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Abstract

Symmetry is one of the most general and useful concepts in physics. A system that has a symmetry is
fundamentally constrained by it. The same constraints do not apply when the symmetry is broken.
The quantitative determination of how much a system breaks a symmetry allows to reach beyond this
binary situation and is a necessary step towards the quantitative connection between symmetry
breaking and its effects. We introduce measures of symmetry breaking for a system interacting with
external fields (particles). They can be computed from measurements of the system-mediated
coupling strengths between subspaces of incoming and outgoing fields (particles) that transform in a
definite way under the symmetry. The generality of these symmetry breaking measures and their tight
connection to experimental measurements make them applicable to a very wide range of physics, like
quantification of phase transitions, constraints in dynamical evolution, and the search for hidden
symmetries.

1. Introduction, summary and outline

The study of symmetry is central in physics. At the most fundamental level, broken and unbroken symmetries
guide the theories that explain and predict observations at all length scales: from elementary particle, nuclear and
atomic scales [ 1-3], through condensed matter [4, 5], to cosmology [6]. When instead of the underlying theories,
one considers a physical system like a molecule or a ferromagnetic crystal, the symmetries that the system has or
lacks are crucial for understanding and predicting its properties and behavior. Examples of this are spectroscopy
[7], phase transitions [8, Chap. 2], and molecular chirality [9]. Indeed, symmetry considerations are among the
most general statements that we can make about physical systems. When an effect observed in a particular
system is explained using only symmetry arguments, like ‘the effect happens when the system has symmetry X
and lacks symmetry Y’, the explanation is then valid and predictive in general: systems that are vastly different
from the original one will also exhibit the effect as long as they meet the symmetry requirements.

Given a system and a symmetry, the question of whether the system is symmetric leads to a binary outcome.
A positive answer implies quantitative constrains like conservation laws [10]. A negative answer precludes the
same constraints. Broken symmetries are often only qualitatively considered, like in the explanation of
ferromagnetic phase transitions or regarding the chirality of biomolecules. The question: How much does the
system break the symmetry? is the starting point for quantitatively connecting symmetry breaking and its
consequences. The question is addressed by symmetry breaking measures. Some measures have been defined for
specific purposes like understanding spectra of nuclei and atoms [11, 12] and searching for hidden symmetries
in the apparent disorder of liquids and colloidal glasses [13, 14]. Very recently, the study of different symmetry
breaking measures in a more general sense has shown their usefulness in quantifying quantum resources,
studying quantum state evolution and estimation, analyzing accidental degeneracies, and quantifying
spontaneous symmetry breaking [ 15-20]. These works already show large potential benefits in very diverse
areas. Due to the generality of symmetry considerations we can reasonably expect many more areas of
application, including currently unforeseen ones.

In this article we introduce measures of symmetry breaking for a system interacting with external
fields (particles). Given a system and a symmetry, the corresponding measure can be computed from the
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Figure 1. (a) An incoming state |®;, ) interacts with a target system during a finite amount of time (gray region). (b) The interaction
produces an outgoing state [Dy,;) = S|Py, ), where S is the scattering operator of the system. (c) Given a symmetry, both incoming and
outgoing Hilbert spaces can be partitioned into orthogonal subspaces characterized by the eigenvalues «y of an operator determined by
the symmetry. The restrictions S, of the scattering operator S connect the incoming y-subspace with the outgoing -subspace. The
coupling strengths X5, = Tr{ S% S5} are measurable quantities which determine how strongly does the system break the symmetry
(see equations (5) and (8) for continuous and discrete symmetries, respectively).

system-mediated coupling strengths between subspaces of incoming and outgoing fields (particles) that transform
in a definite way under the symmetry. These coupling strengths can be experimentally determined by amplitude
squared measurements, that is, by measuring particle numbers of quantum states or classical field strength squares.
This links the symmetry breaking measures to general measurement theory [21, 22]. We will refer to amplitude
squared measurements as intensity measurements from now on. Neither a priori knowledge of the scattering
operator of the system nor its experimental determination is needed to obtain the symmetry breaking measures.
The details of the interaction do not need to be known either, which goes along well with the fact that symmetry
considerations are valid independently of those details. We provide both formal and operational definitions of the
symmetry breaking measures. In the case of continuous symmetries, the measures depend on a real valued
parameter, like the rotation angle in rotations or the displacement in translations. We show how the parameter-
independent intensity measurements allow to evaluate the breaking of the symmetry in a global way, i.e. for any
value of the parameter. This becomes useful for uncovering hidden symmetries. Additionally, we show that when
the interaction is unitary, the lowest term in the expansion of the measure with respect to a small value of the
parameter, i.e. the local symmetry breaking property, measures the general ability of the system to exchange a
conserved quantity with the incoming fields (particles), and provides an upper bound for the efficiency of such
exchange, thereby constraining the dynamical evolution of the system. We start in section 2 by describing the
formal setting that we will use and comment on its applicability. Section 3 contains the main part of the results for
continuous and discrete symmetries, together with the link to measurement theory. Examples are provided in
section 4. The global and local symmetry breaking properties are discussed in section 5 before the discussion and
conclusion section.

