to design time analyses needs to consider the tradeoff between modeling

effort and accuracy.

ConsiderationofQoSEffects of Adaptations. An accurate evaluation of self-

adaptive software systems requires the consideration of transient effects.
Transient effects refer to the immediate effect of an adaptation on QoS.

This includes, e.g., the performance overhead incurred by the adaptation

execution. The execution of adaptations should not further deteriorate per-

formance by using already congested resources. Another example is server

power management. A server already consumes power while it boots. It may,

however, only be used to host services once it has fully booted. A central goal

in the design of adaptation mechanisms is that they effectively and efficiently

improve QoS under changing environmental conditions. Existing design

time analyses of self-adaptive software systems do not consider transient

effects incurred by adaptations [20, 133], or require an explicit modeling of

the full adaptation space [77]. Due to the complexity of distributed, service-

based applications it is not realistic to model all user interactions and system

configurations in advance [208]. The use of resource provisioning mecha-

nisms such as horizontal scaling of VMs compounds this problem. Transient

effects need to be considered in design time QoS analyses of self-adaptive

systems so that the efficiency and effectiveness of adaptation mechanisms

can be evaluated.

6

1.3. State of the Art

1.3. State of the Art

Green Software Engineering and the architectural design of energy effi-

cient software systems has recently become an area of interest to many

researchers [88]. In this field, research has emerged that targets the eval-

uation and improvement of energy consumption or energy efficiency of

software systems. This section discusses central work in this field. Chap-

ter 8 discusses the approaches in greater detail and compares them to our

approach.

Procaccianti et al. [164, 165] have identified architectural best practices which

can increase energy efficiency. The collection of these best practices provides

a software architect with a starting point for architectural improvements.

However, it remains unclear how their application quantitatively affects

energy efficiency.

Schulze [182] presents an approach for the estimation of ecological cost

(eco-cost) in early software design phases. In addition to the prediction of

high level metrics like greenhouse gas emissions, the approach can also be

applied to predict energy consumption. The prediction model of Schulze

relies on energy consumption annotations to Unified Modeling Language

(UML) objects, their operations and attributes. An example annotation is the

energy consumption that results from storing a specific object in a database.

The author notes that it is difficult to obtain accurate annotations in early

design phases. Schulze [182] hence proposes the continuous refinement of

eco-cost annotations throughout software development.

Existing architectural modeling and analysis methods estimate energy effi-

ciency of specific architectural communication patterns [184], or compare

the efficiency of different software releases [101]. Palladio [22] is an estab-

lished method that supports the analysis of QoS properties, e.g., performance

and reliability, in early design stages. It predicts performance and reliability

on the basis of composable specifications. Brunnert et al. [35] sketch an

approach for energy consumption evaluation based on aggregated Palla-

dio performance predictions. The authors rely on linear power models for

all servers and their resources. This makes their prediction inaccurate for

most modern server environments. Their approach only supports aggre-

gate energy consumption predictions. It fails to offer an analysis of power

consumption over time.

7

1. Introduction

System level power models [58, 65, 172] enable the estimation of server

power consumption based on measured system metrics. Several approaches

support the automated or semi-automated construction of power models

from measurements [58, 172]. The approaches focus on the extraction of

models to estimate power consumption at runtime. They aim at the pre-

diction of power consumption for servers that lack permanent means to

measure power consumption, i.e., via an integrated power meter. Runtime

power model extraction approaches can leverage all system metrics as their

measurement results with little to no overhead. Runtime approaches lack

support for identifying central system metrics that need to be considered

to accurately predict power consumption. The identification or selection

of central system metrics is needed when extracting power models for use

in design time analyses. The reason for this is that the accurate prediction

of any additional system metric at design time results in additional model-

ing effort. This effort should be avoided if it fails to result in an increased

prediction accuracy.

SimuLizar [17] extends Palladio to the domain of self-adaptive systems. It

supports software architects in designing scalable, and elastic software sys-
tems. SimuLizar focuses on the analysis of performance. Software architects

further can use SimuLizar to derive scalability and elasticity metrics from

the results of a performance analysis run. SimuLizar lacked support for pre-

dicting the power consumption of self-adaptive systems prior to this thesis.

It further assumed that adaptations require a negligible amount of time and

resources to execute. This clashes with the observation that the execution

of some adaptations requires significant time, and causes computational

overhead.

1.4. Challenges and Research Questions

A set of challenges have to be addressed to support the systematic analysis of

energy efficiency for static and self-adaptive software systems at design time.

This section outlines three central areas in which we identified challenges.

For each challenge area we derive a set of research questions.

8

1.4. Challenges and Research Questions

1.4.1. Modeling and Analysis of Software System Power
Consumption Characteristics

The power consumption of a software system depends not only upon the

hardware components of its servers. The software stack executes hardware

instructions on the server it is deployed on. The power consumption of the

server varies depending on these instructions. The software stack induces

the execution of hardware instructions dependent on user requests. In order

to assess the power consumption of a software system, the design and usage

of deployed software components hence need to be considered.

Designing a software system, decisions that impact the power consumption

of a software system are already made on the architecture level. Manotas et

al. [130] conducted an empirical study involving 464 practitioners from ABB,

Google, IBM and Microsoft. The study revealed that the study participants

judged that “high-level designs are impacted by energy usage concerns more

frequently than low-level designs”. Examples of such high-level decisions

given by the authors are the selection of design patterns and components.

This suggests the need for an architecture-level consideration of power

consumption and energy efficiency.

Existing approaches for evaluating the power consumption of software

require that the software has already been fully implemented and can be

deployed. While these approaches enable reasoning on power consumption

at implementation and deployment time, they can not be used to evaluate the

effect of architectural design decisions on power consumption. Architectural

quality analyses that consider power consumption focus on subsets of design

decisions, or provide insufficient prediction accuracy. This thesis derives

the following Research Questions (RQs) from the need to make the effect of

architectural design decisions on energy consumption predictable:

Research Question 1. What is a good abstraction level for modeling power
consumption characteristics of software systems? We consider a model abstrac-
tion good if it

• produces accurate power consumption predictions,

• can be constructed from information available at design time,

9

1. Introduction

• contains as little redundant information as possible with existing
architectural modeling languages and viewpoints.

Research Question 2. How can the power consumption of software systems
be predicted on an architectural level?

Research Question 3. How accurate are power consumption predictions
performed on an architectural level?

Research Question 4. How can we evaluate the effect of architectural design
decisions on energy efficiency?

1.4.2. Extraction of Power Models

Reasoning on the effect of design decisions on power consumption requires

predictive models that correlate software or system activity with power con-

sumption. In the context of this thesis, system metric-based power models

are used to predict the consumption of the software system. Since the power

consumption of servers varies significantly depending on their hardware, it

is not possible to derive power models that are agnostic of their deployment

environment. Extracting power models manually based on measurements is

cumbersome and requires significant effort for the construction and anal-

ysis of measurement experiments. Existing approaches that automate the

construction of power models focus on runtime power estimation. These

approaches leverage system knowledge that is not yet available at design

time. This thesis addresses the following questions towards the extraction

of power models for use in design time analyses.

Research Question 5. How can the effort in deriving power models for
architecture-level power consumption analyses be reduced?

Prior to this thesis, the construction of power models for use in design time

analyses was a manual process. It required the collection of measurement

data from experiments. Engineers had to rely on expert knowledge or trial

and error to construct a power model for use in design time predictions.

Research Question 5 regards the reduction of this effort.

10

1.4. Challenges and Research Questions

Research Question 6. What is the effect of considering different system level
metrics as input in power consumption analyses?

Research Question 6 concerns the evaluation of different system metrics and

their effect on energy efficiency. System metrics should only be considered

in architecture level analyses if they improve the prediction accuracy.

Research Question 7. How can software architects and system deployers be
supported in the selection of input metrics for energy efficiency analyses?

ResearchQuestion 7 aims at the interactions ofmodeling effort and prediction

accuracy. The use of additional input metrics, e.g., storage throughput,

may marginally increase the prediction accuracy. A software architect or

performance engineer will likely opt against its inclusion if the prediction of

the input metric

• relies on the sophisticated modeling of storage access patterns,

• fails to increase performance prediction accuracy significantly.

It hence makes little sense to consider a metric in a power model if it does

not improve performance or energy consumption prediction accuracy.

1.4.3. Transient Effects of Reconfigurations

Self-adaptive software systems adapt their configuration to maintain QoS

goals under changing user load. Design time analyses of self-adaptive soft-

ware systems enable software architects to perform QoS analyses before

the system has been fully implemented. These analyses enable software

architects and operators to reason on the efficiency and effectiveness with

which a system adapts itself. If reconfiguration decisions are made too late,

additional resources might not become available in time. This then leads

to resource contention. If the system triggers a reconfiguration too early,

resources are wasted. Should the system reconfigure too frequently, the

overhead incurred by the reconfigurations might surpass their beneficial

effect on QoS. Transient effects refer to the impact of reconfigurations on QoS

in transient phases. A transient phase is the interval between reconfiguration

start, and the maximum point in time at which the reconfiguration finishes

11

1. Introduction

or at which the system recovers from the increase in load. Existing analyses

neglect these transient effects. Consequently, their predictions are not accu-

rate for transient phases. This thesis aims at enabling software architects to

evaluate the energy efficiency not only of static software systems, but also of

self-adaptive software systems. Thus, this thesis investigates the following

research questions:

Research Question 8. How do reconfigurations affect power consumption
and performance?

Research Question 9. What is an architecture-level description of reconfig-
urations that describes the effect of reconfigurations on system metrics such as
performance and power consumption?

Research Question 10. How can we consider the effects of runtime reconfig-
urations in software quality analyses at design time?

Research Question 11. Does the consideration of transient effects enable
the (a) detection and (b) solution of design problems in self-adaptive software
systems?

1.5. Contributions

The scientific contributions of this thesis are:

C1: Design of a modeling language for the description of power
consumption characteristics of software systems. Our meta-

model enables the modeling of server and power distribution infra-

structure consumption characteristics. It employs power models to de-

scribe the consumption characteristics of servers and their resources,

e.g., CPU or HDD.

C2: Development of an approach for energy efficiency analysis at
design time. The approach uses instances of the developed meta-

model in combination with established performance prediction ap-

proaches to predict the power consumption of a software system. The

predictions can be leveraged to evaluate the effect of design decisions

12

1.5. Contributions

on energy efficiency. We designed the analysis to support evaluations

of static as well as self-adaptive software systems. We validate the

analysis for two enterprise software systems. Additionally, we apply

it to predict power consumption in a set of data center management

scenarios. The validation shows that our prediction approach has a

high accuracy. The prediction accuracy outperforms the only other

existing architecture level prediction approach.

C3: Amethod for the extraction of powermodels for use in design
time predictions. Accurate power models are a prerequisite for the

power consumption analysis. To train the power models, represen-

tative power consumption and performance measurements of the

servers in the target deployment environment are needed. The pre-

sented method encompasses the automated profiling of server power

consumption and utilization. We train a set of power models on the

extracted server profile. The model with highest predicted accuracy

is selected from these candidate models. The validation applies our

method to a diverse set of Big Data and enterprise workloads. The ex-

tracted power models have a high prediction accuracy. The resulting

models are significantly more accurate than state of the art approaches

if multiple system metrics are considered, e.g., CPU utilization and

HDD throughput.

C4: Development of a systematic modeling and analysis approach
for considering transient effects in software quality analyses.
We present a metamodel for the description of transient effects. The

metamodel supports the description of inter-dependencies between

adaptations, performance and power consumption. We outline a

transient effect analysis that extends existing simulative analyses of

self-adaptive software systems. Our analysis improves the prediction

accuracy of the analyses via the consideration of transient effects. The

analysis builds upon a set of formalized execution semantics presented

in this thesis. Our validation shows that the consideration of transient

effects significantly improves prediction accuracy for the investigated

self-adaptive software system. The validation further illustrates that

the analysis enabled us to identify a design deficiency of the system.

This deficiency would have otherwise remained undetected.

13

1. Introduction

The following Section 1.5.1 names central prerequisites of our approach. Sec-

tion 1.5.2 provides an overview of application scenarios for our contributions.

Section 1.5.3 goes into detail on categories of supported design decisions.

1.5.1. Prerequisites

Our modeling and analysis approach can be applied if the following condi-

tions are met.

Availability of Architecture-Level Performance Models. The power and en-

ergy consumption analyses presented in this thesis build upon existing

architecture-level performance analyses, such as the Palladio performance

simulators SimuCom and SimuLizar. Our analyses rely on performance

prediction results from these analyses. The power and energy consumption

analyses use performance metrics like CPU utilization and HDD through-

put.

To apply performance prediction methods, input architecture-level perfor-

mance models must be available. Palladio performance simulators use

a Palladio Component Model (PCM) instance that includes performance

annotations. PCM encompasses a set of viewpoints, which Section 2.5.1

elaborates on. “If architectural models and deployments are already mod-

eled, Palladio creates virtually no additional overheads” [170, p. 195] com-

pared to other architecture modeling methods and languages. The largest

modeling effort results from the creation of performance descriptions, the

Resource-Demanding Service Effect Specifications (RDSEFFs). An RDSEFF is

a “parametrized, behavioral abstraction and quality specification for a single

component service” [170, p. 99]. An RDSEFF consists of a set of activities,

similar to UML activity diagram. Resource demand specifications annotate

the activities with the amount of work they cause on resources, e.g., CPUs

or HDDs.

It is challenging to accurately describe the behavior of a service in early

design stages. However, software architects may use design documents,

prior implementations or the approximated algorithmic complexity to derive

an initial RDSEFF. The behavior models can be refined throughout different

design stages, as prototypes or initial component implementations become

14

1.5. Contributions

available. During software evolution, static code analysis [116] and dynamic

runtime analysis methods [116, 220] can be applied to obtain performance

models from existing implementations.

Information on Power Consumption Characteristics of Deployment Environ-
ment. Our Power Consumption metamodel describes the power consump-

tion characteristics of software deployment environments. It relies on power

models which describe the characteristics of individual servers. Users of the

power consumption analysis must be able to obtain server power models of

the servers in the targeted deployment environment. The required power

models can be obtained using one of the following methods.

First, the power consumption characteristics can be derived via system-

atic server profiling. This thesis presents an approach that automates the

construction of server power models for use in design time via systematic

profiling. It employs representative workloads to profile server power con-

sumption at different load levels. Additionally, we describe an approach

for the extraction of power models from historical measurements. A server

power model from a profiling run can be used for all servers of the same

model or type. Both approaches require a power meter to obtain power

consumption measurements of the server. Second, power models of similar

servers can be used if the target server type is unknown or the required

equipment is unavailable. Finally, power consumption data from publicly ac-

cessible benchmark results can be leveraged as a fallback solution, as Schmitt

et al. [181] discuss. These substitute models can be refined during devel-

opment, deployment and operation once the deployment infrastructure is

finalized.

1.5.2. Application Scenarios

The QoS offered by a system depends on the implementation, assembly,

deployment of its components and the behavior of users that interact with

the system.

15

1. Introduction

1.5.2.1. Design Time Energy Consumption Analysis of Enterprise Software
Systems

Design decisions made in early stages of design, i.e., on the architecture level,

decisively impact QoS and development cost of a software system. This

thesis presents a modeling and analysis approach that enables the systematic

consideration of energy efficiency in the architectural design of software

systems. Our approach builds upon information obtained as part a systematic

architectural design process like Palladio [22]. It supports energy efficiency

analyses in early design phases. It enables software architects to make

informed trade-off decisions between performance and power consumption,

and other QoS dimensions such as cost.

We leverage an architecture level, model-based analysis to reason on energy

efficiency. The analysis employs architectural performance models like PCM

combined with our Power Consumption metamodel presented in this thesis

as input. The analysis can be used to predict the energy efficiency of a

software system before its implementation has been completed.

1.5.2.2. Energy-Conscious Evolution of Enterprise Software Systems

Software systems must evolve over time to address newly identified user

requirements, and to continue a satisfactory QoS [122]. Increased energy

efficiency is a quality goal that is of growing significance. Existing approaches

use measurements to evaluate the effect of design decisions after they have

been implemented. The feedback from the measurements provides feedback

to the developers. It thereby can help them make better decisions in the

future. The evaluation is only possible once a decision has been implemented.

This increases the risk of introducing systematic design deficiencies and,

ultimately, inadequate energy efficiency or performance.

Our approach enables software architects to evaluate the effect of design

decisions on energy efficiency before they are implemented. It thereby reduces
the risk from uncertain effects of design decisions on QoS.

16

1.5. Contributions

1.5.2.3. Data Center Planning

Power consumption is used as a primary cost indicator in data center plan-

ning. The estimated power consumption of the planned servers informs

the sizing requirements in terms of cooling, power distribution equipment

and space [13]. According to Barroso et al., “approximately 80% of total

construction cost goes towards power and cooling” [13, p. 92]. The authors

note that the construction costs of larger data centers scale linearly with

Watts. Barroso et al. estimate the total construction cost at roughly $9-13

total per Watt. Power consumption estimation is thus not only essential to

the estimation of operational cost, but also a central factor in data center

planning.

Our modeling and prediction approach can be used for data center planning

and sizing. It has been applied as part of the CACTOS project [152] to

support data center operators, planners and algorithm engineers in the

evaluation of design decisions. Our approach enables them to evaluate the

effect of infrastructure sizing, and runtime management algorithms design

and configuration on data center energy efficiency.

1.5.3. Supported Design Decisions

Design decisions which increase energy efficiency also impact other QoS

dimensions, e.g., cost or performance. Decisions commonly have adverse

effects on multiple dimensions. An example of this is the consolidation of

components on fewer servers. The consolidation reduces energy consump-

tion. It can, however, lead to higher response time under peak user load. The

assessment of the design decision depends on the amount of saved energy,

and the expected response time degradation. In summary, trade-offs between

multiple QoS dimensions require quantitative estimations of energy con-

sumption. We thus designed our analysis approach to support quantitative

energy consumption estimations.

The following discusses a set of design decisions and scenarios which can be

analyzed with our approach.

17

1. Introduction

Effect of User Load and Behavior Variations. Type and intensity of user

interactions with software systems varies over time. This variation may

follow a random distribution or a trend, i.e., an increased rate of requests

during business hours. Our approach supports the consideration of variations

in user load and behavior. Software architects can use our approach to

explore whether a system meets energy efficiency goals and other QoS

requirements during workload spikes, and for expected changes in the mix

of user requests.

ComponentSelection. Component-based software systems are seldom con-

structed from scratch. Software architects may reuse existing component

implementations to save development effort. For common library func-

tionality, software architects can often choose from multiple component

implementations with similar functionality but different QoS characteristics.

Software architects can apply our analysis approach to evaluate the effect of

component selection on energy efficiency. Tradeoffs of the energy efficiency

predictions with other QoS attributes require little to no additional effort, as

our approach integrates with the established design time prediction method

Palladio.

Infrastructure Sizing. Idle servers still consume a significant portion of

their power consumption when idle. Power infrastructure sizing is an addi-

tional cost factor. The power distribution infrastructure of data centers needs

to be capable of handling peak data center load. If “a data center operates at

50% of its peak power capacity, the effective provisioning cost per Watt used

is doubled” [13]. It is common practice to size power distribution infrastruc-

ture based on the expected load instead of the theoretical power draw of all

installed equipment [13, p. 83]. This is done to avoid cost that results from an

oversized power distribution and cooling infrastructure. In practice, sizing

decisions are typically made based on rough utilization estimates, see [56].

The use of power beyond the peak power capacity can result in power and

server outages. Dynamic load management techniques like power capping
aim to reduce the risk of outages by limiting the peak load.

The modeling and analysis methods presented in this thesis support rea-

soning on power consumption at different levels of a hierarchical power

distribution infrastructure. The peak power consumption predicted by our

18

1.6. Outline

analysis can be used to assess whether the planned infrastructure and power

management algorithms meet peak power demand with acceptable perfor-

mance.

Comparison of Deployment Strategies. A central aspect in the operation

of energy efficient software systems is deployment, or distribution, of com-

ponents on servers. The power consumption of individual servers depends

on the utilization of its resources, e.g., CPU and HDD, by components that

are deployed on the server. The power consumption of servers increases

with their load. Energy efficiency of servers improves at higher load levels.

Simultaneously, the response time of requests can suffer if a server reaches

load levels above a certain threshold.

Deployers can leverage our method to evaluate deployment strategies which

achieve good energy efficiency while maintaining other QoS goals.

Design and Selection of Adaptation Mechanisms. Self-adaptive software

systems continuously optimize their assembly, deployment and functionality

to meet changing environmental conditions. The execution of adaptations

can incur an overhead, which results in performance deterioration and in-

creased energy consumption [205, 206]. Our metamodel and analysis for

the consideration of transient effects provides architects with the means to

reason on adaptation overheads. Thereby, software architects can assess if

an adaptation mechanism increases efficiency and effectiveness of a software

system or if its use deteriorates QoS.

Additionally, we support the evaluation of energy-conscious adaptation

mechanisms such as power capping. These are adaptation mechanisms that

aim to improve energy efficiency through the use of active power man-

agement. Example power management actions include the boot-up and

shutdown of servers.

1.6. Outline

This thesis is structured as follows:

19

1. Introduction

Chapter 2 introduces the foundations of our work. It introduces power

models, which our modeling approach builds upon. The definition of energy

efficiency as used in this thesis is presented. We discuss power management

techniques that can be used in servers to adapt the tradeoff between power

consumption and performance of servers. We introduce fundamentals of self-

adaptive software systems. We outline the Palladio approach for architecture

level modeling and analysis of software systems. Palladio serves as the

foundation of our energy efficiency modeling and analysis approach. The

overview of Palladio provides an overview of SimuLizar, a simulation-based

analysis of self-adaptive software systems.

Chapter 3 presents a modeling language for describing power consumption

characteristics of software systems. It describes the Power Consumption

metamodel, a metamodel used to characterize consumption characteristics

of servers, their components, and connected power distribution infrastruc-

ture.

In Chapter 4 we describe our approach for the design time power consump-

tion analysis of software systems. Our approach uses instances of the Power

Consumption metamodel combined with performance predictions to rea-

son on the power consumption of software systems. The analysis supports

the architecture level analysis of both static and self-adaptive software sys-

tems. We show how aggregate energy consumption and energy efficiency

predictions can be derived from the power consumption predictions.

Chapter 5 presents a method for the automated extraction of power models

for use in design time analyses. The method consists of three steps: server

profiling, model training and model selection. Server profiling performs

systematic experiments to extract the power consumption profile of a server.

Model training uses statistical learning to produce a set of candidate power

models. These models describe the consumption characteristics of the server

under investigation. The model selection step selects the model with the

highest predicted accuracy from the candidates.

Chapter 6 introduces a modeling and analysis approach for considering tran-

sient effects in simulation-based software performance and power consump-

tion analyses. First, the section presents the Adaptation Action metamodel.

The metamodel enables a coupled specification of adaptation outcome and

the performance effect of adaptation execution. In addition to the structural

semantics defined by the metamodel, the chapter presents the formalized

20

1.6. Outline

execution semantics of the model. Finally, we develop a transient effects

analysis approach that extends an existing simulation-based analysis.

Chapter 7 presents the results of our validation case studies. Our case

studies cover the contributions discussed in Chapters 3 to 6. The case studies

cover a range of applications and benchmarking frameworks.

Chapter 8 surveys related work. It contextualizes our contributions with

approaches from related fields, e.g., Cloud simulators, Green Software Engi-

neering, and energy efficiency benchmarks.

In Chapter 9 we discuss how our contributions can be integrated with

existing software engineering development approaches.

Chapter 10 concludes with a summary of this thesis and an outlook on

potential future work.

21

2. Foundations

This chapter introduces foundations that the following chapters build upon.

Section 2.1 outlines fundamental power modeling and energy estimation

concepts. In Section 2.2 we contrast different definitions of energy efficiency

(EE), and establish the definition used in this thesis. Section 2.3 gives an

overview of different power management techniques. We summarize central

concepts of self-adaptive software systems in Section 2.4, which are relevant

to our approach. Section 2.5 outlines the Palladio approach. It discusses the

Palladio Component Model (PCM), an architectural modeling language that

enables performance predictions in early design phases. Furthermore, the

section provides details on the software performance simulators that we use

and extend. Section 2.6 discusses model selection criteria, which we apply as

part of our power model extraction approach. Finally, Section 2.7 introduces

foundations of methods we use in our validation.

2.1. Power Models and Energy Consumption
Estimation

This section presents methods which model and predict the power and

energy consumption of software systems. The methods address the analysis

of power consumption at runtime or implementation time. Power and energy

models estimate the power consumption based on measurable software

system characteristics. These characteristics may be system level metrics,

e.g., CPU utilization, or software metrics like the number of bytes occupied

by an object. The main reason for using power models at runtime is a lack

of permanent power monitoring or measurement equipment.

Over the years, a multitude of functions have been proposed to model the

power consumption of different types of hardware components and device

23

2. Foundations

types, e.g., server or mobile phones. Dayarathna et al. [59] provide an exten-

sive survey of different powermodeling techniques. At the lowest abstraction

level three types of power and energy models can be distinguished. Sec-

tion 2.1.1 introduces bookkeeping models. Section 2.1.2 presents system

metric-based power models. Section 2.1.3 outlines Power State Machines

(PSMs) for modeling stateful power consumption characteristics.

2.1.1. Bookkeeping Energy and Power Models

Bookkeeping models estimate the energy consumption of hardware [23]

or software instructions [185, 186, 207]. They estimate the consumption

by assigning each instruction type or operation with its estimated energy

demand.

Definition 2.1 (Bookkeeping Energy Model). A bookkeeping energy model
estimates the energy consumption of a set of operations Op executed in an
interval [t0, te].

EOp =
∑
o∈Op

Et (o)(o),

where EOp is the estimated energy consumption of the operations and o is an
operation. t(o) is the operation type of o and Et (o)(o) is the estimated energy
consumption induced by executing o.

Bookkeeping models enable a straightforward mapping of energy consump-

tion estimates to hardware and software components. The total energy

consumption estimate of a server can be aggregated from all instructions,

which the server executes in the specified interval [t0, te]. Similarly, energy

consumption estimates E(C) of a software component C may be calculated

as the sum over the energy consumption of all operations that result from

calls to the interfaces provided by C [186]:

E(C) =
∑

I ∈provInterfaces(C)

∑
m∈I

EOp(m),

24

2.1. Power Models and Energy Consumption Estimation

where m ∈ I is an operation of interface I that is provided by C. The set

provInterfaces(C) contains these operations. Op(m) are the operations exe-
cuted by all calls tom.

Bookkeeping models are reasonably accurate for predicting the power con-

sumption of a software system deployed on a specific server with a known

load. Bookkeeping approaches [23, 183] separately account for the idle power

consumption of systems. This increases the accuracy of the predictions when

the user load changes. A disadvantage of bookkeeping models is their dis-

regard for nonlinear effects in the power consumption of their execution

environment. Bookkeeping models calculate the total consumption as the

sum over the energy consumption of individual operation calls Et (o)(o). This
implies that the bookkeeping models assume a linear relation between the

number of operation calls and the total system consumption. Hence, book-

keeping models have a low prediction accuracy when the relation between

utilization and power consumption is non-linear. Variations in user load or

execution environment changes compound these inaccuracies.

2.1.2. SystemMetric-Based Power Models

System metric-based power models predict the power consumption of servers

or individual hardware components from measured metrics [58, 65, 66, 172].

Power models estimate the current power draw at a given point in time.

Power models do not isolate the power consumption of individual instruc-

tions. Instead, they predict the power consumption of hardware components

from a set of measurable systemmetrics. Systemmetrics quantify the activity

of hardware components. Example system metrics are CPU utilization or

disk write throughput. The energy consumption of a system can be calcu-

lated as the integral over an interval of the sampled power consumption

estimates from the power model.

Definition 2.2 (Power Model). A system metric-based power model is a
function

p : U1 × . . . ×Un → P

that maps a set of input metric values (u1, . . . ,un) ∈ U1× . . .×Un to a predicted
power consumption pvalue ∈ P .

25

2. Foundations

The linear power model is a widespread baseline power model used to

compare more sophisticated power models [35, 65, 69, 82, 104, 135, 172, 231].

Linear power models estimate the power consumption of servers as a sum

of linear factors of system metrics:

Definition 2.3 (Linear Power Model). A linear power model p is a function

p(u) = c0 +
n∑
i=1

ai ∗ ui ,

where u = (u1, ...,un) is a system metric tuple. The constant factor c0 char-
acterizes the static power consumption of the hardware. Commonly, ui are
utilization metrics normalized to [0, 1].

2.1.3. Power State Machine (PSM)

PSMs model the power consumption characteristics of a hardware com-

ponent as a Finite State Machine (FSM) [26]. PSMs are a well-established

concept in the domain of embedded systems design. They can be used

to reflect the effect of active power management mechanisms on power

consumption. An example mechanism is the shutdown of idle hardware

components after they have remained unused for a defined interval.

PSMs characterize the power consumption as a set of finite states. Power

consumption in a state is assumed to be constant. The hardware component

transitions between the power states depending on the implemented power

management. The power management that triggers the transitions may

be implemented in software or hardware. The transitions between power

states are assumed to take time. Extensions to PSM annotate transitions with

further costs. This includes additional power consumption caused by the

transition between power states [73].

Figure 2.1 depicts an example PSM of a StrongARM SA-1100 processor [27].

The example PSM has the three states run, sleep and idle. The PSM models

the power consumption in each state as constant. The PSM captures direct

transitions from idle to run or sleep, from run to idle or sleep, and from sleep

to run. Each transition takes a fixed amount of time.

26

2.2. Energy Efficiency

~10 µs

run

idle

160 ms

sleep
~90 µs

~90 µs~10 µs

P = 400 mW

P = 50 mW P = 0.16 mW

Wait for interrupt Wait for wake‐up event

Figure 2.1.: PSM of StrongARM SA-1100 processor, as modelled by Benini and

Micheli [27].

2.2. Energy Efficiency

Fundamentally, the energy efficiency of a software system is the ratio of

energy consumed to perform a certain amount of work. Tsirogiannis et

al. [210] define energy efficiency as “the ratio of useful work done to the

energy used”:

Definition 2.4 (Efficiency of Software Systems). The energy efficiency (EE) of
a software system is a ratio of the work executed by a software system, and the
energy required to perform the work:

EE = Work Done
Energy =

Throughput×Time
Power×Time =

Throughput
Power .

Definition 2.4 showcases that the EE definition can be expressed as the ratio

of throughput (per time period) and power consumption.

Software applications inherently do not consume energy. The hardware

required to execute the applications, however, does. When users call the

27

2. Foundations

services of an application, the application issues instructions to its execution

environment. This leads to an increased level of hardware activity. The

increased activity results in additional energy consumption.

Hardware, e.g., servers and their components, consume power even when

idle. Some authors [47, 104] only attribute the power consumption to an

application which is caused by the additional activity of the software. This

definition shows its limitations when distributed deployment scenarios are

considered. The focus on active utilization fails to sufficiently reflect the

benefits of consolidation strategies. If it is possible to operate a distributed ap-

plication with a smaller number of servers, this significantly reduces the total

energy consumption. The energy efficiency definition of [47, 104] disregards

efficiency increases that result from a reduction of static consumption.

Capra et al. [47] note that high energy efficiency is commonly wrongly

equated to good performance. This is not the case as the following examples

illustrate. The use of less efficient hardware may boost performance in return

for an increased energy consumption. Highly parallel executions may offer

lower response times. Their energy efficiency, however, can decrease due

to parallelization overhead in the shape of additional task distribution and

synchronization effort.

Definition 2.4 defines energy efficiency as the amount of useful work done

for an amount of energy consumed. In order to compare the energy efficiency

of systems, the amount of useful work done is usually kept constant. When

comparing the energy efficiency of two systems, it is more intuitive to

compare the inverse energy efficiency, i.e., the amount of energy consumed

per unit of work:

Definition 2.5 (Difference in Energy Efficiency). The difference ∆EE in EE of
two software systems I and Z is the difference in energy E consumed to complete
the same amount of workW :

∆EE (I ,Z ,W) =
EI−EZ
W .

The efficient operation of data center infrastructure is an important cost

factor, as Section 1.1 motivated. Barroso et al. [13] present a definition of

data center energy efficiency:

28

2.2. Energy Efficiency

Definition 2.6 (Data Center Energy Efficiency). The energy efficiency of a
data center is:

EE = (1

PUE) × (
1

SPUE) × (
Computation

Total Energy on Electric Components), where

• Power Usage Effectiveness (PUE) measures the facility efficiency,

• Server Power Usage Effectiveness (SPUE) quantifies the server power
conversion efficiency, and

• Computation
Total Energy on Electric Components is the energy efficiency of the server.

The data center energy efficiency definition separates the definition of server

energy efficiency, server power conversion efficiency (SPUE), and facility

efficiency (PUE). This makes the definition compatible with the previously

discussed definition of server energy efficiency.

The factor
Computation

Total Energy on Electric Components
corresponds to the definition of en-

ergy efficiency in Definition 2.4.

Definition 2.7 (Power Usage Effectiveness (PUE)). PUE estimates the facility
efficiency as the ratio of total power consumed by the data center facility divided
by the power consumed by IT equipment [13]:

PUE =
Facility Power

IT Equipment Power
.

PUE can be modeled as a fixed factor-based on historical measurements or

derived from estimation models, e.g., for facility power conversion losses

and cooling infrastructure. SPUE is the ratio of “power consumed by the elec-

tronic components directly involved in the computation” and the total server

consumption [13]. Example components involved in the computation are

CPU and HDD. The total consumption subsumes further power consumption

from conversion losses, or internal server cooling equipment.

29

2. Foundations

2.3. Power Management

This section provides an overview of the technical foundations of power

management on the level of individual servers, and data centers.

Power management mechanisms can be grouped into two categories. Active
power management [145] mechanisms directly control the power consump-

tion by changing the configuration of hardware components. An example

active power management mechanism is Dynamic Voltage and Frequency

Scaling (DVFS) and its integration with Advanced Configuration and Power

Interface (ACPI), which the next section discusses. Indirect power manage-
ment, or what Nathuji [145] refer to as Soft Scaling, aims to reduce power

consumption by migrating load away from or reducing load on computing

resources.

Indirect power management exploits the energy (dis-)proportionality of

servers and their components. For example, modern server have a drasti-

cally reduced power consumption when idle [68]. Load consolidation to a

smaller number of servers can consequently reduce the power consumption

of a software system. The reason for the reduced consumption is that the

marginal increase in power consumption on the hosts remaining after the

consolidation is much lower than the consumption decrease achieved by

clearing up underutilized servers. The underutilized server may then be

turned off or switched into lower power states via active power management

mechanisms.

On a fully utilized system, the previously discussed power management

approaches can not be applied to reduce power consumption without affect-

ing performance. Application brownout is an indirect power management

technique [229] that can be employed for fully utilized systems. Brownout-

compliant applications may “downgrade user experience to avoid saturation”

[109]. Xu et al. [229] use brownout-compliant applications to uphold the

throughput of applications by reducing the quality of the output.

2.3.1. ACPI

The Advanced Configuration and Power Interface (ACPI) [86] is a standard-

ized interface for motherboard configuration and power management. ACPI

30

2.3. Power Management

was developed as a common standard to enable the implementation of con-

figuration management that is independent of firmware specifics. It is the

standard power management interface of PCs and servers. ACPI lets the

operating system control the power performance tradeoff for devices and

hardware components using a set of predefined states. Within the lower

power states, functionality and speed of the devices is limited. There are five

types of states in ACPI:

• Global system states (Gx-states) control the power state of the full
system. There exist four Gx-states. G0 is the working state, G1 the

sleep state. G2 is the soft off, and G3 the mechanical off state.

• Device power states (Dx-states) define the available managed states

of hardware components other than the CPU. Example components

controlled via Dx-states are network adapters and HDDs. D0 is the

on state, while D1-D3 are low power states.

• Processor power states (Cx-states) support power savings by
temporarily disabling the execution of instructions. The active

processing state C0, and the power state C1 are mandatory. Optional

states beyond C1 may be offered to implement lower-power inactive

states.

• Target throttling states (Tx-states) optionally support alternative

power/performance trade-offs via a reduction of CPU frequency.

• Device and processor performance states (PX -states) offer different
power/performance trade-offs within the C0 and D0 states of

processors and devices, respectively. In addition to the lower power

state P1, up to 14 further performance states can be supported.

Recently, there has been a shift to implement the power management poli-

cies in hardware [62]. This allows for a higher responsiveness of power

management, but reduces flexibility of the used policies.

2.3.2. Power Capping

As the power draw of hardware components changes with their utilization,

a static power provisioning infrastructure on average still ends up being

largely underutilized. The reason for this is that the infrastructure not only

31

2. Foundations

needs to be able to handle the average consumption load, but also peaks in

power usage. Power capping is a technique that addresses this problem by

dynamically regulating the power draw of hardware components. This is

done by switching the components between low and high power states.

Software-level power management controllers commonly use ACPI [86].

There is a multitude of strategies [25] and system architectures [167] for

optimizing the power allocation in distributed computer systems. Controlling

the power consumption allows for much higher Power Supply Unit (PSU)

and Power Distribution Unit (PDU) utilization since the risk of breakdowns

is reduced.

Data center power management is often implemented atop the Intelligent

Platform Management Interface (IPMI) [99]. IPMI supports the control of

server power states as part of its network resource management protocol. On

local servers it leverages interfaces such as ACPI to enact power management

decisions.

2.4. Self-Adaptive Software Systems

Self-adaptive software systems can adapt their structure and deployment, as

well as functionality, to changing environmental conditions. This enables

them to maintain SLAs under variable user load, or software and hardware

failures.

Analyze

Monitor

Plan

ExecuteKnowledge

Managed Element

Autonomic Manager

Figure 2.2.:MAPE-K control loop introduced by Kephart et al. [105].

The most prevalent model for structuring self-adaptive systems is the Moni-

tor, Analyze, Plan, Execute, Knowledge (MAPE-K) control loop [105]. In the

control loop illustrated in Figure 2.2 anAutonomicManager adapts aManaged

32

2.4. Self-Adaptive Software Systems

Element. The Autonomic Manager follows a continuous iterative process

when adapting the system. In a first step, the manager collects data from

sensors in the system. These sensors capture system metrics, e.g. the average

response times of a specific service over the last minute. The Autonomic

Manager then analyzes the measurements to determine if it is necessary to

adapt the system. This might be the case if the response times violate QoS

agreements. Based on the analysis the Autonomic Manager chooses a set

of adaptation actions in the Plan step. The planned actions are enacted in

the Execute step. The adaptation actions can encompass adaptations to both

software and hardware of a managed software system. After the autonomic

manager has completed a loop iteration, it checks if the adaptations were

effective in successive Monitor-Analyze steps. If necessary, the manager

triggers further adaptations.

Besides measurements from the system, the Autonomic Manager makes

its decisions on the Knowledge base that contains information on the sys-

tem structure and state. Commonly, one part of the Knowledge base of a

software system is its representation in an architectural model [97]. An

advantage of architecture level adaptation frameworks over low level im-

plementations of MAPE-K is that the current system state and adaptations

are easier to comprehend, e.g., for a system operator. Example frameworks

that use a an architecture model as the foundation for reasoning of the

Autonomic Manager are Descartes [93] and RAINBOW with its Stitch ex-

tension [51]. The following section Section 2.4.1 discusses how architecture-

based adaptation frameworks describe the space of potential adaptation

actions. Section 2.4.2 outlines a method that supports the description of

complex adaptation logic from a set of adaptation actions.

2.4.1. Adaptation Point Models

Adaptation decisions made by a an architecture-based self-adaptation frame-

works need to be performed automatically as part of the MAPE-K loop. The

Autonomic Manager of an architecture-based adaptation framework requires

access to an executable description or implementation of potential adaptation

operations.

In order to support systematic runtime adaptations, Huber et al. [96] pro-

pose to represent the available runtime adaptation operations as part of an

33

2. Foundations

AdaptationPointDescriptions AdaptationPoint AdaptableEntity

VariationType ModelEntityConfigurationRange

minValueConstraint : OclConstraint
maxValueConstraint : OclConstraint

PropertyRange

possibleValues : OclConstraint

SetOfConfigurations

EObject

minValue : EDouble
maxValue : EDouble

ModelVariableConfigurationRange

0..*

adaptationPoints

1adaptableEntity
variationPossibility

1

1
entity

0..*

variants

Figure 2.3.:Adaptation points meta-model proposed by Huber et al. [95].

explicit adaptation space model. The model enables automated model-driven

reasoning and decision-making on the choice of adaptation actions. The

Adaptation Points metamodel [95] spans the adaptation space available to

the adaptation framework. Figure 2.3 depicts the metamodel. The Adap-

tation Points metamodel enables the specification of possible variations in

the software architecture-based on value or property ranges. It defines the

domain of configurations targeted by the execution of adaptation actions.

For example, the space of alternative VM deployments compatible to a cer-

tain hypervisor would be specified as a SetOfConfigurations variation type

with values ranging all the servers running the hypervisor, as Huber [94,

p. 157] illustrates. A VM deployment action may only deploy new VMs on

compatible hypervisors.

2.4.2. Strategies, Tactics, Action (S/T/A)

Strategies, Tactics, Action (S/T/A) is a modeling concept that hierarchically

structures adaptation mechanisms into strategies, tactics, and actions.

An action is a reconfiguration operation supported by the execution envi-

ronment of the software system. Example actions are VM migrations or the

change of media encoding quality of a media encoder.

A tactic composes multiple adaptation actions. Each tactic comes with an

estimated expected benefit that results from its execution. This enables a

preemptive evaluation of adaptation tactics before they are executed. Each

34

2.5. Palladio

tactic “is guarded by a dynamically evaluated precondition that determines”

whether a tactic can be applied [51]. Adaptation tactics are also referred

to as adaptation rules. An example of a tactic is the consolidation of VMs

in an Infrastructure as a Service (IaaS) data center. First, all VMs deployed

to an under-utilized host are migrated to other nodes via the VM migra-

tion. Subsequently, the original host is shut down using the corresponding

operator.

A strategy defines a reactive process for managing a software system using

a set of adaptation tactics. It consists of “a tree of condition-action-delay

decision nodes with explicitly defined probability for conditions and a delay

time-window for observing tactic effects” [51]. The probabilities of executing

the tactics can be adapted based on their previous success or failure. The

success of a tactic is determined after a predefined delay has passed. It is

checked by evaluatingwhether the tactic hasmanaged to fulfill the previously

violated condition.

Examples of S/T/A languages are Stitch and the S/T/A modules of Descartes

Modeling Language (DML). Cheng and Garlan [51] propose a self-adaptation

language Stitch that structures the adaptation space into strategies, tactics
and operators. Operators correspond to actions.

Huber et al. propose an S/T/A modeling language for designing “run-time

system adaptations in component-based system architectures” [96]. Like

Cheng and Garlan [51], Huber et al. structure the adaptation process into

stragies, tactics and actions (S/T/A). Strategies formulate a high-level QoS

objective such as maintaining response times below a certain threshold.

Tactics specify how an objective is achieved by successively performing a

set of actions. Actions always refer to an adaptation point in the software

system [96].

2.5. Palladio

Palladio is a an architecture-level approach for the systematic engineering

of component-based software systems in early design phases [170]. It uses

the Palladio Component Model (PCM) to describe the architecture of soft-

ware systems. PCM has similarities to UML component diagrams and UML

35

2. Foundations

Marte [211]. What sets PCM apart from standard UML are its included

quality annotations. PCM was designed to be composable. This enables the

reuse of, e.g., component specifications in different software architecture

models. Palladio supports the analysis of different QoS characteristics based

on the quality annotations. Foundation of the Palladio analyses is the PCM.

Supported quality dimensions include performance [22], reliability [33],

cost [111], maintainability [176], and elasticity [124].

This section provides an overview of the parts of Palladio that this thesis

builds upon. It is structured as follows. Section 2.5.1 introduces the PCM.

Section 2.5.2 discusses SimuLizar, which extends Palladio to the domain

of self-adaptive software systems. In Section 2.5.3, we outline the Palladio

software performance simulators. Section 2.5.4 sketches the quality analysis

workflow with Palladio.

2.5.1. Palladio Component Model (PCM)

The Palladio Component Model (PCM) is a modeling language for the de-

scription of component-based software architectures. Its purpose is the

modeling of characteristics that are required for design time analyses of QoS

properties. PCM is realized as a Essential Meta-Object Facility (EMOF)-based

metamodel. The core PCM couples the structural description of software

components with a high level description of their performance and reliability

characteristics.

PCM separates different architectural design concerns into distinct modeling

viewpoints. The components are modeled in the Repository viewpoint. The

System viewpoint instantiates and composes components from the Reposi-

tory viewpoint into a software system. PCMmodels the deployment environ-

ment and its hardware characteristics in the Resource Environment viewpoint.
The hardware characteristics concern performance and reliability properties,

which are required to reason on these quality characteristics. Allocation
maps the component instances in the System to the deployment environ-

ment described in the Resource Environment. The Usage viewpoint models

a set of users and their interactions with the systems. A separate model

instantiates each of the viewpoints. This eases the composition of models

that represent the viewpoints.

36

2.5. Palladio

A viewpoint encompasses the modeling concerns that are relevant to a spe-

cific role in the Palladio development process [170]. The component developer
designs component specifications using the Repository viewpoint. In the

System viewpoint, the software architect assembles the components to a soft-

ware architecture. The system deployer defines the execution environment

of the architecture, and deploys the components to the environment. The

domain expert models users and their interaction patterns with the system.

The following sections provide further details on the viewpoints of Palla-

dio.

2.5.1.1. Repository Viewpoint

The Repository viewpoint addresses the modeling of software components.

Component developers use the viewpoint to model components and their

provided and required interfaces.

Figure 2.4 illustrates the relationship of a set of key modeling constructs

in the Repository viewpoint. It shows an example component definition

in the Repository viewpoint. The depicted component A has a required

and provided interface. Its component specification references the provided

interface MyInterface via a Provided Role. A Required Role specifies the

required interface YourInterface of A.

Component developers may specify the behavior of components stored in

the Repository. Service Effect Specifications (SEFFs) model the behavior of

services provided by a component. A SEFF is an abstract specification of the

behavior of a component. It describes the “relationship between provided

and required services of a component” [171, p. 53]. SEFFs model the behavior

of components similar to UML activity diagrams.

Resource-Demanding Service Effect Specification (RDSEFF) specializes SEFF

to model the performance impact of service calls. RDSEFF models the be-

havior as a sequence of actions. Actions may be control flow abstractions,

e.g., branches, loops and forks. External Actions model calls to external re-

quired services. Internal Actions model the performance impact of a set of

operations. It describes the impact in terms of execution costs on resources

like CPUs. The action models the execution cost as a Resource Demand.
A Resource Demand can model the cost of a single hardware instruction,

37

2. Foundations

<<Repository>>

<<BasicComponent>> A

<<ResourceDemandingSEFF>> method2

<<InternalAction>>
doSomething

<<ExternalCallAction>>
method3

<<Interface>>
MyInterface

void method1(Object par)
Object method2()

<<Interface>>
YourInterface

INT method3()
void method4()

<<ProvidedRole>> <<RequiredRole>>

...

<<specifies>>

...

Figure 2.4.: Illustration of modeling construct subset supported by the Repository

viewpoint. The figure is based on [171, p. 38].

or subsume the performance impact of a set of calls that are not explicitly

modeled. Commonly, Resource Demands are specified as the amount of time

it takes to process an instruction relative to the speed of a resource, e.g.,

CPU.

Component A in Figure 2.4 is annotated with an RDSEFF. It contains two

actions that describe the behavior of calls to method2. The Internal Action
doSomething consumes a specified amount of Resource Demand, which the

figure omits. The External Call Action links the call sequence to the required

service method3.

PCM supports the modeling of Resource Demands using stochastic distri-

bution functions. Dependencies to input parameters can be expressed via

parametric dependencies. PCM uses the Stochastic Expressions (StoEx) lan-

38

2.5. Palladio

guage [21] to specify Resource Demands, including their distribution and

parametric dependencies.

2.5.1.2. System Viewpoint

The System viewpoint instantiates the components from Repositories. As-
sembly Context is the construct in the System viewpoint that can be used to

instantiate a component from a Repository. A component can be instantiated

multiple times. Each Assembly Context has a set of component parameters.

These parameters can be used to model instantiation specific settings. The

system architect composes the Assembly Contexts using Assembly Connec-
tors. An Assembly Connector wires a required interface of a component

instance to the provided interface of another component instance.

 <<System>>
 ExampleSystem

A B
MyInterface

YourInterface

<<AssemblyContext>>
<<ProvidedDelegation
 Connector>>

<<AssemblyConnector>>
<<OperationProvided
 Role>>

Figure 2.5.: Illustration of modeling construct subset supported by the System view-

point.

Figure 2.5 gives an example of the modeling constructs in the System view-

point based on Figure 2.4. The ExampleSystem System model instantiates the

component A and wires it with matching component instances. An Assembly

Context instantiates A. An Assembly Connector links the Required Role of A

with the Provided Role of B that offers YourInterface. An Operation Provided
Role exposes the provided interface MyInterface to users of ExampleSystem.

A Provided Delegation Connector links the System role to the role of A.

39

2. Foundations

2.5.1.3. Resource Environment and Allocation Viewpoint

The Resource Environment viewpoint models the deployment environment of

a software system. It focuses on properties that are relevant to performance

or reliability. The modeled properties include servers and their resources,

e.g., CPUs and HDDs. Additionally, middleware specific properties can be

modeled in the Resource Environment.

Figure 2.6 depicts an excerpt of the metamodel classes from the viewpoint,

which are relevant in the scope of this thesis. The figure omits reliability char-

acteristics. In addition to the Resource Environment, it includes classes from

the supplemental Resource Type repository are included. Resource Environ-
ment contains a set of Resource Containers and Linking Resource. A Resource

Container represents an execution environment, to which components may

be deployed. It represents either a physical server, VM, or other deployment

environments like enterprise web servers. Resource Containers can contain

other Resource Containers. This enables the modeling of hierarchies in the

deployment environment.

A Resource Container has a set of Processing Resource Specifications. A

Processing Resource Specification models processing resources such as a

CPU. Its processing rate defines the rate at which the resource is able to serve

Resource Demands which are scheduled on it. The number of replicas is
the number of redundant instances of processing units that can be used in

parallel. For CPUs it specifies the number of cores.

Resource Type is a supplementary viewpoint. It models Resource Types, e.g.,
CPU and storage resources. Each Processing Resource Specification refer-

ences its Resource Type. The Resource Type viewpoint includes the definition

of Scheduling Policies. A Scheduling Policy represents the policy with which

the resource serves requests. An example policy is first come, first served

(FCFS).

The Allocation viewpoint models the deployment of component instances to

the execution environment. It contains a set of Allocation Contexts. Every
Allocation Context maps an Assembly Context to a Resource Container.

In combination, Allocation and Resource Environment correspond to the

deployment diagram in UML.

40

2.5. Palladio

pcm::resourceenvironment pcm::core

*

1
linkingResources

Resource
Environment

ResourceContainer

numberOfReplicas :
Eint
...

ProcessingResource
Specification

ResourceType

LinkingResource

PCMRandomVariable
1

processingRate

*

0..1
resourceContainers

...

CommunicationLink
ResourceSpecification

1

latency

1

throughput

0..*
activeResource

Specification

nested
ResourceContainers

parentResource
Container

0..1

0..*

0..*
communicationLink

ResourceSpecifications

ResourceRepository
1*

resourceInterfaces

1

activeResourceType

1
communicationLinkResourceType

SchedulingPolicy

1

*

schedulingPolicies

pcm::resourcetype

ProcessingResource
Type

CommunicationLink
ResourceType

1

schedulingPolicy

Figure 2.6.: Excerpt of Resource Environment and Resource Type viewpoints. Relia-

bility characteristics are omitted.

41

2. Foundations

2.5.1.4. Usage Viewpoint

The Usage viewpoint models user frequency and behavior of users that

interact with the software system. PCM groups users in categories, the Usage
Scenarios. A Usage Scenario models the behavior of a group of users in a

similar way to SEFFs. The domain expert characterizes a Usage Scenario

by its number of users, and their behavior. The Usage Scenario models the

behavior as a sequence of branches, loops, forks, and calls to the system.

Scenarios can issue calls to all services of the OperationProvidedRoles of
the system. The Usage root element stores a set of Usage Scenarios in a

Usage model. Palladio analyses consider all contained scenarios to execute

concurrently.

PCM distinguishes two types of Usage Scenarios. A ClosedWorkload scenario
models a group of users with a fixed population size, e.g., four users. Each

user starts a new run every time an iteration of the Usage Scenario completes.

User think and wait times can be modeled using Delay actions. Each time

a user completes an execution of the scenario in a Closed Workload, the

next user immediately starts executing. Open Workload models assume

an open user model, where a new user arrives at the system every t time

units. For example, a user could arrive at the system every four seconds.

This interarrival time can be modeled using stochastic distribution functions.

This enables the modeling of fluctuations of user populations according to a

distribution.

2.5.2. SimuLizar —Modeling and Analyzing Self-Adaptive
Software Systems with Palladio

Palladio initially focused on the systematic design of static component-

based software systems. Becker extended the Palladio approach to self-

adaptive software systems [17, 18, 20] in order to support the systematic

design time engineering of self-adaptive software systems. The name of

the extended approach is SimuLizar. SimuLizar also refers to the subsumed

simulation-based analysis which supports the design time quality analysis

of self-adaptive software systems. This section provides an overview of the

central extensions of SimuLizar.

42

2.5. Palladio

Becker [17] introduces the self-adaptive system architect role, who is respon-

sible for modeling the dynamic behavior of the system. The self-adaptive

system architect is responsible for the same tasks as the software architect

in standard Palladio. Additionally, the self-adaptive system architect is re-

sponsible for specifying the adaptation behavior of the system. She specifies

the behavior in the self-adaptation viewpoint [17]. The self-adaptation view-

point encompasses the specification of reconfiguration mechanisms, and

runtime measurements. We refer to [17, p. 68] for a detailed discussion of

the integration of self-adaptivity with the modeling process.

This section introduces the modeling and analysis approach by Becker, which

this thesis extends. It is structured as follows. Section 2.5.2.1 details how

measurement points can be specified in SimuLizar. Section 2.5.2.2 introduces

how reconfigurations are specified with SimuLizar. In addition, the section

discusses the model for capturing measurements. The reconfigurations

may form their adaptation decisions based on the captured measurements.

Section 2.5.2.3 outlines an extension to the Usage viewpoint that supports

the modeling of load variations and patterns.

2.5.2.1. Monitor Model

The Monitor model enables software architects to specify which measure-

ments should be collectedwhere and how in the self-adaptive software system.

The collected measurements serve as input to adaptation mechanisms. An

example adaptation tactic could trigger adaptation actions when the response

time becomes too large.

The Monitor model contains a set of Monitors. Each Monitor references a

measuring point in the system under design. The measuring point defines a

location in the system at which measurements should be collected. For ex-

ample, a measuring point may reference a processing resource in a Resource

Container.

In addition to the measuring point specification, a Monitor contains a mea-

surement specification. The measurement specification identifies the metric

for which measurements should be collected at the measuring point. CPU

utilization is an example metric that can be collected at a measuring point

installed at a processing resource. Monitors support the specification of an

43

2. Foundations

aggregation method and aggregation interval for the metric. For example,

CPU utilization might be aggregated over a sliding window interval of a

specific length.

2.5.2.2. Adaptation Specification and Runtime Measurement

SimuLizar enables architects to specify the dynamic behavior of a self-

adaptive software system. It supports the definition of adaptation mech-

anisms via in-place model transformations. The model transformations

operate on the runtime model of the system. The runtime model represents

the runtime state of the simulated software system. If the runtime state

meets a set of specified conditions, a transformation reconfigures the sys-

tem by performing a series of model change operations. For example, an

adaptation transformation may add an additional Resource Container to

the Resource Environment in order to increase the available computational

power. Following this adaptation, reconfigurations can allocate additional

component instances on the newly available Resource Container.

SimuLizar uses an instance of PCM as the initial architecture configuration

of the self-adaptive system. SimuLizar represents the runtime state of the

system, the runtime model, in an instance of PCM. In the scope of this

thesis, we added the ability to extend the runtime model by further models.

Thereby, additional system aspects like power management can be exposed

to adaptation mechanisms.

SimuLizar uses the Palladio Runtime Measurement Model (PRM) to expose

measurements to reconfiguration mechanisms. Example measurements are

the current CPU utilization and service response times. The measurements

represent the state of the simulated software system at the current point in the

analysis. Source of the measurements is the simulation-based analysis. The

PRM contains the measurements for all measurement points and aggregation

methods, which the Monitor model specifies.

Becker [17] presents a metamodel which integrates individual adaptation

transformations into an S/T/A framework. The transformations specify

conditions for adaptation strategies as well as the execution semantics of

adaptation actions. Becker touches upon a potential modeling of resource

demands that result from the execution of reconfigurations [17, 98 f.]. The

44

2.5. Palladio

author, however, does not outline the analytical semantics of the sketched

modeling.

2.5.2.3. Usage Evolution Model

The Usage Evolution [31] model enables domain experts to specify usage

patterns and trends in the behavior and number of users that interact with a

software system. Interactive software systems seldom serve a fixed number

of users with a fixed set of requests. PCM expresses the variability of user

requests and interests via stochastic processes. Variations in interarrival

rates and requests can be modeled using the StoEx language. Under realistic

conditions, the distribution of users and their requests does not remain

constant over time. Rather, it follows usage patterns and trends [106].

Brataas et al. [31] introduce the Usage Evolution viewpoint as an extension

to the Usage viewpoint of PCM. The Usage Evolution viewpoint is realized as

an annotation model to PCM. Figure 2.7 provides an overview of the Usage

Evolution metamodel. Usage Evolution consists of a set of Usages. Each
Usage instance models the variation in a Usage Scenario as a pattern. If the

Usage Scenario contains an open workload, the pattern models the variation

in the interarrival rate over time. For closed workloads, Usage describes a

variation in the user population.

Usage expresses the loadEvolution workload pattern variation as an instance

of the Descartes Load Intensity Model (DLIM) [106]. DLIM is a metamodel

for defining load variations as functions over time. Figure 2.7 shows the core

classes of DLIM. Sequence is the central entity in the metamodel. It defines a

load pattern as a set of piecewise defined Functions. TimeDependentFunction-
Container embeds a Function into a definition interval of length duration.
The starting point of the Function is defined relative to an internal clock.

The metamodel excerpt omits this clock reference. DLIM supports different

primitive function types and patterns, e.g., Seasonal or Burst. Functions
can be folded with other functions by applying a Combinator to an existing

function.

In addition to user intensity variations, Usage Evolution supports the mod-

eling of parameter variations. Each Usage may contain any number of

WorkParameterEvolutions. AWorkParameterEvolution models the variation

45

2. Foundations

scaledl::usageevolution

pcm::usagemodel

UsageModel UsageScenario

UsageEvolution
repeatingPattern
: Eboolean
evolutionStepWidth
: EDouble

Usage

1scenario

WorkParameter
Evolution

pcm::parameter

Variable
Characterisation

terminateAfterTime
: EDouble
terminateAfterLoops
: EInt

Sequence

descartes::dlim

Function

add
mult

<<enumeration>>
OperatorOperator

: Operator

Combinator

Seasonal Burst

0..1function

*combine

1

variable
Characterisation

1

loadEvolution

1 evolution

Univariate
Function

1 function

...

...

...

duration : EDouble

TimeDependent
FunctionContainer

...

usageScenarios

*

0..1

sequenceFunction
Containers

0..1 function

*

workEvolutions

1..*
usages

Figure 2.7.:Usage Evolution viewpoint.

46

2.5. Palladio

of a parameter in any of the PCM viewpoints. The DLIM Sequence referenced

by evolution models this variation as a function over time.

2.5.3. Software Performance Simulation

There are different analytical [113, 156] and simulation-based quality analysis

approaches [18, 22, 138] for PCM. They enable software architects to reason

on quality characteristics of software systems that are represented as PCM

instances. The following gives an overview of the two performance simula-

tors SimuCom and SimuLizar. This thesis employs the analyses to evaluate

the performance of software systems. We use their performance predictions

as input to our power consumption analysis. Additionally, this thesis extends

SimuLizar to enable reasoning on energy-conscious self-adaptive software

systems.

2.5.3.1. SimuCom

SimuCom [21, 22] is a Discrete Event Simulation (DES)-based software simu-

lator for PCM instances. SimuCom supports the analysis of performance and

reliability characteristics of software systems. SimuCom uses model transfor-

mations to generate a software performance simulator from a PCM instance.

The generated simulation code uses SimuCom framework functionality, e.g.,

to simulate processing resources and their scheduling policies. Example

QoS metrics supported by SimuCom are response times of individual user

requests, and resource utilization. SimuCom only supports the analysis of

static software systems.

2.5.3.2. SimuLizar

SimuLizar [17, 18, 20] is a software performance simulator for self-adaptive

software systems. It implements the SimuLizar approach by Becker [17] for

modeling and analyzing self-adaptive software systems at design time. Sec-

tion 2.5.2 introduced the modeling concepts of SimuLizar. The SimuLizar

implementation builds upon the SimuCom simulation framework. In contrast

to SimuCom, it does not generate simulation code for each PCM instance.

47

2. Foundations

SimuLizar supports the consideration of dynamic aspects in the the behavior

and environment of a system under investigation. This includes the variation

of user load or behavior over time.

In SimuLizar, Adaptation mechanisms are expressed as in-place model trans-

formations. SimuLizar has been built to support the flexible extension of

different model transformation languages and engines. Example model trans-

formation languages supported by SimuLizar are QVTo and Henshin [6].

In addition to the performance metrics of SimuCom, SimuLizar makes it

possible for architects to reason on elasticity metrics. Becker et al. [19]

provide details on these metrics.

2.5.4. Quality Analysis Workflowwith Palladio

Software architects can leverage Palladio to evaluate the effect of design

decisions on quality before they are implemented. The central advantage

of PCM over general-purpose modeling languages like UML is its focus on

quality-aware software architecture specification. PCM models characterize

the quality properties of individual hardware and software components in a

composable manner. This section sketches how software quality can be per-

formed as part of a quality-aware development process. The steps discussed

in the following must not be performed sequentially. They are usually itera-

tively performed at different stages of the system design development. The

PCM model can be refined once additional information becomes available in

the development process. The presented workflow description is based on

[170, pp. 213–215].

Figure 2.8 represents the quality analysis workflow. It depicts the interactions

of the different roles that are involved in a model-based quality analysis

using Palladio.

Component developers provide a behavior model of their component. They

specify this model using the Repository viewpoint. The model contains a

behavior description in the form of the SEFFs, which Section 2.5.1.1 intro-

duced. The SEFFs must be annotated with quality characteristics in order to

analyze the quality of the system. The performance analysis of a system, e.g.,

requires the specialized Resource-Demanding Service Effect Specifications

(RDSEFFs). Component developers may estimate the Resource demands in

48

2.5. Palladio

Business
Requirements &
Use Case Model

Component
Architecture

Fully Quality‐Annotated
System Architecture with

Quality Properties

Use Case
Models

Allocation
Specification

Architecture
Information
Integration

Q
u
al
it
y
A
n
al
ys
is

Software ArchitectSystem Deployer Domain Expert

System Environment
Specification

Use Case
Analysis

Usage Model
Refinement

Use Case
Models

Scenarios
(Activity
Charts)

Usage
Model

Component Developer

Allocation Model
Component Type

Models
With RDSEFFs

Fully Quality‐
Annotated

Palladio Model

Quality
Annotated
Allocation
Model

Quality Evaluation

Qual. Annot.
Resource

Environment

Activity
Change of
Activity
Artefact Flow

Legend

Component
Specs &

Architecture

Figure 2.8.:Quality analysis workflow of the Palladio approach for the quality-aware

software architecture design. Figure from [170, p. 213].

the RDSEFF via component micro-benchmarks or experience from previous

implementations.

In the System Environment Specification, system deployers model the deploy-

ment environment of the software system using the Resource Environment

viewpoint. This model contains quality annotations that, e.g., quantify the

processing power of CPUs or throughput of HDDs. The system deployer

provides a description of available or projected hardware. She may provide

multiple alternative deployment descriptions to reason on QoS trade-offs

related to infrastructure sizing. The deployer is furthermore responsible

for mapping the components in the system architecture to the deployment

environment. This step is part of the Allocation activity which produces an

allocation models. The activity may produce multiple Allocation models to

49

2. Foundations

compare different allocation strategies, or allocations for different Resource

Environment models.

The Domain Expert derives a set of users and scenarios from input use case

models in the Use Case Analysis. The input models can be provided, e.g.,

as UML use case diagrams and accompanying textual descriptions. In later

development stages, frontend monitoring data can serve as a source of user

interactions. During Usage Model Refinement, the domain expert refines or

transforms the existing models to PCM Usage Scenarios. For this, the expert

enriches activity diagrams with performance related characteristics, e.g., call

frequencies, user think times, and probabilistic request distributions.

The software architect drives and coordinates all tasks involved in the quality

analysis workflow. The architect assembles individual component specifica-

tions from the component developers to a software architecture. She models

the architecture as an instance of the PCM System model. The architect

validates that the models cover all use cases and design alternatives that

shall be explored in the quality analysis. If necessary, she requests the other

involved roles to refine their models. The architect can also complete missing

specifications in the environment and component models. Figure 2.8 repre-

sents this set of activities as the Architecture Information Integration. The
software architect performs the quality analysis for all investigated quality

dimensions. For this, the architect can choose from the available quality anal-

ysis approaches presented in the introductory paragraph of Section 2.5. The

software architect iteratively checks the predicted quality of different soft-

ware architecture variants against business requirements. Requirements may

include tail response times, e.g., specified as part of SLAs. If the predictions

show that the architecture under investigation violates quality requirements,

“the software architect either has to modify the specifications or renegotiate

the requirements” [170, p. 214].

2.6. Model Selection and AIC

The selection of a prediction model without knowledge of the final input

data can be classified as a model selection problem. There are a variety of

approaches for model selection [7]. In Software Performance Engineering

50

2.7. Validation Foundations

(SPE), model selection techniques are used to evaluate the quality of a per-

formance model without full knowledge of the target workload. The k-fold

cross-validation has been applied to evaluate the quality of performance

model predictions [147, 225]. An alternative to k-fold cross-validation is the

Akaike’s Information Criterion (AIC).

The Akaike’s Information Criterion (AIC) is an information-theoretic mea-

sure. It estimates the information loss between a model and the “unknown

true mechanism” [42] which generated the data. For known distributions,

the Kullback-Leibler distance quantifies this loss of information. AIC pro-

vides a way to estimate the loss when the underlying distribution is not

known. It estimates the distance from the maximum value of the empirical

log-likelihood function [42]:

Definition 2.8 (Akaike’s Information Criterion (AIC)).
AIC = −2 logL(ˆθ |y + 2k), where

• L is a log-likelihood function of a known distribution with an unknown
parameter θ ,

• ˆθ is the maximum likelihood estimate of the unknown parameter θ ,

• y are empirical observations, or data,

• k is the number of parameters estimated by the model.

For a set of models, a larger AIC indicates that a model is less likely, or

plausible, to accurately describe the truemechanism that has producedy. AIC
and k-fold cross-validation are asymptotically equivalent [202]. Compared

to k-fold cross-validation, AIC is less complex to compute, as it does not

require the partitioning of data. AIC is commonly applied to model selection

problems of models which describe empirical data [42].

2.7. Validation Foundations

This section provides an overview of foundations of validation approaches

and statistical methods which we use in the validation presented in Chap-

ter 7.

51

2. Foundations

2.7.1. Goal Question Metric Approach

The Goal Question Metric (GQM) approach by Basili et al. [15] systemizes

the structuring and planning of experimental validations in the software

engineering domain. In essence, the GQM approach enforces the orientation

of a validation alongside quantifiable and measurable metrics.

Goal 1 Goal 2

Question Question Question Question

Metric Metric Metric Metric Metric

Level

Conceptual

Operational

Quantitative

Figure 2.9.:Overview of GQM structure according to Basili et al. [15]

The GQM approach hierarchically structures goals, questions, and metrics.

Figure 2.9 illustrates the hierarchical relation between them. Prerequisite of

GQM is a definition of goals for the subject under investigation. Each goal

has to be formulated so that it can be answered by collecting and analyzing a

set of measurement data. Basili et al. name software products, processes, and

resources as target candidate categories of goals. According to the authors,

each goal should clearly state:

• The purpose of the validation,

• the issue to be measured,

• the measured object,

• the viewpoint from which the measurement is conducted.

The purpose hereby refers to the benefit of the approach which the valida-

tion is supposed to show. Typically, the viewpoint matches the target user,

or beneficiary, of an approach. Table 2.1 lists an example goal statement,

52

2.7. Validation Foundations

Table 2.1.: Example of a goal formulated using the GQM approach.

Purpose Improve

Issue the prediction accuracy

Object of performance predictions

Viewpoint from the viewpoint of software architects.

which might be stated as part of the validation of a software performance

simulator.

Each goal maps to a set of questions. A question characterizes a way in

which the particular goal shall be validated. It refines the goal to a specific

quality criterion, evaluated from a viewpoint [15]. For the validation goal

listed in Table 2.1, a question could be:

Does the new simulator improve the prediction accuracy of design time archi-
tectural performance predictions?

On the lowest level of GQM every question relates to measurable metrics.

Each metric serves as input to an answer of one or more higher level ques-

tions. Basili et al. [15] state that metrics may be objective or subjective. A

metric is subjective if its value depends on the viewpoint from which it is

collected. Conversely, it is objective if it does not depend upon the view-

point. Subjective metrics may quantify, e.g., the user-perceived usability of a

simulator on a scale from one to ten. An example objective metric, which

answers the prior example question, is the mean response time prediction

error of the new simulator compared to the simulation baseline.

2.7.2. Validation Levels

Böhme and Reussner [30] distinguish three levels in the validation of predic-

tion models. The levels categorize validations by their validation purpose.

The classification facilitates the estimation of validation effort and necessary

measures to show certain properties of the validation object. It suffices to

measure and compare the accuracy of the new and baseline approach to eval-

uate, e.g., if a new performance simulator has a higher prediction accuracy

than a baseline approach. The validation levels are level I, II and III.

53

2. Foundations

Level I is called metric validation. Validations categorized as level I conduct a
validation as a comparison of predictions and measurements. A prerequisite

to conduct a level I validation is that an implementation of the analytical

metric required “to perform the predictions” is available [30]. Böhme and

Reussner [30] note that this requires themetric to be computable. The authors

note that the availability of an implementation could be classified as a level

0 validation. The authors, however, explicitly refrain from an introduction

of a distinct level 0. Other authors establish a feasibility validation at level

0 [64, 83]. Heger [83] refers to this as a validation “through theoretical

assessments”.

Level II is the applicability validation. It evaluates whether “the input data can
be acquired reliably and whether the results of the metric can be interpreted

meaningfully” [30]. Böhme and Reussner state that if the input data is

not collected automatically, the Level II validation “can be conducted as

an experiment or a case study with human participants”. Frequently, the

definition of level II validation is reduced to its realization as an empirical

user study. We also consider a validation a level II validation if the input

data of the validated approach is collected automatically.

Level III is called benefit validation. Böhme and Reussner [30] prescribe

this validation for analytical metrics that are part of a method that covers a

software development approach. If this is the case, the validation needs to

show the benefit of using the software development approach in comparison

to established or competing approaches. A level III validation is difficult to

conduct, as it relies on the availability of comparable approaches. Further-

more, it is resource intensive to realize the same software product using

multiple development approaches.

2.7.3. Kernel Density Estimation (KDE)

When collecting measurement data, its underlying distribution is usually

not known. Kernel Density Estimation (KDE) allows to approximate the

distribution of the collected data [227]. The Kernel Density Estimation (KDE)

estimates the underlying true probability distribution p(x) of data x1, x2, ...,
xn with the estimator p̂ [227]:

54

2.7. Validation Foundations

Definition 2.9 (Kernel Density Estimation (KDE)). Given a data set x1, x2, ...,
xn .

p̂ = 1

n
∑n

i=1
Kσ (x, xi) =

1

nσ
∑n

i=1
K[x−xiσ]

is an estimator of the probability distribution function of the data set. Kσ is a
non-negative kernel function. with an integral value of 1.

Kernel functions are also known as window functions. This thesis uses the

Gaussian kernel function. p̂ converges towards the true probability distribu-

tion p with increasing size of the input data used to train the estimator.

KDE may be applied to estimate and visualize data distribution over the

domain of x1, x2, ...xn . Compared to histogram-based techniques, KDE is not

affected by the choice of bin size and bin size distribution. Additionally, KDE

is less prone to the curse of dimensionality.

2.7.4. Correlation Coefficients

Correlation coefficients quantify the relationship between variables. Cor-

relation coefficients assume values between −1 and 1. Depending on the

absolute value size, variables are estimated to have a strong or weak corre-

lation. Positive correlation cofficients signal a positive correlation: If one

variable increases, the other one increases as well. A negative correlation co-

efficient signifies an inverse relationship: If one variable increases, the other

one decreases. Corder and Foreman [55] illustrate the significance of differ-

ent coefficient values. Absolute correlation values closer to 0 indicate a weak

(negative) correlation. Values closer to 1 signal a strong correlation. There

are different statistical approaches for the calculation of correlation coeffi-

cient. The two subsequent sections present two well established correlation

coefficiencts, which we use in the validation of this thesis.

2.7.4.1. Pearson’s Correlation Coefficient

The sample correlation coefficient, or Pearson correlation coefficient, mea-

sures how well the relationship between two variables x and y may be

described by a linear model y = a + bx . It is is defined as follows [175]:

55

2. Foundations

Definition 2.10 (Pearson’s Correlation Coefficient). Let sx , sy be the sample
standard deviations of x and y. The Pearson’s correlation coefficient r of x and
y is defined as:

r =
∑n
i=1
(xi−x̄)(yi−ȳ)
(n−1)sx sy

=
∑n
i=1
(xi−x̄)(yi−ȳ)√∑n

i=1
(xi−x̄)2

√∑n
i=1
(yi−ȳ)2

.

2.7.4.2. Spearman’s Correlation Coefficient

The Spearman correlation coefficient, or Spearman rank-order correlation

quantifies the relationship of two variables x and y. It is the Pearson correla-

tion coefficient between the ranks of the two variables [55].

Definition 2.11 (Spearman’s Correlation Coefficient). The Spearman’s cor-
relation coeffient of two variables x and y is defined as:

rs = 1 −
6

∑
D2

i
n(n2−1)

,

if there are no ties in Di . Di is the difference in ranking of a variable pair in
X × Y , when ranked according to the relative position in X and Y . When there
are ties, the Spearman’s correlation coeffient is defined as:

rs =
(n3−n)−6

∑
D2

i −(Tx+Ty)/2√
(n3−n)2−(Tx+Ty)(n3−n)+TxTy

, where

Tx =
∑д

i=1
t3

i − ti , and Ty =
∑д

i=1
t3

i − ti .

Hereby, д is the number of ties between the ranks of x and y. ti is the number
of ties in a tie group [55].

Spearman’s correlation coefficient expresses to which extent a monotonic

function explains the relation between x and y. Compared to the Pearson’s

correlation coefficient, Spearman’s correlation coefficient thus identifies a

wider range of correlations.

56

3. Describing Power Consumption
Characteristics of Software
Systems

This chapter presents our modeling approach for the description of the power

consumption characteristics of a software system. The contributions presen-

ted in this chapter build upon the publications [198, 200] and a supervised

thesis [114].

This chapter consists of the following sections. Section 3.1 motivates chal-

lenges that the metamodel needs to consider. Section 3.2 outlines our meta-

model for describing the power consumptions characteristics of a software

system. Section 3.3 discusses assumptions and limitations of our modeling

approach. Section 3.4 concludes with a summary of the presented modeling

approach.

3.1. Challenges

This thesis aims to provide an approach that allows software architects to

reason on power consumption characteristics of a software system. Research

Question 1 formulates the problem that this chapter addresses:

Research Question 1. What is a good abstraction level for modeling power
consumption characteristics of software systems? We consider a model abstrac-
tion good if it

• produces accurate power consumption predictions,

• can be constructed from information available at design time,

57

3. Describing Power Consumption Characteristics of Software Systems

• contains as little redundant information as possible with existing
architectural modeling languages and viewpoints.

In order to assess the power consumption characteristics of a software sys-

tem, one needs a model that links the behavior of the system to its power

consumption. Research Question 1 can be broken down into Challenges.

Ch1 Suitable Level of Abstraction. The designed model needs to

capture the power consumption characteristics on abstraction level

that supports power consumption analyses with reasonable accuracy.

Simultaneously, it should abstract from details of the execution

environment and the software system that can not be predicted at

design time.

Ch2 Portability of model instances. Instances defined using the

designed metamodel should capture power consumption

characteristics so that they are applicable to multiple software

systems and different user workloads. An important part of

architectural analysis approaches like Palladio is the comparison of

design alternatives before they are implemented. This allows

architects to reason on the effect of design decisions without having

to implement and benchmark them against each other. The approach

presented in this thesis aims to support energy efficiency tradeoff

decisions. The metamodel hence has to support analyses that

estimate the effect of design decisions. For this, it must be possible to

compare different power distribution infrastructure design

alternatives with limited modification effort.

Ch3 Limited semantic overlap with jointly used Architecture
Description Language (ADL). The approach presented in this

thesis is designed to be applied in conjunction with existing

architectural modeling and analysis approaches. Architectural

models like PCM capture system characteristics that are relevant to a

set of design concerns. PCM focuses on the modeling and analysis of

QoS goals related to performance and reliability. Energy efficiency is

defined as the ratio of energy consumption and another QoS metric.

For performance and reliability there is a strong link between energy

consumption and the QoS of the system. The utilization of CPUs

strongly correlates with their power consumption. The number of

58

3.2. A Metamodel for Specifying Power Consumption Characteristics

redundant components increases reliability as well as power

consumption. The designed metamodel shall have limited semantic

overlap with the architectural model used in conjunction with our

model. The metamodel must not specify characteristics of a system

that can already be derived from the architecture model.

Ch4 Non-invasive specification of power consumption
characteristics and other quality characteristics. The
developed metamodel should not require changes to the core of an

existing ADL. Users of quality aware ADLs usually do not want to

consider all quality characteristics at once. The use of the model

developed in this thesis should not be mandatory. Rather, it should

be usable as an optional module that complements existing quality

characteristic specifications.

Ch5 Compatibility of modeling constructs with different quality
aware ADLs. There are multiple quality aware ADLs with

constructs that are specific to their problem domain, e.g., runtime

management or design time analysis. The developed modeling shall

be compatible with different ADLs. It should not be tailored to

depend on language specifics of a single ADL.

3.2. A Metamodel for Specifying Power
Consumption Characteristics

This section presents our metamodel for specifying the power consumption

characteristics of software systems. We designed the model to address the

challenges identified in the previous section. Our metamodel focuses on

the description of power consumption characteristics of the hardware envi-

ronment. The following refers to the metamodel as the Power Consumption
metamodel.

Figure 3.1 provides a high-level overview of the package structure in the

metamodel. Each of the packages in the metamodel corresponds to one

of a set of layered viewpoints on the system under design. The Resource

Environment package (pcm::resourceenvironment) refers to the deployment

environment description in PCM. The Resource Environment viewpoint

59

3. Describing Power Consumption Characteristics of Software Systems

power consumption

infrastructure

pcm::resourceenvironment

power distribution
hierarchy <<references>>

binding
consumption

characteristics

specification

power model<<instantiates>>

<<annotates>>

performance-centric infrastructure description

state
power state

machine

Figure 3.1.:Overview of the designed Power Consumption model.

contains the description of performance and reliability characteristics of

the deployment environment as Section 2.5.1.3 explains. The Infrastructure
viewpoint of the Power Consumption metamodel annotates the processing

resources and representations of servers in the Resource Environment with

their consumption characteristics. All other parts of the Power Consumption

model are agnostic of the PCM or other ADL specific constructs. This strict

separation of ADL specific annotation classes and independently reusable

modeling constructs addresses Challenge Ch4.

The Power Consumption metamodel has four viewpoints. Each of the view-

points corresponds with a metamodel package.

The Specification viewpoint supports the definition of power model types.
Power model types can be reused to describe the power consumption of

different types of servers, devices, and processing resources. An example

of a power model type is the linear power model based on a set of system

utilization metrics:

Plin(ucpu,uread,uwrite) = c0 + c1ucpu + c2uread + c3uwrite (3.1)

60

3.2. A Metamodel for Specifying Power Consumption Characteristics

This linear power model predicts the power consumption of a server based

on its CPU utilization ucpu, disk read throughput uread and write throughput

uwrite. Pl in is defined independently of the concrete power consumption

profile of a server type. In order for Plin to reflect the consumption of a

specific server type, its parameters c0 and cm have to be instantiated. The

resulting instance, the power model, reflects the static and dynamic power

consumption of the server components.

bootupon off
shutdown

binary

Figure 3.2.: Power State Model example of a server with two power states.