2. Setting and scope of applicability

In the scattering operator setting [23—25] illustrated in figure 1, an incoming state interacts with the target system
for a finite amount of time and produces an outgoing state. The states are represented by vectors in the incoming
and outgoing Hilbert spaces of solutions of their dynamic equations in the absence of the target. The vectors of
complete orthogonal basis for incoming and outgoing states are characterized by the eigenvalues of commuting
operators. In such setting, the relevant information about the target is its scattering operator S: a linear and
bounded mapping that the target mediates between the incoming and outgoing spaces. A symmetry
transformation is represented by a unitary operator acting on the vectors in these spaces, which can also be used
to transform other operators. There are two kinds of symmetries, discrete like parity, and continuous like
translations. The continuous transformations are generated by a Hermitian operator, e.g: linear momentum
generates translations, and angular momentum generates rotations. The setting is general enough to cover a very
wide range of cases: classical or quantum, single or multi-particle scattering, with or without losses. The details
will be different in each case. The Hilbert spaces could be simple, like in single particle or classical field scattering,
or composed by direct sums of product spaces, like in multi-particle scattering where the number of particles is
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Figure 2. Many of the rotational and mirror reflection symmetries of a sphere are broken by placing either one (a) or three (b) smaller
spheres on top of it. While the symmetries are broken in both cases, intuition suggests that system (b) breaks them ‘more’ than system
(a). Panels (c) and (e) show the rotation and mirror reflection of system (a). Panels (d) and (f) show the rotation and mirror reflection
of system (b).

not necessarily conserved [26, Chap. 2]. The representations of operators will also change as exemplified by the
different rotation matrices for fields (particles) of different spin.

It should be noted that this setting does not directly apply to the situation where there is no target system, but
rather different incoming beams whose interaction results in the outgoing beams. In this case, the relevant
scattering operator is the one due to the underlying theory of interacting fields (particles), like in quantum field
theory [27][28, Chap. 3]. Therefore, our focus here is on the quantification of the breaking of symmetries by
target systems, and not of the breaking of symmetries by the underlying theories.

3. Quantification of symmetry breaking

Let us now exercise our intuition on the idea of quantifying broken symmetries. On the one hand, in figure 2(a)
we consider a sphere whose rotational symmetry is broken by a smaller sphere placed on top of it. On the other
hand, in figure 2(b), the symmetry is broken by stacking three small spheres on top of the larger sphere. Both
systems are non-symmetric under rotations along the Z axis, but we intuitively tend to consider that the second
system ‘breaks the symmetry more’ than the first because its asymmetric partis larger (see figures 2(c) and (d)).
Similarly for the mirror reflection across the XZ plane seen in figures 2(e) and (f). In order to transfer these
intuitions onto the previously described formal setting we start with the way in which an operator O s
transformed by a symmetry transformation represented by the unitary operator T : O — TOT . The basic
idea for measuring how much does a scattering operator S break a symmetry is to compare S with its
transformed version TST . If we wanted to compare two three-vectors a and b, we could use the squared
Euclidean norm of its difference to compute the real non-negative number

1 |a—bP

- 1
2 Jal? + [bP .

whichisOiffa = b, and is upper bounded by 1. The bound is reached when a = —b. The same basic idea can be
used to compare two operators A and B:

A — BIP

1
ST an (©))
2 ||AIP + 1IBIP

The choice of which operator norm ||-|| to use is not obvious'. We choose the Frobenius (Hilbert-Schmidt)

operator norm ||C||r = /Tr{C'C}, where Tr{D} is the trace of D. We hence define the measure M(S, T) of the
breaking of symmetry T by the system represented by S as:

1 . . . . .
Even the choice of the Euclidean norm in the three-vector case above is arbitrary.
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1 IS = TST- Y2
Mes, = LIS =TT
2 [ISIB + [ITST

_ 1 Tr{(S = TST-)(S — TST- 1)}
2 Tr{S'S} + Tr{(TST Y TST !}
Tr{(S — TST YH)(S — TST 1)}

- ATr{S'S) ’ )

where the last equality follows because a transformation by a unitary operator does not change the Frobenius
norm. M (S, T)is dimensionless, and takes values in [0, 1]. The value 0 means perfect symmetry. We note that
the upper bound of M is reached when T'and S anti-commute (TS = —ST).