The State viewpoint supports the specification of stateful power models as

state machines. Figure 3.2 shows an example PSM. The depicted example

showcases a simple example of a PSM for a server that can be put in on and

off states. There exist two transitions bootup and shutdown between the

two states. Both transitions represent the transition of the server between

its on and off state. The State viewpoint captures the definition of distinct

power states. The state definition is independent of the power consumption

characteristics of a specific device.

The Binding viewpoint encompasses elements for describing the consump-

tion characteristics of specific server types and distribution infrastructure. It

supports the modeling of power model instances using the definition of ab-

stract power model types in the Specification viewpoint. Binding instantiates

a power model type from the Specification viewpoint for a specific server

type. An example instantiation of the power model type listed in 3.1 for a

specific server type is:

Plin, R815(ucpu,uread,uwrite) = 367.30W + 300.40W · ucpu (3.2)

+ 13.52W · uread + 10.06W · uwrite

Plin, R815 models the power consumption of an R815 PowerEdge server. It

estimates the power consumption of the server based on its idle consump-

61

3. Describing Power Consumption Characteristics of Software Systems

tion, and the estimated correlation of CPU and HDD metrics with power

consumption. The power model is specific to servers of the R815 type, but

can be applied to any other servers of the same type.

The Infrastructure viewpoint describes the power distribution infrastruc-

ture of the deployment environment on a structural level. It annotates the

Resource Environment with the description that specifies the relation of

power consumers and power distribution equipment in the deployment en-

vironment. Furthermore, it defines consumption constraints specific to the

deployment environment, i.e. upper consumption limits for power capping.

The Infrastructure viewpoint defines the power consumption characteristics

of servers and PDUs by referencing power model instances defined in the

Binding viewpoint.

The following sections discuss the individual viewpoints of the model in

greater detail. Section 3.2.1 introduces the Specification viewpoint. Sec-

tion 3.2.2 presents the State viewpoint. In Section 3.2.3 we describe the

Binding viewpoints. Section 3.2.4 discusses the Infrastructure viewpoint.

Section 3.2.5 concludes with a discussion of the applicability of our Power

Consumption metamodel to ADLs other than PCM.

3.2.1. Specification Viewpoint

Figure 3.3 provides an overview of the key entities in the Specification view-

point. We omit utility attributes of model entities, e.g., Universally Unique

Identifier (UUID), from this and all following figures. The viewpoint groups

a set of power model types in the PowerModelRepository. PowerModelSpecifi-
cation models the power model types. Instances of PowerModelSpecification
model a relationship between a set of input variables, or factors, and the

power consumption of an entity. PowerModelSpecification has a set of Con-
sumptionFactors that correlate with or contribute to the power consumption

of the modeled entity.

PowerModelSpecifications can be characterized along two orthogonal dimen-

sions. Figure 3.4 shows the relation between the two orthogonal modeling

dimensions. The first dimension is the distribution type. It is concerned
with the type of entity whose power consumption characteristics the model

62

3.2. A Metamodel for Specifying Power Consumption Characteristics

<<interface>>
ConsumptionFactor

Measured
Factor

FixedFactor

*

0..1

<<abstract>>
PowerModel
Specification

*
0..1

PowerModel
Repository

<<abstract>>
DistributionPower
ModelSpecification

<<abstract>>
ResourcePower

ModelSpecification

NumericalBase
MetricDescription

metricType 1

*

pcm::metrictype

functionalExpression
:String

<<abstract>>
DeclarativePower

ModelSpecification

<<abstract>>
BlackBox

PowerModel
Specification

specification

Figure 3.3.:Overview of Specification viewpoint used for defining power model types

explains. The ResourcePowerModelSpecification and DistributionPowerMod-
elSpecification are two types along this dimension. The ResourcePowerMod-
elSpecification models the power model of a resource, or device. Distribu-
tionPowerModelSpecification describes the consumption characteristics of

distribution infrastructure, such as PDUs. The second dimension is the

implementation type of a power model type. BlackBoxPowerModelSpecifi-
cation refers to a power model type implemented by a black-box library,

e.g., written in Java. Its design rationale is to support the specification of

power models in code, as Section 4.4 outlines. The implementation of power

model types in code is particularly helpful for functions that can not be rep-

resented by a closed-form expression, or when a closed form expression is

difficult to formulate. Examples for such functions are Multivariate Adaptive

63

3. Describing Power Consumption Characteristics of Software Systems

<<abstract>>
PowerModel
Specification

<<abstract>>
DistributionPower
ModelSpecification

<<abstract>>
ResourcePower

ModelSpecification

functional
Expression:String

<<abstract>>
DeclarativePower
ModelSpecification

<<abstract>>
BlackBoxPower

ModelSpecification

BlackBoxResource
PowerModel
Specification

BlackBox
Distribution
PowerModel

DeclarativeResource
PowerModel
Specification

Declarative
Distribution
PowerModel

Distribution Type

Im
pl

em
en

ta
ti

on
 T

yp
e

specification

Figure 3.4.: Subtypes of orthogonal power model types for specifying power model

types

Regression Splines (MARS) model as investigated by Davis et al. [57, 58]

and Lewis et al. [127]. DeclarativePowerModelSpecifications define power
models as mathematical expressions. The expressions conform to a grammar.

Section 3.2.1.4 provides more details on the expressions.

The implementing classes in both dimensions are combined with all other

implementing classes of the other dimensions. Figure 3.4 depicts the resulting

subtypes. While the combination of two orthogonal classifications can also

64

3.2. A Metamodel for Specifying Power Consumption Characteristics

be solved by composition, as Strittmatter and Heinrich [203] outlined, we

opted for an explicit modeling of all potential subtypes.

The following sections further elaborate on the elements in the Specification

viewpoint.

3.2.1.1. Consumption Factors

A ConsumptionFactor models a factor in a software system which correlates

with the power consumption of the software system. The Specification

viewpoint differentiates between two factor types, MeasuredFactors and
FixedFactors. A FixedFactor models a static factor impacting the power

consumption of a device or distribution infrastructure component. In the

case of regression models, a FixedFactor corresponds with an independent

variable. Recalling the prior linear power model example from Equation 3.1,

c0 through c3 are FixedFactors.

MeasuredFactors are measured metrics that influence or correlate with the

power consumption of the entity. In contrast to FixedFactors,MeasuredFactors
model dynamic power consumption factors. When PowerModelSpecification
is a regression model, its MeasuredFactors specify the dependent variables of

the regression function. In the linear power model example from Equation

3.1, CPU utilization ucpu, disk read throughput uread, and write throughput

uwrite are the MeasuredFactors. The factors of power models described in

the Specification viewpoint are strictly typed by their units of measurement.

The unit of a MeasuredFactor must be compatible with the unit of mea-

surement of its metricType. The metricType characterizes the metric of the

MeasuredFactor using the NumericalBaseMetricDescription entity from the

Metric Specification metamodel [123]. Each instance of NumericalBaseMet-
ricDescription uniquely identifies a metric type like CPU utilization. While

the Metric Specification metamodel finds use in the context of Palladio, its

definition of metrics is not specific to the PCM ADL. An alternative to the

Metric Specification metamodel is the Structured Metric Metamodel (SMM)

[204].

65

3. Describing Power Consumption Characteristics of Software Systems

c0:FixedFactor

u_cpu
:MeasuredFactor

ActiveResource
Utilization

:NumericalBaseMetric
Description

pcm::metricspec

specification

BasicSpecRepo
:ResourcePower

ModelSpecification

LinearPowerModel
:BlackBoxResource

PowerModel
Specification

c1:FixedFactor

c2:FixedFactor
u_read

:MeasuredFactor

u_write
:MeasuredFactor

c3:FixedFactor

Read Utilization
:NumericalBaseMetric

Description

Write Utilization
:NumericalBaseMetric

Description

Figure 3.5.: Linear power type P
lin

defined in the Specification viewpoint

3.2.1.2. Resource Power Models

ResourcePowerModelSpecification defines a power model type for an indi-

vidual or a set of system resources. Thereby, it supports the specification

of power models for individual system components, or groups of system

components. ResourcePowerModelSpecification has two subtypes, as can be

seen in Figure 3.4. A BlackBoxResourcePowerModelSpecification describes a

66

3.2. A Metamodel for Specifying Power Consumption Characteristics

black-box power model of a resource. DeclarativeResourcePowerModelSpecifi-
cation expresses the power model of a resource via an associated functional

expression.

Figure 3.5 shows an example instance of its BlackBoxResourcePowerModel-
Specification subtype. The illustrated model realizes the power model type

specification of Plin from Equation 3.1. The LinearPowerModel reflects the
fixed parameters c0 through c3 as FixedFactors. The independent variables
of Plin are modeled as MeasuredFactors. Every MeasuredFactor references its
metric type modeled in a Metric Specification metamodel instance.

3.2.1.3. Distribution Infrastructure Power Models

A DistributionPowerModelSpecification models the power model type of an

entity type that distributes power to other connected components. Examples

for entities that distribute power to connected components are server or rack

level Power Supply Units (PSUs).

DistributionPowerModelSpecification specializes PowerModelSpecification to

model the power consumption characteristics of the distribution infrastruc-

ture. This implies that the distribution model is also characterized by Con-
sumptionFactors. For ResourcePowerModelSpecifications, each factor models

an individual metric measurement source. Applying this modeling abstrac-

tion to distribution models would induce significant modeling effort. The

distribution model of a PDU with n = 1, 2, . . . connected servers would have
to be modeled separately, since the consumption of each server contributes

to the total consumption on the PDU level. Thus, we extended the semantics

of MeasuredFactor for DistributionPowerModelSpecification in comparison to

ResourcePowerModelSpecification. In addition to the semantics introduced

in Section 3.2.1.1, MeasuredFactors may refer to sets of measured metric

values.

An example application of DistributionPowerModelSpecification is the de-

scription of consumption overheads in the context of data center power

distribution infrastructure. The data center-wide power efficiency estima-

tion equation noted by Barroso et al. [13, p. 67] defines the relation between

data center efficiency, power consumption of servers and power consump-

tion caused by other equipment, e.g., cooling. Definition 2.6 introduced this

67

3. Describing Power Consumption Characteristics of Software Systems

equation. The relation between total consumption and overheads can be

expressed as a function:

PDC =
1

PUE

·
1

SPUE

·
∑
s ∈S

Ps (3.3)

Hereby, S is the set of servers where every server consumes Ps power. PUE
is the Power Usage Effectiveness factor on the full data center level. SPUE is

the PUE of servers.

pue:FixedFactor

specification

BasicSpecRepo
:ResourcePower

ModelSpecification

p_dc:BlackBox
ResourcePower

ModelSpecification

spue:FixedFactor

p:NumericalBase
MetricDescription

pcm::metricspec

P:Measured
Factor

Figure3.6.:Distribution power model type PDC defined in the Specification viewpoint

Figure 3.6 depicts the distribution power model specification for PDC. It uses
the black box subtype of the DistributionPowerModel. The distribution power

model contains two FixedFactors for PUE and SPUE. Like ResourcePowerMod-
elSpecification, the predicted consumption of a DistributionPowerModel may

depend upon measurable metrics. Each input metric can be modeled as a

MeasuredFactor. In the example shown in Figure 3.6, PDC depends upon the

MeasuredFactor P . Hereby, P is the set of power consumption measurements

on the server level, with Ps ∈ P for all servers s ∈ S .

3.2.1.4. Declarative Power Models

We use systemmetric-based power models to predict the power consumption

of servers and their resources. Recalling Definition 2.2, this thesis defines

68

3.2. A Metamodel for Specifying Power Consumption Characteristics

a power model as a function p : U1 × . . . × Un → P that maps a set of

input metric values (u1, . . . ,un) to a predicted power consumption p ∈ P .
In many cases, power models can be expressed as closed-form functions of

limited complexity [35, 65, 69, 82, 104, 135, 172, 231]. The linear power model

example Pl in shown in Equation 3.1 is an example of such a model. In order to

ease the definition of power models types, the Specification viewpoint allows

for the definition of power model types using mathematical expressions.

The DeclarativePowerModelSpecification supports the declarative specifica-

tion of power model expressions for power model types. Its functionalExpres-
sion attribute contains a mathematical expression specified in conformity

with an extensible formal grammar. We use an extended variant G of the

mathematical expression grammar defined by the ExpressionOasis framework

[214]. An expression e hereby is valid if

• it is a sentence derived from the grammar G,

• each identifier in e corresponds to exactly one ConsumptionFactor of
the PowerModelSpecification,

• e parametrized by ConsumptionFactors C is a function

p : U1 × . . . ×Un → P , where {U1, . . . ,Un} ⊆ C .

Applying the example from Figure 3.5 to the declarative specification of

the power model, all attributes of the LinearPowerModel remain unchanged.

Instead of BlackBoxResourcePowerModelSpecification, LinearPowerModel now
has the type DeclarativeResourcePowerModelSpecification. The functional-
Expression of the DeclarativeResourcePowerModelSpecification is set to the

following expression:

c0+c1∗u_cpu+c2∗u_read+c3∗u_write.

The expression represents the power model type Pl in from Equation 3.1.

Each variable identifier in the expressions matches to one of the Consump-
tionFactors by name.

Aside from the specification of power model types for system resources,

DeclarativePowerModelSpecification can also be used to model power model

types for distribution infrastructure. DeclarativeDistributionPowerModelSpec-
ification adds a functionalExpression to the attributes inherited from its super

type DistributionPowerModel.

69

3. Describing Power Consumption Characteristics of Software Systems

To enable modeling of distribution infrastructure, we introduced folding

operations to the ExpressionOasis grammar G for sets of measured metric

values specified in a MeasuredFactor. The distribution power model type

from Equation 3.3 can be formulated as a functionalExpression:

1/(pue∗spue)∗SUM(P). (3.4)

SUM(P) represents the sum expression

∑
s ∈S Ps . The index s ∈ S is not

explicitly specified by the expression, but derived from the input Measured-
Factor with the name P. P models all devices that contribute to the power

consumption of the distribution unit.

In addition to the sum operator, the grammar supports a multiplication

folding operator. MUL(P) represents themultiplication operator

∏
s ∈S , where

P and S are defined as in the prior example.

3.2.2. State Viewpoint

The State viewpoint encompasses the definition of Power State Machines

(PSMs). PSMs model the power consumption of resources as distinct states.

Section 2.1.3 outlines foundations of PSMs. Our Power Consumption me-

tamodel uses PSMs to specify the state space of the power consumption

behavior for a device. The State viewpoint is independent of the Specification

viewpoint.

Figure 3.7 depicts the Power Consumption metamodel package which spec-

ifies the PSM metamodel. A PowerStateRepository contains a set of Pow-
erStateMachines. Unlike some FSM definitions, our PSMs do not define a

distinct starting state.

A PowerStateMachine consists of states and transitions. Its core semantics

match a FSM. States correspond with PowerStates, state transitions corre-
spond with TransitionStates. PowerState and TransitionState share a common

abstract super class AbstractPowerState. TransitionState serves as a transi-
tional state that a stateful resource temporarily takes when it transitions

between two PowerStates.

70

3.2. A Metamodel for Specifying Power Consumption Characteristics

<<abstract>>
AbstractPowerState

*
0..1

PowerState
Machine

1..*0..1

PowerState
Repository

PowerState Transition
State

initialState
*1

targetState
*1

state

Figure 3.7.: Power State Model viewpoint of the Power Consumption model

Figure 3.8 shows the abstract and concrete syntax for the example PSM

introduced in Figure 3.2. The depicted binary PSM models the power con-

sumption characteristics of a server that can be put in an on and off state.

The model consists of one PowerState instance per state. Two TransitionStates
shutdown and bootup model the transition between on and off PowerStates.
The concrete syntax represents the transition states as edges.

The PSM viewpoint does not model the power consumption in each state.

Section 3.2.3.2 explains how PSMs can be instantiated to describe the con-

sumption characteristics of specific devices. This separation of PSM state

and consumption characteristics definition enables the reuse of the same

PSM specification for different devices.

Further, the separation facilitates the definition and analysis of active power

management mechanisms. The power management mechanisms can define

transition behavior in relation to a general PSM. In the context of the example

shown in Figure 3.8, a power management policy may switch off unused

servers. The implementation of the power management mechanism may

71

3. Describing Power Consumption Characteristics of Software Systems

on:PowerState

state

BasicSpecRepo
:PowerState
Repository

binary:PowerState
Machine

off:PowerState bootup
:TransitionState

shutdown
:TransitionState

initialState

targetState

initialState

(a)Abstract syntax

bootup

on off

shutdown

binary

(b) Conrete syntax

Figure 3.8.: Power State Model example of a server with two power states

reference the server independent on and off states. The implementation

can be reused for all server specifications, which reference the PSM from

Figure 3.8. Section 6.2.7.3 elaborates on the benefit of the separation of state

definition and device consumption specification.

72

3.2. A Metamodel for Specifying Power Consumption Characteristics

3.2.3. Binding Viewpoint

The Binding viewpoint instantiates the power model types defined in the

Specification viewpoint. It links the power consumption characteristics of a

server type with the model used to predict the server power consumption.

The bindings defined in the viewpoint instantiate the power model types

from the Specification viewpoint to specific device types. A binding that

represents the consumption characteristics of a server may then be reused

across all identical servers.

Figure 3.9 depicts the key model entities in the Binding viewpoint. The

PowerBindingRepository groups a set of PowerBindings to ease their reuse. A

binding specified in the repository can be reused across identical hardware

components. The abstract PowerBinding type models the power consump-

tion characteristics of a specific device type, e.g., a certain server model.

PowerBinding can be differentiated into two types, the StatefulResource-
PowerBinding and PowerFactorBinding.

3.2.3.1. Power Factor Bindings

A PowerFactorBinding is an instance of a power model type defined by

a PowerModelSpecification. It contains a set of AbstractFixedFactorValues.
An AbstractFixedFactorValue instantiates a FixedFactor of a PowerModel-
Specification. AbstractFixedFactorValue is a generic type. Its parameter Q
defines the metric type of the quantified FixedFactor. The value attribute
serves to specify the metric value. It conforms to the metric type of class

parameter Q. As of now, there are two subtypes of AbstractFixedFactorValue.
FixedFactorValuePower instantiates a factor with a value of a power unit,

e.g., Watt. FixedFactorValueDimensionless instantiates a factor with a unit-

less value. In the future, further typed values may be introduced. The

MeasuredFactors of a power model do not get instantiated in the Binding
viewpoint. The metrics required by a power model type do not depend on

the server for which it is instantiated. Thus, the binding only instantiates

the server-specific fixed factors.

There are two implementing subtypes of this binding that distinguish be-

tween power models for resources, ResourcePowerBindings, and power mod-

els for distribution infrastructure, DistributionPowerBinding. Both subtypes

73

3. Describing Power Consumption Characteristics of Software Systems

<<interface>>
Consumption

Factor

Fixed
Factor

<<abstract>>
PowerModel
Specification

*0..1

PowerBinding
Repository

<<abstract>>
PowerBinding

*

0..1

Resource
Power
Binding

Distribution
PowerBinding

value:Measure
<Double, Q>

<<abstract>>
AbstractFixed
FactorValue

1fixedFactor

StatefulResource
PowerBinding

<<abstract>>
AbstractPower
StateBinding

1..*
0..1

PowerState
Binding

Transition
StateBinding

<<abstract>>
Abstract

PowerState

PowerState
Machine

1..* 0..1

PowerState
Transition

State initialState

* 1

targetState

* 1

state

1powerState

1
binding

1

transitionState

unit :
Unit<Power>

Consumption
Behavior

Sequence

dlim

1

powerCurve

1 0..1

transition
Consumption

Distribution
PowerModel
Specification

Resource
PowerModel
Specification

1 1

specification

fixedFactorValues :
AbstractFixedFactor
Value<?> [0..*]

PowerFactor
Binding

Q : Quantity

binding

Figure 3.9.: Binding viewpoint of the Power Consumption metamodel

74

3.2. A Metamodel for Specifying Power Consumption Characteristics

reference the respective distribution or resource power model type they

instantiate. ResourcePowerBinding and DistributionPowerBinding are inde-

pendent of the implementation type of their referenced power model type.

c0:FixedFactor

u_cpu
:Measured
Factor

specification

LinearPowerModel
:BlackBoxResource

PowerModel
Specification

c1:FixedFactor c2:FixedFactor

u_read
:Measured
Factor

u_write
:Measured
Factor

c3:FixedFactor

binding

value=367.3W

c0:FixedFactor
ValuePower

value=300.4W

c1:FixedFactor
ValuePower

value=13.52W

c2:FixedFactor
ValuePower

value=10.06W

c3:FixedFactor
ValuePower

P_lin,r815
:Resource

PowerBinding

Figure 3.10.: Resource Binding of example linear power model for R815 server

Figure 3.10 shows the specification of the example power model Plin defined
in Equation 3.2. The ResourcePowerBinding of Plin, R815 instantiates the linear
power model type Plin, which LinearPowerModel represents. The binding
contains the four fixed factors c0 to c3. Each of the factors has the unit Watt.

Hence, the fixed factors are of type FixedFactorValuePower.

75

3. Describing Power Consumption Characteristics of Software Systems

3.2.3.2. Stateful Resource Power Binding

Section 3.2.2 had introduced the modeling of stateful resources via PSMs.

The explicit modeling of power states enables the consideration of power

saving policies and reconfigurations in power consumption analyses. The

PSM metamodel outlined in this thesis separates the modeling of the states

and transitions in the PSM from device specific power consumption char-

acteristics. The StatefulResourcePowerBindings instantiates a PSM with the

consumption characteristics of a specific resource or device. This addresses

Challenge Ch2 for the reusability of PSM specifications. PSM specifications

can be reused for different resource, server and device types. Besides reduc-

ing the specification effort when modeling consumption characteristics, the

reuse of common PSMs definitions also enables the generic implementation

of power management policies as part of the power consumption analysis.

Section 6.2.7.3 elaborates on this.

A StatefulResourcePowerBinding models the power consumption character-

istics of a stateful resource type, where the referenced PowerStateMachine
describes the power state space and transitions of the stateful resource type.

The referenced AbstractPowerBindings describe the consumption charac-

teristics each state and transition. A PowerStateBinding models the power

consumption in a power state. We employ power models to describe the

consumption in each state. This extends the modeling capabilities of tra-

ditional PSMs, which assume a constant consumption in each state. The

power consumption in the state follows the power consumption model of a

referenced ResourcePowerBinding as described in Section 3.2.3.1.

The separation of power model and state-specific consumption characteris-

tics enables a step-wise refinement of power models of resources. Initially it

may suffice to model the power consumption of a running server using a

ResourcePowerModel. Once power management is considered for the server,

the model might be refined to distinguish between consumption in different

power states.

The TransitionStateBinding models the power consumption of the server

when transitioning between two power states. The ConsumptionBehavior
models the power consumption in the transition as a function p : [0, tmax] →

P . The ConsumptionBehavior describes the power consumption p(t) based
on the time t ∈ [0, tmax] that has passed since the start of the transition. The

76

3.2. A Metamodel for Specifying Power Consumption Characteristics

upper limit of the domain, tmax, defines the duration of the transition. The

transition consumption function p(t) is modeled using a Sequence from the

DLIM [106]. A Sequence models a piecewise defined mathematical function.

Since the values Sequence are not typed, ConsumptionBehavior has a unit
attribute. The unit attribute captures the type of the function, e.g., Watt.

ConsumptionBehavior abstracts from the potential correlation of system

metric values and the consumption in the transition state. The models builds

upon the assumption that system metrics can not be predicted or measured

during the transition. In the example bootup transition modeled in Figure 3.8,

system metrics are not available when the system has not fully booted yet.

If there is a distinct transition phase in a system whose consumption can

be characterized by system metrics, the consumption behavior should be

modeled as a distinct PowerState, instead of a TransitionStateBinding. Pathak
et al. [153] use this modeling technique to describe the transition states they

identify for components of mobile devices.

Figure 3.11 depicts an example StatefulResourcePowerBinding. It instantiates
a PSM-based power model for the R815 server that adheres to the PSM shown

in Figure 3.8. The on binding uses the linear power model Plin, R815 depicted
in Figure 3.10. Power consumption in the idle state is modeled via a separate

ResourcePowerBinding, which estimates the standby consumption using a

flat power consumption value. The figure does not depict the Sequence
representation of the power consumption during the transitions.

3.2.4. Infrastructure Viewpoint

The Infrastructure viewpoint models the power distribution infrastructure of

a software system. The chosen abstraction builds upon the power distribution

infrastructure entities found in data centers and the operation of enterprise

server systems.

The power distribution infrastructure in data centers follows a hierarchical

topology [69]. On the top level, a main power supply provisions power

to the facility, which then distributes power among subcompartments of

the data center, such as server rooms. Power Distribution Units (PDUs)

distribute power among further subunits such as server racks. Server racks

host the individual servers. Within a server, a PDU or the mainboard, or

both, distribute power. Depending on the type of policy used for ensuring

77

3. Describing Power Consumption Characteristics of Software Systems

targetState

state

binary:PowerState
Machine

off:PowerState

bootup
:Transition

State

shutdown
:Transition

State

initialState
targetState

initialState

binding

shutdown
:TransitionState

Binding

bootup
:Transition
StateBinding

off:PowerState
Binding

p_r815,s:Stateful
ResourcePower

Binding

on:PowerState
on:PowerState

Binding

P_lin,r815
:Resource

PowerBinding

standby:Resourc
ePowerBinding

...

...

p_boot
:Consumption

Behavior

...

p_shutdown
:Consumption

Behavior

...

Figure 3.11.: Stateful Resource Binding example of an R815 server with on and off

states

continuous operation via an Uninterruptible Power Systems (UPS), multiple

conversions between Direct Current (DC) and Alternating Current (AC) may

take place [13, p. 48 ff.]. The Infrastructure viewpoint supports modeling of

power consumers and power distribution infrastructure components. Aside

from the power consumption of resources, it allows to model consumption

characteristics of the power distribution infrastructure.

Figure 3.12 provides an overview of the central entities in the Infrastructure

viewpoint. The Infrastructure viewpoint extends the Resource Environment

78

3.2. A Metamodel for Specifying Power Consumption Characteristics

infrastructure binding

pcm::resourceenvironment

<<abstract>>
PowerBinding

Distribution
PowerBinding

Stateful
Resource

PowerBinding

<<abstract>>
AbstractPower
StateBinding

1..*

0..1

fixedFactorValues
:AbstractFixed
FactorValue
<? -> Q> [0..*]

PowerFactor
Binding

Power
Infrastructure

Repository

<<abstract>>
AbstractPower

Consuming
ResourceSet

<<abstract>>
Power

ConsumingEntity

suppliablePeak
Power:Measure
<?, Power>

<<abstract>>
PowerProviding

Entity

Processing
Resource

Specification

Resource
Container

*0..1

activeResource
Specifications

1..* processingResourceSpecifications

<<abstract>>
PowerConsuming

ProvidingEntity

Power
DistributionUnit

MountedPower
DistributionUnit

1 resourceContainer

StatefulPower
Consuming

ResourceSet

*
0..1 containedPower

ProvidingEntities

1statefulResource
PowerBinding

1powerState

*

0..1

nestedPower
ConsumingEntities

1

distribution
PowerBinding

Resource
PowerBinding

PowerConsuming
ResourceSet

1

*0..1

Figure 3.12.:Overview of the classes in the Power Infrastructure metamodel package.

79

3. Describing Power Consumption Characteristics of Software Systems

viewpoint of PCM. The viewpoint allows users to add power consumption

characteristics to an existing Resource Environment view as captured by

instances of the PCM ADL. The metamodel extends the PCM by means of

annotation. Thereby, the PCM did not need to be modified. The realization

of our metamodel as an annotation metamodel addresses Challenge Ch4,

as it separates the specification of power consumption, and other quality

characteristics.

The PowerInfrastructureRepository stores the devices of a software system

that contribute to its power consumption. It defines the system boundaries

of the modeled software system with regards to its power consumption

characteristics. The containedPowerProvidingEntities containment includes

all top level entities that affect the power consumption. When modeling a

data center, the top level entity is the main supply connecting the data center

to the power grid. In smaller-scale server environments the PSU of a server

or the PDU of a rack are appropriate top level entities.

The abstract PowerProvidingEntity represents an entity that provides or

distributes power to other entities or system components. The suppliable-
PeakPower restricts the maximum peak power that can be supplied by a

PowerProvidingEntity. An upper bound for the suppliable peak power is the

power that it physically can provision at any given time. PSUs are commonly

rated for a maximum suppliable peak power. If the peak power threshold is

surpassed, safe and continuous operation of the powered components is not

guaranteed. Aside from physical contraints, the suppliable peak power can be

used to constrain the consumption for subsystems of the power distribution

infrastructure. Restrictions on the suppliable peak power can be motivated

by limited cooling resources [121], available power [76], or power and cost

saving policies [49, 167]. The PowerProvidingEntity provides its power to a

set of consumers. The nestedPowerConsumingEntities containment reference

links the consumers to the provider. Power consumption at the PowerPro-
vidingEntity comprises of the consumption of contained consumers. The

distributionPowerBinding links the entity to the DistributionPowerBinding
instance that models its consumption characteristics. The distribution bind-

ing may include an estimation of the consumption caused by distributing

power to the connected components. By setting the distributionPowerBinding
reference to a binding, one defines the distribution model that shall be used

to predict the power consumption of the entity.

80

3.2. A Metamodel for Specifying Power Consumption Characteristics

A PowerConsumingEntity is a power consumer in the modeled software sys-

tem. It draws its power from the parent PowerProvidingEntity in which it is

contained. We distinguish two types of power consumers, PowerConsuming-
ProvidingEntity and its subtypes, and AbstractPowerConsumingResourceSet.

3.2.4.1. Types of Power Consuming Resources

PowerConsumingResourceSet represents a set of active hardware components

that draw power from the distribution infrastructure. It annotates a set

of ProcessingResourceSpecifications in the Resource Environment viewpoint

with their power consumption characteristics. The processingResourceSpec-
ifications reference links it to the annotated processing resources. Each

PowerConsumingResourceSet references the ResourcePowerBinding that can

be used to model its power consumption. A ResourcePowerBinding instanti-

ates a ResourcePowerModelSpecification, as Section 3.2.3.1 outlined. Instances

of ResourcePowerBinding and its subtypes instantiate a ResourcePowerModel-
Specification.

In order to perform predictions using the ResourcePowerModelSpecification,
the annotated hardware environment must model all factors that are needed

to predict the system metrics represented by the MeasuredFactors of the
ResourcePowerModelSpecification. This requires that all the metrics specified

in the factors must be measurable or predictable for the set of annotated

active resources.

PowerConsumingResourceSet realizes AbstractPowerConsumingResourceSet
for processing resources. It links the set processingResourceSpecifications to
the ResourcePowerBinding that describes the power consumption character-

istics of the processing resources. The reference between the set and the

referenced processingResourceSpecifications is realized as a unidirectional

reference from the Power Consumption metamodel to PCM. The reference

hence requires no modification of the PCM.

StatefulPowerConsumingResourceSet defines the power consumption of a

set of processing resources dependent upon their consumption state. Its

powerState reference defines the current state that the processing resources

are in. The statemust be set to one of theAbstractPowerStateBindings from the

81

3. Describing Power Consumption Characteristics of Software Systems

referenced statefulResourcePowerBinding. A resource set can be transitioned

into a different power state by setting its powerState to the target state.

The Infrastructure viewpoint groups multiple active hardware components

in a AbstractPowerConsumingResourceSet instead of annotating every compo-

nent with its power consumption characteristics. The rationale for this is as

follows. First, it eases modeling in the underlying Binding and Specification

viewpoint. The running example power model type Plin shown in Figure 3.5

illustrates this. Plin depends upon the system metrics ucpu, uread and uwrite.
It would be possible to separate Plin into three power model type functions

Plin = Pdist ◦ (Plin,cpu ◦ Plin,hdd), where Plin,cpu is the power consumption of

the CPU, Plin,hdd the storage power consumption, and the distribution power

model Pdist. By separating the power models, the power consumption has

to be broken down per component, even if only the aggregate consumption

is relevant. This increases measurement or analysis effort. In cases where

two or more MeasuredFactors of the power model interact, this separation is

not possible. Practical power model examples where two or more variables

interact are MARS models as investigated by Davis et al. [57, 58] and Lewis

et al. [127].

3.2.4.2. Types of Power Distributing Entities

The PowerConsumingProvidingEntity represents entities that simultaneously

consume and provide power. This applies to all PDUs in the distribution

infrastructure. A PDU draws its power from a source. In relation to the source,

it has the role of the power consumer. Additionally, a PDU may convert the

electric current before redistribution. Since the conversion incurs a loss, the

PDU adds to the total power consumption [168].

PowerDistributionUnit realizes the PowerConsumingProvidingEntity. It repre-
sents a PDU in a data center. MountedPowerDistributionUnit extends Pow-
erDistributionUnit. It models a PDU that is physically connected to a specific

subunit of the computing infrastructure. Rack mounted PDUs or PSUs of

individual servers are example subunits. The resourceContainer reference
links the modeled PDU to the rack or server specification in PCM. Since

the referenced PCM models servers and their enclosures as nested Resource-
Containers, it does not further differentiate MountedPowerDistributionUnits.
The link between a ResourceContainer and its MountedPowerDistribution is

82

3.2. A Metamodel for Specifying Power Consumption Characteristics

realized as a unidirectional reference from the Power Consumption model

to PCM.

In summary, the Power Consumption metamodel meets Challenge Ch4 as

it only has unidirectional references to PCM in PowerDistributionUnit and
PowerConsumingResourceSet.

3.2.5. Application of Power Consumption Model to Different
ADLs

The previous sections introduced our Power Consumption model for describ-

ing the power consumption characteristics on an architectural abstraction

level. The presented metamodel complements the architectural performance

description of PCM. The following steps need to be taken by a language de-

veloper in order to apply the metamodel to describe the power consumption

characteristics of another quality-aware ADL. First, the developer has to

identify the language constructs used to model servers and their processing

resources. Second, she has to specialize the abstract class AbstractPowerCon-
sumingEntity for each of the ADL processing resource modeling constructs.

Optionally, the language designer can specialize PowerDistributionUnit to
annotate constructs that represent servers with integrated PDUs. We con-

clude that Item Ch5 is met by our Power Consumption metamodel, as the

core constructs of the metamodel are ADL independent.

This section is structured as follows. Section 3.2.5.1 outlines the applica-

tion of our modeling language to specific ADLs. Section 3.2.5.2 discusses

the integration of the Power Consumption metamodel with the CACTOS

Infrastructure Model. The CACTOS Infrastructure Model is a modeling

language for the runtime management, and design time analysis of IaaS

data centers. The metamodel was developed as part of the CACTOS project

[152]. The integration with the model showcases the practical applicability

of our modeling language to describe the consumption characteristics of

data center-scale server infrastructure.

83

3. Describing Power Consumption Characteristics of Software Systems

3.2.5.1. Application to specific ADLs

We designed the Power Consumption metamodel so that its integration with

ADLs other than PCM requires little effort.

Descartes Modeling Language (DML) [93] is an architecture-level modeling

language used for autonomic resource management of software systems.

In DML, a specialized MountedPowerDistributionUnit could be defined to

HardwareInfrastructure entities. The subtypes of HardwareInfrastructure
correspond to different device groups in data centers. This includes servers,

network devices, and dedicated storage servers. ActiveResourceSpecifica-
tion of DML corresponds to the ProcessingResourceSpecification from PCM.

Hence, a DML specific realization of AbstractPowerConsumingEntity as a

PowerConsumingResourceSet would have to reference the ActiveResourceSpec-
ification.

For UML-based ADLs, likeKLAPER [78] andUMLMARTE [211],AbstractPow-
erConsumingEntity could be specialized to reference the processing resource

specifications in the respective metamodel. For UML MARTE, the specifica-

tion is found in the Hardware Resource Modeling (HRM) profile. In plain

UML, Device represents both servers and their processing resources [212].

Thus, both AbstractPowerConsumingEntity and PowerConsumingResourceSet
may be specialized to annotate Device in UML.

3.2.5.2. Integration with CACTOS Infrastructure Model

The CACTOS Infrastructure Model [44, 79] is an Ecore-based metamodel for

describing IaaS data centers. The metamodel has two central purposes. First,

it can be used as input to runtime optimization mechanisms. Instances of

the metamodel represent the data center state. This includes the current and

planned assignment of VMs and software components to physical resources,

i.e., servers. Second, instances of the CACTOS Infrastructure Model can be

used for what-if analyses at design time. This enables data center operators

to reason on data center sizing. The integration with the CACTOS Infra-

structure Model does not include explicit power models for the distribution

infrastructure. The modeling assumes a fixed loss factor across all power

distribution infrastructure in a data center.

84

3.2. A Metamodel for Specifying Power Consumption Characteristics

power

Power
Consuming

Entity

suppliablePeak
Power
:Amount<Power>

PowerProviding
Entity

PowerModel
Binding

PowerModel
Binding

Repository

Power
DistributionUnit

value :
Amount<Power>

FixedFactorValue

...

AbstractNode

...

ProcessingUnit
Specification

0..1

0..1
*

FixedFactor

Consumption
Factor

unit : Unit

Measured
Factor

expression :
String

PowerModel

PowerModel
Repository

1
*

1

*

*1

1

1

*

1boundFactor

binding specification

physicaldc

...

*
*

Figure3.13.:Excerpt of the Power Consumptionmetamodel integrationwith CACTOS

Infrastructure Model.

In order to support reasoning on power consumption of data centers at

design time, we integrated the Power Consumption metamodel with the

CACTOS Infrastructure Model. We integrated the core classes and pack-

ages into the CACTOS metamodel. Figure 3.13 depicts the integration of

Power Consumption metamodel with the CACTOS Infrastructure model.

The physicaldc package contains the representation of physical devices and

hardware in the data center. AbstractNode and its subclasses describe servers.
The nodes are contained in representations of data center infrastructure,

85

3. Describing Power Consumption Characteristics of Software Systems

such as racks. Power management, monitoring and analysis is an integral

part of CACTOS. For this reason, we opted to integrate the Infrastructure

viewpoint of our model with the server specifications. AbstractNode ex-
tends both PowerProvidingEntity and PowerConsumingEntity. This replaces
the annotation-based modeling in the Infrastructure viewpoint, which Sec-

tion 3.2.1 presented. All processing resource representations in the CACTOS

metamodel extend PowerConsumingResource. ProcessingUnitSpecification is

an example of a processing resource.

The Binding and Infrastructure viewpoint in the CACTOS Infrastructure

Model adhere to the Power Consumption metamodel in its central charac-

teristics. We omitted the State viewpoint from the CACTOS Infrastructure

Model, as it already represents the operational state of servers as explicit

server characteristics. The CACTOS resource management assumes power

distribution to operate at a fixed loss. Thus, we simplified the modeling so

that power models are only specified for PowerConsumingEntities.

Compared to the general Power Consumption metamodel, the power mod-

eling integrated with the CACTOS metamodel generalizes the relationship

between power consumers and providers. The general metamodel assumes

each PowerConsumingEntity to draw its power from exactly one PowerPro-
vidingEntity. The integrated metamodel generalizes this to a many-to-many

relation between consumers and providers. This enables a modeling of re-

dundant power distribution infrastructure. In CACTOS, the distribution of

power draw among multiple power providers is defined by convention. The

next section discusses a more flexible extension of our Power Consumption

metamodel, which supports redundancy modeling.

The CACTOS Infrastructure metamodel only supports declarative consump-

tion powermodel types. PowerModel in its Specification viewpoint represents
these power model types. We implemented this simplification as the CAC-

TOS tooling solely uses parametric regression techniques to construct power

models.

86

3.3. Assumptions and Limitations

3.3. Assumptions and Limitations

This section discusses the assumptions and limitations of the presented

Power Consumption metamodel.

Hierarchical power distribution structure. The Power Consumption me-

tamodel assumes that there exists exactly one power source, a PowerPro-
vidingEntity, for each power consumer, a PowerConsumingEntity. Power
distribution infrastructure of data centers uses redundant distribution to

improve the reliability of the infrastructure. As Barroso et al. [13, p. 48

ff.] discuss, data centers leverage Uninterruptible Power Systems (UPS) to

supply power in case of temporary power outages. Multiple UPSs are com-

monly connected in parallel [13, p. 51 f.]. This allows that a subset of the

UPSs can fail. The power consumption of individual servers may also be

balanced between multiple PDUs. The purpose of this redundancy is to

increase reliability by connecting servers to different circuits. The presented

model abstracts from redundancy to reduce model complexity. The impact

of redundancy can be accurately modeled as fixed overheads [13, p. 67].

Additionally, our modeling abstraction can be extended to model redundancy

in the distribution infrastructure. Figure 3.14 sketches a model extension

that adds support for modeling redundancy and load distribution. A Redun-
dantConsumer connects the contained connectedEntity to a set of redundant

providers. It links the consumer to the providers via the redundantProviders
reference. Similar to PowerProvidingEntity, a RedundantConsumer defines
how it consumes power from its providers. The ConsumerBinding defines

how power consumption is distributed among the providers. It instantiates

a power consumption model that the figure omits. Distributed provisioning

models found in practice are an even distribution among available connected

providers [85, 98], or a failover protected consumption from a single provider

[85]. Hereby, the consumer switches to another power provider once the

primary provider fails.

The sketched extension illustrates that our power consumption modeling

approach is compatible with and can easily be extended to support an explicit

modeling of redundancy. We hence consider the limitation minimal.

87

3. Describing Power Consumption Characteristics of Software Systems

infrastructure

binding

Consumer
Binding fixedFactorValues :

AbstractFixedFactor
Value<?> [0..*]

PowerFactor
Binding

Power
Infrastructure

Repository

<<abstract>>
PowerConsuming

Entity

suppliablePeak
Power : Measure
<?, Power>

<<abstract>>
PowerProviding

Entity

*
0..1 containedPower

ProvidingEntities

*0..1

nestedPower
ConsumingEntities

Redundant
Consumer

10..1 connectedEntity

* *

redundant
Providers

*

0..1

containedRedundant
Consumers

1

0..1

consumerBinding ...

...

Figure 3.14.: Power Infrastructure extension to model redundancy

No explicit modeling of cooling infrastructure. The Power Consumption

metamodel does not explicitly model the cooling infrastructure of servers or

data centers. However, the metamodel supports the modeling of the impact

of cooling on power consumption. The power consumption of cooling

equipment can be specified dependent on server activity. Fan et al. state

that the power consumption of cooling equipment “can be approximately

modeled as a fixed tax over the critical power” [69]. Since the presented

Power Consumption model supports the extension of PowerConsumingEntity,
sophisticated power consumption models for cooling can be added. Thus,

this is a weak limitation.

88

3.3. Assumptions and Limitations

Knowledgeof targetdeploymentenvironment. Themodel describes power

consumption of software systems in relation to the power consumption of ac-

tive resources, servers and distribution equipment in its deployment environ-

ment. Hence, the modeling approach requires the deployment environment

of an analyzed software system to be known. In early design phases, the

deployment environment might not be fixed yet. Nevertheless, architecture

performancemodels used in early design phases like PCM assume knowledge

of the performance characteristics of the deployment environment. If the

deployment environment is not known, the performance characteristics are

projected from the current and planned infrastructure. Similarly, the power

consumption of the targeted deployment environment can be projected using

power models of comparable environments.

Knowledge of power consumption characteristics of deployment environ-
ment. The outlined Power Consumption model builds upon system metric-

based power models of servers. These power models correlate systemmetrics

with power consumption. In order to correlate power consumption and

performance metrics, the used server types need to be derived. One way to

derive the models is the use of systematic server profiling to collect system

load and power measurements at different load levels. Since a power model

only needs to be derived once per server type, the measurement effort that

results from the profiling can be justified. Once a power model of a server

type is available, it can be reused to evaluate the power consumption of all

servers of that type. The models of each server type could be shared online

via a central repository, similar to the Server Efficiency Rating Tool (SERT)

energy efficiency benchmark results [68]. Software architects could then use

the provided models to explore the energy consumption of their projected

system.

Availabilityofmetric predictionsormeasurements. Power and energy con-

sumption analysis approaches that use the presented Power Consumption

metamodel require a source of metric predictions or measurements to evalu-

ate the energy consumption of software systems. Most commonly, power

models correlate power consumption with performance. At design time, per-

formance predictions like the ones supported by Palladio are viable sources

89

3. Describing Power Consumption Characteristics of Software Systems

of such measurements. We showed this in our previous work [200]. We con-

sider the assumption that performance models are available at design time to

be feasible as the analysis of power and performance is strongly intertwined.

Energy efficiency, the operational efficiency of a software system, is defined

as a ratio of power and performance.

Abstraction from low-level hardware characteristics. Our modeling lan-

guage abstracts from low-level hardware characteristics that impact the

power consumption of servers. Example characteristics are the influence

of supported and used CPU instruction sets [107]. Another example con-

cerns hardware internal power management [135], which is not exposed

via monitorable metrics. Our language models the power consumption of

hardware resources via power models. The power models predict the power

consumption from a set of fixed factors and measured metrics. Consequently,

our modeling approach can not capture all hardware characteristics that

influence their power consumption. To the best of our knowledge, no mod-

eling approach addresses these shortcomings. Our validation investigates

whether power consumption predictions made using instances of our model

are accurate enough to inform architecture-level design decisions. Section 7.2

presents the validation results.

3.4. Summary

This chapter discussed the Power Consumption metamodel for describing

the power consumption characteristics of a software system. The goal of the

metamodel is to capture power consumption characteristics for the use in

architecture-level energy efficiency (EE) analyses. The metamodel is realized

as an Ecore metamodel.

The instances of the metamodel describe the power consumption of deploy-

ment environments. The metamodel separates the definition and instantia-

tion of power models for different server types from the specification of the

distribution infrastructure. Three layered viewpoints separate the three con-

cerns power model definition, instantiation and infrastructure modeling. The

infrastructure modeling viewpoint annotates the deployment environment

description with its power consumption characteristics.

90

3.4. Summary

In the design of the Power Consumption model, the challenges presented in

Section 3.1 had to be addressed. The following summarizes to which extent

the chosen modeling addresses each of the challenges.

Challenge Ch1 states that instances of the designed metamodel should sup-

port analyses to make power consumption predictions with reasonable ac-

curacy. This chapter focused on the rationale and general semantics of the

presented Power Consumption model. Chapter 4 outlines how its model

semantics can be leveraged to predict the power consumption of software

systems at design time. Section 7.2 evaluates the prediction accuracy of

the analyses. Aside from enabling accurate predictions, Ch1 also requires

that the level of abstraction should be suitable for architectural design time

analyses. Chapter 5 presents an automated approach that allows to automate

the extraction of Power Consumption model instances. The extracted model

instances can be used to compare different software architectures and design

decisions, as Section 7.3 illustrates.

The outlined model does not require annotation of consumption characteris-

tics to service specifications, such as the Service Effect Specification (SEFF)

in PCM. This fulfills Challenge Ch2.

The semantic overlap of PCM and the Power Consumption metamodel is

limited to the specification of server and device characteristics. The overlap

is constrained to the definition of server enclosures and processing units,

and their corresponding representation as power consumers or providers

in our model. The Power Consumption metamodel does not replicate any

information beyond the name and UUID of the referenced PCM element.

Conclusively, our metamodel meets ChallengeCh3 due to its limited overlap

with existing ADLs.

Since we realized the metamodel as an annotation-based model, it is noninva-

sive by design. Hence, the metamodel fulfills Challenge Ch4. The presented

model only depends on ADL specific constructs to link it with the deploy-

ment environment description of the ADL. Section 3.2.4 further elaborated

on this. The core packages and entities of the presented Power Consumption

model are compatible with a large number of ADLs, as Section 3.2.4 discussed.

Thus, the model fulfills Challenge Ch5.

The next Chapter 4 presents an approach for analyzing the energy efficiency

of software systems on an architectural level. The approach uses the Power

91

3. Describing Power Consumption Characteristics of Software Systems

Consumption model in combination with the annotated PCM to predict

power and energy consumption.

92

4. Architecture-Level Energy
Efficiency Analysis

This chapter discusses the energy efficiency analysis for software systems.

The presented analysis approach addresses Research Question 2:

Research Question 2. How can the power consumption of software systems
be predicted on an architectural level?

The analysis outlined in this section builds upon the Power Consumption

metamodel presented in the previous chapter. The energy efficiency analysis

predicts the energy efficiency of a software system as the ratio of performance

and power consumption. The presented approach leverages existing archi-

tectural performance prediction methods. It complements the performance

prediction methods with an approach for power and energy consumption

prediction. This enables us to combine performance and power consumption

predictions. We can then derive energy efficiency (EE) predictions from the

power and performance predictions.

The Power Consumption Analyzer (PCA) evaluates the power consumption

of a software system using instances of the Power Consumption metamodel

presented in Chapter 3. The initial design of the prediction approach was

proposed in [198]. The analysis approach for static software systems was

also outlined and employed in [200]. Its implementation was refined as part

of a supervised Master’s thesis [114].

This thesis distinguishes between two use cases for design time analyses of

power and energy consumption: post- and intra-simulation analysis. The

post-simulation analysis evaluates the power consumption of a software

system under investigation after a performance analysis has been conducted.

The post-simulation analysis provides consumption estimates based on the

93

4. Architecture-Level Energy Efficiency Analysis

performance metric measurements collected from simulation. This loose cou-

pling enables a clear separation of our power consumption analysis and the

upstream performance analysis. Keeping the power consumption analysis

separate from performance analyses offers the following advantages:

• No modification of existing performance analysis.
Performance and power consumption analysis can be developed and

maintained separately.

• Exchange of used performance analysis. As the power
consumption analysis does not require any modifications of the

performance analysis, the performance analysis can be exchanged

independent of the power consumption analysis.

• Decoupling of power and performance analysis steps.
Different power models and power distribution topologies can be

compared using the same performance simulation results. A rerun of

the performance simulation only becomes necessary once the

performance characteristics of the system under investigation are

modified, e.g., if an additional server is introduced.

The selection and design of self-adaptation mechanisms is a degree of free-

dom at design time [20]. This degree of freedom extends the degrees con-

sidered in the design of static software systems. An energy-conscious self-

adaptive software system performs adaptations based on power consumption

measurements or estimations. Examples of power-conscious self-adaptations

are discussed in [63, 103, 167, 215]. These energy-conscious adaptation mech-

anisms require a measurement or estimation source for power consumption.

In order to evaluate the mechanisms, they must be provided with a source for

power consumption estimations. Our intra-simulation power consumption

analysis addresses this by propagating power consumption predictions to a

design time analysis of a self-adaptive software system.

Our intra-simulation consumption analysis supports the analysis of an

energy-conscious self-adaptive software system. It can be performed as
part of a simulative performance analysis of a self-adaptive software system.

We extended the design time performance analysis SimuLizar with the intra-

simulation analysis. The combined analysis supports the consideration of

tradeoffs between power and performance at design time.

94

4.1. Power Consumption Evaluation Based on Software Performance Predictions

This chapter is structured as follows. Section 4.1 presents the general ap-

proach of Power Consumption Analyzer (PCA) and its application to static

software systems. Section 4.2 extends the PCA concept to self-adaptive

software systems. Section 4.3 outlines a method for combining energy con-

sumption predictions from PCA and PCM performance predictions to reason

on the effect of design decisions on energy efficiency. Section 4.4 provides an

overview of the PCA tooling architecture. Section 4.5 discusses assumptions

and limitations. Section 4.6 concludes.

4.1. Power Consumption Evaluation Based on
Software Performance Predictions

This section presents the approach for evaluating the power consumption

of static software systems. We realized the analysis as a post-simulation

analysis. The analysis evaluates the power consumption subsequent to a

performance analysis.

<<Loop>>

select required
metric providers

Power
ProvidingEntity

performance
metric providers

 required
derived metrics?

instantiate derived
metric providers

analysis
configuration

calculate current power
consumption of ppe

metric
providers

yes
no

(test) metric providers
have next measurement

continue with
next measurement

power
consumption
predictions

ppe

Figure 4.1.:Activity diagram of the power consumption analysis for static software

systems

95

4. Architecture-Level Energy Efficiency Analysis

Figure 4.1 provides an overview of the automatic power consumption analysis

for static software system as an UML activity diagram. The analysis receives

the following inputs:

• the PowerProvidingEntity ppe for which the consumption analysis

should be performed,

• a set of performance metric providers from the analysis environment,

• the power consumption analysis configuration.

The analysis calculates the predicted power consumption for the PowerPro-
vidingEntity ppe which is passed as an input. The analysis aggregates over

the power consumption of all consumers connected to the PowerProvidingEn-
tity. The select required metric providers activity identifies all relevant metric

providers from the input metric providers. A metric provider supplies pre-

diction values for a metric. If necessary, instantiate derived metric providers
calculates derived metrics from the input metrics. An example application

of derived metric providers is the aggregation of multiple metrics to a single

metric. The activity loop calculates the power consumption for the input

metric measurements. It returns the set of power consumption predictions

for the passed PowerProvidingEntity.

The Power Consumption Analyzer (PCA) evaluates the power consumption

of a software system. It implements the activities depicted by Figure 4.1. PCA

supports consumption analyses of both static and self-adaptive software

systems. This section presents the fundamental design of PCA and its applica-

tion to static software systems. The following Sections 4.1.1 to 4.1.5 describe

the activities shown in Figure 4.1 in greater detail. Section 4.2 discusses

the extension of PCA to the design time analysis of power consumption for

self-adaptive software systems.

4.1.1. Select Required Metric Providers

The select required metric providers activity matches the metrics specified in

the MeasuredFactor of each PowerModelSpecification with metrics available

in the input Experiment Data Persistency & Presentation (EDP2) repository.

As setup of the analysis, the select required metric providers activity selects

a subset of all available performance metric providers from the available

96

4.1. Power Consumption Evaluation Based on Software Performance Predictions

metrics. The metrics are read from any analysis measurement framework.

For Palladio analyses, this framework is EDP2 from the Quality Analysis Lab

(QuAL) [123]. QuAL enables analyses to query and process analysis data via

unified interfaces. For static analyses, this activity gathers metric providers

from the EDP2 components of QuAL. EDP2 persists the results of software

quality analyses. In the case of architectural performance predictions, this

includes the performance metric measurements needed as input for PCA.

The activity selects the performance metric providers based on the metric

specifications of PowerConsumingEntities. It performs the selection for all

consumers contained in the PowerProvidingEntitiy, and recursively for its

contained consumers.

4.1.2. Instantiate Derived Metric Providers

The source of metrics for the analysis are performance metric values from

a previous performance analysis. The scope of available metrics is limited

to the metrics available in a specific analysis run. The power models may

specify further MeasuredFactors that are not contained in the measurements

persisted by EDP2. If the missing required metrics can be derived from avail-

able performance metrics, the instantiate derived metric providers activity
instantiates these metrics. An example of such a metric is CPU utilization.

Prior to this thesis, all existing Palladio analyses did not support the calcu-

lation of resource utilization metrics over time. In order to support power

models that rely on input utilization metrics, the activity instantiates a de-

rived metric provider that calculates resource utilization metrics from the

available metrics.

The instantiation of derived metric providers may depend upon parameters.

In the case of CPU utilization, such parameters are the length of the interval

over which utilization should be aggregated, and the step width in which

the metric shall be calculated. These additional parameters either need to be

specified by the user of the analysis, or set to default values.

Figure 4.2 depicts the abstract class that must be realized and registered to

the PCA extension point of the same name. The extension point allows to

register additional metric providers to PCA. PCA uses these metric providers

as part of the instantiate derived metric providers activity. An ExtendedMea-
sureProvider defines a mapping of a set of source (getSourceMetrics) to a set

97

4. Architecture-Level Energy Efficiency Analysis

+getSourceMetrics() : Collection<Set<MetricDescription>>
#getSourceMetricIds() : Collection<Set<String>>
+getTargetMetrics() : Set<MetricDescription>
+getDataSource(Set<IDataSource> availableDataSources) : IDataSource
+canProvideMetric(MetricDescription desiredMetric,
 Collection<MetricDescription> availableSourceMetrics)

<<abstract>> ExtendedMeasureProvider

de.fzi.power.interpreter.measureprovider

Figure4.2.:Class diagram view of extension point definition for registering additional

metric providers

of target metrics (getTargetMetrics). The getSourceMetrics method returns

sets of MetricDescriptions. Each set contains a description of the metrics

supplied by an individual input metric provider. A class that extends Extend-
edMeasureProvider defines a mapping between source and target metrics in

its implementation of availableDataSources. The returned IDataSource is an
iterable measurement collection as defined by EDP2. Metric providers may

work on different metrics that can be used interchangeably. The method

getSourceMetrics hence returns a collection of metric combinations that can

be used interchangeably. The function canProvideMetric checks whether the
metric provider can provide a desired target metric for a a set of available

source metrics.

An example of a derived metric provider is UtilizationFilterMeasureProvider.
This utilization measure provider calculates the utilization of a processing

resource over time from its queue length.

4.1.3. Power Model Calculators

PCA uses power model calculators to determine the power consumption

of individual consumers in the software system. Our Power Consumption

metamodel classifies all consumers via the PowerConsumingEntity type. A

calculator implements the power consumption function p : U1× . . .×Un → P

98

4.1. Power Consumption Evaluation Based on Software Performance Predictions

+isCompatibleWith(PowerModelSpecification specification) : boolean
+instantiateDistributionPowerModelCalculator(

DistributionPowerBinding binding)
: AbstractDistributionPowerModelCalculator

+getPriority() : int
+instantiateResourcePowerModelCalculator(ResourcePowerBinding

binding) : IResourcePowerModelCalculator

<<interface>> CalculatorFactory

de.fzi.power.interpreter.calculators

+calculate(Collection<MeasuringValue> list) : Amount<Power>
+getInputMetrics() : Set<MetricDescription>

<<interface>> IResourcePowerModelCalculator

+calculate(Map<PowerConsumingEntity, Amount<Power>>
outletConsumptions) : Amount<Power>

<<abstract>> AbstractDistributionPowerModelCalculator

Figure 4.3.:Class diagram view calculator super type and calculator factory extension

point type definitions

that maps a set of input metric values (u1, . . . ,un) to a predicted power con-

sumption p ∈ P . This definition was first introduced in Section 3.2.1.4. PCA
distinguishes between calculators for PowerProvidingEntities and PowerCon-
sumingResourceSets. Figure 4.3 depicts the respective supertype and interface
definitions, AbstractDistributionPowerModelCalculator and IResourcePower-
ModelCalculator. Both calculator types define a calculate method that returns

a power consumption estimate. The calculators estimate the power con-

sumption from values that comply with the parameter types defined by the

MeasuredFactors of a PowerModelSpecification, as Section 3.2.1.1 outlined.

AbstractDistributionPowerModelCalculator calculates the power consump-

tion of a PowerProvidingEntity. AbstractDistributionPowerModelCalculator
calculates the power consumption based on the outlet consumption of all

99

4. Architecture-Level Energy Efficiency Analysis

connected consumers. Hence, the metric supplied by all of its input met-

ric providers is power consumption. PCA instantiates one calculator per

PowerBinding. PCA reuses the calculator for all PowerProvidingEntities, which
reference the same binding.

PCA supports the introduction of additional calculator types and implemen-

tations via the Eclipse extension point mechanism. Clayberg and Rubel [53]

elaborate on the design of the Eclipse extension point mechanism. In order to

introduce a new calculator, an extension needs to supply an implementation

of CalculatorFactory shown in Figure 4.3. CalculatorFactory instantiates the

power model calculators supplied by the extension. An example factory is

the CalculatorFactoryImpl from the de.fzi.interpreter.calculator.expressionoasis
extension. The factory instantiates the calculators for declarative power

models. PCA determines the matching calculator factory for each PowerMo-
delSpecification by calling its isCompatibleWith method. If the method of a

factory returns true, PCA uses that factory to instantiate the calculator for a

PowerModelSpecification. In the case of the factory for declarative power mod-

els, the isCompatibleWith method checks whether the passed specification is

an instance of DeclarativePowerModelSpecification. For BlackBoxPowerMod-
elSpecification, a factory typically only supports the instantiation of a set

of specifications supported by its calculator implementations. The Essen-
tialCalculatorsFactory from the de.fzi.power.interpreter.calculators.essential
extension is an example of a calculator factory implementation that only

supports specific power model specifications. As multiple factories could

provide a calculator for the same specification, the factories are called in

order of their priority (getPriority). On matching priority, any factory may

be used.

4.1.4. Power Consumption Analysis Algorithm

Once all needed parameters have been selected and instantiated, the core

power consumption analysis starts. In the activity diagram shown in Fig-

ure 4.1, the power consumption analysis corresponds to the loop and its

nested activities. Algorithm 1 shows the algorithm used to analyze the power

consumption of a PowerProvidingEntity ppe. The algorithm specifies the steps

executed as part of the loop activity. It calculates the power consumption of

100

4.1. Power Consumption Evaluation Based on Software Performance Predictions

state :Metric measurements over timeM ← ∅

Current point in time tcur ← 0

input :Metric providersM , PowerProvidingEntity ppe,
analyzed time interval [0, tmax)

output :Power consumption measures over time Pt
1 foreachm ∈ M do
2 t ←getCurrentPointInTime(m);

3 M(t) ← M(t) ∪ {m};
4 tcur ← max{tcur, t};

5 end
6 while ∃t ∈ [0, tmax) : ∃m ∈ Mt : hasNextMeasurement(m) do
7 Mmin ← {m |m ∈ M, getNextPointInTime (m) ≤ tcur};
8 foreachm ∈ Mmin do
9 M(getCurrentPointInTime(m)) ←

M(getCurrentPointInTime(m)) \m;

10 moveForward (m);
11 M(getCurrentPointInTime

(m)) ← M(getCurrentPointInTime(m))) ∪m;

12 end
13 Pt ← Pt ∪ {(tcur,evaluatePowerConsumption(ppe,M))};

14 tcur ← min

∀m′∈Mmin

getNextPointInTime(m′);

15 Mnext ← {m |m ∈ Mmin, getNextPointInTime(m)) = tcur};

16 end

Algorithm 1: Power consumption analysis over a defined anal-

ysis interval

the PowerProvidingEntity ppe over time. The metric providers M from the

instantiate derived metric providers serve as input to the algorithm.

The power consumption calculation of ppe proceeds as follows. First, the
algorithm fetches the time of the first measurement for all metric providers
M (line 2). Then, it associates each metric provider with the initial time and

stores them in the mapM (line 3).

Each iteration of the algorithm estimates the power consumption at the

current point in time tcur. The algorithm determines the starting point of

101

4. Architecture-Level Energy Efficiency Analysis

the power consumption analysis as the first point in time tcur, for which a

measurement is available for all required metric providersM . SinceM only

contains the required metric providers, this matches the maximum over all

initial points in time (line 4).

Line 7 identifies all metric providers whose next measurement has a current

point in time smaller or equal tcur. For these metric providers, it moves on

to the most recent measurement that is smaller or equal tcur (lines 8–12).

Next, the algorithm calculates the consumption of ppe at tcur (line 13). The
called function evaluatePowerConsumption recursively visits the consumers

of ppe and its contained PowerProvidingEntities. The function aggregates

the consumption along the composition tree spanned by the providers and

consumers.

The input metric providersM are not necessarily synchronized. This implies

that they do not provide measurements for all t ∈ [0, tmax). In order to get

the current metric measurement for any tcur, the function uses the most

recent measurement ofm.

After calculating the consumption using evaluatePowerConsumption, Algo-

rithm 1 moves on to the next relevant point in time (line 15). Hereby, we

assume that the metric values remain constant between two sampling times

tcur and tcur’ > tcur. The power consumption between the old tcur, and new

tcur’ does not need to be evaluated, as the values of all metric providers

between these power consumption measurements remain unchanged. If the

calculation of measurement values for t ∈ [0, tmax) is generalized to other

interpolation functions, this does not hold true. In this case, the calculation

of power consumption needs to be changed to a sampling-based calcula-

tion. Section 4.2 discusses the realization of such a sampling-based power

consumption analysis as an extension to PCA.

Power consumption of multiple connected PowerProvidingEntities and Power-
ConsumingEntities can be predicted in two ways. A straightforward ap-

proach is the execution of the algorithm for each entity. Alternatively, the

value of each nested consumer can be persisted within the execution of

evaluatePowerConsumption.

PCA realizes evaluatePowerConsumption by means of the visitor pattern.

PCA recursively aggregates the power consumption over the nested ele-

ments, which draw their power from PowerProvidingEntity instances. If a

102

4.1. Power Consumption Evaluation Based on Software Performance Predictions

PowerConsumingEntity also classifies as a PowerProvidingEntity, PCA repeats

this recursively. PCA determines the power consumption of each entity by

calling the referenced power consumption calculator.

state :M, tcur
input :metric providersM , PowerProvidingEntity ppe,
1 switch Type of ppe do
2 case PowerConsumingProvidingEntity do
3 C ← ∅ foreach consumer in

ppe.nestedPowerConsumingEntities do
4 evaluatePowerConsumption (consumer,M);

5 C ← C ∪ (consumer ,pconsumer);

6 end
7 return calculate (C) with calculator of ppe;
8 case PowerConsumingResource do
9 return calculate (M) with calculator of ppe;

10 end
output :Power consumption Pppe at time tcur

Algorithm 2: Power consumption analysis evaluatePowerConsum-

ption at the point in time tcur

Algorithm 2 lists the calculation logic of evaluatePowerConsumption used

to calculate the power consumption of ppe. If the type of ppe extends Pow-
erConsumingProvidingEntity, the algorithm calculates the current power

consumption of all connected consumers. Then, it uses the calculator of ppe
to aggregate the consumption. If ppe extends PowerConsumingResource, the
algorithm calculates the power consumption using the resource calculator

of ppe.

4.1.5. Calculating Energy Consumption

In order to calculate the energy consumption E of a system in an interval

[t0, tend), PCA integrates over the power consumption samples by means of

numerical integration. PCA uses the power consumption analysis presented

in Section 4.1.4 to estimate the power consumption of a software system

103

4. Architecture-Level Energy Efficiency Analysis

over time. The estimated power consumption samples serve as input for the

energy consumption estimation.

PCA employs Simpson’s rule for estimating the energy consumption. Pre-

requisite for the use of Simpson’s rule is that the time intervals between all

successive power samples power consumption samples are of equal width.

The samples from both post- and intra-simulation power consumption anal-

ysis meet this requirement. In case of the post-simulation analysis, all

utilization metrics are sampled at the same rate via derived metric providers.

PCA calculates power consumption predictions of a selected power provider

using the metric measurement values. As the metric measurement values

are of equal width, the calculated power consumption samples are as well.

Intra-simulation power consumption analysis samples the power consump-

tion using explicitly defined sampling rates. All sampling rates are defined

with uniform interval width across all sampled metric values. Consequently,

the power consumption estimation samples are of equal width.

When no equi-width power samples are available, the PCA can easily be

modified to use the trapezoidal rule to estimate the energy consumption

based on power consumption estimates.

4.2. Consideration of Power Consumption in
Design Time Analyses of Self-Adaptive
Systems

This section discusses the extension of PCA to the analysis of energy-

conscious self-adaptive software systems. The previous section outlined

the PCA method for calculating power consumption of a static software

system. Analyzing the power consumption of self-adaptive software systems

introduces the following additional challenges:

Ch1 Availability of power consumption predictions to adaptation
mechanism. Self-adaptive software systems adapt their structure,

deployment and composition as a reaction to monitored changes to

the environment of the system. Energy-conscious adaptation

mechanisms adapt the system to provision its services to achieve

104

4.2. Consideration of Power Consumption in Design Time Analyses of Self-Adaptive Systems

energy efficiency goals. Energy-conscious adaptation mechanisms

may take adaptation decisions based on the current or past power

consumption. They thus require continuous access to power

consumption predictions. In order to evaluate the effect of

energy-conscious adaptation mechanisms on QoS and energy

efficiency of the system at design time, our analysis must support the

evaluation of these adaptation mechanisms. This requires us to

expose power predictions to the mechanism during the design time

analysis.

Ch2 Effects of reconfigurations on power consumption.
Energy-conscious adaptations reconfigure the system with the goal

of reducing power consumption of the system. In order to reason on

the efficiency and effectiveness of energy-conscious adaptations, the

analysis needs to consider the effect of reconfigurations on power

consumption. An example reconfiguration that affects power

consumption is the startup of an additional server.

ChallengesCh1 andCh2 induce a coupling of design time power consumption

analysis, and the performance analysis for self-adaptive software systems.

The coupling must be realized specific to a design time analysis of self-

adaptive software system. For self-adaptive systems, the power consumption

analysis predicts the power consumption as part of the analysis. Hence,

it is an intra-simulation analysis. Challenge Ch2 necessitates that power

consumption predictions need to be exposed to the adaptation mechanisms,

which execute as part of a design time performance analysis. Consequently,

the power consumption measurements need to be exposed to a suitable

interface of the design time self-adaptive systems analysis. Challenge Ch2

requires that the Power Consumption model is part of the runtime models

on which the adaptation mechanisms reason. Thus, the Power Consumption

model needs to be registered with analysis-specific interfaces.

We opted to realize the coupling between PCA and the design time per-

formance analysis SimuLizar. The following discusses the intra-simulation

coupling of power consumption and design time performance analysis by

the example of PCA and SimuLizar.

105

4. Architecture-Level Energy Efficiency Analysis

4.2.1. Extending the Runtime Model by the Power
Consumption Model

Energy-conscious adaptation mechanisms reconfigure the system to meet

energy consumption and other quality goals. For this, the adaptation mech-

anisms may leverage adaptation actions that actively or indirectly affect

the tradeoff between these goals. Section 2.3 introduced different power

management actions. Active power management, e.g., DVFS, controls the

tradeoff between power consumption and performance. It achieves this

by switching between different power states, where each state represents

a different tradeoff. Energy-conscious adaptation mechanisms switch be-

tween these states depending on past and expected energy consumption.

The mechanisms use the power states as adaptation points.

In order to evaluate energy-conscious adaptation mechanisms at design

time, a definition of available adaptation points needs to be exposed to the

mechanisms. In self-adaptive software systems, adaptation points can be

defined as an explicit [96] or implicit [217] part of the runtime model. If

the adaptation points are implicit, adaptations are enacted by transforming

the runtime model from the current configuration to an intended target

configuration. SimuLizar uses PCM as the runtime model. The adaptation

points definition is an implicit part of PCM. This means that adaptation

mechanisms transform the runtime PCM model to enact adaptations.

This thesis extends the runtime model of SimuLizar with optional instances

of the Power Consumption metamodel. The PSM viewpoint of our Power

Consumption metamodel can be used to represent the power states and

transitions of a power management mechanism. This is a prerequisite for

addressing Challenge Ch2. The model must be accessible to reconfiguration

rules. This is a prerequisite to support the evaluation of the rules which use

active power management techniques to improve the energy efficiency of

the system.

Adaptation mechanisms can affect the configuration of the system by trans-

forming the runtime Power Consumption metamodel instances. The mecha-

nisms may enact changes in the power state of resources, i.e., StatefulPower-
ConsumingResourceSet instances, by changing their power state. To enact

the transition to a new power state, an adaptation mechanism simply has to

set the powerState reference of a resource to the desired target power state.

106

4.2. Consideration of Power Consumption in Design Time Analyses of Self-Adaptive Systems

4.2.2. Consideration of Power State Changes in the Power
Consumption Analysis

Active power management mechanisms as subsumed by ACPI allow to adapt

the state of resources in the deployment environment of a software system.

Active power management can be used to reduce the power consumption

of the system. Conversely, it can be used to increase performance in ex-

change for higher power consumption. Section 3.2.2 presented a model for

characterizing the consumption states of resources as Power State Machines

(PSMs). Section 3.2.3.2 outlined how power consumption characteristics

when transitioning between states can be modeled.

PCA evaluates the power consumption in transition states via a specialized

power model calculator. StatefulPowerConsumingResourceCalculator imple-

ments the IResourcePowerModelCalculator interface depicted in Figure 4.3.

StatefulPowerConsumingResourceCalculator consists of a TransitionStatePow-
erModelCalculator for each state transition, and a IResourcePowerModelCal-
culator for each consumption state of the Power State Machine (PSM).

The StatefulPowerConsumingResourceCalculator evaluates the power con-
sumption of a set of resources on the basis of their current state. It delegates

the consumption calculation to the calculator of the current state. State-
fulPowerConsumingResourceCalculator holds an internal state, which repre-

sents the current power state. The calculator needs to maintain the state

for its associated resource. This is needed as the prediction of the calculator

depends not only on metric input values, but also on the current resource

state.

The TransitionStatePowerModelCalculator evaluates the power consump-

tion in the transition from the source to the target state of the PSM. The

calculator evaluates the function p : [0, tmax] → P specified in the Consump-
tionBehaviour of the TransitionStateBinding. The calculator parametrizes p
with the time that has passed since the transition was triggered.

107

4. Architecture-Level Energy Efficiency Analysis

4.2.3. Integration of Power Consumption Analysis and
SimuLizar

This section provides an overview of the integration of PCA and SimuLizar.

The integration enables the design time analysis of energy conscious self-

adaptive software systems modeled with PCM and the Power Consumption

metamodel.

Definition of monitored power consumption infrastructure. This thesis le-

verages the Monitor specification model of SimuLizar to specify for which

parts of the infrastructure the PCA should expose power consumption predic-

tions to adaptation mechanisms. The self-adaptive systems architect creates

a monitor for each of the entities in the power consumption infrastructure

that she wants to expose to the self-adaptation mechanisms. As part of

the monitor specification, the software architect defines the sampling fre-

quency and method by which power consumption predictions should be

calculated.

Analyzing power consumptionwithin the performance analysis of SimuLizar.
The intra-simulation analysis uses the same power consumption prediction

algorithm as the post-simulation anaylsis. Algorithm 1 lists this algorithm.

The intra-simulation analysis calculates the power consumption for each

PowerProvidingEntity specified in the monitor specification model.

Figure 4.4 depicts the power consumption process of the intra-simulation

analysis. The analysis triggers a new power consumption evaluation for the

interval i specified in a monitor. It calculates the power consumption of the

PowerProvidingEntity using the consumption prediction algorithm. Subse-

quently, the analysis exposes the new power consumption measurement to

the adaptation mechanism. Reconfiguration rules then may act upon the

new power consumption measurement.

Unlike the inter-simulation analysis presented in Section 4.1, the coupled

analysis applies a sampling-based strategy for evaluating power consumption.

At each sampled point in time, the power consumption algorithm estimates

the power consumption of processing resources using the most recently

collected metric measurements.

108

4.2. Consideration of Power Consumption in Design Time Analyses of Self-Adaptive Systems

SimuLizar

Power
ProvidingEntity

ppe

runtime model

calculate current power
consumption of ppe

Interval i

power consumption
predictions

add to runtime model

trigger
reconfigurations

new power
consumption
measurement

available

<<Loop>>

(test) for all
reconfiguration rules that

monitor ppe

evaluate
reconfiguration

rule

Power Consumption Analyzer

Figure 4.4.: Activity diagram of the power consumption analysis coupling with

SimuLizar

For power distribution infrastructure, i.e., PowerConsumingProvidingEntity,
there are two possible alternative sampling strategies. First, the power con-

sumption of all connected consumers may be sampled every time we evaluate

the power consumption of the distribution infrastructure. Second, power

consumption at the distribution infrastructure entity may be interpolated

from previous predictions for the connected consumers. By default, we

employ the first strategy, as it offers the highest prediction accuracy with a

minor difference in performance.

109

4. Architecture-Level Energy Efficiency Analysis

4.3. Effect of Design Decisions on Energy Efficiency

In the scope of this thesis, energy efficiency (EE) is defined as the ratio of per-

formance and power consumption (see Section 2.2). Design decisions made

on an architectural level impact both performance and power consumption

[184, 200]. Consequently, both performance and power consumption of the

system have to be analyzed to reason on the effect of design decisions on

EE.

identify relevant
user workload

evaluate performance
and

energy consumption

architecture
performance

model m (PCM)
Power Consumption

model p
design decision

set s

apply design
decisions

evaluate performance and
energy consumption

arch. performance
model ms

workload w

Power Consumption
model ps

performance and
energy consumption
prediction for (m,p)

performance and
energy consumption
prediction for (ms,ps)

evaluate impact on
energy efficiency

w

Figure 4.5.: UML Activity diagram of process for evaluating the impact of design

decisions on energy efficiency

110

4.3. Effect of Design Decisions on Energy Efficiency

Figure 4.5 depicts the process this thesis proposes for evaluating the impact

of design decisions on EE. The following discusses the involved activities.

In the first step, the software architect has to identify relevant user workload
definitions. Both performance and power consumption strongly depend upon

the load intensity and workload mix. For low load intensities, it might make

sense to consolidate multiple components on the same server to reduce power

consumption. However, it might not be possible to perform said consolidation

for higher load intensities without violating performance SLAs.

The set of workloads w serves as input to the evaluate performance and
energy consumption activity. The architect triggers a performance and power

consumption analysis for every workload definition in w . For the perfor-

mance analysis, the architect can use the PCM simulators SimuLizar or

SimuCom. The architect can either specify the performance model based

on early estimates, or extract it via automated tooling [220]. PCA realizes

the power consumption analysis, as we discussed in Chapter 4. If a user

performs the post-simulation consumption analysis, PCA executes on the

results of the performance analysis. For the intra-simulation analysis, the

power consumption analysis runs coupled with the performance analysis.

After performing the power and performance analysis onw , the architect

applies a set of design decisions s to the architecture performance modelm
and the Power Consumption model p. The apply design decisions activity
produces the architecture modelms and the Power Consumption models

ps . The architect applies the decisions on both models. The architect uses

the performance and energy consumption analysis to evaluate the resulting

system (ms ,ps) in the respective quality dimensions.

In the final activity evaluate impact on energy efficiency, the architect reasons
on the effect of the design decision set s on EE. The architect determines the

effect of design decisions on EE as a comparison of EE prior to and after the

design decisions set s has been applied. If the architect is indifferent regarding

the performance effect of a design decision, its effect on EE can be quantified

as the relative change in energy consumption between (m,p) and (ms ,ps).
A scenario where the architect may be indifferent is if both alternatives

meet the performance requirements. In this scenario, the scenario with the

lower power consumption would meet the requirements in a more efficient

manner.

111

4. Architecture-Level Energy Efficiency Analysis

In addition to the comparative EE analysis, the architect may leverage any of

the existing EE metrics discussed in Section 2.2 to rank design alternatives.

All of the discussed metrics evaluate EE as a ratio of work, and power or

energy consumption. In order to reason on EE using the presented metrics,

both power and performance metrics are needed.

The EE of a software system depends on the workload issued by its users. If

the architect expects different workload intensities and patterns, she has to

accumulate the results of multiple EE analyses. Each EE analysis evaluates

the efficiency of the system for a specific user workload. The architect

may accumulate multiple EE estimates based on the expected workload

distribution.

4.4. Toolkit Architecture

This section provides an overview of the PCA architecture and its integration

with existing Palladio analysis tooling. The PCA implementation conforms

to the component-based design paradigm. It is realized inside the Eclipse

framework and integrates with the Palladio Bench [22]. Each component

discussed in the following has been realized as an Eclipse plugin. The wiki

page [161] gives an overview of update sites via which the PCA tooling can

be installed into an Eclipse-based Palladio IDE.

Figure 4.6 shows a simplified view on the architecture of PCA and its in-

tegration with Palladio tooling. The core PCA components occupy the

de.fzi.power.* namespace. The diagram groups these components with a

frame of the same name. The diagram does not display editor components

and interface components that are re-exported by the displayed components.

The figure does not depict components and dependencies that are not the fo-

cus of the architecture discussion. It only shows essential components from

QuAL, and the components of SimuLizar involved in the intra-simulation

power analysis.

PCA Core Components The power component implements our Power Con-

sumption metamodel on the basis of the Eclipse Modeling Framework (EMF)

technology stack. The power.specification.resources component offers a base

112

4.4. Toolkit Architecture

metamodel and base
specification library

measure
providers calculators

power power.interpreter

power.interpreter
.calculator

.expressionoasis

CalculatorFactory

power.interpreter
.calculator
.essential

power.interpreter.
measureprovider

.utilization

power.ui

Extended
MeasureProvider

power.calculator
.energy

power.specification
.resources

experimentanalysis
.utilizationfilter

edp2.datastream

de.fzi.power

QuAL

simulizar.
power

simulizar

Model
Load

simulizar
.slidingwindow

simulizar
.runtime

measurement

ProbeFramework
ListenerDecorator

experimentanalysis

org.palladiosimulator.simulizar

...

...

...

Figure 4.6.: Simplified UML component diagram of PCA architecture and integration

with Palladio tooling. Component namespace prefixes are omitted for brevity.

113

4. Architecture-Level Energy Efficiency Analysis

library, including common power model specifications. This includes linear

power models for processing resources, and distribution models with linear

loss factors.

The power.interpreter component implements the core power consumption

evaluation logic discussed in Section 4.1. The component offers two extension

point interfaces ExtendedMeasureProvider and CalculatorFactory. Extended-
MeasureProvider enables the registration of components, which calculate

derived metrics from available metrics. CalculatorFactory offers support for

registering calculators for specific power model types. Section 4.1 provide

more information on the purpose and design of the interfaces. The inter-

preter calculates power consumption of entities in a software system. It uses

data streams from EDP2 as the source of input metric measurements. These

measurements are then passed to the calculators as Section 4.1 outlined. The

EDP2 component edp2.datastream defines this shared data stream interface

type with IDataStream.

The power.interpreter.calculator.expressionoasis and power.interpreter.calcula-
tor.essential components implement the CalculatorFactory. Both components

offer implementations of the CalculatorFactory interface defined in power
.interpreter. The components lack explicit provided interfaces on a compo-

nent level. The power.interpreter component selects and calls the extensions

based on the contract established as part of its CalculatorFactory exten-

sion point. Vogel and Milinkovich [216] further discuss Eclipse extension

point semantics. The power.interpreter.calculator.expressionoasis component

implements the calculator logic for all instances of the DeclarativePowerMod-
elSpecification type from the Power Consumption metamodel. Section 3.2.1

discussed the semantics of this power model type. The component uses

the ExpressionOasis framework by VedantaTree [214] to evaluate the math-

ematical expressions specified by the declarative power model type. The

expressions instantiate an extensible grammar. The grammar defines the

domain of valid declarative power model types.

The power.interpreter.calculator.essential component contains calculator im-

plementations for a set of standard black-box power model types, e.g., piece-

wise defined linear power models for ResourcePowerModelSpecifications, and
PowerProvidingEntities with linear loss factors. The library contains imple-

mentations of all black boxmodels specified in power.specification.resources.

114

4.4. Toolkit Architecture

The ExtendedMeasureProvider extension point of the interpreter allows for

the registration of additional metric providers that are derived from other

input metrics. The previous Section 4.1 had introduced the interface con-

tract of the extension point. The power.interpreter.measureprovider.utilization
component offers UtilizationFilterMeasureProvider that calculates the uti-

lization of resources based on their work queue length. For this, the filter

uses the component experimentanalysis.utilization component from QuAL.

This QuAL component was implemented as part of this thesis to calculate

utilization metrics on any EDP2 metric data streams. Krach [114] uses the Ex-
tendedMeasureProvider extension point to register additional derived wireless
network metric providers for mobile devices. The registered metric providers

are added to the power model input metrics, as discussed in Section 4.1.

PCA UI The power.ui component serves as the UI entry point to the post-

simulation power consumption analysis of PCA. It calculates power consump-

tion via the power.interpreter, and the energy consumption with the power
.calculator.energy component. Unlike the name suggests, power.calculator
.energy does not implement the calculator interface. Rather, it calculates the

energy consumption of a software system based on a set of passed power

consumption samples. The calculator estimates the energy consumption by

means of numerical integration.

SimuLizar Intra-Simulation Power Analysis The simulizar.power compo-

nent realizes the intra-simulation power analysis. It contributes the Power

Consumption metamodel to the runtime model of SimuLizar via the Model-
Load extension point. The component calculates power consumption using

power.interpreter, and the energy consumption using power.calculator.energy.
Instead of EDP2 metric data streams, the intra-simulation integration calcu-

lates the power consumption using themeasurements in the Palladio Runtime

Measurement Model (PRM) [20] of SimuLizar. simulizar.runtimemeasurement
couples PRM with SimuLizar. It allows for the registration of additional met-

ric providers to SimuLizar. simulizar.power contributes the power consump-

tionmeasurements via this interface. SimuLizar propagates all measurements

in PRM and the EDP2 repository of the analysis to all plugins registered via

its ProbeFrameworkListenerDecorator extension point.

115

4. Architecture-Level Energy Efficiency Analysis

Simulizar uses simulizar.slidingwindow to calculate sliding window aggre-

gates on metrics that are recorded in the PRM instance of an analysis. As

part of this thesis, a generic metric processing pipeline based on the pipes-

and-filters pattern was introduced to SimuLizar. This generic aggregation

mechanism is used to calculate the average utilization in the sampling in-

terval. The mechanism is implemented separate from its equivalent for the

post simulation analysis, the UtilizationFilterMeasureProvider.

4.5. Assumptions and Limitations

The PCA approach bases on a set of assumptions. The following summarizes

the assumptions and discusses limitations.

Availability of architecture performance model. The PCA prediction ap-

proach requires an architecture performance model as a prerequisite for

power and energy consumption predictions. This does not limit the applica-

bility of the approach if an architecture performance model is already used

to evaluate the performance of a system at design time. Investigating the

impact of design decisions on power or energy consumption in isolation

of other quality characteristics offers little insight to a software architect.

In disregard of all other quality criteria, power and energy consumption

is typically minimal if a minimal number of servers is used. However, the

consolidation of software components on a minimal number of servers neg-

atively impacts performance. This illustrates that the evaluation of design

decisions regarding their effect on energy efficiency inherently requires

both performance and energy consumption predictions. Software archi-

tects can use the same architecture performance model as the foundation of

performance and energy consumption analyses when they apply our PCA

prediction approach. Thus, the assumption does not limit the applicability of

our approach due to the interconnectedness of power and performance.

Availability of consumption characteristics description. The presented

analysis approach PCA relies on a consumption characteristics description

in the form of a Power Consumption model instance. Power Consumption

116

4.5. Assumptions and Limitations

models can be extracted automatically using the method outlined in Chap-

ter 5. Alternatively, they can be defined manually based on power models

extracted by different approaches. We designed PCA to be extensible. If the

power consumption of a set of power consumers in a software system can not

be expressed as a mathematical expression, PCA supports the introduction

of complex black-box power models. The implementation of the black-box

power models can be added to PCA via custom calculators.

Limited influence of hidden device states. McCullough et al. [135] name

“hidden device states” as a source of inaccuracies in power consumption

predictions. Hidden device states are power saving states which are not

explicitly documented and accessible, e.g., via IPMI. The PCA prediction

approach outlined in this thesis assumes that

1. the influence of such hidden states on the power consumption of the

system under investigation is limited, or

2. the states can easily be identified via profiling.

Different evaluations [35, 65, 69, 82, 104, 135, 172, 231] show that power

models for servers are accurate even when ignoring hidden device states.

Thus, assumption 1 holds for servers. For mobile devices, hidden device

states can significantly impact power consumption. However, these states

can be identified by means of profiling, as illustrated by Yoon et al. [230].

The power consumption of identified states can be analyzed with PCA. Con-

sequently, assumption 2 holds for mobile devices. Other device categories,

such as embedded systems, are not investigated in this thesis. Due to their

limited influence on power consumption prediction accuracy in the domain

of enterprise and mobile computing, the assumption is considered weak.

No explicit modeling of variations in power consumption across identical
components. Identical server components can showcase different power

consumption characteristics due to variations in the production process [108].

Our metamodel does not explicitly express these variations as part of the

Binding or Specification viewpoint. The influence of consumption variations

of individual components on the full server is less significant. Hence, we

opted to not include an explicit abstraction of consumption variations in

the model. In order to apply our model to domains where the variations

117

4. Architecture-Level Energy Efficiency Analysis

have a more significant impact, i.e., sensor networks, this limitation can be

addressed in one of the following ways:

1. Modeling of variations between components via different

PowerBindings. The differences in power consumption between

individual server components can be expressed by creating a

PowerBinding for each varying type. A disadvantage of this approach

is that it does not model uncertainty, but rather the variations

between specific servers.

2. Use of a FixedFactor to model the variability across instances of the

same device. In this case, the consumption variability can be modeled

via a stochastic power model.

3. Introduction of a new type which extends ConsumptionFactor. This
type could be used to distinguish consumption variations from other

factors that describe the power consumption of a component.

Approaches 1 and 2 are supported by the current modeling abstraction. Only

3 would require an explicit model extension regarding the captured consump-

tion factors. As the metamodel has been designed to support the introduction

of new ConsumptionFactors, we consider the limitation regarding the chosen

modeling abstraction minor.

4.6. Summary

This chapter presented the PCA approach for the design time analysis of

power and energy consumption of a software system. Our approach com-

plements performance prediction approaches. Thereby, it enables trade-offs

between performance and power consumption. PCA predicts the power con-

sumption of individual infrastructure elements based on performance metric

predictions. It leverages existing performance analyses such as SimuCom

[22] and SimuLizar [18, 20] as the source of its predictions. Furthermore, it

supports the integration of derived metrics as input metrics. PCA supports

the analysis of power consumption for static as well as self-adaptive software

systems. Based on the power consumption prediction approach, the chapter

developed a method for evaluating the impact of design decisions on energy

efficiency (EE).

118

4.6. Summary

We designed PCA to be extensible, e.g., to support the consideration of new

power model types. The implementation as of writing this thesis supports a

set of black-box power models used in the evaluation of [200]. Additionally,

it supports the analysis of power models that are defined as mathematical

expressions.

119

5. Power Model Extraction

This chapter presents an automated approach for power model extraction

of servers. We designed the approach to extract power models as input

for architecture-level power consumption analyses. The extracted power

models predict the power consumption of a server from a set of input system

metrics, e.g., CPU utilization. A power model has to be learned once for each

server type. Once the power model has been learned, the power model can

be used to evaluate the power consumption of different software systems if

they were to be deployed on a server of the same server type. We published

the method presented in this chapter in [201].

Our approach aims to reduce the effort required to derive power models

by automating server profiling, model training, and model selection. The

approach uses systematic experiments to obtain a representative power

consumption profile of a server. The profile serves as input to model training

techniques, such as statistical learning. We leverage these techniques to learn

power models. Using an information-theoretic model selection criterion, we

support the selection of relevant system metrics, and the power model for

design time predictions.

We implemented the systematic server profiling in a server profiling frame-

work. We implemented the framework atop the technical foundation of

SERT [29]. The profiling collects power consumption measurements and

system level performance metrics, e.g., CPU utilization and HDD throughput.

Our framework collects power consumption measurements from a dedicated

wall power meter. Our implementation of the model training automates the

construction of instances of the Power Consumption metamodel presented

in Chapter 3. It automates the parametrization of power model bindings

from a PowerBindingRepository. Finally, we rank all bindings based on our

ranking criterion.

121

5. Power Model Extraction

In Section 5.1 we discuss the challenges that have to be addressed by an

automated approach for power model extraction. Section 5.2 presents our

automated power model extraction method. Section 5.3 outlines an exten-

sion of our approach for the extraction based on historical measurements.

Assumptions and limitations are discussed in Section 5.5. Lastly, Section 5.6

provides a summary.

5.1. Challenges

Chapter 4 presented the design time power consumption prediction approach

PCA. PCA relies on accurate power models to predict the power consumption

of a software system. Power models can be derived via manual measurement

andmodel parametrization. However, themanual extraction of powermodels

is cumbersome and error-prone. In this context, extraction refers to the

collection of training data, and the training of power models for a server on

the data. We derived Research Question 5 from this observation:

Research Question 5. How can the effort in deriving power models for
architecture-level power consumption analyses be reduced?

Our architecture-level analysis predicts the power consumption of a software

system using these power models. Our power consumption analysis uses

performance metric predictions as input to the power consumption analysis.

This avoids a redundant behavior specification as a prerequisite to analyze

power and performance characteristics. The software architect does not

need to provide a separate behavior specification, which is tailored towards

the prediction of power consumption. Instead, she can use metric predictions

from performance model specifications as input to the power consumption

analysis.

The Power Consumption metamodel complements the behavior specification

with a description of server power consumption. This description can be

reused to evaluate the power consumption of different software architec-

tures and workload mixes. Depending on the hardware, the power consump-

tion may correlate with different power consumption metrics. The power

consumption of servers has been observed to strongly correlate with CPU

utilization. It is not clear whether the consideration of additional metrics,

122

5.1. Challenges

e.g., storage utilization, may improve prediction accuracy. This led us to the

following Research Question:

Research Question 7. How can software architects and system deployers be
supported in the selection of input metrics for energy efficiency analyses?

We derive a set of challenges from the two research questions. Our approach

aims at addressing these Challenges.

Ch1 Required knowledge of metrics affecting power consumption.
The software architect has to identify central metrics that impact the

power consumption of a software system. In order to avoid

unnecessary effort, only metrics that significantly impact the

prediction accuracy of power and performance should be considered.

Every additional metric considered by a power model increases the

complexity of model learning. The parameter space of a system

metric-based power model grows exponentially with the number of

input metrics. More importantly, every introduced metric also needs

to be predicted by the performance analysis that provides the

prediction input for the power model. The prediction of metrics, e.g.,

storage read and write throughput, requires that the architectural

performance model provides the information to predict these metrics.

In case of storage metrics, this necessitates a modeling of resource

demands caused by storage accesses.

Ch2 Selection and construction of representative workloads.
When extracting power models for use in design time analyses, the

implementation of the system is not yet fully available.

Consequently, we cannot train power models using the target

application and user load. The construction of power models for

design time analyses thus relies on workloads that are representative

of the target workload. We refer to a set of workloads as

representative if it meets the following criteria.

• It produces representative measurements. We consider

measurements representative if they cover the system metric

load levels expected from the software system under design.

• It allows to correlate the variance of system metrics with power

consumption for the considered metric measurement domain.

123

5. Power Model Extraction

Ch3 Selection of suitable power model. Over the years, many

different power model types have been proposed to model the power

consumption of servers using system metrics [59]. The selection of a

power model that best describes the power consumption of a server

under investigation has not been addressed in previous work.

5.2. Power Model Extraction by Systematic
Experimentation

Figure 5.1 depicts an overview of the power model extraction method for

extracting power models for architecture-level energy efficiency analyses.

The method process is subdivided into three main steps server profiling,model
training and model selection. In server profiling, we automatically profile

the server under investigation for a set of resource metrics. This produces a

server profile used as input for themodel training. Model training trains a set

of power models on the measured system metrics and power consumption.

The third step model selection ranks power models based on their predicted

accuracy. This enables users to select a suitable power models, and reason

on the effects of system metrics on prediction accuracy.

The following sections further elaborate on each of the three phases. Section

5.2.1 presents our approach for an experiment-driven server profiling. Sec-

tion 5.2.2 outlines how the resulting power consumption profiles can be used

to learn power models. Section 5.2.3 describes a model selection method that

can be used to evaluate the impact of metrics on prediction accuracy.

5.2.1. Server Profiling

This section presents an approach for the automated profiling of server power

consumption for predefined metric measurement targets. The following

refers to the realization of the approach as profiling framework. Prerequisite

to our approach is the availability of a measuring device for collecting power

data. This can either be a dedicated power meter connected to the wall

socket of the server PSU, or a meter built into the PSU.

124

5.2. Power Model Extraction by Systematic Experimentation

Server profiling

Legend

Profile server
power consumption

System metric
domains

Rank
power models

Workload
repository

Power Model
Repository

Define
profiling ranges

Train
power models

Profiling
configuration

Select relevant
metrics

and workloads

Trained power
models

Choose
relevant metrics,

select model

Power model
ranking

Model training

Model selection

automated

manual

Server
profile

Workload
selection

Figure 5.1.:Overview of the power model model extraction process.

5.2.1.1. Running Example

The running example illustrates our profiling method along the analysis of

an enterprise server deployment environment. We employ the PowerEdge

R815 server as an example of a server in this category.

Design time performance analyses like SimuLizar [20] or SimuCom [22]

support the prediction of central system performance metrics. Examples

125

5. Power Model Extraction

of such metrics are the average CPU utilization ucpu, storage read tp
read

and write throughput tp
write

. Our PCA approach uses these system metric

predictions as input to its design time power consumption predictions. PCA

uses power models to evaluate the power consumption of hardware resources

based on the input metric predictions. PCA thus has to rely on metrics

supported by the design time performance analysis.

Our running example assumes that the three metrics ucpu, tpread, and tpwrite
can be predicted by the used performance analysis.

5.2.1.2. Selection of Used Resource Metrics andWorkloads

The user initially defines the set of metrics that she considers candidates for

input parameters of power models. Each metric quantifies the utilization

of a system resource such as CPU or storage devices. The metrics selected

by the user are the system metrics that the server profiling considers when

measuring out the server under investigation.

The metric set is defined asMprofile = {m1, . . . ,mn} ⊆ M . Hereby,M is the

set of measurable metrics. The metricsMprofile selected by the user are the

metrics that she would be able to predict at design time. For our running

example, we select the metricsMprofile = {ucpu, tpwrite, tpread}

Based on the metrics selected by the user in this step, server profiling can

automatically select workloadsW ⊂Wrepo from a set of workloads that are

predefined in a repositoryWrepo. Each workloadw ∈Wrepo has a controllable

load intensity parameter l . The load intensity parameter l ∈ (0,∞) · 1/s
controls the rate with which a load driver executes workload transactions.

EveryW ⊂ Wrepo is assigned to exactly one metricmj ∈ M , where steady

state measurements ofmj increase monotonically with l . This implies that a

workloadw stresses the utilization of one of the resources that is quantified

by the metrics selected by the user. The increased utilization manifests in

higher measurement values ofmj . Information of a relationship of l andmj
is persisted alongside the repository definitionWrepo. The user does not need

to determine the relation betweenmj and l . Once a new workload has been

added toW ⊂Wrepo, any future user can leverage the persisted relation.

An example workload for ucpu is the AES encryption workloadwAES from

the SERT framework. For the CPU-intensive workloadwAES, ucpu increases

126

5.2. Power Model Extraction by Systematic Experimentation

monotonically with l . wrwrite is an I/O intensive workload from SERT. It

performs storage write operations that follow a randomized access pattern.

Forwrwrite, tpwrite increases monotonically in l .

Individual workloads can be combined to workload mixes. A workload mix is

a subset {w1, . . . ,wn} ⊂W . {waes,wrwrite} is a workload mix that combines

a CPU- with a storage-intensive workload. As a default, all possible workload

mixes may be used. To reduce measuring effort and time, the user can limit

the set of considered workloads.

5.2.1.3. Definition of Profiling Ranges

The automated power consumption profiling uses the workloads selected in

the previous step to measure out the profiling domain. The profiling domain

marks the range of measurements that the user considers relevant. The

profiling domain can be derived from benchmarks or stress tests that push the

metric to the maximum or minimum measurable value. The range between

minimum and maximum values corresponds to the profiling domain of an

individual metric. The combined domain of each metric forms a conservative

boundary of the multidimensional profiling domain. In conjunction with the

workload selection from step 5.2.1.2, the combined domain limits form the

profiling configuration.

In order to profile the server for specific metric measurement thresholds, we

have to sample its profiling domain. Our profiling framework, by default,

employs an equi-width sampling of the profiling domain of each considered

metric. Then, it constructs the full profiling domain as the Cartesian product

of the individual domains.

For the example PowerEdge R815 server, we determined the maximum write

throughput to be around 120 MB/s. Using a sample size of six, equi-width

sampling produces the write grid Ltp
write

= {24i MB/s | 0 ≤ i ≤ 5 ∧ i ∈ N}
for the R815 server. An equi-width grid for ucpu with sample size 21 results

in Lucpu = {
1

20
i | 0 ≤ i ≤ 20 ∧ i ∈ N}. For ucpu and tp

write
, this results in a

combined profiling domain grid of Lucpu × Ltpwrite .

127

5. Power Model Extraction

5.2.1.4. Profiling Server Power Consumption

The profiling of the server automates the extraction of a representative

server for a given profiling configuration. The server profiling executes

the predefined workload mixes on the target environment. It conducts a

profiling run for each tuple in the profiling grid. An example tuple from the

grid Lucpu × Ltpwrite is (lucpu, ltpwrite) = (0.55, 24 MB/s).

Figure 5.2 visualizes a profiling run for (lucpu, ltpwrite) of the running example.

Figure 5.2b shows the graphs for the storage intensive workload wrwrite.

Figure 5.2a displays the results for the CPU intensive workloadwAES. The

top half graph of Figures 5.2a and 5.2b display metric samples over time

as black points. The sliding window average over the measurements is

displayed as a gray line. The lower half graph shows the delays between

successive transaction executions over time for the given workload. The

profiling uses varying delays to target different load intensities.

The framework executes both workloads in parallel. Thereby, it is able to

observe and react upon effects of each workload on the metric values of

other controlled workloads. In the running example, the storage intensive

workloadwrwrite also causes some load on the CPU. To consider this load, the

framework has to increase the delay ofwAES above the delay of an isolated

execution ofwAES.

A profiling run executes in six phases. The vertical lines in Figure 5.2 high-

light these phases. In phase 1, the profiling framework initializes each

workload in the workload mix. Phase 2 is the calibration phase. The cali-

bration varies the mean delay value until it reaches a delay value for which

the workload stresses the system to the target level. The load intensity

calibration is performed to ensure that measurements are collected for the

specified target measurements. For this, the profiling framework controls

the mean delay of all workloads in a workload mix in parallel.

Algorithm 3 delineates the load intensity calibration algorithm. The profiling

framework executes the algorithm in each profiling run. The framework

executes the algorithm concurrently for each workload in the workload mix.

The framework periodically executes an iteration of the algorithm with the

configured calibration interval time. The example profiling run depicted in

Figure 5.2 was executed with an interval time of 0.7 seconds.

128

5.2. Power Model Extraction by Systematic Experimentation

●

●

●●●●
●

●●

●

●

●

●

●●●
●
●●●●●

●●●●●●●●●

●

●●●●

●
●
●
●●●●

●●●●●
●
●
●
●●●●

●
●
●●
●
●●●●

●

●●●●●●●

●
●●
●
●●●●

●●●●●●●

●

●●● ●●●

●●

●

●●●●
●
●
●
●●●

●

●

●

●

●

●●●●

●

●●
●
●●●●●●

●

●●
●●●●

●
●●●

●
●
●
●●●●

●

●●●●●●
●

●
●

●

●●

●

●
●●

●

●●●●●

●

●●●

ph
as

e
1

ph
as

e
3

ph
as

e
4

ph
as

e
6

phase 2
calibration

phase 5
measurement

0.0

0.2

0.4

0.6

0

5

10

15

20

0 50 100 150
time [s]

av
er

ag
e

CP
U

 u
til

iz
at

io
n

tra
ns

ac
tio

n
de

la
y

[m
s]

(a) Top: ucpu. In gray: smoothed average of the measurements, and target value 55%. Bottom:

Transaction delays for wAES.

●●

●

●

●

●●

●

●
●

●
●●
●

●

●●
●●
●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●

●
●
●

●

●

●
●
●

●
●

●

●●●●●●●

●●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●●●
●
●
●

●

●●

●
●
●

●
●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●
●●

●
●●●

●

●

●●

●

●

●
●

●

●

●●
●●
●

●●●

ph
as

e
1

ph
as

e
3

ph
as

e
4

ph
as

e
6phase 2

calibration
phase 5

measurement

0

25

50

75

0

10

20

30

0 50 100 150
time [s]

w
rit

e
th

ro
ug

hp
ut

 [M
B/

s]
tra

ns
ac

tio
n

de
la

y
[m

s]

(b) Top: tp
write

. In gray: smoothed average of the measurements, and target value 24 MB/s.

Bottom: Transaction delays for wrwrite

Figure 5.2.: Example run for target level (lucpu , ltpwrite) = (0.55, 24 MB/s) of workload

mix (wAES,wrwrite). Both displayed processes 5.2b and 5.2a execute in parallel.

129

5. Power Model Extraction

state : thresholdReached← false

input :Current system metric value u, Target metric value

ut ,
Threshold metric value uthold, Metric-specific alpha

αm ,
Initial delay currentDelay

output :Delay to throttle workload currentDelay
1 if ¬thresholdReached then
2 if u < uthold then thresholdReached ← true;
3 else currentDelay ← 2 · currentDelay;
4 else
5 targetDelay ← currentDelay · uut ;
6 currentDelay ← currentDelay ·(1−αm)+targetDelay ·αm ;

7 if αm > 0.1 then αm ← 0.9 · αm + 0.01;

Algorithm 3: Adaptive calibration policy for controlling workload

intensity.

The calibration algorithm operates on a controlled system metric u. We

assume u to be a metric whose measurements grow monotonically with the

load intensity l . The load intensity grows proportional to the inverse delay

currentDelay. ut is the target metric measurement level. For the example

workload mix ut has the values 0.55 and 24 MB/s, respectively.

The algorithm proceeds in the following way. First, the algorithm tries

to reach a practical starting value for currentDelay (lines 1–3). The algo-

rithm starts from an initial input value for currentDelay. This input value is
workload specific, as the size and complexity of transactions varies between

workloads. The initial delay is also system specific to a certain extent. Differ-

ent initial delays should be used if two systems process transactions at rates

that are orders of magnitude apart. The algorithm doubles the delay in each

iteration, starting from the initial currentDelay. The algorithm performs the

exponential delay adjustment to prevent contention on the resource of u.
Otherwise, if the initial currentDelay were set too low, the calibration could

overload the resource. Since the initial transaction delay is too high forwAES,

it is not visible in Figure 5.2a. For the storage intensive workloadwrwrite, the

130

5.2. Power Model Extraction by Systematic Experimentation

initial exponential delay adaption was not needed. Thus, Figure 5.2b does

not display corresponding effects.

After the initial starting value has been found, the algorithm gradually adjusts

the delay (lines 5–7). The algorithm estimates the delay required to achieve

the target level ut as the delay value used in the last iteration multiplied

with the ratio of the current value u and ut .

Line 6 applies an exponentially movingweighted average (EWMA) to the con-

trolled delay value currentDelay. We employ an exponentially smoothened

delay value to lessen the effect of temporary fluctuations of the controlled

system metric (line 6). am is the metric specific exponential smoothing factor.

The EWMA quickly devalues older measurements for larger αm. For smaller

αm, older measurements have a higher weight.

The running example illustrates the benefit of the exponential smoothing. As

we can see in Figure 5.2b, individual measurements of tp
write

scatter strongly

throughout the calibration phase. One reason for this is the aggregation of

write operations in storage drivers and middleware.

The algorithm reduces the exponential smoothing factor αm throughout the

calibration to counteract fluctuations caused by the scattering of measure-

ment values (line 7). This reduces the effect of later target delay estimations.

Line 7 causes αm to approach a smoothing factor of 0.1 from above. For the

running example, the reduction causes currentDelay to converge towards

the delay, which reaches an average utilization close to the intended target

metric tuple (lucpu, ltpwrite) = (0.55, 24 MB/s).

Figure 5.2b illustrates the functioning of the second part of the load cali-

bration algorithm by the example of wrwrite and tp
write

. The lower half of

the graph shows the value of currentDelay at any point throughout the

calibration. The starting value of currentDelay is 10 ms. Initially, αm is set

to 0.2 forwrwrite and the write throughput metric tp
write

. Each subsequent

run of the algorithm reduces αm towards 0.1. The algorithm quickly steers

currentDelay towards approximately 30 ms.

The load calibration forwrwrite andwAES shown in Figure 5.2a operates with

an initial value αm = 0.65. The transaction delay starts at 30 ms and quickly

gets reduced below 2.5 ms. Due to the higher stability of the CPU load

measurements, the delay remains stable after the initial reduction.

131

5. Power Model Extraction

In phase 3, the framework halts all workloads. Phase 4 serves as a warmup

phase. In it, the framework restarts the workloads with the final delay values.

The purpose of phase 3 and 4 is to increase measurement stability.

In phase 5 (measurement), the framework collects measurements of the con-

sidered system level metrics and power. It uses the final value of currentDelay
from the calibration phase to profile the server under investigation for the

target level. The framework keeps the delay value stable. We consider the

measurements collected in this phase as representative of the system under

the target load level. The framework collects measurements throughout the

profiling run using a fixed sampling rate. It smooths the measurements by

applying EWMA to the measurements. Figure 5.2 represents raw measure-

ments as points. The EWMA is displayed as a gray line.

The workload continues its execution into phase 6 due to technical reasons.

I.e., this gives the framework time to persist the measurements from the

measurement phase. The profiling framework assigns the measurements

collected in the measurement phase to the corresponding target level. The

resulting server profile contains a mapping of each input target level to

measurements, and the power consumption measurements collected for the

target level.

5.2.2. Model Training

The model training step trains a set of power model types. A power model

type is a power model with unbound independent variables, as Section 3.2

explained. It produces a set of power models trained to predict the power

consumption of the server under investigation.

The model learning uses the server profile collected in the server profiling

phase as training data. The model learning trains the power models types

contained in a provided Power Model Repository. Section 3.2.1 introduced

the repository specification of our Power Consumption metamodel. Prior to

the training, the power model types contained in the repository are filtered

to only contain power model types with metrics that were considered in the

server profiling. In the running example, we filter the repository to only

consider power model types that have a subset of {ucpu, tpwrite, tpread} as
unbound input variables.

132

5.2. Power Model Extraction by Systematic Experimentation

Model learning techniques that can be used on the profile are nonparametric

and parametric regression techniques. An example parametric regression

technique is iterated reweighted least squares regression as implemented by

Rousseeuw et al. [177]. Instances of nonparametric regression techniques

are MARS [71] or symbolic regression [178]. Both MARS [58] and sym-

bolic regression [8] have been applied in related work to model the power

consumption of servers.

We employ iterated reweighted least squares regression as the default method

to train declarative power model types, i.e., DeclarativePowerModelSpecifica-
tions. As the regression method requires starting parameters, we apply it to

a given ResourcePowerBinding of a declarative model. The initial values of

the FixedFactors of the model serve as starting parameters. From there, our

framework uses the implementation by Rousseeuw et al. [177] to train the

binding on a given server profile.

5.2.3. Model Selection

The model training step trained a set of power models to predict the power

consumption of the server. The powermodels predict the power consumption

with varying degrees of accuracy. In order to get an unequivocal power

consumption prediction, we need to select one of the power models.

Selecting a power model for use at runtime is straightforward. The accuracy

of runtime power models can be evaluated using the actual workload. Model

prediction accuracy of power models can be determined at runtime by com-

paring the runtime predictions from the powermodels against measurements.

The model that performs best in the direct comparison of measurement and

prediction then can be selected.

At design time, the final application architecture, its implementation and

user load may not be known yet. Consequently, we can not determine the

prediction accuracy of power models by comparing predictions with mea-

surements. The uncertainty regarding the behavior of the final application

makes it challenging to determine and select an accurate power model.

We employ AIC to evaluate the prediction accuracy of the power models

M in the Power Model Repository that were trained in the previous model

training step. Section 2.6 introduced the AIC foundations. We rank all power

133

5. Power Model Extraction

models in the repository based on their AIC. If all power models with the

metricm ∈ M are dominated by any model inM \ {m}, we deduce that the
consideration ofm likely does not increase the accuracy for the server under

investigation. If the model is not dominated, a trade-off has to be made

between the expected gain in accuracy and the effort required to considerm
in the design time architecture performance model.

In theory, it would be possible to reason on model quality using the relative

likelihood of the models calculated from their AICs [42, p. 75]. This would

allow to quantify the difference between the models on a numerical scale.

However, we did not observe meaningful differences between the models we

considered in our validation. Section 7.3.8 discusses these validation results.

The relative likelihood of all but the first place model had very similar relative

statistical likelihood scores. Thus, we concluded that the differentation along

a numerical scale provided no additional benefit beyond the AIC ranking.

5.3. Deriving Power Models fromHistorical
Measurements

Section 5.2.1 presented a method for deriving power models via systematic

experimentation. The outlined method requires the server under investi-

gation to be available in isolation for the profiling period. In this time, no

productive workload can be deployed on the server. During operation, it

may not be possible to isolate servers that are in use by productive work-

loads. However, it is possible to use power consumption measurements

from production if power consumption measurements can be collected from

the server. The training of power models on historical measurements is an

alternative to systematic profiling. We can use the historical measurements

to learn power models if the server under investigation

• can not be reserved for systematic profiling,

• has historically run workloads that are representative of the target

workload.

Prerequisite for the model learning is that historic power and system metric

measurements are available for the server over a period of time. In order to

134

5.4. Implementation

avoid an over-weighting of, e.g., idle measurements, the historic measure-

ments should be cleaned up and filtered. One approach towards this is a

pre-aggregation of power measurements for measured values of the system

metrics. In the case of CPU utilization ucpu, its domain can be subdivided

into 100 histogram buckets from 0 to 1. For each of the histogram buckets,

the power measurements can be averaged. If the power model of the server

is learned using the aggregated profile, this reduces the effect of frequent

measurements values such as idle utilization.

Compared to the systematic profiling, the use of historical measurements

does not interfere with the productive use of existing infrastructure. How-

ever, the accuracy of the resulting power models is limited by the availability

of representative measurements. The trained power models have to extrap-

olate from existing measurements. This leads to inaccurate consumption

predictions, if the recorded measurements do not cover the utilization levels

and workload types relevant for the target workload. If the historical work-

load is similar to the expected target workload, the training on historical

measurements may produce more accurate power models than the training

on the profile from the systematic measurements. Since the profiling work-

load matches the operational workload, the error introduced by differences,

e.g., in memory access patterns, is minimal.

5.4. Implementation

This section provides an overview of the implementation of the profiling

framework presented in this chapter. An overview of the tooling implemen-

tation is available online [162].

5.4.1. Server Profiling

The implementation of our systematic profiling approach builds upon the

technical foundation of SERT 1.1.1 [187]. This enabled us to reuse the existing

workload specifications of SERT.

SERT executes a set of representative workloads, also referred to asWorklets.
SERT issues its load in transactions. Each transaction encompasses a set of

135

5. Power Model Extraction

calls to the interface of aWorklet. The successive execution ofWorklets forms

an aggregate workload. The Director component of SERT serves as a load

driver that runs the individual Worklets on the server under investigation.

By default, the load driver performs an initial calibration run for each SERT

Worklet. In this run, the controller determines the maximum achievable

transaction rate of the Worklet on the system. Then, it derives the load

levels lower than 100% by linearly reducing the transaction rate. Section 8.4

elaborates on the differences between SERT and our work.

We replaced the default SERT load driver with a custom one. Our load

driver implementation replaces the calibration logic of SERT with the logic

discussed in Section 5.2.1.4. During calibration, the load driver changes

the delay time to arrive at target metric values. The load driver varies the

transaction rate using the calibration method listed in Algorithm 3. Instead

of steering the load towards fractions of the maximum measured load, it

steers load towards the metric measurement values in the input system

metric domains. The input metric domains are passed as input parameters

to the tooling. Our implementation collects the input system metrics of the

algorithm, e.g., CPU utilization, using Sigar [143]. For power consumption

measurements, we leverage PTDaemon [192]. In addition to the steered

metrics, further metrics can be captured in the recorded server profile.

The SERT load driver only executes one Worklet at any point in time. Our

load driver is able to execute multiple Worklets in parallel. This allows

us to simultaneously stress multiple resources, e.g., CPU and HDD. Our

implementation instantiates one load driver for each steered metric. Each

load driver separately controls the transaction rate of its Worklet. This

enables different mixes between the executed Worklets. Additionally, it

allows the calibration algorithm running in one load driver to adjust its

transaction rate to the resource utilization that other load drivers cause.

The server profiling produces a server profile, which assigns eachmetric level

with the measurements collected for it. This includes the power consumption

measurements.

136

5.4. Implementation

5.4.2. Model Training and Selection

We implemented the model training and model selection steps as an ex-

tension to the Power Consumption Analyzer (PCA) tooling environment,

which Section 4.4 discussed. We built the model training implementation

on the implementation provided by Krach [114]. Compared to the initial

implementation, we extended the range of supported power model types,

and improved component modularity. The tooling supports the training

of declarative power models, i.e., DeclarativeResourcePowerModelSpecifica-
tion.

Figure 5.3 provides an overview of the model training and selection im-

plementation architecture. The power.profilingimport components realizes

functionality for importing the server profile produced by the profiling into

EDP2. The regression components train a set of specified power models.

The power.regression.r component uses regression implementations [67, 177]

available for the statistics framework R. Communication with the R backend

is realized via the Rserve [213] library. We calculate the AIC for the ranking

using the log-likelihood values returned by the regression implementations.

Thus, this functionality is also offered by the regression components.

In addition to parametric regression methods, our implementation also sup-

ports the use of non-parametric regression. Non-parametric regression

techniques are particularly useful when none of the known power model

types accurately model the relationship between system metrics and power

consumption. The two currently supported methods are symbolic regression

[70], and Multivariate Adaptive Regression Splines (MARS) [140].

5.4.3. Power Model Extraction fromHistorical Measurements

We implemented the extraction of power models from historical measure-

ments for the CACTOS variant of our Power Consumption metamodel. Sec-

tion 3.2.5.2 outlined the core principles of this metamodel implementation.

CactoScale realizes the monitoring and data collection infrastructure of CAC-

TOS. It persists system level metrics of servers to an instance of the NoSQL

database HBase [4]. Our power model extraction tooling uses the historical

data collected in HBase as the source of training data.

137

5. Power Model Extraction

power

IModel

edp2.util

IUtil

edp2

IPersist

QuAL

edp2.measuringpoint

IModel

...

...

de.fzi.power.regression

power.regression

power.regression.ui

power.regression.rpower.profilingimport

de.fzi.power.profilingimport

Import

IConstruct

IRegression

Utils

org.rosuda
.rJavaAndRserve

org.vedantatree
.expressionoasis

Rserve

R Backend Library

de.fzi.power

IVisitExpression
...

Conversion to and from R

Figure 5.3.: Simplified UML component diagram of model training and selection

architecture, and integration with PCA and PCM tooling. Component namespace

prefixes are omitted for brevity.

138

5.5. Assumptions and Limitations

The tooling uses the measurements collected in a specified time window as

input to the model training. Prior to training a power model via iterated

reweighted least squares regression [177], the input data is cleaned up. Ev-

ery discrete utilization metric value is assigned the median value over all

collected power consumption measurements, which has been collected for

this metric value. This reduces the influence of measurement fluctuations

and imbalances in the distribution of the input data.

5.5. Assumptions and Limitations

This section discusses assumptions and limitations of the power model

extraction method.

Availability of power consumptionmeasurements. The presented profiling

approach relies on a source of power consumption measurements. Power

consumption measurements can be provided by dedicated external measure-

ment devices, such as power meters. Alternatively, built-in power meters, as

found in PSUs of servers, may be used.

Steering of load intensity based on individual systemmetrics. The presen-

ted load calibration algorithm assumes that each workload w is assigned

to exactly one system metric m. The load intensity of w is varied with

the goal of varying m. The load intensity calibration does not explicitly

consider that higher load intensities ofw can increase measurement values

of multiple system metrics, e.g., ucpu and tp
write

. If the additional system

metrics are simultaneously stressed by separate workloads, the calibration

algorithm considers the load caused byw . In summary, this does not restrict

the applicability of our approach, as it implicitly accounts for workloads that

stress multiple system resources.

Representativenessof thesamplingstrategy. The presented approach aims

to derive power models for use at design time. Thus, its server profiling

has to be performed without prior knowledge of the final workload. By

default, the systematic profiling approach equally weights all target system

139

5. Power Model Extraction

metric levels in L1 × · · · × Ln . The equal weighting of target levels results in

a distribution of metric measurements that are roughly equally distributed.

Individual applications and user workloads, however, seldom stress the full

utilization range of a server. The equal weighting does not anticipate the

uneven distribution of server utilization levels. This results in a mismatch

between the server profile used for power model learning and the utilization

distribution. Most model learning techniques such as iterated reweighted

least squares regression aim to reduce the error for frequently occurring

input parameter values. As a consequence, the prediction accuracy of the

learned models is lower than if the distribution was known.

We consider this to be a minor limitation due to the following two reasons.

In design time analyses the workload intensity issued to software systems is

varied to explore quality characteristics and energy efficiency at different

workload levels. A weighting of specific utilization ranges reduces the pre-

diction accuracy of learned power models for values outside of the weighted

range. Second, the presented approach supports the consideration of uneven

workload distributions. If the user of our approach has prior knowledge of

the workload distribution, the distribution can be considered:

• in the selection of input target levels for the profiling,

• by aggregating system metric measurement before the model

learning. The importance of different target level runs can then be

weighted based on the workload distribution.

Accuracy of AIC-based ranking. In order for AIC to provide any meaningful

prediction on model quality requires that the data set is representative of the

system’s behavior. The power model ranking hence is only accurate under

the assumption that the profiling approach produces a representative server

profile. Since AIC is an information theoretic criterion, the ranking only

reflects the likelihood that a model is accurate. It does not imply that the

model with the highest AIC has the highest accuracy for any server that the

ranking approach is applied to.

Noconsiderationofhiddendevice states. The presented profiling approach

targets specific power system utilization levels. The profiling approach

does not consider the influence of “hidden device states” as observed by

140

5.6. Summary

McCullough et al. [135]. These states refer to device or resource states that

can not be observed, e.g. in different values of system metrics. If the hidden

device states are known and can be triggered specifically, the presented

approach can be used to profile the power consumption in specific system

states. Thus, we consider this limitation not specific to our approach, but a

general shortcoming of power models based on system metrics.

5.6. Summary

This chapter presents a power model extraction method. It allows users to

obtain power models for use in design time power consumption predictions.

The central benefit of the power model extraction method lies in its high

degree of automation. Thereby, it reduces the effort for constructing power

models compared to a manual or semi-manual power model extraction. The

approach focuses on the reduction of effort to obtain the power models,

which our design time energy efficiency analysis requires.

The chapter derives a set of challenges from Research Question 5 and Re-

search Question 7. These challenges need to be met to address both ques-

tions.

The power model extraction method consists of the three steps server pro-

filing, model training, and model selection. Server profiling leverages sys-

tematic experiments to extract representative power consumption profiles

of servers. The experiments put varying degrees of load on multiple sys-

tem resources. By automating the measurement of multiple metrics, this

enables the user to reason on the effect of considering different metrics. This

addresses Challenge Ch1. Our server profiling approach builds upon the

transactional workload definition of SERT. We added a novel mechanism

to derive mixed workloads from the individual workloads. Thereby, our

approach supports the integration and reuse of diverse workloads (Ch2).

In conclusion, the presented approach addresses Research Question 5 by

automating the significant parts of server profiling, model training, and

model selection.

Using the consumption profiles, we train a set of power model types from a

repository. This produces a set of power models that predict the consumption

141

5. Power Model Extraction

of the server under investigation. A ranking based on AIC supports the

selection of an accurate power model for design time predictions (Ch3).

We provide an implementation of our approach that automates the process

from systematic measurement, measurement analysis, model training, to

model selection. We validate our approach for a diverse set of workloads. In

Section 7.2.2, we apply it as part of an end-to-end case study. The case study

evaluates the energy efficiency of a software system on an architectural level.

Section 7.3 evaluates our power model extraction approach to a set of Big

Data and enterprise workloads.

142

6. Transient Effects

This chapter presents an approach for the coupled specification and analysis

of transient effects of reconfigurations in self-adaptive software systems. The

approach integrates with existing architectural approaches for the design

time analysis of self-adaptive software systems like SimuLizar [18, 20], or

SLAstic.SIM [133]. An earlier version of the metamodel, the analysis and

formalization is outlined in [199].

After motivating the problem addressed by our approach in Section 6.1,

Section 6.2 presents a metamodel for specifying the transient effects of

reconfigurations in self-adaptive software systems. Section 6.3 details the

formal semantics of the modeling constructs of the metamodel. Section 6.4

explains how the transient effects captured by instances of the metamodel

can be considered in an existing quality analysis for self-adaptive software

systems. Section 6.5 discusses assumptions and limitations of the presented

approach. Section 6.6 concludes this chapter.

6.1. Motivation

Self-adaptive software systems aim to uphold QoS requirements under chang-

ing and uncertain environmental conditions. Examples for changes in envi-

ronmental conditions are bursts in user load or variations of the available

power budget of a system. Self-adaptive software systems trigger reconfigu-

rations of their structure, deployment and configuration to deal with these

changes.

It is crucial for the QoS offered by a self-adaptive system that its adapta-

tion mechanisms act effectively and efficiently. The mechanisms should

adapt the system when changes that violate QoS are expected to occur. For

143

6. Transient Effects

this, the mechanisms have to identify when, where and what to adapt. Ide-

ally, reconfiguration mechanisms prevent QoS violations by preemptively

triggering adaptations. The following properties of adaptations contribute

to the difficulty of designing efficient and effective self-adaptive software

systems.

1. Adaptations do not complete instantaneously. While

adaptations like the adjustment of the load distribution policy used

by a load balancer [20] takes a negligible amount of time, adaptations

like VM migrations have execution times well above a couple of

seconds [179, 205, 219]. A VM migration moves a running VM from a

source host to a target host without requiring the VM to be shut

down.

2. Adaptations require resources to execute. In the case of VM

migration, network bandwidth is needed to migrate the VM, its

memory and potentially its storage to the target host. The VM

migration algorithm running on the migration host and target causes

CPU, memory and storage load. The increased resource utilization

increases power consumption.

3. The impact of adaptations can not be observed immediately.
After an adaptation has been completed, its effect on QoS is delayed.

Reconfiguring a load balancer to distribute new requests away from

an overloaded server does not cause the response time of user

requests to recover immediately. Requests queued up on the server

still need to be processed.

This thesis classifies the manifestation of these three adaptation properties as

transient effects. Transient effects refer to the impact of reconfigurations on

quality characteristics that are caused by changes in the system environment

and the adaptation made to address the changes. Examples for such changes

are an increase or decrease in user load, or the power budget available to a

set of servers in a data center.

Design time analyses for self-adaptive software systems like SimuLizar by

Becker et al. [18, 20], or SLAstic.SIM by Massow et al. [133] allow software

architects to analyze self-adaptive software systems at design time. These

existing approaches allow reasoning on the delayed effect of reconfigurations

144

6.1. Motivation

(3). However, they do not consider the effect of reconfigurations on execution

time (1) and consumed resources (2).

It is possible for an analysis to implicitly consider the delay between the

completion and the time by which the adaptation effect can be observed.

SimuLizar [18, 20] achieves this by separating the analysis of architectural

runtime state and the state of pending requests. In order to account for the

execution time (1) and consumed resources of adaptations (2) in architecture-

level quality analyses, Research Question 9 needs to be addressed:

Research Question 9. What is an architecture-level description of reconfig-
urations that describes the effect of reconfigurations on system metrics such as
performance and power consumption?

Section 6.2 addresses Research Question 9 by introducing a metamodel for a

coupled specification of adaptation effect on system state and behavior. The

proposed metamodel is based on Ecore. As such, it defines the syntax for

the adaptation specification. Due to the limited semantic expressiveness of

Ecore [134], Section 6.3 provides a formalization of the behavioral semantics
[37] of the metamodel.

To support reasoning on transient effects at design time, analysis approaches

must consider the impact of reconfigurations on quality dimensions like per-

formance and power. Research Question 10 formulates these challenges:

Research Question 10. How can we consider the effects of runtime reconfig-
urations in software quality analyses at design time?

Two approaches can be taken towards the realization of a software quality

analysis, which considers transient effects. The first option would be to

design a new software quality analysis that considers transient effects. Sec-

ond, an existing analysis approach can be extended to account for transient

effects. The second approach offers the following advantages over the design

of a new approach:

• Reduced validation effort. The validation of the developed

analysis approach can build upon validation results for the existing

approach. This reduces the set of analysis characteristics that need to

be validated to the newly introduced or altered parts of the analysis.

145

6. Transient Effects

• Reuse of existing tooling and models. The integration with

existing analysis approaches allows users to easily evaluate and

adopt the approach.

Due to the listed advantages, we opted to develop an approach that is compat-

ible with existing analysis approaches. The following refers to the simulation

component which realizes the analysis as Transient Effect Interpreter. We

developed the central semantics of the transient effects analysis to be indepen-

dent of a specific software performance simulation. Section 6.3 outlines the

analysis semantics implemented by the Transient Effect Interpreter. As proof

of concept, we integrated our analysis with SimuLizar by Becker et al. [20].

Section 6.4 provides more information on the Transient Effect Interpreter,

and its integration with SimuLizar.

6.2. A Metamodel for an Architecture-Level
Description of Transient Effects

Our Adaptation Action metamodel supports the reusable specification of self-
adaptation actions for use in design time analyses. A self-adaptation action

is an atomic reconfiguration operation. In deployed systems, actions group

a set of atomically executed middleware operations. Self-adaptation lan-

guages based on the S/T/A paradigm [51, 96] embed actions into higher level

reconfiguration abstractions to specify reconfiguration rules and plans.

The presented metamodel links the adaptation effect specification with a

behavior specification. The behavior specification defines the overhead

of the reconfiguration, i.e., its execution cost. The metamodel links this

specification to individual adaptation action definitions. This enables a high

level of composability and reuse. The effect of complex reconfigurations on

performance and system configuration can be derived from their composed

actions. The action specifications can be integrated with S/T/A languages to

support design time analyses of reconfiguration mechanisms implemented

using these languages.

Figure 6.1 provides an overview of the Adaptation Action metamodel. The

model consists of four packages core, parameter, instance, mapping and

context. The core package consists of the central entities for describing the

146

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

contextinstance

type : EClass

RoleType

<<abstract>>
AbstractAdaptation

Behavior

<<abstract>>
AdaptationStep

value : EObject

Role
RoleSet

actions

actionRepository

*1

roles

roleSet
1

*
role

1..*
1

roleType

core

execute(roles : RoleSet, ccv :
ControllerCallInputVariableUsageCollection [0..1],
 ec : ExecutionContext [0..1]) : Boolean
executeAsync(roles : RoleSet, ccv :
ControllerCallInputVariableUsageCollection [0..1],
ec : ExecutionContext [0..1]) : ExecutionContext

Action

parameter

ControllerCallInput
VariableUsage

Collection

1

*
pcm::parameter

1variableUsage

Adaptation
Behavior

Repository

*

includedRepositories

Profile

emfprofile

1

transientStateProfile

adaptationSteps

adaptation
Behavior

1

1..*

involvedRoles
action1

1..*

ControllerCallInput
VariableUsage

VariableUsage

Execution
Context

Figure 6.1.:Class diagram overview of Adaptation Action metamodel

147

6. Transient Effects

structural and behavioral impact of self-adaptation actions. The instance
and parameter packages group entities that parametrize the execution of

an adaptation action. The mapping package subsumes entities that model a

correspondence or mapping relation between entities in the architectural

performance model and the input and output variables of an action. The

package context contains an entity used for identifying the execution context

of asynchronously executed actions.

6.2.1. Action Behavior Specification and Instantiation

An AbstractAdaptationBehavior couples a structural effect specification of

an adaptation action with a specification of its performance effect. An

AbstractAdaptationBehavior consists of a set of ordered adaptationSteps of
type AdaptationStep. An adaptation step defines a substep of the action.

All steps need to be executed before the action completes. Section 6.2.5

elaborates on the different types of steps.

AdaptationBehaviorRepository persists a set of actions of the type Action. The
repository may include and export further referenced repositories via its

includedRepositories reference. This allows for a composition of a repository

from multiple existing repositories.

Action is the central entity of the model. It couples the structural effect

specification of an adaptation action with a description of its performance

impact. Action realizesAbstractionAdaptationBehavior. The type corresponds
to type specification of an adaptation action in S/T/A frameworks. The steps

contained in the action specify its adaptation logic.

An Action is instantiated using its execute operations. Action defines two

operations execute and executeAsync. Each call to an execute operation

instantiates the Action using the passed parameters. The Adaptation Action

metamodel implements the operations as EOperations. The operations couple
the model specification with the Transient Effect Interpreter. Section 6.4

further discusses the Transient Effect Interpreter. An adaptation mechanism

triggers the execution of an adaptation action by calling one of the two

operations. The Adaptation Action metamodel implementation realizes the

two optional parameters of the operations by providing 2
2 = 4 method

148

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

implementations. This eases the use of the methods, as they can be called

without passing null arguments for the non-used parameters.

6.2.2. Action Parameters

Adaptation actions depend upon parameters. Example parameters are the

subjects of an adaptation action. Our metamodel refers to the parameters,

which capture the entities involved in executing the adaptation, as roles.

Each Action is parametrized by a set of roles. The involvedRoles containment

links the adaptation behavior to the RoleTypes involved in the action. A

RoleType defines the parameters of the action at the type level. It references

the EClass type of the parameter passed to the action. A Role instantiates
the RoleType it references. The relationship between Role and RoleType is
an ontological instance-of relationship [9]. A RoleSet subsumes a set of Role
instances in its roles containment. All operations of Action are parametrized

by a RoleSet.

In addition to the role parameters, the metamodel supports the specification

of additional factors that influence the transient effects of adaptation actions.

ControllerCallInputVariableUsageCollection is the first optional parameter of

the execute operations of an action. The ControllerCallInputVariableUsage
parameters contained in the collection parametrize calls to the performance

model that describe the transient behavior of the action. ControllerCall-
InputVariableUsage contains a VariableUsage specification from PCM. This

matches the instance type of parameters passed to operations as defined in

PCM.

The central use of ControllerCallInputVariableUsage is the specification of

dynamic, performance influencing factors outside of the roles. An example

factor is the execution time of an algorithm that formulates a reconfiguration

strategy. The algorithm execution time of an Action is a factor that influences
its execution time. The dependency on algorithm execution time can be

expressed as a ControllerCallInputVariableUsage. If defined, a reconfiguration
mechanism can pass the execution time as an execution parameter of the

action via a ControllerCallInputVariableUsage.

149

6. Transient Effects

6.2.3. Synchronous and Asynchronous Execution

Self-adaptive software systems can simultaneously trigger or execute multi-

ple adaptation actions. Action offers asynchronous execute operations with

executeAsync, in order to support the asynchronous execution of actions

specified in the presented metamodel. The difference between an asynchro-

nous and synchronous execution of actions is that no simulation time passes

before the asynchronous call returns. The optional execution parameter of

type ExecutionContext identifies the context in which an asynchronous call is

executed. The explicit representation of the execution context in the model

allows reconfiguration actions to make decisions and progress dependent

on asynchronously executed adaptation steps.

The synchronous execute returns a Boolean that indicates whether the ac-

tion has been executed successfully. The executeAsync methods return the

ExecutionContext that identifies the current execution context. If the method

caller explicitly passes an ExecutionContext, the Transient Effect Interpreter
executes the action in the passed context. If the caller does not pass a con-

text, the Transient Effect Interpreter creates a new context. The interpreter

emits an event once an asynchronous action completes. Adaptation mecha-

nisms may react upon this event, e.g., to check if it should trigger further

adaptations.

6.2.4. Identification of Running Actions

An adaptation action reconfigures the system to reach a target state from

its source state. While the adaptation action is executed, the system entities

involved in the reconfiguration may be in a transient state. During the

transient phase, the subjects of adaptation actions might not be involved in

further reconfigurations. An example of this is a VMmigration action. While

a migration of a VM is in process, it is not possible to migrate the same VM

again until the migration completes. Our metamodel represents the subjects

of an adaptation that are in transient states by annotating them with their

state. We realized this annotation of transient states using a metamodel

profile mechanism.

TheAction references a Profile specification. Profile is a stereotype annotation
that is realized using EMF Profiles [120]. The profile annotates the entities

150

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

reconfigured by the adaptation action. It marks these adaptation subjects

as being in a transient state. The explicit marking enables the definition of

adaptation preconditions that consider whether an entity is already being

reconfigured.

6.2.5. Adaptation Steps

This section outlines the types of steps in the metamodel used to model the

effect of adaptation actions on system configuration and performance.

Figure 6.2 depicts the subtypes of AdaptationStep that Figure 6.1 omitted.

A BranchingAdaptationStep contains a set of conditionally executed adap-

tations. Every execution path is modeled by a GuardedTransition and its

contained behavior description. The attribute booleanCondition models the

boolean condition on which the execution of GuardedTransition depends.

The conditions are specified in QVTo model queries. An alternative solu-

tion would have been to allow users to specify the conditions using OCL

expressions. While this would have increased the compactness of conditions,

it would have limited their expressiveness. The NestedAdaptationBehavior
contained in a GuardedTransition describes the behavior that is executed if

the condition evaluates to true. As NestedAdaptationBehavior specializes Ab-
stractAdaptationBehavior, it consists of a set of contained adaptationSteps.

We specify the performance effect of an adaptation action via ResourceDe-
mandingSteps. A ResourceDemandingStep specifies the performance of an

adaptation action as a set of calls to operations offered by the components

of an architecture performance model. This thesis leverages the Repository

viewpoint of PCM to describe the performance impact of adaptation actions

in an Adaptation Performance Model. A ResourceDemandingStep contains a

set of ControllerCalls. Each controller call models a call to the Adaptation

Performance Model. The execution of the steps that follow the call continues

only once the call has been processed.

A ControllerCall references the OperationSignature in the Adaptation Per-

formance Model that the ControllerCall calls. The referenced operation

signature definition belongs to a BasicComponent. The BasicComponent is
not part of the initial architectural performance model definition of the an-

alyzed software system. The reason for this is the open world assumption

151

6. Transient Effects

<<abstract>>
Abstract

Adaptation
Behavior

<<abstract>>
Adaptation

Step

Branching
Adaptation

Step

enactment:QVToTm

EnactAdaptation
Step

Controller
Call

Controller
Mapping

Mapping

controller
Mappings

mapping 1

1..*

booleanCondition
: QVToTm

GuardedTransition1

1

adaptationSteps
1..*

1
adaptationBehavior

produces

controllerCalls

step1

1..*

core

mapping

providedInterfaces
0..1
1..*

operations

interface
0..1

*

pcm::Repository
calledSignature

1

parameter

ControllerCallInput
VariableUsage

ControllerCallInput
VariableUsage

Collection

1
*

1

corresponding
ControllerCall

pcm::parameter

Variable
Usage

controller
Completion
: QVToTm

Resource
DemandingStep

Nested
Adaptation

Behavior 1

mappedCall

Operation
ProvidedRole

1

controllerRole

1
providedInterface

guardedTransitions

guardedStep 1

*

Operation
Signature

Basic
Component

Operation
Interface

variable
Usage

1

Figure 6.2.:Detailed class diagram view of the coupled behavior specification in the

Adaptation Action metamodel.

152

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

made in this thesis: We assume that is infeasible to preempt and model all

system configurations at design time.

The controllerCompletion QVTo model transformation referenced by the

ResourceDemandingStep ensures that the components involved in processing

the ResourceDemandingStep are present in the system. The transformation

implements a performance model completion. Existing performance com-

pletion approaches [80, 228] enhance the analyzed model in a preprocessing

step prior to the analysis. Unlike this, the controllerCompletion adds the

Adaptation Performance Model mid-analysis when the action is executed.

The model completion is parametrized by the architectural runtime model of

the system under analysis, and the RoleSet passed to the action. The model

completion produces a Mapping of the Roles in the RoleSet of the action.

The Mapping contains a set of ControllerMappings. A ControllerMapping
references the OperationProvidedRole of the component from the Adaptation

Performance Model. Each ControllerMapping links the ControllerCall to the

component, to which the call should be issued. The Transient Effect Inter-

preter uses the mappings to identify the component instances, and process

the ControllerCalls.

EnactAdaptationStep expresses the effect of an adaptation on the system

configuration. Its enactment QVTo model transformation maps the runtime

architecture model prior to the execution of the action to the architecture

model after the action has completed. Since EnactAdaptationStep realizes

AdaptationStep, the enactment of an action can be executed in multiple

steps.

6.2.6. A Process for the Definition of Actions

Our Adaptation Action metamodel provides a modeling language for the

reusable specification of reconfiguration effects on system state and behav-

ior. Subject of the modeling abstraction are self-adaptation actions. Self-

adaptation actions may be composed to complex self-adaptation rules, e.g.,

as part of a S/T/A framework.

We identified the following steps as a guideline for the specification of actions

in our modeling language:

153

6. Transient Effects

1. Establish the intended outcome of the action. An action

reconfigures a set of components or devices. This transitions them

from a source to a target state. The action specification needs to

model this transition.

2. Identify actors and subjects involved in the action. This
includes service components, which manage the execution of the

action.

3. Specify preconditions of the action. An action may only be

executed if a set of preconditions are met. A common precondition is

that the subject of an action may not already be reconfigured by the

ongoing execution of a previous action. The preconditions should be

limited to technical constraints, and not conditions of the

reconfiguration rule which executes the action.

4. Model the performance impact of the action. The performance

impact of the action can be derived using standard SPE techniques,

e.g., systematic performance experiments. Parametric dependencies

between characteristics of the input parameters, or the deployment

environment should be explored as part of the performance

modeling.

We applied the outlined approach to define coupled specifications of the

adaptation effect on system state and behavior using Adaptation Action

metamodel. The subsequent section discuss the resulting three example

action instances.

6.2.7. Examples

This section illustrates our Adaptation Action metamodel via three example

instances. The presented adaptation actions are examples of architecture-

level adaptation actions.

6.2.7.1. Horizontal Scaling

This section outlines a specification of a scale-out action used to horizontally

scale an application. Horizontal scaling enables applications to adjust the

154

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

number of service replicas to deal with load variations. In an IaaS context,

scale-out is realized by booting additional VMs, on which service replicas are

deployed. These replicas are then wired with a load balancer that distributes

user requests between all VM instances.

Figure 6.3 depicts a specification of scale-out action using the Adaptation

Action metamodel. The QVTo file pictograms represents a QVTo model

transformation that the object references. Each model transformation either

implements a set of conditions via model queries, or extends the sytemmodel

via model completions. We omit certain details of the action specification,

e.g. IDs, from the figure in order to improve understandability.

ScaleOut has three parameter RoleTypes. InstantiatedComponent refers to
the component which is started up as part of the scale-out. The Instantiation-
Controller is wired with the component of the passed LoadBalancer Assembly

Context. InstantiationController represents the software component that con-

trols the scale-out execution. The deployment location of the controller does

not need to be identical to the target location. This is the case if component

instantiation is controlled by a management service. TargetResourceContainer
is the Resource Container on which the launched component instance is

deployed.

The specification root ScaleOut references an EMF Profile. The Profile con-

tains a stereotype annotation for the type ResourceContainer. The annotation

serves as a marker of Resource Containers, to which the scale-out deploys an

additional component instance. Additionally, the root Action composes the

adaptation behavior description from a set of Steps. The preconditionsMet
contains the checkPreconditions transition that acts as a guard to the instan-

tiation behavior. A QVTo query realizes the precondition check conditional

on which the scale-out executes. In its current implementation, it checks

whether any scale-outs that target the same TargetResourceContainer are
already in execution. An additional conceivable constraint could be, e.g., that

only one instance of instantiatedComponent can be created by a scale-out at

any point in time.

The child element instantiateComponent of checkPreconditions specifies an
ordered sequence of steps which comprise the adaptation behavior.

Its initial step is instantiationOverhead. The step triggers the performance

overhead induced by the instantiation. The linked QVTo transformation

155

6. Transient Effects

core

third

transientStateProfile=
InstantiatedComponent
Profile

ScaleOut:Action

Preconditions
Met:Branching
AdaptationStep

checkPreconditions
:GuardedTransition

Instantiate
Component:Nested
AdaptationBehavior

Instantiation
Overhead:Resource

DemandingStep

instantiateController
:ControllerCall

enactAdaptation
:EnactAdaptation

Step

wireWith
Loadbalancer

:EnactAdaptation
Step

type=ResourceContainer

TargetResource
Container:RoleType

type=BasicComponent

Instantiated
Component:RoleType

type=ResourceContainer

InstantiationController
Location:RoleType

second

*.qvto

*.qvto

.qvto.qvto

pcm::Repository
<<Interface>>
IComponentInstantiation

void instantiate()

<<BasicComponent>>
ComponentInstantiationController

SEFFCompartment

IComponentInstantiation.instantiate

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
ComponentInstantiationLocation

SEFFCompartment

IComponentInstantiation.instantiate

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Requires>>
<<Provides>><<Provides>>

component

type=AssemblyContext

LoadBalancer:RoleType

first

calledSignature

Figure 6.3.:Object diagram view of scale-out expressed as an instance of Adaptation

Action metamodel.

156

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

implements a performance model completion. The model completion allo-

cates and wires instances of the components that induce the performance

overhead. It allocates an instance of ComponentInstantiationLocation on

the Resource Container passed via the Action parameter TargetResource-
Container. In its ComponentInstantiationController, the instantiate RDSEFF
issues a specified resource demand, and calls instantiate of the newly al-

located ComponentInstantiationLocation instance. If a prior execution of

the model completion already had allocated the components on TargetRe-
sourceContainer and InstantiationController, the model completion looks up

the respective Allocation Contexts. When executed as part of the transient

effects analysis, the model completion returns the allocated components in a

Mapping collection (c.f. Section 6.2). The instantiateController ControllerCall
defines a call to a ComponentInstantiationController. This call needs to be

processed as part of the performance analysis, before the scale-out can be

enacted.

The second step enactAdaptation specifies how the scale-out is enacted in

the software system analysis. The linked QVTo transformation links a new

Assembly Context of InstantiatedComponent with the system architecture,

and allocates it to the TargetResourceContainer. Finally, the transformation re-

moves the steoreotype annotation from the passed TargetResourceContainer.
Subsequent scale-outs may then instantiate components on the TargetRe-
sourceContainer again.

The third step wireWithLoadBalancer wires the new component instance

with the load balancer component instance that is passed in the loadBalancer
parameter.

While the resource demands in the scale-out implementation uses fixed

resource demands, the parameter can easily be extended, e.g., to resource

demands that depend upon Basic Component properties. Example properties

could be the memory footprint of components, or specific startup times.

Scale-out allows applications to deal with increases in load. We did not

discuss its counterpart, scale-in, which decommissions replicated instances

once they are no longer needed. Scale-in follows the same process logic as

scale out. However, shutdown replaces startup, and the removal from the

load balancer supersedes the addition.

157

6. Transient Effects

6.2.7.2. Virtual Machine Migration

This section presents a model of VM live migrations that is specified with

our Adaptation Action metamodel. The motivation in Section 6.1 introduced

VM live migration as an example adaptation action that induces a transient

effect. VM live migrations take time to complete. Their completion time

depends on the CPU utilization of the migration target and source, network

load, and memory activity. The presented example VM migration model

abstracts frommost performance dependencies. It models the transient effect

as fixed resource demand distribution. We opted for this simple modeling

as it was sufficient for the investigations we conducted in our validation.

More complex performance interactions can be introduced to the linked

PCM performance model, if needed.

Figure 6.4 depicts an example model of VM live migration. The outlined

model assumes VMs to be represented as composite, or black box software

components. The VM migration action has three parameters. MigratedCom-
ponentAssemblyContext refers to the Assembly Context, which is migrated

from one server to another. TargetResourceContainer refers to the target

server of the VM migration. The third parameter MigrationController is the
migration service component that orchestrates the migration.

Before the action can be executed, the QVTo model query associated with

checkPreconditions checks if the component is currently already being mi-

grated. This is achieved by checking if the Assembly Context of the compo-

nent has been tagged with the MigratedAssemblyContext stereotype. If the
preconditions hold true, the Assembly Context is tagged with the Assembly

Context, and the migration starts.

The migration behavior consists of two steps. The first stepmigrateController
specifies the performance effect of the migration. Its migrateVm controller

call specifies the performance effect of migration as a call to the linked PCM

performance model. The performance model completion ofmigrateController
defines how the components in the PCM performance model are supposed

to be allocated in the system under analysis:

• MigrationController should be allocated on the passed

MigrationControllerLocation Resource Container,

• MigrationSource on the migration source Resource Container, and

158

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

core

second

profile=Migrated
AssemblyContext

MigrateComponent
:Action preconditionsMet

:Branching
AdaptationStep

checkPreconditions
:GuardedTransition

componentMigration
Adaptation:Nested
AdaptationBehavior

migrateVm:ControllerCall

migrateController
:ResourceDemanding

Step

migrateComponent:
EnactAdaptationStep

type=AssemblyContext

MigratedComponent
AssemblyContext

:RoleType
type=ResourceContainer

TargetResource
Container:RoleType

first

*.qvto

.qvto.qvto

pcm::Repository

component

type=ResourceContainer

MigrationController
Location:RoleType

<<Interface>>
IComponentMigration

void migrate(int input)

<<Interface>>
IMigrationSource

void migrate()

<<Interface>>
IMigrationTarget

void migrate()

<<Interface>>
IComponentTransfer

void transferComponent()

<<BasicComponent>>
MigrationController

SEFFCompartment

IComponentMigration.migrate

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
MigrationSource

SEFFCompartment

IComponentTransfer.transferComponent

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
MigrationTarget

SEFFCompartment

IMigrationTarget.migrate

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Requires>> <<Requires>> <<Requires>>

<<Provides>> <<Provides>> <<Provides>>

<<Provides>>

calledSignature

Figure 6.4.:Object diagram view of component migration adaptation expressed as

an instance of Adaptation Action metamodel.

• MigrationTarget on the migration target Resource Container.

If the PCM system model already contains applicable instances of the migra-

tion middleware or controller components, the model transformation returns

the existing instances instead. The performance model completion wires the

159

6. Transient Effects

migration controller with the migration source and target, and the migra-

tion target with the source. MigrationController orchestrates the migration

by calling MigrationTarget. In turn, MigrationTarget starts the VM migra-

tion via a call to the transferComponent operation of the MigrationSource
component.

The second step of the migration behavior EnactAdaptationStep finalizes the

VM migration. Its model transformation moves the allocation location of

the migrated component from the source to the target Resource Container.

Subsequently, it removes the MigratedAssemblyContext from the migrated

component instance.

6.2.7.3. Switching of Power States

This section presents a modeling of power state switching, or transitions,

in a software system. The proposed modeling accounts for reconfiguration

times of adaptation actions, which affect the power state of devices.

Computational and communication devices commonly can operate in dif-

ferent power states. Each state realizes a different trade-off between power

consumption and performance. Active power management policies adapt the

current power state to reduce power consumption in exchange for reduced

performance. The goal of power management policies is to increase the

energy efficiency, or battery lifetime of devices. Our Power Consumption

metamodel explicitly captures power states, and transitions between power

states. Section 3.2.2 introduced the Power State Machine (PSM) viewpoint.

This viewpoint can be used to model power states and transitions. The

Binding viewpoint instantiates power state machines via device type specific

StatefulResourcePowerBindings. A StatefulResourcePowerBinding models the

consumption of a device type in each power state, and during the transition

between states. It subsumes a set of TransitionStateBinding and PowerState-
Bindings. A TransitionStateBinding captures the power consumption during

the transition between two power states. It describes the transitional con-

sumption as a function of power consumption over time. PowerStateBindings
model the consumption in the power states.

We identified a set of constraints which concern the analytical semantics of

PSM:

160

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

1. It shall only be possible to transition from a source PowerState to a

target state, if a TransitionState links them as sourceState and
targetState.

2. A StatefulResourcePowerBinding enters a transition state when its

contained AbstractPowerStateBinding is set to a

TransitionStateBinding. Once it is in the transition state, the transition

can not be rolled back, or overwritten by the next transition.

3. The transition between two states has to take the amount of time to

complete, which is specified in the powerCurve of the
ConsumptionBehavior. The TransitionStateBinding references this

curve with transitionConsumption.

We identified two alternative solutions to enforce the constraints in our

power consumption analysis.

1. Enforce the constraints as part of the power consumption analysis.

This would have:

• Required a deep integration of performance simulation and

power analysis. Otherwise, it would not be possible to enforce

the transition between specific power states dependent on time.

• Resulted in a loss of flexibility. While it makes sense to enforce

the model semantics in general, there are use cases in which it

makes sense to make an exception to the constraints. An

example exception is an immediate device shutdown. A

shutdown stops all current power state transitions and

immediately turns off the device. This contradicts constraint 2.

Nevertheless, we would still like to be able to express

immediate shutdowns without an explicit extension of the PSM

metamodel.

2. Define the analytical semantics constraints using our Adaptation

Action metamodel. This has the following advantages over the first

solution:

• Non-invasive realization of the time-dependent transition

between power states. Our Adaptation Action metamodel

supports the specification of dependencies between

reconfiguration enactment, and the system performance. Using

161

6. Transient Effects

ResourceDemandingSteps, we can specify that a certain amount

of time must pass before a device transitions from a source to a

target state. The corresponding power state transition action

may define this time as the duration of the powerCurve of a
ConsumptionBehavior .

• Simplified specification of the performance impact of power

state transitions. The transition between two power states

usually impacts the performance of the reconfigured device. In

case of a server, the transition into a low power mode reduces

its processing speed. An Action can couple the effect

specification of the state transition on power consumption in

the Power Consumption Model, and on performance in the

PCM Resource Environment viewpoint.

• Maintained flexibility. Reconfiguration rules can bypass the

constraints defined by the state switching action. This allows

an implementation of reconfigurations that perform, e.g.,

immediate device shutdowns.

We opted for the second solution due to its advantages over the first option.

The following discusses the realization of the transient effect of power state

transitions as an action of the Adaptation Action metamodel.

Figure 6.5 depicts the power state change action. The action has three

parameters. The AffectedResourceSet specifies the device, or resource, that
shall transition from one power state to another. TargetPowerState is the
power state which the device will be in, once the adaptation action has

finished. The third parameter, CurrentAllocation, identifies the context in
which the action executes. The action executes if the following conditions

are met:

• TargetPowerState is a valid target state of AffectedResourceSet,

• The device modeled by AffectedResourceSet is not already in a

transition state.

The QVTo model query of checkPreconditions implements the conditions. If

the conditions hold, the device enters the transition state which connects the

source and target power state. The changeToTransition step specifies this tran-
sition. Its QVTo model query selects the transition based on the assumption

162

6.2. A Metamodel for an Architecture-Level Description of Transient Effects

core

third

ChangePower
State:Action

preconditionsMet
:Branching

AdaptationStep

checkPreconditions
:GuardedTransition

PowerStateChanging
Adaptation:Nested

AdaptationBehavior

changeToTransition
Step:Enact

AdaptationStep

delay:ControllerCall

transition:Resource
DemandingStep

changePowerState:
EnactAdaptation

Step

type=StatefulPower
ConsumingResourceSet

AffectedResourceSet
:RoleType

type=Allocation

CurrentAllocation
:RoleType

second

*.qvto

.qvto.qvto

*.qvto

pcm::Repository

component

type=AbstractPowerState

Binding

TargetPowerState
Binding:RoleType

first

<<Interface>>
IDelay

void execute()

<<BasicComponent>>
DelayController

SEFFCompartment

IDelay.execute

PassiveResourcesCompartment

ComponentParameterCompartment

delay

VALUE = 1

ResourceRequiredRoles

<<Provides>>

calledSignature

Figure 6.5.:Object diagram view of power state change adaptation expressed as an

instance of Adaptation Action metamodel.

that there is exactly one transition from source to target power state. Once

the delay ControllerCall has been processed, the transition completes. The

performance model completion of transition adds an instance of the Delay-
Controller component to the system under analysis. The component models

the time that the device remains in the transition state. The performance

163

6. Transient Effects

model completion sets the time to the upper boundary of the definition inter-

val of the power transition function. The TransitionStateBinding references

this transition function in the contained ConsumptionBehavior.

Once the transition time has passed, the changePowerState step completes

the state transition by setting the binding of the device to the target state

binding. This finalizes the power state transition.

6.3. Transient Effect Model Semantics

This section contributes a formalization of the execution semantics for the

Adaptation Action metamodel. The formalization complements the syntacti-

cal definitions outlined in Section 6.2. It describes the underlying concepts

of the model independent of a specific architecture modeling language.

The formalization builds upon the “self-adaptive system model” defined by

Becker et al. [20]. An initial version of the formalization was published

in [199]. The formalization presented in this section refines the seman-

tics specification and extends it with an execution semantics definition for

asynchronously executed Actions.

Definition 6.1 (Self-Adaptive System Model based on [20]). A self-adaptive
system model is a tuple (S, E,σ), where

• S is the domain of all system states,

• E is the domain of monitored environment states,

• σ is the set of self-adaptation rules {σ1, . . . ,σl }.

A system state s ∈ S subsumes all aspects of the state that may be considered

by self-adaptation mechanisms. This includes the architectural state, e.g.,

the deployment of components. Furthermore, the state covers system met-

rics, such as average response times or power consumption. The state also

includes properties that architecture models abstract from. Example details

are the state of active user requests and server resources. In the context of

design time analyses of self-adaptive software systems, s is not a running
software system. Rather, it is the simulation model of the system under

analysis.

164

6.3. Transient Effect Model Semantics

Refining the formalization by Becker et al. [20], we introduceMl ⊂ S as the

domain of all architectural runtime models that conform to an ADL l . An
instancems ∈ Ml is an abstraction of the system state s . The modelms rep-

resents a runtime architecture model. It only contains system characteristics

that can be expressed in l . As an example, PCM instances may only describe

system properties that can be expressed according to the PCM metamodel.

The runtime management of a self-adaptive system ensures consistency

between an architectural runtime model instance ms ∈ Ml and the cor-

responding system state s ∈ S . The runtime management continuously

executes an implementation of the self-adaptive system runtime management
consistency function.

Definition 6.2 (Self-adaptive System Runtime Management Consistency

Function). The self-adaptive system runtime management consistency function
is defined as

χ : S ×M → S ×M .

χ is an idempotent mapping that ensures consistency between m ∈ M and
s ∈ S .

The consistency function χ operates on both the domain of runtime states

S , and the architectural runtime model domainM . The function definition

updates the architectural modelm ∈ M with changes to the system s ∈ S .
Secondly, the function enacts any adaptations on s that are realized as model

transformations onm.

The Adaptation Action metamodel allows for the decomposition of adapta-

tion mechanisms or tactics into a set of conditionally executed, parametrized

adaptation actions. Actions specified in the metamodel consist of a set of

adaptation steps.

Becker et al. [20] define a simulation as a function that returns a metric

value for an input metric and a given point in time. While this definition is

sufficient for the scope of their paper, we complement it with a simulator

definition that accounts for simulation state.

Definition 6.3 (Discrete Software System Simulator). A quality-driven, dis-
crete software system simulator is a function:

165

6. Transient Effects

τ : S ×C → S ×T ,

where C is the domain of the set of calls issued on the system. T is the time
domain.

The discrete software simulation function defined in 6.3 advances the simu-

lation of a system s ∈ S , until all calls c ∈ Ct ∈ C made to s have returned. τ
returns the state s ′ ∈ S that represents the system state at the time t ′ ∈ T at

which the last call has completed.

Our definition of a software system simulator focuses on the properties of a

simulator which are relevant to the analysis of transient effects. It abstracts

from the detailed behavior of the system. An example of this is the relation

between user interactions and resource utilization. Koziolek [112] provides a

detailed behavioral semantics definition for a specific ADL, namely PCM.

Individual adaptation steps only depend upon a subset of adaptation param-

eters. Depending on its type, an adaptation step may or may not affect the

runtime state and its representation in the runtime model. Definition 6.4

introduces a shorthand notation that we use for composing functions that

do not share all inputs and outputs.

Definition 6.4 (Partial Composition Operator). Let f1 : Γi1 × . . . × Γi j →
Γo1
× . . .× Γok f2 : Ωi1 × . . .×Ωit → Ωo1

× . . .×Ωou . The order of Γi1, . . . , Γi j
and Γo1

, . . . , Γok shall be consistent between f1 and f2. The partial composition
operator ◦̂ is defined as:

◦̂(γi) =(Πm1
((f2◦̄f1)(γi)) ∪ ΠΩm

1

(ΠΓi−Ωo (γi)),

. . . ,Πml ((f2◦̄f1)(γi)) ∪ Πml (ΠΓi−Ωo (γi)), . . .)

where

• γi ∈ Γi1 × . . . × Γi j , Γi = {Γi1, . . . , Γi j }, and Γo = {Γo1
, . . . , Γok },

• Π is the projection operator from relational algebra,

• m1, . . . ,ml ∈ {Γi1, . . . , Γi j } ∪ {Ωo1
, . . . ,Ωou }.

•
◦̄ : f2◦̄f1(γi) =f2(ΠΩi

1

(f1(γi)) ∪ ΠΩi
1

(ΠΓi−Γo (γi)), . . . ,

ΠΩij
(f1(γi)) ∪ ΠΩij

(ΠΓi−Γo (γi))).

166

6.3. Transient Effect Model Semantics

The following example illustrates ◦̂: Let f1 : A×B×C → B, and f2 : A×B → C .
Then f2◦̄f1 : A × B × C → A × B × C is a function that passes the fitting

attribute values of f1 to f2, and otherwise passes the input γi through.

The partial composition ◦̂ enables a definition of an adaptation step as a

partially composed set of adaptation step functions and the self-adaptive

runtime management consistency function:

Definition 6.5 (Adaptation Action). Let ϕ = {ϕ1, . . . ,ϕm} ∈ Φ be a set of
adaptation parameters, where Φ is the domain of adaptation action parameters.
Additionally, let s ∈ S andm ∈ M . An adaptation action is defined as:

a(s,m,ϕ) = µn ◦̂ . . . ◦̂µ1(s,m,ϕ)

Here, µi = pi ◦̂χ with 1 ≤ i ≤ n is the partial composition of an adaptation
step pi ∈ P , and the management consistency function χ .

The inclusion of χ in the definition of µi implies that the execution of a step

pi proceeds only once. It updates the runtime state to include the execution

of the step.