There is an important reason for our choice of operator norm. At first sight, knowledge of S seems to be
required” for computing M (S, T). The crucial point about choosing the Frobenius norm is that, as later shown,
itallows to obtain the measure of symmetry breaking from a reduced set of measurements of the outgoing
intensity in scattering situations’. We now discuss the cases of continuous and discrete symmetries.

3.1. Continuous symmetries

A continuous symmetry is generated by a Hermitian operator I : Tp() = exp(—ifI"), with T'" = T, and the
transformation depends on a real parameter 6. For example, in the case of rotations 6 is the rotation angle, and in
the case of translations 6 is the displacement. Then, the symmetry breaking measure depends on 6:

MIS, Tr(0)]
_ Tr{[S — T@OSE(=DI'[S — Tr(O)ST(~0)1}

4Tr{S'S} @

where we have used that T1-(9) ™' = Tp(—#) because Ti-(6) is unitary”. The eigenvalues and eigenvectors of T
play an important role in what follows. The eigenvalues of I', which we denote by v, are real numbers, and
eigenvectors with different eigenvalue are orthogonal. This allows to decompose the incoming and outgoing
spaces into orthogonal subspaces characterized by the different values of v (see figure 1(c)). We denote them
~-subspaces. They are typically multidimensional. As stated above, knowledge of S is not needed to compute the
measure M of symmetry breaking in equation (4). M can be obtained by illuminating the target system with
eigenvectors of I and measuring the total intensity in each outgoing ¥-subspace. Appendix A.1 shows that
equation (4) can be written as:

MTIS, T-(0)]

1 (1P~ aFm=mygpFqFntm
- - q+mz\p+ny _
2 T alnl Do IITX ) 5)

- (P.)=(0,0)
4 Z KXoy (1,m)=(0,0)
Yy

whereboth p — g + m — nand p + g + n + m mustbe even. The X5, in equation (5) are the real valued
coupling strengths that the system mediates from the subspace of incoming states with eigenvalue y to the
subspace of outgoing states with eigenvalue 7 (see figure 1(c) and its caption). We can write the X as (see
appendix A.3):

X5y = ||Sﬁ~/H% = Tr{S%Sw}, (6)

where S5, are restrictions of the scattering operator S. As illustrated in figure 1(c), they connect the incoming
~-subspace with the outgoing §-subspace. In a matrix representation, their matrix elements are the blocks that
compose the total scattering matrix

=N =N ENs

S=|s._ s s .| )

=hh = =h

% Ifwe know S, the choice of operator norm is not critical from the operational point of view because we can compute any operator norm we
desire.

® This is a notable simplification with respect to the task of obtaining S by experimental means. In general, both amplitude and phase
measurements for complete sets of incoming states and outgoing measurements are needed to determine the complex elements of S. Phase
measurements are known to be particularly challenging in many situations [29, 30]. S may be analytically and /or numerically obtained when
amodel of the response of the system is available. Then, the experimentally obtained symmetry breaking measures allow to test the model.

4 Then: Tr(0) ' = (T (0)) = [exp(—ifD)]" = exp(iT) = Tr(—0).

4



10P Publishing

J. Phys. Commun. 2 (2018) 095002 I Fernandez-Corbaton

3.2. Discrete symmetries

In the case of discrete symmetries, the role played by the eigenvectors and eigenvalues of I in the continuous case
is played by the eigenvectors and eigenvalues of the symmetry transformation T itself. One difference is that the
eigenvalues of T'do not need to be real. In appendix A.2 we show that for a discrete symmetry T:

: :n, ;,[1 - R{P)/(’?)*}]X;,'y
MIS, T] = —— ; ®)
22 4%

where R{-} denotes the real part.

Equations (5) and (8) can be considered operational definitions of continuous” and discrete symmetry
breaking measures, respectively. We highlight that their validity is independent of the details of the interaction,
which are confined to the gray area in figure 1. In appendix A.3 we discuss briefly some generalities of the
experimental measurement of X-..

3.3. The Frobenius norm link to measurement theory
Further analysis of the key quantities X, ties the symmetry breaking measures to generalized measurement
theory [21,22]. The X5, can also be written as (see appendix A.3)

X”‘m’ = Z Z |ﬁ7]’1’(7‘7) '7)|Z> )]
non

where 377(7), ) are the coordinates of the outgoing state produced by the system upon interaction with the
incoming state |7 ). The | )" are the members of an orthonormal basis of incoming states. The coordinates
B (1, 4) refer to a similar outgoing basis with members |7} 4)°". The nand 7 labels are composite indexes that
complete the characterization of the basis states. Equation (9) shows that the X, and hence the symmetry
breaking measures, are directly determined by the modulus squared of complex amplitudes (|37 (%, 7)[?).
When the theory of measurement is minimally extended beyond classical probability theory in order to explain
interference effects, it is precisely the squares of complex amplitudes which arise naturally and provide the origin
of the trace-rule for computing the probabilities of measurement outcomes. The extensions encompass
quantum mechanics [22] and generalizations thereof [21]. We take this link as a vindication of our (and that of
others [17]) choice of the Frobenius norm.

4. Examples

Before providing numerical examples, we place some aspects of two prominent phenomena due to symmetry
breaking in the context provided so far. First, the vacuum expectation value of the Higgs boson is a measure of
the electroweak symmetry breaking, and can be interpreted as the vacuum-mediated coupling of fermions with
different eigenvalues of the chirality operator. And second, the ferromagnetic phase transition is related to the
breaking of rotational symmetry caused by the alignment of electron spins. In this case, the relevant X, to be
measured are the couplings between subspaces of different angular momenta. Then, the corresponding
symmetry breaking measure of equation (5) can be seen as a degree of phase transition, as proposed in [19] with a
different symmetry breaking measure.

Let us now go back to the two systems of figure 2 in the context of classical electromagnetic scattering and
provide examples of theoretically computed symmetry breaking measures. For simplicity, we consider a
monochromatic excitation. Appendix B contains the description of the numerical calculations. We remark that
while we choose the particular case of classical electromagnetic scattering for convenience, the ideas and results
contained in the article apply to the general case in the scattering setting. Figure 3 shows the angle-dependent
breaking of rotational symmetry along the Z axis. The continuous red line corresponds to the system in
figure 2(a), and the long-dashed green line to the system in figure 2(b). The short-dashed blue line will be
discussed later. Our initial intuition is reflected and quantified by the results: the system with three small spheres
breaks rotational symmetry more strongly than the system with one small sphere for all §. We now consider the
mirror symmetry across the XZ plane shown in figures 2(e) and (f). The breaking of the mirror symmetry across
the XZ planeis 5.46 x 10~* for the system in figure 2(a) and 1.89 x 10~ for the system in figure 2(b), again
confirming and quantifying our intuition. The results also show a reassuring mutual consistency between the
measures of the breaking of different symmetries in the same system. For each of the two systems, the above
given numbers for the breaking of the mirror symmetry coincide exactly with the values of rotational symmetry

> Itis worth noting that the number of T eigenvalues can be infinite. For example, when considering rotations, yand 7 can take any integer
value. In theory this implies that an infinite number of X, has to be obtained. In practice, the response of a system of finite size will
eventually fall rapidly as the modulo of the angular momentum eigenvalue increases. This provides alimit to the number of needed X, for
the rotation case. Similar arguments can be found in other cases.
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Breaking of rotational symmetry (x103)
3 T T T I T

- —27/3 —7/3 0 /3 2w/3 w
Rotation angle 6 (radians)

Figure 3. Dimensionless measure of the breaking of rotational symmetry by each of the three systems displayed inside the figure asa
function of the rotation angle . The measure is computed using equation (4) particularized to rotations. For each system, the rotation
axis is centered in the middle of the larger sphere and is perpendicular to the plane of the paper. The green long-dashed line corresponds
to the system in figure 2(b), and is always above the continuous red line corresponding to the system in figure 2(a). This agrees with our
initial intuition in this respect (see the beginning of section 3), and allows to quantify it. The zeros at @ = 4-27/3 of the blue short-dashed
line reflect the discrete rotational symmetry of the corresponding system (see section 5).

breaking for @ = 7 in figure 3. Indeed, in these two systems, the mirror symmetry and the rotation by 7 along
the Z axis have the same effect.

5. Global and local symmetry breaking

The short-dashed blue line in figure 3 represents the rotational symmetry breaking of the system displayed next
to it, where three small spheres are placed around a larger sphere in a way that achieves a three-fold discrete
rotational symmetry. This symmetry is reflected in the zeros of the symmetry breaking function at § = +27/3.
Itis important to note that, for continuous symmetries, the knowledge of the X, coupling strengths allows us to
use equation (5) for computing the symmetry breaking for any 6. This global reach is very useful for uncovering
‘hidden’ symmetries of the system, and could be exploited to improve current techniques [13, 14].

Let us now turn to the local properties of continuous symmetry breaking by a system. Roughly speaking, we
are after the symmetry breaking at the onset of the transformation when § — 0. It is straightforward to show
(see appendix C) that, to lowest order in 6, which is actually &

Tr{[S, T[S, I'l}
ATr{S'S)

MIS, Tr(0)] ~ 67 = 0%Br. (10)

We can take the boxed expression as the f independent ‘slope’ of symmetry breaking. It is proportional to the
Frobenius norm squared of the commutator between S and the generator I'. The value of Bi- can be obtained
from the X, coupling strengths with the formula

CTE(S, ITIS, TN 2200~ VX

B ,
: ATr{S'S) 430X

an

which results from keeping only the terms containing 6” in equation (5). It can be shown (appendix D) that when
Br = 0all other higher order terms also vanish and M [S, Tr(#)] = 0 forall 6.