Definition 6.6 (Adaptation Step). An adaptation step pi ∈ P is an individual
operation executed as part of an adaptation action. P = Pbr ∪Prd∪Pσ combines
the domains of the different types of Adaptation Steps to couple the description
of conditional branches (Pbr) and reconfigurations (Pσ) with their performance
effect (Prd).

Definition 6.7 (Resource-Demanding Adaptation Step). A resource-deman-
ding adaptation step prd ∈ Prd is a function prd : S × Φ→ S , where

prd (s,ϕ) = τ (s,Ct (ϕ))

with s ∈ S ,m ∈ M , ϕ ∈ Φ. Ct (ϕ) ∈ C is a set of parametrized concurrent calls
issued to components in the simulated self-adaptive software system.

Resource-demanding adaptation steps specify the effect of actions on system

performance. They can be used to define both the impact on and dependency

to system performance of an adaptation action. The performance impact

and dependency result from a set of calls Ct (ϕ) to the system. These calls

167

6. Transient Effects

are represented in the system state model s . Once the system has processed

a call, other adaptation steps that waited for the completion can be applied

to the system.

An example adaptation action that contains a resource-demanding adaptation

step is VM migration. VM migration induces a performance overhead on

the system s ∈ S in the shape of network traffic sent from the source to

the target host of the migration. The duration and network load caused

by a VM migration depends, among other characteristics, on the size of

the transferred VM image. This dependency can be expressed as a set of

parameters ϕ ∈ Φ.

Definition 6.8 (Enact Adaptation Step). An enact adaptation step pσ ∈ Pσ
is a function pσ : M × Φ→ M .

An enact adaptation step applies an adaptation to the runtime architecture

modelm ∈ M of the system. Unlike the resource demanding adaptation step,

it does not directly modify the system state s ∈ S . It transformsm from the

source state prior to the adaptation to the target state.

A branching adaptation step groups a set of conditionally executed branches.

At most, one of its branches is executed. If none of the conditions of the

branches hold, the step leaves the system state unchanged:

Definition 6.9 (Branching Adaptation Step). A branching adaptation step is
a function pbr : S ×M × Φ→ S ×M × Φ

pbr (s,m,ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ1

m ◦̂...◦̂µ
1

1
(s,m,ϕ) if c1(m,ϕ) = true,

µ2

k ◦̂...◦̂µ
2

1
(s,m,ϕ) if ¬c1(m,ϕ) ∧ c2(m,ϕ) = true,

...

µnl ◦̂...◦̂µ
n
1
(s,m,ϕ) if

⋀
1≤i<n

¬ci (m,ϕ) ∧ cn(m,ϕ) = true,

(s,m,ϕ) else .

c j is a function c j : Ml × Φ→ {true, false} that evaluates whether the runtime
architecture modelm ∈ Ml and a set of passed parameters ϕ ∈ Φ meet specific
adaptation preconditions.

A branching adaptation step groups a set of adaptation step sequences

{µ1, ..., µi , ..., µn}, where µi = µij ◦̂...◦̂µ
i
1
.

168

6.3. Transient Effect Model Semantics

The formalization sketched thus far assumes that all adaptation actions ex-

ecute sequentially. The assumption is part of Definition 6.5 of adaptation

actions, and Definition 6.7 of resource-demanding steps. First, adaptation

actions are defined as a composition of adaptation steps. Second, all resource-

demanding adaptation steps apply the simulation function τ . The two defini-
tions imply that all steps are executed in sequence, and that further steps can

only be started once a preceding resource-demanding step has completed.

We extend the prior definitions to consider asynchronous executions of

adaptation actions. An asynchronously executed adaptation action does not

immediately advance the simulation time by applying τ . In order to achieve

this, we construct an alternative definition of asynchronous adaptation

steps:

Definition 6.10 (AsynchronousAdaptationAction). Letϕ = {ϕ1, . . . ,ϕm} ∈
Φ, s ∈ S andm ∈ M . C is the domain of sets of service calls. An asynchronous
adaptation action is defined as aasync : S ×M → S ×M ×C with

aasync (s,m,ϕ) = µn ◦̂ . . . ◦̂µ1(s,m,ϕ)

Here, µi = pi ◦̂χ with pi ∈ Pasync = Pbr ∪ Prdasync ∪ Prd ∪ Pσ .

Definition 6.11 (Asynchronous Resource-Demanding Adaptation Step). An
asynchronous resource-demanding adaptation step prdasync ∈ Prdasync is a
function prdasync : Φ→ C , where

prd (ϕ) = Ct (ϕ)

with ϕ ∈ Φ. Ct (ϕ) ∈ C is a set of parametrized concurrent calls issued to
components in the simulated system.

In contrast to synchronous adaptation steps, asynchronous steps do not

execute the calls c ∈ Ct (ϕ). The calls are collected and can be executed by

later synchronous resource-demanding adaptation steps.

Adaptation actions can be combined to form adaptation mechanisms. Adap-

tation mechanisms execute adaptation actions dependent on a set of given

conditions. The condition combined with the resulting actions are also

referred to as self-adaptation rules:

169

6. Transient Effects

Definition 6.12 (Self-Adaptation Rules and Adaptation Actions). A self-
adaptation rule σt : S ×M × E → S ×M × Φ ∈ σ is defined as

σ (s,m, e) =

{
χ ◦̂kv ◦̂ . . . ◦̂kд ◦̂ . . . ◦̂k1(s,m, e), if c(m, e) = true
s, if c(m, e) = false

where
• c : Ml × E → {true, false} is the condition of the rule.

• kд is defined as either

– a parametrized call of an adaptation action:
kд(s,m, e) = a(s,m, ξд(m, e)). The function ξд : Ml × E → Φ
maps the runtime architecture and environment state to
appropriate adaptation action parameters ϕ ∈ Φ.

– an execution of previous asynchronously started calls Casync ∈ C
of asynchronous adaptation actions on the simulated system
s ∈ S via τ (s,Casync),

– the execution of an idle action as defined by Pavlović and
Abramsky [154] to wait for the completion of the prior Casync.

S/T/A frameworks can formulate self-adaptation rules as part of larger adap-

tation plans, i.e. adaptation tactics.

6.4. Coupled Evaluation of Transient Effects in
Model-Driven Software Quality Analyses

Section 6.3 established the model semantics of the Adaptation Action me-

tamodel. In order to reason on performance effects of self-adaptations, the

developed model and its semantics have to be considered in a software

quality analysis. This section outlines the approach for the analysis of

Adaptation Action metamodel as part of an existing simulative software

quality analysis. The approach realizes the simulation of transient effects

as a coupled simulation that interacts with an underlying software quality

simulation. We refer to the simulation component that implements the

170

6.4. Coupled Evaluation of Transient Effects in Model-Driven Software Quality Analyses

analysis as the Transient Effect Interpreter. As an example we present the

integration with SimuLizar.

6.4.1. Integration Architecture

LegendExecuteManaged Element

Monitor

Runtime Model

IAccessRuntimeState

SimuLizar Core

QVTo
Reconfiguration

Engine

Adaptation
Action MM

IModelAccess

Simulation
BackendSimuLizar UI

IAnalyze

IRunSimulation

ISimulateResources,
IMeasure, ...

SimuLizar
Adaptation
Action
Interpreter

IExecute

Palladio
Component
Model

Story Diagram
Reconfiguration
Engine

Analyze+Plan

Adaptation
Mechanism A

Adaptation
Mechanism B

...

Runtime
Measurement
Model

...

MAPE Phase

Managed Element

New Comp.

Figure 6.6.: Simplified integration architecture of the Transient Effect Interpreter and

SimuLizar.

Figure 6.6 sketches the integration architecture of the Transient Effect Inter-

preter and SimuLizar. The figure classifies the SimuLizar components by the

phase of the MAPE-K feedback loop to which they contribute. Added compo-

nents are highlighted in gray. The Adaptation Action metamodel discussed

in Section 6.2 extends the runtime model of SimuLizar with a set of exe-

cutable adaptation actions. The actions are available to any reconfiguration

mechanism integrated into the simulated self-adaptive system. SimuLizar

supports the integration of different reconfiguration engines [17]. Recon-

figuration engines enact adaptations by transforming the runtime model

of SimuLizar from the current to the desired target state. Self-adaptation

mechanisms like the mechanisms A and B shown in Figure 6.6 trigger an

171

6. Transient Effects

adaptation action by calling its execute method. The following section details

how mechanisms can issue actions, and how the Transient Effect Interpreter

processes them.

6.4.2. Use and Execution of Actions

This section discusses the use and execution of actions specified with the

Adaptation Action metamodel. An adaptation mechanism instantiates an

Action by calling its execute operation with the relevant instantiation param-

eters.

Listing 6.1 shows an excerpt from an adaptation rule specified in the QVTo

model transformation language. The listed QVTo helper method that starts a

scale-out action. Section 6.2.7.1 had introduced the scale-out action executed

in the example. Lines 8 to 25 instantiate the roles that parametrize the

scale-out. For scale-out, the roles encompass in listed order:

1. The target Resource Container of the scaled component (lines 9-12),

2. the component which is instantiated as part of the scale-out (lines

13-16),

3. the Assembly Context of the load balancer that forwards request to

the scaled component (lines 17-20),

4. the allocation location of the management service, which instantiates

the component (lines 21-24).

Line 27 calls the execute EOperation of the scale-out action. This starts the

execution of the action. The call to the helper method prepareForController-
Call() initializes a set of input parameters of the type ControllerCallInput-
VariableUsageCollection. These parameters specify factors in addition to the

passed roles that impact the performance effect of the action, as Section 6.2

outlined.

When a reconfiguration mechanism calls the execute operation, it issues
a call to a set of methods implemented in the Transient Effect Interpreter.

172

6.4. Coupled Evaluation of Transient Effects in Model-Driven Software Quality Analyses

Listing 6.1: Example QVTo transformation snippet executing a scale-out action

1 property targetResourceContainerRoleId = . . . ;
2 property instantiatedComponentRoleId = . . . ;
3 property loadBalancerRoleId = . . . ;
4 property controllerContainerRoleId = . . . ;
5

helper scaleOut(var instantiateVm : Action, instantiatedComponent :

BasicComponent, targetResourceContainer : ResourceContainer,

controllerContainer : ResourceContainer) : Boolean {

// Instantiate parameters for Action

var roleSet : RoleSet := object RoleSet@roleSets {

9 roles += object instance::Role {
10 roleType := instantiateVm.getRoleTypeById(

targetResourceContainerRoleId);

value := targetResourceContainer.oclAsType(EObject);

};

13 roles += object instance::Role {
14 roleType := instantiateVm.getRoleTypeById(

instantiatedComponentRoleId);

15 value := instantiatedComponent.oclAsType(EObject);

};

17 roles += object instance::Role {
18 roleType := instantiateVm.getRoleTypeById(

loadBalancerRoleId);

value := controllerContainer.oclAsType(EObject);

20 };

21 roles += object instance::Role {
22 roleType := instantiateVm.getRoleTypeById(

controllerContainerRoleId);

value := controllerContainer.oclAsType(EObject);

};

25 };

26

return instantiateVm.execute(roleSet,

prepareInputForControllerCall());

28 }

173

6. Transient Effects

Listing 6.2:Call to Transient Effect Interpreter by the execute EOperation

1 return org.palladiosimulator.simulizar.action.interpreter.

ActionRuntimeState.getInterpreterBuilder(affectedRoleSet,

getRepository()).addControllerCallVariableUsages(

controllerCallsVariableUsages).addExecutionContext(

executionContext).build().doSwitch(this).
getExecutionResultAsBoolean();

Listing 6.2 shows the method body of the execute operation. The operation
constructs the execution context of the action using the input parameters.

Then, it processes the action and returns.

Figure 6.7 depicts a class diagram excerpt of the classes called by the execute
method. TheActionRuntimeState class offers interfaces to the extension point
IAccessRuntimeState shown in Figure 6.6. The SimuLizar core component

passes an instance of AbstractSimuLizarRuntimeState to the Transient Effect

Interpreter. This provides the interpreter access to the simulated runtime

state of the analyzed software system. The execute operation constructs a

TransientEffectInterpreter via an instance of the TransientEffectInterpreter-
Builder. The class applies the builder pattern to construct the Transient Effect
Interpreter. Once all parameters have been passed, the call to build returns

the resulting TransientEffectInterpreter. This interpreter instance processes
the passed Action. The interpreter is implemented according to the visitor

pattern. It leverages the automatically generated CoreSwitch base class for

visiting all classes of the Adaptation Action metamodel in the core package.
Steinberg [195] further explain the functioning of this pattern. The execute
operation in Listing 6.2 issues the initial visit call to the Action by calling its

doSwitchmethod. The interpreter realizes the visitor logic in the static nested

class InternalSwitch. Once the Transient Effect Interpreter has processed
the call, it returns a TransientEffectExecutionResult. The execute operation
converts this result to a Boolean by calling getExecutionResultAsBoolean.

Listing 6.3 contains the asynchronous variant of Listing 6.2 that is executed

when calling executeAsync. The asynchronous variant of execute differs

174

6.4. Coupled Evaluation of Transient Effects in Model-Driven Software Quality Analyses

+getInterpreterBuilder(RoleSet roleSet, AdaptationBehaviorRepository
repository) : TransientEffectInterpreterBuilder
+setRuntimeStateModel(AbstractSimuLizarRuntimeState passedState)

ActionRuntimeState

org.palladiosimulator.simulizar.action

+isAsync() : TransientEffectInterpreterBuilder
+isAsync(ExecutionContext) : TransientEffectInterpreterBuilder
+addControllerVariableUsages(ControllerCallInputVariableUsageCollection
controllerCallVariableUsages) : TransientEffectInterpreterBuilder
+addExecutionContext(ExecutionContext ctx) :
TransientEffectInterpreterBuilder
+build() : TransientEffectInterpreter

TransientEffectInterpreterBuilder :
CoreSwitch<TransientEffectExecutionResult>

+caseAction(Action action) : TransientEffectExecutionResult
...

TransientEffectInterpeter : CoreSwitch<TransientEffectExecutionResult>

org.palladiosimulator.simulizar
...

org.palladiosimulator.simulizar.runtimestate

+setRuntimeStateModel(AbstractSimuLizarRuntimeState state)

<<interface>> IRuntimeStateAccessor

...
-InternalSwitch : CoreSwitch<Boolean>

...
-AsyncInterpretationProcess : SimuComSimProcess

+getExecutionResult() : EventResult
+getContext() : Optional<ExecutionContext>
+getExecutionResultAsBoolean() : boolean

TransientEffectExecutionResult

Figure 6.7.: Simplified excerpt of the class diagram overview of Transient Effect

Interpreter

175

6. Transient Effects

Listing 6.3:Call to Transient Effect Interpreter by executeAsync EOperation

1 org.palladiosimulator.simulizar.action.interpreter.ActionRuntimeState.

getInterpreterBuilder(affectedRoleSet, getRepository()).isAsync(

asyncExecutionContext).addControllerCallVariableUsages(

controllerCallsVariableUsages).build().doSwitch(this);
return asyncExecutionContext;

primarily in two ways. First, the asynchronous execute sets the Execution-
Context to the passed context. This signals that the interpreter should process
the call asynchronously. Second, executeAsync returns the ExecutionContext
of the call instead of a Boolean. The returned ExecutionContext enables adap-
tation mechanisms to wait for the completion of the asynchronous action.

This allows mechanisms to join a set of concurrently executed asynchronous

actions. Internally, the Transient Effect Interpreter processes the call in

an asynchronously started simulation process. AsyncInterpretationProcess
implements this process.

6.4.3. Execution of AdaptationSteps

The Transient Effect Interpreter sequentially executes all of its nestedAdapta-
tionSteps according to their order in its containment collection. It implements

the interpreter semantics introduced in Section 6.3. As part of the work con-

ducted in the context of this thesis, we refactored SimuLizar to execute the

reconfiguration engines shown in Figure 6.6 in a separate simulation process.

This allows reconfigurations to be delayed or interrupted as part of the sim-

ulation. The Transient Effect Interpreter makes use of this to consider the

performance impact of reconfigurations.

The Transient Effect Interpreter visits the sequence of steps. The following

sketches how the interpreter executes the different types of steps.

BranchingAdaptationStep A BranchingAdaptationStep defines a set of adap-
tation behavior transition alternatives. The interpreter sequentially iterates

over the contained GuardedTransitions. The interpreter executes a behavior

176

6.4. Coupled Evaluation of Transient Effects in Model-Driven Software Quality Analyses

alternative if its conditions hold true. It executes the first transition whose

Boolean condition evaluates to true. The Boolean condition is implemented

as a QVTo query referenced by the GuardedTransition. The interpreter con-
tinues with the execution of the NestedAdaptationBehavior contained in the

GuardedTransition. This leads the interpreter to execute every step in the

NestedAdaptationBehavior. Once it has fully processed the behavior, the

interpreter moves on to the next step in the adaptationSteps set of the parent
AbstractAdaptationBehavior.

ResourceDemandingStep A ResourceDemandingStep defines the overhead

incurred by executing a subset of adaptation steps of an Action. The step
includes calls to a set of operation signatures of component instances. It rep-

resents each call to components in the performance model as a ControllerCall.
Figure 6.8 illustrates how the Transient Effect Interpreter processes the step.

The activity diagram uses the component instantiation call InstantiateCon-
troller from Section 6.2.7 as an example. First, the interpreter executes the

associated QVTo performance model completion. The completion adds the

components to the architectural performance model, which induce the per-

formance effect modeled by the ResourceDemandingStep. This results in an

extended System and Allocation model. The interpreter produces a Mapping
as a result of the completion. The mapping consists of ControllerMappings.
Each contained ControllerMapping links a ControllerCall to the provided role
of a component, which the performance completion has introduced. Second,

the interpreter starts a simulated user call for each ControllerMapping ele-

ment. The simulated user executes the call represented by the ControllerCall.
Finally, the Transient Effect Interpreter continues with the next step in the

adaptationSteps collection of its parent behavior.

EnactAdaptationStep An EnactAdaptationStep transforms the architectural

runtime model of the analyzed software system from its current to the target

state. To execute this type of step, the Transient Effect Interpreter performs

the QVTo model transformation referenced by the step. Subsequently, the

interpreter executes the remaining steps in the adaptationSteps of the parent
behavior.

177

6. Transient Effects

InstantiateController
:ControllerCall

calledSignature

<<System>>
 FullSystem

<<AssemblyContext>>
ComponentInstantiationController

Provided_IComponentInstantiation

Required_IComponentInstantiation

<<AssemblyContext>>
ComponentInstantiationLocation

IComponentInstantiation

Continue analysis

…

Execute completion: Add/look up
components in System, Allocation

:Mapping

MappedInstantiation
Controller:Controller

Mapping

mappedCall

controllerRole

Start users

<<Loop>>

Add user to simulated users Start user

for each ControllerMapping

+ +

simulizar::action::Mapping

pcm::Allocation ...

pcm::Repository action::core …

Figure 6.8.:Activity diagram of the Resource Demanding step execution.

178

6.4. Coupled Evaluation of Transient Effects in Model-Driven Software Quality Analyses

6.4.4. Reconfiguration Engine Support

The Adaptation Action metamodel defines the behavior of adaptation actions

as a series of steps with well-defined execution semantics. Section 6.3 pre-

sented the execution semantics. The Transient Effect Interpreter implements

these execution semantics. Actions offer a set of executable EOperations that
allow adaptation mechanisms to start adaptation actions. When called, an

operation constructs an execution context, and defers the execution of the

action to the Transient Effect Interpreter. The chosen coupling of Adaptation

Action metamodel and Transient Effect Interpreter enables their integra-

tion with existing simulation and model transformation logic. SimuLizar

defines reconfigurations as model transformations on the runtime model

of the simulated system. The model transformations may be implemented

in different transformation languages. As of writing this thesis, SimuLizar

offers QVTo, Henshin [6] and Story Diagrams (SDs) [60] reconfiguration

engines. SimuLizar supports the addition of further reconfiguration engines,

e.g., engines that support different model transformation languages. Hence,

this section also discusses whether further popular model transformation

languages support the execution of EOperations as part of transformations.

In QVTo, EOperations can be called directly as part of any transformation.

QVTo thus natively supports the execution of actions as part of reconfig-

uration rules. We extensively used instances of our Adaptation Action

metamodel in reconfigurations, which we implemented in QVTo. An ex-

ample application of QVTo as the reconfiguration engine is the validation

presented in Section 7.4.

QVT Relations (QVTr) allows for calls to black-box methods implemented

in Java as part of its enforce domain clause. The clause can specify a call to

any Java method within its implementedBy sub-clause. Using these language

constructs, EOperations like execute of the Action type can be called.

The SDs implementation outlined by Detten et al. [60] allow for the execution

of arbitrary code or statements via StatementNodes. Henshin can execute

arbitrary Java code within its AttributeConditions [6]. Intuitively, this also
applies to the execution of the Java method generated for the EOperations of

Action. There are SimuLizar reconfiguration engines for the SD and Henshin

implementations.

179

6. Transient Effects

Like QVTo, ATL Transformation Language (ATL) allows for direct calls to

EOperations. ATL code can issue calls to an EOperation in both to or do
section of a rule. Thus, a potential ATL reconfiguration engine would also

support the execution of actions.

6.5. Assumptions and Limitations

The model and analysis presented in this chapter are based on a set of

assumptions. The following discusses these assumptions, alongside a set of

limitations of our approach.

Analysis based on DES of self-adaptive software system. The analysis pre-

sented in Section 6.3 and 6.4 builds upon the semantics of a DES for self-

adaptive systems. The analysis can not be integrated with analytical per-

formance analysis approaches that focus on steady state system analyses.

An example of this analysis category is PCM2LQN by Koziolek [112]. Tran-

sient effects and the resulting behavior of the system in transient phases

are essential to the QoS of the system. The steady state assumption does

not hold for scenarios in which transient effects occur. Hence, our extended

transient effects analysis is not compatible with these analyses. We do not

consider the incompatibility of our approach with analyses based on the

steady state assumption a significant limitation, as these analyses do not

support reasoning on QoS in transient phases. This makes these analyses

inapplicable for scenarios in which the transient behavior of the system is

relevant.

Use of EOperations to realize Action instantiation. The Adaptation Action

metamodel defines self-adaptation actions on a categorical, or type, level.

Instances of the Action type describe the effect of a self-adaptation action

independent of a concrete software architecture. Reconfiguration rules may

instantiate Actions by calling one of its execute EOperations with its instan-

tiation parameters. This eases the use of Actions in reconfiguration engines

built upon all prevalent model transformation languages, as discussed in

Section 6.4.4. However, it might not be possible to leverage this integration

mechanism in every reconfiguration engine. This limitation can be addressed

180

6.6. Summary

parameter

ControllerCall
Input

VariableUsage

type : EClass

RoleType

value : EObject

Role

RoleSet

1..*

1

roleType

Action

ActionInstance
roleSets

1 1..*

Execution
Queue

instances

1

1..*

involvedRoles

1 1..*

instance

core

usages

11..*

context

Execution
Context

context

1

0..1

roles

roleSet 1

1..*

Figure 6.9.: Sketch of model extension with explicit Action instantiation.

with the addition of an instantiation model to the metamodel. Figure 6.9

sketches this solution. Instead of calling the execute operation of Actions,
actions would then be issued via the creation of ActionInstances. The Tran-
sient Effect Interpreter would be triggered when an action is added to the

ExecutionQueue. The activation of the interpreter then could be realized via

the EMF listener infrastructure. In conclusion, we consider potential techni-

cal limitations of the chosen approach for action instantiation marginal. All

core concepts of our modeling and analysis approach are compatible with

the sketched generalized realization.

6.6. Summary

In this chapter we present our modeling and analysis approach for consider-

ing transient effects in the analysis of self-adaptive software systems. The

goal of the approach is to improve the prediction accuracy of design time

analyses of self-adaptive software systems.

181

6. Transient Effects

Our Adaptation Action metamodel supports the definition of reusable self-

adaptation actions. It couples the specification of performance effect and

reconfiguration outcome. This allows a detailed consideration of tradeoffs

between the benefits of reconfigurations and their costs. The metamodel

supports the modeling of power consumption and performance overheads.

This addresses Research Question 9. The metamodel describes an adaptation

action as a sequence of adaptation steps. It distinguishes between steps

that check conditions, describe the effect of actions on the system state, and

which express the performance effect. Action specifications can be reused in

different reconfigurations, and for different system analyses.

We formally defined the execution semantics of our Adaptation Action

metamodel. Building upon this formal specification, we discussed how the

analysis of actions can be incorporated in an existing simulative performance

analysis (Research Question 10). We integrated a prototype implementation

of our analysis with Simulizar by Becker et al. [20].

The use of our action modeling language does not restrict software architects

in their approach towards specifying reconfiguration rules. Becker et al. [20]

describe reconfigurations by means of model transformations. We illus-

trated that our analysis is compatible with a variety of model transformation

languages, including the languages supported by SimuLizar.

We applied our Adaptation Action metamodel in the CACTOS project to

implement composable adaptation action specifications for use in IaaS data

center simulation [115, 196]. The metamodel facilitated the reuse of different

data center management actions, i.e., for the instantiation and horizontal

scaling of different application types. The application to the simulation of

complex IaaS Cloud scenarios illustrated the applicability and appropriate-

ness of our metamodel and analysis.

Section 7.4 evaluates the benefits of our approach by applying it to a hori-

zontally scaling IaaS application.

182

7. Validation

This chapter presents the validation of our contributions towards a systematic

consideration of energy efficiency of software systems at design time. We

conducted a set of case studies to evaluate the four central contributions of

this thesis:

C1: Design of a modeling language for the description of power consump-

tion characteristics of software systems

C2: Development of an approach for energy efficiency analysis at design

time

C3: A method for the extraction of power models for use in design time

predictions

C4: Development of a systematic modeling and analysis approach for

considering transient effects in software quality analyses

The contributions aim to address the research questions presented in Sec-

tion 1.4. We aligned the validation to investigate whether our contributions

answer the research questions. For this, we applied the GQM [15] method.

Section 7.1 derives a GQM plan from the research questions. Furthermore,

it classifies the conducted case studies by the questions they address. The

case studies cover static and self-adaptive enterprise software systems, data

center resource management and a set of Big Data workloads. A subset of

the presented case studies have been published as part of our papers [115,

196, 199, 200, 201].

The remainder of the chapter presents the case studies and results, grouped

by the main contribution they intend to validate. Section 7.2 presents a set of

studies that investigate the accuracy of architecture level energy efficiency

predictions. Section 7.3 evaluates the applicability of the power model ex-

traction method. Finally, Section 7.4 investigates whether the consideration

183

7. Validation

of transient effects improves the accuracy of design time predictions of self-

adaptive systems. Section 7.5 subsumes the validation findings, and outlines

starting points of further potential validations.

7.1. Validation Goals and Overview

This section presents the validation goals. We used the GQM approach

proposed by Basili et al. [15] to validate our contributions. Section 2.7.1

outlined the fundamentals of the GQM approach.

This section is structured as follows. Section 7.1.1 presents the GQM plan of

our validation. In Section 7.1.3, we classify each of the conducted case studies

by the research questions they answer. Additionally, we categorize the case

studies by their validation levels according to Böhme and Reussner [30].

Section 2.7.2 explains our view on the different validation levels.

7.1.1. GQM Plan

For each of the contribution we defined a validation goal in accordance with

the GQM approach outlined by Basili et al. [15]. The following presents

the validation goals. We organize the plan according to the organization of

Research Questions (RQs) in Section 1.4. Alongside each validation goal and

question, we name the Research Questions (RQs) from Section 1.4, which

the goal and its questions aim to address. To improve the readability, we

restate the Research Questions (RQs) at the beginning of each section.

7.1.1.1. Modeling and Analysis of Software System Power Consumption
Characteristics

Research Question 1. What is a good abstraction level for modeling power
consumption characteristics of software systems? We consider a model abstrac-
tion good if it

• produces accurate power consumption predictions,

• can be constructed from information available at design time,

184

7.1. Validation Goals and Overview

• contains as little redundant information as possible with existing
architectural modeling languages and viewpoints.

Research Question 2. How can the power consumption of software systems
be predicted on an architectural level?

Research Question 3. How accurate are power consumption predictions
performed on an architectural level?

Research Question 4. How can we evaluate the effect of architectural design
decisions on energy efficiency?

Goal 1. Evaluate the prediction accuracy of our energy efficiency predic-

tions for architecture-level design time analyses.

Addressed RQs: 1, 2, 3, 4.

Question 1.1. Can our approach accurately predict the power con-

sumption of software systems on an architectural level?

Metric 1.1.1. Prediction accuracy as (percentage) difference of

aggregated measured and predicted power consumption

for an observation period.

Addressed RQs: 1, 2, 3.

Question 1.2. Does our approach produce predictions that have

a higher accuracy than predictions from state of the art ap-

proaches?

Metric 1.2.1. Prediction accuracy as (percentage) difference of

aggregated measured and predicted power consumption

for an observation period.

Addressed RQs: 1, 2, 3.

Question 1.3. Are the power consumption predictions accurate

enough to evaluate the effect of design decisions on energy

efficiency?

Metric 1.3.1. Aggregated energy consumption prediction ac-

curacy calculated as percentage difference of the predicted

and measured energy consumption.

185

7. Validation

Metric 1.3.2. Energy efficiency prediction accuracy calculated

as percentage difference of the predicted and measured

effect of design decision on energy consumption.

Energy efficiency is hereby defined as energy consumed

per operation. As the usage profile and throughput remains

unchanged, energy efficiency can be compared by directly

comparing the aggregated power consumption before and

after the decisions have been applied.

Addressed RQs: 1, 4.

Goal 2. Validate the appropriateness of our power consumption model for

describing the power consumption characteristics of software systems.

Addressed RQs: 1, 2.

Question 2.1. Are the essential characteristics that determine the

power consumption of a software system reflected by our power

consumption model?

Metric 2.1.1. Energy consumption prediction accuracy calcu-

lated as percentage difference of measured and predicted

power consumption.

7.1.1.2. Extraction of Power Models

Research Question 5. How can the effort in deriving power models for
architecture-level power consumption analyses be reduced?

Research Question 6. What is the effect of considering different system level
metrics as input in power consumption analyses?

Research Question 7. How can software architects and system deployers be
supported in the selection of input metrics for energy efficiency analyses?

Goal 3. Validate the applicability of our approach for the automated con-

struction of power models based on automated systematic experi-

ments.

Addressed RQs: 5, 6, 7.

186

7.1. Validation Goals and Overview

Question 3.1. Does our automated power and system metric profil-

ing approach extract a representative system profile?

Metric 3.1.1. Energy consumption prediction accuracy as (per-

centage) difference of measured power consumption and

power consumption predicted by power models.

Metric 3.1.2. Two-Dimensional Kernel Density Estimation

(KDE) over server profile.

Addressed RQs: 5.

Question 3.2. Does the combined profiling of system metrics im-

prove the accuracy of trained power models over their separate

profiling?

Metric 3.2.1. Prediction error of power models trained on ser-

ver profile from full and separate profiling.

Addressed RQs: 5.

Question 3.3. Does our profiling approach produce more accurate

power models than state of the art?

Metric 3.3.1. Percentage difference of prediction error of po-

wer models trained on data using our approach, and a state

of the art approach.

Addressed RQs: 5.

Question 3.4. What is the influence of system metrics considered

by power models on their prediction accuracy?

Metric 3.4.1. Difference of prediction accuracy of

• power models that consider CPU and HDD,

• models that only consider CPU.

Metric 3.4.2. Difference of Pearson’s/Spearman’s correlation

coefficient between CPU utilization and HDD throughput

metrics.

Metric 3.4.3. Difference of prediction accuracy between ag-

gregated CPU utilization and multi core power models.

187

7. Validation

Addressed RQs: 6.

Question 3.5. Is it possible to estimate the impact of considered

system metrics on the prediction accuracy of power models?

Metric 3.5.1. Rank of power models in AIC-based ranking

compared to prediction accuracy ranking from measure-

ments.

Addressed RQs: 7.

7.1.1.3. Transient Effects of Reconfigurations

ResearchQuestion 8. How do reconfigurations affect power consump-
tion and performance?
Research Question 9. What is an architecture-level description of
reconfigurations that describes the effect of reconfigurations on system
metrics such as performance and power consumption?
Research Question 10. How can we consider the effects of runtime
reconfigurations in software quality analyses at design time?
Research Question 11. Does the consideration of transient effects
enable the (a) detection and (b) solution of design problems in self-
adaptive software systems?

Goal 4. Validate the influence of transient effects on the accuracy of perfor-

mance predictions for architecture-level analyses of software systems.

Addressed RQs: 8, 9, 10, 11.

Question 4.1. Does the consideration of transient effects improve

the prediction accuracy of architecture-level analyses?

Metric 4.1.1. Percentage difference of prediction accuracy of

design time quality predictions with and without our ap-

proach.

Addressed RQs: 8, 9, 10.

Question 4.2. Does our approach enable the detection of design

deficiencies of self-adaptive software systems that would have

otherwise remained undetected?

188

7.1. Validation Goals and Overview

Metric 4.2.1. Percentage difference of prediction accuracy of

design time quality predictions with and without our ap-

proach

Metric 4.2.2. A requirement that is predicted

• to be violated by the baseline prediction is not

violated at runtime, or

• not to be violated is violated at runtime.

The metric evaluates if the prediction extended by our

approach correctly predicts the violation, or fulfillment.

Addressed RQs: 8, 11.

Question 4.3. Does our approach enable the resolution of design

deficiencies of self-adaptive software systems?

Metric 4.3.1. Prediction accuracy of design time quality pre-

dictions with our approach compared to measurements.

Metric 4.3.2. Our approach correctly predicts whether

changes applied to the software system have resolved a

design deficiency.

Addressed RQs: 8, 11.

We implicitly validate the suitability and appropriateness of our modeling

languages. RQs 1 and 8 express these concerns. We demonstrate the appro-

priateness and applicability of our Power Consumption metamodel in three

ways. First, we demonstrate that power consumption predictions performed

using instances of the metamodel are accurate enough to support architec-

tural decisions. Second, our automated power model extraction approach

showcases that software architects can obtain these models with reason-

able effort. We finally discuss differences in expressiveness and modeling

complexity between our model and a state of the art modeling approach.

We show the applicability of the Adaptation Action metamodel (Research

Question 8) by presenting how it can enable software architects to make

sound decisions. The validation does not address the general appropriate-

ness of Adaptation Action metamodel for use in design time modeling and

189

7. Validation

analysis of self-adaptive software systems. However, Section 6.2.7 demon-

strates the applicability of the metamodel for a set of adaptation actions.

Section 7.5.1 additionally discusses the application of our modeling approach

to the analysis of data center resource management scenarios.

Research Question 5 is the only research question that is not implicitly or

explicitly addressed by our GQM plan. The RQ concerns a reduction of

effort for the application of our power consumption modeling and analysis

approach. We did not conduct an empirical study to evaluate whether our

approach reduced the effort compared to the manual or semi-manual con-

struction of power models. Our power model extraction approach automates

all major steps involved in the construction of power models: profiling,

learning or training, and selection of power models. Hence, we consider the

implementation of the approach to answer RQ 5.

7.1.2. Case Study Systems

This section provides a brief summary of case study systems we used to

validate the contributions of this thesis. A more thorough description of the

systems is provided in the respective sections of this chapter.

• Media Store 2 [22] is a Java EE-based case study system that allows

users to upload and download music files. The used variant is the

second release version of the system.

• Spring PetClinic [159] is a community case study system for

different framework technologies from the Spring community. It

realizes a simple web system for appointment management in a

veterinary clinic via Spring framework technology.

• VM Placement subsumes four case studies conducted in an IaaS

data center testbed. They have been performed as part of the

European research project CACTOS [152]. The case studies employ

different VM placement and migration algorithms to distribute VMs

on the testbed.

• SPECjbb2015 is an industry standard Java benchmark “to evaluate

the performance and scalability of environments for Java business

190

7.1. Validation Goals and Overview

applications” [193]. SPECjbb2015 replicates user interactions with a

web shop in a typical client server setting.

• HiBench [91] is a Big Data benchmark suite. It covers a diverse set

of Big Data workloads implemented atop Hadoop and Spark.

Individual workload implementations cover the programming

languages Java, Python, and Scala.

• VMMigration Bench is a VM migration benchmarking framework

which we implemented to measure power consumption during VM

migration. It re-uses the workload definitions of SERT [187] to stress

the servers or the VM involved in the migration.

• Scaling Media Store is a variant of the third release version of the

Media Store application. Compared to the second release, the third

release improves the modularity of components. Reussner et al. [170]

use this release as a running example, and in a set of presented

performance and reliability prediction case studies. We extended the

baseline implementation by the capability to scale out dependent on

load.

7.1.3. Validation Coverage

This section discusses the coverage of Validation Goals and their corre-

sponding Questions by the conducted case studies. We classify the case

studies with respect to the validation level categories outlined by Böhme

and Reussner [30].

This thesis does not focus on establishing a process for developing energy-

efficient software. Rather, it establishes a method for evaluating the energy

efficiency of software systems as part of existing model-driven development

approaches, e.g., the Palladio process [22]. It would be possible to conduct a

validation that investigates the benefit of considering energy efficiency as

part of these existing approaches. However, the effort needed for conducting

a Level III validation is very high. Hence, we did not perform a Level III

validation as part of this work.

191

7. Validation

Table 7.1.:GQM Overview. The dot highlights if a case study covers a Question.

Goal Question

Studies Validation

Level

M
e
d
i
a
S
t
o
r
e
2

P
e
t
C
l
i
n
i
c

V
M

P
l
a
c
e
m
e
n
t

S
P
E
C
j
b
b

H
i
B
e
n
c
h

V
M

M
i
g
r
a
t
i
o
n

B
e
n
c
h

S
c
a
l
i
n
g
M
e
d
i
a

S
t
o
r
e

1 1.1 • • • I, partially II

1.2 • • • I

1.3 • • I

2 2.1 • • • • • I

3 3.1 • • • • I, II

3.2 • • I

3.3 • • I

3.4 • • • I, II

3.5 • • I

4 4.1 • I

4.2 • I

4.3 • I

Table 7.1 provides an overview of the case studies systems, with the goals and

derived questions they address. Per Question, the table notes the validation

type.

Goal 1. The first goal aims at the validation of the prediction accuracy

of our design time energy efficiency predictions approach. Question 1.1

inquires the accuracy of design time power consumption predictions. We

evaluated the accuracy of the predictions for all three case study systems.

Sections 7.2.1 and 7.2.2 apply our design time power consumption analysis

to evaluate the energy efficiency of the Media Store software system, and

the PetClinic application. The VM placement case study presented in Sec-

tion 7.2.3 investigated the accuracy of the predictions in data center testbed

that optimizes, and adapts, the placement of VMs over time. All input data

used for the case studies has been obtained via automated measurements.

192

7.1. Validation Goals and Overview

We reconstructed the architectural performance model of PetClinic with

the Performance Model eXtractor (PMX) [220]. The used power model was

automatically trained using our power model extraction approach. The Pet-

Clinic and VM placement case studies constitute a level II validation as the

significant part of input data was collected automatically. We compared the

accuracy of our approach against state of the art for all three case study

systems (Question 1.2). The two round-trip case studies Media Store and

PetClinic are level I validations of Question 1.3. Both case studies applied

our prediction to evaluate the effect of a design decision on energy efficiency.

The case studies compared the prediction results with measurements.

Goal 2. Goal 2 states that our modeling approach shall model all essential

characteristics that influence the power consumption on an appropriate level

of abstraction. All case studies but the Scaling Media Store used our Power

Consumption metamodel to describe the power consumption characteristics

of the involved software systems. We consider the application of our model-

ing approach a level I validation: Power consumption predictions that used

the models defined in our modeling language produced accurate predictions.

Chapter 3 matches our Power Consumption model against challenges re-

garding the architectural modeling of power consumption, which we had

identified. In the section we show that our modeling language tackles these

challenges. Thus, Chapter 3 constitutes an appropriateness validation.

Goal 3. In order to apply an analysis approach at design time, it must be

feasible to acquire all of its input data. Our power model extraction method

addresses this requirement by automating server profiling and power model

training. Goal 3 targets the applicability of the power model extraction

method. From the goal, we derived four Questions. Question 3.1 addresses

the representative character of the extracted system profile. We investigated

this question using the SPECjbb2015 and HiBench case studies. We evaluated

whether power models trained on the profile accurately predict the power

consumption of the case study systems. Question 3.2 concerns the accuracy

of the combined profiling of system metrics compared to their separate pro-

filing. We compared the prediction accuracy of the same power model types

trained on a profile from combined profiling, and from separate profiling.

Question 3.4 targets the impact of additional metrics on prediction accuracy.

193

7. Validation

We reasoned on the effect of additional metrics by comparing the prediction

accuracy of power models that consider only CPU utilization against models

that also take storage metrics into account. We evaluated Questions 3.1,

3.2 and 3.4 by comparing predicted and measured power consumption. We

compared the measurements and predictions of the power models for the

SPECjbb and HiBench case study systems. According to the classification by

Böhme and Reussner [30], this qualifies as a level I validation.

The VM Migration Bench case study applied our power model extraction

method to a benchmarking environment for VM migration scenarios. Sec-

tion 7.3.9 presents the results of the case study. The case study investigated

whether the power models produced by our approach accurately predict the

power consumption of VM migrations. This addresses Question 3.1. The

study focused on the accuracy of extracted power models. Additionally, it

examined the accuracy of aggregated CPU utilization compared to multi

core power models. This concerns Question 3.4.

In Section 7.3.7, we address Question 3.3. We contrast the prediction accuracy

of power models, trained on a profile extracted using our approach, against

power models trained on a profile from a baseline state of the art approach.

We realized the state of the art approach using the same measurement and

workload implementations. Böhme and Reussner [30] note that a level III

validation investigates the benefit of the evaluated approach “over other

competing approaches”. However, we did not empirically determine and

compare the difference in effort for identifying suitable workload definitions.

This would be needed to qualify the validation as a level II validation. A level

II validation of the compared approaches is a necessary prerequisite for a

level III validation. In conclusion, the comparison of both approaches only

qualifies as a level I validation.

We explored Question 3.4 by comparing our AIC-based ranking of power

models with the relative prediction accuracy of power models for the SPEC-

jbb2015 and HiBench case studies. We compared the predicted accuracy of

power models with their actual accuracy. This covers a type I validation of

Question 3.4.

Goal 4. We employed the Scaling Media Store case study in the validation

of Goal 4. The case study addresses Questions 4.1 to 4.3 via a comparison

194

7.2. Energy Efficiency Analysis

of predictions and measurements. Our simulation tooling automatically

performed the analysis of transient effects. However, we manually used the

prediction tooling, and defined the input instances of the Adaptation Action

metamodel. The case study thus constitutes a level I validation. It is not

a level II validation as it did not validate the practical applicability of our

modeling approach.

7.2. Energy Efficiency Analysis

The case studies presented in this section address Goal 1 of the validation.

The case studies investigate Questions 1.1 to 1.3. Subject of our investigation

are the two application systems Media Store and PetClinic, and a set of IaaS

scenarios recorded in a data center testbed.

This section is structured as follows. Section 7.2.1 presents the results of the

Media Store case study. Section 7.2.2 discusses the PetClinic case study. The

results of the IaaS data center case study are outlined in Section 7.2.3.

7.2.1. Media Store

In this case study, we applied the PCA approach to evaluate the effect of a

design decision on energy efficiency for the Media Store application. As a

basis, we investigated the absolute power consumption prediction accuracy

for different workloads. The presented case study has been published in

[200].

The Media Store application is a component-based reference application.

Media Store is a simple web-based media hosting application. It has been the

subject of case studies that investigated the applicability of Palladio [132],

and the accuracy of its performance predictions [22]. Various iterations of

Media Store have been developed over time. The case study presented in

this section used the version 2.0
1
predecessor of the most recent release

1 https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore2/

trunk/, retrieved 05.06.2017 with anonymous credentials.

195

https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore2/trunk/
https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore2/trunk/

7. Validation

3.0
1
of the Media Store presented by Reussner et al. [170]. Media Store is

implemented atop the Java EE platform.

WebGUI MediaStore

Encoder

Water
marking DB

AudioDB
Adapter

Packaging

IDownload

IEncode

IAudioDB

IPackaging
IWatermarking

IWebGUI

IDBAccess

presentation business logic persistence

Figure 7.1.: System diagram view of Media Store

Figure 7.1 shows the System diagram view on Media Store. The system

adheres to the three-tier architecture style. TheWebGUI component realizes

the web GUI frontend of the application. Via the GUI, users can upload and

download music files. In the business logic tier, the MediaStore component

acts as a facade to the central business and persistence layer components.

When a music file is downloaded, it fetches the file from storage, and re-

encodes the file to the target audio quality by calling the encoding service of

Encoder. Afterwards, metadata is added to the music file by theWatermarking
component. The metadata is stored in a relational database represented by

the DB component. These steps are repeated for all music files requested

by a user. If multiple files are requested, the files are packaged before being

sent to the user.

There are a set of alternative design decisions for Media Store. Reussner et

al. [170] discuss a set of example design decisions for Media Store. One such

design decision is the choice of the Encoder component. The re-encoding

of music files performed by the Encoder component is the service with the

1 https://sdqweb.ipd.kit.edu/wiki/Media_Store, retrieved 05.06.2017.

196

https://sdqweb.ipd.kit.edu/wiki/Media_Store

7.2. Energy Efficiency Analysis

highest resource intensity. We thus investigated re-encoding as the part

of the software architecture where energy efficiency could potentially be

improved. In its baseline implementation, Media Store re-encodes music

files in the mp3 format via the LAME library. We identified the use of the

Vorbis encoder implementation libvorbis as a design alternative to the mp3

encoding of LAME. We selected comparable audio quality settings for both

encoders. LAME was configured to use a fixed bitrate of 192 kbit/s. We

launched libvorbis with the -qscale:a 4 setting.

7.2.1.1. Evaluation Setup

We conducted the measurements on a Dell PowerEdge R815 server with four

Opteron 6174 CPUs and 256 GB RAM as the target deployment environment.

We deployed Media Store on a Glassfish 3.1 application server running atop

an Ubuntu 12.04 VM. The VM was assigned 16 cores of the 48 availablephys-

ical cores. The VM was deployed on the XenServer 6.2 hypervisor running

on the server. MySQL 5.5 was used as the realization of the DB component.

The compared versions of the LAME library were 3.99.3, and version 1.32 of

libvorbis as distributed in the ffmpeg framework.

For power measurement, we utilized the IPMI interface of the PowerEdge

server. IPMI collects power measurements via a built-in power meter. Fre-

quency, resolution and accuracy of built-in power meters are lower compared

to standalone, certified power meters as used in the case studies presented

in Sections 7.2.2 and 7.3. However, built-in power meters do not need to be

invasively connected to the server, consume less energy, and take up signifi-

cantly less space. The technical specifications of the server [163] do not state

the measurement frequency or accuracy of the server. Our measurements

had shown that all power measurements were rounded to multiples of ten.

Furthermore, the measurement frequency appeared to be lower than 1 Hz.

As preparation for the case study, we used a manually constructed PCM

model of Media Store. We re-calibrated the resource demands in the RD-

SEFFs of the central components on our deployment environment in semi-

automated measurements. We calibrated the performance model with a

single user workload, and collected the performance measurements via

perf4j. Figure 7.2 shows the calibrated RDSEFF of the LAME implementation

197

7. Validation

Figure 7.2.: Resource-Demanding Service Effect Specification (RDSEFF) of the LAME
implementation of the Encoder component calibrated on the deployment environ-

ment.

of the Encoder component. We based the RDSEFF estimation on the observa-

tion that the encoding time linearly correlated with the file input size of the

re-encoded music file. The RDSEFF assigns the encoding a resource demand

consumption of 4731 demand units per kB of file size on the CPU of the

R815 server with a single core processing rate of 2200. For the calibration

workload, the response time prediction error of the model was 0.05%. We

used a simple download usage scenario to evaluate power consumption, and

energy efficiency of our application. Each usage scenario consists of a user

downloading a random song from Media Store.

We manually extracted the power model of the server. For this, we issued

different load levels to the server using the Linuxmicrobenchmarks stress and
lookbusy. In an initial step, we profiled the server by varying the utilization

of cores from 1 to 16 fully utilized cores. Figure 7.3 depicts the resulting

measurements. The power measurements for utilization levels between

single and 16 core utilization can be well described by a linear power model.

The figure depicts this power model Pmult:

Pmult(u) = 352.47 + 7.19u

198

7.2. Energy Efficiency Analysis

●
● ●

●

●
●

●

●
●

●

0 5 10 15

30
0

35
0

40
0

45
0

Utilization in #Cores

Po
w

er
 C

on
su

m
pt

io
n

in
 W

Pmult (u) = 352.47 + 7.19u

●

Single−Core Measurements

Considered Measurements
Power Model Pmult (u)

Figure 7.3.: Power consumption and per core power model based on microbench-

marking with stress and lookbusy. The line represents the power model constructed

using the measurements for utilization levels from 1 to 16 cores.

For utilization levels below single core utilization, the power measurements

strongly deviate from the other measurements. Hence, we opted to construct

a separate power model for utilization levels between idle and full single

core utilization. Figure 7.4 shows the power measurements for this range,

together with the power model Psingle that describes consumption in this

utilization range:

Psingle(u) = 8212.67x6−23872.19x5+25345x4−11469x3+1934.88x2+39.96x+270.54.

We combined both power models to form a stepwise defined power model:

Pfull(u) =

{
Psingle(u) if u ≤ 1

Pmult(u) if 1 < u ≤ 16

, u ∈
[
0, 16

]
.

199

7. Validation

●

●

●
● ●

●

●

●

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

28
0

30
0

32
0

34
0

36
0

Single−Core Utilization

P
ow

er
 C

on
su

m
pt

io
n

in
 W

Psingle (u) = 8212.67x6 − 23972.19x5 + 25345x4

− 11469.13x3 + 1934.88x2 + 39.96x + 270.54

● Measured Consumption

Power Model Psingle (u)

Figure7.4.:Power consumption for single core utilization levels extracted via lookbusy.
The line represents the power model constructed for the utilization levels between

idle and full single core utilization.

In this case study, we employed the SimuCom simulator [22] and SimuLizar

to derive performance predictions for the system under investigation. The

performance predictions served as input for PCA. We set the sampling

interval for the power samples from PCA to one second. Power consumption

samples were collected with an interval around 1.4 to 3 seconds from the R815

server. We calculated the energy consumption in each scenario using the

measured and predicted power consumption samples. We derived the energy

consumption from the power samples by means of trapezoidal numerical

integration. We compared energy consumption between the predictions

from simulations and measurements using the following error formula:

Error = |
EMeas−EPred

EMeas

|,

where EMeas is the measured and EPred the predicted energy consumption.

200

7.2. Energy Efficiency Analysis

7.2.1.2. Power Consumption Model

Figure 7.5 depicts an excerpt of all relevant instances of viewpoints in our

Power Consumption metamodel. The Infrastructure view of our model only

captures PSU and the resource by which we model the power consumption

of the server, the CPU. It references the Resource Environment view of the

PCM model that represents the server environment. The figure only depicts

model elements referenced in the Infrastructure view. Not depicted is the

DistributionPowerModelSpecification and the respective binding. The model

uses a passthrough distribution power model that models the PSU as loss-

less. We opted for this modeling as we built the server power model using

measurements that we had collected at the power outlet of its PSU. Thus,

the power model already implicitly considers any potential PSU loss.

We implemented the piecewise-defined power model Pfull as a black-box

power model. Thus, the specification contains the model as a model of type

BlackBoxPowerModelSpecification. The fixed factors of the model correspond

to the fixed factors of Pfull. The two segments of the power model Psingle and
Pmult can be specified via DeclarativeResourcePowerModelSpecifications. How-
ever, the Power Consumption model in its presented form does not support

the definition of piecewise-defined functions via native metamodel classes.

PieceWiseModel represents the power model type Pfull. It has nine parameters

in total. The FixedFactor instances represent these parameters. PieceWise-
Model references the MeasuredFactor u that quantifies the utilization of a

resource like CPU. The Binding view contains one FixedFactorValuePower
instance per FixedFactor. The ResourcePowerBinding with the name r815full
instantiates the power model type Pfull for the specific server.

7.2.1.3. Prediction Accuracy

As a first step, we evaluated the absolute prediction accuracy of our PCA

prediction approach for the Media Store application. We analyzed the power

consumption for the Power Consumption model of the server. Our con-

sumption analysis used system metrics extracted from the SimuCom design

time performance analysis of the Media Store PCM model. For the single

user calibration workloadW1 we determined an error of 0.17% for the total

energy consumption prediction. We increased the user load to evaluate the

201

7. Validation

specification

:Power
Infrastructure

Repository

PSU
:MountedPower
DistributionUnit

CPU
:PowerConsuming

ResourceSet

infrastructure binding

:PowerBinding
Repository

r815full:Resource
PowerBinding

value = 7.19 W

:FixedFactorValuePower

BasicSpecRepo
:PowerModel

Repository

PieceWiseModel
:BlackBoxResource

Power
ModelSpecification

multB
:FixedFactor

value = 352.47 W

:FixedFactorValuePower

...

ActiveResource
Utilization

:NumericalBase
MetricDescription

u:MeasuredFactor

multA
:FixedFactor

single1
:FixedFactor

single2
:FixedFactor

single7
:FixedFactor

value = 270.54 W

:FixedFactorValuePower

value = 39.96 W

:FixedFactorValuePower

value = 8212.67 W

:FixedFactorValuePower

pcm::metricspec

... ...

pcm::resource
environment

...

CPU
:Processing
Resource

Specification

...

r815:Resource
Container

Figure 7.5.: Excerpt of Power Consumption model instance for deployment environ-

ment used in Media Store case study.

202

7.2. Energy Efficiency Analysis

prediction accuracy under higher load. The workloadW2 consisted of a

closed workload with 16 users, where each user repeatedly downloads a

random song from the Media Store. In the case of increased workload we

established an energy consumption prediction error of 5.47%. The average

response time prediction error increased to 2.31%.

In addition to the closed workloads with a single, and 16 concurrent users, we

investigated the prediction accuracy of our approach for two open workload

variantsW3 andW4. In the first workloadW3, a new user arrived at the

system every 16 seconds. The second workloadW4 decreased the interarrival

time to one second. The energy consumption prediction error forW3 was

1.60%. The prediction error forW4 was 3.60%.

In order to evaluate whether PCA accurately predicts power consumption

for varying workloads, we employed the gradually increasing workloadW5.

W5 starts with no active users. Every 160 seconds the request rate increased

by one additional user request per 16 seconds. After reaching a request

rate of one request per second, the workload concluded. SimuCom does not

support the analysis of workloads patterns and trends. Hence, we employed

SimuLizar with its Usage Evolution extension [31] to simulate the increas-

ing workloadW5. The Usage Evolution extension enables the modeling of

variable user interarrival times as piecewise defined mathematical functions

over time [106]. The absolute energy consumption error for the gradually

increasing workloadW5 was 3.68%.

In summary, our approach produced accurate power consumption predic-

tions for the Media Store application. The absolute error of energy consump-

tion predictions for five different load intensities was no higher than 5.5%.

Thus, we consider Question 1.3 positively answered by the results of the

case study.

7.2.1.4. Comparison with State of the Art

We investigated the accuracy of our prediction approach compared to state

of the art. Our prediction approach uses instances of Power Consumption

metamodel as input. The Power Consumption metamodel is more expressive

than the modeling abstraction proposed by the state of the art approach

by Brunnert et al. [35]. The prediction approach of the authors is restricted

203

7. Validation

to linear power models. As the implementation of Brunnert et al. was

unavailable to us, we compared the prediction accuracy of the previously

introduced piecewise-defined power model Pfull and a simple linear power

model Plinear to quantify the benefit of our approach.

We trained the linear power model using linear regression to have an optimal

R-squared error on the training data. The training data was the same we

used to train our piecewise-defined power model.

The prediction error of Plinear reached 1.41% forW1, and 7.65% forW2. The

error was notably higher than the 0.17% forW1 and 5.47% forW2 of Pfull. This
illustrates that the consumption prediction accuracy can be increased by a

noticeable margin when non-linear power models are employed. Conclu-

sively, our modeling and analysis approach offers higher prediction accuracy

over state of the art for the investigated workload and application scenarios

(Question 1.2).

7.2.1.5. Impact of Design Decision on Energy Efficiency

We investigated whether energy efficiency of the Media Store application

could be improved by using an alternate encoding. The goal was to validate

whether our approach accurately predicted the impact of design decisions

on energy efficiency. We identified Vorbis-based music encoding as an

alternative to the mp3 encoding performed by the baseline implementation.

To reason on the effect of the design decision, we estimated the resource

demand of the Vorbis encoder. We estimated the resource demand based

on a set of calibration measurements for the libvorbis implementations. We

performed these measurements separate from the initial model calibration

with mp3 encoding. Finally, we modeled the Vorbis implementation of the

Encoder component in the PCM component Repository model.

We then used SimuCom (W1, . . . ,W4) and SimuLizar (W5) and PCA to predict

the power consumption for the alternative system. Then, we performed

measurements to evaluate the accuracy of the power consumption predic-

tions. We ran measurement experiments on the baseline LAME Encoder,
and the Vorbis component variant. We deployed and measured the energy

consumption over time on the R815 server deployment environment. We

leveraged the workloadsW3,W4, andW5 to compare the energy efficiency for

204

7.2. Energy Efficiency Analysis

Table 7.2.: Predicted and measured power consumption for mp3 and Vorbis encoder.

Saved energy quantifies the difference in consumption by using Vorbis instead of

mp3 encoding.

(a)WorkloadW3 with interarrival time of 16s

Energy Consumption

Encoder Measured Predicted Error

LAME 173.77 Wh 171.00 Wh -1.60%

libvorbis 129.11 Wh 133.10 Wh +2.78%

Saved Energy 44.67 Wh 37.91 Wh -15.14%

(b)WorkloadW4 with interarrival time of 1s

Energy Consumption

Encoder Measured Predicted Error

LAME 215.30 Wh 223.06 Wh +3.60%

libvorbis 195.05 Wh 198.97 Wh +2.01%

Saved Energy 20.25 Wh 24.09 Wh +18.94%

(c)WorkloadW5 with increasing request rate

Energy Consumption

Encoder Measured Predicted Error

LAME 289.38 Wh 300.02 Wh +3.68%

libvorbis 267.82 Wh 274.50 Wh +2.50%

Saved Energy 21.56 Wh 25.52 Wh +18.34%

different load intensities. Table 7.2 lists the results for each of the workloads.

Table 7.3a contains predictions and measurements forW3, Table 7.3b denotes

the results forW4. In Table 7.3c, measurements forW5 are listed. The encoder

rows contain the energy consumed in Watt hours (Whs) over a 30 minute

experiment interval in the case ofW3 andW4. Measurements and predic-

tions forW5 cover just above 42 minutes. The Saved Energy row contains

the predicted and measured energy consumption for the two architecture

205

7. Validation

variants. The saved energy quantifies the effect of the design decision on

energy efficiency, since the load intensity has remained the same between

both variants. It uses the metric ∆EE , which we introduced in Definition 2.5.

We determined the accuracy of energy efficiency predictions as the measured

and predicted improvement in energy efficiency. The relative prediction

error for all three workloads was below 19%.

The predictions indicated a potential reduction in energy consumption by

employing libvorbis compared to the LAME baseline. The predicted absolute

reduction was 22.16% forW3, 10.85% forW4, and 8.51% forW5. This closely

matched the energy savings of 25.70%, 9.45%, and 7.45% we measured.

In conclusion, our PCA approach accurately predicted the impact of replacing

mp3 with Vorbis encoding on the energy efficiency in the Media Store archi-

tecture. Hence, we consider the results to positively answer Question 1.3.

7.2.2. Spring PetClinic

The following outlines the results of the application of the PCA approach

to the PetClinic community case study system. It presents the predicted

and measured energy consumption and energy efficiency. The case study

compared predictions and measurements for the standard Spring Boot and

microservices variant of PetClinic [159]. The case study constitutes an end-

to-end case study of our power model extraction and PCA approach. It

applied our automated power model extraction approach, in combination

with a performancemodel learning framework [220], to evaluate the accuracy

of design time energy efficiency predictions for automatically constructed

models. The model learning framework [220] extracts a PCMmodel instance

from monitoring data. We combined the PCM model with a power model

we obtained using our power model extraction method. This supplied us

with all models required to perform energy consumption predictions.

7.2.2.1. Case Study System

Spring PetClinic [159] is a sample open source application developed by

the Spring community. Its purpose is the experimentation and testing of

206

7.2. Energy Efficiency Analysis

Spring framework technology. PetClinic models a simple Enterprise Re-

source Planning (ERP) scenario for a veterinary clinic. Users interact with

the application via a web frontend. The frontend offers services for browsing

and managing appointments, doctors and customers. There are different

variants of the PetClinic application for different development and technolog-

ical variants of Spring. PetClinic is commonly used to illustrate differences

between the variants, and showcase the use of new framework develop-

ments. Many authors, e.g. [50, 189, 191], have applied PetClinic to validate

SPE approaches. The Spring Boot PetClinic variant showcases the use of

lightweight deployment and delivery mechanisms introduced by Spring

Boot. A microservices variant [158] has been derived from the Spring Boot

PetClinic. The microservices variant separates services for managing cus-

tomers, vets, and appointments. Furthermore, it introduces microservices

pattern implementations from Spring Cloud, e.g., circuit breaker and API

gateway. We compared the power consumption and energy efficiency of

Spring Boot, and the microservices variant of PetClinic across different work-

loads. This allowed us to evaluate whether the transition from the initial to

the microservices architecture affects the energy efficiency of PetClinic.

Spring Boot variant. Figure 7.6 depicts a simplified system diagram view of

the Spring Boot PetClinic variant. PetClinic follows the classic Model-View-

Controller (MVC) design pattern. The OwnerRepository and VetRepository
components persist and provide access to owner, veterinary and appointment

data. Each of the components is configured to store the data in an HSQLDB

in-memory database instance. The ClinicService component serves as a

facade for the persistence layer components. Each of the components in the

business layer offers services to manage owner, veterinary and appointment

information. The presentation layer provides web access to the services

of the components in the business logic layer. The Spring Boot baseline

implementation uses the Thymeleaf template engine to realize the web

frontend. In PetClinic Boot, all components, or modules, but HSQLDB need

to be deployed together.

Spring Cloudmicroservices variant. Figure 7.7 shows a simplified system

diagram view of the Spring PetClinic Cloud/microservices variant. Each

207

7. Validation

facade

Welcome
Controller

VetController

ClinicService

Owner
Controller

Owner
Repository

VetRepository

IClinicService

IVetRepositoryIOwnerRepository

HSQLDB

IDB

IWelcomeController IOwnerController IVetController

VetWebOwnerWebWelcomeWeb

IVetWebIOwnerWebIWelcomeWeb

persistence

business logic

presentation

Figure 7.6.: System diagram view of the PetClinic architecture of the Spring Boot

variant.

208

7.2. Energy Efficiency Analysis

presentation

persistence

VisitsService OwnerService

IVisits

HSQLDB

IDB

HSQLDB

IDB

HomepageAPIGateway

ICustomerIVisitsIVets

VetsService

HSQLDB

IDB

IOwnerIVets

IHomepage

business logic

Figure 7.7.: Simplified system diagram view of the PetClinic microservices architec-

ture.

of the depicted components represents an independently deployable com-

posite component. The variant separates the landing page in the dedicated

Homepage component. Additionally, it separates the appointment planning

service VisitsService in a dedicated component. The APIGateway component

acts as a gateway to the back-end services. It uses the Netflix Zuul1 API
gateway implementation. The APIGateway component also provisions and

delivers web content to the users. The microservices-based PetClinic replaces

the web content of the baseline, which was built using Thymeleaf, with a

NODE.JS front-end. Every service separately organizes its persistence. We

instantiated a HSQLDB instance for each service.

1 https://github.com/Netflix/zuul, retrieved 16.11.2017.

209

https://github.com/Netflix/zuul

7. Validation

7.2.2.2. Evaluation Setup

We deployed both PetClinic variants on a PowerEdge R815 with four Opteron

6174 CPUs and 256 GB RAM. The execution environment of PetClinic was

an Ubuntu 14.04.5 LTS VM with 40 virtual cores and 16 GB RAM. The VM

ran atop a XenServer 7.0 hypervisor. Power monitoring was conducted using

a ZES Zimmer LMG95 power meter connected to a dedicated notebook. We

looped the electrical outlet of one of the two redundant PSUs of the servers

through our power meter. We disconnected the second PSUs to guarantee

that the full power draw of the server was captured by the power meter. An

agent installed in the PetClinic VM collected power measurement data and

system metric measurements. JMeter 3.0 was used as the load driver issuing

user requests. We deployed JMeter on a workstation PC equipped with an

i7-7700 CPU and 32 GB RAM. The workstation was connected to the R815

server via 1 Gbit/s Ethernet.

We deployed each of the services of the microservices variant in the same

VM. While the microservices variant supports the isolation of services in

separate containers, we opted to run them in separate Java VMs in the same

user space.

We used PMX [220] to extract the performance models of PetClinic Boot, and

PetClinic Cloud. PMX extracts PCM instances from the monitoring traces

of an application that has been instrumented by Kieker [90]. To extract the

power model for the evaluation, we conducted an automated power model

extraction using our systematic profiling approach. Chapter 5 presents this

approach. The profiling run was executed within the target Ubuntu VM, in

which we deployed the PetClinic instances. As Section 5.2.3 discussed, the

extraction approach ranks a set of power models based on their prediction

accuracy. From the power models detailed in Section 7.3 we restricted the

set of considered power models to power models that consider solely CPU

utilization. This restriction is induced by the fact that PMX only learns

resource demands for the CPU. Power models that rely on HDD metric

predictions hence were ruled out.

In order to obtain a power model of the R815 server, we applied our power

model extraction approach. We employed the CPU workloads discussed

in Section 7.3.3. As target levels we used {0, 0.05, . . . , 1.0,∞}. We executed

the profiling run in the same VM as the PetClinic instances. The PetClinic

210

7.2. Energy Efficiency Analysis

instances were not running during the profiling. We used a set of power

models from literature as input to the model training. Section 7.3.2 provides

an overview of the consideredmodels. From the available models, we selected

the models which used CPU utilization as their only input metric. We

employed the iterated reweighted least squares regression as implemented

by Rousseeuw et al. [177] to train the power models. Our tooling calculated

the AIC of each trained power model. From the ranking, we selected the

power model with the highest ranking. The selected power model was:

PExp(u) = 254.488W + 310.121W · u0.395
,

where u ∈ [0, 1] is the aggregated CPU utilization measured within the VM.

The model instantiates power model type 6 from Table 7.8.

For performance and power consumption predictions, we used SimuLizar

coupled with the Power Consumption Analyzer (PCA). We used a sampling

rate of 1 Hz, and sampling window size of 1 time unit for the power con-

sumption predictions. The predicted CPU utilization was averaged over an

interval of 10 seconds.

7.2.2.3. Evaluation Scenario

Visit a random
customer page

Visit main
page

Visit vets
page

Display all
owners

Revisit same
customer page

Figure 7.8.:Activity diagram view of the browsing usage scenario behavior for Pet-

Clinic

In order to evaluate the energy efficiency of the application of the PetClinic

application, we defined a baseline usage scenario. We compared themeasured

and predicted energy efficiency of both application variants for the same

usage scenarios. The usage scenario describes a sequence of interactions

of a user with the PetClinic system. Figure 7.8 depicts the used scenario

211

7. Validation

behavior. The scenario is a browsing workload which was derived from the

JMeter test plan found within the repository [159]. Interactions that resulted

in database write operations were removed. This was done in order to factor

out contention effects, which resulted from database locking. Otherwise,

much lower maximum throughput rates could have been achieved. This

would have limited the range of workload intensities for which we could

have explored the energy efficiency.

PetClinic Cloud groups information retrieval for front-end services by the

different back-end services. The Representational State Transfer (REST)

requests sent by the interactive front-end user web pages do not match those

of the Spring Boot baseline. Thus, we implemented a JMeter test plan that

conforms to the interfaces of the PetClinic Cloud services. The test plan

contains the same user interactions as the baseline plan.

The scenario behavior was executed in an open workload usage scenario. We

varied the interarrival rate between users to evaluate the power consumption

of the system at different load levels.

7.2.2.4. Power Consumption Model

Figure 7.9 shows the Power Consumption model instance of the evaluation

environment of PetClinic. The model represents the used power model

PExp(u) as a declarative resource power model. The topology structure

represented in the Infrastructure view is the same as in the Media Store

case study, since the study used the same server.

7.2.2.5. Prediction Accuracy

This section discusses the predicted and measured energy consumption for

each of the two PetClinic variants.

Table 7.4 provides an overview of measured and predicted energy consump-

tion at different throughput rates. Our predictions obtained via PCA coupled

with SimuLizar achieved an absolute error of at most 2.13% for all considered

workloads. Due to the high accuracy of power consumption predictions,

energy efficiency predictions are naturally also accurate. Figure 7.10 depicts

the predicted and measured energy efficiency of the application as energy

212

7.2. Energy Efficiency Analysis

specification

:Power
Infrastructure

Repository

PSU
:MountedPower
DistributionUnit

CPU
:PowerConsuming

ResourceSet

infrastructure binding

:PowerBinding
Repository

r815Exponential
:Resource

PowerBinding

value = 254.488 W

:FixedFactorValue
Power

BasicSpecRepo
:PowerModel

Repository

functionalExpression
= ec0+ec1
 *pow(eu, ealpha)

Exponential CPU
:Declarative

ResourcePower
ModelSpecification

ec1
:FixedFactor

value = 310.121 W

:FixedFactorValue
Power

...

ActiveResource
Utilization

:NumericalBase
MetricDescription

u:MeasuredFactor

ec0
:FixedFactor

ealpha
:FixedFactor

value = 0.395

:FixedFactorValue
Dimensionless

pcm::metricspec

pcm::resource
environment

...

CPU
:Processing
Resource

Specification

...

r815:Resource
Container

Figure 7.9.: Excerpt of Power Consumption model instance for deployment environ-

ment used in PetClinic case study.

213

7. Validation

Table 7.4.: Total energy consumption for different user scenario behavior rates for

PetClinic system. Energy consumption in W h over an interval of 30 minutes.

Workload in User

Scenario Behaviors

per Second

Measured in W h Predicted in W h Error in %

296 193.78 193.13 0.34%

715 217.00 221.37 2.01%

963 228.61 233.18 2.13%

1377 247.14 250.78 1.48%

●

●

●

●
0.2

0.3

0.4

0.5

0.6

250 500 750 1000 1250
Transactions per Second

En
er

gy
 C

on
su

m
pt

io
n

pe
r S

c.
 B

eh
. (

in
 J)

● Measured

Predicted

Figure 7.10.:Power consumption per completed User Scenario Behavior for the Spring

Boot baseline.

214

7.2. Energy Efficiency Analysis

Table 7.5.: Total energy consumption for different user scenario behavior rates for

PetClinic Microservice system variant. Energy Consumption in W h over an interval

of 30 minutes.

Workload in User

Scenario

Behaviors per Sec-

ond

Measured in W h Predicted in W h Error in %

294 179.00 188.50 5.31%

710 217.87 214.72 1.45%

960 228.49 226.31 0.96%

1361 247.88 242.11 2.34%

consumed per transaction over the observed interval. The workload was

picked to reflect a large range of utilization levels. The noted User Scenario

Behaviors per seconds rates were the actual measured throughput rates

when executing a specific target user workload. Measurements for the rate

296 were, e.g., performed for an intended target rate of 300. The predicted

energy efficiency closely matched the measured energy efficiency.

As one would expect, the energy efficiency increased for higher transaction

rates. A major reason is the fact that the static power consumption is spread

among more requests. Another reason is the power consumption behavior

of the server for higher utilization levels. The extracted power model PExp(u)
estimates the consumption at different load levels. The power model is

strictly concave on [0, 1]. This implies that the marginal power consumption

of the server decreases at higher utilization levels. Thus, an increase in

throughput increases the energy efficiency. This holds as long as an increase

in load does not lead to a violation of another quality goal.

Table 7.5 lists the measured and predicted energy consumption for the mi-

croservices variant of PetClinic. Over all predictions, the highest error is

5.31%. The predictions closely match the measured results for the microser-

vices variant. The energy consumption per User Behavior Scenario of the

microservices variant only marginally deviates from the standard PetClinic

variant. This shows that the overhead introduced by the separation of func-

215

7. Validation

Figure 7.11.: Power consumption per completed User Scenario Behavior for Microser-

vice system variant

●

●

●

●
0.2

0.3

0.4

0.5

0.6

250 500 750 1000 1250
Transactions per Second

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
S

c.
 B

eh
. (

in
 J

)

● Measured

Predicted

tionality into microservices was limited. The energy consumed per user

transaction shown in Figure 7.11 also reflects this.

The energy consumption analysis of PCA accurately predicted the energy

consumption of the PetClinic microservices variant. The results from the

PetClinic case study indicate that our analysis offers high accuracy (Ques-

tion 1.1). The high absolute accuracy for both PetClinic variants enabled us

to reason on the effect of refactoring PetClinic into a microservices based

architecture. We identified no significant impact of the refactorings on en-

ergy efficiency. The results thus affirm Question 1.3. Our model extraction

approach managed to train and identify an accurate power model. Therefore,

the results positively answer Question 3.1.

216

7.2. Energy Efficiency Analysis

Table 7.6.: Prediction error of PExp(u) compared with linear power model PLinear(u)
for the microservices-based PetClinic. Error in %. Positive errors correspond to an

overestimation, negative an underestimation.

Workload in User

Scenario

Behaviors per Sec-

ond

PExp(u) PLinear(u)

294 +5.31% +7.89%

710 −1.45% −4.08%

960 −0.96% −4.19%

1361 −2.34% −4.99%

7.2.2.6. Comparison with State of the Art

We investigated Question 1.2 using the microservices-based PetClinic variant.

The approach by Brunnert et al. [35] is the only state of the art approach

that supports architecture-level reasoning on the energy consumption of

software systems. We replicated their prediction method by using a linear

power model, as the implementation by Brunnert et al. was not available to

us. We leveraged the same training data and regression technique to train

PLinear(u) as for PExp(u). The training resulted in:

PLinear(u) = 364.604 + 227.87 · u,

where u ∈ [0, 1] is the aggregated CPU utilization measured within the

PetClinic VM.

Table 7.6 lists the prediction error of PExp(u) and the linear power model

PLinear(u) for the microservices variant of PetClinic. PExp(u) outperformed

the linear across all throughput rates. The linear power model overestimated

power consumption at low throughput rates, and underestimated consump-

tion at high rates. This is indicated by the plus/minus sign. It was hence not

possible to improve the accuracy by adjusting the linear model by a fixed

factor: This adjustment would have either increased the accuracy at low

utilization levels at the cost of an increased error at high utilization levels,

217

7. Validation

or the other way around. The results show that the use of power models

beyond linear models can improve the prediction accuracy. They positively

answer Question 1.2 for the Petclinic microservices variant.

7.2.3. Virtual Machine Placement in Data Centers

The central goal of our PCA approach is to enable the design time energy

efficiency analysis of software systems on an architectural level. Aside

from its use in architectural design, power consumption predictions can aid

data center operators in decision making for their infrastructure. Example

decisions in the context of IaaS data centers are the choice of resource

management algorithms. Resource management algorithms aim to improve,

e.g., the mapping of VMs to servers. The algorithms perform this with respect

to the algorithm heuristics or optimization criteria. This section discusses the

application of PCA in the validation and evaluation of resource management

algorithms for data centers. It addresses Question 1.2 and Question 1.1 for a

self-adaptive software system.

The CACTOS project [152] developed an integrated approach for monitoring,

optimization, and simulation of IaaS data centers. The implementation of the

integrated approach consisted of two complementary toolkits. The CACTOS
Runtime Toolkit integrates monitoring and autonomic resource management

of data centers. The framework continuously improves the configuration and

resource allocation at runtime. It uses resource management algorithms to

identify reconfiguration plans that improve QoS according to the algorithm

heuristics. The CACTOS Prediction Toolkit enables what-if analyses for data
center sizing, and the configuration and selection of resource management

algorithms. In Stier et al. [196] we provide an overview of the central features

of the Prediction Toolkit.

The CACTOS Prediction Toolkit includes an IaaS data center simulator. The

simulator uses PCA to perform power consumption predictions. The simula-

tor builds upon SimuLizar and our Transient Effect Interpreter extension. The

toolkit supports an in-the-loop coupling of resource management algorithms

with the simulator. Unlike existing Cloud simulators, the toolkit can include

these algorithms in its simulation-based evaluation without modification.

It does not require optimization algorithms to be re-implemented against

simulator specific APIs. The simulator continuously calls the configured

218

7.2. Energy Efficiency Analysis

resource management algorithms to improve the mapping between VMs and

server resources. The integration of simulator and resource management

algorithms matches the integration in the Runtime Toolkit. A data center

managed by CACTOS constitutes a self-adaptive software system, as it con-

tinuously aims to improve QoS by performing adaptation actions such as

VM migrations.

The CACTOS tooling uses a specialized metamodel to represent data centers.

Instances of the metamodel serve as a runtime model. Compared to PCM,

the metamodel contains additional information needed for the management

of virtualized data centers, such as further hardware information, and a rep-

resentation of VMs as first class entities. The Prediction Toolkit continuously

synchronizes the CACTOS runtime model with the PCM and SimuLizar

models. We presented the integration method applied to couple simulation

and optimization in [197]. The power consumption characteristics repre-

sentation in the CACTOS metamodel was developed based on the Power

Consumption model. Section 3.2.5.2 outlines the CACTOS integration of the

central modeling concepts. As part of the simulation, CactoSim maps the

power consumption characteristics to an instance of the Power Consumption

model. SimuLizar then executes PCA on the target Power Consumption

metamodel instance.

7.2.3.1. Evaluation Setup

The case studies presented in this section were conducted as part of the

CACTOS project. The studies were carried out in a data center testbed built

using commodity hardware. The testbed was managed using the OpenStack

[151] Cloud platform, enhanced with the CACTOS Runtime Toolkit. The

CACTOS Runtime Toolkit determines initial placement locations for VMs.

Additionally, it continuously optimizes the mapping of VMs to resources,

e.g., by performing VM migrations.

In total, four scenarios were evaluated. The four scenarios and the results

were published in [196]. The first three scenarios covered a setup with eight

servers. Power measurements were collected using IPMI. Power measure-

ments could be collected from six out of the eight servers. The other two

servers lacked power meters. The fourth scenario was conducted using six

servers. From the six servers, power measurements could be collected from

219

7. Validation

the four servers. In each scenario, a load driver submitted a set of VMs to the

Cloud middleware. The VMs ran scientific computing workloads. Each VM

executed a Molpro [221] scientific computing job after it had booted. Molpro

is a framework for quantum chemistry computations. Molpro jobs adhere to

run-to-completion semantics. The load driver submitted the Molpro VMs

over time. Each set of submitted jobs was designed to follow typical daily

submission patterns at the High Performance Computing Center at Ulm

University. The workload mix covered Molpro jobs with short and long run

times. Jobs with short run times lasted up to two hours. Long running jobs

covered up to eight hours.

We predicted the power consumption of the testbed using CPU-based power

models. In the first scenario, we used linear power models to predict the

power consumption of servers. We trained the power models on historic

measurements that were collected for all servers, which the scenario covered.

In the other three scenarios, we used a mix of linear, cubic polynomial, and

exponential power model types. The exponential power model type was:

P(u) = a · (1 − e−u) · b.

Initially, we had used linear power models to predict the power consumption

in all four scenarios. We were able to reduce the prediction error through

the use of the previously mentioned non-linear models. This illustrates the

increased prediction accuracy of our approach compared to state of the art

predictions (Question 1.2).

We queried historic power and load measurements from a monitoring data-

base that recorded measurements from the testbed. As the power measure-

ments strongly varied for each recorded CPU load level, we aggregated the

measurements for each load level in {0, 0.01, . . . , 1} using the median func-

tion. The aggregated input values served as the training set of the regression.

We applied the iterated reweighted least squares regression as implemented

by Rousseeuw et al. [177] to train the power models. Section 5.3 provides fur-

ther details on this power model extraction from historical measurements.

We performed a simulation of a specific workload mix, and optimization

configuration based on historical load data. We reconstructed black-box VM

models from the load data stored in the monitoring database. The black-

box modeling concept we employed to describe VM load is described in

220

7.2. Energy Efficiency Analysis

[115]. In order to minimize the effect of variations in VM behavior on the

predictions, we compared the simulation results against the historical run

from which the load models were constructed. We only considered VMs that

were successfully deployed on the testbed. This was done as information on

VMs with failed deployments were not recorded.

We determined the total energy consumption of simulation runs and mea-

surements using numerical integration. We employed the Gauss-Kronrod

quadrature formula to calculate the total energy consumption from the mea-

sured and predicted power samples. In our predictions, we only compared

the measured and predicted energy consumption of the servers with power

meters.