We will finish discussing a link with dynamical evolution. In the absence of absorption and gain, we show in
appendix C that the expression

Csr = Br@Tr{S'sh = > (v — 9)%X5,, (12)

»7

provides i) a direct measure of the excitation independent ability of the system to exchange the quantity
represented by I" with the incoming states, and ii) an upper bound for such exchange with any normalized
incoming state. For example, exchanges of linear and angular momenta are responsibles for the forces and

6
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torques exerted by the external fields (particles) onto the system. These exchanges satisfy conservation laws
ultimately due to symmetry. This, and previous [16] links, between symmetry breaking and dynamical
constraints, together with recent extensions of Noether’s theorem [ 16, 31], provide starting points for the precise
quantitative connection between symmetry breaking and the joint evolution of the fields (particles) and target
system.

6. Discussion and conclusions

Before finishing, we comment on the possibility of a particular extension of the ideas and results contained in
this article. Modern studies of symmetry breaking in the context of quantum field theory are probing the
invariance of our fundamental theories under discrete and continuous symmetries, like CPT and Lorentz
invariance [32—34]. These symmetries are assumed to hold in current models, but their breaking is predicted

or atleast allowed in some of the theories that ultimately aim to achieve the unification of gravity with the other
known interactions. As previously stated, the scattering setting that we have used is adapted for quantifying

the symmetry breaking of a target system, not of the underlying theory of interactions [27][28, Chap. 3].
Nevertheless, the following extension seems plausible. In a target-less scenario we consider several incoming
beams of fields (particles) that will interact and result in outgoing products. The mapping between incoming and
outgoing is now provided by the Sy, operator due to the underlying theory of interactions. Conceptually, it seems
plausible to use equations (5) or (8) to quantify the breaking of a symmetry T by the operator Sy, in the following
way. When considered as a single entity, all the incoming beams together should be prepared as an eigenstate of
T, and the cross-couplings X, to outgoing subspaces with different eigenvalue should be measured (see

figure 3(¢)). Then, equations (5) or (8) can be applied.

In conclusion, we have introduced observation-based symmetry breaking measures that combine two very
general concepts: symmetry and intensity measurements. Besides applications in the spectroscopic
determination of the symmetries of target systems, the generality of their definition and their tight connection to
measurement make these symmetry breaking measures good candidates for establishing quantitative relations
between symmetry breaking and its effects across a very wide range of physics, like for example in phase
transitions and dynamic evolution. I believe that the full potential of the systematic quantification of symmetry
breaking has not yet been established, and that it will be a very productive research area.
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Appendix A. Measuring symmetry breaking

A.1. Continuous symmetry
We now prove that, for a continuous symmetry Tr () = exp(—i6)), equation (4) can be written as equation (5).
First, we address its numerator. The expansion of the exponential

. >, (—ifT)
T (0) = exp(—if) = ) %, (A1)
1=0 :
allows to readily show the following equality:
S— TOST (-0 =5S— 5 5 0" GO g

n=0 m=0 n! m!

B (imfn)orﬁLm ; n

= ; —n! - re=srm, (A2)

(n,m)=(0,0)

which we then use twice to show that the operator inside the trace in the numerator of equation (4) can be
written as:

[S — T-(O)ST(~OT'[S — Tr(0)STr(—0)]
[p—q+m—nygp+q+ntm
= Z pa Z n,m @ )0 FqSTI‘P+”SFW’ (A3)
(P.)=(0,0) " (n,m)=(0,0) p! q! n! m!

where we also use the hermiticity of any power of T ()" = T'*.
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The trace of any operator O is a basis independent quantity. In particular, we can use a basis of incoming
states where all its vectors are eigenvectors of ' : T'[ v)i" = ~|n )" for real 7, to write

Tr{O} = 3" (y nlOln 7)™, (A4)
Y
where 7is a composite index collecting the rest of the eigenvalues characterizing each basis vector, and the
summation index represents sums over discrete eigenvalues and integrals over continuous ones.
The trace of the operator of equation (A3) is the weighted sum of the traces of the operators TS T 7S,
which, using equation (A4) we write as