7.2.3.2. Evaluation Scenarios

This section provides details on the conducted experiments. No VMs were

running at the start of each experiment scenario.

Scenario 1 The first scenario encompasses 26 VM submissions to a data

center testbed setup which consisted of eight servers. Six of these eight

servers had a power meter, from which we could collect measurements.

No power measurements were available for the other two servers. The

experiment covered just below one and a half hours. We used consolidation

algorithms for VM placement and migration. The algorithms consolidated

the VMs based on their RAM requirements. The project deliverable [117]

describes the RAM-based consolidation algorithms.

Scenario 2 The second scenario contained 15 VM starts. It lasted for ap-

proximately eight and a half hours. In this scenario, both VM placement and

optimization of the Runtime Toolkit were configured to use load balancing

algorithms. The algorithms target an even distribution of used RAM across

all servers based on the RAM requirements of VMs. A description of the

algorithm is available in [117].

221

7. Validation

Table 7.7.: Total energy consumption for the three evaluated scenarios. Energy Con-

sumption in W h. Prediction error in %.

Scenario Duration Measured Predicted Error

1 75 min 1 783 W h 1 661 W h 6.85%

2 514 min 5 443 W h 5 464 W h 0.39%

3 526 min 5 238 W h 5 609 W h 7.08%

4 1561 min 13 558 W h 12 826 W h 5.40%

Scenario 3 The third scenario covered the same basic experiment configu-

ration as Scenario 1, but with an extended experiment time of eight hours

and 46 minutes. The number of VM starts was reduced to 19. We used the

same VM consolidation algorithms as in Scenario 1.

Scenario 4 The last scenario consisted of 37 VM starts. It covered an inter-

val of approximately 26 hours. The scenario used the same consolidation

algorithms for VM placement and optimization as Scenario 2. Unlike the

eight servers used in the first two scenarios, the third scenario used six

servers.

7.2.3.3. Experiment Results

This section discusses the prediction accuracy we achieved when apply-

ing PCA to the power consumption prediction of a self-adaptive IaaS data

center.

Table 7.7 lists the measured and predicted energy consumption for each

scenario. In the first scenario, the prediction error was 6.85%. The prediction

error in scenario 2 reached a low 0.39%.

Scenario 3 had the highest prediction error 7.08%. We attribute the high

prediction error to an overestimation of CPU utilization in one of the servers

that was equipped with a power meter. The simulation model did not contain

one VM that was actually running on the testbed. In the run, this VM was

initially placed on a server without a power meter. Later, the VM was

consolidated to a server with a power meter. This migration did not happen

222

7.2. Energy Efficiency Analysis

in simulation. Consequently, the server with a power meter continued to

have spare resources in simulation. This led to the placement of a highly

active VM on the server, since the resource management algorithm were

configured to consolidate VMs on as few servers as possible. . In themeasured

run, the VM was placed on a server without a power meter due to RAM

limits. The VM increased the power consumption of one of the monitored

servers in simulation. Byrne et al. [43] provide an extensive discussion of

the deviation. Even though the missing measurement data led to a major

deviation in simulation, the aggregate energy consumption prediction was

accurate.

In the fourth scenario, which covered over 24 hours, the prediction reached

5.40%.

Our PCA approach accurately predicted the power consumption of the data

center testbed across all four scenarios. Hence, we conclude that the results

positively answer Question 1.1.

7.2.3.4. Limitations

We achieved a high prediction accuracy despite the following limitations

regarding the quality of input data, and our test setup:

• Resolution and accuracy of measurement data. The monitoring

database collected power consumption measurement data with a

resolution of ten seconds. CPU utilization measurements were also

only available with a resolution of ten seconds. The low

measurement resolution hindered the construction of accurate

performance and power models. The monitoring tooling collected

power consumption measurements from power meters built into the

server PSUs. The use of built-in power meters limited the

measurement accuracy.

We observed a large variation of power consumption measurements

for the same load level. Our model learning addressed this by

averaging over all measurements of each load level. Nevertheless, we

consider the fluctuations to have had an impact on prediction

accuracy.

223

7. Validation

• Missing measurement data. In the third scenario utilization

measurements from one of the VMs were missing due to a

monitoring failure. This led to inaccuracies in the reconstructed

behavior model for simulation. The resulting prediction inaccuracies

of CPU utilization reduced the energy consumption prediction

accuracy.

• Lack of a representative range of measurement data covered
by historical data. Most servers reached at most an overall CPU

utilization of 20% for time frame, in which measurement data were

available. This made it difficult to train power models that were

representative of the power consumption behavior of the servers

outside of the observed utilization range.

• Missing power meters in a subset of servers. Two of the servers

lacked a power meter in all three scenarios. Power consumption

resulting from the activity of VMs that were allocated on these

servers could not be considered. Consequently, we could only reason

on power consumption for the remaining servers. In Scenario 3 this

introduced a noticeable error in the simulation predictions.

7.3. Automated Extraction of Power Models

This section investigates the appropriateness of the power model extraction

method as stated in Goal 2. The evaluation addresses the validation questions

3.1 through 3.5. Parts of the validation results were initially published in

[201].

The main power model extraction case study involved three central steps.

First, we executed the profiling approach presented in Section 5.2 for a server.

Second, we trained a set of power models on the resulting profile. Finally,

we evaluated the accuracy of the power models for a set of workloads. We

reasoned on the utility of the AIC-based power model ranking approach via

a comparison of measured and predicted accuracy.

This section is structured as follows. Section 7.3.1 introduces the setup of

the profiling for the case study. Section 7.3.2 gives an overview of power

models used as in input for the profiling and model training. Section 7.3.4

224

7.3. Automated Extraction of Power Models

discusses the server profile produced by our profiling approach. Section 7.3.5

introduces the case study systems used to evaluate the accuracy of power

models. In Section 7.3.6 we investigate the prediction error of power models

for the case study systems. Section 7.3.7 compares our approach with a

state of the art approach. Section 7.3.8 discusses the application of the

AIC-based ranking of power models to the system under investigation. In

Section 7.3.9 we present a complementary case study that evaluates the

prediction accuracy of the extracted models for VM migration scenarios.

7.3.1. Profiling Setup

The server under investigation for the evaluation of the profiling approach

was a PowerEdge R815 with four Opteron 6174 CPUs, 256 GB RAM, and

six 900 GB 10, 000 RPM Serial Attached SCSI (SAS) HDDs. The six HDDs

were connected to an internal storage RAID. The profiling framework and

evaluation workloads were executed in Ubuntu 14.04 VMs. Each VM had 48

virtual cores and was running atop XenServer 6.5. Only one VMwas running

at any given time during the profiling and measurement. The profiling VM

was assigned 64 GB of RAM.

Power measurements were conducted using a ZES Zimmer LMG95 power

meter. We connected the powermeter to the electrical outlet of one of the two

redundant PSUs of the servers. We disconnected the other PSUs to guarantee

that the power meter captured the full power draw of the server. Power meter

measurement data was collected using a dedicated notebook. The notebook

ran SPEC PTDaemon [192], which polled power measurements from the

power meter. A monitoring utility collected all system metric and power

measurements. We implemented the utility upon the technical foundation

of SIGAR [143] and Metrics [139].

Our server profiling uses an input configuration. The configuration deter-

mines the set of workloads, and the set and range of system metrics that

should be considered by the profiling. We configured the profiling as fol-

lows. We included CPU utilization ucpu, storage write throughput tpwrite,
and storage read throughput tp

read
in the profiling metrics. Our profiling

framework only actively steered one of the two storage metrics at any point

in time. The framework monitored the other storage metric during that time.

We configured the profiling framework to perform the calibration of the

225

7. Validation

workload intensity over 80 or 90 seconds. We set the measurement phase

to last 60 seconds. The calibration phase was 90 seconds for all workloads

involving XMLvalidate, and 80 seconds for all other workloads.

7.3.2. Metric Selection and Considered Power Model Types

We selected ucpu, tpwrite, and tpread as candidate metrics for the power model

training, since they can be predicted with Palladio simulators [18, 22, 92]

and available extensions [148]. Modeling storage systems requires additional

effort, as the work by Huber et al. [92] and Noorshams et al. [148] demon-

strates. If we are able to accurately predict the power consumption and

performance of a software system without explicit consideration of storage,

this option is the more desirable option. The reason lies in the lower effort

required to create PCM models that solely consider CPU.

As outlined in Section 5.2, the power profiling performs the profiling and

training of the server under investigation for a set of power model types

specified by the user. Each power model type subsumes a set of power

models that predict the power consumption of a server using a set of system

metrics.

Prior to the evaluation, we had collected power model types that supported

system level metrics for CPU and HDD. For these models, we limited the used

metrics to ucpu, and optionally tp
write

, tp
read

, or all three metrics. Table 7.8

provides an overview of the identified power models. The only model not

explicitly stated in literature is model 6. We derived model 6 from model 5

by eliminating its linear component.

7.3.3. Workload Selection and Definition of Profiling Ranges

We selected the workloads SequentialWrite, RandomWrite, XMLvalidate,
CryptoAES, Compress and SOR from Server Efficiency Rating Tool (SERT)

to profile the server under investigation. SequentialWrite performs sets of

sequential disk writes, while RandomWrite randomly writes to disk. XML-
validate stresses the CPU by performing XML document validations. SOR
numerically solves differential equations. Compress (de-)compresses data.

Further details on the used workloads are available in [187].

226

7.3. Automated Extraction of Power Models

Table 7.8.:Overview of considered power models. M is the set of considered metrics.

The referenced papers propose or apply the listed power model.

No. Power Model Considered Metrics

1 P = c0 +
∑

m∈M
cmum OS-level system metrics [35, 65,

82, 104, 135, 172], or only CPU

utilization [69, 231]

2 P = c0 +
∑

m∈M
(
lmax∑
l=1

clum
l) OS-level system metrics [135],

or only CPU utilization [231]

3 P = c0 +
∑

m∈M

lmax∑
l=1

(eum + clum
l) OS-level system metrics [135]

4 P = c1 · e
−(

ucpu−c2

α
1

)2
CPU utilization [231]

5 P = c0 + c1ucpu + c2u
α
cpu

CPU utilization [69, 172]

6 P = c0 + c1u
α
cpu

CPU utilization

We formed workload mixes from the considered individual workloads by

forming the cross product of workloads that stress the CPU (ucpu), and
workloads which mainly use the HDD (tp

write
). Table 7.9 lists the combined

workloads with the target levels per workload combination. In total, the

run of the combined workload took approximately 38 hours. We did not

control tp
read

via a separate workload. We only passively monitored and

recorded tp
read

. We defined the target level ranges of tp
write

based on simple

throughput tests using utilities like the Linux command line tool hdparm.

By slightly varying tp
write

target levels across the workload mixes, we were

able to cover a larger range of throughput levels. The profiling framework

formed the target load levels as the cross product of the ucpu and tp
write

levels of workloads 1 through 4. The listed load level 850 000 matches∞, as

it is higher than the achievable throughput rates for tp
write

. It could have

been omitted from the workload level definition as it practically resulted in

a repeat of the∞ target level. Since measurements can be filtered prior to

power model training, we deemed that the repeat definition did not impair

the representativeness of our measurements.

227

7. Validation

Table 7.9.:Workload mixes with used target level per steered system metric. The

cross product of target values form the target measurement tuples. Workload mixes

marked with (⋆) have an additional target level (∞,∞).

No. Workload

(combination)

Controlled

Metrics

Target Level Ranges

(1)
SequentialWrite tp

write
{0, 6 000, 25 000, 40 000, 60 000,
100 000, 850 000,∞}×

and XMLvalidate ucpu {0, 0.05, 0.10, 0.15, . . . , 1.0,∞}

(2)
RandomWrite tp

write
{0, 6 000, 25 000, 40 000,
60 000, 100 000, 850 000,∞}

and XMLvalidate ucpu {0, 0.05, 0.10, 0.15, . . . , 1.0}

(3)
SequentialWrite tp

write
{10 000, 20 000, . . . , 120 000}

and

CryptoAES (⋆)
ucpu ×{0.05, 0.10, 0.15, . . . , 1.0}

(4)
RandomWrite tp

write
{6 000, 12 000, . . . , 72 000}

and

CryptoAES (⋆)
ucpu ×{0.05, 0.10, 0.15, . . . , 1.0}

(5), (6), Compress, XML-
validate, ucpu {0, 0.05, 0.10, . . . , 1.00,∞}

(7), (8) SOR, CryptoAES

7.3.4. Discussion of the Server Profile

We used the workload mixes discussed in Section 7.3.3 to profile the server

under investigation. This produced a server profile for use in the model

training step.

Figure 7.12 visualizes the server profile as a scatter plot. The scatter plot

shows the combined measurements collected when profiling the system

under investigation using the workload mixes listed in Table 7.9. The plot

indicates that power consumption strongly correlates with CPU utilization.

A relation between consumption and storage throughput is not apparent.

We applied Pearson’s and Spearman’s correlation coefficients to investi-

gate the degree to which measurements of different system metrics and

228

7.3. Automated Extraction of Power Models

0.0 0.2 0.4 0.6 0.8 1.0

20
0

30
0

40
0

50
0

60
0

70
0

 0

 50

100

150

200

250

300

CPU Utilization

W
rit

e
(M

B
/s

)

P
ow

er
 (

W
at

t)

●

● ●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●●

●
●

●●●
●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

● ●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●
●
●

● ●

●

●
●

●

●●●

●

●
● ●●

●

●

● ●

●

●●●

●

●
●

●

●
●

● ●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●●●

●●●

●

●●
●●

●

●

● ●●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●

●

●
●

●●●●

●

●

●
●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●
●

●

●

●●
●
●●

●●

●●●

●
●●

●

●●

●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

● ●

●

●

●●

● ●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●

●

●
●

●

●●●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●●
●
●

●

●●●●●●

●

●

●●

●

●

●

●

●

●●

●●
●

●● ●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●●●●

●

●

●

●

●●

● ●

●
●●

●

●

● ●

●

●

●●

●

●●

●

●●

●

●

●● ●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●●

●●
●

●

●●● ●●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●
●
●● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●● ●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●● ●

●
●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●●●

●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●
● ●

●

●

●●

●

●●● ●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●●

●●

●
●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

● ●

●

●
●

●
● ●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●
●
●●

●

●

●

●

● ●●

●

●

●

●

● ●●●
●

●

●

●●●●●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

● ●●

●

●

●

●
●

● ●

●

●●

●

●●

●

●●● ●

●

●●● ●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●●

●

●●● ● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●●

●

●●

●

●●

●

● ●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

● ●● ●

●

●
●

●●●●●●●●

●

●

●

●
●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●●●

● ●●

●

●
●●

●●

●

●●●

●

●

●

●

●●
●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●● ●●●

●

●

●

●

●
●

●

●

●●●

●●●●●● ●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●● ●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●●●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●●●

●

●●●

●

● ●●●

●●●

●●

●

●

●●

●

●
●

●
●

●●

●●

●

●

●

●

●

●●

●

●●

● ●●●●

●

●

●

●

●

●●
●

●●

●
●

●

●●

●

●

●

●
●

●

●

● ●●●

●
●

●

●●
●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●●

●

● ●
●

●

● ●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●

●

●

●

●● ●● ●

●
●●

●

●
●

●

●

●● ●●●
●

●●

●

●

●

●

●

●● ●

●●

●

●●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●
●

●●
●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●
●

●

●●

●

●●

●

●

●

●

●●

●

●●●●

●●●

●

●

●● ●

●

●●

●

●●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●●●●

●●

●●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●●

●●● ●
●

●

●

●
●●●●●●

●

●

●

●●●●
●

●

●●

●
●

●
●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●●

●

● ●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●
●● ●●

●

●

●

●
● ● ●●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●
●

●

●●
●●●●●

●

●

●
●●● ●

●●

●
●

●●
●●

●
●

●
●

●

●
●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

● ●● ●●●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●

●●

●

●

●●●

●●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●●

●

●● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●●
●●

●●

●

●●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

● ●
●

●●● ●

●

●

●

●

●

●

●

●●
●●●●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●● ●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●●●●●

●

●

● ●

●

●

●
●
●

●
●

●●●

●

●

●

●

●
●

●

●●●
●

●●

●

●

●

●

●

●

●

● ●●

●

●●
●

●

●

●

●

●
●●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●●
●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●●

●

●
●

●

●●
●

●●

●

●●

●●

●●
●

●●●

●●

●●
●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●
● ●

●

●

●

●

●● ●● ●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●
●

●
●

●●
●●●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●●

●

●

● ●●●

●

●●●●●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

● ●●

●●
●

●●
●

●●
●●

●●●

●

●●
●

●

●

●●

●

●
● ●

●

●

●

●

● ●●

●

●

●

●

●

●●●●●●●●●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

● ●
●

●

●

●

●

●●

●●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●●
●

●

●

●

●● ●●●●
●

●●●●●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●●
●●

●●●

●

●

●

●

●

●

●

●

●

●

● ●
●●

● ●
●●

●

●●

●

●
●

●

●

●●
●

●

●

●
●

●●

●

●

● ●

●

●

●
● ●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●● ●

●●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●
●

●●

●

●

●
●●

●

●

●

●

●

●●●

●

●●●●
●

●

●

●

●

● ●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●●●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●●

●●

●

●

● ●●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●

● ●●

●

●

●

●●●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●●●

●

● ●●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●●●●

●
●

●●
●

●

●

●

●

●●●●

●

●
●●

●

●

●

●●● ●●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●●

●
●

●

●

●

●

● ●●●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●●

●●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●
●

●●

●

●
●

● ●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●●

●

●
●●

●
●

●
●●●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

● ●●●●●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●● ●

● ●

●

●

●

●

●

●● ●

●

●

●●●● ● ●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●
● ●

●

● ●●

●

●

●
●

●

●

●
●

●● ●

●

●

●●●

●

●●

●

●●

●●

●

●

●●●
●

●

●

●

●

● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●●

●

●
●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●
●

●●

●

●

●

●●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●●●

●

●●●

●

●●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●●

●

●

●
●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●●●●
●●● ●●●●

●

●●

●
●

●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●● ●●

●
●

●

●●●

●
●●●●

●

●

●

●

●●

●● ●● ● ● ●

●●●

●●●

●
●

●●● ●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

● ●

●●● ●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●●

●

●●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●
●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

● ●

●●●
●

●

●

●

●

●

● ●● ●●●● ●

●

●

●

● ●●●

● ●

● ●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●●●●

●●

●

●

●

●

●●●●●●

●●●●
●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●● ●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●●
●●

●

●

●●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●●●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

● ●

● ●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●
●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

● ● ●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

● ●

●●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●

●● ●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

● ● ●

●
●

●
●

●

●

●

●

●

●
●

●

●●● ●●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●●
●●

● ●●● ●

●

●●●● ● ●●

●

●● ●

●● ●

●

●

●

●

●●●

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●
●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●●●

●●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

● ●

● ●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●●

●

●●

●●●

●●

●

● ●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

● ●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ●

●
●

●

●●● ●●●

●●

●●●

●●

●

●

●

●

●●
●●

●

●

●

●

●●●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

● ●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●●

●

●●

●

●

●

●

●

●

●●●●
●

●
● ●●

●●

●●

●

●

●

●●

●●

●
●

●
●●

●

●

● ●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●●● ●

●●
●

●

●

●

● ●●

●●● ●● ●●

●●

●

● ●
●

●

●
● ●

● ●

●
●

●

●

●

●●

●●

●

●

●● ● ●●

●●

● ●
●●

● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

● ●●

●

●

●●

● ●

●● ●

●
●

● ●●●

●●

●

●

●●
●

●

●

●●●●● ●

●

●

●

●

●●

●

●●
●●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●
●

●

●

●●

●●

●

●●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●

●

●●

●

●

●●
●●●

●
●●

●

●

●

●●

●
●

●●

●

●

●

●

●

● ●
●

●●

●●

●
●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●●

●

●
●●

●

●

●●
●

●

●

●●

● ●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
● ●

●●●●

●●

●●

●
●

●
●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

● ●

●

●
●

●

● ●
●

●

●

●
●

●

● ●●

●●●

●

●
●
●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

● ●● ●●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●●●●

●

●●

●●

●

●

●●●

●

●

●
●

●
●

●●
●

● ●●● ●●

●●

●

●●

● ●
●●●

●

●

●

●●● ● ●●

●

●
●

●

● ●●●●

● ●

●● ●●● ●
●

● ●
●

●
●

●

●●

●
●

●

●

●●

●
●

●

●
● ●

●
●

●● ●

●
●

●

●

●
●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●

● ●

● ●●

●●

●●

●

●

●● ●●

●

●

●
●●

●

●

● ●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●
●●●

●

●
●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●● ●● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●
●

●
●

●

●

●●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●
●●●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

● ●●

●

●
●

●

●
●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●● ●●●

●

●

●● ● ●
●

●●

●

●● ●●●●● ●●

●

●●

●

●
●

●
●

●

●

●

●●
●

●●●
●

●

●
●● ●●

●

●

●

●
● ●●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●● ●●● ●●●●●●

●●●

● ●

●

●

●

●

●

●

●
● ●●●

●

●●

●
●

●
●

●
●

●

●

●

●

●●
●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●
●●

●

●

●●●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

● ●

●●

●

●●

●

●●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●● ●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●● ●

●

● ●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●
●

●
●

●●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

● ●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●●●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●●

● ●●

●

●

●

●

●

●● ●

●

●●● ●
●

●

●

●●●●

●

●

●

●● ●● ●●●
● ●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●●●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●●

● ●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●●● ●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

● ●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●
● ●

●

●●
●

●●

●

●

●●
●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●●● ●
●●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

● ●●
●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●

●
●

●●●

●●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●

●●

●●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●●

●

● ●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●
●

●●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●● ●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●

●●

●

●●●●
●

●

●

●●

●

●

●●

●

●●

●
●●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●●

●●●

●
●

●

●

●

●●

● ●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●●

●

●

●●

● ●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●●

●

●

●●
●

●●
●

● ●

●

●

●

●●

●●

●
●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

● ●

● ●

●

●

●

●●

●

●●●

●

●
●●

●●

●● ●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●●

●●

●●

●●

●

●●

●

●●

●●

●

●

●●

●

●

● ●
●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●
●●

●●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●
●

● ●

● ●

●

●

●●

●

●

●
● ●●

●

●

●

●●

●

●●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

● ●

● ●●

●●●

● ●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●●

●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●● ●

●

●

●

●

●●● ●●

●

●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●●

●

●

● ●

●

●

●●●

●

●

●

●

●

●
●

●●

●●

●●●●
●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●●●

● ●
●

●
●

●

●

●

● ●

● ●●●

●

●

●

● ● ● ●●

●

●
●

●●

●

●

●

●● ●●

●

● ●● ●
●

●
●

●

●●

●

●●● ●● ● ●

● ●

●●

●

●

●

● ●●● ●● ●

●

●

●

●

●
●

●
● ●●

●●

●

● ●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●
●

●

●
●

● ●

●● ●

●●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●●
●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●●

●

●

●

●●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●● ●●
●●

●
●

●
●

●

●●

●

●

●

● ● ●

●●

●

●

●● ●

●

●
●●● ●

●
●

● ● ●●

●
●

●●

●●●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●●

●

●
●

●

●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

● ●

●

●

●

●

●●●

●●●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●●●
●●

●

●●●

●

●

●

●

●

●

●
●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●● ●● ●

●

● ●● ●●●

●

● ●●● ●●●

●

●

●
● ●●

●
●●

●

●

●● ●●●
●●●

●

●

●
●

● ●●
●

●

●

●
●●

● ●

●

●

●●

●● ●●● ●

●● ●
●

● ●

●● ●

●

●

●
●

●

● ●●●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●●
●

●●

●●

●

●

●●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●●
●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●
●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●● ●●
●● ●●

●

●● ●● ●

●●●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●
●●●

●
●●

●

●

●
●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●●

●

●
●● ●●

●

● ●●

●

●●

●
●● ●● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●●●●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

● ●
●
●●

●

●

●

●

●

●
●

●

●●

●●●

●

●
●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●●●● ●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●●

●

●

●

●●
●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●● ●

●

●

●

●

●●

●

●

●
●

●●

●●●

●

●●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●●

●
●

●
●

●
●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●● ●

●

●

●

●

●

●

●●●

● ●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●
●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●●

● ●●

●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●● ●

●●

●●

●

●●

●● ●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●● ●● ●●
●●

●

●

●●

●●●

●

●

●
●●

●

●●

●

● ●

●●

●

●

●●

●●● ●

●

●
●

●
●

●

● ●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
● ●

● ●

●

●

●

●

●

● ●

●● ●

● ●

● ●●

●●

●

●

● ●●

● ●

● ●●

●

●

●

●

●●

●

●
●

●●

●

● ●● ● ●● ●●● ●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●●

●
●

●

●

●●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●
●●●● ●●

●●●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

●●

●●●●

●

●●

●●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●●

●

●
●●

●

●●
●●
●

●
●

●
●

●●

●●

●

●●●●

●

●●
●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●

●●●

●

●

●●●●●●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●●●

●

●
●●

●●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●
●

●
●

●

●

● ●

● ●

●

●
●

●

●●

●

● ● ●●

●
●●

●

●

●●●
●●

●
●

●
● ●●

● ●

●

●

●●

● ●

●● ●

● ● ●

●

●

●

●

● ●

●
●

●●

●

●
●

●●

●●

●

● ●
●

●
●

●

●●

●

●

● ●●
●

●

●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●

●
● ●

● ●
●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●● ●●

● ●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

● ●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●●●●

●●
●

●

● ●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●
●

●

● ●●

●

●

●●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●●●
●

●
●

●

●●

●

●

● ●

●
●

●

●●

●●●

●

●●

●

●●●

●

●
●

●●●●

●

● ●

●

● ●●
● ●●

●

● ●
●

●

●

●

●
●

● ●●
●

●

● ●●● ●●●

●
●

●
●

●●● ●

●
●●

●
● ●●

●

●

● ●●● ● ●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●
●●● ● ●●

● ● ●●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●● ●●

●

●

●●

●●

●

●

● ● ●●● ●●● ●● ●●●●

●

●
●

●

●● ●●●● ●
●

●●

●●● ●●

●

●
●●

●

●●● ● ●
●

●

●

●

●

●
●

●

●

●

●●●
●
●

● ●
● ●

● ● ●●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●●●●●●

●
●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●

● ●●

●

●●

●

●●●●
●
●● ●● ●

●

●●
●●

●

●●
●●
●

●● ●●
●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●
●●

●

●

●

●●●

●

●● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●
●●●
●

●

●

●●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
●●● ●

●

●●

●

●

●
●

●

●

●●●●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

● ●● ●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

● ●

● ●

●●

●

●

● ●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ●

● ●

●

●

● ●●●

●●

●
●

●●

●

●

● ●

●●

●

●

●● ●●

●

●

●

● ●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●● ●

● ●●

●● ●●● ●●
●●

●●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●

● ●

●

●●

●
●

● ●

●

●

●●

●

●
● ●

●

●

● ●

●

●

●● ●

●●

●

●

● ●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●● ●

●

●●

●
●● ●

●●● ● ● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●
● ●

● ●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●

●●

●

●●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●● ●●

●●

●●

●
●●●

●

●

●
●

●

●

●

●

●
●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●
●

●

●

●
●

●

●● ● ●●

●

●

●
●●● ●

●
●

●

●

●●

●

●
●

●● ●
●

●

●
●

●

●●

●● ●

●

●
●

●●

●●

●

●

●
●

●●● ●

●

●●

●

●● ●

●
●

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●●●
● ●

●
●

●
●

● ●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

● ● ●

●
●

●●

●

●● ●

●

●

● ● ●●● ●
●

● ●●●

●
●

●● ● ● ●●
●●

●

●

●

●

●

●

●

●

●

● ●●

●

●● ● ●
●

●●
●

●● ● ●●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●
●

●

●●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●● ●●●● ●
●

●● ●●●● ●
●

●

●

● ●
●●●● ●● ●

●
● ●

●●

●●

●

●

●● ●
● ● ●● ●

●●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●
●

●●
●

●

●

● ●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●● ●

●

●●
●

●
●●●●

●●●

●● ●
● ●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

● ●●

●

●

●

● ● ●
● ●●●●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●

●
●●●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

● ●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●
●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●
●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●●●

●

●

●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●●

●●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

● ●●● ●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●●●●
●

●

●● ●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●●

●

●●

●

●●
●

●●

●

●
●

●
●

●

●

●

●
●●

●
●

● ●
●

●●●
●

●

●
●
●

●
●●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●●●

●●●

●

●
●

●

●

●●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●●

●

●●●●

●●●

●●●●

●●●●●●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●●
●

●

●

●●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●●
●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●
●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
● ●●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●●
●●

●
●
●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●
●●

●
●

●
●

●

●

●

●●

●

●●
●

●

●
●

●
●

●

●

●
●
●●●

●●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●●
●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●
●●

●
●
●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●● ●●●●

●

●

● ●

●●
●

●

●

●●

●

●
●

●

●●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●
●● ●

●

●●

●●●

●

●

●

●

●●

●●

●

●

●

●● ●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●●

●

●●

● ●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●●

●
●

●

●

●

●●

●●

●

●

●●

● ●

●●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

● ●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

● ●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●

● ●
●●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●●●●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

● ●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●●

●

●●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●

●

●●●

●●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●●●
●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●
●

●
●

●●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●●
●

●

●●
● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●●
●

●
●

●
●

●

●●●

●● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●●●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●●● ● ●●●●● ●●●● ● ●●●●
● ●● ●● ●● ●●● ●●● ●● ●●●● ●●●●●●●

●

●

●

●● ●●●●●●● ●●●

●

●

● ●●● ●●●● ●●● ●● ●●●● ●●●●●● ●● ●●●● ●● ●●● ●●● ●●● ●●● ●● ● ●● ●●●● ●● ●● ●● ●●●●● ●●
●●●●●●●● ●●● ●● ●● ●●● ●●●●●●● ●● ●●● ●●●●● ●● ●● ●● ●●●● ●● ●●● ●● ●● ●●● ●●● ●● ●●● ●
●●● ●●●● ●● ●●● ● ●● ●●●●● ●●●

●
●●●
● ●●●●●●●●●●●● ●●● ●●● ●● ● ●
●

● ●●● ●●●
● ●●●● ●● ●

●
●●●● ●● ● ●●● ● ●● ●● ●●●●●● ●●● ●●●

●● ●● ●●
●●● ●● ●● ●●●●●●●●●● ●●●● ●●● ● ●●●● ●● ●● ● ●●

● ●●●● ●● ●●●● ●● ●●● ● ● ●● ●● ● ●●● ●●● ●●●●●●●● ●●● ●●
●●● ●●● ●● ●●● ●●● ● ●● ●● ●●● ●●● ●●●●● ● ●●● ●●●

● ●●●
● ●● ●●●● ●● ●●●● ●●●● ●● ●● ●● ●●●●
●

●● ●
● ●● ● ●●●●●

● ● ●● ●●●●●
●● ●●● ●● ●● ●●●● ●●● ●

●● ●●● ●●● ●
●●

●●●●
●●● ●● ●●●●●●●●

● ● ●●●●●●●●● ●●●●● ●●●● ●●●●● ●●

●●●●●●● ●●●●● ●
●●
●●● ●●●●● ●●●● ●● ●● ●●

● ●●●● ●● ●●●●
●● ●● ●●
●●●●●●● ●●●●● ●● ●● ●● ●
●

● ●●●● ●●● ●● ●●● ●● ●

●●●● ●● ●●●●● ●●●●●
● ●●● ●●●●●●● ●● ●●● ●●●●●●●

● ●●●● ●●●●●●●●● ●
● ● ●●●●●● ●● ● ●●●●
● ●●●● ●● ●●●

●● ●●●●● ●●●●● ●●●● ●●●●●●●●●●● ●● ●●● ●●●● ●●● ●●● ●●●●●

●●● ●●
●●●● ● ●●●●●●

●●●●●●● ●●●●●●●●●●● ●●●●●●

●●● ●●●● ●● ●●●●●●●●● ●● ●●●●●●●● ●●●●●
●●●●●●

●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●
● ●●●

●●
●
●
●●●
●●●●●●●
●●●●
●● ●●● ●●●●●●● ●
●●● ●● ●
●●

●

●
●

●● ●● ●●●●● ●●●●●● ●●●● ●●●
●●● ●●● ●● ●● ●●●●● ●●●● ●●● ●●●●●●●●● ●●●●●●●● ●●

●●●●●● ●●●● ●●● ●●●●●●● ●●● ●● ●●●● ●●● ●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●●●● ●●●●●● ●●●
●● ●●●●●●● ● ●●●●●●●● ●●●● ●●●●●●●●● ●● ●●●● ●● ●●

●●●●● ●●●●●● ●●●●●●● ●●● ●●●●●● ●● ●●●● ●● ●●●● ●●●●●●●● ●●● ●●● ●●● ●●●●● ●●●●●●●●● ●● ● ●● ●●●●●● ●●
● ●● ● ●●●●●●● ●●

●
●●●●●●● ●●●●●●●● ●●● ● ●● ●● ●● ●● ●●

●● ● ●●● ●●●● ●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●
●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●●● ●●● ●●●●● ●

●●●
●●● ●●●● ●●●● ●●●●●●● ●●

●●● ●●●●●● ●●● ●●●●
●● ●●●●●●●● ●●● ●●●● ●●●● ● ●●● ●●●●●●●●●● ● ●●●● ●●●●

● ●●●
● ●●● ●●●●●● ●● ●●● ●● ●●● ●●●●●● ● ●●● ●●● ● ●● ●●

● ●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●● ●●●●● ●●●●● ●●

●●●● ●● ●● ●●●●●●●● ●●●●●● ●●● ●●●●●●● ●● ●●●●●●●

●● ●● ●● ●● ●● ●●● ●● ●
●●● ●●●● ●●●●● ●●●● ●●● ●● ●● ●●●●

● ●●●●●●●●●●●● ●● ●●● ●● ●●●● ●●●●●●●●● ●●● ●● ● ●●

●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●●● ●●●
●
●●●●●● ●●●●

●● ●●●●●●● ●● ●● ●●●● ●●●● ●●●● ●●●●●● ●●● ●●● ●● ●● ●●

●●● ●●●● ●●
●●● ●●

●●●
●

●

●
●

●●●●●
● ●●●● ●●●●
●

●● ●

● ●●●● ●●●● ●●●● ● ●●●● ●●●● ● ●
●
●● ●● ●●● ●

● ● ●●●●
●

●●● ●●● ●●●
● ●●

●
●●● ●● ●●● ●●● ●● ● ●●●

●●●●●●●● ● ●
● ●

●●
●● ●●●●●

●

●

●

●●●●●●● ●●●●●●● ●●● ●●●● ●●●●
● ●●●● ●●

● ●● ●●●● ●● ●●●● ●●● ●● ●● ●● ●●●●● ●●●●●●●●
● ●

●
●●

●● ●●
● ●●● ●● ●●●● ●●●●●●● ●●●● ●● ●● ●●●●● ●●● ●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●●●●

● ●●
●● ●●● ●●● ● ●●● ●●● ●● ●●●

●
● ●● ●●●●● ●●● ●●● ●● ●●● ●●

●●●● ●●●●
●●

●●●●● ●●●●● ●
●

●●● ● ●●●● ●●● ●●●●●
●

● ● ●● ●●●●●● ●●● ●●
●

● ●●● ●●●●●

●
●● ●●● ●●● ●● ●●●●●● ●●●● ● ●●

●
●

●
● ●●

●● ●●●●●● ●●
●

●●●

●●●●●●● ●● ●● ●● ●● ●●●● ●●●●●●
●

●
●● ● ●●● ●● ●● ●●●

●● ●●●●●●●●● ●●●●● ●● ● ●●● ●●●●●● ●● ● ●●●●●
●● ●● ●●● ●●●●●● ●●●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●

●● ●●●●●●●● ●●● ●●●●●●●●●●●● ●●●● ●●●●●●● ●●●● ● ●●
●●● ● ●●● ●● ●●●●●● ●● ●● ●● ●● ●●● ●●●● ● ●●●●● ●●●●●●

●●●●●
●●●●●●● ●●● ●●●● ●●● ●● ●●●●

●●●● ●● ●●●● ●●

●●●●●●● ●● ●●●●●●● ●● ●●● ●●● ●● ●●●●● ●●●●●● ●● ●●●

●●●● ●●●●● ●● ●●●●● ●●●●●
●●●● ●●●●●●● ●●● ●● ●●●●

●●●●●●●● ●● ●● ●●●● ●● ●● ●●●●●●● ●●●●●●●●●● ●●

● ●
●● ●●●●●●●●●●● ● ●●● ●●●●● ●●●●●●●● ●●● ●●●●●

●●●● ●●● ●●● ●● ●●●● ●●●●●●●●●●●●●●●●●● ●●●●●● ●●

●
● ●●●●● ●●●●● ●● ●●●● ●● ●●●● ●●●●●●● ●●●● ●●●●●●

●● ●●●●●
●●● ●●● ●
●●●● ●●

●

● ●
●
●●
● ●●●

●
●●

●●
●●

●●● ●

●

●●

● ●●●●● ●●●●●● ●●●● ●● ●●●● ●●● ●●●●● ●●●● ●●●●
● ●●● ●●
●●●●●● ●
●

●●
●●●●● ●
●●

●●●●● ●●●●●●● ●●●● ● ●
●● ●● ●●● ●●●●

●●● ●●●● ●● ●●●● ●●● ●●●● ●● ●●●●●●●●●●
● ●●●●●●●●● ●● ●●● ●●● ●●● ●●● ●●●●●● ●●●●●●●●●● ●● ● ●●●●● ●●●●●●●
●

●● ●● ●●● ●●●●●
●
● ●●●●●●●●● ●●● ●● ● ●●●●●●●●●●●●●● ●●●

●● ●● ●●●●●●●●●●● ●● ●●● ●●●● ●●● ●● ●●●● ●●●● ● ●
●●

● ●● ●
●●● ●●●● ●●●● ● ●●●● ● ●●

●
●● ●

●

●
● ●● ●● ●●● ●●

● ●●
●

● ●●● ●● ●●
●● ●●●●● ●

● ●
●

●
●

●● ●
●
● ●

●●● ●
●
●● ●●●● ●

●
●

● ●
●

●●
●● ●● ●●
●● ●

●●
●

●
● ●●● ● ●● ●●●

●●● ●
●

●●
●

●
●

●
●● ●●

●●
● ● ●●

●
●●●

● ●
●

●●
●● ● ●●●● ●

●●● ●●● ●
●

●● ●●
●●● ●●●●

●
●

●
● ●●●● ●●● ●

●
●

●
●

●
●●

●● ●●●●●
●

●● ●● ●●●
●● ●● ●

● ● ●●
●

● ●● ●●●
● ●

●
●●● ●

●
●●

●● ●
●●●● ●●●
●●

● ●● ●● ●
●
● ●

●●
● ●

●●● ●●
●●

●
● ●●●● ●●

● ● ●●●
●● ●

●
●● ●●

●● ●●
●●●●● ●

●
●●● ●● ●● ● ● ●

●●●
●●

●
●● ●● ●●

●●●●● ●●●●● ●●●● ●● ●● ●●●● ●●● ●● ●● ●●● ●●● ●●● ●
●●

●● ●●● ●● ●● ●
●

●●●● ●● ●●
●●●● ● ●● ●●●●● ●● ● ●●●

●●● ●●
●

●●●●
●● ●

●●●
●● ●● ●●● ●●●●● ●●●● ●●●●●● ●●
●● ●●● ●●

●●●●● ●●●●●● ●● ●●●● ●●●●●● ●●●● ●●●●●● ●●●
●● ●●●●●●

●● ●●●●●●●●●
●●●●●●● ●● ●●●●●●●

●●●●● ●● ●
●●● ●● ●● ●●●

●●●●●● ●●●●● ●● ●●
●●● ●● ●●●● ●●● ●●●●●●● ●● ●●●●●

●● ●●●
● ●●●●●●●●●●●●●●● ●●● ●●
●●

●● ●●●●●●●●●●● ●●

●●
●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●

● ●●●●●● ●●● ●
●

●● ● ●● ●●

●

●

●

●

●●

●

●
● ●

●
●

● ●

●

●

●

●●

●●● ●●●

● ●●●
● ●

●

●● ●
●● ●●

●●●●

●●

●●

●●

●●●●● ●
●

●
●

● ●
●● ●

●
●●

● ●●

● ●
● ●

●

●

●

●

● ●
●● ●

●

● ●●
●

●

●●

● ●

●

●●

●

●●●

●●● ●

● ●

●● ●●

● ●● ● ●●●
●

● ●
● ●●●

●●●
●

● ● ●

●● ●●●

● ●●● ●
● ● ●●●●

●●● ●

●●●●

●●

●●●
●● ●● ●●●● ●● ● ●●

●●
●●●

●●
●

●● ●●
●●

● ●●●
●●●

●

● ●●●

●

●

●

●
●●●

●●● ●●●●● ● ●
●

●●● ●●●●
●

●● ●● ●
●●●

●● ●●
●●●●●

●● ● ●
●● ●

● ●● ●●

● ●●● ●●

●●● ●● ●

●● ●●●

●

●● ●

●●

● ●●●● ●●● ●● ● ●● ●●●● ●● ● ●●●
●

●● ●●

● ●
●●

●●● ●● ●●●
● ●● ●●

●●●

●● ●

●

● ●●● ●

●●

●●●

●● ●●●●
●

●● ● ●
●● ●● ●●●● ●●●● ●●●●● ●●● ● ●● ●

●
●

●● ●●
● ●●

●● ●●●● ● ●●
● ●●●

●● ●● ●●●

● ●
● ● ●●● ●●

● ●

●● ●●●● ●

●●

●● ●

●●●●

●●●● ●●

●● ●● ●●●● ●●
●

● ● ●●● ●● ● ●●● ●● ●
●●● ●● ●●●● ●● ●● ●●●

● ●●●
●● ●

● ●● ●● ●
●● ● ● ●●●

● ●● ●● ●
● ●●● ●●●

●

●●●●● ●●

●●● ●● ●●

● ●● ● ● ●●

●●●● ● ●●
●

● ●

●● ●● ●●●● ●

● ● ● ●●●
●●

●● ●● ● ● ●●● ●●●●● ●●● ●● ●●●●●●● ●● ●●● ●● ●●● ●●● ●●●
●
●● ● ●●●● ●

● ●●●● ●● ●
●●●● ●●● ●●●●●

●●●● ●●● ● ●●
● ● ●●● ●●● ●●●

●●●● ● ●
●●●●●● ●

● ●●● ●●●
● ●● ●●● ●

●● ●●●●

●●●● ● ●●● ●

●●● ●●● ●●●●●●●●

●● ●●● ●●●●●

●
● ●●

●●●● ●●● ●
● ●● ●●● ●●● ●● ● ● ●●●●● ●● ●● ●●●● ●●●● ● ●●● ● ●●● ●● ● ●●● ● ●●●

●
●

●●● ●● ●●●●
●● ●● ● ●● ●●● ●

●●●● ●●● ● ●

●●
●●● ●

●●● ●●● ●● ●● ●●●

●●●●●● ● ●
● ●● ●● ●●●

●

●●● ●● ● ●

●●●●● ●●● ●●

● ●● ●●● ●●● ●●

●●●●● ●●

●● ●●●●●●● ●● ●

●●●● ●●●●●

●●● ●●●
●●●

● ●●
●

●● ●
●

● ●●
●● ●● ●● ●●● ●●● ●● ●●●●

●
●

● ●
●●●● ●

● ●● ● ● ●● ●●

●●● ●
●● ●●

●● ●● ●● ●●

●● ●●
●●

●● ●●● ●
●● ●

● ●●
●

● ●

●●●●

●●● ●●

●●●● ●●● ●● ●●●● ●●● ● ●●●● ●
●

● ●● ●

● ●●●
● ● ●●

●●● ●●●
● ●● ● ●●● ●

●● ●●

●● ● ●●●●
●●
●● ●●

● ●●● ●●

● ● ●●●●●●●●●●●●●●●●●●

● ●●●●●

●●●●● ●●

●●●● ●●

●● ●●
●

●●● ●●
●

●

●●●● ● ●● ●● ●● ●●● ●●●● ● ●●●
● ●●●●●● ● ●● ●●

●● ●● ●●●
●

●●● ●● ●● ●●
●● ●●●●

●
● ● ●●●●

●●● ●● ●●
●●●●● ●● ● ●● ●●● ●● ● ●●

●● ●● ● ●●● ●
●●●● ●●

●● ●●● ●●
●

● ●

●●●● ●● ●

●●● ●●●● ●●● ●

● ●● ●●
●

●
●● ●

● ●●
● ●●●●●

● ●●●
●●

● ● ●●●
● ● ●●

●
● ●● ●●

●● ●● ●● ●●● ●●● ●●● ●● ●● ● ●●●●

●●
● ●●● ●● ●●

●●●●●

●●● ● ●● ● ●●

● ● ●● ●
●●● ●

● ●●●● ●●● ●

●● ●● ●●

● ●● ●●●● ●

●●●
●● ●●●● ●

●●●●● ●●
●

● ●●

●●●
● ●●● ●

● ●
●
●

●●●●● ●●●
●●

● ●

●●● ●●●
●●● ●●● ●●
●

●●● ●● ●● ●●● ●
●● ●●● ●

●
● ●

●●● ●●
●● ●● ●●● ●●

● ● ●● ● ●●●
● ●● ●●●

● ●● ●
●● ●● ●●●●●

●
●

● ●● ●●
●

●
●● ●●

● ● ●
●●

●●● ●●● ● ●

● ●● ●●● ●●
●●

●●

● ●● ●
●

●●●
● ●●●● ●

●● ● ●●
● ●● ●●

●●● ●●●

●
●●●●●●● ●●

● ●●●● ●●
●● ●● ●

● ●● ●●●
●

●● ●● ●●
●● ●●●● ●●● ●● ●● ●●●

●●● ●● ●● ●●●● ●●● ●●
●●● ● ●● ●

●●
●

●●● ●
●

● ●● ●●
●

● ●● ●●
●●● ●

● ●
●

●● ● ●●

●●● ●● ● ●
●●● ●●●● ●●

●
●●●● ●● ●●

●
●●

●● ●● ●●●
●

●●

● ● ●●
●

● ●
●

● ●●● ●●● ●● ●●●

● ●● ●
● ●●●

● ●●●● ●

● ●● ●● ● ●●●

●●●●● ●●● ●● ●● ●● ●● ● ●●● ●●●
● ●●
● ●●● ●● ●● ●● ● ●●

●
● ●●● ●● ● ●●●● ● ●●● ● ● ● ●●● ●●●
●● ●● ●

●
● ●

● ●●
●

●
● ●●●●●● ●●●● ● ●

● ●● ● ●●
●●● ●● ●●●●

●●● ●●●● ●●●
● ●●● ● ●●● ●● ●

● ●●● ●● ●

●● ●●
●
●● ●●

●● ●●● ●●●● ●●

●●●●●● ●● ●

●●●
● ●● ●● ●

● ●●

● ●●●●●● ●●

●● ●●●●● ●●
● ● ● ●●●●●● ●● ●● ●● ● ●● ●●
● ●● ●●● ●● ●● ●● ●●●● ●●●●

● ●● ●
●

● ● ●●●● ●● ●●● ● ● ●●
●

● ●● ●● ●

● ●● ●●
●

●● ●● ●

● ●● ●●●● ●●●
●

●
●

●
●

●
●

●●
●

●
●

●

●● ●●
●● ●●●

●
●●●●

●
●● ●●●

● ●
●

●
●●●

●●●●● ● ● ●
●●●

● ●●● ●
●

●●

●
●● ●●● ●

●
●

●● ●
● ●●●

●
●●

●
● ●●● ●●● ●● ●●●

●●●
●
● ●

●● ●
● ● ●

●● ●●● ●●
● ●● ●●

●
●

● ●●●●
●●●●●● ● ●

● ●●● ●●● ●●● ●● ●●● ●●●●
●●●●●●

● ●●
●●● ●

● ●● ●● ●
●

●●● ● ●
● ●

●● ●● ●●
●● ●

● ●● ●●
●●● ●● ●● ● ●●●

●●●

●● ●●●●● ●●●
●

●●

●● ●
● ●●●

●
●

●
●●●●

●●●●●● ●●
● ●

●● ●●●●●● ● ●●●
●

●●
●● ●● ●● ●

● ●

●●●● ●● ●●
●●●

●● ●●●
●● ●●

●●● ● ●
●

●●●
●●●

●●●●● ●● ●●●
●●●

●
●

●
●

●
●

●● ●●
● ●●

● ●
● ●●● ● ●● ●

●
●● ●● ●●

●
● ●●

● ●● ●
●● ●

●
●●●●

●
●● ●●●●●● ● ●

●
●

●
● ●●●

●●●● ●

●● ●● ●● ●●
●

● ●
●

●● ●●●
● ●●● ●● ●
● ●● ●●● ●● ●●●● ●●● ● ●●● ● ● ●●

●●●● ●●
●● ● ●● ●

● ● ●
●

●●●●● ● ●● ●●
●
● ●●

●
●●●

●● ●
●

●●●● ●● ●●●●●
●● ●

●
●

●

●
●●●● ●●●
●
●

●●● ●● ●●● ●●●
● ●

●● ●

●
●●

●●● ●●●●
● ●

●●●●
●● ●

●●
●●●● ● ●

●

●●

●
●● ●●●●

●
● ●

●● ●
●
● ●●● ●●●

●●

● ●●● ●●●
●

● ●●●●●●● ●●● ●●
●

●
●●● ●●

●
●●● ●●●●

●
● ●

●●●●●

●● ● ●●●● ●● ●
●

●
●● ●●

●
●● ●

●●●
●● ●●●

●
●

●●

●● ●●●
●

● ● ●
●●●●

●● ●
●● ●●
●

●●● ●●
●

●
●

●
●

●● ●●● ●●● ●●●● ● ●●● ●
●

●
●

●
●●

●● ●● ●● ●
● ●●●

●● ● ●●
● ●

●
●●●

●●●● ●●
●

●
●●●● ● ●

● ●● ●
●●

● ●●● ●● ●● ● ●
●●●

●● ●
● ●● ●●●●●

●●●●● ●● ● ● ●● ●●●
● ● ●

●
●

●●
●

●
● ●

●
● ●
●● ●

●●●
●●●● ●●●● ●

●● ●
●

●●
●●●

●●
● ● ●

●●●●
●

●
●●● ●●●●●

●● ●● ● ●● ●●
●

● ●●
● ●● ●

●●● ●●● ●●● ●● ●● ●●
●●●

●
● ●●●

●
●
●●●

●
● ●●● ●●

●
●

●
● ●●●● ●

●●●●
● ●●●●

● ●

●● ●
●●

● ●
●●●●● ●

● ●
●

●●● ●●●●
● ●

●
●● ● ●● ●

●● ●●●●
●

●
● ●
● ●● ●●●
●

●●
●

● ●●●●●●
●●●●●●● ●●●●●

●●● ●●●●●
● ●● ●
●
●

●
●

●●
●● ●●

●
●●●●
●

●

●
●●●
●

●●
●●● ●●

● ●●

●● ●●●
●●

●
●● ●●● ●● ●●

●
● ●

● ●●● ●●●
●● ●●● ●●●● ●

● ●●●● ●●●●● ●●●●● ●●
●●●

● ● ●● ●
● ●●●●

●● ●● ●
● ●●●

●● ●●●● ●●● ●● ●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●● ●
●●●

● ● ● ●●● ●
●
● ●●●●

●● ●●● ●● ●

●● ●● ●●● ●●● ●● ● ●●
●●●●●●●● ● ●●●●●

●

● ●●● ●●● ●●●●●●● ● ●●
●●● ●●● ●●●
●

●● ● ●●●
●●●●

●
● ●●

●
●●●●●● ●● ●●

●●
●●● ●●

●●
●●

●
●●

●●●● ●●●●●●●●
●●

●●
●●● ●●●● ●● ●●● ●● ●●●●●●

● ●
● ●● ●● ●

●

●
● ● ●●● ●●●● ●● ●●● ●●● ●

●● ●
●

● ●

●●●● ●
●

●●
●

●
●
● ●● ●
●

● ●●● ●●●●●
●

●
●●● ●

●
●●●● ●●● ●●● ●

●●● ●●●●●

●● ●●●● ●
●● ●●

●●●● ●●● ●●
●

●● ●

●● ●● ●● ●●●● ● ●●
●● ●●● ●● ●●●

●●
●

●●●
●

●●●●●●●●●●●●
●●●●● ●● ● ●●

●●●●●●●●●●●● ●●●●● ●●●●
●●●

●● ●●●●●
● ●●●●●●●●●●●●

●●●
●
●●

●●●
●
●● ●●

● ●● ●●●●● ●●●●●
●● ●●

●●

●●●● ●●
●

● ●
●

●●
●
●●●●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

● ● ●●●

●● ●

●●

●
●

● ●

●● ●

●●

● ● ● ●

●

●
●

● ● ●

● ●●● ●●

●
●●

●●●●●

●●
●●●●●

●● ●● ●

●
●●●

●● ● ●●●

● ●● ●●

● ●●

●●● ●●●●
●

●●●

● ●●●● ●● ●●●●●

●● ●● ●● ●● ●● ●

● ●● ●●

●●● ●● ● ●●● ●●

●● ●
●● ●●

● ●●● ●●
●

● ●

●● ● ●● ●● ●●●● ●

●●●● ●●● ●●● ●

● ●●●● ● ●●●●

●●
●●●●●
●●●
●●●

●●●● ●●● ●●● ●●●●
●●●● ●● ●● ●●● ●●● ●●●● ●●●● ●●●● ●

●
●●●●● ●●●● ●● ●●● ● ●● ●●●

●●●●● ●●●● ●● ●● ● ●●● ●●
● ●●

●●● ●●●● ●● ●●●●● ●● ●● ●●●
●
●●● ●●● ●● ●●●●●●● ●●● ● ●●

●●●● ●●● ●●●●●
●●● ●● ●●●●●●
●
● ●

●● ●●● ●● ● ●●●●●

● ●●●● ●●●
●●●●●

●●● ●●● ● ●●●● ●● ● ●
●● ●●● ●●●●●● ●●●●

●●
● ●● ●●
●

●●● ●
●
●● ●●● ●●
● ●●●●●● ●●● ●● ●●● ●●●● ●

●● ●●
●●●●●●●●●●● ●●●● ●●●● ●●●●● ●●●
●●● ●●● ●●● ●●

●●
●●●●● ●●●● ●●●● ●●●

●
● ●● ●●●●●● ● ●●● ●● ●●●●●●●●

● ●●●●● ●●●● ●●●● ●●●●●●●●●●
●
●●●● ●●●● ●●● ●●●●

●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●● ●● ●●
●

●
●●● ●
●
●●●●

●

●●
● ●●●●● ●●
●●●●●
●●● ●

●

●●
●● ●●
●●● ●
●●
●● ●●
●●
●

● ●●●●● ●● ●● ●●

●● ● ●●●
●

●●
●●● ●●● ●

●
●

●● ●● ●
●

● ●●
● ●●●

●
● ●

● ●
●

●
●

●
●● ●

● ●
●●●●●

●●
●●●

●
● ●●

●

●
●
●

●●● ●● ●● ●● ●●●

● ●● ●

●● ●● ●● ●●

●● ●● ●

●● ● ●●●

●● ● ●● ●●●

●● ●

●●● ●● ●●

●● ●
●●●●

●●●● ●
●●●● ●● ●●●● ●●

● ● ●●● ●●
●

● ●●●
●

●● ● ●
●●

● ●

●●● ●●● ●●●

●●●
●●

● ●●●

●●●● ●●●●
●●● ●●

● ● ●●
● ●●

●
● ●

●

● ●●●●● ●●● ●

●●●●● ●●
●

●●

●
●

●

●

●

●●●●●●
●● ●
●●● ●●●●● ●●● ● ●
● ●●

●
● ●● ●●● ● ●

●
●●

● ●
●

●
●

●● ● ●● ●
●●●

● ●●●
●● ● ●● ●● ●

●● ● ●●

●● ●●●
●●

●
●● ●●●

●●●
●●

●
●

●●● ●
●●

●
●●

●

●● ●●
● ●●●
●

●●

● ●● ● ●●●
●
●●● ●

●

●
●●●●

●
●●●

● ●●

●●
●

●●
●●

●
●
●

●

●●●
●●

●
● ●●● ●●

●●
●

●●●
●●●●

●
●

●●
●●● ●● ●●

●●
●

● ●●● ●
●

● ● ●
●

● ● ●

●● ● ●●
●

● ●
●●●

● ●● ●

●
● ●

●
● ●●

●
●

●
●

●
●

●
●

●
●●

●
●●●●

●
● ●

●
●●
●●

●●
●●● ●

●
● ●●

● ●●●
●

● ● ●
●

●

● ●●●
●
● ●●● ●●
●●

● ●

●
●●●● ●●●●● ●●●●

●
●

● ●●●●
●●
●

● ●
●

●
●●●●

●

●●

● ● ●
●●
●

●

● ●

●

●
●●●● ●●●

● ●●
●

● ●● ●● ●●● ●
●●

●●●● ●●●●●● ●●● ●●
●

●
● ●●●● ●● ●●●● ●

● ●●● ●● ●●●●●●●
●● ●●● ●● ●●●

●

●●●●● ●
●●● ●● ●● ●● ●●● ●● ●● ● ●● ●

●● ●●●●● ●● ●● ●●
● ● ●●● ●●● ● ●●●● ●● ●●●●

●
●●● ●●
● ●

●●●●●
●

● ●●
● ●● ●●

●●●●●
●●●●●

●●● ●
●●

● ●●●● ●●● ●●●●●●● ●●●●
●●●

●
●●●● ●●●●●●● ●

●●●● ●●●●● ●● ●
● ●

●●●●●
●
●

●● ● ●●●●

●●● ●●● ●●●●● ●
●●

● ●
●

● ●●●●●● ●●● ●●●
● ●●●●

●●●●

●●●● ●
● ●
●

● ●●● ●●● ●
●
● ●
●

●
●●●●●

●●
● ●●
●

●●●

●
●

●●
●●
●

●
●
●

●●
●
●

●
●

●●● ●
●
●

●●● ●●●●● ●●●●● ●●●
●

● ●●●●●●●● ●●●● ●● ●●● ●●● ●●●● ●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●
●●●
●

●● ●●●●●●● ●

●● ●● ●●●●●● ●●●
●

●
●●●●● ●● ●●●●●●●●●●● ●● ●● ●

●
● ●

●● ●● ●● ●●●●●●● ●● ●● ●●●●●● ●●●●●●● ● ●●● ●●● ●●●●

●●●●●●●● ●●●●●● ●●●●●●●●
●● ●●●●●●
●●●● ●● ●●●●●●●● ●

●● ●● ●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●● ● ●● ● ●●●●●

●●●●●● ●● ● ●●● ●●● ●●● ●● ●● ● ●●● ●● ●●●
●●● ● ●●● ●●●

● ●●● ●● ●●●●●●● ●●●●● ●●● ●●●● ●●●●● ●●●● ●●●●●●● ●
●●

●●●●●●● ●●●●●
●
●●● ●● ● ●●●● ●●●●●●●● ●●●●●● ●● ●●●● ●

● ●●● ●● ●●● ●●●●
● ●●●● ●●●●●●●●● ●●● ●●●● ●● ●●●

●

●

●
●●

●●
●

●
●●
●
●● ●●● ●●●●● ●●●●●
● ●
●●●● ●
●●

●●
●

●

●

●● ●●● ●●●●● ●●●
●● ●● ●●●●●●●●

●●●●
● ●● ● ●●●● ●●

●● ●●● ●● ●●●● ●● ●●●
●

● ●●●
●●● ●● ●●● ●● ●● ●●●●●

●● ● ●● ●● ●●
●● ●●

●●●●
●

● ●●● ●●●● ●●●●
●

● ●● ●●●●●●●● ● ●
●●●●● ●● ●●● ●●●●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●●●●

●●●●
●● ●●● ● ● ●●● ●● ●● ●● ●● ●●● ●● ●● ●●●● ●

●●

●●● ●● ●
●●● ●●●

●● ●● ●●●● ●●●● ● ●● ●● ● ●●●●●●●●●
● ●●● ●●●

●
● ●●● ●● ●● ●●

●●● ●
●

●● ●●● ●●● ●● ●●
●● ●●●

●● ●●●● ●● ● ●●
●●

●●● ●● ●●●
●

●
● ● ● ●●● ●● ●

● ●● ● ●● ● ●● ● ●●● ●●● ●●● ● ●●●● ●●● ●● ● ● ●●●● ● ●● ●●●●●●●● ●●● ●●●●●●● ●
●●● ● ● ●● ●●● ●● ●● ●● ●● ●●●● ●●●● ●

●● ● ●●● ● ●● ●● ●● ●● ●●●● ● ●● ●
●

● ●●● ●●● ●●●● ●● ●
●●● ●●● ● ●● ●●●● ●●●●● ●●●●●●●

●
●● ●●● ●

●
●

●● ●●
●●●●● ●

● ●
● ● ●●●● ●● ● ●●●● ●●●● ● ●● ●
● ●●●● ●●●●● ●●●●●●●● ●●●●● ●● ●● ●● ●● ●● ●●●●●●●●● ●●●●●●●●●
●●●

●● ●● ●●● ●●●●● ●●
●●● ●●●●● ● ●●● ●●●●●●●●● ●●● ●● ●● ●●●●●●●●●

●●● ●●●●●●● ●●●●●● ●●●● ●

●●● ●●●●● ●●●● ●●●●● ●
●● ●● ●●●● ●● ●●
●●
● ●●● ●●●●● ●●●● ●● ●
●●● ●●●●●● ●●●●●●

●●●●●● ●● ●●● ●●●●●

● ●●●● ● ●●

●●●● ●
● ●● ●● ● ●● ●●● ●● ●

● ●●
●●●●●● ●●●●●● ●●●●● ●●●●●●● ●●● ●
●●●●

●
●●●

●
●●●

●
●●●

●

●
●● ●

●
●●●
●●●●●

●●●●
●●

●
●● ●●● ●
●●

●
● ●
●●

●

● ●●●
●

●●●●●
●●●●●
●

●●●
●

●

●
●●

●●
●

●●
● ●● ●●●●

●●●●●● ●●● ● ●●●●
●

●● ●● ●●● ●●●● ●● ●
● ●●●●● ●

● ●● ●● ●●●
● ●● ●● ● ●●

●● ●
●●
●●●
●

●● ●● ●
●

●
●●● ●● ●

●● ●●● ●● ●●●●● ● ●●● ●● ●●● ● ●● ●●● ●●

●

●●● ●●●● ●●●● ●● ●●●● ●● ●●● ●● ●●
●●●●●●●●●●● ●●● ●

● ●● ●●●●● ●● ● ●● ●●●●●● ●●●● ● ●●
● ●●●●●●● ● ● ●●● ● ●●●

●
●● ●

● ●● ● ●●●● ●●● ● ●● ●●●●●●

●

●

●●
●●● ●●● ●●●●● ●

●
●● ●● ● ●●●

●
●

●

●● ●●●
● ●● ●
●●●● ●

●●
●

●

●
●

●
●●

●●● ● ●●● ●
● ●●● ●● ●● ●●● ●

● ●●●●●● ●●● ● ●●● ● ●●● ●● ●●●● ●●● ●●● ●●●● ●● ●●● ●●●●● ●●●● ●●● ●
● ●●● ●●● ●●●● ●

●●●● ●● ●●●● ●●
●

●●
● ●

●
● ●●● ●●●● ●●●●●●●●

●●● ●●
●● ●● ●●● ●●● ●●

●

●●● ●●●● ●● ●●● ●● ● ●● ● ●● ●
●●

●● ●●● ●●●●●● ● ●●●●● ●●●● ●●● ●● ●● ●● ●●●● ● ●●●● ●● ●●● ●● ●●●●●● ●●● ●● ●●● ●
●● ●●●● ●●●● ●● ●●●●● ●● ●●●

● ●●●
●● ● ●●

● ●●
●

●● ●● ●
●●

● ●●●●
●

● ●● ● ●● ●● ●
●

●● ●● ●●● ●
●●

● ● ●●●
●●● ●●● ●● ●● ●●● ● ● ●●

●●●●●

●
● ●●●●●●

● ●● ●● ●●●●
●●●● ●● ●●● ●● ●●● ●●● ●●●●●●● ●●
●● ●● ●●●●●●●
●● ●●●●●● ●● ●●●●●● ●●●● ●●●

●
●●● ●● ●● ●●●● ●●

●
●● ●●●

● ●●●
●●●

●●● ●●
●

●● ●● ●●● ● ●●●
●

●●● ●
●●

●
●●●

●●
●

●● ●●
●●●

●● ●●●●● ●●●
●● ●●

●
●●
●
●

● ●
●

●●●
●

●
●●●●● ●●● ●

●●
●●●●
●●●● ●

● ●●●● ● ●● ●
●
●● ● ●●

●● ●●
●●

● ●● ●●
● ●●● ●● ●●● ●● ●● ● ● ●●

●●
●● ●●● ●●●

●
● ●●● ●● ●● ● ●●● ●●●●● ●●● ● ●● ●●● ●● ●
●

●●●
● ●

●●● ●● ●● ●●● ●●● ●● ●●
● ●

● ●
● ●● ●●●●

● ●●

●●
●

● ●● ●● ●●●●●
● ● ●

●●
● ● ●● ●●●●

●●
●

● ●●●●
●●●●● ● ●●● ●

●● ●● ●●●
●

●●●
●●●●●●●●● ●●●● ● ●●●● ●● ●●● ●● ●● ●

●● ●●● ●●● ●●●●●●● ●● ●●
●●● ● ●●●●●●● ●●●●●●

●● ●
●●

●
●● ●● ●●●●● ●●●●● ●● ●

●
●● ●●

●●●
●● ●●● ●● ●●

●
● ●

●
●● ● ●●●

●
●

●●●
●●● ●●●● ●●●●●●● ● ●●
●●●● ●● ● ●●●●

●
●●

●
● ●

●●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●
●●●●● ●● ●●●●● ●●● ●●

●●● ●● ●●● ●●● ●● ●
●●●● ●●●

● ●●
●

●●●●●●●●● ●● ●●●●●●

●●
● ●● ●●

● ●
●
● ●

●●
● ●

●
●

●●
●

●● ●
●●●

●
● ● ● ●● ● ●●

●
●

●
●

●
● ●

●●
●

● ●
●●●

●●
●

●
●

● ●●● ●●
●●●
●
●● ●

● ●●● ●●
●●● ●●● ●●
●●●

●●
●●●●

● ●
●●●● ●●●●● ●●● ●

● ●●
●●

●●● ● ●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●● ●●● ●●●● ●●
●●●●● ●● ●●●● ●●

●● ●
●

● ●●●●●
●● ●●● ●●●● ●

● ●
●

● ●
●

●
●●●

●
●●

● ●●●
●

●●
●

●
●● ●●●
●●●

●●● ●● ●
●●

●
●●●● ●● ●●● ●●● ●●●●● ●●●●● ●● ●●● ●●

●
●●●●●
●●● ●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●
●● ●●●●● ●●●
●●●●●●●● ●●

●●●● ●●●● ●● ●●●●● ●●
●

●
●

● ●●●
●● ●

●
● ●● ●

● ●●
●● ●
●

●
●
● ●●● ●

●●●
●●●●●

●●●●●
●
● ●●● ●●●●
●
●●●
●● ●●● ●●●●●●●●●●●● ●● ●●● ●●●●●●●●●

● ●
● ●●●

●●●●●●● ●●●●●●● ●●● ●●●●● ● ●● ●●●●●●● ●●●● ●●●●

●●
●

●

● ●

●

●
●
●●

● ●

●●
●

●
●
●●

●●
● ●●

●
●●

●

●
●● ●●●

●

●
●

●
●

●
●●●

●
● ●●

● ●
● ●
●
● ●●●

●
●

●

●

● ●●
●

● ●●
●

● ●

●

●
●
●●
● ●
●●

●●

●
●● ●●
● ●
●

● ●

●●
●●● ●●

●

●●
● ●● ●

●● ●

●
●● ●
●

●●● ●● ●
●●● ●●
●●●●●●●
●

●

●●●●
●●
●
●●
●
●●●

●●●●●● ●●

Read (MB/s)

(−1,10]
(10,20]
(20,30]
(30,40]
(40,50]
(50,100]
(100,200]
(200,600]

Figure 7.12.: Scatter plot of power measurements (vertical axis) drawn over measure-

ments of considered system metrics. The horizontal axis represents CPU utilization,

the diagonal axis write throughput. The color of dots in the plot illustrates the read

throughput.

power consumption correlate. Section 2.7.4 introduced the foundations of

the correlation coefficients. CPU utilization and power consumption had

a Pearson’s correlation coefficient value of 0.95, which indicated a strong

positive correlation of CPU utilization and power consumption. This con-

firmed and is consistent with the well-established observation that CPU

utilization and power consumption strongly correlate. For write throughput

and power consumption, Pearson’s correlation coefficient produced a value

of 0.06. Read throughput and power consumption had a correlation value

of 0.03. The Spearman’s correlation coefficient values for CPU utilization,

read and write throughput were 0.95, 0.06, and 0.10. Hence, we could infer

that CPU utilization by far had the strongest correlation with power con-

sumption. Storage throughput and power consumption appeared to have

a weak correlation with power consumption. When we reduced the set of

229

7. Validation

measurements to the measurements with idle CPU load, power consumption

and write throughput had a Spearman’s correlation value of 0.76. Power

consumption and read throughput had a correlation of 0.58. This indicated

that storage activity increased the power consumption. However, the effect

of CPU activity was much stronger. This can be seen in the weak correlation

of power consumption and storage activity for the full profile.

A comparison of power consumption of storage intensive workloads with

CPU intensive workloads explained the weak correlation values of storage

throughput for the whole data set. More than 99% of the power measure-

ments of runs where ucpu was not explicitly stressed fell in the interval

[269.64, 375.21]. Over 99% of the measurements collected for workloads

that stressed ucpu fell into the interval [284.88, 607.37]. This indicates that

the correlation of total power consumption and I/O is much smaller than

power consumption and CPU. Consequently, I/O does not appear to strongly

correlate with total power consumption when analyzing the full data set.

7.3.5. Prediction Accuracy Evaluation for the Case Study
Systems

We used the HiBench benchmarking suite [91] version 5.0
1
and SPECjbb2015

[193] to evaluate the accuracy of our power model extraction approach. Hi-

Bench consists of a set of Hadoop benchmarks. The benchmarks contained

in HiBench cover a set of typical Big Data application workloads and mi-

crobenchmarks. We categorized the encompassed benchmarks into the three

categories I/O-intensive, CPU-intensive and idle. We considered workloads

I/O-intensive if they contained phases in which tp
write

or tp
read

increased

well above idle throughput rates. We identified K-means, TeraSort, DFSIOe,
Page Rank, and Nutch Indexing as I/O intensive workloads. We distinguished

Sleep from the remaining workloads as it does not perform any actual work.

We categorized all other workloads as CPU-intensive. This subsumed Sort,
Word Count, Join, Aggregation, and Scan. SPECjbb2015 is a benchmark appli-

cation that aims to evaluate the performance of a system environment for

business applications implemented in Java. Its application workload is mod-

eled after transactions in a “world-wide supermarket IT infrastructure” [193].

1 https://github.com/intel-hadoop/HiBench/tree/

175ad8771fdeebfc637bd4ad3c09a23df3c9cc50, retrieved 16.11.2017.

230

https://github.com/intel-hadoop/HiBench/tree/175ad8771fdeebfc637bd4ad3c09a23df3c9cc50
https://github.com/intel-hadoop/HiBench/tree/175ad8771fdeebfc637bd4ad3c09a23df3c9cc50

7.3. Automated Extraction of Power Models

SPECjbb2015 determines the throughput of the deployment environment by

continuously increasing the user load issued to the application.

The evaluation setup matches the profiling setup. The only difference was

the RAM sizing of VMs in which we executed the evaluation VMs. The

SPECjbb2015 VM operated with 32 GB RAM, while the HiBench VM had 16

GB RAM.

7.3.6. Prediction Error of Trained Models

In order to reason on the actual accuracy of the models, we evaluated the

prediction accuracy of the power models listed in Table 7.8 for the case

study applications. For this, we ran the case study application benchmarks.

We executed each benchmark eight times. During the execution of each

benchmark, we collected both power and system metric measurements. We

used the system metric measurements collected during the run as input

to the power models. This gave us power consumption predictions for all

sampled points in time during the run of each application workload. Next,

we performed numerical integration on the predicted and measured power

consumption samples. This produced energy consumption estimates on

the basis of the predicted (EPred) and measured energy consumption (EMeas).

Finally, we compared the predicted with the measured energy consump-

tion, and determined the Mean Absolute Error (MAE) over all eight runs as

|
EMeas−EPred

EMeas

|. The tooling we used in the evaluation is available online via
1
.

Initially, we trained the powermodels using the full server profile discussed in

Section 7.3.4. The profiling framework had obtained the full server profile by

profiling the server under investigation for all target levels listed in Table 7.9.

To assess the benefit of using a server profile obtained via combined profiling

of CPU and HDD over a separate profiling, we compared the accuracy of

power models from combined with the accuracy from separate profiling. In

order to reduce the influence ofmeasurement variations introduced by reruns,

we extracted the profile from the existing profile. The server profile from

separate profiling only contained measurements from runs that individually

stressed either CPU or HDD. This corresponded to the subset of profiling

1 https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Profiler, retrieved 16.11.2017.

231

https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Profiler

7. Validation

runs from all target levels shown in Table 7.9, where either ucpu or tpwrite
targeted zero.

Surprisingly, the models trained on the profile from separate profiling had

a smaller or similar prediction compared to the models trained on the full

profile. The error rates of the models trained on the full profile can be

found in Appendix A. The prediction error results thus negatively answer

Question 3.2 for the system under investigation. One explanation for the

lower accuracy of models trained the on the server profile from the combined

profiling is the high number of measurements in the profile, where at least

one of the observed metrics reached high measurement values. Since the

used regression approach minimized the error for the full training set, this

could have over-emphasized high model accuracy for high utilization levels.

This is hinted at by the large difference in prediction error between combined

and separate profiling for workloads with low utilization, e.g. Sleep. The

power models from combined profiling had prediction errors of up to 28.6%

for Sleep, while the highest error of the models from separate profiling was

15.7%. Another reason for the missing improvement in prediction accuracy

is that none of the models listed in Table 7.8 have interactions among system

metric variables. Interactions refer to a simultaneous effect of two variables

on the result, e.g., u · tpwrite. The model training could not train the models to

consider potential interactions as the models lacked such interactions. The

following focuses on the results from separate profiling as the prediction

error of the resulting power models was lower than the error from separate

profiling.

Tables 7.10 to 7.13 contain the prediction errors from separate profiling for

the evaluation workloads. Power models of types 4, 5 and 6 were the most

consistently accurate power models. They achieved a median error of less

than 2.3%. The power models of type 1 and 3 with l = 1 were inaccurate for

utilization levels close to idle, e.g. for the Sleep workload. All power models

reached prediction errors lower than 5.9% across all workloads except for

Sleep.

As noted in Section 7.3.5, the following workloads were particularly I/O-

intensive: Word Count, TeraSort, Page Rank, K-means and Nutch Indexing.

Model 3 with l = 3 and the metrics ucpu, uread, uwrite was the best performing

power model that considered storage metrics. The predictions from model 3

had an error that was up to 1.5% lower than the error of the CPU-only models.

232

7.3. Automated Extraction of Power Models

Table 7.10.: Prediction error per power model and workload type, errors in percent.

Power models 1 and 2. Microbenchmarks, web search and clustering workloads.

P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

M
i
c
r
o
b
e
n
c
h
m
a
r
k
s

W
e
b
S
e
a
r
c
h

C
l
u
s
t
e
r
i
n
g

Sort

Word Count

TeraSort

DFSIOe

Sleep

Page Rank

Nutch

Indexing

K-means

1

u
c
p
u

1
.8

0
.0

0
.2

0
.0

1
0
.7

0
.7

2
.2

0
.5

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

2
.9

1
.1

1
.5

0
.7

1
2
.5

0
.3

1
.5

1
.3

2

l
=

3

u
c
p
u

2
.5

1
.0

0
.2

1
.0

1
.7

0
.5

4
.8

1
.6

u
c
p
u
,
u
r
e
a
d

3
.4

1
.5

0
.8

1
.5

0
.3

0
.9

5
.6

1
.7

u
c
p
u
,
u
w
r
i
t
e

3
.6

1
.8

0
.1

1
.9

0
.4

1
.3

5
.7

1
.2

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.7

1
.8

0
.2

2
.0

0
.4

1
.3

5
.9

1
.3

l
=

2

u
c
p
u

2
.6

1
.3

0
.5

1
.1

2
.2

0
.9

4
.8

1
.2

u
c
p
u
,
u
r
e
a
d

3
.3

1
.7

0
.2

1
.4

1
.1

1
.4

5
.5

1
.2

u
c
p
u
,
u
w
r
i
t
e

3
.4

1
.9

0
.9

1
.6

1
.0

1
.5

4
.9

0
.8

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.5

1
.9

1
.1

1
.7

1
.0

1
.6

5
.1

1
.0

233

7. Validation

Table 7.11.: Prediction error per power model and workload type, errors in percent.

Power models 1 and 2. Analytical and server workloads.

P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

A
n
a
l
y
t
i
c
a
l
Q
u
e
r
i
e
s

S
e
r
v
e
r

Join

Aggre-

gation

Scan

SPECjbb-

2015

1

u
c
p
u

2
.1

1
.8

1
.6

5
.5

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.3

2
.9

2
.8

5
.7

2

l
=

3

u
c
p
u

2
.9

2
.7

3
.4

4
.5

u
c
p
u
,
u
r
e
a
d

3
.7

3
.4

4
.4

4
.6

u
c
p
u
,
u
w
r
i
t
e

3
.8

3
.8

4
.6

4
.7

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.9

3
.8

4
.7

4
.7

l
=

2

u
c
p
u

3
.1

2
.7

3
.4

4
.3

u
c
p
u
,
u
r
e
a
d

3
.7

3
.3

4
.1

4
.2

u
c
p
u
,
u
w
r
i
t
e

3
.9

3
.5

4
.2

4
.2

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.9

3
.5

4
.3

4
.3

Workloads that performed little to no I/O did not benefit from considering

storage metrics. For most of the other workloads, model 5 outperformed the

models that considered storage metrics.

Overall, power models that only considered CPU utilization had a high

accuracy. They were outperformed only for Nutch Indexing and TeraSort

by power models that explicitly consider tp
write

or tp
read

. In summary, we

were able to accurately predict the power consumption of the server under

investigation without the consideration of storage metrics. Performance

models of software systems deployed on the server under investigation only

234

7.3. Automated Extraction of Power Models

Table 7.12.: Prediction error per power model and workload type, errors in percent.

Power models 4–6. Microbenchmarks, web search and clustering workloads.

P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

M
i
c
r
o
b
e
n
c
h
m
a
r
k
s

W
e
b
S
e
a
r
c
h

C
l
u
s
t
e
r
i
n
g

Sort

Word Count

TeraSort

DFSIOe

Sleep

Page Rank

Nutch

Indexing

K-means

3

l
=

3

u
c
p
u

2
.5

1
.0

0
.2

1
.0

1
.7

0
.5

4
.8

1
.6

u
c
p
u
,
u
r
e
a
d

3
.4

1
.5

0
.8

1
.5

0
.3

0
.9

5
.6

1
.7

u
c
p
u
,
u
w
r
i
t
e

3
.6

1
.8

0
.1

1
.9

0
.4

1
.3

5
.7

1
.2

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.7

1
.8

0
.1

2
.0

0
.4

1
.3

5
.9

1
.3

l
=

2

u
c
p
u

2
.6

1
.2

0
.4

1
.1

2
.1

0
.9

4
.8

1
.2

u
c
p
u
,
u
r
e
a
d

3
.3

1
.7

0
.3

1
.5

1
.0

1
.3

5
.5

1
.2

u
c
p
u
,
u
w
r
i
t
e

3
.4

1
.8

1
.2

1
.6

0
.9

1
.4

4
.7

0
.9

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.5

1
.9

1
.3

1
.7

0
.9

1
.5

5
.0

1
.1

l
=

1

u
c
p
u

3
.7

1
.1

0
.4

0
.8

1
3
.8

0
.1

0
.9

1
.0

u
c
p
u
,
u
r
e
a
d

4
.8

2
.0

0
.9

1
.5

1
5
.2

0
.9

0
.1

1
.3

u
c
p
u
,
u
w
r
i
t
e

4
.7

2
.0

1
.5

1
.5

1
5
.5

1
.0

0
.9

1
.9

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

5
.0

2
.2

1
.6

1
.7

1
5
.7

1
.2

0
.4

1
.8

4
u
c
p
u

2
.3

1
.7

1
.2

1
.0

3
.8

1
.8

4
.7

0
.3

5
u
c
p
u

1
.3

0
.7

1
.7

0
.1

0
.3

1
.8

3
.3

3
.6

6
u
c
p
u

0
.6

2
.4

3
.4

1
.3

0
.1

3
.6

1
.1

5
.2

235

7. Validation

Table 7.13.: Prediction error per power model and workload type, errors in percent.

Power models 3–6. Analytical and server workloads.

P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

A
n
a
l
y
t
i
c
a
l
Q
u
e
r
i
e
s

S
e
r
v
e
r

Join

Aggre-

gation

Scan

SPECjbb-

2015

3
l
=

3

u
c
p
u

2
.9

2
.7

3
.4

4
.5

u
c
p
u
,
u
r
e
a
d

3
.7

3
.4

4
.3

4
.6

u
c
p
u
,
u
w
r
i
t
e

3
.8

3
.8

4
.6

4
.7

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.9

3
.8

4
.7

4
.7

l
=

2

u
c
p
u

3
.1

2
.7

3
.4

4
.3

u
c
p
u
,
u
r
e
a
d

3
.8

3
.3

4
.2

4
.3

u
c
p
u
,
u
w
r
i
t
e

3
.8

3
.5

4
.2

4
.3

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.9

3
.6

4
.4

4
.3

l
=

1

u
c
p
u

4
.2

3
.7

3
.7

5
.3

u
c
p
u
,
u
r
e
a
d

5
.1

4
.6

4
.8

5
.6

u
c
p
u
,
u
w
r
i
t
e

5
.2

4
.8

4
.7

5
.6

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

5
.4

5
.0

5
.0

5
.6

4
u
c
p
u

3
.0

2
.3

2
.9

3
.8

5
u
c
p
u

1
.6

1
.5

2
.3

5
.2

6
u
c
p
u

0
.5

0
.4

0
.3

5
.9

need to explicitly model storage if it has a decisive impact on performance.

We thus concluded regarding Question 3.4 that there is limited benefit in

using power models that consider the HDD system metrics tp
write

or tp
read

for the server environment under investigation.

7.3.7. Comparison with State of the Art

This section presents a comparison of our approach with the state of the art

approach for server profiling. It assessed whether our approach improved the

236

7.3. Automated Extraction of Power Models

accuracy over state of the art approaches for our server under investigation.

This concerns Question 3.3. We identified the approaches by [65] and [58]

as representative state of the art profiling approaches. As we did not find an

implementation of either approaches [58, 65], we replicated the behavior of

the approaches on the basis of our measurement tooling. The implementation

of the state of the art approach passively monitors a set of workloads, and

collects power measurements and system metrics. We implemented this by

monitoring an execution of SERT. We configured SERT to execute the same

individual workloads as the run of our profiling. Section 7.3.3 outlined the

used workloads.

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

CPU Utilization

W
rit

e
T

hr
ou

gh
pu

t (
M

B
/s

)

(a) Profile extracted from SERT run

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

CPU Utilization

W
rit

e
T

hr
ou

gh
pu

t (
M

B
/s

)

(b)Profile extracted using our approach, sep-
arated CPU and storage profiling

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

CPU Utilization

W
rit

e
T

hr
ou

gh
pu

t (
M

B
/s

)

−20

−15

−10

−5

0

5
 log(KDE + 10−9)

(c) Profile extracted using our approach, simul-

taneous CPU and storage profiling

Figure 7.13.: Two-Dimensional Kernel Density Estimation (KDE) of CPU utilization

and write throughput with 200 grid points per dimension. The scale of the density

values is adjusted to a logarithmic scale.

237

7. Validation

We compared the representativeness of the three samples using their KDE.

KDE estimates the density function of a data distribution, as Section 2.7.3

explained. Figure 7.13a shows the two-dimensional KDE over the dimensions

CPU utilization and write throughput for the SERT run. The plots contain

200 grid points per dimension. We adjusted the scale of the density values to

a logarithmic scale to make the plots easier to compare. Values of 0 on the

scale are equivalent to a KDE of 1, -20 to a KDE of 0, and 5 are equivalent to

a KDE of 150. Comparing the KDE of the SERT run to the separate profiling

variant of our approach shown in Figure 7.13b illustrates that a passive

monitoring of SERT does not fully cover the range of measurements for

storage. The measurements collected during the state of the art profiling run

contained only few measurements for tp
write

that were higher than 20 MB/s.

This contrasts the maximum write rates of up to 150 MB/s we had measured

with our systematic profiling approach. In conclusion, we deduce that our

profiling approach produced a server profile that better covered the domain

of considered system metrics than state of the art profiling.

Figure 7.13c contains the KDE plot from the combined, or simultaneous

profiling. The plot illustrates that our method also manages to extract server

profiles that covers the combined domain of multiple system metrics. Sec-

tion 7.3.6 had outlined that the simultaneous profiling did not improve the

accuracy of trained power models. However, the simultaneous profiling can

potentially improve the accuracy for system metrics whose values interact

on the total power consumption.

Question 3.3 brings up the point whether our approach produced more

accurate power models than state of the art. We trained the same power

models discussed in Section 7.3.2 with the measurements collected during the

standard SERT run to investigate this question. We investigated if the passive

monitoring of a state of the art profiling approach produced a training set that

was sufficient for training power models that consider both CPU and storage

metrics. The accuracy of power models that were only trained on measured

power consumption and CPU utilization, ucpu, was high when trained on the

resulting profile. However, the accuracy of models that considered tp
write

,

or tp
read

suffered. Power models 2 and 3 withM = {ucpu,uread,uwrite} had a

prediction error of over 7000%. We attributed the high prediction error to

the sparseness of the profile that resulted from the passive monitoring of

SERT. The profile does not cover the full range of measurements that can be

monitored for realistic workloads. Consequently, the power models were

238

7.3. Automated Extraction of Power Models

over-fitted to a non-representative sample. This caused the low prediction

accuracy of the models trained on the sample.

The results positively answer Question 3.3. Single metric power models from

our approach are at least as accurate as models from state of the art power

model extraction approaches. Our profiling approach results in multi-metric

power models with notably higher accuracy than from state of the art.

7.3.8. Model Selection

The goal of our method is to automate the construction of power models

suited for use in design time predictions. Since the target workload is not

fully known at design time, it is not possible to select a power model based

on its actual accuracy for the target workload. Aside from the challenge of

model selection, it would be beneficial to the user of the approach if she could

judge the impact of metric selection on prediction accuracy (Question 3.5).

Section 5.2.3 proposed a ranking of power models based on their AIC value

to address both challenges. The ranking aims at eliminating system metrics

that fail to improve power consumption prediction accuracy for the server

under investigation. Furthermore, the ranking is intended to help select a

power model that likely has a high accuracy.

We evaluated the accuracy of the AIC ranking as follows. First, we calculated

the AIC as part of the initial model training on the basis of the input server

profile. Second, we compared the ranking with the prediction error for the

validation workloads.

Creating an unequivocal ranking of power models using their measured

prediction error over all case study workloads listed in Section 7.3.5 was

not possible. 17 of the 25 power models were Pareto optimal, meaning that

there was no other power model that performed at least as well across all

workloads. We hence evaluated if each model that placed high in the ∆AIC

ranking also had a competitive accuracy across the case study systems.

The ranking of power models from their difference in AIC (∆AIC) placed the

power models 6 and 5 first and second, respectively. Both power models

only consider the CPU metric ucpu. Power model 3 with l = 3 and M =
{ucpu,uread,uwrite} placed third. It was the highest placing power model

that considered HDD system metrics. Consequently, all power models that

239

7. Validation

had tp
write

or tp
read

as input variables were outperformed by CPU-only

power models 5. According to our approach, we could conclude that the

consideration of the storage metrics likely would not increase the prediction

accuracy for the server under investigation. The prediction error results of

the power models for the case study systems confirmed this. Power models

that consider tp
write

or tp
read

had a higher prediction error than models

parametrized solely by ucpu for all but two workloads.

Power models 5 and 6 were among the most consistently accurate power

models. Power model 5 achieved a median prediction error of 2.3%, and a

maximum prediction error of 4.7%, which can be seen in Tables 7.12 and 7.13.

Power model 6 reached a median prediction error of 1.7%, and a maximum

prediction error of 5.2%. All three models had an error no higher than 5.9%

for all workloads.

The comparison of ∆AIC ranking and relative prediction error across the case

study systems showed that the ranking approach can give helpful guidance to

users of our approach in selecting an accurate power model. The evaluation

positively answers Question 3.5 as we were able to reason on the influence

of selected metrics on prediction accuracy using the ranking.

7.3.9. Accuracy of Power Models in VMMigration Scenarios

This section presents the results of our VM Migration Bench case study. The

study validated whether our approach for power model extraction enables

accurate power consumption predictions for VM migrations. We investigate

VM migrations as a central adaptation action used in autonomic data center

resource management. The case study compares predictions from power

models, which were extracted using our approach, with measured energy

consumption. The study concerns Questions 3.1 and 3.4.

This section is structured as follows. Section 7.3.9 discusses the scenarios we

investigated in the presented case study. Section 7.3.9.2 provides an overview

of the evaluation setup. Section 7.3.9.3 applies our power model extraction

approach to predict the energy consumption when a collocated workload

stresses the hosts during VMmigration. Section 7.3.9.4 investigates scenarios

where the workload ran inside the migrated VM. Section 7.3.9.5 investigates

240

7.3. Automated Extraction of Power Models

whether the use of multi-core metrics improved prediction accuracy for the

considered scenarios. Section 7.3.9.6 summarizes our findings.

7.3.9.1. Evaluation Scenarios

Our evaluation investigated the power consumption during VM migration.

It considered a set of scenario with two hosts S1 and S2. Each scenario

alternated between live migrations from S1 to S2, and S2 to S1. Each iteration

migrated the same VM. During migration, a load driver ran a workload

at a predefined load level. The simultaneous execution of VM migrations

and other workloads enabled us to observe interactions between power

consumption and system performance. We repeated each migration at least

three times per load level. The experiment results cover two variations of

the baseline experiment scenario.

Section 7.3.9.3 presents the results for the first scenario variant, in which S1

ran the load driver. It covers the cases where the VM migrates

• from an idle server to a server which is stressed to a specific load

level (S2 to S1),

• from a server which is stressed to a specific load level to an idle

server (S1 to S2).

Sections 7.3.9.4 and 7.3.9.5 discusses the second scenario variant. In the

second variant, the migrated VM ran a workload at the predefined load

level. We investigated this scenario, as the level of VM activity influences the

convergence behavior and execution time of the VM migration algorithm.

7.3.9.2. Evaluation Setup

This section discusses the case study workloads, execution environment

and power model extraction setup. We conclude with the accuracy metrics

that we applied to evaluate the prediction accuracy of the trained power

models.

241

7. Validation

VMMigration Bench VM Migration Bench is a benchmarking framework

we built for evaluating the power consumption of reconfiguration actions in

virtualized, IaaS environments. The framework enables the measurement

of power consumption and system level metrics during the execution of

adaptation actions. The framework consists of an experiment driver, a load

driver, and a monitoring utility.

The experiment driver orchestrates the experiment execution. It triggers a

set of virtualization actions on the libvirt Java API. An experiment subsumes

the execution of one or multiple virtualization actions. The experiment

driver coordinates the collection of power and system metric measurements

with multiple instances of the monitoring utility, which was presented in

Section 7.3.1. We deployed the experiment driver on S1.

The load driver extends the server profiling load driver described in Sec-

tion 5.4.1. This enables a reuse of existing SERT [187] worklet definitions

to stress the servers, or the VMs involved in a reconfiguration action. The

load driver builds on the technical foundation of our profiling framework.

Prior to a set of VM migrations at a load level, the workload driver calibrates

the workload intensity of a configured workload to reach a target utilization

level.

In the scenarios discussed in Section 7.3.9.3, the load driver was deployed on

S1. Sections 7.3.9.4 and 7.3.9.5 outline the results for scenarios where the load

driver ran inside the migrated VM. Our migration experiments used SOR and

SORT from the standard set of worklets provided by SERT as workloads. The

workload driver ran one of the two workloads in both scenario variants.

Execution Environment We used two ProLiant DL160 Gen9 servers for our

experiments. Each server had an Intel Xeon E5-2640 v3 CPU, 32 GB RAM,

and a 500 GB 7200 RPM HDD. The following refers to the servers as S1

and S2. Both servers were connected via 1 Gbit/s LAN. We collected the

measurements using the monitoring utility described in Section 7.3.1. It

obtained all measurements, including power consumption measurements,

with a sampling rate of 1/s. S1 was running Debian 8.7, S2 was running

Debian 8.6.

All migrated VMs were constructed from a Debian 8.7 image. Each VM ran

atop the KVM 2.1.2 hypervisor. The VMs had 4 GB of RAM, and 16 GB of

242

7.3. Automated Extraction of Power Models

storage. The storage of a VM was persisted on the server which currently

hosted the VM. We employed pre-copy, peer-to-peer live migration, where

the storage was copied between the migration source and target.

PowerModel Extraction We applied our power model extraction method in

order to get models that predict the power consumption of S1 based on system

metrics. We did not repeat the profiling for S2, as its hardware components

were identical to S1.

We selected the workloads XMLvalidate, SOR, and CryptoAES from SERT

to profile S1. We restricted the target metrics to ucpu in order to reduce

the execution time of the profiling run. . We set the target levels of each

workload to {0, 0.05, . . . , 1.0}.

We used the power model types listed in Table 7.8 as input to the model train-

ing and selection. From these models, we considered the two power models

with the highest AIC in our accuracy evaluation. Additionally, we evalu-

ated the accuracy of a power model that we trained using non-parametric

MARS [71] regression.

Prediction Accuracy Evaluation Per load level Lu , we calculated the predic-

tion accuracyM(L) of every models as:

M(Lp) =

∑
l ∈Lp Epredicted(l) − Emeasured(l)

Epredicted(l)
, where p ∈ {0, 0.05, . . . , 1.0}.

Hereby, l ∈ Lu are the individual migrations executed at load level Lu . E is

the energy consumed during migration. We calculated Emeasured(l) by means

of numerical integration on the power consumption samples recorded during

migration. We determined Epredicted(l) as the numerical integral of the power

model samples. We obtained the samples by evaluating a power model for

each set of system level performance metric measurements.

243

7. Validation

-0.3

-0.2

-0.1

0.0

0.1

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
EARTH model
P5
P6

Figure 7.14.: Power consumption prediction error for SOR workload executed on S1.

Measurements collected on S1. Migration from S2 to S1. Each set of three error bars

represents the prediction error at a load level u ∈ {0, 0.05, . . . , 1.0}.

7.3.9.3. Workload Collocation on Host

This section discusses the prediction accuracy of the extracted power models

when a collocated workload stresses S1 during VM migration.

Figures 7.14 and 7.15 display the power consumption prediction error we

determined for S1 when it ran the SOR workload outside of the migrated

VM. Power models P5 and P6 refer to the power models 5 and 6 listed in

Table 7.8. Figure 7.14 shows the prediction error for the VM migrations from

S2 to S1. When VM migration targeted S1, all three models predicted the

power consumption accurately for load levels of up to 0.9. This can be seen

in Figure 7.14. For utilization levels higher than 0.95, the MARS model had

an average prediction error just above 10%. The predictions from the two

highest ranking models P5 and P6 reach an error of over 20%.

Figure 7.15 shows the error for migrations from S1 to S2. Overall, the models

performed slightly worse compared to the power consumption predictions

for the opposite migration direction. In the load range below 0.35, error rates

reached prediction errors of up to 22%. Low prediction accuracies for this

utilization range were not limited to only the three discussed models. All

power models listed in Table 7.8 underestimated the energy consumption

by over 20%. Once the server reached the maximum load level 1, only the

244

7.3. Automated Extraction of Power Models

-0.3

-0.2

-0.1

0.0

0.1

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
EARTH model
P5
P6

Figure 7.15.: Power consumption prediction error for SOR workload executed on S1.

Measurements collected on S1. Migration from S1 to S2.

MARS model achieved acceptable prediction errors. The other power models

underestimated the energy consumption by over 30%.

In conclusion, the MARS model performed the most consistently across dif-

ferent load levels. It predicted the power consumption of systems performing

VM migrations with an error of 2.7% to 10.9% when migrating from S2to S1.

When the migration was issued from S1 to S2, the error was between 2.0%

and 21.6%.

7.3.9.4. Workload Execution in Migrated VM

The experiments outlined in the prior section left the migrated VM idle. The

load of the server originated from a workload which ran collocated to the VM.

We conducted a set of experiments in order to validate whether our extracted

power models were accurate when predicting the power consumption of

VMs that actively ran workloads during the live migration. This section

discusses experiments in which the VM executed a workload during VM

migration. As part of the experiment setup we deployed our workload driver

inside the migrated VM.

Prior to each set of VM migrations, the load driver calibrated the workload

such that it reached the target load threshold inside of the VM. A VM was

designated four virtual cores. The host system had sixteen available logical

cores. Our experiment setup varied the VM internal load between 0 and

245

7. Validation

100% in intervals of 5%. A VM internal utilization of 100% resulted in an

approximate system-wide average utilization of 100% · 4

16
= 25%. Thus,

the experiments covered system-wide CPU utilization levels between 0 and

25%.

-0.06

-0.04

-0.02

0.00

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
MARS model
P5
P6

Figure 7.16.: Power consumption prediction error for SOR workload executed in

migrated VM. Measurements collected on S1. Migration from S2 to S1.

We reused the server profiling results from Section 7.3.9.3 in order to derive

a representative consumption profile. The profiling ran on the hypervisor

level outside of the migrated VM. The power models extracted from this

profiling predict the energy consumption on S1 from hypervisor, system

level metrics, e.g., aggregate CPU utilization. Our predictions treat the VM

like any other system process, which utilizes the CPU. Figure 7.16 shows the

prediction error for the SOR workload, and VM migrations from S2 to S1. All

three depicted models predicted the total energy consumption with an error

of 3% to 7%.

When we used the power models to predict the consumption for migrations

from S1 to S2, the prediction error of all models was lower than 10% for

VM internal load levels below 95%. Figure 7.17 shows the corresponding

error bar plot. Once the SOR workload fully utilized all available virtual

cores, the measured energy consumption was more than 27% higher than

predicted by any of the three models. The likely source of this discrepancy

was a dynamic frequency increase of the S1 CPU: Once a set of individual

cores reach full utilization, the CPU dynamically increases the frequency of

these cores. This results in an increased power consumption. Our profiling

did not systematically stress individual CPU cores. Thus, models trained

246

7.3. Automated Extraction of Power Models

-0.2

-0.1

0.0

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
MARS model
P5
P6

Figure 7.17.: Power consumption prediction error for SOR workload executed in

migrated VM. Measurements collected on S1. Migration from S1 to S2.

on the profile can not reflect power consumption increases that result from

frequency scaling of individual cores.

We investigated whether accurate power consumption models can be built

for S1 that abstract from the CPU frequency. This required a server profiling

run where we stressed individual cores of the server. We achieved this by

conducting a profiling run in which the workload driver was deployed inside

the VM.

0.00

0.02

0.04

0.06

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
MARS model
P3, l=2
P6

Figure 7.18.: Power consumption prediction error for SOR workload executed in VM.

Power models from VM internal profiling. Measurements collected on S1. Migration

from S2 to S1.

247

7. Validation

We trained all considered models on the resulting profile. The AIC ranking

predicted that P3 with l = 2, and P6 had the highest likelihood to be accurate.

Additionally, we included a MARS model trained on the profile. Figure 7.18

shows the prediction error of VM migrations from S2 to S1. Prediction errors

of all models remained below 7%.

0.0

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
MARS model
P3, l=2
P6

Figure 7.19.: Power consumption prediction error for SOR workload executed in VM.

Models from VM internal profiling. Measurements collected on S1. Migration from

S1 to S2.

The prediction error was significantly higher at most load levels when the

active VM was migrated from S1 to S2. Figure 7.19 shows this in contrast

to Figure 7.18. None of the power models clearly outperformed the other

considered models. The MARS model was highly accurate for utilization

levels outside of 0.8 to 0.95. P3 and P6 with l = 2 were more accurate for

most utilization levels but the maximum level 1.

The prediction error for the VM internal run of the SORT workload followed

a similar distribution of error rates to the SOR error rates. The range of

utilization levels shifted when we moved from VM internal to external

profiling. Figure 7.20 depicts the error rates of SORT from internal profiling.

Compared to the external profiling, we did not see a clear improvement

across the full utilization range. The models extracted from internal profiling

underpredicted power consumption. Conversely, the models from external

profiling overpredicted the power consumption. We deduced that power

models which were trained purely using the aggregate utilization did not

accurately predict power consumption for utilization levels at which the

processor dynamically scaled its frequency.

248

7.3. Automated Extraction of Power Models

0.0

0.1

0.2

0.3

0.4

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
MARS model
P3, l=2
P6

Figure 7.20.: Power consumption prediction error for SOR workload executed in VM.

Models from VM internal profiling. Measurements collected on S1. Migration from

S1 to S2.

7.3.9.5. Prediction Accuracy of Multi-Core Power Models

The scenario investigated in the previous section ran a workload inside the

migrated VM. When the VM approached full utilization of the four virtual

VM CPUs, the prediction error of otherwise accurate power models surged

to values above 30%. We attributed this increase to the dynamical frequency

scaling of the CPU.

Previously, we relied on the aggregate CPU utilization to predict power

consumption. We extended the considered set of metrics by per-thread CPU

utilization to investigate potential increases in accuracy,

We used the following power models to predict the power consumption:

• P1 from Table 7.8,

• a modified P1,common with cma = cmb for allma,mb ∈ M ,

• a MARS regression model PMARS trained using the same

configuration as previously,

• and max{PMARS,pidle}, where pidle is the idle power consumption of

the server.

249

7. Validation

The power models used the extended set of metrics ufull,ucore0
, . . . ,ucore15

.

Each ucore0
refers to the per-hyperthread utilization of the CPU. We trained

the models on the combined profile from workload profiling executions

conducted on S1and from VM internal profiling.

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
MARS model
MARS model, min
P1 Common

Figure 7.21.: Power consumption prediction error for SOR workload executed in VM.

Errors of multi-core models that result from the combination of VM internal and

hypervisor level profiling. The measurements were collected on S1. Migration from

S2 to S1. P1 Common refers to P1,common. Mars Model, min is max{PMARS,pidle}.

Figure 7.21 lists the power consumption prediction error for VM migrations

from S2to S1. The utilization levels note the targeted aggregate VM internal

CPU utilization. P1 is not displayed and discussed further, as it reached

errors of up to 80%. The error rates of the per-core power models are similar

to the error rates of models solely based on aggregate CPU utilization, c.f.,

Figure 7.16.

More interesting are the differences, or lack thereof, for migrations from S1

to S2. As we used pre-copy live migration, the workload running in the VM

stressed S1 until the migration completed. The prediction error shown in

Figure 7.22 is similarly distributed to the prediction error achieved with the

external models (Figure 7.17). This indicates that the use of multi-coremetrics

did not improve the prediction error. It even resulted in an average error

increase. The MARS model performed poorly due to overfitting. Individual

power consumption predictions from the model fell well below the idle

power consumption of S1. Thus, we introduced the idle power consumption

as a lower limit to the MARS model. This is the max{PMARS,pidle} model.

Figures 7.21 and 7.22 list the model as MARS model, min. At peak utilization,

250

7.3. Automated Extraction of Power Models

-0.3

-0.2

-0.1

0.0

0.1

0.00 0.25 0.50 0.75 1.00
Utilization

E
rr

or

Model
MARS model
MARS model, min
P1 Common

Figure 7.22.: Power consumption prediction error for SOR workload executed in VM.

Multi-core power models from combined profiling. Measurements collected on S1.

Migration from S1 to S2.

the introduction of a lower bound reduced the prediction error by an absolute

value of 5%.

7.3.9.6. Summary

In this section, we applied our profiling approach to extract power models

for predicting power consumption in different VM migration scenarios. We

used robust non-linear regression and MARS as model learning techniques.

We evaluated the prediction accuracy of the models at different load levels.

Both collocated workloads, and workloads executed in the migrated VM

were considered. Our experiments showed that we could accurately predict

the total energy consumption induced during VM migration. At all load

levels, the best performing model achieved an average prediction error below

11%.

All multi-core CPU power models performed worse when the workload was

executed inside of the VM. At VM internal target load levels below 0.95,

the error was comparable to collocated execution. The power consumption

prediction accuracy dropped significantly once the VM internal target uti-

lization reached 0.95. We attribute this to an increase in power consumption

due to DVFS.

251

7. Validation

We explored two alternatives to address the high consumption prediction

error at high VM internal utilization. First, we performed a targeted profiling

of a subset of physical cores. Second, we extended the range of considered

system metrics by per-core CPU utilization. Neither approaches fully ad-

dressed the drop in prediction accuracy when a workload caused high load

on select cores.

Frequency-based power models could increase the prediction accuracy when

the CPU scales frequency of a subset of cores. We did not investigate these

models due to the following reason. To the best of our knowledge, no

performance model has been proposed that accurately predicts the frequency

scaling implemented by modern processors. Further work needs to be spent

to create models that predict the effect of proprietary performance and power

management features like Intel Turbo Boost.

In summary, the case study shows that our model extraction approach pro-

duces power models which accurately predict the energy consumption of

VM migrations at most load levels. When the virtual CPUs of the migrated

VM reach load levels in the region of 100%, the prediction error approaches

values in the region of 30%. With this limitation, the results positively an-

swer Question 3.1 for the investigated server environment. Section 7.3.9.5

compared power models built using aggregate CPU utilization models with

models that distinguished per-core CPU utilization. The results indicated

that the consideration of per-core utilization does not significantly improve

prediction accuracy (Question 3.4).

7.4. Transient Effect Analysis

This section investigates to which extent the consideration of transient effects

in software performance analyses improves the prediction accuracy of design

time analyses for self-adaptive software systems. It presents the results of

a case study which we conducted to validate the transient effect modeling

approach outlined in Chapter 6. The validation targets Goal 4 of this thesis.

The case study results have been published in [199]. As the evaluated case

study system we used a Media Store application enhanced with horizontal

scaling capabilities. We explored Question 4.1 by comparing the accuracy

of predictions of the SimuLizar baseline with SimuLizar extended by our

252

7.4. Transient Effect Analysis

approach. Additionally, we investigated the benefit of considering transient

effects for design time decision-making (Questions 4.2 and 4.3).

7.4.1. Case Study System

Media Store is a component-based reference application [170]. Section 7.2.1

introduced a prior Media Store iteration. Media Store allows users to down-

load and upload music files. When downloading, users can choose between

different encoding bit rates. Music files are only stored in their original bit

rate. Upon download, they are re-encoded to the target bit rate, if the rate

differs. Re-encoding is the most computationally intensive service offered

by the Media Store system. A high number of concurrent encoding requests

can quickly cause contention in the system. In order to address this poten-

tial bottleneck, we extended the Media Store architecture by a rule-based

Horizontal Scaler component. This component leverages horizontal scaling

to adjust the resources available for re-encoding.

The Media Store variant used in this case study extends the most recent

Media Store release 3.0
1
. Reussner et al. [170] provide further details on the

Media Store case study system. Section 7.2.1 had presented a case study that

evaluated Question 4.2 for the previous version 2.0 of Media Store.

Figure 7.23 shows a simplified view on the system architecture of the hor-

izontally scaling Media Store. The Horizontal Scaler component delegates

re-encoding requests to all available Reencoder instances. If the conditions
for a scale-out are met, the Horizontal Scaler triggers the instantiation of

another Reencoder instance. Once the instance is available, the Horizontal
Scaler starts distributing requests to it. The Horizontal Scaler evenly distrib-

utes re-encoding requests among all available instances. We implemented

horizontal scaling using VM scaling techniques as found in IaaS platforms.

Each Reencoder instance deploys onto a separate VM. All other components

are deployed on a shared VM.

We formulated the requirement that the average response time of the re-

encoding component shall not surpass 120 seconds. In order to achieve this

requirement, we designed a set of scale-out conditions. The Horizontal Scaler
starts a scale-out when the following conditions are met:

1 https://sdqweb.ipd.kit.edu/wiki/Media_Store, retrieved 05.06.2017.

253

https://sdqweb.ipd.kit.edu/wiki/Media_Store

7. Validation

WebGUI
Media

Management

Horizontal
Scaler

Watermarking

DB

MediaAccess

Packaging

IScaling

IDownload

IPackaging

IDownload

IWebGUI

IDB

presentation business logic persistence

Reencoder

IEncode
<<1..n instances>>

IDownload

DataStorage

IDataStorage

IEncode

Figure 7.23.: System diagram view of horizontally scaling Media Store variant.

1. The average response time of the re-encoding service over the last

five minutes is at least twice as high as the average response time.

2. At least five minutes have passed since the last scale-out action has

been started.

3. All previous scale-outs have been completed.

4. There are less than n active Reencoder instances.

254

7.4. Transient Effect Analysis

Rule 1 causes a scale-out when the response time increases. Rules 2 and 3

are intended to prevent an overeager scale-out on small increases of load.

Further scale-outs may only occur after a time interval has passed, which is

long enough to observe the intended effect of the scale-out. Rule 4 limits the

number of Reencoder instances.

7.4.2. Experiment Setup

We implemented the horizontal scaling functionality of Media Store on the

OpenStack [151] Cloud middleware platform. We refactored the Reencoder
component to a standalone REST service. We prepared a bootable VM

template to host the Reencoder instances. Every Reencoding subsystem was

deployed on an individual Glassfish 4.1 server instance. All other components

shared a common Glassfish 4.1 instance. We realized horizontal scaling of

the Reencoder realized as the creation and bootup of a VM that instantiated

the VM template. The re-encoding service automatically becomes available

after the bootup of a new Reencoder VM.

We implemented the outlined horizontal scaling mechanism in simulation

to validate its effect on QoS prior to its implementation and execution. We

used the existing manually created Media Store PCM model as the starting

point of the model-based analysis of our system. We refactored the PCM

model to the horizontally scalable architecture depicted in Figure 7.23. We

defined the horizontal scaling rules in simulation as a QVTo model-to-model

transformation. The simulation executes these rules via the QVTo Reconfig-
uration Engine component of SimuLizar. To consider transient effects, we

used a definition of a scale-out action which we derived from the action

outlined in Section 6.2.7.1. We calibrated the resource demands of the PCM

model using a single user workload. Without contention, re-encoding re-

quests took 26 seconds on average. Section 6.2.7.1 introduced the scale-out

action modeling we employed in our design time evaluation. The action

execution depends upon a parameter that models the VM boot duration. We

determined the input scale-out duration model parameter over a set of more

than ten Reencoder VM bootups.

A private IaaS OpenStack setup served as the measurement environment of

the case study. We set up OpenStack to deploy all VMs on a Dell PowerEdge

R815 server with four Opteron 6174 CPUs. The server ran a XenServer

255

7. Validation

hypervisor. All component instances but the Reencoder instances shared a

two core VM with four GB of RAM. The Reencoder VMs were assigned two

GB of RAM. All VMs used CentOS 6.6.

We used a PC running JMeter 2.11 as the load driver to issue re-encoding

requests. The PC was equipped with an i7-2620M and 8 GB of RAM. 1 GBit

LAN connected the PC to the OpenStack setup. Prior to each experiment,

we ran a warmup workload over ten minutes with an inter-arrival time of

29 seconds between re-encoding requests.

Per scenario, we ran ten measurement runs and 100 simulations for both

simulator variants. We compared measurements and simulation using the

moving window average response time over five minutes. We contrasted

the results from measurements and simulations via box plots. The end of

the box plot whiskers are within 1.5 times the interquartile range (IQR). In

addition, we calculated the error distribution of response times of simulation

predictions compared to measurements. We calculated the distribution as

the errors on the cross product of measurement and simulation runs. This

gave us 10 · 100 = 1000 error samples.

7.4.3. Evaluation Scenarios

In the following we provide an overview of two scenarios we used to inves-

tigate the accuracy and efficiency of our approach for considering transient

effects in software performance analyses.

Scenario 1 The first scenario investigated the effect of considering transient

effects for a simple two-server scale-out. Its intent was to isolate the effect

on response time prediction accuracy for a single server scale scale-out. We

thus set the maximum number of Reencoder instances n to 2. The experiment

scenario covered 30 minutes. The inter-arrival time between user requests

was 29 seconds for the first interval with a length of 10 minutes. In the last

20 minutes, it decreased to 15 seconds. As the average re-encoding response

time was 16 seconds, requests started to overlap in the last two thirds of an

experiment run. Scenario 1 focused on Question 4.1.

256

7.4. Transient Effect Analysis

Table 7.14.:Workload used in scenario 2.

Interval 1 2 3 4 5

Length (in min.) 10 10 10 10 10

Inter-arrival Time (in s) 29 15 10 15 29

Scenario 2 We designed the second scenario to evaluate to which extent the

horizontally scaling Media Store with the designed scalability rules was able

to fulfill our maximum response time requirement. The scenario decreased

the inter-arrival rate in two steps. After this, the inter-arrival iteratively

returned to its initial time of of 29 seconds. Table 7.14 lists the inter-arrival

time per interval of the workload. In order to handle the increased load, we

set the maximum allowed number of active Reencoder VMs to n = 5. Scenario

2 aims to address Questions 4.1 and 4.2. We had designed the scenario to

evaluate to which extent potential inaccuracies of response time predictions

affected our ability to identify design deficiencies (Question 4.2).

7.4.4. Experiment Results

This section presents the experiment results for scenarios 1 and 2.

7.4.4.1. Scenario 1: Two-Server Scale-Out

The box plots in Figure 7.24 illustrates the response time distribution from

measurement, SimuLizar baseline, and SimuLizar extended by our approach.

We opted to investigate the maximum response time, as the maximum re-

sponse time correlates with the maximum degree of contention observed in

the system. The median maximum response time over the ten measurement

runs was 137.17 seconds. Our approach predicted the maximum response

time with much greater accuracy than the SimuLizar baseline. SimuLizar

extended with our approach produced a median response time of 141.53 sec-

onds. The baseline underestimated the maximum response time. It resulted

in a median of 122.18 seconds. The mean response time distribution shows a

similar improvement in accuracy of our extended approach over the baseline.

Median, lower and upper quartile of the extended approach match well with

257

7. Validation

●

●
●

●

●

●

100

125

150

175

200

225

Measured Baseline Extended

Maximum, Total

R
es

po
ns

e
T

im
e

●

●
●

●

50

75

100

125

Measured Baseline Extended

Mean RT, Total

80

100

120

140

Measured Baseline Extended

Mean RT, Interval 2

●

●

●

●
●

●

50

100

150

200

Measured Baseline Extended

Mean RT, Interval 3

Figure 7.24.:Comparison of RTs from measurements and simulation for scenario 1.

The simulation results cover the SimuLizar baseline and our extended approach.

the measurements. The baseline predictions deviate significantly from the

predictions.

We partitioned the scenario into three intervals of ten minutes each. This par-

titioning allowed us to differentiate between stable and transient phases. In

the first and second interval, the extended and baseline SimuLizar produced

identical predictions. Both were identical because the constant inter-arrival

time of 29 seconds in the first interval did not necessitate a scale-out. The

lower row of Figure 7.24 contains box plots of the mean response time in the

second and third interval. In the second interval, the baseline predictions

scatter much more strongly. This is illustrated by the lower box plot whisker

extending beyond 80 seconds. The median value of the baseline is also far

less accurate than the value of our extended approach.

258

7.4. Transient Effect Analysis

Table 7.15.: Response time prediction error per interval for scenario 1. Error for

the Baseline (Base) and our Extended (Ext) SimuLizar implementations. The error

distribution was derived from the cross product comparison of 10 measurement runs

and 100 simulation runs.

Interval

Median Error Mean Error Estd. Std. Dev.

Base Ext Base Ext Base Ext

1 2.3% 2.3% 2.7% 2.7% 0.8% 0.8%

2 14.6% 5.4% 15.5% 6.2% 9.8% 4.5%

3 36.1% 33.7% 37.3% 42.8% 24.5% 38.8%

Total 22.5% 16.5% 22.7% 20.1% 14.1% 16.2%

We explored the differences of aggregate metrics in each interval. Table 7.15

lists aggregate prediction error metrics for the first scenario. The table notes

median, mean, and the estimated standard deviation over three experiment

intervals of ten minutes length. The error distribution results confirm our

observation that the extended approach is more accurate for the first scenario.

In total, our approach reduced the median prediction error from 22.5% to

16.5%. The only marginally higher error metric value of our approach is the

mean error in the third interval. We deem this deviation to be negligible,

since related work has indicated that mean value analysis is strongly affected

by outliers [34, 125].

Figure 7.25 illustrates the effect the consideration of transient effect had on

the response time distribution over time. The figure displays the moving

average response time over time of the simulation, baseline, extended, and

measured median runs. The median runs are the runs that produced the

median response times, which we previously noted. The bars at the bottom

show the scale-out time as a bar between start and completion time. Both

baseline and extended runs progressed identically up until and during the

first scale-out. The moving average window response times of the baseline

simulation quickly recovered from the increase in workload after ten minutes.

After approximately 18 minutes, the response time started to decrease. The

maximum moving window average was 111.9 seconds. This did not match

the median measured run, where the maximum response time reached 131.6
seconds after 21.5 minutes. We attributed the difference between measured

259

7. Validation

50

100

R
es

po
ns

e
T

im
e

in
 s

Results

Baseline

Extended

Measured

0 10 20 30

Time in min.

S
ca

le
−

O
ut

Figure 7.25.:Average response time and scale-out actions over time for Scenario 1.

Each dot represents a moving window average at the given time calculated over

the last five minutes. The three bars at the bottom show the scale-out durations as

colored bars that span the interval between the scale-out start and completion.

and baseline simulation to the missing consideration of the scale-out execu-

tion time. In the baseline simulation, the additional Reencoder instance was
available immediately once the system issued the scale-out action. Conse-

quently, the second Reencoder instance could immediately process incoming

re-encoding requests. The simulation extended with our approach followed

the measured response time curve more closely. Response times from the

extended simulation surpassed the measurements with a maximum response

time of 139.7 seconds. The response time started to recover around the 21

minutes mark.

In the simulated median run the scale-out took 76 seconds, compared to

the measured 78 seconds. Even after the additional instance had become

available, the response time did not immediately recover in the measured

and extended simulation runs. We attribute this prolonged rise in response

time to contention. The user load was almost doubled at ten minutes. Due

260

7.4. Transient Effect Analysis

to the execution time of scale-out, additional resources to process further

requests only became available after the scale-out had finished. During the

wait time, incoming requests filled up the single Reencoder instance. The
tail of high response times was much longer in reality than in the baseline

simulation, since the scale-out execution time prolonged the build-up of

contention.

We conclude from the results that the consideration of transient effects

increases the accuracy of performance predictions for the single server scale-

out scenario of Media Store (Question 4.1).

7.4.4.2. Scenario 2: Scale-Out with Multiple Reencoder Instances

In the second scenario, we investigated the effect of our approach on predic-

tion accuracy for the horizontally scaling Media Store with a higher peak

workload and number of Reencoder instances. We evaluated whether the sys-

tem would be able to meet the response time requirement that Section 7.4.1

introduced. The requirement stated that the average response time of the

re-encoding component should not surpass 120 seconds.

●●

●
●

●

●

●

●

100

125

150

175

Measured Baseline Extended

Maximum, Total

R
es

po
ns

e
T

im
e

●

●

●

●●
●

●

●

40

60

80

100

Measured Baseline Extended

Mean RT, Total

R
es

po
ns

e
T

im
e

Figure 7.26.: Aggregated response times from measurements and simulation for

experiment B.

Accuracy Evaluation Figure 7.26 shows aggregate metrics of the response

time distribution of the second scenario runs. Comparing maximum and

261

7. Validation

mean response times from measurements, extended, and the baseline sim-

ulation, we see that the aggregate response time metrics of the extended

simulation matched the measurements much more closely. The median of

the maximum response times of the baseline simulation was 109.2 seconds.

The median of the extended simulation and measured runs was 132.8 and

135.8, respectively.

●

●

●

80

100

120

Measured Baseline Extended

Mean RT, Interval 2

R
es

po
ns

e
T

im
e

●●

●

●

●
●
●

60

90

120

Measured Baseline Extended

Mean RT, Interval 3

R
es

po
ns

e
T

im
e

●●●

●

●
●●
●●

●

●

●
●

●

●

50

100

Measured Baseline Extended

Mean RT, Interval 4

R
es

po
ns

e
T

im
e

●●

●

●

●
●

●●

●
●

●

● ●●

●

●
●●

●●

●

25

30

35

40

Measured Baseline Extended

Mean RT, Interval 5

R
es

po
ns

e
T

im
e

Figure 7.27.:Comparison of response times from measurements and simulation for

experiment B in intervals 2 to 5 from consecutive intervals of 10 minutes.

The average response time distributions per interval depicted in Figure 7.27

show a consistent improvement in prediction accuracy in intervals 2 and

3. The response time distribution of baseline and extended was identical in

interval 1, as the first scale-out occurred after ten minutes in all simulation

runs. In intervals 4 and 5 we could only observe a marginal difference in

distribution between measurement and simulation runs.

262

7.4. Transient Effect Analysis

Table 7.16.: Response time prediction error per interval for experiment B. Error for

the Baseline (Base) and our Extended (Ext) SimuLizar implementations. The error

rate was calculated by comparing 10 measurement runs and 100 simulation runs.

Interval

Median Error Mean Error Estd. Std. Dev.

Base Ext Base Ext Base Ext

1 1.5% 1.5% 1.5% 1.5% 0.1% 0.1%

2 19.1% 4.6% 20.1% 5.6% 10.4% 4.3%

3 23.0% 23.1% 25.2% 32.5% 18.8% 31.1%

4 13.8% 13.1% 19.6% 25.4% 18.6% 47.5%

5 3.6% 2.4% 5.8% 4.7% 9.8% 5.0%

Total 14.0% 9.8% 14.6% 13.1% 7.9% 15.3%

Table 7.16 lists the aggregate error statistics per interval of the second ex-

periment. Our extended approach managed to reduce the median error

from 14.0% to 9.8% from the simulation baseline. In the second interval,

the prediction error went from 19.1% down to 4.9%. In intervals 3 and 4

the mean prediction error of the extended simulation was higher than the

error of the extended simulation. We traced the higher error to a number

of response time outliers in the mean response times of the extended sim-

ulation. Figure 7.27 depicts the outliers as points. All other error metrics

values, including the median error in intervals 3 and 4, were lower for the

extended simulation. Small deviations in intervals 3 and 4 finally had a

greater impact on the prediction error due to the low response time values

in these intervals.

Figure 7.28 shows the running average response time runs of the response

times medians for the second scenario. The bars in the lower half display

scale-out start and and finish times as a bar. The baseline simulation had

predicted three scale-outs to be executed, as can be seen by the three bars.

In the measurement run, the rules led to four scale-outs. The extended run

matched the four scale-outs. Over one hundred simulation runs, the base-

line had predicted 3.46 scale-outs per run on average. Using our extended

approach, 3.79 scale-outs were executed per simulation run. The average

over the ten measurement runs was 3.9. We thus concluded that the consid-

eration of transient effects enabled us to predict the number of Reencoder

263

7. Validation

50

100

R
es

po
ns

e
T

im
e

in
 s

Results

Baseline

Extended

Measured

0 10 20 30 40 50

Time in min.

S
ca

le
−

O
ut

Figure 7.28.:Average response times from measurements and simulation for scenario

2. Each dot represents a moving window average at the given time calculated over

the last five minutes. The three bars at the bottom show the scale-out durations as

colored bars that span the interval between the scale-out start and completion.

instances with greater accuracy. The maximum number of instances used is

an important factor in determining the resources that are required to run

the system.

In summary, our approach improved the response time prediction accuracy

in the second scenario. Our approach additionally enabled us to predict the

maximum number of Reencoder instances more accurately. The results thus

positively Question 4.1.

Identification of Design Deficiencies We recall the requirement stated in

Section 7.4.1. The requirement postulated that the running average response

time over five minutes of the re-encoding service shall not surpass 120

seconds. The measurements for scenarios 1 and 2 showed that the horizontal

scaling rules we had defined did not manage to meet this requirement. The

264

7.4. Transient Effect Analysis

maximum running average response time reached response times of over

125 seconds in more than 75% of the measurement runs. However, the

baseline simulation had predicted that the system would manage to meet

the requirement in over 75% of the runs. Using our extended approach that

considered the scale-out execution times, we were able to correctly predict

the requirement violation. More than 75% of the maximum response times

over all simulation runs were higher than 125 seconds. Figure 7.26 illustrates

this.

Regarding Question 4.2, we conclude that the increased accuracy allowed

us to detect a design deficiency that would have otherwise remained unde-

tected.

Resolution of Identified Design Deficiencies Our approach for considering

transient effects in software performance analyses showed that the scale-out

rules presented in Section 7.4.1 did not manage to uphold the required maxi-

mum response time of 120 seconds. This was confirmed by the measurements

we performed for the Media Store implementation.

In order to improve the scaling rules to maintain the response time require-

ment, we applied SimuLizar extended by our approach. We iteratively refined

the scale-out rules via simulations. This led to the following modified scale-

out rules. Changes to the rules are highlighted. The design rationale of the

changes was to scale the number of instances more proactively.

1. The average response time of the re-encoding service over the last

three minutes is at least 30 seconds.

2. At least three minutes have passed since the last scale-out action has

been started.

3. All previous scale-outs have been completed.

4. There are less than n active Reencoding instances.

The simulation results indicated that the modified scale-out rules would

likely manage to meet the response time requirement. Figure 7.29 illustrates

this. Over 75% of simulation runs reached maximum response times that

were lower than 120 seconds.

265

7. Validation

●

●
●

40

80

120

Measured Extended

Maximum Values over 10 Runs

R
es

po
ns

e
T

im
e

●

●
●

●

●●

40

50

Measured Extended

Mean RT, Total

R
es

po
ns

e
T

im
e

Figure 7.29.:Aggregated response times from measurements and simulation for the

refined scale-out rule.

●

●●

50

75

100

Measured Extended

Mean RT over 10 Runs, Interval 2

R
es

po
ns

e
T

im
e ●

●

●

●

●

30

40

50

60

Measured Extended

Mean RT over 10 Runs, Interval 3

R
es

po
ns

e
T

im
e

●●

●

25

30

35

40

Measured Extended

Mean RT over 10 Runs, Interval 4

R
es

po
ns

e
T

im
e

●●

●●

●

●

●

●
●
●

●●

●

24

26

28

30

Measured Extended

Mean RT over 10 Runs, Interval 5

R
es

po
ns

e
T

im
e

Figure 7.30.:Comparison of response times from measurements and simulation for

the refined scale-out rule.

266

7.5. Discussion of Results

Due to the lower threshold response time defined in rule 1, and the smaller

aggregation interval of rules 1 and 2, the system reacted more quickly to re-

sponse time increases. The earlier scale-out start times significantly reduced

the response time in transient phases. Due to the early scale-out, contention

did not build up as quickly as in the previous system iteration. The median

of the average response times in interval 2 in simulation was lowered from

just below 120 to less than 80 seconds. as Figures 7.27 and 7.30 illustrate.

The prediction results indicated that our system would be able to maintain a

maximum moving average response time of 120.

We validated our findings from the simulation-based analysis against mea-

surements. For this, we applied the changes to the rules to the implementa-

tion of our scale-out rules. Figure 7.30 displays box plots of the predictions

and measurements. We compared ten measurement runs of the implementa-

tions with one hundred simulation runs. The measurements closely matched

the predictions. Over 75% of measurement runs reached maximum running

average response times that were lower than 120 seconds. The predicted

mean of the running average response time was 4.2% higher than the mea-

sured value.

The consideration of transient effects using our approach enabled us to

resolve deficiencies in the design of the scale-out rules. Overall, the results

answer Question 4.3 positively.

7.5. Discussion of Results

This chapter presented the validation of architecture-level modeling and

analysis approach for predicting the energy efficiency of static and self-

adaptive systems. The case studies show that ourmodeling language provides

suitable input for accurate architecture-level energy efficiency predictions.

We demonstrated that our power model extraction method produced power

models with a high accuracy for a large set of Big Data and enterprise

workloads. Furthermore, a study illustrated the benefit and showed the

accuracy of our modeling approach for considering transient effects in design

time simulations. The following summarizes the findings related to the

identified validation questions.

267

7. Validation

7.5.1. Goal Fulfillment

This section summarizes towhich extent the validation case studies addressed

the goals stated in our GQM plan.

Goal 1. Our power consumption prediction accurately predicted the power

consumption of two component-based software systems, and a set of IaaS

data center resource management scenarios. Throughout all case studies, the

absolute power consumption prediction error remained below 7.08%. The

prediction accuracy was high enough to evaluate the impact of architectural

design decisions on energy efficiency, as shown in Section 7.2.1.5. The

accuracy of our predictions was higher than the state of the art approach

by Brunnert et al. [35], or matched it if the same linear power model type

was used.

Goal 2. The appropriateness of the modeling abstraction concerns all of the

intended use cases of our Power Consumption model. Consequently, all case

studies that involve our model contributed towards this validation goal. The

case studies presented in Section 7.2 showed that the modeling abstraction

is detailed enough to produce accurate power consumption predictions.

Section 7.2.3 illustrated that our model supports the modeling of model

data center environments with a suitable degree of abstraction. The Power

Consumption model integrates power models to capture the consumption

characteristics of computing resources in relation to their activity.

Our Power Consumption metamodel offers higher expressiveness compared

to state of the art architecture-level prediction [35] and eco-cost estima-

tion [182] approaches. State of the art models assume a linear relationship

between system utilization and power consumption. Our model enables

the modeling of complex non-linear relationships between system metrics

and power consumption. A novel feature supported by our language is the

flexible modeling of conversion losses incurred by the power distribution

infrastructure.

The increased expressiveness compared to state of the art poses no additional

restrictions or requirements for the application of our model. The use of

sophisticated non-linear power models is optional. It is possible to use a

268

7.5. Discussion of Results

subset of the model features to construct purely linear power models as

done by Brunnert et al. [35]. Section 3.2 used linear power models as a

running example to discuss central concepts of the Power Consumption

metamodel.

The power model extraction method presented in this thesis supports the

automated learning of power models. This eases the identification and

application of non-linear power models. The high degree of automation in

the construction of model instances makes the use of power models with

higher accuracy feasible for use at design time.

Goal 3. We were able to show that our power model extraction method

produces accurate powermodels. The extracted powermodels accurately pre-

dicted the power consumption of a set of Big Data and enterprise applications.

The model with the highest AIC score had a maximum energy consumption

prediction error of 5.2%. The PetClinic case study illustrated the end to end

applicability of our model extraction, and our energy efficiency prediction

approach. The model with the highest AIC ranking produced power con-

sumption predictions with an error of less than 3%. Power consumption

predictions performed using the recommended model were accurate for all

aforementioned applications and workloads. This demonstrated that our

method enabled us to accurately predict the power consumption of a wide

range of server workloads without prior knowledge of the target workload.

We applied the power model extractionmethod to evaluate the accuracy of re-

sulting models for scenarios involving VM migrations. The resulting models

accurately predicted the energy consumed during VM migration, except for

high load levels. Further work is needed to construct accurate performance

and power models of systems that use proprietary DVFS techniques.

Goal 4. We applied our modeling and analysis approach for considering

transient effects in design time analyses to a horizontally scaling Media Store

case study system. The results indicated that the consideration of transient

effects improves the prediction accuracy of software performance analyses.

Our approach allowed us to resolve a design deficiency for the system under

investigation that would have otherwise remained unnoticed.

269

7. Validation

The CACTOS project used the presented Adaptation Action metamodel

to model self-adaptation actions in a self-adaptive IaaS data center. Our

SimuLizar transient effects analysis extension supported the analysis of all

adaptation actions covered by the CACTOS framework [43, 115]. The case

study discussed in Section 7.2.3 leveraged this implementation. The energy

consumption prediction error was below 7.08% for all scenarios of the data

center resource management case study. The application in the CACTOS

project and its tooling illustrates that the metamodel enables the modeling

of realistic, complex adaptation actions.

7.5.2. Future Work

An area of future work is a further validation of interactions between power

consumption and reconfigurations. With regards to server-based systems,

preliminary studies we conducted indicated that the most significant portion

of additional power consumption caused by VM migrations can be derived

from their transient effects on performance. The only exceptions we had

identified are the startup and shutdown of servers. Servers consume power

while booting, or shutting down. Performance metrics can not be measured

while the respective operating system API is not yet available. Our model

supports the modeling of performance independent power consumption via

power state transitions, outlined in Section 3.2.2. Krach [114] showed the

need for state-based power consumption modeling for mobile devices. The

author used a previous iteration of the models presented in Chapter 3. Our

work addressed the requirements identified by Krach [114] with an explicit

modeling of power states and transitions. The state-based modeling in this

thesis could be re-applied to mobile systems. This would evaluate by which

degree the introduced model extensions improve the prediction accuracy for

mobile systems.

An intrinsic limitation of our approach is its dependence on the accuracy

of the input performance metric predictions, which performance analyses

provide. Throughout all case studies, we were able to accurately predict

the power consumption of the systems under investigation. Even when the

performance models of the system were coarse grained (Section 7.2.3), or

derived from an average case resource demand estimation (Section 7.2.2), our

approach produced power consumption predictions that were sufficiently

270

7.5. Discussion of Results

accurate for architecture-level decisionmaking. The VMmigration case study

showcased the need for accurate performance and power models of multi-

core systems which use proprietary DVFS techniques. We did not explicitly

model the proprietary DVFS features of the server under investigation. While

our power models accurately predicted energy consumption at all other load

levels, their accuracy was low for high load on a small number of cores.

The validation did not empirically validate the usability of our approach

with a user study. The presented case studies illustrate the applicability of

our approach to evaluate the energy efficiency of software systems, and the

impact of reconfigurations on performance. The core parts of the Power

Consumption models construction, and the energy efficiency analysis are

automated. Due to the high degree of automation, we deemed that a user

study would provide little additional insights on the applicability of our

approach. For the Adaptation Action metamodel, an empirical user study

could answer to what extent a coupled specification of adaptation effect

on system state and behavior reduces the effort for modeling self-adaptive

software systems.

271

8. RelatedWork

This section describes work related to the contributions of this thesis. It con-

trasts our work with approaches from different research areas. We identified

five areas that are closely related to our work. Each of the following sec-

tions discusses approaches from one of the areas. Section 8.1 outlines power

consumption modeling and estimation approaches. They are closely related

to our Power Consumption metamodel and PCA prediction approaches.

Section 8.2 focuses on approaches for power model extraction. The wider

field of Green Software Engineering research is investigated in Section 8.3.

In Section 8.4, we survey the area of energy efficiency benchmarks and

classification. We distinguish between power model extraction and bench-

marking, as extraction is concerned with the creation of predictive models,

while the other approaches classify and compare the energy efficiency of

servers. Cloud simulator research is a field related to both our power con-

sumption prediction approach and the modeling and analysis of transient

effects. Section 8.5 contrasts our work with modeling and prediction meth-

ods from Cloud simulation. Section 8.6 investigates related work in the area

of self-adaptive systems modeling and analysis. Section 8.7 contrasts our

Adaptation Action metamodel from other performance model completion

approaches.

8.1. Power Consumption Modeling and Estimation

This section assesses differences and commonalities of our power modeling

approach and consumption analysis PCA with related work. Section 8.1.1

contrasts our design time prediction approach with runtime methods. Sec-

tion 8.1.2 compares our work with other energy consumption approaches

aimed at the design time power or energy consumption estimation. Sec-

tion 8.1.3 discusses methods that support the implementation of energy

273

8. Related Work

efficient software systems. They either guide software developers through a

code level power consumption estimation, or offer reusable programming

constructs that improve energy efficiency.

8.1.1. Runtime Power Estimation

Runtime power estimation aims at the estimation of power consumption in an

operational software system. Runtime estimationmethods support reasoning

on power consumption of servers that are not, or not permanently, equipped

with power measurement equipment. They use measurable system metrics

such as CPU utilization as input variables of a consumption estimation

model.

In data center environments, runtime power estimation techniques enable

data center operators to evaluate power consumption on a per-server basis.

Automated optimization frameworks may use power estimates as the basis of

adaptation decisions, which aim to increase energy efficiency. Runtime power

estimation techniques can leverage all low level performance counters that

can be measured in a system [28, 58]. If the availability of power estimations

is time critical, e.g., as part of a power capping mechanism, the computational

complexity of the estimation technique may be restricted.

Noureddine et al. [149] present a framework for runtime power estimation.

The authors’ approach leverages system level metrics to estimate the power

consumption of software systems. Their framework estimates the power con-

sumption per software component. It derives the estimate from the fraction

of work that each software component causes on a hardware component.

The framework estimates the power consumption of the hardware based

on the equation that correlates power consumption with the frequency and

voltage of a processor [160]. While the consideration of frequency and volt-

age in the power models allows estimating the effects of DVFS, it disregards

the effect of utilization on power consumption when voltage and frequency

are constant.

Seo et al. [185] outline a framework for runtime energy consumption es-

timation of Java applications. Their framework relies on a bookkeeping

energy model as introduced in Definition 2.1 of Section 2.1. The authors

assign each bytecode operation with an energy consumption, which results

274

8.1. Power Consumption Modeling and Estimation

from its execution. Their approach derives the energy consumption of a Java

program over time as the sum of all calls performed in the time frame. Seo

et al. accumulate the program consumption with consumption estimates for

communication overhead and static server consumption.

As part of the EU project Fit4Green Basmadjian et al. [16] developed a run-

time power consumption prediction approach for data center environments.

Basmadjian et al. propose to predict the power consumption of each server

in a data center as a sum of the power consumption of CPUs, memory, Hard

Disk Drives (HDDs), network, and a constant factor. The authors use linear

power models to predict the power consumption of CPU, memory and HDD

resources. Basmadjian et al. use utilization measurements gathered on the

actual infrastructure to parametrize these power models. This produces

consumption estimates on the level of individual resources, servers, and

the full data center. Basmadjian et al. only evaluated the precision of their

runtime power models for a single server running a synthetic workload. The

authors managed to maintain error rates below 10% in their experiments.

However, it is not clear how precise the models are for varying workload

intensities since the synthetic workload applies a constant load to the system.

In addition, it remains uncertain whether the proposed distinction between

individual resources improves the accuracy over a linear power that is purely

based on the CPU utilization. The authors only vary CPU load and memory

usage in their experiments. Since the memory usage is scaled up with the

CPU load, the benefit of having separate power models for CPU and memory

is uncertain.

8.1.2. Design Time Power Estimation

The goal of design time power estimation techniques is the support of a

systematic consideration of power consumption as part of software design.

Brunnert et al. [35] present an approach based on Palladio that targets

capacity planning in data centers for enterprise applications. In order to

evaluate the energy consumption of servers, the authors couple a linear

power model with the PCM. Brunnert et al. [35] intrusively extend the

Resource Environment of PCM with linear power consumption factors per

processing resource. Their modeling approach does not support different

power model types. It neglects power distribution characteristics. The

275

8. Related Work

authors uses the linearity of their power model to reason on the total energy

consumption of the software system under evaluation. Brunnert et al. [35]

estimate the energy consumption as the result of the linear power model

parametrized with the average CPU and HDD utilization, multiplied with

the total time. Their approach hence relies on an average case analysis. The

prediction method lacks support for the evaluation of power consumption

at individual points in time. It is impossible to use the approach to evaluate

power consumption over time. Consequently, reasoning on peak power

consumption, and consumption in a specific time interval is not supported.

Brunnert et al. focuses on static software systems. In contrast to our work,

the authors do not address power consumption prediction for self-adaptive

software systems. Their approach also lacks support for the evaluation of

power consumption under usage trends, i.e., changes in the number and

behavior of users over time.

Seo et al. [184] analyze the impact of architectural communication styles on

power consumption. Considered styles are, e.g., client-server and publish-

subscribe. An energy bookkeeping model forms the foundation of their

analysis. Seo et al. assume each remote call to consume a specific amount

of energy. Seo et al. do not investigate how internal component behavior

affects energy consumption. The authors assume the energy consumption

of components to be mostly unaffected by the communication style. In order

to predict the energy consumption of components, Seo et al. rely on their

bytecode-based estimation discussed in Section 8.1.1.

Another architectural energy consumption estimation approach that uses

bookkeeping energy models is outlined by Meedeniya et al. [136]. The

intended area of application of their work is embedded systems. The authors

do not distinguish between hardware and software components. Rather,

Meedeniya et al. consider system components that integrate software and
hardware. In contrast to Seo et al. [184], Meedeniya et al. do not differentiate

between energy consumption of individual calls. The authors assume that

any call to the same component consumes the same amount of energy. Their

model uses an average estimate to model energy consumption caused by

communication. Meedeniya et al. [136] model static energy consumption on

a per-component basis.

PowerPerfCenter [5] is an application performance simulator that supports

the consideration of power management mechanisms. The authors rely on

276

8.1. Power Consumption Modeling and Estimation

a probabilistic workload and system description language. Compared to

PCM, the language models the system on a lower level. The introduction

of programming constructs like for statements moves the models closer

to a performance prototyping language. Users can simulate the effect of

frequency scaling mechanisms as implemented by the Linux frequency scal-

ing governors. PowerPerfCenter predicts the power consumption using a

piecewise defined linear power model. It predicts the power consumption at

each frequency level f as a fraction u of the power consumption at f under

full load u = 1. Other power model types are not explored.

Bunse and Höpfner [39] discuss a model-based power estimation approach

for embedded systems. The approach builds upon theMARMOT [38] method.

MARMOT extends the KobrAmethod [11] to the embedded software systems

domain. MARMOT and KobrA structure the development of component-

based software systems. They employ three orthogonal viewpoints to specify

different aspects of a software system. The viewpoints are the structural,

functional and behavioral viewpoint. Different UML diagram types realize

each viewpoint.

MARMOT leverages PSMs to describe the power consumption of embedded

systems. Each PSM models the power consumption of an embedded compo-

nent. The PSM is specific to the combination of hardware and the software

components that are deployed on it [39]. Additionally, all services provided

by the components are annotated with energy consumption estimates which

are not included in the PSM model. MARMOT estimates the consumption of

methods by evaluating UML timing diagrams. For this, it accumulates the en-

ergy consumption from state transitions, service calls and the consumption

in the states during a modeled interaction.

It remains unclear under which conditions the energy consumption caused

by a service is included in the PSM, and when it should be described with

service consumption annotations. This lacking separation of application and

power consumption modeling makes it difficult to reuse the power models

to compare different architectural design decisions. For example, it is chal-

lenging to estimate how the choice of a different component implementation

would affect the energy consumption of a software system: Both the PSM

and the annotation model may include parts of the consumption that results

from calls to the initially chosen component.

277

8. Related Work

8.1.3. Implementation TimeMethods

Zimmermann [232] presents an approach for an emulation-based evaluation

and optimization of embedded systems energy efficiency. The author uses

PSMs, in combination with a bookkeeping power model to model the power

consumption of embedded hardware resources. The bookkeeping model

specifies the consumption of individual hardware instructions. Zimmermann

emulates the implemented software to estimate its energy consumption.

The emulation serves as the foundation of a configuration optimization

that varies the parameters of dynamic power management mechanisms.

In comparison to our work, Zimmermann focuses on single, embedded

systems. The emulation requires the full application implementation as

input for the emulation-based analysis. Potentially, changes have to be

applied to the implementation to make it compatible to the interfaces of

the emulator. The approach thus can only be applied to optimize existing

embedded applications on the implementation level. The prediction method

by the author requires a highly accurate power state simulation andmodeling

to produce accurate results.

Wilke [223] estimates the energy consumption of specific application usage

scenarios using bookkeeping energy models. The author annotates user

activities with their estimated contribution to energy consumption. His

bookkeeping model characterizes the energy consumption of activities de-

pendent on the system state in which they are performed. The thesis [223]

provides example bookkeeping energy models but does not investigate their

accuracy for the given systems. Wilke infers the energy consumption of user

activities. His model assumes that the energy consumed by a call does not

depend on the level of system activity. This is inaccurate for most modern

server systems since they showcase a non-linear relation between energy

consumption and utilization level [58, 172].

Li et al. [128] outline a measurement-based approach for estimating the

contribution of individual source code lines to the total power consumption.

Their approach targets the consumption estimation for mobile applications.

The authors use heuristics based on bookkeeping power models to break

down the total device consumption to individual source code lines. The

heuristics aim to consider parallel program execution and tail states in the per-

line source code consumption estimates. The validation applies the method

278

8.2. Power Model Extraction

to a set of Android applications. Their heuristics could be transferred for

use with our architecture-level design time analysis. The heuristics could be

used to contribute the energy consumption to individual services or actions

in an RDSEFF. The power measurements and application level monitoring

of a runtime system would be substituted with power consumption and

performance analysis results from Palladio and our PCA.

8.2. Power Model Extraction

Composable Highly Accurate OS-based power models (CHAOS) by Davis

et al. [58] is a method for the automated extraction of power models based

on system level performance counters. CHAOS passively monitors a set of

workload runs. This contrasts the profiling approach from our power model

extraction method, which actively steers the load to reach specific load levels.

CHAOS selects a set of relevant hardware performance counters using a

feature reduction algorithm. The feature reduction algorithm runs during

the profiling. CHAOS relies on the availability of a large number of low

level performance counters. This makes their profiling approach difficult to

to apply to the extraction of power models for use in design time analyses.

In order to validate their approach, Davis et al. [58] evaluate the accuracy

of a set of power models. The power models include linear power models,

piecewise linear power models, quadratic power models and a model which

the authors refer to as a switching power model. The latter model defines

power models per p-state of the system. Davis et al. train the models on the

features selected by CHAOS. The authors conclude that the consideration

of storage metrics significantly improves prediction accuracy compared to

power models that only consider CPU utilization and fixed consumption

factors. Our experiments did not confirm this observation for our profiling

approach.

Mantis [65] is a power consumption profiling framework. Mantis runs

individual synthetic workloads [141] at different load levels. Mantis uses a

specific workload per system component. Example components are CPU,

storage, and network. Unlike our profiling approach, Mantis lacks support

for hybrid workloads, i.e., workloads that stress multiple resources at the

same time.

279

8. Related Work

GreenOracle [52] extracts energy models for Android applications using

systematic experiments. The energy models use system call traces and CPU

utilization as independent input variables for a predictive runtime power

model. GreenOracle trains the power model on measurement data collected

from device profiling. It executes a set of test cases on multiple versions of

different applications. Finally, it trains the energy models on the collected

measurements. The proposed approach does not systematically vary load.

Thus, the produced profile may not provide represent the full measurement

range of independent variables.

Kansal et al. [104] outline a model for VM metering that estimates the

contribution of individual VMs to the total power consumption of a server.

Instead of training a server wide power model, Kansal et al. train power

models that estimate the per-VM consumption. The constructed model is a

helpful foundation of VM pricing models. It is questionable how accurate

the model is compared to full-system power models. The authors note that

the total server power consumption of their evaluation server follows a non-

linear trend. Their composed per-VM power model, however, assumes that

each VM linearly contributes to the total consumption. This in turn results

in a composed linear power model for the full server. The limitations of VM

power model construction by Kansal et al. [104] make VM power models

difficult to apply at design time. The authors train each VM power model

after the VM has been instantiated. The per-VM power model parameters

strongly depend on the server and the components deployed in the VM. This

makes the VM power models difficult to apply to new VM configurations,

i.e., due to the redeployment of components on another VM.

8.3. Green Software Engineering

Green Software Engineering subsumes all methods that aim to quantify or

improve the ecological footprint of software. Most common, energy con-

sumption is used to quantify the ecological footprint.

There are different sub-fields of Green Software Engineering. The subsequent

sections outline related approaches in each of the sub-fields. Section 8.3.1 dis-

cusses approaches that quantify the impact of design decisions made during

software evolution on energy efficiency. Section 8.3.2 presents methods

280

8.3. Green Software Engineering

that aim to detect and resolve design deficiencies which negatively affect

energy efficiency. In Section 8.1.2, we introduced different design time power

estimation approaches. These approaches can also be categorized as Green

Software Engineering methods. Section 8.3.3 complements the prior section

with a discussion of Software Eco-Cost Model (SECoMo). SECoMo supports

the modeling of the ecological footprint with metrics otherr than energy

consumption, e.g., greenhouse gas emissions.

8.3.1. Repository Mining and Comparison of Energy
Consumption across Software Releases

Software repository mining approaches aim to identify trends and patterns

throughout software evolution from the commit history of a source code

Version Control System (VCS). They have been applied to identify changes

that influence the energy efficiency of software systems. Hindle [87] proposes

a method to compare the energy consumption of different software versions.

The approach aims at the identification of changes in power consumption

due to source code changes. Hindle et al. [89] apply the method to compare

the power consumption characteristics across different versions of Android

projects hosted on GitHub. Their GreenMiner approach uses an automated

testbed to measure the energy consumption of different user interactions

across mobile application software releases.

Hasan et al. [81] apply GreenMiner to compare the power consumption of

different Java collection libraries for Android. In a first step, the authors

evaluate the power consumed while performing a set of collections-based

microbenchmarks. Second, they investigate the effect the replacement of

collections libraries had on a set of small-scale case study systems. Their

experimental investigation on one Android-based device provides an in-

teresting state-of-the-art insight into the efficiency of different collections

implementations. It is unclear to what extent the results can be generalized to

other execution environments, e.g., enterprise servers. Furthermore, future

implementation changes in the libraries require a re-evaluation.

Moura et al. [144] perform a thorough analysis of commits on GitHub that

targeted an energy consumption reduction. Some of the commits also con-

sider tradeoffs with other quality dimensions, such as performance. Moura et

281

8. Related Work

al. do not experimentally evaluate whether the commits actually effectively

reduced energy consumption.

Jagroep et al. [100] propose a method to compare energy consumption across

different releases of a software product. Their approach aims to promote

awareness for the effect of design decisions on energy consumption during

soware evolution. The authors collect and compare measurements of the

same usage scenarios for different versions of the software system. Com-

pared to our predictive approach, the approach by Jagroep et al. can not be

used at design time as it relies on the availability of the full implementation

of the software system under analysis. In their consecutive work, Jagroep

et al. [101] outline a question catalog which supports software architects in

the identification of potential energy efficiency improvements. These im-

provements target both architectural and implementation decisions. Jagroep

et al. apply their profiling method [100] to evaluate the effect of decisions

on energy consumption.

8.3.2. Detection and Resolution of Design Deficiencies

Procaccianti et al. [165] compile a set of design decision categories that

aim to increase energy efficiency. The categories are energy monitoring,

self-adaptation, and Cloud federation. Energy monitoring design decisions

intend to inform software architects of the effects of her decisions on energy

efficiency. Self-adaptation and cloud federation design decisions integrate

self-adaptation mechanisms with a software system. They enable the adap-

tation and exchange of services on the basis of specified quality goals, e.g.,

energy efficiency. Procaccianti et al. do not provide a model for, or experi-

mental evidence of the effect of the presented design decisions on energy

efficiency. In later work, Procaccianti et al. [164] experimentally evaluate

the effect of two best practices on energy efficiency.

Reimann and Aßmann [169] propose a generic method for the identification

and resolution of model smells to improve connected functional and non-

functional qualities. The authors apply their approach to remove a Java code

smell which affects energy consumption. Reimann and Aßmann employ

quality analyses to assess the effect of refactorings on QoS attributes. The

refactoring approach treats each quality analysis as a black box. It would

be possible to couple our energy consumption analysis with the refactoring

282

8.3. Green Software Engineering

approach to assess the effect of software architecture refactorings on energy

efficiency.

Gottschalk et al. [74] present an approach for the detection and resolution of

energy code smells in Android apps. The approach relies on a measurement-

based evaluation of refactorings. Thus, it can not be applied in early design

stages. The authors provide no details on the degree of automation sup-

ported by their approach. A combination of their work with an automated

measurement approach, e.g., GreenMiner [89], is conceivable.

The SEEDS framework [131] optimizes the configuration of an implemented

software system in order to decrease its energy consumption. As input,

the framework uses the implementation, a definition of potential variation

points, and a description of the deployment environment. The framework

aims to identify an optimal configuration by estimating the consumption

of each configuration. Manotas et al. [131] note that the consumption esti-

mation of each configuration could be derived from measurements on the

deployment environment, hardware and software co-simulation, or higher

level energy consumption estimation models. An example of an estimation

model referenced by the authors is the model by Noureddine et al. [149],

which we discussed in Section 8.1.1. The prototypical implementation of the

SEEDS framework varies the used Java collections, and measures the effect

on energy consumption by profiling the resulting implementation variant.

The meta-heuristics based energy optimization approach of SEEDS could be

applied at design time by combining our energy consumptionmodel and anal-

ysis with the existing architecture optimization framework PerOpteryx [111].

This would enable an automated selection of optimal architectures at design

time with respect to energy consumption and further QoS characteristics.

8.3.3. SECoMo Estimation Model

This section discusses an estimation model that enables the estimation of the

ecological footprint of an application. Section 8.1.2, presented different design

time power estimation approaches. The discussed approaches also employ

estimation models. In contrast to SECoMo, they focus on the estimation of

energy consumption as the only eco-cost metric.

283

8. Related Work

The Software Eco-Cost Model (SECoMo) by Schulze [182] enables users,

software architects, and operators to estimate the eco-cost of a software

system. Schulze defines ecological cost as “any factor influencing the ecolog-

ical footprint arising in an attempt to reach a certain goal”. The cost may

expressed in terms of energy consumption, greenhouse gas emission, or a

monetary value. SECoMo assigns eco-costs to different types of interactions

with the software system. Users and architects of a system can estimate the

effect of different types of interactions on eco-costs using metrics. Example

interactions are the use of a service or access to stored data. SECoMo con-

siders the usage, deployment context, and provided functionality as factors

that impact eco-costs of a system. It uses the KobrA method [11] to capture

these factors in UML models.

The descriptive approach by Schulze complements the prescriptive Green-
SLAs [10]. GreenSLAs define the acceptable eco-costs of service calls. Green-
SLAs can be used as a basis of service matching, or selection. Addition-

ally, SECoMo effectively complements energy consumption prediction ap-

proaches, as the one presented in this thesis. Its metrics can be applied

to energy consumption estimations. This empowers software software ar-

chitects to reason on the ecological footprint, e.g., of a specific user group.

Section 9.4.2 discusses the combined use of our approach and SECoMo.

8.4. Energy Efficiency Benchmarks and
Classification

This section differentiates our work on power model extraction and energy

efficiency analysis from related work in the benchmarking and classification

domain. Benchmarking frameworks evaluate the energy efficiency of de-

ployment environments for predefined workload sets or types. Classification

frameworks monitor and rate the efficiency of a software system. Unlike

benchmarking, classification evaluates operational systems and user load.

284

8.4. Energy Efficiency Benchmarks and Classification

8.4.1. Benchmarks

JouleSort [173] is a benchmark that evaluates energy efficiency (EE) of soft-

ware systems. It quantifies EE as the energy consumption that a software

system consumes to sort a data set of a specified input size. Algorithm engi-

neers and system architects use JouleSort as a tool to compare the practical

efficiency of sorting algorithms in specific execution environments. TPC-

Energy [209] complements existing TPC benchmarks, like TPC-W, with a

measurement method and metric for EE. Its EE metric is a ratio of total en-

ergy consumed over all considered performance measurement intervals, and

the number of completed transactions. SPECpower_ssj [119] is an energy

efficiency benchmark for enterprise servers. The SPECpower_ssj workload

simulates user interactions with a warehouse management system. User

requests may arrive at the system at varying rates. The benchmark deter-

mines energy efficiency as the ratio of user request throughput and power

consumption. SPECpower_ssj measures EE at different throughput levels,

which it derives from the maximum measured throughput on a server.

Unlike our estimation approach, benchmarks require the full implementation

of the software system under analysis to quantify EE. The benchmarks do

not evaluate energy consumption at different load levels. Thus, power con-

sumption and system metric measurements collected during the benchmarks

may fail to cover a representative set of measurements. This makes the

standalone benchmarks unsuitable for server profiling.

SERT [29, 187, 188] is a framework for classifying server energy efficiency

across a range of workload types. SERT defines energy efficiency as an

aggregated metric over the energy efficiency of multiple worklets run at

different load levels. A load level is defined as a factor u ∈ [0, 1]. For each
load level, SERT defines energy efficiency (EE) as follows:

Definition 8.1 (Energy Efficiency per SERT Load Level). The energy effi-
ciency at a load level tpu = u · tpmax, and u ∈ [0, 1] is

EEtpu =
Normalized Performance
Power Consumption , where

tpmax is the maximum throughput that is reached for the worklet on the server
under investigation. EEtpu is the efficiency when the workload is executed with
the share tpu is a share of maximum throughput.

285

8. Related Work

SERT aggregates the EE at different load levels into a metric for a specific ap-

plication type. It performs this aggregation using the geometric mean. SERT

refers to the types of applications as worklets. From the worklet scores, SERT

calculates a total server EE metric. The metric weights workloads depending

on the type of workload it issues. The weighting stresses the scores of CPU

intensive worklets over memory intensive, and storage intensive worklets.

An example worklet is SSJ, which simulates a web shop. SPECpower_ssj

[119] also uses this workload. SERT quantifies EE as a ratio of throughput

and energy consumption. It does not consider other performance metrics,

e.g., the response time distribution at different throughput levels.

SERT rates the EE of a server in relation to the EE of a baseline server

for a specific set of workloads. Out of scope of SERT are the prediction or

estimation of power consumption forworkloads outside this set. Additionally,

SERT does not target the extraction of power models. We employed the

technical foundation of SERT to implement our systematic power model

extraction approach, as Section 5.4.1 discussed. This enabled us to reuse

the existing SERT workload definitions to create representative enterprise

server workloads.

8.4.2. Profiling of Existing Applications

Energy efficiency benchmarks evaluate the energy efficiency of an execution

environment using a set of workloads. The execution environment may be,

e.g., an enterprise server. Benchmarks enable the comparison of energy effi-

ciency across different environments on the basis of the executed workloads.

The interpretation of benchmark results for specific real scenarios is chal-

lenging. Profiling approaches avoid this challenging interpretation. They

evaluate the power consumption of full-stack software system configurations

instead of benchmarking workloads. Profiling approaches provide software

engineers and operators with the exact power consumption characteristics of

a running software system, including actual user load. Profiling frameworks

thus can only be applied if:

• the software implementation and deployment environment are

available, and

286

8.4. Energy Efficiency Benchmarks and Classification

• the environment can be instrumented with dedicated measurement

equipment.

PowerPack [72] characterizes the power consumption of distributed applica-

tions. It supports reasoning on the influence of application phases on power

consumption of individual hardware components. PowerPack passively

monitors existing applications to gain insights on their power consumption

over time. This differs from our profiling approach, which aims to produce a

representative server consumption profile for a variety of workloads.

Alonso et al. [3] present a profiling framework for parallel High Performance

Computing (HPC) applications. The framework offers interfaces to commer-

cial and custom power monitoring equipment. It supports the recording

of software and system level metrics. The authors apply the framework to

validate a power model for task-parallel applications. The work by Alonso

et al. could be combined with our profiling framework to support a broader

range of power meters. Particularly, their implementation could be leveraged

to integrate power meters that monitor the individual consumption of server

components.

JouleUnit [224] is a power consumption profiling framework. Like Pow-

erPack [72], it supports distributed measurement and workload execution.

JouleUnit specifically has been designed to support the profiling of a variety

of systems, including cyber-physical systems. Wilke et al. [224] illustrate

the applicability of their approach for Android applications and a robotics

platform.

Performance counter Event Trigger (PET) [180] is a framework that supports

the emulation of complex distributed workloads using a recorded perfor-

mance counter profile. PET aims to replicate the observed profile by running

a combined set of small workloads that trigger the observed counters. As PET

assumes transactional workloads, its emulation method could be integrated

with our profiling approach. This would enable the power consumption

profiling of workloads that emulate large distributed applications.

287

8. Related Work

8.5. Cloud Simulators

Cloud Computing offers “on-demand [. . .] access to a shared pool of con-

figurable computing resources [. . .] that can be rapidly provisioned and

released with minimal management effort” [137]. Cloud simulators have

been developed to support large scale experiments for Cloud scenarios with-

out the costly provisioning of actual servers. The central goal metrics of

Cloud simulator evaluations relate to the operational data center efficiency.

Hence, the simulators cover metrics relevant to Cloud operators, e.g., re-

source utilization and energy efficiency. Unlike architectural analyses, the

application models of Cloud simulators offer no abstraction compared to the

application implementation [150], or model applications purely in terms of

the load issued over time [45, 118].

DCworms by Kurowski et al. [118] is a framework for simulating the perfor-

mance and energy consumption of distributed computing infrastructures.