Tr{l4STTrnsTmy =" N~ pDASTTP ST ™|y ~)in
07y
= > (yIFmin(y p|STTP 1Sy )i
my
— 3T @RI, (*3)
Yy
where for the second equality we use that the | ) are eigenvectors of " with real eigenvalues , and the third
contains the definition of |®),) = S|n ~)" as the outgoing state corresponding to an incoming |1 7).
Itis clear from equation (A5) that the numerator of equation (4) can be obtained from the collection of real
numbers ¥4t (P TP 7| DI ). Let us now consider one of them.
We use the coordinates of the outgoing state in an outgoing basis of eigenstates of " { |7 J)°u'}

D0 = Sln )™ =D 1@, MIN ), (A6)
Uhel
and write

AT TP ) = ATty ()P BT (B, 7P

Uil

= Y (PR, (A7)

where in the first equality we use that I is diagonal in the {|7 7)°"*} basis, with elements 4°, and the second one
implicitly defines X = 37 il B (0, ¥) . Thatis, X 5/ is the portion of the total Euclidean squared norm of the
outgoing state |7, ) contained in the 4 -subspace. We now plug the result of equation (A7) back into

equation (A5), and manipulate it to obtain:

Tr{DISTLPTrST™y = " A4+ m (O TP 7| DT )

Yy
— z ,Yq+m2(,7)p+nngw
Yy vy
— Z ,yq+m(,7)p+nz X%/“/
7Y n
= Z ,yq+m(,7)p+nX7’w (AS)
Y

where the last equality defines 35, X;»7 = X,. Thatis, the outgoing intensity accumulated in the 5-subspace
upon separate excitation of the system by the |17 )" incoming states for fixed yand all 7.
We now treat the denominator of equation (4):

ATr{STS} =4 "(y nISiSIn 7)» = 4> (@187,
.y

Y >
=4) 3 X =4) X (A9)
vy

Y A

equation (4) can finally be written as:

MIS, Tr(0)]
= ; (ip—atm=mygprgtntm Z yaEm(g)pEnx, | (AL0)
211 ! ! ! ! 77 a
4(27,7‘)(’77’) (pqul)iz(o,m prq-nim
(n,m)=(0,0)

We note that there are restrictions in the possible values of (p, g, 1, ) besides the ones indicated in the formula.
Since M [S, Ti(0)]is real, we can restrict the exponent in i?~9+"~" to be even. Also, M [S, Ti-(6)]is an even
function of §. This is readily shown from equation (4) using that T (—0) = Tr-(6)~ ! and the cyclic property of
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the trace Tr{ABC} = Tr{BCA}. This restricts the exponent in #? 9"+ to also be even. Equation (A10) can be
considered an operational definition of the -dependent breaking of a continuous symmetry.

A.2. Discrete symmetry
In order to prove equation (8), we start by writing its numerator as

Tr{[S — TST-'T'[S — TST']}

— Tr(S'S — STTST-1 — T-1iSiTTS + T-1i ST TITST-1}

— 2Tr{S'S} — Tr{STTST' + TS'T'S}, (A11)
where we have used the unitarity of T: T* = T~!, TT = TT" = I, and the cyclic property of the
trace Tr{ABC} = Tr{BCA}.

The first term in the last line of equation (A11)is 2 Tr{S7S} = 23", 5 X5, as per equation (A9). We now
work on the second term:
Tr{TST'S + S'TSTT)
="y pITSTTTS + STTST |y )in

Y
= > [y (y nISTT™SIn v)™ + ¥ (y n|STTS|n )]
mY
=31 DoAMBT @ D + AT @, )P
7Y el 5
= Z(W*’Y + ’Y;)/*)Xﬁw (A12)

where in the second equality we use T7|n 7)™ = 7*n v)*, (-)* denoting complex conjugation, in the third we

use equation (A6), and in the fourth the definition of X, in appendix A.1 or equation (A14).
Goingback to equation (A11), the numerator of equation (8) is then

2 X"’,"y - Z(’?*’y + 77_/*)X'?) = 22[1 - R{’Y(’_}/)*}]X‘,w (A13)
"//"7

7 »7

VY

with which equation (8) follows immediately.

A.3.Measurement considerations
We now discuss some aspects of the experimental measurement of X.. We recall their definition from
appendix A.1:
Xgy =2 X =322 187@ M, (Al4)
7 no

where 37 (7), ) are the coordinates of the outgoing state upon excitation with the incoming |1 ).

Operationally, we can fix yand ¥, successively excite the target with | v)I" for all 77, measure > A8 @, ) |2
for each 7, i.e. the outgoing intensity in the y-subspace, and finally add up the results for all 77 to obtain X,.

If S5, denotes the restriction of the scattering operator to incoming states in the y-subspace and outgoing
states in the §-subspace, the above described procedure will yield:

Xoy = S 0ISE, Ssrl N = Te(S5,S5,) = 1S+, - (A15)
n

The way to measure the intensity in an outgoing 7§ -subspace depends on the particular situation. For
example, if we want to measure the intensity in each of the two helicity subspaces in nano-optics, we may first
collimate the field outgoing from alocalized scatterer with helicity preserving lenses, and then use quarter wave
plates, linear polarizers and Charged Coupled Device (CCD) cameras (see the setup in [35, figure 1] for an
example that collects the forward transmitted outgoing field from a nanohole. A similar setup would also be
needed in reflection). Simultaneous measurements of the intensity in several -subspaces are also possible. The
setup in [35, figure 1] can be extended with a polarizer beam-splitter after the quarter wave plate, and an extra
CCD camera to measure the outgoing intensity in both + helicity subspaces simultaneously. Similarly,
simultaneous measurements of the intensity in different angular momentum subspaces can be
performed [36, 37].

Let us now turn to the excitation. In the previous discussion we have assumed that the illuminating field is a
single | )", and that the input values of 77and - are successively changed to obtain all the X, by accumulation
of the X;»7. This is not the only possible excitation strategy. For example, let us assume that the incoming state is
ageneral I eigenstate
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[)) = > almln v)n, (A16)
n

where the a/()) are uncorrelated complex random variables with zero mean and equal variance 0. We will now
show that, while the intensity in the outgoing y-subspace is then random, its average value is proportional to
X, The deviation from the average will be reduced as the output intensity measurements are integrated over
more instances of the random incoming state. In optics, a spatial light modulator can be used to obtain the
subsequent realizations of the random excitation.

The intensity in the outgoing 7-subspace due to the excitation of the target with the random eigenstate of I"
in equation (A16) is

Py, = (®,S1,S5,|,), (A17)
which is a random variable. Its average E{P;, } is 02X 5,:

E{(®,]S1,85,1®,)} = E{Z a () @) (v IS5, S50 v>}
1)
=3 Ela@*a@) (v lSh, S5 7)
U
=2 Bla@?} (v 2185, S5l )
Ul
- UZZ<7 7AI|S-‘£W'S%|7A7 V) = 0X55 (A18)
Ul

where the third equality follows because the a(7) are uncorrelated and have zero mean, and the last one follows
from equation (A15). When using P, to compute equations (5) and (8), the factor o will be present in both
numerator and denominator and cancel out.

Appendix B. Numerical calculations

The symmetry breaking measures shown figure 3 and given in the text are computed numerically by first
obtaining the scattering matrix of the systems and then applying equation (4). The S-matrix of each system is
readily computed using Mie theory and composite T-matrix techniques [38], which use the basis of multipolar
fields truncated to a maximum multipolar order j,,,,,. Dipolar interactions correspond toj = 1, quadrupolar
interactions toj = 2, and so on. We use here j,.x = 10, beyond which we neglect the rest of the (very small)
terms in the infinite dimensional scattering matrix. Indeed, in each of the three systems, the sum of all squared
j = 10 terms is less than a part in 10° of the total sum of squared terms forj = 1...10. After obtaining the T-
matrix, the S-matrix is given by: S = I 4+ 2T, where I'is the identity. We have restricted the calculations to
monochromatic excitations for simplicity. In units of wavelength, the radii of the big and small spheres in
figures 2 and 3 are 0.5 and 0.1, respectively, and the smallest separation between them 0.01. The spheres are
surrounded by vacuum and have a relative permittivity equal to 10. Once the S-matrix is known, the only piece
missing for computing equation (4) is the matrix representation of the symmetry operators. The rotation
matrices in the multipolar basis can be obtained for example from [39, equations 7.3-(15-17)], and the mirror
symmetry matrices from multiplying the matrix representing a rotation by 7 along the ¥ axis with the matrix
representing the parity operator, whose elements can be obtained from [39, equation (11.4)—(11.7)].

Appendix C. The slope of symmetry breaking in conservation laws

In order to obtain the lowest order term of a measure of continuous symmetry breaking, we substitute
Tr(0) ST-(—0) by its approximation using Tr-(6) = exp(—if) ~ I — i0I',and T (—0) =~ I + i0T". The
difference between the original and transformed operators is then:

§ — Tr(0)ST(—0)
~ S — (I—iT)SU + i) = —if[S, I'] — 6°'ST, (C1)

where [S,I'] = SI' — I'Sis the commutator between S and I". We keep only the first term, linear in 6, and readily
obtain from equation (4)

10
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Tr{[S, TT'[S, T']}

~ £2
MIS, THO)] ~ 01— e s

= 0’Br. (C2)

We can take the boxed expression as the § independent ‘slope’ of symmetry breaking. As per equation (11):

T[S, ITIS, T} _ 2000~ VX5

Br l _ (C3)
4Tr{S'S} 43 Xs
Goingback to the systems in figure 2, the slope of symmetry breaking for rotations along the Z axis are:
Bj, = 4.06 x 107 for the system in figure 2(a),and B;, = 2.92 x 10~ for the system in figure 2(b).
We now show that in the absence of absorption and gain, the expression
Csr = VBrUTr(S'S) = 320y — 1) X5,, (C4)

7.7

provides on the one hand a direct measure of the ability of the system to exchange the quantity represented by I'
with the incoming states, and, on the other hand, an upper bound for such exchange for any normalized
incoming state.