It builds upon GSSIM by Bąk et al. [12]. The performance model of both

DCworms and GSSIM is limited to non-interactive HPC tasks. Each mod-

eled HPC task issues a set of sequentially processed resource demands on

CPU, storage devices, and network. While this abstraction is suitable for

modeling the performance of sequentially processed HPC applications, it

does not fit user-facing distributed enterprise applications. DCworms and

GSSIM provide predictions for the energy consumption of applications. They

perform their predictions using power models derived from system metrics

(c.f. Section 2.1). Kurowski et al. [118] evaluate the accuracy of static and

linear power models, as well as an application-specific non-linear power

model for a set of HPC benchmarks. The authors state that their framework

supports the addition of further power models as simulation plugins.

CloudSim by Calheiros et al. [45] is a performance and energy consump-

tion simulator for Cloud environments. CloudSim simulates the dynamic

deployment and migration of VMs. Calheiros et al. employ linear power

models to predict the energy consumption of cloud-based systems. Later

versions of CloudSim extend the range of supported power models, e.g., by

piecewise defined linear power models [24]. The main simulation entity of

CloudSim are VMs. Unlike DCworms [118] and GSSIM [12], CloudSim does

not perform its predictions for a set of VMs that are executed in isolation. In

CloudSim, collocated VMs mutually impact their performance.

288

8.5. Cloud Simulators

The behavior of applications simulated by CloudSim can be defined in Java

code. The implementation-centric performance approach chosen by Cal-

heiros et al. [45] theoretically allows to model application behavior of arbi-

trary complexity. However, it also lacks the abstractness and generality of

component-based architectural performance models such as Palladio [22].

In CloudSim, applications and services are not modeled as a sequence of

actions and service calls to different components. Applications running

in each virtual machine do not communicate with the services running in

other VMs. Another drawback of CloudSim is its lack of an explicit usage

or workload model. Fluctuations in the user demands need to be manually

mapped to changing resource demands of a VM. Piraghaj et al. [157] extend

CloudSim to support the modeling and simulation of containers. Piraghaj

et al. treat containers as another virtualization layer. Behavior and power

consumption modeling are unaffected by the added layer.

CloudSim approximates the transient effect of VM migrations as a fixed,

linear overhead on CPU utilization [24]. The migration duration is estimated

as the memory size of the VM divided by the available network bandwidth.

This is inaccurate for pre-copy live migrations, where the migration duration

depends its memory page dirty rate.

The Cloud simulator iCanCloud [150] requires users to implement Cloud

simulations against a low level programming API. Instead of performing

actual operating system or cloud platform calls, application developers may

issue calls to the simulator API. Due to this high level of detail, iCanCloud

is not suited for the evaluation of large scenarios, and scenarios where

information on executed workloads is limited. Castañé et al. [48] extend

iCanCloud with an energy consumption model. Castañé et al. distinguish

operational states of hardware components, e.g., CPU and memory. The

authors propose a specific energy model per device. Each power model

predicts the energy consumption using system metrics and device states.

In its current state, iCanCloud does not support VM migrations or other

reconfigurations.

Vondra and Šedivý [218] present a queueing network-based Cloud simula-

tor. The authors specifically constructed the simulator for the analysis of

auto-scaling algorithms. The simulator only analyzes steady states that are

reached after scale outs or scale ins have been executed. Unlike our work,

the simulator lacks support for the analysis of transient phases. The authors

289

8. Related Work

focus on performance metrics, e.g., utilization and request latency. Energy

efficiency is out of scope of their work.

8.6. Modeling and Analysis of Self-Adaptive
Software Systems

In this section, we contrast our approaches for the modeling and analysis of

energy-conscious self-adaptive software systems, and modeling and anal-

ysis of transient effects with related work. Section 8.6.1 discusses runtime

models and analyses that enable an efficient operation of software systems.

Section 8.6.2 outlines analyses that predict the quality of self-adaptive soft-

ware systems at design time. In Section 8.6.3 we delineate related work that

models the performance and energy consumption of VM migrations.

8.6.1. Runtime Models and Analyses

SOFA 2.0 by Bures et al. [41] explicitly models adaptation points. The authors

argue that runtime adaptations should be reflected in the architectural design

to prevent “an uncontrolled modification of the architecture” [41]. SOFA

2.0 reflects adaptation points as services offered by Controller components.

The Controller components are woven into all components, to which the

adaptation points of a Controller apply. Adaptations that do not directly

affect an existing component, e.g., the launch of a new component instance,

cannot be described using this modeling approach.

Stitch [51] is a Domain Specific Language (DSL) for the specification of

reconfiguration mechanisms based on the S/T/A approach. Section 2.4.2

introduced the S/T/A approach. Stitch assigns each tactic with its expected

adaptation cost. It defines a fixed delay after which the intended effect of a

strategy or tactic should have been observed. Cámara et al. [46] and Moreno

et al. [142] extend Stitch to proactively adapt the system to changes in the

system environment, e.g., increasing user demand. Their approach assumes

a fixed execution time for adaptation rules. The delay-based model [46, 51,

142] is inadequate as input for performance predictions when the execution

time of adaptations depends on transient effects.

290

8.6. Modeling and Analysis of Self-Adaptive Software Systems

Rosa et al. [174] enrich component specifications with an adaptation point

model. The authors define adaptation costs in multiple dimensions per

component. They acknowledge that adaptations may result in different

transient effects depending on resource utilization. The adaptation cost

are a constant overhead added to, or a factor times the current utilization.

The adaptation point model only supports the specification of upper bound

adaptation delays.

Descartes [93] is a proactive adaptation approach. Descartes represents the

current system state as an instance of DML. DML encompasses an adaptation

point model, and a monitoring data model. It uses architecture-level perfor-

mance predictions to identify future performance bottlenecks at runtime.

Descartes triggers adaptation mechanisms once it has identified one or mul-

tiple performance bottlenecks. These mechanisms may derive an adaptation

plan, which aims to resolve the bottlenecks. Descartes evaluates the result of

the plan using architectural performance analysis. The analysis disregards

the transient phase. Instead, it evaluates the expected system performance

after the plan has been executed. DML does not model reconfiguration

cost.

Götz [75] proposes a model-based runtime adaptation framework for single-

user software systems [75, p. 168]. Its aim is to find optimal system configu-

rations based on predefined QoS requirements. The optimization method

uses the runtime models to reason on QoS characteristics of a software

system. Götz presents a behavior model for a state-based description of

hardware. The author illustrates how this model can be applied to create

PSMs. Their runtime optimization framework uses predefined PSMs as input

to a DES-based analysis. The simulator estimates the energy consumption

for an expected user request.

The expressiveness of the energy model and the accuracy of the simulator-

based predictions by Götz [75] is lower than our approach. In addition to

PSM models, our Power Consumption metamodel supports the modeling of

power distribution infrastructure characteristics and system metric-based

power models. Our approach thereby can differentiate the dynamic power

consumption in each state. An advantage of the simplified modeling and

simulation over our approach is that it is easier and faster to determine

QoS predictions of different system configurations. This is important in

the scope of the work by Götz [75], since their framework continuously

291

8. Related Work

analyzes a system for potential runtime optimizations. The work [75] lacks

a quantitative evaluation of the presented approach.

Bunse and Höpfner [39] propose to integrate an energy management compo-
nent with a software system. The energy management component aims to

increase the energy efficiency of the system by adapting its configuration

to changes in user behavior or different execution environments. The au-

thors [40] apply this principle to enable an application to dynamically select

the most energy efficient sorting algorithm from a set of available algorithms.

The energy management component determines an optimal configuration

based on a set of power models that estimate the energy consumption de-

pendent on application and system metrics. These power models are specific

to each potential application configuration and deployment environment.

The authors manually construct the power models by profiling the sorting

algorithm implementations on a specific deployment environment. The

models presented in [40] only consider the size of the sorted collection as an

input factor.

8.6.2. Architecture-Level Design Time Analyses

Architecture-level design time analyses of self-adaptive software systems

evaluate the quality of these systems at design time. They enable software

architects in the selection, configuration and design of runtime adaptation

mechanisms.

D-KLAPER by Grassi et al. [77] is an approach for model-based design time

analysis of self-adaptive software systems. Unlike SimuLizar, D-KLAPER

only considers adaptations that affect the composition and deployment of

components. A further difference is that D-KLAPER does not support the

analysis of reconfigurations, which trigger as a result of variations in moni-

tored QoS characteristics. Instead, reconfigurations execute randomly ac-

cording to specified stochastic models. All possible configuration states must

be proactively known and specified by the architect. This is infeasible for

adaptation mechanisms that only implicitly state the results of adaptations.

D-KLAPER supports the specification of resource demands that are caused

by reconfigurations. Each reconfiguration defines a transition between two

specific states. This contrasts our transient effect model, which supports the

modeling of transient effects independent of specific state transitions.

292

8.6. Modeling and Analysis of Self-Adaptive Software Systems

SLAstic.SIM [133] enables simulation-based design time analyses of self-

adaptive software systems. It analyzes self adaptation mechanisms specified

using the SLAstic self-adaptation framework. PCM serves as the architecture

model used to describe the system under analysis. The simulator SLAstic.SIM

does not consider transient effects. Reconfigurations immediately transition

the system from the initial to the target state.

8.6.3. Performance and Energy Models of VMMigrations

VMmigrations are an important type of adaptation action in virtualized data

center environments. The performance and energy consumption modeling

of VM migrations has been extensively investigated in the Cloud and SPE

research community.

Alansari and Bordbar [2] outline an approach for modeling the performance

impact of VM migrations. Colored Petri Nets serve as the foundation of

their modeling. Their performance model does not consider migration time

or performance impact of VM migrations. The authors estimate migration

times in a subsequent simulation results analysis. Thus, their approach does

not allow for a consideration of transient effects which affect VM migrations,

or result from them.

Akoush et al. [1] investigate factors that impact performance of live mi-

grations. The authors propose two simulative models that estimate the re-

maining migration time of a VM using runtime performance measurements.

Strunk [206] extends the model by Akoush et al. with an energy model. Their

model uses a linear power model to estimate the energy consumption based

on network bandwidth and VM size.

Maio et al. [129] estimate the energy consumption of VM migrations. The

presented model estimates the energy consumption proportional to the

performance overhead of the migration. The model calculates the full system

power consumption using a linear power model.

293

8. Related Work

8.7. Performance Model Completions

Performance completions [228] enrich software models with performance

specifications. Performance completions may also enhance existing perfor-

mance models with detailed performance information, e.g., platform specific

resource demands. This closes “the gap between available high-level models

and required low level details” [80].

Happe et al. [80] apply the concept of performance completions to PCM.

The authors introduce parameters to the completions. This allows the con-

sideration of different platforms in a single completion. Platform specific

characteristics are mapped to parameters. The authors apply their approach

to support a lightweight, reusable specification of communication middle-

ware overhead.

Lehrig et al. [126] integrate the completion concept with an approach which

enables architects to reuse architectural knowledge. Examples for archi-

tectural knowledge are a reusable specification of architectural tactics, e.g.,

vertical scaling. Lehrig et al. annotate PCM with these specifications. The

annotation-based approach reduces the analysis effort for architects, and

enables a lightweight exploration of alternative tactics and application frame-

works.

Our approach for the consideration of transient effects in design time analy-

ses employs parametric model completions, which describe the performance

effect of reconfigurations. The previously discusses approaches by Happe

et al. [80] and Lehrig et al. [126] enhance PCM architecture models prior

to an analysis. This requires knowledge in which parts of the system the

completions should be applied. In contrast, we employ the completions

concept to enhance architecture models during an analysis. This allows us

to apply performance completions to parts of the system which are not part

of the initial system configuration.

294

9. Integration with Existing
Software Engineering Processes

This chapter discusses how our contributions can be used as part of existing

software engineering methods and processes.

9.1. Using Energy Efficiency Modeling and Analysis
with Palladio

Section 2.5.4 introduced the workflow for the quality analysis with Palladio.

Our approach extends this workflow with modeling and analysis of power

and energy consumption characteristics. The Power Consumption meta-

model represents these characteristics. PCA uses instances of the model to

reason on power and energy consumption.

Figure 9.1 depicts the extended Palladio quality analysis workflow. In addi-

tion to her existing duties, the system deployer is responsible for providing

a description of the power consumption characteristics of the deployment

environment. For this, the deployer describes the power distribution in-

frastructure and connected servers using the Infrastructure viewpoint of

our Power Consumption metamodel. The deployer can either use power

model catalogs, or derive the power models from systematic experiments or

historical measurements. Section 3.3 and Chapter 5 discussed the construc-

tion or retrieval of power models. Infrastructure distribution losses can be

modeled based on vendor specification, or estimates from literature, e.g., as

presented in [13].

The deployer may provide different Resource Environment and Allocation

models. She thereby enables reasoning on the effect of alternative alloca-

295

9. Integration with Existing Software Engineering Processes

Business
Requirements &
Use Case Model

Component
Architecture

Fully Quality-Annotated
System Architecture with

Quality Properties

Use Case
Models

Allocation
Specification

Architecture
Information
Integration

Q
ua

lit
y

A
na

ly
si

s

Software ArchitectSystem Deployer Domain Expert

System Environment
Specification (incl.

Power Consumption
Model)

Use Case
Analysis

Usage Model
Refinement

Use Case
Models

Scenarios
(Activity
Charts)

Usage
Model

Component Developer

Allocation Model
Component Type

Models
With RDSEFFs

Fully Quality-
Annotated

Palladio Model

Quality
Annotated
Allocation

Model

Quality Evaluation
(incl. Power/Energy
Consumption, EE)

Qual. Annot.
Resource

Environment

Binding and
Infrastr.
Model

Activity
Change of
Activity
Artefact Flow

Legend

Infrastructure
Model

Component
Specs &

Architecture

Figure 9.1.: Palladio quality analysis workflow extended with modeling activities and

artifacts of our power consumption modeling and analysis approach. Figure based

on [170, p. 213]. New parts are highlighted in bold.

tion strategies and hardware selection on energy efficiency and other QoS

characteristics. The deployer has to provide an Infrastructure model for

each alternative Resource Environment model. The Infrastructure model

annotates the environment with its consumption characteristics. If no power

models are available for the target deployment environment, the deployer

can apply our power model extraction method to obtain the power models.

Multiple alternative Infrastructure models can be provided for the same

Resource Environment model. This supports the exploration of alternative

distribution infrastructures, and infrastructure sizing decisions.

It is possible to split off the tasks related to power consumption modeling

from the system deployer role. In this case, a system operator can take on

these tasks.

296

9.2. Engineering Energy-Conscious Self-Adaptive Systems with SimuLizar

The software architect integrates the additional models in the Architecture
Information Integration. The architect can leverage the Power Consumption

metamodel and Power Consumption Analyzer (PCA) consumption analysis

if the business requirements

• include power consumption, energy consumption and efficiency

goals, or

• aim at a reduction of operational costs while maintaining other QoS

requirements.

The architect can use substitute power models of similar deployment en-

vironments if no power models are available for the environment under

investigation.

In Quality Analysis, the software architect can evaluate power consumption

over time, the aggregate energy consumption, and energy efficiency using

our PCA. Depending on the type of system, the architect may choose differ-

ent performance analysis methods to derive the prediction input for PCA.

Section 4.3 discussed the alternative simulation-based methods.

9.2. Engineering Energy-Conscious Self-Adaptive
Systems with SimuLizar

SimuLizar extends the role of the software architect to cover the selection

and design of self-adaptation mechanisms. Becker [17] refers to the architect

as the self-adaptive system architect due to the added range of design respon-

sibilities. We discussed these responsibilities in Section 2.5.2. We extended

SimuLizar to support the specification of energy-conscious adaptation mech-

anisms. These mechanisms adapt the system to meet quality goals related to

energy consumption.

The self-adaptive system architect has to perform the following additional

tasks evaluate the efficiency and effectiveness of energy-conscious self-

adaptation mechanisms:

• Specify power and energy consumption Monitors. Adaptation
mechanisms specified in SimuLizar rely upon system measurements

297

9. Integration with Existing Software Engineering Processes

to determine if adaptations should be performed. The architect or

system deployer have to specify points in the Infrastructure model

where power and consumption measurements should be collected.

They define measuring points, measurement frequency and interval

in the Monitor model.

• Integrate or implement energy-conscious adaptation
mechanisms. The self-adaptive software systems architect

implements energy-conscious adaptation mechanisms as in-place

model transformations on PCM. The transformations derive

adaptation decisions based on the measurements which are collected

as specified in the Monitors.

• Specify transient effects of adaptations. If the execution of

adaptations induces a significant overhead, the architect can apply

our Adaptation Action metamodel to consider the resulting transient

effects.

• Evaluate effect of adaptation mechanisms on QoS. The
architect has to validate that the self-adaptive system under

investigation meets the quality demands derived from the business

requirements. This includes constraints on peak power and

aggregate energy consumption. The constraints can stem from

business concerns like the price of power, or availability of renewable

energy sources. Additionally, the architect can validate if the power

distribution infrastructure meets the peak power consumption of the

software system.

The architect has to adjust the design or renegotiate the business require-

ments if the energy-conscious self-adaptive system under investigation vio-

lates any of the QoS requirements. This matches the respective activity in

the baseline Palladio quality analysis workflow, which we presented in Sec-

tion 2.5.4.

298

9.3. Integration with Software Development Approaches

9.3. Integration with Software Development
Approaches

Our approach extends the Palladio approach for the quality-aware develop-

ment of component-based software systems. Palladio is not a proprietary

modeling process. Rather, it complements existing development approaches

with systematic, light-weight quality analyses based on the PCM architec-

ture modeling language. Software architects can apply Palladio to avoid

costly re-implementations due to unsatisfactory QoS of the developed sys-

tem. Reussner et al. [170, pp. 217-223] discuss how Palladio can be integrated

with different development processes. The authors outline the compatibility

of Palladio with the most common development processes. These processes

include:

• Iterative, incremental, and evolutionary processes,

• sequential process models (“waterfall-like”),

• iterative process models,

• agile development approaches.

Our modeling approach extends Palladio to consider power consumption, en-

ergy consumption, and energy efficiency. The modeling workflow of Palladio

remains unchanged, barring the extensions we introduced in Section 2.5.4.

Hence, we consider our approach to be compatible with these development

processes and approaches.

In iterative or agile development, the Power Consumption metamodel in-

stance of the system under development can be refined based on the identified

resource requirements. The resource requirements depend on the QoS goals

which the software architect derives from business requirements. Additional

information on the deployment environment from later iterations informs

the modeling of the power distribution characteristics. The architect can

incorporate more accurate power models based on the information. This

results in a higher accuracy of energy consumption and energy efficiency

predictions in later iterations.

The consideration of energy-related quality metrics in early design phases

reduces the risk of QoS violations in sequential development processes. Initial

299

9. Integration with Existing Software Engineering Processes

models and estimates tend to be inaccurate in forward engineering. It thus

makes sense to update the Power Consumption metamodel specification

in later development phases. This can help inform decisions made in later

phases, e.g., the choice of runtime management policies to reduce the energy

consumption of idle servers.

9.4. Combination with Green Software
Engineering Approaches

This section discusses how our modeling and analysis approach can be

integrated with existing Green Software Engineering approaches. It de-

scribes how the approaches complement each other in increasing the energy

efficiency of software systems and promoting energy-awareness among

developers, operators, and management.

9.4.1. GREENSOFT Model

The GREENSOFT Model is a well-known reference model that captures and

guides “software developers, administrators, and software users in creat-

ing, maintaining and using software in a more sustainable way” [146]. The

GREENSOFT Model encompasses the whole life-cycle of a software system.

This includes development, usage, and end of life. In these stages, the model

distinguishes first-, second- and third-order effects of software on sustain-

ability. A first-order impact results from the construction and use software

systems. It includes the energy consumed by servers, or environmental

waste from server production. Second- and third-order impacts are short

and long term effects like the prioritization of sustainability as a goal of a

software development organization.

The GREENSOFT Model identifies the lack of a software tool “that allows

the estimation of energy consumption in [. . .] early design stages” [146].

The authors hence recommend the use of utilization metrics from software

performance prediction approaches as an energy efficiency indicator.

300

9.4. Combination with Green Software Engineering Approaches

Our design time prediction approach closes the gap identified by Naumann

et al. It enables reasoning on the first-order impacts throughout the develop-

ment and usage phase of design decisions on infrastructure sizing, energy

consumption, and energy efficiency. In turn, second- and third-order effects

may be induced due to a heightened awareness of interactions between

software design and energy efficiency.

9.4.2. Software Eco-Cost Model (SECoMo)

SECoMo by Schulze [182] is an approach for modeling the eco-cost of a

software system. We differentiated our contributions from SECoMo in Sec-

tion 8.3.3. Our approach and SECoMo both aim to enable a systematic

engineering of energy efficient software systems. The approaches, however,

focus on different roles and associated activities in the software development

process. The following discusses how both approaches can be integrated

and used complementary to each other.

SECoMo as prescriptive model for design and implementation. SECoMo

covers descriptive and prescriptive aspects associated with eco-costs. An

implementation of a system can be checked against SECoMo estimates from

early design estimates. Large differences between early estimates and imple-

mentation indicate a poor estimation accuracy or a lackluster implementation.

Large differences hence can be used as a trigger to review the implementation

architecture. As SECoMo associates each service call with its effect on energy

consumption, it is possible to trace the mismatch between implementation

and prediction down to individual calls.

SECoMo as a heuristic for hotspot and blame analyses. SECoMo estimates

total energy consumption based on the estimated contribution of individual

calls to the total consumption. SECoMo thus supports the evaluation of

individual contributions for user groups, components, etc., to the overall

energy consumption. When applied on the predictions from PCA, SECoMo

can be leveraged to perform an architectural energy consumption hotspot

analysis similar to Brüseke et al. [36]. Instead of UML entities, the consump-

tion contributions could be mapped to PCM. This would enable the software

301

9. Integration with Existing Software Engineering Processes

architect to identify potential areas of improvement in the architectural

design. A continuous evaluation of energy consumption throughout devel-

opment using SECoMo enables software architects to validate if their design

decisions had the intended effect on energy efficiency. The development

feedback from SECoMo can inform future decisions of the architect during

software evolution and agile development.

Use of Power Consumptionmetamodel and PCA to calibrate SECoMo. SEC-

oMo relies on measurements or expert knowledge to obtain the eco-cost

estimations. Schulze [182] discuss software and hardware power meters

as alternative sources of energy measurements for the calibration of the

eco-cost models. These measurement-based calibration approaches rely on

the availability of a (prototype) implementation. This makes the SECoMo

calibration difficult to apply in early design phases if no “previously devel-

oped software from the same domain is already available” [182, p. 271]. Our

PCA analysis approach supports the analysis of energy consumption in early

design stages. It produces predictions based on an architecture model and

an instance of our Power Consumption metamodel.

It is possible to estimate the contribution of individual service calls to the

total energy consumption by applying the per-call energy estimation tech-

nique of JouleUnit method [224] to our predictions. JouleUnit estimates the

contribution of individual service calls to the total energy consumption of a

system. Our approach thereby could be used to calibrate the SECoMo models

from an architectural description of the software system.

SECoMoas thebasisofapricingmodel. SECoMo accumulates the estimated

total consumption from the estimated energy consumption of individual calls.

The consumption caused by individual users can be derived from this. Using

SECoMo, it is possible to construct pricingmodels which bill users of a system

proportional to their contribution to the energy consumption. Business

model experts and management can consider the per-user consumption

predictions in business model design. When applied the predictions from

PCA, the cost estimates from SECoMo can ease coordination of software

architects, business model experts and management in early design stages.

302

9.5. Consideration of Transient Effects in Self-Adaptive Systems Design with SimuLizar

9.5. Consideration of Transient Effects in
Self-Adaptive Systems Design with SimuLizar

This thesis contributes the Adaptation Action metamodel that supports the

systematic consideration of transient effects in design time quality analyses.

Section 6.2.6 described a process for the definition of Adaptation Action

model instances. This section discusses how this process integrates with the

engineering processes of Palladio and SimuLizar.

The self-adaptive systems architect collaborates with developers of reconfig-

uration middleware components to define instances of the metamodel. The

component developers provide a specification of reconfiguration middleware

components as an instance of PCM components. The components describe

the performance effect of the adaptation action execution. The middleware

component developers also provide a specification of adaptation action pa-

rameters, and action effects on the system configuration. The component

developers, together with the software architect, describe the adaptation

behavior as an instance of our Adaptation Action metamodel.

A self-adaptive systems architect can consider transient effects of reconfigu-

rations by integrating the modeled adaptation actions into her adaptation

mechanism specifications. For this, the architect inserts the adaptation

actions into their mechanism specifications as Section 6.4.2 outlined.

We designed the Adaptation Action metamodel to support the reusable, com-

posable specification of adaptations. The performance models contain per-

formance effect specifications as RDSEFFs. The resource demand estimates

in the RDSEFFs can, however, be specific to a set of execution platforms.

In this case, the component developer or system deployer can adapt the

specification with platform specific resource demand estimates.

303

10. Conclusion

This chapter concludes the thesis. It consists of the following sections:

Section 10.1 summarizes the presented contributions. Section 10.2 discusses

benefits of our approach. Section 10.3 gives an overview of assumptions and

limitations. Section 10.4 outlines potential directions for future work.

10.1. Summary

Our thesis presented an adaptation-aware approach for the systematic consid-

eration of energy efficiency for software systems at design time. It provided

four central contributions. In combination with their validation, they address

the Research Questions (RQs) that we discussed in Section 1.4. The central

contributions are:

C1: Design of a modeling language for the description of power
consumption characteristics of software systems. Our Power

Consumptionmetamodel enables the modeling of the power consump-

tion characteristics of software systems. Instances of the metamodel

hierarchically structure the consumption characteristics of servers

and power distribution infrastructure. We found this structuring to

be a good abstraction for modeling the consumption characteristics

of servers and power distribution infrastructure (RQ 1). The designed

metamodel enables accurate consumption predictions (RQ 2), as we

demonstrated in a set of case studies.

Our metamodel has a higher expressiveness than state of the art

modeling languages. The use of its extended modeling capabilities

is optional. The Power Consumption metamodel still supports sim-

ple power consumption characterizations when a feature subset is

305

10. Conclusion

used. A strict layered structuring of the metamodel eases the reuse of

consumption specifications for different deployment environments.

C2: Development of an approach for energy efficiency analysis at
design time. The developed approach predicts the power consump-

tion using an architecture-level description of the software system.

The analysis uses an instance of an architecture modeling language,

e.g., PCM, in combination with a Power Consumption metamodel

instance as input models. Our analysis leverages existing performance

analysis methods to evaluate the effect of design decisions on energy

efficiency. Even though the power consumption modeling abstracts

from application specific details, the prediction results are sufficiently

accurate to evaluate the effect of architectural design decisions on

energy efficiency (RQ 4). The analysis supports the evaluation of

energy efficiency for static and self-adaptive software systems. For

self-adaptive systems, the analysis considers the effects of power man-

agement policies and adaptation mechanisms that indirectly affect

energy efficiency. Examples of this are the use of alternative VM

migration policies.

C3: A method for the extraction of power models for use in de-
sign time predictions. A central part of the extraction method is

an automated server profiling approach. The approach performs rep-

resentative power consumption and performance measurements on

a server. The automated server profiling significantly reduces the

effort required for the manual profiling of server power consumption

(RQ 5). The profiling employs different workload types to stress the

server. It measures power consumption at different load levels. A

representative server profile consisting of power and system metrics

results from the profiling. We train a set of power models on this

profile.

An AIC-based ranking orders the trained model according to their

expected power consumption prediction accuracy. Our validation

confirmed that we were able to reason on the effect of system metrics

on prediction accuracy using this ranking (RQ 7). The user of our

method can select a power model based on its expected accuracy and

the required input metrics of the power model. Thereby, the user can

rule out input metrics which fail to improve the prediction accuracy.

306

10.1. Summary

We found the use of system-level CPU utilization to be sufficient as

input to architecture level power consumption predictions for server

environments. The consideration of other metrics, e.g., HDD read and

write throughput, only marginally increased the prediction accuracy

(RQ 6).

C4: Development of a systematic modeling and analysis approach
for considering transient effects in software quality analyses.
We introduced the Adaptation Action metamodel for the coupled

specification of adaptation actions and their transient effect. The

metamodel enables the modeling of inter-dependencies between adap-

tation actions, performance and power consumption (RQ 9). Instances

of the metamodel capture the performance and adaptation effect de-

pending on a set of input parameters. Self-adaptive software system

architects can reuse adaptation action specifications across different

architectural models.

We developed an analysis that supports the consideration of transient

effects that uses instances of the Adaptation Action metamodel as

input. The analysis builds upon a formalization of adaptation action

execution semantics, which we introduced in this thesis. The for-

malization of execution semantics and their implementation address

Research Question 10. We coupled the analysis with the existing

SimuLizar analysis for self-adaptive software systems. We illustrated

the application of adaptation action specifications by an architect in

the specification of adaptation mechanisms, and outlined a process

for the modeling of new adaptation actions.

We validated our contributions in a set of case studies. We structured

the validation according to the GQM method. The validation showed that

our architecture-level modeling and prediction approach produces accurate

power and energy consumption predictions (RQ 3). The absolute prediction

error was less than 5.5% for the two investigated enterprise applications

across a variety of usage scenarios. The validation accuracy was high enough

to qualitatively and quantitatively assess the effect of a design decision on

energy efficiency (RQ 4). Four data center management scenarios illustrated

the benefits of our power consumption modeling and prediction approach

for self-adaptive software systems. Our approach predicted the total energy

307

10. Conclusion

consumption with an error no higher than 7.08%, despite a set of limitations

regarding the quality of input data.

We demonstrated the appropriateness of our Power Consumption metamodel

in a comparison with state of the art modeling languages. Our metamodel

offers a higher expressiveness and accuracy than state of the art architecture

level energy consumption models. The Power Consumption metamodel sup-

ports a more flexible and lightweight specification of powermodels compared

to the power modeling abstraction of Cloud simulators.

Three case studies showed a significant increase in prediction accuracy over

the only existing state of the art architecture-level energy consumption

modeling and prediction approach [35]. The use of modeling constructs

with a higher expressiveness is optional. Software architects and system

deployers can use a subset of the metamodel features, e.g., when simple

linear power models are sufficiently accurate. The strict layering of the Pow-

er Consumption metamodel eases an iterative refinement of its instances. In

later development stages, initial models based on expert estimates can be

replaced with a description of the actual target deployment environment.

The validation applied our power model extraction method to a variety of Big

Data and enterprise applications. Its model training produced power models

with a high prediction accuracy. The power models were at least as accurate

as state of the art for power models built solely using CPU utilization. Our

approach produced significantly more accurate power models than state of

the art when multiple system metrics were considered, e.g., CPU utilization,

HDD read and write throughput. The AIC-based power model ranking was

consistent with the ranking based on measured accuracy.

We validated our approach for considering transient effects using a horizon-

tally scaling media hosting application. Our measurements demonstrated

that the transient effects of the scale-out adaptation action had a large impact

on user response times (RQ 8). The validation showed that the use of our

approach for considering transient effects in design time quality analyses sig-

nificantly improved the prediction accuracy for the investigated self-adaptive

software system. The increased accuracy enabled us to identify a design

deficiency that would have remained undetected. This confirmed Research

Question 11 for the system under investigation.

308

10.2. Benefits

Our Adaptation Action metamodel was employed in the CACTOS project

to model the diverse set of adaptation actions supported by its autonomic

data center resource management framework [115, 196]. This illustrated the

applicability and appropriateness of the Adaptation Action metamodel to

describe complex adaptation logic.

10.2. Benefits

The contributions of this thesis enable software architects to systematically

consider energy efficiency in the design of static and self-adaptive software

systems. The benefits of our approach are as follows.

Using our prediction approach, software architects can evaluate the impact

of design decisions on energy efficiency from early design phases. The

specification of power consumption characteristics with our approach only

concerns the deployment environment. Component developers do not need

to model the effect of service calls on energy consumption. Our approach

avoids redundant behavior specifications by using an architecture level

performance model as input to our prediction approach. This simplifies the

adoption of energy efficiency as a quality concern in architectural design

and analysis workflows.

We extended Simulizar to support the design and selection of energy-con-

scious adaptation mechanisms. Energy-conscious adaptation mechanisms

dynamically adjust the state and amount of available servers to improve

energy efficiency, while maintaining other quality goals. The simulation-

based evaluation of adaptation mechanisms helps to avoid costly and time

consuming experimentation in a real data center testbed.

The advantages of our approach extend beyond design time into system

planning and operation. System operators and architects are able to evaluate

the effect of adaptation mechanism selection and configuration on energy

consumption, and trade-offs with other quality dimensions.

System deployers and operators can use our approach for infrastructure

sizing decisions. This helps avoid the costly acquisition and operation of

inefficient or oversized server and power distribution infrastructure. De-

ployment environment resource planning thereby can be founded on the

309

10. Conclusion

requirements of the target system architecture and the expected workload

mix. This goes beyond the state of the art, where resource planning relies

on operator experience and rough estimates to plan the power distribution

infrastructure.

Software architects and system deployers benefit from the high degree of

automation of our power model extraction method. They can choose from a

set of workload definitions and relevant system metrics to conduct server

profiling. The server profiling is decoupled from power model learning.

This enables the refinement of the power model used to describe the server

consumption characteristics. System deployers can choose from a set of

standard model learning techniques to construct power models for use in

design time predictions, e.g., non-linear regression or Multivariate Adaptive

Regression Splines (MARS). The proposed AIC-basedmodel selectionmethod

relieves the users from a trial-and-error selection of a power model from a

set of candidates.

Self-adaptive systems architects and engineers profit from the increased

prediction accuracy, which results from our transient effects modeling and

prediction approach. The consideration of transient effects enables architects

to identify situations where the execution of superfluous adaptations reduces

energy efficiency or performance, instead of increasing it. The design of our

Adaptation Action metamodel promotes reuse of adaptation action specifi-

cations. Once an adaptation action has been specified, it can be reused in

different self-adaptation mechanisms. The actions are composable by design.

Software architects can integrate them into the adaptation execution logic of

adaptation frameworks, e.g., S/T/A-based frameworks like Descartes. This

eases the evaluation of adaptation frameworks and mechanisms at design

time.

10.3. Assumptions and Limitations

This thesis discussed assumptions and limitations of the contributions in

the respective sections. Section 3.3 outlined assumptions and limitations

of our Power Consumption metamodel. Section 4.5 presented assumptions

and limitations of our design time power consumption analysis approach.

In Section 5.5 we discussed these concerns for the power model extraction

310

10.3. Assumptions and Limitations

method. Section 6.5 described assumptions and limitations of our modeling

language and analysis for considering transient effects in design time quality

analyses. This section summarizes the central assumptions and substantiates

why we deem them reasonable.

Availability of architecture performancemodel. Our architecture-level po-

wer and energy consumption analysis relies on architecture performance

models in combination with instances of the Power Consumption metamo-

del as input to its predictions. The consumption analysis leverages existing

performance analyses to predict system level performance metrics, e.g., CPU

utilization or HDD throughput. It derives its consumption predictions from

these system metric predictions. The description of formal architecture per-

formance models like PCM requires a higher modeling effort than informal

architecture models, which purely document existing or planned compo-

nents and their interfaces. According to Reussner et al. [170, p. 197], the

effort for performance model construction is justified if there are high risks

connected to the quality of the developed software system. This is the case

if the uncertainty regarding the effect of design decisions on system quality

is large, or if the system needs to meet SLAs.

While it would be possible to predict energy consumption in isolation of

performance theoretically, we consider both qualities to be closely connected.

The energy consumption of a software system usually can be minimized

by using a minimal number of servers. Software architects interested in

increasing energy efficiency have to ensure that the software architecture

still satisfies performance requirements. We thus consider the availability

of an architecture performance model not only to be a prerequisite for the

application of our approach but also for meaningful architectural trade-offs

between energy efficiency and performance.

Availability of server power consumption characteristics description or ac-
cess tomeasurement infrastructure. Instances of our Power Consumption

metamodel describe the consumption characteristics of software systems. In-

formation on the consumption characteristics of the servers in a deployment

environment need to be available in order to construct the instances. Our

power model extraction method can be applied to construct server power

311

10. Conclusion

models if the target deployment environment and power measurement in-

frastructure are available. The final deployment environment may not be

available or fully known in early design phases. In this case, substitute

power models from similar hardware can be used. It is possible to derive

power models from the publicly available SPEC SERT results [68] if no power

models of comparable servers are available [181]. The SERT results quan-

tify server energy efficiency at different load levels. The substitute models

can be refined as additional information on the deployment environment

becomes available. We consider this assumption to have a weak effect on

the applicability of our approach due to the variety of alternative methods

by which the server consumption characteristics can be obtained.

Limited influence of hidden device states. The power consumption model-

ing and analysis approach presented in this thesis builds on the assumption

that the power consumption of software systems correlates with a set of

measurable system metrics. Example system metrics are CPU utilization

or HDD throughput. The measurable system metrics can be insufficient to

accurately predict the power consumption based on them. A common source

of this shortcoming is the presence of hidden device states [135]. Hidden

device states are power saving states which are not explicitly documented,

and can not be monitored. An example of such hidden states is the propri-

etary DVFS mechanism Intel Turbo Boost [135]. Our modeling and analysis

can be leveraged to model the behavior of DVFS mechanisms and other

power management policies. We assume the central conditions of power

management to be known.

The missing knowledge of proprietary power management mechanism be-

havior is a limitation that is not specific to our approach. We identified the

reconstruction of power management behavior models as an area for future

work. Section 10.4 discusses this in greater detail. Once a behavior model is

available, it can be integrated into the system model using our PSM-based

power models and the model-based analysis interfaces for energy-conscious

adaptation mechanisms.

Transient effect model semantics based on DES. The model semantics of

our Adaptation Action metamodel for describing the transient effects of

adaptation actions are specific to DES-based software simulators. All existing

312

10.4. Future Work

architecture level quality analyses and Cloud simulators that support the

analysis of transient phases, which we identified in our survey of related

work, are based on DES. Section 8.6 provided an overview of the state of the

art in this area. As our transient effect analysis approach is compatible with

all existing analysis methods, we consider this a weak limitation.

10.4. Future Work

We have identified a number of areas and topics for future work in the scope

of the work which led to this thesis.

Automated extraction of Adaptation PerformanceModels. Our Adaptation

Action metamodel enables architects to consider transient effects in software

quality analyses. This thesis presents a manual process for the modeling

of adaptation actions. The software architect or adaptation middleware

component developer has to provide a coupled description of the adaptation

outcome and the performance effect of the adaptation execution. The adap-

tation outcome is described as a sequence of AdaptationSteps and embedded

in-place model transformations. Its modeling is a straightforward task for the

adaptation middleware developer. Conversely, the adaptation performance

modeling requires in-depth knowledge of the interdependencies between

adaptation action execution, system performance and current load. We man-

ually constructed the Adaptation Performance Model for horizontal scaling

in an IaaS Cloud, which we presented in the validation. Existing methods for

automated load testing and performance model extraction could be applied

to automate the Adaptation Performance Model construction and training

for adaptation middleware components.

Predictivemodels for proprietary performance and powermanagementme-
chanisms. Modernmulti-core CPUs use integrated power and performance

management mechanisms to offer different power-performance trade-offs.

Intel Turbo Boost is a widespread example of this. It supports the temporary

increase in performance of a subset of cores in exchange for higher power

consumption. Our experimental evaluation of energy consumption during

VM migration indicated that Turbo Boost has a significant impact on power

313

10. Conclusion

consumption for workloads that heavily utilize a subset of cores. There is a

gap in performance and power modeling techniques for multi-core CPUs that

reflect proprietary power and performance mechanisms. The construction

of descriptive models for these mechanisms is an interesting direction for

future work. The use of unsupervised machine learning techniques, such

as rule-based machine learning, could be a potential starting point. These

techniques could be applied to construct an approximatemodel of proprietary

performance and power management mechanisms.

Reduced power profilingmeasurement time. The server profiling method

presented in this thesis supports the flexible definition of target system

metric levels. By default, we used the combined domain of all considered

system metrics to derive the profiling levels. The profiling effort increases

exponentially with the number of profiled system metrics when this simple

definition strategy is used. The profiling collects measurement data over a

fixed measurement interval at each load level, even when the measurement

values are stable. Adaptive measurement strategies could be developed to

reduce the number of profiling runs and measurement time.

Evaluation of concepts for different domains. This thesis introduced a sys-

tematic approach for the energy efficiency evaluation of static and self-

adaptive software systems. We focused on the energy efficiency of enterprise

systems and data center environments. While we consider our modeling

abstraction to be domain independent, its applicability to other domains

has to be investigated in future work. Krach [114] applied an earlier ver-

sion of our approach in the context of mobile computing. In the scope of

the work by Krach we identified a set of necessary extensions to support

accurate predictions in the mobile computing domain. These extensions in-

clude state-based power models and the consideration of power management

mechanisms. A re-evaluation of the extended approach to the mobile com-

puting domain is worthwhile. The evaluation of Cloud offloading decisions

on the energy efficiency of the full system consisting of mobile device and

Cloud backend would be an interesting extension to the evaluation scenario

investigated by Krach.

Power consumption prediction of General-Purpose computing on Graphics

Processing Units (GPGPU) is becoming increasingly relevant with the emerg-

314

10.4. Future Work

ing adoption of blockchain and machine learning techniques in enterprise

systems. Performance and energy efficiency of these techniques benefits

massively from the use of GPGPU. Architecture-level performance modeling

techniques are yet to incorporate GPGPUs with sufficient abstraction and

accuracy [226]. Our power consumption modeling and analysis approach

could be evaluated for systems involving GPGPU, once the challenges asso-

ciated with GPGPU performance modeling have been tackled. The survey

by Bridges et al. [32] can serve as a reference point for GPU power modeling

techniques that could be incorporated into our approach.

Validation for large case study systems. Additional validation of our ap-

proach for large case study systems is desirable. The application to further

systems could help identify potential areas for improvements of our ap-

proach, and aid in the identification of future research. As part of the work,

the model extraction tooling could be refined, e.g., to support the automated

extraction of PSM transition states that capture the power consumed during

server boot-ups and shutdowns.

Integration with runtime predictionmethods. Self-adaptive software sys-

tems adapt their structure and deployment, as well as functionality to meet

quality requirements under changing environmental conditions. Approaches,

e.g., Descartes [93], leverage architectural performance models to evaluate

alternative adaptation tactics during runtime. Our modeling and power

consumption prediction method could be integrated with a runtime adap-

tation approach. The integration would enable the approach to proactively

evaluate the effect of adaptation tactics on energy efficiency. Aside from

a potential cost reduction, the runtime prediction could be used as part of

data center demand response [222]. Data center demand response enables a

flexible management of data center load based on available total or renew-

able energy. Our approach could be used to predict the expected data center

energy consumption for an expected load.

315

Acronyms

AC Alternating Current.

ACPI Advanced Configuration and Power Interface.

ADL Architecture Description Language.

AIC Akaike’s Information Criterion.

ATL ATL Transformation Language.

CHAOS Composable Highly Accurate OS-based power models.

DC Direct Current.

DES Discrete Event Simulation.

DLIM Descartes Load Intensity Model.

DML Descartes Modeling Language.

DSL Domain Specific Language.

DVFS Dynamic Voltage and Frequency Scaling.

eco-cost ecological cost.

EDP2 Experiment Data Persistency & Presentation.

EE energy efficiency.

EMF Eclipse Modeling Framework.

EMOF Essential Meta-Object Facility.

ERP Enterprise Resource Planning.

317

Acronyms

EWMA exponentially moving weighted average.

FCFS first come, first served.

FSM Finite State Machine.

GPGPU General-Purpose computing on Graphics Processing Units.

GQM Goal Question Metric.

HDD Hard Disk Drive.

HPC High Performance Computing.

HRM Hardware Resource Modeling.

IaaS Infrastructure as a Service.

IPMI Intelligent Platform Management Interface.

IQR interquartile range.

KDE Kernel Density Estimation.

MAE Mean Absolute Error.

MAPE-K Monitor, Analyze, Plan, Execute, Knowledge.

MARS Multivariate Adaptive Regression Splines.

MVC Model-View-Controller.

PCA Power Consumption Analyzer.

PCM Palladio Component Model.

PDU Power Distribution Unit.

PET Performance counter Event Trigger.

PMX Performance Model eXtractor.

318

Acronyms

PRM Palladio Runtime Measurement Model.

PSM Power State Machine.

PSU Power Supply Unit.

PUE Power Usage Effectiveness.

QoS Quality of Service.

QuAL Quality Analysis Lab.

QVTo Operational QVT.

QVTr QVT Relations.

RDSEFF Resource-Demanding Service Effect Specification.

REST Representational State Transfer.

RQ Research Question.

RT response time.

S/T/A Strategies, Tactics, Action.

SAS Serial Attached SCSI.

SD Story Diagram.

SECoMo Software Eco-Cost Model.

SEFF Service Effect Specification.

SERT Server Efficiency Rating Tool.

SLA Service Level Agreement.

SMM Structured Metric Metamodel.

SPE Software Performance Engineering.

SPUE Server Power Usage Effectiveness.

StoEx Stochastic Expressions.

319

Acronyms

TCO Total Cost of Ownership.

UML Unified Modeling Language.

UPS Uninterruptible Power Systems.

UUID Universally Unique Identifier.

VCS Version Control System.

VM Virtual Machine.

Wh Watt hour.

320

A. Prediction Error per Power
Model for Combined Profiling

321

A. Prediction Error per Power Model for Combined Profiling

Table A.1.: Prediction error per power model and workload type, errors in percent.

Power models 1 and 2 trained on combined profiling measurements. Microbench-

marks, web search and clustering workloads.
P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

M
i
c
r
o
b
e
n
c
h
m
a
r
k
s

W
e
b
S
e
a
r
c
h

C
l
u
s
t
e
r
i
n
g

Sort

Word Count

TeraSort

DFSIOe

Sleep

Page Rank

Nutch

Indexing

K-means

1

u
c
p
u

1
3
.6

1
0
.8

9
.8

1
0
.0

2
4
.4

9
.8

8
.4

1
0
.7

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

1
2
.1

9
.4

9
.6

8
.6

2
2
.5

8
.4

7
.1

9
.3

2

l
=

3

u
c
p
u

4
.7

5
.2

5
.6

4
.9

1
0
.9

5
.3

1
.7

7
.2

u
c
p
u
,
u
r
e
a
d

3
.6

4
.2

5
.3

3
.9

9
.5

4
.3

0
.5

6
.6

u
c
p
u
,
u
w
r
i
t
e

3
.3

3
.7

5
.0

3
.5

8
.8

3
.9

0
.5

5
.5

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.2

3
.7

5
.0

3
.5

8
.7

3
.8

0
.3

5
.6

l
=

2

u
c
p
u

5
.5

5
.6

5
.8

5
.4

1
2
.4

5
.5

2
.3

7
.3

u
c
p
u
,
u
r
e
a
d

4
.8

4
.9

5
.7

4
.7

1
1
.5

4
.8

1
.5

6
.8

u
c
p
u
,
u
w
r
i
t
e

4
.5

4
.5

5
.4

4
.4

1
1
.0

4
.4

1
.4

6
.0

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

4
.4

4
.4

5
.5

4
.3

1
0
.9

4
.3

1
.3

6
.0

322

A. Prediction Error per Power Model for Combined Profiling

Table A.2.: Prediction error per power model and workload type, errors in percent.

Power models 1 and 2 trained on combined profiling measurements. Analytical and

server workloads.

P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

A
n
a
l
y
t
i
c
a
l
Q
u
e
r
i
e
s

S
e
r
v
e
r

Join

Aggre-

gation

Scan

SPECjbb-

2015

1

u
c
p
u

1
3
.1

1
3
.5

1
3
.4

1
1
.5

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

1
1
.5

1
2
.0

1
1
.9

1
0
.1

2

l
=

3

u
c
p
u

4
.3

4
.6

4
.0

9
.3

u
c
p
u
,
u
r
e
a
d

3
.2

3
.6

2
.9

8
.5

u
c
p
u
,
u
w
r
i
t
e

2
.8

3
.0

2
.5

8
.1

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

2
.7

3
.0

2
.4

8
.0

l
=

2

u
c
p
u

4
.9

5
.4

4
.9

9
.1

u
c
p
u
,
u
r
e
a
d

4
.1

4
.7

4
.1

8
.5

u
c
p
u
,
u
w
r
i
t
e

3
.7

4
.3

3
.8

8
.0

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.7

4
.2

3
.7

7
.9

323

A. Prediction Error per Power Model for Combined Profiling

Table A.3.: Prediction error per power model and workload type, errors in percent.

Power models 3–6 trained on combined profiling measurements. Microbenchmarks,

web search and clustering (Clust.) workloads.

P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

M
i
c
r
o
b
e
n
c
h
m
a
r
k
s

W
e
b
S
e
a
r
c
h

C
l
u
s
t
.

Sort

Word Count

TeraSort

DFSIOe

Sleep

Page Rank

Nutch

Indexing

K-means

3

l
=

3

u
c
p
u

4
.8

5
.2

5
.6

4
.9

1
1
.0

5
.3

1
.7

7
.2

u
c
p
u
,
u
r
e
a
d

3
.6

4
.2

5
.3

3
.9

9
.6

4
.3

0
.5

6
.6

u
c
p
u
,
u
w
r
i
t
e

4
.7

5
.2

5
.6

4
.9

1
1
.0

5
.3

1
.7

7
.2

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.6

4
.2

5
.3

3
.9

9
.5

4
.3

0
.5

6
.6

l
=

2

u
c
p
u

5
.3

5
.5

5
.8

5
.3

1
2
.0

5
.5

2
.1

7
.3

u
c
p
u
,
u
r
e
a
d

4
.5

4
.8

5
.6

4
.6

1
1
.1

4
.7

1
.3

6
.8

u
c
p
u
,
u
w
r
i
t
e

5
.3

5
.6

5
.8

5
.3

1
2
.0

5
.5

2
.1

7
.3

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

4
.5

4
.8

5
.7

4
.5

1
1
.1

4
.7

1
.3

6
.8

l
=

1

u
c
p
u

1
6
.5

1
2
.8

1
1
.4

1
1
.7

2
8
.6

1
1
.5

1
0
.6

1
2
.1

u
c
p
u
,
u
r
e
a
d

1
5
.9

1
2
.3

1
1
.4

1
1
.2

2
7
.9

1
1
.0

1
0
.0

1
1
.8

u
c
p
u
,
u
w
r
i
t
e

1
6
.5

1
2
.8

1
1
.4

1
1
.7

2
8
.6

1
1
.5

1
0
.6

1
2
.1

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

1
5
.9

1
2
.3

1
1
.4

1
1
.2

2
7
.9

1
1
.0

1
0
.0

1
1
.8

4
u
c
p
u

7
.5

6
.7

6
.5

6
.6

1
5
.8

6
.2

3
.8

7
.9

5
u
c
p
u

1
.9

4
.3

5
.6

3
.3

2
.2

5
.5

0
.3

7
.5

6
u
c
p
u

2
.5

5
.0

6
.3

3
.9

0
.6

6
.4

1
.3

8
.2

324

A. Prediction Error per Power Model for Combined Profiling

Table A.4.: Prediction error per power model and workload type, errors in percent.

Power models 3–6 trained on combined profiling measurements. Analytical and

server workloads.

P
o
w
e
r

M
o
d
e
l

P
a
r
a
m
s
.

M
e
t
r
i
c
s

W
o
r
k
l
o
a
d
T
y
p
e

A
n
a
l
y
t
i
c
a
l
Q
u
e
r
i
e
s

S
e
r
v
e
r

Join

Aggre-

gation

Scan

SPECjbb-

2015

3

l
=

3

u
c
p
u

4
.3

4
.6

4
.1

9
.3

u
c
p
u
,
u
r
e
a
d

3
.2

3
.6

2
.9

8
.5

u
c
p
u
,
u
w
r
i
t
e

4
.3

4
.6

4
.0

9
.4

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

3
.2

3
.6

2
.8

8
.6

l
=

2

u
c
p
u

4
.7

5
.3

4
.7

9
.2

u
c
p
u
,
u
r
e
a
d

4
.0

4
.5

3
.9

8
.6

u
c
p
u
,
u
w
r
i
t
e

4
.7

5
.3

4
.7

9
.2

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

4
.0

4
.5

3
.9

8
.6

l
=

1

u
c
p
u

1
6
.0

1
6
.4

1
6
.5

1
2
.2

u
c
p
u
,
u
r
e
a
d

1
5
.4

1
5
.8

1
5
.9

1
1
.7

u
c
p
u
,
u
w
r
i
t
e

1
6
.0

1
6
.4

1
6
.5

1
2
.3

u
c
p
u
,
u
r
e
a
d
,
u
w
r
i
t
e

1
5
.4

1
5
.8

1
5
.9

1
1
.7

4
u
c
p
u

6
.5

7
.4

7
.0

8
.8

5
u
c
p
u

1
.9

1
.7

0
.9

9
.7

6
u
c
p
u

2
.6

2
.3

1
.5

1
0
.1

325

B. Bibliography

[1] S. Akoush, R. Sohan, A Rice, AW. Moore, and A Hopper. “Predicting

the Performance of Virtual Machine Migration”. In: Modeling, Anal-
ysis Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2010 IEEE International Symposium on. Aug. 2010, pp. 37–46.
doi: 10.1109/MASCOTS.2010.13.

[2] M.M. Alansari and B. Bordbar. “Modelling and Analysis of Migration

Policies for Autonomic Management of Energy Consumption in

Cloud via Petri-Nets”. In: Cloud and Autonomic Computing (ICCAC),
2014 International Conference on. Sept. 2014, pp. 121–130. doi: 10.
1109/ICCAC.2014.7.

[3] P. Alonso, R. M. Badia, J. Labarta, M. Barreda, M. F. Dolz, R. Mayo, E. S.

Quintana-Ortí, and R. Reyes. “Tools for Power-Energy Modelling and

Analysis of Parallel Scientific Applications”. In: 2012 41st International
Conference on Parallel Processing. Sept. 2012, pp. 420–429. doi: 10.
1109/ICPP.2012.57.

[4] Apache HBase. Last retrieved 2017-08-11. The Apache Software Foun-
dation. url: https://hbase.apache.org/.

[5] Varsha Apte and Bhavin Doshi. “PowerPerfCenter: A Power and

Performance Prediction Tool for Multi-tier Applications”. In: Pro-
ceedings of the 5th ACM/SPEC International Conference on Perfor-
mance Engineering. ICPE ’14. Dublin, Ireland: ACM, 2014, pp. 281–

284. isbn: 978-1-4503-2733-6. doi: 10.1145/2568088.2576758. url:

http://doi.acm.org/10.1145/2568088.2576758.

327

https://doi.org/10.1109/MASCOTS.2010.13
https://doi.org/10.1109/ICCAC.2014.7
https://doi.org/10.1109/ICCAC.2014.7
https://doi.org/10.1109/ICPP.2012.57
https://doi.org/10.1109/ICPP.2012.57
https://hbase.apache.org/
https://doi.org/10.1145/2568088.2576758
http://doi.acm.org/10.1145/2568088.2576758

Bibliography

[6] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,

and Gabriele Taentzer. “Henshin: Advanced Concepts and Tools for

In-Place EMF Model Transformations”. In: Model Driven Engineering
Languages and Systems: 13th International Conference, MODELS 2010,
Oslo, Norway, October 3-8, 2010, Proceedings, Part I. Ed. by Dorina C.

Petriu, Nicolas Rouquette, and Øystein Haugen. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 121–135. isbn: 978-3-642-16145-

2. doi: 10.1007/978-3-642-16145-2_9. url: http://dx.doi.org/

10.1007/978-3-642-16145-2_9.

[7] Sylvain Arlot and Alain Celisse. “A survey of cross-validation proce-

dures for model selection”. In: Statist. Surv. 4 (2010), pp. 40–79. doi:
10.1214/09-SS054. url: http://dx.doi.org/10.1214/09-SS054.

[8] Patricia Arroba, José L. Risco-Martín, Marina Zapater, José M. Moya,

and José L. Ayala. “Enhancing Regression Models for Complex Sys-

tems Using Evolutionary Techniques for Feature Engineering”. In:

Journal of Grid Computing 13.3 (2015), pp. 409–423. issn: 1572-9184.

doi: 10.1007/s10723-014-9313-8. url: http://dx.doi.org/10.

1007/s10723-014-9313-8.

[9] C. Atkinson and T. Kuhne. “Model-driven development: a metamod-

eling foundation”. In: IEEE Software 20.5 (Sept. 2003), pp. 36–41. issn:
0740-7459. doi: 10.1109/MS.2003.1231149.

[10] C. Atkinson and T. Schulze. “Towards application-specific impact

specifications and GreenSLAs”. In: 2013 2nd International Workshop
on Green and Sustainable Software (GREENS). May 2013, pp. 54–61.

doi: 10.1109/GREENS.2013.6606422.

[11] Colin Atkinson, Joachim Bayer, andDirkMuthig. “Component-Based

Product Line Development: The KobrA Approach”. In: Software Prod-
uct Lines: Experience and Research Directions. Ed. by Patrick Donohoe.
Boston, MA: Springer US, 2000, pp. 289–309. isbn: 978-1-4615-4339-8.

doi: 10.1007/978-1-4615-4339-8_16. url: https://doi.org/10.

1007/978-1-4615-4339-8_16.

[12] Sławomir Bąk, Marcin Krystek, Krzysztof Kurowski, Ariel Oleksiak,

Wojciech Piątek, and Jan Wąglarz. “GSSIM – A Tool for Distributed

Computing Experiments”. In: Sci. Program. 19.4 (Oct. 2011), pp. 231–
251. issn: 1058-9244. url: http://dl.acm.org/citation.cfm?id=

2590384.2590388.

328

https://doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1214/09-SS054
http://dx.doi.org/10.1214/09-SS054
https://doi.org/10.1007/s10723-014-9313-8
http://dx.doi.org/10.1007/s10723-014-9313-8
http://dx.doi.org/10.1007/s10723-014-9313-8
https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/GREENS.2013.6606422
https://doi.org/10.1007/978-1-4615-4339-8_16
https://doi.org/10.1007/978-1-4615-4339-8_16
https://doi.org/10.1007/978-1-4615-4339-8_16
http://dl.acm.org/citation.cfm?id=2590384.2590388
http://dl.acm.org/citation.cfm?id=2590384.2590388

Bibliography

[13] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter
as a Computer: An Introduction to the Design of Warehouse-Scale Ma-
chines, Second Edition. Synthesis Lectures on Computer Architecture.

Morgan & Claypool Publishers, 2013, pp. 1–154. isbn: 9781627050104.

[14] Luiz Andre Barroso andUrsHolzle. “The Case for Energy-Proportional

Computing”. In: Computer 40.12 (2007), pp. 33–37. issn: 0018-9162.
doi: http://doi.ieeecomputersociety.org/10.1109/MC.2007.

443.

[15] Victor R. Basili, Gianluigi Caldiera, andH. Dieter Rombach. “TheGoal

Question Metric Approach”. In: Encyclopedia of Software Engineering.
Wiley, 1994.

[16] Robert Basmadjian, Nasir Ali, Florian Niedermeier, Hermann de

Meer, and Giovanni Giuliani. “A Methodology to Predict the Power

Consumption of Servers in Data Centres”. In: Proceedings of the
2Nd International Conference on Energy-Efficient Computing and Net-
working. e-Energy ’11. New York, New York: ACM, 2011, pp. 1–

10. isbn: 978-1-4503-1313-1. doi: 10.1145/2318716.2318718. url:

http://doi.acm.org/10.1145/2318716.2318718.

[17] Matthias Wilhelm Becker. “Engineering Self-adaptive Systems with

Simulation-Based Performance Prediction”. PhD thesis. Paderborn:

Universität Paderborn, 2017.

[18] Matthias Becker, Steffen Becker, and Joachim Meyer. “SimuLizar:

Design-Time Modelling and Performance Analysis of Self-Adaptive

Systems”. In: Proceedings of Software Engineering 2013. SE2013. Aachen,
Feb. 2013.

[19] Matthias Becker, Sebastian Lehrig, and Steffen Becker. “Systemati-

cally Deriving Quality Metrics for Cloud Computing Systems”. In:

Proceedings of the 6th ACM/SPEC International Conference on Per-
formance Engineering (ICPE 2015). Accepted for publication. ACM,

2015.

[20] Matthias Becker, Markus Luckey, and Steffen Becker. “Performance

Analysis of Self-Adaptive Systems for Requirements Validation at

Design-Time”. In: Proceedings of the 9th ACM SigSoft International
Conference on Quality of Software Architectures (QoSA’13). ACM, June

2013.

329

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2007.443
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2007.443
https://doi.org/10.1145/2318716.2318718
http://doi.acm.org/10.1145/2318716.2318718

Bibliography

[21] Steffen Becker. “Coupled Model Transformations for QoS Enabled

Component-Based Software Design”. PhD thesis. University of Old-

enburg, Germany, 2008.

[22] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio

component model for model-driven performance prediction”. In:

Journal of Systems and Software 82.1 (2009). Special Issue: Software
Performance - Modeling and Analysis, pp. 3–22. issn: 0164-1212. doi:

http://dx.doi.org/10.1016/j.jss.2008.03.066. url: http://www.

sciencedirect.com/science/article/pii/S0164121208001015.

[23] Frank Bellosa. “The Benefits of Event-Driven Energy Accounting

in Power-Sensitive Systems”. In: Proceedings of the 9th Workshop on
ACM SIGOPS European Workshop: Beyond the PC: New Challenges for
the Operating System. EW 9. Kolding, Denmark: ACM, 2000, pp. 37–

42. doi: 10.1145/566726.566736. url: http://doi.acm.org/10.

1145/566726.566736.

[24] Anton Beloglazov. “Energy-Efficient Management of Virtual Ma-

chines in Data Centers for Cloud Computing”. PhD thesis. The Uni-

versity of Melbourne, 2013.

[25] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Y.

Zomaya. “A Taxonomy and Survey of Energy-Efficient Data Centers

and Cloud Computing Systems”. In: Advances in Computers 82 (2011),
pp. 47–111.

[26] Luca Benini, Robin Hodgson, and Polly Siegel. “System-level Power

Estimation and Optimization”. In: Proceedings of the 1998 Interna-
tional Symposium on Low Power Electronics and Design. ISLPED ’98.

Monterey, California, USA: ACM, 1998, pp. 173–178. isbn: 1-58113-

059-7. doi: 10.1145/280756.280881. url: http://doi.acm.org/10.

1145/280756.280881.

[27] Luca Benini and Giovanni de Micheli. “System-level Power Optimiza-

tion: Techniques and Tools”. In:ACMTrans. Des. Autom. Electron. Syst.
5.2 (Apr. 2000), pp. 115–192. issn: 1084-4309. doi: 10.1145/335043.

335044. url: http://doi.acm.org/10.1145/335043.335044.

[28] W.L. Bircher and L.K. John. “Complete System Power Estimation Us-

ing Processor Performance Events”. In: Computers, IEEE Transactions
on 61.4 (Apr. 2012), pp. 563–577. issn: 0018-9340. doi: 10.1109/TC.

2011.47.

330

https://doi.org/http://dx.doi.org/10.1016/j.jss.2008.03.066
http://www.sciencedirect.com/science/article/pii/S0164121208001015
http://www.sciencedirect.com/science/article/pii/S0164121208001015
https://doi.org/10.1145/566726.566736
http://doi.acm.org/10.1145/566726.566736
http://doi.acm.org/10.1145/566726.566736
https://doi.org/10.1145/280756.280881
http://doi.acm.org/10.1145/280756.280881
http://doi.acm.org/10.1145/280756.280881
https://doi.org/10.1145/335043.335044
https://doi.org/10.1145/335043.335044
http://doi.acm.org/10.1145/335043.335044
https://doi.org/10.1109/TC.2011.47
https://doi.org/10.1109/TC.2011.47

Bibliography

[29] Hansfried Block, Jeremy A. Arnold, John Beckett, Sanjay Sharma,

Mike G. Tricker, and Kyle M. Rogers. “Server Efficiency Rating Tool

(SERT) 1.0.2: An Overview”. In: Proceedings of the 5th ACM/SPEC In-
ternational Conference on Performance Engineering. ICPE ’14. Dublin,

Ireland: ACM, 2014, pp. 229–230.

[30] Rainer Böhme and Ralf Reussner. “Validation of Predictions with

Measurements”. In: Dependability Metrics: Advanced Lectures. Ed. by
Irene Eusgeld, Felix C. Freiling, and Ralf Reussner. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 14–18. isbn: 978-3-540-68947-8.

doi: 10.1007/978-3-540-68947-8_3. url: http://dx.doi.org/10.

1007/978-3-540-68947-8_3.

[31] G. Brataas, E. Stav, and S. Lehrig. “Analysing Evolution of Work

and Load”. In: 2016 12th International ACM SIGSOFT Conference on
Quality of Software Architectures (QoSA). Apr. 2016, pp. 90–95. doi:
10.1109/QoSA.2016.18.

[32] Robert A. Bridges, Neena Imam, and Tiffany M. Mintz. “Understand-

ing GPU Power: A Survey of Profiling, Modeling, and Simulation

Methods”. In: ACM Comput. Surv. 49.3 (Sept. 2016), 41:1–41:27. issn:
0360-0300. doi: 10.1145/2962131. url: http://doi.acm.org/10.

1145/2962131.

[33] Franz Brosch, Barbora Buhnova, Heiko Koziolek, and Ralf Reussner.

“Reliability Prediction for Fault-tolerant Software Architectures”. In:

Proceedings of the Joint ACM SIGSOFT Conference – QoSA and ACM
SIGSOFT Symposium – ISARCS on Quality of Software Architectures
– QoSA and Architecting Critical Systems – ISARCS. QoSA-ISARCS
’11. Boulder, Colorado, USA: ACM, 2011, pp. 75–84. isbn: 978-1-4503-

0724-6. doi: 10.1145/2000259.2000274. url: http://doi.acm.org/

10.1145/2000259.2000274.

[34] Fabian Brosig, Philipp Meier, Steffen Becker, Anne Koziolek, Heiko

Koziolek, and Samuel Kounev. “Quantitative Evaluation of Model-

Driven Performance Analysis and Simulation of Component-based

Architectures”. In: Software Engineering, IEEE Transactions on 41.2

(Feb. 2015), pp. 157–175. issn: 0098-5589. doi: 10.1109/TSE.2014.

2362755.

331

https://doi.org/10.1007/978-3-540-68947-8_3
http://dx.doi.org/10.1007/978-3-540-68947-8_3
http://dx.doi.org/10.1007/978-3-540-68947-8_3
https://doi.org/10.1109/QoSA.2016.18
https://doi.org/10.1145/2962131
http://doi.acm.org/10.1145/2962131
http://doi.acm.org/10.1145/2962131
https://doi.org/10.1145/2000259.2000274
http://doi.acm.org/10.1145/2000259.2000274
http://doi.acm.org/10.1145/2000259.2000274
https://doi.org/10.1109/TSE.2014.2362755
https://doi.org/10.1109/TSE.2014.2362755

Bibliography

[35] Andreas Brunnert, KilianWischer, andHelmut Krcmar. “Using Archi-

tecture-level PerformanceModels As Resource Profiles for Enterprise

Applications”. In: Proceedings of the 10th International ACM Sigsoft
Conference on Quality of Software Architectures. QoSA ’14. Marcq-en-

Bareul, France: ACM, 2014, pp. 53–62. isbn: 978-1-4503-2576-9. doi:

10.1145/2602576.2602587. url: http://doi.acm.org/10.1145/

2602576.2602587.

[36] Frank Brüseke, Henning Wachsmuth, Gregor Engels, and Steffen

Becker. “PBlaman: Performance Blame Analysis Based on Palladio

Contracts”. In: Concurr. Comput. : Pract. Exper. 26.12 (Aug. 2014),

pp. 1975–2004. issn: 1532-0626. doi: 10.1002/cpe.3226. url: http:

//dx.doi.org/10.1002/cpe.3226.

[37] Barrett R Bryant, Jeff Gray, Marjan Mernik, Peter J Clarke, Robert B

France, and Gabor Karsai. “Challenges and directions in formalizing

the semantics of modeling languages”. In: Computer Science and
Information Systems 8.2 (2011), pp. 225–253.

[38] Christian Bunse and Hans-Gerhard Gross. “Unifying Hardware and

Software Components for Embedded System Development”. In: Ar-
chitecting Systems with Trustworthy Components. Ed. by Ralf H. Reuss-
ner, Judith A. Stafford, and Clemens A. Szyperski. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2006, pp. 120–136. isbn: 978-3-540-35833-

6.

[39] Christian Bunse and Hagen Höpfner. “RESOURCE SUBSTITUTION

WITH COMPONENTS - Optimizing Energy Consumption”. In: Pro-
ceedings of the Third International Conference on Software and Data
Technologies - Volume 2: ICSOFT, INSTICC. SciTePress, 2008, pp. 28–
35. isbn: 978-989-8111-52-4. doi: 10.5220/0001879000280035.

[40] Christian Bunse, Hagen Höpfner, Suman Roychoudhury, and Essam

Mansour. “CHOOSING THE ”BEST” SORTING ALGORITHM FOR

OPTIMAL ENERGY CONSUMPTION”. In: Proceedings of the 4th
International Conference on Software and Data Technologies - Volume
2: ICSOFT, INSTICC. SciTePress, 2009, pp. 199–206. isbn: 978-989-
674-010-8. doi: 10.5220/0002245401990206.

[41] T. Bures, P. Hnetynka, and F. Plasil. “SOFA 2.0: Balancing Advanced

Features in a Hierarchical Component Model”. In: Software Engineer-

332

https://doi.org/10.1145/2602576.2602587
http://doi.acm.org/10.1145/2602576.2602587
http://doi.acm.org/10.1145/2602576.2602587
https://doi.org/10.1002/cpe.3226
http://dx.doi.org/10.1002/cpe.3226
http://dx.doi.org/10.1002/cpe.3226
https://doi.org/10.5220/0001879000280035
https://doi.org/10.5220/0002245401990206

Bibliography

ing Research, Management and Applications, 2006. Fourth International
Conference on. Aug. 2006, pp. 40–48. doi: 10.1109/SERA.2006.62.

[42] K. P. Burnham and D. R. Anderson. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. 2nd ed. New

York: Springer-Verlag, 2002.

[43] James Byrne, Sergej Svorobej, Gabriel González Castañé, Christian

Stier, Sebastian Krach, Ahmed Ali-Eldin, Jakub Krzywda, and Peter J.

Byrne. Final results from optimisation models validation and experi-
mentation: project deliverable D6.5. Tech. rep. 2017. doi: 10.18725/
oparu- 4312. url: https://oparu.uni- ulm.de/xmlui/handle/

123456789/4351.

[44] CACTOS Consortium. CACTOS Infrastructure Models. GitHub Repos-
itory. 2017. url: https://github.com/cactos/Cactos- Basics/

tree/master/Infrastructure-Models (visited on 08/11/2017).

[45] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F.

De Rose, and Rajkumar Buyya. “CloudSim: A Toolkit for Modeling

and Simulation of Cloud Computing Environments and Evaluation

of Resource Provisioning Algorithms”. In: Softw. Pract. Exper. 41.1
(Jan. 2011), pp. 23–50. issn: 0038-0644. doi: 10.1002/spe.995. url:

http://dx.doi.org/10.1002/spe.995.

[46] Javier Cámara, Gabriel A.Moreno, David Garlan, and Bradley Schmerl.

“Analyzing Latency-aware Self-adaptation using Stochastic Games

and Simulations”. In: ACM Transactions on Autonomous and Adaptive
Systems (2015). To Appear.

[47] Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. “Is soft-

ware “green”? Application development environments and energy

efficiency in open source applications”. In: Information and Soft-
ware Technology 54.1 (2012), pp. 60–71. issn: 0950-5849. doi: http:

//dx.doi.org/10.1016/j.infsof.2011.07.005. url: http://www.

sciencedirect.com/science/article/pii/S0950584911001777.

[48] Gabriel G. Castañé, Alberto Núñez, Pablo Llopis, and Jesús Carretero.

“E-mc2: A formal framework for energy modelling in cloud comput-

ing”. In: Simulation Modelling Practice and Theory 39.Supplement C

(2013). Special Issue on Energy efficiency in grids and clouds, pp. 56–

75. issn: 1569-190X. doi: https://doi.org/10.1016/j.simpat.2013.

333

https://doi.org/10.1109/SERA.2006.62
https://doi.org/10.18725/oparu-4312
https://doi.org/10.18725/oparu-4312
https://oparu.uni-ulm.de/xmlui/handle/123456789/4351
https://oparu.uni-ulm.de/xmlui/handle/123456789/4351
https://github.com/cactos/Cactos-Basics/tree/master/Infrastructure-Models
https://github.com/cactos/Cactos-Basics/tree/master/Infrastructure-Models
https://doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
https://doi.org/http://dx.doi.org/10.1016/j.infsof.2011.07.005
https://doi.org/http://dx.doi.org/10.1016/j.infsof.2011.07.005
http://www.sciencedirect.com/science/article/pii/S0950584911001777
http://www.sciencedirect.com/science/article/pii/S0950584911001777
https://doi.org/https://doi.org/10.1016/j.simpat.2013.05.002
https://doi.org/https://doi.org/10.1016/j.simpat.2013.05.002

Bibliography

05.002. url: http://www.sciencedirect.com/science/article/

pii/S1569190X13000816.

[49] HaoChen, CanHankendi,Michael C. Caramanis, andAyse K. Coskun.

“Dynamic Server Power Capping for Enabling Data Center Partici-

pation in Power Markets”. In: Proceedings of the International Con-
ference on Computer-Aided Design. ICCAD ’13. San Jose, California:

IEEE Press, 2013, pp. 122–129. isbn: 978-1-4799-1069-4. url: http:

//dl.acm.org/citation.cfm?id=2561828.2561853.

[50] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan,

Mohamed Nasser, and Parminder Flora. “Detecting Performance

Anti-patterns for Applications Developed Using Object-relational

Mapping”. In: Proceedings of the 36th International Conference on Soft-
ware Engineering. ICSE 2014. Hyderabad, India: ACM, 2014, pp. 1001–

1012. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568259. url:

http://doi.acm.org/10.1145/2568225.2568259.

[51] Shang-Wen Cheng and David Garlan. “Stitch: A language for archi-

tecture-based self-adaptation”. In: Journal of Systems and Software 12
(2012). Self-Adaptive Systems, pp. 2860–2875. issn: 0164-1212. doi:

http://dx.doi.org/10.1016/j.jss.2012.02.060. url: http://www.

sciencedirect.com/science/article/pii/S0164121212000714.

[52] Shaiful Alam Chowdhury and Abram Hindle. “GreenOracle: Esti-

mating Software Energy Consumption with Energy Measurement

Corpora”. In: Proceedings of the 13th International Conference on Min-
ing Software Repositories. MSR ’16. Austin, Texas: ACM, 2016, pp. 49–

60. isbn: 978-1-4503-4186-8. doi: 10.1145/2901739.2901763. url:

http://doi.acm.org/10.1145/2901739.2901763.

[53] Eric Clayberg and Dan Rubel. Eclipse Plug-ins. Third Edition. Pearson
Education, 2008. isbn: 0-321-55346-2.

[54] Paul Clements and Linda Northrop. Software Architecture: An Ex-
ecutive Overview. Tech. rep. CMU/SEI-96-TR-003. Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 1996.

url: http://resources.sei.cmu.edu/library/asset-view.cfm?

AssetID=12509.

[55] Gregory W. Corder and Dale I. Foreman. Nonparametric Statistics for
Non-Statisticians. John Wiley & Sons, Inc., May 2009. doi: 10.1002/

9781118165881. url: https://doi.org/10.1002/9781118165881.

334

https://doi.org/https://doi.org/10.1016/j.simpat.2013.05.002
https://doi.org/https://doi.org/10.1016/j.simpat.2013.05.002
http://www.sciencedirect.com/science/article/pii/S1569190X13000816
http://www.sciencedirect.com/science/article/pii/S1569190X13000816
http://dl.acm.org/citation.cfm?id=2561828.2561853
http://dl.acm.org/citation.cfm?id=2561828.2561853
https://doi.org/10.1145/2568225.2568259
http://doi.acm.org/10.1145/2568225.2568259
https://doi.org/http://dx.doi.org/10.1016/j.jss.2012.02.060
http://www.sciencedirect.com/science/article/pii/S0164121212000714
http://www.sciencedirect.com/science/article/pii/S0164121212000714
https://doi.org/10.1145/2901739.2901763
http://doi.acm.org/10.1145/2901739.2901763
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12509
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12509
https://doi.org/10.1002/9781118165881
https://doi.org/10.1002/9781118165881
https://doi.org/10.1002/9781118165881

Bibliography

[56] Data Center Tradeoff Tools. Last retrieved 2017-11-03. Schneider

Electric. url: https://www.schneider- electric.com/b2b/en/

solutions/system/s2/data-centers-networks-trade-off-tools.

jsp.

[57] John D. Davis, Suzanne Rivoire, and Moises Goldszmidt. “Star-Cap:

Cluster Power Management Using Software-Only Models”. In: 2014
43rd International Conference on Parallel Processing Workshops. Sept.
2014, pp. 114–120. doi: 10.1109/ICPPW.2014.27.

[58] John D. Davis, Suzanne Rivoire, Moises Goldszmidt, and Ehsan K.

Ardestani. “CHAOS: Composable Highly Accurate OS-based Power

Models”. In: Proceedings of the 2012 IEEE International Symposium
on Workload Characterization (IISWC). IISWC ’12. Washington, DC,

USA: IEEE Computer Society, 2012, pp. 153–163. isbn: 978-1-4673-

4531-6. doi: 10.1109/IISWC.2012.6402920. url: http://dx.doi.

org/10.1109/IISWC.2012.6402920.

[59] M. Dayarathna, Y. Wen, and R. Fan. “Data Center Energy Consump-

tion Modeling: A Survey”. In: IEEE Communications Surveys Tutorials
18.1 (2016), pp. 732–794. issn: 1553-877X. doi: 10.1109/COMST.2015.

2481183.

[60] Markus von Detten, Christian Heinzemann, Marie Christin Platenius,

Jan Rieke, Dietrich Travkin, and StephanHildebrandt. Story Diagrams
- Syntax and Semantics. Tech. rep. tr-ri-12-324. Version 0.2. Software

Engineering Group, Heinz Nixdorf Institute, University of Paderborn,

July 2012.

[61] Gaurav Dhiman, Giacomo Marchetti, and Tajana Rosing. “vGreen:

A System for Energy-Efficient Management of Virtual Machines”.

In: ACM Trans. Des. Autom. Electron. Syst. 16.1 (Nov. 2010), 6:1–

6:27. issn: 1084-4309. doi: 10.1145/1870109.1870115. url: http:

//doi.acm.org/10.1145/1870109.1870115.

[62] J. Doweck, W. F. Kao, A. K. y. Lu, J. Mandelblat, A. Rahatekar, L.

Rappoport, E. Rotem, A. Yasin, and A. Yoaz. “Inside 6th-Generation

Intel Core: New Microarchitecture Code-Named Skylake”. In: IEEE
Micro 37.2 (Mar. 2017), pp. 52–62. issn: 0272-1732. doi: 10.1109/MM.

2017.38.

335

https://www.schneider-electric.com/b2b/en/solutions/system/s2/data-centers-networks-trade-off-tools.jsp
https://www.schneider-electric.com/b2b/en/solutions/system/s2/data-centers-networks-trade-off-tools.jsp
https://www.schneider-electric.com/b2b/en/solutions/system/s2/data-centers-networks-trade-off-tools.jsp
https://doi.org/10.1109/ICPPW.2014.27
https://doi.org/10.1109/IISWC.2012.6402920
http://dx.doi.org/10.1109/IISWC.2012.6402920
http://dx.doi.org/10.1109/IISWC.2012.6402920
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1145/1870109.1870115
http://doi.acm.org/10.1145/1870109.1870115
http://doi.acm.org/10.1145/1870109.1870115
https://doi.org/10.1109/MM.2017.38
https://doi.org/10.1109/MM.2017.38

Bibliography

[63] Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey So-

mov, and Fabien Hermenier. “An Energy Aware Framework for Vir-

tual Machine Placement in Cloud Federated Data Centres”. In: Pro-
ceedings of the 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet. e-Energy ’12.

Madrid, Spain: ACM, 2012, 4:1–4:10. isbn: 978-1-4503-1055-0. doi:

10.1145/2208828.2208832. url: http://doi.acm.org/10.1145/

2208828.2208832.

[64] Zoya Durdik. “Architectural design decision documentation through

reuse of design patterns”. PhD thesis. Karlsruhe: Karlsruher Institut

für Technologie, 2016. isbn: 978-3-7315-0292-0. url: http://dx.doi.

org/10.5445/KSP/1000043807.

[65] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha

Ranganathan. “Full-System Power Analysis and Modeling for Server

Environments”. In: Workshop on Modeling Benchmarking and Simu-
lation (MOBS). 2006.

[66] P. Efros, E. Buchmann, and K. Böhm. “FRESCO: A Framework to

Estimate the Energy Consumption of Computers”. In: 2014 IEEE 16th
Conference on Business Informatics. Vol. 1. July 2014, pp. 199–206. doi:
10.1109/CBI.2014.28.

[67] Timur V. Elzhov, Katharine M. Mullen, Andrej-Nikolai Spiess, and

Ben Bolker. minpack.lm: R Interface to the Levenberg-Marquardt Non-
linear Least-Squares Algorithm Found in MINPACK, Plus Support
for Bounds. R package version 0.4-1. 2016. url: https://cran.r-

project.org/package=minpack.lm.

[68] ENERGY STAR. ENERGY STAR Certified Enterprise Servers - CSV
Datasheet. Feb. 2017. url: https://www.energystar.gov/produc
tfinder/download/certified- enterprise- servers/ (visited on

02/02/2017).

[69] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. “Power

Provisioning for a Warehouse-sized Computer”. In: SIGARCH Com-
puter Architecture News 35.2 (June 2007), pp. 13–23. issn: 0163-5964.
doi: 10.1145/1273440.1250665. url: http://doi.acm.org/10.

1145/1273440.1250665.

336

https://doi.org/10.1145/2208828.2208832
http://doi.acm.org/10.1145/2208828.2208832
http://doi.acm.org/10.1145/2208828.2208832
http://dx.doi.org/10.5445/KSP/1000043807
http://dx.doi.org/10.5445/KSP/1000043807
https://doi.org/10.1109/CBI.2014.28
https://cran.r-project.org/package=minpack.lm
https://cran.r-project.org/package=minpack.lm
https://www.energystar.gov/productfinder/download/certified-enterprise-servers/
https://www.energystar.gov/productfinder/download/certified-enterprise-servers/
https://doi.org/10.1145/1273440.1250665
http://doi.acm.org/10.1145/1273440.1250665
http://doi.acm.org/10.1145/1273440.1250665

Bibliography

[70] Oliver Flasch, Olaf Mersmann, Thomas Bartz-Beielstein, Joerg Stork,

and Martin Zaefferer. rgp: R genetic programming framework. R pack-

age version 0.4-1. 2014. url: https : / / cran . r - project . org /

package=rgp.

[71] Jerome H. Friedman. “Multivariate Adaptive Regression Splines”. In:

Ann. Statist. 19.1 (Mar. 1991), pp. 1–67. doi: 10.1214/aos/1176347963.

url: http://dx.doi.org/10.1214/aos/1176347963.

[72] R. Ge, X. Feng, S. Song, H. C. Chang, D. Li, and K. W. Cameron.

“PowerPack: Energy Profiling and Analysis of High-Performance

Systems and Applications”. In: IEEE Transactions on Parallel and
Distributed Systems 21.5 (May 2010), pp. 658–671. issn: 1045-9219.

doi: 10.1109/TPDS.2009.76.

[73] Michel Goraczko, Jie Liu, Dimitrios Lymberopoulos, Slobodan Matic,

Bodhi Priyantha, and Feng Zhao. “Energy-optimal Software Parti-

tioning in Heterogeneous Multiprocessor Embedded Systems”. In:

Proceedings of the 45th Annual Design Automation Conference. DAC
’08. Anaheim, California: ACM, 2008, pp. 191–196. isbn: 978-1-60558-

115-6. doi: 10.1145/1391469.1391518. url: http://doi.acm.org/

10.1145/1391469.1391518.

[74] Marion Gottschalk, Jan Jelschen, and Andreas Winter. “Refactorings

for Energy-Efficiency”. In: Advances and New Trends in Environmen-
tal and Energy Informatics: Selected and Extended Contributions from
the 28th International Conference on Informatics for Environmental
Protection. Ed. by Jorge Marx Gomez, Michael Sonnenschein, Ute Vo-

gel, Andreas Winter, Barbara Rapp, and Nils Giesen. Cham: Springer

International Publishing, 2016, pp. 77–96. isbn: 978-3-319-23455-7.

doi: 10.1007/978-3-319-23455-7_5. url: https://doi.org/10.

1007/978-3-319-23455-7_5.

[75] Sebastian Götz. “Multi-Quality Auto-Tuning by Contract Negotia-

tion”. PhD thesis. Dresden, Germany: Technische Universität Dres-

den, Feb. 2013.

[76] Sriram Govindan, Di Wang, Anand Sivasubramaniam, and Bhuvan

Urgaonkar. “Leveraging Stored Energy for Handling Power Emer-

gencies in Aggressively Provisioned Datacenters”. In: SIGPLAN Not.
47.4 (Mar. 2012), pp. 75–86. issn: 0362-1340. doi: 10.1145/2248487.

2150985. url: http://doi.acm.org/10.1145/2248487.2150985.

337

https://cran.r-project.org/package=rgp
https://cran.r-project.org/package=rgp
https://doi.org/10.1214/aos/1176347963
http://dx.doi.org/10.1214/aos/1176347963
https://doi.org/10.1109/TPDS.2009.76
https://doi.org/10.1145/1391469.1391518
http://doi.acm.org/10.1145/1391469.1391518
http://doi.acm.org/10.1145/1391469.1391518
https://doi.org/10.1007/978-3-319-23455-7_5
https://doi.org/10.1007/978-3-319-23455-7_5
https://doi.org/10.1007/978-3-319-23455-7_5
https://doi.org/10.1145/2248487.2150985
https://doi.org/10.1145/2248487.2150985
http://doi.acm.org/10.1145/2248487.2150985

Bibliography

[77] VincenzoGrassi, RaffaelaMirandola, andAntonino Sabetta. “AModel-

driven Approach to Performability Analysis of Dynamically Recon-

figurable Component-based Systems”. In: Proceedings of the 6th Inter-
national Workshop on Software and Performance. WOSP ’07. Buenes

Aires, Argentina: ACM, 2007, pp. 103–114. isbn: 1-59593-297-6. doi:

10.1145/1216993.1217011.

[78] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. “From

Design to Analysis Models: A Kernel Language for Performance and

Reliability Analysis of Component-based Systems”. In: Proceedings of
the 5th International Workshop on Software and Performance. WOSP

’05. Palma, Illes Balears, Spain: ACM, 2005, pp. 25–36. isbn: 1-59593-

087-6. doi: 10.1145/1071021.1071024. url: http://doi.acm.org/

10.1145/1071021.1071024.

[79] Henning Groenda, Christian Stier, Jakub Krzywda, James Byrne,

Sergej Svorobej, Zafeirios Papazachos, Craig Sheridan, Darren Whig-

ham, and Per-Olov Östberg.Model integration method and supporting
tooling: project deliverable D5.1. Tech. rep. Universität Ulm, 2017. doi:

10.18725/oparu-4317. url: https://oparu.uni-ulm.de/xmlui/

handle/123456789/4356.

[80] Jens Happe, Steffen Becker, Christoph Rathfelder, Holger Friedrich,

and Ralf H. Reussner. “Parametric performance completions for

model-driven performance prediction”. In: Performance Evaluation
67.8 (2010). Special Issue on Software and Performance, pp. 694–716.

issn: 0166-5316. doi: http://dx.doi.org/10.1016/j.peva.2009.

07.006. url: http://www.sciencedirect.com/science/article/

pii/S0166531609000996.

[81] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle.

“Energy Profiles of Java Collections Classes”. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). May 2016,

pp. 225–236. doi: 10.1145/2884781.2884869.

[82] Taliver Heath, Bruno Diniz, Enrique V. Carrera,WagnerMeira Jr., and

Ricardo Bianchini. “Energy Conservation in Heterogeneous Server

Clusters”. In: Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. PPoPP ’05. Chicago,

IL, USA: ACM, 2005, pp. 186–195. isbn: 1-59593-080-9.

338

https://doi.org/10.1145/1216993.1217011
https://doi.org/10.1145/1071021.1071024
http://doi.acm.org/10.1145/1071021.1071024
http://doi.acm.org/10.1145/1071021.1071024
https://doi.org/10.18725/oparu-4317
https://oparu.uni-ulm.de/xmlui/handle/123456789/4356
https://oparu.uni-ulm.de/xmlui/handle/123456789/4356
https://doi.org/http://dx.doi.org/10.1016/j.peva.2009.07.006
https://doi.org/http://dx.doi.org/10.1016/j.peva.2009.07.006
http://www.sciencedirect.com/science/article/pii/S0166531609000996
http://www.sciencedirect.com/science/article/pii/S0166531609000996
https://doi.org/10.1145/2884781.2884869

Bibliography

[83] Christoph Heger. “An Approach for Guiding Developers to Perfor-

mance and Scalability Solutions”. PhD thesis. Karlsruher Institut für

Technologie, 2015. url: http://digbib.ubka.uni-karlsruhe.de/

volltexte/1000048535.

[84] Nikolas RomanHerbst, Samuel Kounev, and Ralf Reussner. “Elasticity

in Cloud Computing: What It Is, and What It Is Not”. In: Proceedings
of the 10th International Conference on Autonomic Computing (ICAC
13). San Jose, CA: USENIX, 2013, pp. 23–27. isbn: 978-1-931971-02-7.

url: https://www.usenix.org/conference/icac13/technical-

sessions/presentation/herbst.

[85] Hewlett Packard Enterprise. UEFI System Utilities User Guide for HPE
ProLiant Gen9 and Synergy Servers. Jan. 2017. url: http://h20564.w
ww2.hpe.com/hpsc/doc/public/display?docId=c04398276 (visited

on 02/01/2017).

[86] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corpora-

tion, Phoenix Technologies Ltd., Toshiba Corporation. Advanced
Configuration and Power Interface Specification. 2013. url: http :
//acpi.info/spec.htm.

[87] A. Hindle. “Greenmining: Amethodology of relating software change

to power consumption”. In: Mining Software Repositories (MSR), 2012
9th IEEE Working Conference on. June 2012, pp. 78–87. doi: 10.1109/
MSR.2012.6224303.

[88] A. Hindle. “Green Software Engineering: The Curse of Methodology”.

In: 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). Vol. 5. Mar. 2016, pp. 46–55.

doi: 10.1109/SANER.2016.60.

[89] Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua

Charles Campbell, and Stephen Romansky. “GreenMiner: A Hard-

ware BasedMining Software Repositories Software Energy Consump-

tion Framework”. In: Proceedings of the 11th Working Conference on
Mining Software Repositories. MSR 2014. Hyderabad, India: ACM,

2014, pp. 12–21. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.

2597097. url: http://doi.acm.org/10.1145/2597073.2597097.

339

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000048535
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000048535
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04398276
http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=c04398276
http://acpi.info/spec.htm
http://acpi.info/spec.htm
https://doi.org/10.1109/MSR.2012.6224303
https://doi.org/10.1109/MSR.2012.6224303
https://doi.org/10.1109/SANER.2016.60
https://doi.org/10.1145/2597073.2597097
https://doi.org/10.1145/2597073.2597097
http://doi.acm.org/10.1145/2597073.2597097

Bibliography

[90] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. “Kieker: A

Framework for Application Performance Monitoring and Dynamic

Software Analysis”. In: Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering. ICPE ’12. Boston, Massachu-

setts, USA: ACM, 2012, pp. 247–248. isbn: 978-1-4503-1202-8. doi:

10.1145/2188286.2188326. url: http://doi.acm.org/10.1145/

2188286.2188326.

[91] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. “The HiBench bench-

mark suite: Characterization of the MapReduce-based data analysis”.

In: 2010 IEEE 26th International Conference on Data Engineering Work-
shops (ICDEW). Mar. 2010, pp. 41–51.

[92] N. Huber, S. Becker, C. Rathfelder, J. Schweflinghaus, and R. H. Reuss-

ner. “Performance modeling in industry: a case study on storage

virtualization”. In: 2010 ACM/IEEE 32nd International Conference on
Software Engineering. Vol. 2. May 2010, pp. 1–10. doi: 10.1145/

1810295.1810297.

[93] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bahr. “Model-

Based Self-Aware Performance and Resource Management Using the

Descartes Modeling Language”. In: IEEE Transactions on Software
Engineering PP.99 (2016), pp. 1–1. issn: 0098-5589. doi: 10.1109/TSE.

2016.2613863.

[94] Nikolaus Huber. “Autonomic Performance-Aware Resource Manage-

ment in Dynamic IT Service Infrastructures”. PhD thesis. Karlsruhe

Institute of Technology (KIT), Karlsruhe, Germany, 2014.

[95] Nikolaus Huber, Fabian Brosig, and Samuel Kounev. “Modeling Dy-

namic Virtualized Resource Landscapes”. In: Proceedings of the 8th
International ACM SIGSOFT Conference on Quality of Software Ar-
chitectures. QoSA ’12. Bertinoro, Italy: ACM, 2012, pp. 81–90. isbn:

978-1-4503-1346-9. doi: 10.1145/2304696.2304711. url: http://

doi.acm.org/10.1145/2304696.2304711.

[96] Nikolaus Huber, André van Hoorn, Anne Koziolek, Fabian Brosig,

and Samuel Kounev. “Modeling run-time adaptation at the system ar-

chitecture level in dynamic service-oriented environments”. English.

In: Service Oriented Computing and Applications 8.1 (2014), pp. 73–
89. issn: 1863-2386. doi: 10.1007/s11761-013-0144-4. url: http:

//dx.doi.org/10.1007/s11761-013-0144-4.

340

https://doi.org/10.1145/2188286.2188326
http://doi.acm.org/10.1145/2188286.2188326
http://doi.acm.org/10.1145/2188286.2188326
https://doi.org/10.1145/1810295.1810297
https://doi.org/10.1145/1810295.1810297
https://doi.org/10.1109/TSE.2016.2613863
https://doi.org/10.1109/TSE.2016.2613863
https://doi.org/10.1145/2304696.2304711
http://doi.acm.org/10.1145/2304696.2304711
http://doi.acm.org/10.1145/2304696.2304711
https://doi.org/10.1007/s11761-013-0144-4
http://dx.doi.org/10.1007/s11761-013-0144-4
http://dx.doi.org/10.1007/s11761-013-0144-4

Bibliography

[97] Markus C. Huebscher and Julie A. McCann. “A Survey of Autonomic

Computing —Degrees, Models, and Applications”. In: ACM Com-
put. Surv. 40.3 (Aug. 2008), 7:1–7:28. issn: 0360-0300. doi: 10.1145/
1380584.1380585. url: http://doi.acm.org/10.1145/1380584.

1380585.

[98] IBM. System x Energy Efficiency. 2014. url: http://www.lenovo.com/
images/products/system-x/pdfs/white-papers/XSW03162USEN.

PDF.

[99] Intel and Hewlett-Packard and NEC and DELL. Intelligent Platform
Management Interface Specification v2.0 rev. 1.1. Oct. 2013.

[100] Erik A. Jagroep, JanMartijn van derWerf, Sjaak Brinkkemper, Giuseppe

Procaccianti, Patricia Lago, Leen Blom, and Rob van Vliet. “Software

Energy Profiling: Comparing Releases of a Software Product”. In:

Proceedings of the 38th International Conference on Software Engi-
neering Companion. ICSE ’16. Austin, Texas: ACM, 2016, pp. 523–

532. isbn: 978-1-4503-4205-6. doi: 10.1145/2889160.2889216. url:

http://doi.acm.org/10.1145/2889160.2889216.

[101] Erik Jagroep, Jan Martijn van der Werf, Sjaak Brinkkemper, Leen

Blom, and Rob van Vliet. “Extending software architecture views

with an energy consumption perspective”. In: Computing 99.6 (June

2017), pp. 553–573. issn: 1436-5057. doi: 10.1007/s00607-016-0502-

0. url: https://doi.org/10.1007/s00607-016-0502-0.

[102] A. Jansen and J. Bosch. “Software Architecture as a Set of Archi-

tectural Design Decisions”. In: 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA’05). 2005, pp. 109–120. doi: 10.1109/
WICSA.2005.61.

[103] Gueyoung Jung, M.A Hiltunen, K.R. Joshi, R.D. Schlichting, and

C. Pu. “Mistral: Dynamically Managing Power, Performance, and

Adaptation Cost in Cloud Infrastructures”. In: Distributed Computing
Systems (ICDCS), 2010 IEEE 30th International Conference on. June
2010, pp. 62–73. doi: 10.1109/ICDCS.2010.88.

[104] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhat-

tacharya. “Virtual Machine Power Metering and Provisioning”. In:

Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC
’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 39–50. isbn: 978-1-

341

https://doi.org/10.1145/1380584.1380585
https://doi.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
http://www.lenovo.com/images/products/system-x/pdfs/white-papers/XSW03162USEN.PDF
http://www.lenovo.com/images/products/system-x/pdfs/white-papers/XSW03162USEN.PDF
http://www.lenovo.com/images/products/system-x/pdfs/white-papers/XSW03162USEN.PDF
https://doi.org/10.1145/2889160.2889216
http://doi.acm.org/10.1145/2889160.2889216
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1007/s00607-016-0502-0
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/ICDCS.2010.88

Bibliography

4503-0036-0. doi: 10.1145/1807128.1807136. url: http://doi.acm.

org/10.1145/1807128.1807136.

[105] J.O. Kephart and D.M. Chess. “The Vision of Autonomic Computing”.

In: IEEE Computer 36.1 (Jan. 2003), pp. 41–50. issn: 0018-9162. doi:
10.1109/MC.2003.1160055.

[106] Jóakim Von Kistowski, Nikolas Herbst, Samuel Kounev, Henning

Groenda, Christian Stier, and Sebastian Lehrig. “Modeling and Ex-

tracting Load Intensity Profiles”. In: ACM Trans. Auton. Adapt. Syst.
11.4 (Jan. 2017), 23:1–23:28. issn: 1556-4665. doi: 10.1145/3019596.

url: http://doi.acm.org/10.1145/3019596.

[107] Jóakim von Kistowski, Hansfried Block, John Beckett, Klaus-Dieter

Lange, Jeremy A. Arnold, and Samuel Kounev. “Analysis of the In-

fluences on Server Power Consumption and Energy Efficiency for

CPU-Intensive Workloads”. In: Proceedings of the 6th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE 2015). ICPE
’15. Austin, TX, USA: ACM, Feb. 2015. doi: http://dx.doi.org/10.

1145/2668930.2688057.

[108] Jóakim von Kistowski, Hansfried Block, John Beckett, Cloyce Sprad-

ling, Klaus-Dieter Lange, and Samuel Kounev. “Variations in CPU

Power Consumption”. In: Proceedings of the 7th ACM/SPEC on Inter-
national Conference on Performance Engineering. ICPE ’16. Delft, The

Netherlands: ACM, 2016, pp. 147–158. isbn: 978-1-4503-4080-9. doi:

10.1145/2851553.2851567. url: http://doi.acm.org/10.1145/

2851553.2851567.

[109] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco

Hernández-Rodriguez. “Brownout: Building More Robust Cloud Ap-

plications”. In: Proceedings of the 36th International Conference on Soft-
ware Engineering. ICSE 2014. Hyderabad, India: ACM, 2014, pp. 700–

711. isbn: 978-1-4503-2756-5. doi: 10.1145/2568225.2568227. url:

http://doi.acm.org/10.1145/2568225.2568227.

[110] Jonathan Koomey. Growth in data center electricity use 2005 to 2010.
Analytics Press. Completed at the Request fo the New York Times.

2011.

342

https://doi.org/10.1145/1807128.1807136
http://doi.acm.org/10.1145/1807128.1807136
http://doi.acm.org/10.1145/1807128.1807136
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1145/3019596
http://doi.acm.org/10.1145/3019596
https://doi.org/http://dx.doi.org/10.1145/2668930.2688057
https://doi.org/http://dx.doi.org/10.1145/2668930.2688057
https://doi.org/10.1145/2851553.2851567
http://doi.acm.org/10.1145/2851553.2851567
http://doi.acm.org/10.1145/2851553.2851567
https://doi.org/10.1145/2568225.2568227
http://doi.acm.org/10.1145/2568225.2568227

Bibliography

[111] Anne Koziolek, Danilo Ardagna, and Raffaela Mirandola. “Hybrid

Multi-Attribute QoS Optimization in Component Based Software

Systems”. In: Journal of Systems and Software 86.10 (2013). Special
Issue on Quality Optimization of Software Architecture and Design

Specifications, pp. 2542–2558. issn: 0164-1212. doi: 10.1016/j.jss.

2013 . 03 . 081. url: http : / / www . sciencedirect . com / science /

article/pii/S0164121213000800.

[112] Heiko Koziolek. Parameter Dependencies for Reusable Performance
Specifications of Software Components. Vol. 2. The Karlsruhe Series
on Software Design and Quality. Universitätsverlag Karlsruhe, 2008.

isbn: 978-3-86644-272-6.

[113] Heiko Koziolek and Ralf Reussner. “A Model Transformation from

the Palladio Component Model to Layered Queueing Networks”. In:

Performance Evaluation: Metrics, Models and Benchmarks, SIPEW 2008.
Vol. 5119. Lecture Notes in Computer Science. Springer-Verlag Berlin

Heidelberg, 2008, pp. 58–78. isbn: 978-3-540-69813-5. url: http :

//www.springerlink.com/content/w14m0g520u675x10/fulltext.

pdf.

[114] Sebastian Krach. Energy-conscious deployment optimization for com-
ponent-based cyber-foraging systems. Am Fasanengarten 5, 76131

Karlsruhe, Germany: Karlsruhe Institute of Technology (KIT), 2015.

[115] Sebastian Krach, Christian Stier, and Athanasios Tsitsipas. “Modeling

IaaS Usage Patterns for the Analysis of Cloud Optimization Policies”.

In: Proceedings of the Symposium on Software Performance (SSP) 2016.
Softwaretechnik-Trends. Nov. 2016.

[116] Klaus Krogmann. Reconstruction of Software Component Architectures
and Behaviour Models using Static and Dynamic Analysis. Vol. 4. The
Karlsruhe Series on Software Design and Quality. KIT Scientific

Publishing, 2012. doi: 10 . 5445 / KSP / 1000025617. url: http : / /

digbib.ubka.uni-karlsruhe.de/volltexte/1000025617.

[117] Jakub Krzywda, Ali Rezaie, Zafeirios Papazachos, Ryan Hamilton-

Bryce, Per-Olov Östberg, Ahmed Ali-Eldin, Barry McCollum, and

Jörg Domaschka. Extended optimization model: project deliverable
D3.3. Tech. rep. Universität Ulm, 2017. doi: 10.18725/oparu-4307.

url: http://dx.doi.org/10.18725/OPARU-4307.

343

https://doi.org/10.1016/j.jss.2013.03.081
https://doi.org/10.1016/j.jss.2013.03.081
http://www.sciencedirect.com/science/article/pii/S0164121213000800
http://www.sciencedirect.com/science/article/pii/S0164121213000800
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf
http://www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf
https://doi.org/10.5445/KSP/1000025617
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025617
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025617
https://doi.org/10.18725/oparu-4307
http://dx.doi.org/10.18725/OPARU-4307

Bibliography

[118] K. Kurowski, A. Oleksiak, W. Piątek, T. Piontek, A. Przybyszewski,

and J. Węglarz. “{DCworms} – A tool for simulation of energy ef-

ficiency in distributed computing infrastructures”. In: Simulation
Modelling Practice and Theory 39 (2013). S.I. Energy efficiency in

grids and clouds, pp. 135–151. issn: 1569-190X. doi: http://dx.

doi.org/10.1016/j.simpat.2013.08.007. url: http://www.

sciencedirect.com/science/article/pii/S1569190X1300124X.

[119] K. D. Lange. “Identifying Shades of Green: The SPECpower Bench-

marks”. In: Computer 42.3 (Mar. 2009), pp. 95–97. issn: 0018-9162.

doi: 10.1109/MC.2009.84.

[120] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot.

“EMF Profiles: A Lightweight Extension Approach for EMF Models”.

In: Journal of Object Technology 11.1 (Apr. 2012), 8:1–29. issn: 1660-

1769. doi: 10.5381/jot.2012.11.1.a8. url: http://www.jot.fm/

contents/issue_2012_04/article8.html.

[121] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. “Power cap-

ping: a prelude to power shifting”. In: Cluster Computing 11.2 (2008),

pp. 183–195. issn: 1573-7543. doi: 10.1007/s10586-007-0045-4.

url: http://dx.doi.org/10.1007/s10586-007-0045-4.

[122] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.

Turski. “Metrics and laws of software evolution-the nineties view”.

In: Proceedings Fourth International Software Metrics Symposium. Nov.

1997, pp. 20–32. doi: 10.1109/METRIC.1997.637156.

[123] Sebastian Lehrig. Quality Analysis Lab (QuAL): Software Design De-
scription and Developer Guide Version 1.0. Tech. rep. Universität Pader-
born, Faculty of Electrical Engineering - Computer Science - Math-

ematics, Apr. 2016. url: http://www.cloudscale- project.eu/

media/filer_public/2016/05/11/qualityanalysislab.pdf.

[124] Sebastian Lehrig and Matthias Becker. Approaching the Cloud: Us-
ing Palladio for Scalability, Elasticity, and Efficiency Analyses. Tech.
rep. University of Stuttgart, Faculty of Computer Science, Electrical

Engineering, and Information Technology, 2014.

[125] Sebastian Lehrig and Steffen Becker. “Using Performance Models

for Planning the Redeployment to Infrastructure-as-a-Service Envi-

ronments: A Case Study”. In: 2016 12th International ACM SIGSOFT

344

https://doi.org/http://dx.doi.org/10.1016/j.simpat.2013.08.007
https://doi.org/http://dx.doi.org/10.1016/j.simpat.2013.08.007
http://www.sciencedirect.com/science/article/pii/S1569190X1300124X
http://www.sciencedirect.com/science/article/pii/S1569190X1300124X
https://doi.org/10.1109/MC.2009.84
https://doi.org/10.5381/jot.2012.11.1.a8
http://www.jot.fm/contents/issue_2012_04/article8.html
http://www.jot.fm/contents/issue_2012_04/article8.html
https://doi.org/10.1007/s10586-007-0045-4
http://dx.doi.org/10.1007/s10586-007-0045-4
https://doi.org/10.1109/METRIC.1997.637156
http://www.cloudscale-project.eu/media/filer_public/2016/05/11/qualityanalysislab.pdf
http://www.cloudscale-project.eu/media/filer_public/2016/05/11/qualityanalysislab.pdf

Bibliography

Conference on Quality of Software Architectures (QoSA). Apr. 2016,
pp. 11–20. doi: 10.1109/QoSA.2016.17.

[126] Sebastian Lehrig, Marcus Hilbrich, and Steffen Becker. “The archi-

tectural template method: templating architectural knowledge to

efficiently conduct quality-of-service analyses”. In: Software: Practice
and Experience (). spe.2517, n/a–n/a. issn: 1097-024X. doi: 10.1002/
spe.2517. url: http://dx.doi.org/10.1002/spe.2517.

[127] Adam Lewis, Jim Simon, and Nian-Feng Tzeng. “Chaotic Attractor

Prediction for Server Run-time Energy Consumption”. In: Proceedings
of the 2010 International Conference on Power Aware Computing and
Systems. HotPower’10. Vancouver, BC, Canada: USENIX Association,

2010, pp. 1–16. url: http://dl.acm.org/citation.cfm?id=1924920.

1924929.

[128] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govin-

dan. “Calculating Source Line Level Energy Information for An-

droid Applications”. In: Proceedings of the 2013 International Sympo-
sium on Software Testing and Analysis. ISSTA 2013. Lugano, Switzer-

land: ACM, 2013, pp. 78–89. isbn: 978-1-4503-2159-4. doi: 10.1145/

2483760.2483780. url: http://doi.acm.org/10.1145/2483760.

2483780.

[129] V. De Maio, G. Kecskemeti, and R. Prodan. “A Workload-Aware

Energy Model for Virtual Machine Migration”. In: 2015 IEEE Interna-
tional Conference on Cluster Computing. Sept. 2015, pp. 274–283. doi:
10.1109/CLUSTER.2015.47.

[130] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,

L. Pollock, and J. Clause. “An Empirical Study of Practitioners’ Per-

spectives on Green Software Engineering”. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). May 2016,

pp. 237–248. doi: 10.1145/2884781.2884810.

[131] Irene Manotas, Lori Pollock, and James Clause. “SEEDS: A Software

Engineer’s Energy-optimization Decision Support Framework”. In:

International Conference on Software Engineering (ICSE). ACM/IEEE,

June 2014.

345

https://doi.org/10.1109/QoSA.2016.17
https://doi.org/10.1002/spe.2517
https://doi.org/10.1002/spe.2517
http://dx.doi.org/10.1002/spe.2517
http://dl.acm.org/citation.cfm?id=1924920.1924929
http://dl.acm.org/citation.cfm?id=1924920.1924929
https://doi.org/10.1145/2483760.2483780
https://doi.org/10.1145/2483760.2483780
http://doi.acm.org/10.1145/2483760.2483780
http://doi.acm.org/10.1145/2483760.2483780
https://doi.org/10.1109/CLUSTER.2015.47
https://doi.org/10.1145/2884781.2884810

Bibliography

[132] Anne Martens, Heiko Koziolek, Lutz Prechelt, and Ralf Reussner.

“From monolithic to component-based performance evaluation of

software architectures”. In: Empirical Software Engineering 16.5 (2011),
pp. 587–622. issn: 1382-3256. doi: 10.1007/s10664-010-9142-8.

url: http://dx.doi.org/10.1007/s10664-010-9142-8.

[133] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring.

“Performance Simulation of Runtime Reconfigurable Component-

Based Software Architectures”. English. In: Software Architecture.
Ed. by Ivica Crnkovic, Volker Gruhn, and Matthias Book. Vol. 6903.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,

pp. 43–58. isbn: 978-3-642-23797-3. doi: 10.1007/978-3-642-23798-

0_5. url: http://dx.doi.org/10.1007/978-3-642-23798-0_5.

[134] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kap-

pel. “xMOF: Executable DSMLs based on fUML”. In: International
Conference on Software Language Engineering. Springer. 2013, pp. 56–
75.

[135] John McCullough, Yuvraj Agarwal, Jaideep Chandrashekhar, Sathya-

narayan Kuppuswamy, Alex C. Snoeren, and Rajesh Gupta. “Eval-

uating the Effectiveness of Model-Based Power Characterization”.

In: Proceedings of the USENIX Annual Technical Conference. Portland,
OR, June 2011.

[136] IndikaMeedeniya, Barbora Buhnova, AldeidaAleti, and Lars Grunske.

“Architecture-Driven Reliability and Energy Optimization for Com-

plex Embedded Systems”. English. In: Research into Practice - Reality
and Gaps. Ed. by George T. Heineman, Jan Kofron, and Frantisek

Plasil. Vol. 6093. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2010, pp. 52–67. isbn: 978-3-642-13820-1. doi: 10.1007/

978-3-642-13821-8_6. url: http://dx.doi.org/10.1007/978-3-

642-13821-8_6.

[137] Peter M. Mell and Timothy Grance. SP 800-145. The NIST Definition
of Cloud Computing. Tech. rep. Gaithersburg, MD, United States:

National Institute of Standards and Technology, 2011.

[138] Philipp Merkle and Jörg Henss. “EventSim – An Event-driven Pal-

ladio Software Architecture Simulator”. In: Palladio Days 2011 Pro-
ceedings (appeared as technical report). Ed. by Steffen Becker, Jens

Happe, and Ralf Reussner. Karlsruhe Reports in Informatics ; 2011,32.

346

https://doi.org/10.1007/s10664-010-9142-8
http://dx.doi.org/10.1007/s10664-010-9142-8
https://doi.org/10.1007/978-3-642-23798-0_5
https://doi.org/10.1007/978-3-642-23798-0_5
http://dx.doi.org/10.1007/978-3-642-23798-0_5
https://doi.org/10.1007/978-3-642-13821-8_6
https://doi.org/10.1007/978-3-642-13821-8_6
http://dx.doi.org/10.1007/978-3-642-13821-8_6
http://dx.doi.org/10.1007/978-3-642-13821-8_6

Bibliography

Karlsruhe: KIT, Fakultät für Informatik, 2011, pp. 15–22. url: http:

//digbib.ubka.uni-karlsruhe.de/volltexte/1000025188.

[139] Metrics. Last retrieved 2016-08-18. Coda Hale, Yammer Inc. url: met

rics.dropwizard.io.

[140] Stephen Milborrow. earth: Multivariate Adaptive Regression Splines.
R package version 4.5.1. 2017. url: https://cran.r-project.org/

package=earth.

[141] J Moore. Gamut-Generic Application eMUlaTion. url: http://www.
cs.duke.edu/nicl/cod/.

[142] Gabriel A.Moreno, Javier Cámara, David Garlan, and Bradley Schmerl.

“Proactive Self-adaptation Under Uncertainty: A Probabilistic Model

Checking Approach”. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE 2015. Bergamo, Italy:

ACM, 2015, pp. 1–12. isbn: 978-1-4503-3675-8. doi: 10.1145/2786805.

2786853. url: http://doi.acm.org/10.1145/2786805.2786853.

[143] Ryan Morgan. SIGAR - System Information Gatherer And Reporter.
Last retrieved 2016-08-18. url: sigar.hyperic.com.

[144] I. Moura, G. Pinto, F. Ebert, and F. Castor. “Mining Energy-Aware

Commits”. In: 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. May 2015, pp. 56–67. doi: 10.1109/MSR.2015.

13.

[145] Ripal Nathuji. “VirtualPower: Coordinated Power Management in

Virtualized Enterprise Systems”. In: In Proceedings of International
Symposium on Operating System Principles (SOSP. 2007.

[146] Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. “The

GREENSOFT Model: A reference model for green and sustainable

software and its engineering”. In: Sustainable Computing: Informatics
and Systems 1.4 (2011), pp. 294–304. issn: 2210-5379. doi: https:

//doi.org/10.1016/j.suscom.2011.06.004. url: http://www.

sciencedirect.com/science/article/pii/S2210537911000473.

[147] Qais Noorshams, Roland Reeb, Andreas Rentschler, Samuel Kounev,

and Ralf Reussner. “Enriching Software ArchitectureModels with Sta-

tistical Models for Performance Prediction in Modern Storage Envi-

ronments”. In: Proceedings of the 17th International ACM Sigsoft Sym-
posium on Component-based Software Engineering. CBSE ’14. Accep-

347

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
metrics.dropwizard.io
metrics.dropwizard.io
https://cran.r-project.org/package=earth
https://cran.r-project.org/package=earth
http://www.cs.duke.edu/nicl/cod/
http://www.cs.duke.edu/nicl/cod/
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/2786805.2786853
http://doi.acm.org/10.1145/2786805.2786853
sigar.hyperic.com
https://doi.org/10.1109/MSR.2015.13
https://doi.org/10.1109/MSR.2015.13
https://doi.org/https://doi.org/10.1016/j.suscom.2011.06.004
https://doi.org/https://doi.org/10.1016/j.suscom.2011.06.004
http://www.sciencedirect.com/science/article/pii/S2210537911000473
http://www.sciencedirect.com/science/article/pii/S2210537911000473

Bibliography

tance Rate (Full Paper): 14/62 = 23%. Marcq-en-Bareul, France: ACM,

2014, pp. 45–54. isbn: 978-1-4503-2577-6. doi: 10.1145/2602458.

2602475. url: http://doi.acm.org/10.1145/2602458.2602475.

[148] Qais Noorshams, Roland Reeb, Andreas Rentschler, Samuel Kounev,

and Ralf Reussner. “Enriching Software Architecture Models with

Statistical Models for Performance Prediction in Modern Storage

Environments”. In: Proceedings of the 17th International ACM Sigsoft
Symposium on Component-based Software Engineering. CBSE ’14.

Marcq-en-Bareul, France: ACM, 2014, pp. 45–54. isbn: 978-1-4503-

2577-6. doi: 10.1145/2602458.2602475. url: http://doi.acm.org/

10.1145/2602458.2602475.

[149] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. “Runtime

Monitoring of Software Energy Hotspots”. In: Automated Software
Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM Interna-
tional Conference on. Sept. 2012, pp. 160–169. doi: 10.1145/2351676.
2351699.

[150] Alberto Núñez, Jose L. Vázquez-Poletti, Agustin C. Caminero, Gabriel

G. Castañé, Jesus Carretero, and Ignacio M. Llorente. “iCanCloud: A

Flexible and Scalable Cloud Infrastructure Simulator”. In: Journal of
Grid Computing 10.1 (Mar. 2012), pp. 185–209. issn: 1572-9184. doi:

10.1007/s10723-012-9208-5. url: https://doi.org/10.1007/

s10723-012-9208-5.

[151] OpenStack. Last retrieved 2017-10-26. The OpenStack Foundation.

url: https://www.openstack.org/.

[152] P-O Östberg, Henning Groenda, Stefan Wesner, James Byrne, Dim-

itrios S. Nikolopoulos, Craig Sheridan, Jakub Krzywda, Ahmed Ali-

Eldin, Johan Tordsson, Erik Elmroth, Christian Stier, Klaus Krog-

mann, Jörg Domaschka, Christopher Hauser, PJ Byrne, Sergej Svo-

robej, Barry McCollum, Zafeirios Papazachos, Loke Johannessen,

Stephan Rüth, and Dragana Paurevic. “The CACTOS Vision of Con-

text-Aware Cloud Topology Optimization and Simulation”. In: Pro-
ceedings of the Sixth IEEE International Conference on Cloud Comput-
ing Technology and Science (CloudCom). Singapore: IEEE Computer

Society, 2014, pp. 26–31. doi: 10.1109/CloudCom.2014.62.

348

https://doi.org/10.1145/2602458.2602475
https://doi.org/10.1145/2602458.2602475
http://doi.acm.org/10.1145/2602458.2602475
https://doi.org/10.1145/2602458.2602475
http://doi.acm.org/10.1145/2602458.2602475
http://doi.acm.org/10.1145/2602458.2602475
https://doi.org/10.1145/2351676.2351699
https://doi.org/10.1145/2351676.2351699
https://doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1007/s10723-012-9208-5
https://www.openstack.org/
https://doi.org/10.1109/CloudCom.2014.62

Bibliography

[153] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and

Yi-MinWang. “Fine-grained Power Modeling for Smartphones Using

System Call Tracing”. In: Proceedings of the Sixth Conference on Com-
puter Systems. EuroSys ’11. Salzburg, Austria: ACM, 2011, pp. 153–

168. isbn: 978-1-4503-0634-8. doi: 10.1145/1966445.1966460. url:

http://doi.acm.org/10.1145/1966445.1966460.

[154] D. Pavlović and S. Abramsky. “Specifying interaction categories”.

In: Category Theory and Computer Science: 7th International Confer-
ence, CTCS ’97 Santa Margherita Ligure Italy, September 4–6, 1997
Proceedings. Ed. by Eugenio Moggi and Giuseppe Rosolini. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1997, pp. 147–158. isbn: 978-

3-540-69552-3. doi: 10.1007/BFb0026986. url: http://dx.doi.org/

10.1007/BFb0026986.

[155] Ashkan Paya and Dan C. Marinescu. “Energy-Aware Load Balancing

and Application Scaling for the Cloud Ecosystem”. In: IEEE Transac-
tions on Cloud Computing 5.1 (2017), pp. 15–27. issn: 2168-7161. doi:

doi.ieeecomputersociety.org/10.1109/TCC.2015.2396059.

[156] J. F. Pérez and G. Casale. “Assessing SLA Compliance from Palladio

Component Models”. In: 2013 15th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing. Sept. 2013,
pp. 409–416. doi: 10.1109/SYNASC.2013.60.

[157] Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N. Calheiros,

and Rajkumar Buyya. “ContainerCloudSim: An environment for

modeling and simulation of containers in cloud data centers”. In:

Software: Practice and Experience 47.4 (2017). spe.2422, pp. 505–521.
issn: 1097-024X. doi: 10.1002/spe.2422. url: http://dx.doi.org/

10.1002/spe.2422.

[158] Pivotal Software, Inc. Distributed version of Spring Petclinic built with
Spring Cloud. GitHub Repository. 2017. url: https://github.com/
spring-petclinic/spring-petclinic-microservices (visited on

12/05/2016).

[159] Pivotal Software, Inc. Spring PetClinic Sample Application. GitHub
Repository. 2017. url: https://github.com/spring- projects/

spring-petclinic (visited on 05/03/2017).

349

https://doi.org/10.1145/1966445.1966460
http://doi.acm.org/10.1145/1966445.1966460
https://doi.org/10.1007/BFb0026986
http://dx.doi.org/10.1007/BFb0026986
http://dx.doi.org/10.1007/BFb0026986
https://doi.org/doi.ieeecomputersociety.org/10.1109/TCC.2015.2396059
https://doi.org/10.1109/SYNASC.2013.60
https://doi.org/10.1002/spe.2422
http://dx.doi.org/10.1002/spe.2422
http://dx.doi.org/10.1002/spe.2422
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic

Bibliography

[160] Johan Pouwelse, Koen Langendoen, and Henk Sips. “Dynamic Volt-

age Scaling on a Low-power Microprocessor”. In: Proceedings of the
7th Annual International Conference on Mobile Computing and Net-
working. MobiCom ’01. Rome, Italy: ACM, 2001, pp. 251–259. isbn:

1-58113-422-3. doi: 10.1145/381677.381701. url: http://doi.acm.

org/10.1145/381677.381701.

[161] Power Consumption Analyzer. Last retrieved 19.02.2017. url: https:

//sdqweb.ipd.kit.edu/wiki/Power_Consumption_Analyzer.

[162] Power Consumption Profiler. Last retrieved 02.08.2017. url: https:

//sdqweb.ipd.kit.edu/wiki/Power_Consumption_Profiler.

[163] PowerEdge R815 Technical Guide. 5.0. Dell Technologies, Inc. Dec. 2012.
url: http://i.dell.com/sites/doccontent/business/solutions/

engineering-docs/en/Documents/r815-tech-guide.pdf.

[164] Giuseppe Procaccianti, Héctor Fernández, and Patricia Lago. “Em-

pirical evaluation of two best practices for energy-efficient software

development”. In: Journal of Systems and Software 117.Supplement

C (2016), pp. 185–198. issn: 0164-1212. doi: https://doi.org/10.

1016/j.jss.2016.02.035. url: http://www.sciencedirect.com/

science/article/pii/S0164121216000777.

[165] Giuseppe Procaccianti, Patricia Lago, and Grace A. Lewis. “Green Ar-

chitectural Tactics for the Cloud”. In: Software Architecture (WICSA),
2014 IEEE/IFIP Conference on. Apr. 2014, pp. 41–44. doi: 10.1109/
WICSA.2014.30.

[166] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and

Bruce Maggs. “Cutting the Electric Bill for Internet-scale Systems”.

In: Proceedings of the ACM SIGCOMM 2009 Conference on Data Com-
munication. SIGCOMM ’09. Barcelona, Spain: ACM, 2009, pp. 123–

134. isbn: 978-1-60558-594-9. doi: 10.1145/1592568.1592584. url:

http://doi.acm.org/10.1145/1592568.1592584.

[167] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar,

Zhikui Wang, and Xiaoyun Zhu. “No "Power" Struggles: Coordinated

Multi-level Power Management for the Data Center”. In: SIGARCH
Computer Architecture News 36.1 (Mar. 2008), pp. 48–59. issn: 0163-

5964. doi: 10.1145/1353534.1346289. url: http://doi.acm.org/

10.1145/1353534.1346289.

350

https://doi.org/10.1145/381677.381701
http://doi.acm.org/10.1145/381677.381701
http://doi.acm.org/10.1145/381677.381701
https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Analyzer
https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Analyzer
https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Profiler
https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Profiler
http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/r815-tech-guide.pdf
http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/r815-tech-guide.pdf
https://doi.org/https://doi.org/10.1016/j.jss.2016.02.035
https://doi.org/https://doi.org/10.1016/j.jss.2016.02.035
http://www.sciencedirect.com/science/article/pii/S0164121216000777
http://www.sciencedirect.com/science/article/pii/S0164121216000777
https://doi.org/10.1109/WICSA.2014.30
https://doi.org/10.1109/WICSA.2014.30
https://doi.org/10.1145/1592568.1592584
http://doi.acm.org/10.1145/1592568.1592584
https://doi.org/10.1145/1353534.1346289
http://doi.acm.org/10.1145/1353534.1346289
http://doi.acm.org/10.1145/1353534.1346289

Bibliography

[168] Neil Rasmussen. Electrical Efficiency Modeling for Data Centers. Tech.
rep. Version 2. American Power Conversion (APC), 2011. url: http:

//www.apc.com/salestools/NRAN-66CK3D/NRAN-66CK3D_R2_EN.

pdf.

[169] Jan Reimann and Uwe Aßmann. “Quality-Aware Refactoring for

Early Detection and Resolution of Energy Deficiencies”. In: Proceed-
ings of the 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing. UCC ’13. Washington, DC, USA: IEEE Computer

Society, 2013, pp. 321–326. isbn: 978-0-7695-5152-4. doi: 10.1109/

UCC.2013.70. url: http://dx.doi.org/10.1109/UCC.2013.70.

[170] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne

Koziolek, Heiko Koziolek, Max Kramer, and Klaus Krogmann. Mod-
eling and Simulating Software Architectures – The Palladio Approach.
Cambridge, MA: MIT Press, Oct. 2016. 408 pp. isbn: 9780262034760.

url: http://mitpress.mit.edu/books/modeling-and-simulating-

software-architectures.

[171] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael

Hauck, Anne Koziolek, Heiko Koziolek, Klaus Krogmann, andMichael

Kuperberg. The Palladio Component Model. Tech. rep. Karlsruhe:
KIT, Fakultät für Informatik, 2011. url: http://digbib.ubka.uni-

karlsruhe.de/volltexte/1000022503.

[172] Suzanne Rivoire, Parthasarathy Ranganathan, andChristos Kozyrakis.

“A Comparison of High-level Full-system Power Models”. In: Pro-
ceedings of the 2008 Conference on Power Aware Computing and Sys-
tems. HotPower’08. San Diego, California: USENIX Association, 2008,

pp. 3–3. url: http://dl.acm.org/citation.cfm?id=1855610.

1855613.

[173] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and

Christos Kozyrakis. “JouleSort: A Balanced Energy-efficiency Bench-

mark”. In: Proceedings of the 2007 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’07. Beijing, China: ACM,

2007, pp. 365–376. isbn: 978-1-59593-686-8. doi: 10.1145/1247480.

1247522. url: http://doi.acm.org/10.1145/1247480.1247522.

[174] L. Rosa, L. Rodrigues, A. Lopes, M. Hiltunen, and R. Schlichting.

“Self-Management of Adaptable Component-Based Applications”. In:

351

http://www.apc.com/salestools/NRAN-66CK3D/NRAN-66CK3D_R2_EN.pdf
http://www.apc.com/salestools/NRAN-66CK3D/NRAN-66CK3D_R2_EN.pdf
http://www.apc.com/salestools/NRAN-66CK3D/NRAN-66CK3D_R2_EN.pdf
https://doi.org/10.1109/UCC.2013.70
https://doi.org/10.1109/UCC.2013.70
http://dx.doi.org/10.1109/UCC.2013.70
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://dl.acm.org/citation.cfm?id=1855610.1855613
http://dl.acm.org/citation.cfm?id=1855610.1855613
https://doi.org/10.1145/1247480.1247522
https://doi.org/10.1145/1247480.1247522
http://doi.acm.org/10.1145/1247480.1247522

Bibliography

Software Engineering, IEEE Transactions on 39.3 (Mar. 2013), pp. 403–

421. issn: 0098-5589. doi: 10.1109/TSE.2012.29.

[175] S.M. Ross. Introductory Statistics. 3rd ed. Elsevier Science, 2010. isbn:

9780080922102.

[176] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf Reuss-

ner. “Architecture-based Assessment and Planning of Change Re-

quests”. In: Proceedings of the 11th International ACM SIGSOFT Con-
ference on Quality of Software Architectures. QoSA ’15. Montreal,

QC, Canada: ACM, 2015, pp. 21–30. isbn: 978-1-4503-3470-9. url:

http://dl.acm.org/citation.cfm?id=2737198.

[177] Peter Rousseeuw, Christophe Croux, Valentin Todorov, Andreas

Ruckstuhl, Matias Salibian-Barrera, Tobias Verbeke, Manuel Koller,

and Martin Maechler. robustbase: Basic Robust Statistics. R package

version 0.92-6. 2016. url: CRAN.R-project.org/package=robustbas

e.

[178] Conor Ryan, J.J. Collins, Jj Collins, andMichael O’Neill. “Grammatical

Evolution: Evolving Programs for an Arbitrary Language”. In: Lecture
Notes in Computer Science 1391, Proceedings of the First European
Workshop on Genetic Programming. Springer-Verlag, 1998, pp. 83–95.

[179] Kateryna Rybina, Abhinandan Patni, andAlexander Schill. “Analysing

the Migration Time of Live Migration of Multiple Virtual Machines.”

In: 4th International Conference on Cloud Computing and Services
Science (CLOSER 2014), April 3-5, Barcelona, Spain. 2014.

[180] Norbert Schmitt, Jóakim von Kistowski, and Samuel Kounev. “Emu-

lating the Power Consumption Behavior of Server Workloads using

CPU Performance Counters”. In: Proceedings of the 25th IEEE In-
ternational Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems. MASCOTS ’17. Banff,

Canada, Sept. 2017.

[181] Norbert Schmitt, Jóakim von Kistowski, and Samuel Kounev. “Pre-

dicting Power Consumption of High-Memory-Bandwidth Work-

loads”. In: Proceedings of the 8th ACM/SPEC on International Con-
ference on Performance Engineering. ICPE ’17. L’Aquila, Italy: ACM,

2017, pp. 353–356. isbn: 978-1-4503-4404-3. doi: 10.1145/3030207.

3030241. url: http://doi.acm.org/10.1145/3030207.3030241.

352

https://doi.org/10.1109/TSE.2012.29
http://dl.acm.org/citation.cfm?id=2737198
CRAN.R-project.org/package=robustbase
CRAN.R-project.org/package=robustbase
https://doi.org/10.1145/3030207.3030241
https://doi.org/10.1145/3030207.3030241
http://doi.acm.org/10.1145/3030207.3030241

Bibliography

[182] Thomas Schulze. “A cost model for expressing and estimating eco-

logical costs of software-driven systems”. PhD thesis. University of

Mannheim, Germany, 2016. url: http://d-nb.info/1132590388.

[183] Chiyoung Seo. “Prediction of Energy Consumption Behavior in

Component-based Distributed Systems”. AAI3324944. PhD thesis.

Los Angeles, CA, USA: University of Southern California, 2008. isbn:

978-0-549-78221-6.

[184] Chiyoung Seo, G. Edwards, S. Malek, and N. Medvidovic. “A Frame-

work for Estimating the Impact of a Distributed Software System’s

Architectural Style on its Energy Consumption”. In: Software Archi-
tecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP Conference on.
Feb. 2008, pp. 277–280. doi: 10.1109/WICSA.2008.28.

[185] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. “An Energy

Consumption Framework for Distributed Java-based Systems”. In:

Proceedings of the Twenty-second IEEE/ACM International Conference
on Automated Software Engineering. ASE ’07. Atlanta, Georgia, USA:

ACM, 2007, pp. 421–424. isbn: 978-1-59593-882-4. doi: 10.1145/

1321631.1321699. url: http://doi.acm.org/10.1145/1321631.

1321699.

[186] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. “Component-

Level Energy Consumption Estimation for Distributed Java-Based

Software Systems”. In: Component-Based Software Engineering. Ed.
by MichelR.V. Chaudron, Clemens Szyperski, and Ralf Reussner.

Vol. 5282. Lecture Notes in Computer Science. Springer Berlin Heidel-

berg, 2008, pp. 97–113. isbn: 978-3-540-87890-2. doi: 10.1007/978-

3-540-87891-9_7. url: http://dx.doi.org/10.1007/978-3-540-

87891-9_7.

[187] Server Efficiency Rating Tool (SERT) Design Document 1.1.1. Tech. rep.
Gainesville, VA, USA: Standard Performance Evaluation Corporation

(SPEC), Jan. 2016. url: https://www.spec.org/sert/docs/SERT-

Design_Document.pdf.

[188] Server Efficiency Rating Tool (SERT) Design Document 2.0.0. Tech. rep.
Gainesville, VA, USA: Standard Performance Evaluation Corporation

(SPEC), Feb. 2017. url: https://www.spec.org/sert2/SERT-design

document.pdf.

353

http://d-nb.info/1132590388
https://doi.org/10.1109/WICSA.2008.28
https://doi.org/10.1145/1321631.1321699
https://doi.org/10.1145/1321631.1321699
http://doi.acm.org/10.1145/1321631.1321699
http://doi.acm.org/10.1145/1321631.1321699
https://doi.org/10.1007/978-3-540-87891-9_7
https://doi.org/10.1007/978-3-540-87891-9_7
http://dx.doi.org/10.1007/978-3-540-87891-9_7
http://dx.doi.org/10.1007/978-3-540-87891-9_7
https://www.spec.org/sert/docs/SERT-Design_Document.pdf
https://www.spec.org/sert/docs/SERT-Design_Document.pdf
https://www.spec.org/sert2/SERT-designdocument.pdf
https://www.spec.org/sert2/SERT-designdocument.pdf

Bibliography

[189] V. S. Sharma and S. Anwer. “PerformanceAntipatterns: Detection and

Evaluation of Their Effects in the Cloud”. In: 2014 IEEE International
Conference on Services Computing. June 2014, pp. 758–765. doi: 10.
1109/SCC.2014.103.

[190] Arman Shehabi, Sarah Josephine Smith, Dale A. Sartor, Richard

E. Brown, Magnus Herrlin, Jonathan G. Koomey, Eric R. Masanet,

Nathaniel Horner, Inês Lima Azevedo, and William Lintner. “United

States Data Center Energy Usage Report”. In: (June 2016).

[191] Ravjot Singh, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Has-

san. “Optimizing the Performance-Related Configurations of Object-

Relational Mapping Frameworks Using a Multi-Objective Genetic

Algorithm”. In: Proceedings of the 7th ACM/SPEC on International Con-
ference on Performance Engineering. ICPE ’16. Delft, The Netherlands:

ACM, 2016, pp. 309–320. isbn: 978-1-4503-4080-9. doi: 10.1145/

2851553.2851576. url: http://doi.acm.org/10.1145/2851553.

2851576.

[192] SPEC PTDaemon Design Document. Tech. rep. Gainesville, VA, USA:
Standard Performance Evaluation Corporation (SPEC), Oct. 2012.

[193] SPECjbb2015 Benchmark Design Document. Tech. rep. Gainesville, VA,
USA: Standard Performance Evaluation Corporation (SPEC), May

2015. url: www.spec.org/jbb2015/docs/designdocument.pdf.

[194] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. “Energy Aware

Consolidation for Cloud Computing”. In: Proceedings of the 2008
Conference on Power Aware Computing and Systems. HotPower’08.
San Diego, California: USENIX Association, 2008, pp. 10–10. url:

http://dl.acm.org/citation.cfm?id=1855610.1855620.

[195] Dave Steinberg, ed. EMF - Eclipse Modeling Framework. 2. ed., revised
and updated. The eclipse series. Boston, Mass.: Addison-Wesley, 2009.

isbn: 978-0-321-33188-5.

[196] Christian Stier, Jörg Domaschka, Anne Koziolek, Sebastian Krach,

Jakub Krzywda, and Ralf Reussner. “Rapid Testing of IaaS Resource

Management Algorithms via Cloud Middleware Simulation”. In: Pro-
ceedings of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering. ICPE ’18. Berlin, Germany: ACM, 2018, pp. 184–

191. isbn: 978-1-4503-5095-2. doi: 10.1145/3184407.3184428. url:

http://doi.acm.org/10.1145/3184407.3184428.

354

https://doi.org/10.1109/SCC.2014.103
https://doi.org/10.1109/SCC.2014.103
https://doi.org/10.1145/2851553.2851576
https://doi.org/10.1145/2851553.2851576
http://doi.acm.org/10.1145/2851553.2851576
http://doi.acm.org/10.1145/2851553.2851576
www.spec.org/jbb2015/docs/designdocument.pdf
http://dl.acm.org/citation.cfm?id=1855610.1855620
https://doi.org/10.1145/3184407.3184428
http://doi.acm.org/10.1145/3184407.3184428

Bibliography

[197] Christian Stier and Henning Groenda. “Ensuring Model Continuity

when Simulating Self-Adaptive Software Systems”. In: Proceedings of
the Modeling and Simulation of Complexity in Intelligent, Adaptive
and Autonomous Systems 2016 (MSCIAAS 2016) and Space Simulation
for Planetary Space Exploration (SPACE 2016). MSCIAAS. Pasadena,

CA, USA: Society for Computer Simulation International, 2016, 2:1–

2:8. isbn: 978-1-5108-2319-8. url: http://dl.acm.org/citation.

cfm?id=2962664.2962666.

[198] Christian Stier, Henning Groenda, and Anne Koziolek. Towards Mod-
eling and Analysis of Power Consumption of Self-Adaptive Software
Systems in Palladio. Tech. rep. Stuttgart, Germany: University of

Stuttgart, Faculty of Computer Science, Electrical Engineering, and

Information Technology, Nov. 2014, p. 18.

[199] Christian Stier and Anne Koziolek. “Considering Transient Effects

of Self-Adaptations in Model-Driven Performance Analyses”. In:

Proceedings of the 12th International ACM SIGSOFT Conference on the
Quality of Software Architectures. QoSA’16. Venice, Italy: ACM, 2016.

[200] Christian Stier, Anne Koziolek, Henning Groenda, and Ralf Reussner.

“Model-Based Energy Efficiency Analysis of Software Architectures”.

In: Proceedings of the 9th European Conference on Software Architecture
(ECSA ’15). Lecture Notes in Computer Science. Dubrovnik/Cavtat,

Croatia: Springer, 2015. doi: 10.1007/978-3-319-23727-5_18. url:

http://dx.doi.org/10.1007/978-3-319-23727-5_18.

[201] Christian Stier, Dominik Werle, and Anne Koziolek. “Deriving Power

Models for Architecture-Level Energy Efficiency Analyses”. In: Com-
puter Performance Engineering. Ed. by Philipp Reinecke and Antinisca
Di Marco. Cham: Springer International Publishing, 2017, pp. 214–

229. isbn: 978-3-319-66583-2.

[202] M. Stone. “An asymptotic equivalence of choice of model by cross-

validation and Akaike’s criterion”. In: Journal of the Royal Statistical
Society, Series B 39 (1977), pp. 44–47.

[203] Misha Strittmatter and Robert Heinrich. “Challenges in the Evo-

lution of Metamodels”. In: 3rd Collaborative Workshop on Evolu-
tion and Maintenance of Long-Living Software Systems. Vol. 36(1).
Softwaretechnik-Trends. 2016, pp. 12–15.

355

http://dl.acm.org/citation.cfm?id=2962664.2962666
http://dl.acm.org/citation.cfm?id=2962664.2962666
https://doi.org/10.1007/978-3-319-23727-5_18
http://dx.doi.org/10.1007/978-3-319-23727-5_18

Bibliography

[204] Structured Metrics Metamodel (SMM). Tech. rep. Version 1.0. Object

Management Group, Inc. (OMG), 2012.

[205] A. Strunk. “Costs of Virtual Machine Live Migration: A Survey”. In:

Services (SERVICES), 2012 IEEE Eighth World Congress on. June 2012,
pp. 323–329. doi: 10.1109/SERVICES.2012.23.

[206] A.1 Strunk. “A Lightweight Model for Estimating Energy Cost of

Live Migration of Virtual Machines”. In: Cloud Computing (CLOUD),
2013 IEEE Sixth International Conference on. June 2013, pp. 510–517.
doi: 10.1109/CLOUD.2013.17.

[207] T.K. Tan, A. Raghunathan, G. Lakshminarayana, and N.K. Jha. “High-

level software energy macro-modeling”. In: Design Automation Con-
ference, 2001. Proceedings. 2001, pp. 605–610. doi: 10.1109/DAC.2001.
156211.

[208] Wolfgang Theilmann, Ramin Yahyapour, and Joe Butler. “Multi-level

SLA Management for Service-Oriented Infrastructures”. English. In:

Towards a Service-Based Internet. Ed. by Petri Mähönen, Klaus Pohl,

and Thierry Priol. Vol. 5377. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2008, pp. 324–335. isbn: 978-3-540-89896-

2. doi: 10.1007/978-3-540-89897-9_28. url: http://dx.doi.org/

10.1007/978-3-540-89897-9_28.

[209] TPC-Energy Specification. Tech. rep. Transaction Processing Perfor-

mance Council, 2012. url: http://www.tpc.org/tpc%5C_documents%

5C_current%5C_versions/pdf/tpc-energy%5C_v1.5.0.pdf.

[210] Dimitris Tsirogiannis, Stavros Harizopoulos, andMehul A. Shah. “An-

alyzing the Energy Efficiency of a Database Server”. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 231–

242. isbn: 978-1-4503-0032-2. doi: 10.1145/1807167.1807194. url:

http://doi.acm.org/10.1145/1807167.1807194.

[211] UML Profile forMARTE:Modeling andAnalysis of Real-Time Embedded
Systems, Version 1.1. Tech. rep. Object Management Group, Inc., 2011.

[212] Unified Modeling Language (UML) – Version 2.5 (Formal/2015-03-01).
Tech. rep. Object Management Group (OMG), 2015. url: http://

www.omg.org/spec/UML/2.5.

356

https://doi.org/10.1109/SERVICES.2012.23
https://doi.org/10.1109/CLOUD.2013.17
https://doi.org/10.1109/DAC.2001.156211
https://doi.org/10.1109/DAC.2001.156211
https://doi.org/10.1007/978-3-540-89897-9_28
http://dx.doi.org/10.1007/978-3-540-89897-9_28
http://dx.doi.org/10.1007/978-3-540-89897-9_28
http://www.tpc.org/tpc%5C_documents%5C_current%5C_versions/pdf/tpc-energy%5C_v1.5.0.pdf
http://www.tpc.org/tpc%5C_documents%5C_current%5C_versions/pdf/tpc-energy%5C_v1.5.0.pdf
https://doi.org/10.1145/1807167.1807194
http://doi.acm.org/10.1145/1807167.1807194
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5

Bibliography

[213] Simon Urbanek. Rserve: Binary R server. R package version 1.7-3.

2013. url: https://cran.r-project.org/package=Rserve.

[214] VedantaTree. ExpressionOasis. GitHub Repository. 2015. url: https:
//github.com/mohitkgupta/expressionoasis (visited on 01/17/2017).

[215] Akshat Verma, Puneet Ahuja, and Anindya Neogi. “pMapper: Power

and Migration Cost Aware Application Placement in Virtualized

Systems”. In: Middleware 2008. Ed. by ValÃ©rie Issarny and Richard

Schantz. Vol. 5346. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2008, pp. 243–264. isbn: 978-3-540-89855-9. doi:

10.1007/978-3-540-89856-6_13. url: http://dx.doi.org/10.

1007/978-3-540-89856-6%5C_13.

[216] L. Vogel and M. Milinkovich. Eclipse Rich Client Platform. vogella

series. Lars Vogel, 2015. isbn: 9783943747140. url: https://books.

google.de/books?id=AC4%5C_CQAAQBAJ.

[217] Thomas Vogel and Holger Giese. “Model-Driven Engineering of Self-

Adaptive Software with EUREMA”. In:ACMTrans. Auton. Adapt. Syst.
8.4 (Jan. 2014), 18:1–18:33. issn: 1556-4665. doi: 10.1145/2555612.

url: http://doi.acm.org/10.1145/2555612.

[218] T. Vondra and J. Šedivý. “Cloud autoscaling simulation based on

queueing network model”. In: Simulation Modelling Practice and
Theory 70.Supplement C (2017), pp. 83–100. issn: 1569-190X. doi:

https://doi.org/10.1016/j.simpat.2016.10.005. url: http://ww

w.sciencedirect.com/science/article/pii/S1569190X16302398.

[219] William Voorsluys, James Broberg, Srikumar Venugopal, and Ra-

jkumar Buyya. “Cost of Virtual Machine Live Migration in Clouds:

A Performance Evaluation”. English. In: Cloud Computing. Ed. by
MartinGilje Jaatun, Gansen Zhao, and Chunming Rong. Vol. 5931.

Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2009, pp. 254–265. isbn: 978-3-642-10664-4. doi: 10.1007/978-3-

642-10665-1_23. url: http://dx.doi.org/10.1007/978-3-642-

10665-1_23.

[220] Jürgen Walter, Christian Stier, Heiko Koziolek, and Samuel Kounev.

“An Expandable Extraction Framework for Architectural Perfor-

mance Models”. In: Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering Companion. ICPE ’17

357

https://cran.r-project.org/package=Rserve
https://github.com/mohitkgupta/expressionoasis
https://github.com/mohitkgupta/expressionoasis
https://doi.org/10.1007/978-3-540-89856-6_13
http://dx.doi.org/10.1007/978-3-540-89856-6%5C_13
http://dx.doi.org/10.1007/978-3-540-89856-6%5C_13
https://books.google.de/books?id=AC4%5C_CQAAQBAJ
https://books.google.de/books?id=AC4%5C_CQAAQBAJ
https://doi.org/10.1145/2555612
http://doi.acm.org/10.1145/2555612
https://doi.org/https://doi.org/10.1016/j.simpat.2016.10.005
http://www.sciencedirect.com/science/article/pii/S1569190X16302398
http://www.sciencedirect.com/science/article/pii/S1569190X16302398
https://doi.org/10.1007/978-3-642-10665-1_23
https://doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1007/978-3-642-10665-1_23

Bibliography

Companion. L’Aquila, Italy: ACM, 2017, pp. 165–170. isbn: 978-1-

4503-4899-7. doi: 10.1145/3053600.3053634. url: http://doi.acm.

org/10.1145/3053600.3053634.

[221] Hans-Joachim Werner, Peter J. Knowles, Gerald Knizia, Frederick R.

Manby, and Martin Schütz. “Molpro: a general-purpose quantum

chemistry program package”. In: Wiley Interdisciplinary Reviews:
Computational Molecular Science 2.2 (2012), pp. 242–253. issn: 1759-
0884. doi: 10.1002/wcms.82.

[222] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad. “Opportunities

and challenges for data center demand response”. In: International
Green Computing Conference. Nov. 2014, pp. 1–10. doi: 10.1109/
IGCC.2014.7039172.

[223] Claas Wilke. “Energy-Aware Development and Labeling for Mobile

Applications”. PhD thesis. Technische Universität Dresden, Fakultät

Informatik, Mar. 2014. url: http://nbn-resolving.de/urn:nbn:de:

bsz:14-qucosa-139391.

[224] Claas Wilke, Sebastian Götz, and Sebastian Richly. “JouleUnit: A

Generic Framework for Software Energy Profiling and Testing”. In:

Proceedings of the 2013 Workshop on Green in/by Software Engineering.
GIBSE ’13. Fukuoka, Japan: ACM, 2013, pp. 9–14. isbn: 978-1-4503-

1866-2. doi: 10.1145/2451605.2451610. url: http://doi.acm.org/

10.1145/2451605.2451610.

[225] Felix Willnecker, Markus Dlugi, Andreas Brunnert, Simon Spinner,

Samuel Kounev, Wolfgang Gottesheim, and Helmut Krcmar. “Com-

paring the Accuracy of Resource Demand Measurement and Esti-

mation Techniques”. In: Computer Performance Engineering: 12th
European Workshop, EPEW 2015, Madrid, Spain, August 31 - Septem-
ber 1, 2015, Proceedings. Ed. by Marta Beltrán, William Knottenbelt,

and Jeremy Bradley. Cham: Springer International Publishing, 2015,

pp. 115–129. isbn: 978-3-319-23267-6. doi: 10.1007/978- 3- 319-

23267-6_8. url: http://dx.doi.org/10.1007/978-3-319-23267-

6_8.

[226] Felix Willnecker and Helmut Krcmar. “Towards Predicting Perfor-

mance of GPU-dependent Applications on the Example of Machine

Learning in Enterprise Applications”. In: Proceedings of the Sympo-

358

https://doi.org/10.1145/3053600.3053634
http://doi.acm.org/10.1145/3053600.3053634
http://doi.acm.org/10.1145/3053600.3053634
https://doi.org/10.1002/wcms.82
https://doi.org/10.1109/IGCC.2014.7039172
https://doi.org/10.1109/IGCC.2014.7039172
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-139391
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-139391
https://doi.org/10.1145/2451605.2451610
http://doi.acm.org/10.1145/2451605.2451610
http://doi.acm.org/10.1145/2451605.2451610
https://doi.org/10.1007/978-3-319-23267-6_8
https://doi.org/10.1007/978-3-319-23267-6_8
http://dx.doi.org/10.1007/978-3-319-23267-6_8
http://dx.doi.org/10.1007/978-3-319-23267-6_8

Bibliography

sium on Software Performance (SSP) 2017. Softwaretechnik-Trends. to
appear. Nov. 2017.

[227] Ian H. Witten. Data mining : practical machine learning tools and
techniques. Ed. by Eibe Frank, Mark A. Hall, and Christopher J. Pal.

Fourth edition. Amsterdam: Elsevier, MK, Morgan Kaufmann, 2017.

isbn: 978-0-12-804357-8. url: http://lib.myilibrary.com?id=

958352.

[228] M. Woodside, D. Petriu, and K. Siddiqui. “Performance-related com-

pletions for software specifications”. In: Proceedings of the 24th Inter-
national Conference on Software Engineering. ICSE 2002. May 2002,

pp. 22–32. doi: 10.1145/581344.581346.

[229] M. Xu, A. V. Dastjerdi, and R. Buyya. “Energy Efficient Scheduling

of Cloud Application Components with Brownout”. In: IEEE Trans-
actions on Sustainable Computing 1.2 (July 2016), pp. 40–53. issn:

2377-3782. doi: 10.1109/TSUSC.2017.2661339.

[230] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and

Hojung Cha. “AppScope: Application Energy Metering Framework

for Android Smartphone Using Kernel Activity Monitoring”. In:

Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). Boston, MA: USENIX, 2012, pp. 387–400. url:

https://www.usenix.org/conference/atc12/technical-sessions

/presentation/yoon.

[231] X. Zhang, J. Lu, and X. Qin. “BFEPM: Best Fit Energy Prediction

Modeling Based on CPU Utilization”. In: Networking, Architecture
and Storage (NAS), 2013 IEEE Eighth International Conference on. July
2013, pp. 41–49. doi: 10.1109/NAS.2013.12.

[232] Jochen Zimmermann. “Applikationsspezifische Analyse und Op-

timierung der Energieeffizienz eingebetteter Hardware/Software-

Systeme”. PhD thesis. Eberhard Karls Universität Tübingen, 2013.

359

http://lib.myilibrary.com?id=958352
http://lib.myilibrary.com?id=958352
https://doi.org/10.1145/581344.581346
https://doi.org/10.1109/TSUSC.2017.2661339
https://www.usenix.org/conference/atc12/technical-sessions/presentation/yoon
https://www.usenix.org/conference/atc12/technical-sessions/presentation/yoon
https://doi.org/10.1109/NAS.2013.12

Band 1	 Steffen Becker
	� Coupled Model Transformations for QoS Enabled

Component-Based Software Design.
	 ISBN 978-3-86644-271-9

Band 2	 Heiko Koziolek
	� Parameter Dependencies for Reusable Performance

Specifications of Software Components.
	 ISBN 978-3-86644-272-6

Band 3	 Jens Happe
	� Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments.
	 ISBN 978-3-86644-381-5

Band 4	 Klaus Krogmann
	� Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis.
	 ISBN 978-3-86644-804-9

Band 5	 Michael Kuperberg
	� Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance.
	 ISBN 978-3-86644-741-7

Band 6	 Thomas Goldschmidt
	 View-Based Textual Modelling.
	 ISBN 978-3-86644-642-7

Band 7	 Anne Koziolek
	� Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes.
	 ISBN 978-3-86644-973-2

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 8	 Lucia Happe
	 �Configurable Software Performance Completions through

Higher-Order Model Transformations.
	 ISBN 978-3-86644-990-9

Band 9	 Franz Brosch
	� Integrated Software Architecture-Based Reliability

Prediction for IT Systems.
	 ISBN 978-3-86644-859-9

Band 10	 Christoph Rathfelder
	� Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation.
	 ISBN 978-3-86644-969-5

Band 11	 Henning Groenda
	� Certifying Software Component

Performance Specifications.
	 ISBN 978-3-7315-0080-3

Band 12	 Dennis Westermann
	� Deriving Goal-oriented Performance Models

by Systematic Experimentation.
	 ISBN 978-3-7315-0165-7

Band 13	 Michael Hauck
	� Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments.
	 ISBN 978-3-7315-0138-1

Band 14	 Zoya Durdik
	� Architectural Design Decision Documentation through

Reuse of Design Patterns.
	 ISBN 978-3-7315-0292-0

Band 15	 Erik Burger
	� Flexible Views for View-based Model-driven Development.
	 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 16	 Benjamin Klatt
	 Consolidation of Customized Product Copies
	 into Software Product Lines.
	 ISBN 978-3-7315-0368-2

Band 17	 Andreas Rentschler
	� Model Transformation Languages with

Modular Information Hiding.
	 ISBN 978-3-7315-0346-0

Band 18	 Omar-Qais Noorshams
	� Modeling and Prediction of I/O Performance

in Virtualized Environments.
	 ISBN 978-3-7315-0359-0

Band 19	 Johannes Josef Stammel
	� Architekturbasierte Bewertung und Planung

von Änderungsanfragen.
 	 ISBN 978-3-7315-0524-2

Band 20	 Alexander Wert
	 Performance Problem Diagnostics by Systematic Experimentation.
 	 ISBN 978-3-7315-0677-5

Band 21	 Christoph Heger
	� An Approach for Guiding Developers to

Performance and Scalability Solutions.
 	 ISBN 978-3-7315-0698-0

Band 22	 Fouad ben Nasr Omri
	� Weighted Statistical Testing based on Active Learning and Formal

Verification Techniques for Software Reliability Assessment.
 	 ISBN 978-3-7315-0472-6

Band 23	 Michael Langhammer
	� Automated Coevolution of Source Code and

Software Architecture Models.
 	 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 24	 Max Emanuel Kramer
	� Specification Languages for Preserving Consistency between

Models of Different Languages.
 	 ISBN 978-3-7315-0784-0

Band 25	 Sebastian Michael Lehrig
	� Efficiently Conducting Quality-of-Service Analyses by Templating

Architectural Knowledge.
 	 ISBN 978-3-7315-0756-7

Band 26	 Georg Hinkel
	� Implicit Incremental Model Analyses and Transformations.
 	 ISBN 978-3-7315-0763-5

Band 27	 Christian Stier
	� Adaptation-Aware Architecture Modeling and

Analysis of Energy Efficiency for Software Systems.
 	 ISBN 978-3-7315-0851-9

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

27

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

C
h

ri
st

ia
n

 S
ti

er

The quality characteristics of a software system, such as performance and cost,
strongly depend upon its software architecture. An essential quality goal is the
reduction of cost while maintaining other quality goals. Power consumption
accounts for a signifi cant part of the Total Cost of Ownership of data centers.
However, reasoning on the energy effi ciency is excluded from software archi-
tecture analysis.

This work presents an approach for the architecture analysis of energy effi -
ciency for static and self-adaptive software systems. It introduces a modeling
language that captures power consumption characteristics on an architectural
level. The outlined analysis predicts the energy effi ciency of systems described
with this language. A method for extracting the models for server environ-
ments facilitates their application. Lastly, this work introduces a modeling and
analysis approach for considering transient effects in design time quality analy-
ses. It accounts for inter-dependencies between reconfi gurations, performance
and power consumption.

A
d

ap
ta

ti
o

n
-A

w
ar

e
A

rc
h

it
ec

tu
re

 M
o

d
el

in
g

 a
n

d

A
n

al
ys

is
 o

f
En

er
g

y
Ef

fi
ci

en
cy

 f
o

r
So

ft
w

ar
e

Sy
st

em
s

ISSN 1867-0067
ISBN 978-3-7315-0851-9
Gedruckt auf FSC-zertifi ziertem Papier

9 783731 508519

ISBN 978-3-7315-0851-9

	Abstract
	Zusammenfassung
	Danksagungen
	Introduction
	Motivation
	Problem Statement
	State of the Art
	Challenges and Research Questions
	Modeling and Analysis of Software System Power Consumption Characteristics
	Extraction of Power Models
	Transient Effects of Reconfigurations

	Contributions
	Prerequisites
	Application Scenarios
	Supported Design Decisions

	Outline

	Foundations
	Power Models and Energy Consumption Estimation
	Bookkeeping Energy and Power Models
	System Metric-Based Power Models
	Power State Machine (PSM)

	Energy Efficiency
	Power Management
	ACPI
	Power Capping

	Self-Adaptive Software Systems
	Adaptation Point Models
	Strategies, Tactics, Action (S/T/A)

	Palladio
	Palladio Component Model (PCM)
	SimuLizar — Modeling and Analyzing Self-Adaptive Software Systems with Palladio
	Software Performance Simulation
	Quality Analysis Workflow with Palladio

	Model Selection and AIC
	Validation Foundations
	Goal Question Metric Approach
	Validation Levels
	Kernel Density Estimation (KDE)
	Correlation Coefficients

	Describing Power Consumption Characteristics of Software Systems
	Challenges
	A Metamodel for Specifying Power Consumption Characteristics
	Specification Viewpoint
	State Viewpoint
	Binding Viewpoint
	Infrastructure Viewpoint
	Application of Power Consumption Model to Different ADLs

	Assumptions and Limitations
	Summary

	Architecture-Level Energy Efficiency Analysis
	Power Consumption Evaluation Based on Software Performance Predictions
	Select Required Metric Providers
	Instantiate Derived Metric Providers
	Power Model Calculators
	Power Consumption Analysis Algorithm
	Calculating Energy Consumption

	Consideration of Power Consumption in Design Time Analyses of Self-Adaptive Systems
	Extending the Runtime Model by the Power Consumption Model
	Consideration of Power State Changes in the Power Consumption Analysis
	Integration of Power Consumption Analysis and SimuLizar

	Effect of Design Decisions on Energy Efficiency
	Toolkit Architecture
	Assumptions and Limitations
	Summary

	Power Model Extraction
	Challenges
	Power Model Extraction by Systematic Experimentation
	Server Profiling
	Model Training
	Model Selection

	Deriving Power Models from Historical Measurements
	Implementation
	Server Profiling
	Model Training and Selection
	Power Model Extraction from Historical Measurements

	Assumptions and Limitations
	Summary

	Transient Effects
	Motivation
	A Metamodel for an Architecture-Level Description of Transient Effects
	Action Behavior Specification and Instantiation
	Action Parameters
	Synchronous and Asynchronous Execution
	Identification of Running Actions
	Adaptation Steps
	A Process for the Definition of Actions
	Examples

	Transient Effect Model Semantics
	Coupled Evaluation of Transient Effects in Model-Driven Software Quality Analyses
	Integration Architecture
	Use and Execution of Actions
	Execution of AdaptationSteps
	Reconfiguration Engine Support

	Assumptions and Limitations
	Summary

	Validation
	Validation Goals and Overview
	GQM Plan
	Case Study Systems
	Validation Coverage

	Energy Efficiency Analysis
	Media Store
	Spring PetClinic
	Virtual Machine Placement in Data Centers

	Automated Extraction of Power Models
	Profiling Setup
	Metric Selection and Considered Power Model Types
	Workload Selection and Definition of Profiling Ranges
	Discussion of the Server Profile
	Prediction Accuracy Evaluation for the Case Study Systems
	Prediction Error of Trained Models
	Comparison with State of the Art
	Model Selection
	Accuracy of Power Models in VM Migration Scenarios

	Transient Effect Analysis
	Case Study System
	Experiment Setup
	Evaluation Scenarios
	Experiment Results

	Discussion of Results
	Goal Fulfillment
	Future Work

	Related Work
	Power Consumption Modeling and Estimation
	Runtime Power Estimation
	Design Time Power Estimation
	Implementation Time Methods

	Power Model Extraction
	Green Software Engineering
	Repository Mining and Comparison of Energy Consumption across Software Releases
	Detection and Resolution of Design Deficiencies
	SECoMo Estimation Model

	Energy Efficiency Benchmarks and Classification
	Benchmarks
	Profiling of Existing Applications

	Cloud Simulators
	Modeling and Analysis of Self-Adaptive Software Systems
	Runtime Models and Analyses
	Architecture-Level Design Time Analyses
	Performance and Energy Models of VM Migrations

	Performance Model Completions

	Integration with Existing Software Engineering Processes
	Using Energy Efficiency Modeling and Analysis with Palladio
	Engineering Energy-Conscious Self-Adaptive Systems with SimuLizar
	Integration with Software Development Approaches
	Combination with Green Software Engineering Approaches
	GREENSOFT Model
	Sofware Eco-Cost Model (SECoMo)

	Consideration of Transient Effects in Self-Adaptive Systems Design with SimuLizar

	Conclusion
	Summary
	Benefits
	Assumptions and Limitations
	Future Work

	Acronyms
	Prediction Error per Power Model for Combined Profiling
	Bibliography