We have recently shown that for any incoming state |®;, ) the exchange of " can be written as ([31, equation

3D
(AT) = (Py|T — S'TS|Pyy), (C5)

and split into the average value of two hermitian operators related to non-unitary interaction and asymmetry,
respectively. This is an improvement over Noether’s theorem because it allows to consider and quantify the
exchange of I' in the presence of absorption or gain. If there is no absorption or gain, we can write ([31, equation

3D
(AT) = (D |ST[S, T1|Pin). (C6)

We note that the above two equations are obtained in [31] in the context of conservation laws for the
electromagnetic field. It is nevertheless clear that their derivation does not depend on the nature of the incoming
and outgoing states, and applies to the general scattering setting.

The norm of the operator ST[S, I'] in equation (C6) is then a quantity of interest. It provides an excitation
independent indication of the ability of the system to exchange I' with the incoming states. It turns out that the
Frobenius norm of S[S, I'] is equal to the expression in equation (C4):

IS7LS, T1lr = /Tr{(STLS, T (S[S, TD}
= JTr{[S, TTSST[S, ']}
= JTr{[S, TT'[S, T}
= JBr@Tr{S's)) = [3 (v — 77X, (C7)

"y

where the third equality follows because SST is the identity when S is unitary, and the fourth and fifth follow from
equations (C2)and (11).

Additionally, the performance of the most efficient electromagnetic field for transferring I to the system can
be bounded by equation (C4).

<®in|$T [S) P] IcI)in>
(Pin|Pin)
= JBr@4Tr(S'Sh = > (v — X4, (C8)

7

< a(STS, T < |[STIS, Tl

where 0 (A) is the largest singular value of A, the first inequality follows readily by using the singular value
decomposition of ST[S, T'], the second one is a known inequality between different operator norms [40, p. 17-6],
and the equalities follow again from equations (C2) and (11).

Table C1 shows the values of Cyr- for I representing the angular momentum along the Z axis ], and the
performance achieved by the optimal monochromatic incoming state for inducing torque for the three systems
in figure 3.

AppendixD. By = 0 => M[S, T-(0)ST-(0)'] =0 V 6

We first rewrite the denominator of the symmetry breaking measurement for general § in equation (4) by using
the commutator between S and T (6):

11
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Table C1. The quantity Cgr in equation (12)
bounds the optimal performance of any
incoming state regarding transferring I to the
system. The table shows the values of the
bound and the optimal transfer of angular
momentum J, for the three systems in figure 3.

o -0 Q@

Csp. 1.97 5.30 3.32
Optimal 0.80 2.51 0.99
[S, Tr(0)] = ST (0) — Tr(0)S. (DD
We note that
S — Tt (ST (—0)=S — {ST(0) — [S, Tr (D]} Tr (—0)
=[S, Tr(D]T-(-0), (D2)
with which

Tr{[S — Tr(O)ST(=DI'[S — Tr(0)STr(—0)1}
= Tr{T (O[S, T[S, Tr (]I Tr(-0)}
= Tr{[S, T-(OT'[S, T-(D]}, (D3)

where the last equality follows from the cyclic property of the trace Tr{ABC} = Tr{BCA}.

The last line of equation (D3) reflects the expected result that the symmetry breaking is zero if S and 11 (6)
commute. We will finish proving the statement on this section’s title by showing that
[S, 1 =0 =[S, T (0)] = 0, with which we conclude that if the slope of symmetry breaking Br- vanishes, it
means that all other higher order terms vanish as well.

In order to show that [S, I'] = 0 = [S, Tr(0)] = 0 we use that Tr(0) = exp(—ifl') = 322 (7iﬁr)' to

write
00 ]
S, @)1 = 3 %{S, ) (DY)
1=0 :

We can write [S, '] as a function of [S, '] and [S, "]

[S, TV = ST} — T'S = STT-! — I'TH1s
={[S, ] + IS}~ — IrH-1s
=[S, T + T[S, T, (D5)

and finish by noting that [S, I = [S,1] = 0,and that[S,T] = 0 by assumption, which then means that, for
I = 2,[S,T'*] = 0because of equation (D5), and so on forall .
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