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Abstract
Symmetry is one of themost general and useful concepts in physics. A system that has a symmetry is
fundamentally constrained by it. The same constraints do not apply when the symmetry is broken.
The quantitative determination of howmuch a system breaks a symmetry allows to reach beyond this
binary situation and is a necessary step towards the quantitative connection between symmetry
breaking and its effects.We introducemeasures of symmetry breaking for a system interactingwith
external fields (particles). They can be computed frommeasurements of the system-mediated
coupling strengths between subspaces of incoming and outgoingfields (particles) that transform in a
definite way under the symmetry. The generality of these symmetry breakingmeasures and their tight
connection to experimentalmeasurementsmake them applicable to a verywide range of physics, like
quantification of phase transitions, constraints in dynamical evolution, and the search for hidden
symmetries.

1. Introduction, summary and outline

The study of symmetry is central in physics. At themost fundamental level, broken and unbroken symmetries
guide the theories that explain and predict observations at all length scales: from elementary particle, nuclear and
atomic scales [1–3], through condensedmatter [4, 5], to cosmology [6].When instead of the underlying theories,
one considers a physical system like amolecule or a ferromagnetic crystal, the symmetries that the systemhas or
lacks are crucial for understanding and predicting its properties and behavior. Examples of this are spectroscopy
[7], phase transitions [8, Chap. 2], andmolecular chirality [9]. Indeed, symmetry considerations are among the
most general statements that we canmake about physical systems.When an effect observed in a particular
system is explained using only symmetry arguments, like ‘the effect happenswhen the systemhas symmetry X
and lacks symmetry Y’, the explanation is then valid and predictive in general: systems that are vastly different
from the original onewill also exhibit the effect as long as theymeet the symmetry requirements.

Given a system and a symmetry, the question of whether the system is symmetric leads to a binary outcome.
A positive answer implies quantitative constrains like conservation laws [10]. A negative answer precludes the
same constraints. Broken symmetries are often only qualitatively considered, like in the explanation of
ferromagnetic phase transitions or regarding the chirality of biomolecules. The question:Howmuch does the
system break the symmetry? is the starting point for quantitatively connecting symmetry breaking and its
consequences. The question is addressed by symmetry breakingmeasures. Somemeasures have been defined for
specific purposes like understanding spectra of nuclei and atoms [11, 12] and searching for hidden symmetries
in the apparent disorder of liquids and colloidal glasses [13, 14]. Very recently, the study of different symmetry
breakingmeasures in amore general sense has shown their usefulness in quantifying quantum resources,
studying quantum state evolution and estimation, analyzing accidental degeneracies, and quantifying
spontaneous symmetry breaking [15–20]. These works already show large potential benefits in very diverse
areas. Due to the generality of symmetry considerations we can reasonably expectmanymore areas of
application, including currently unforeseen ones.

In this article we introducemeasures of symmetry breaking for a system interacting with external
fields (particles). Given a system and a symmetry, the correspondingmeasure can be computed from the
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system-mediated coupling strengths between subspaces of incoming andoutgoingfields (particles) that transform
in a definiteway under the symmetry. These coupling strengths can be experimentally determinedby amplitude
squaredmeasurements, that is, bymeasuring particle numbers of quantum states or classicalfield strength squares.
This links the symmetry breakingmeasures to generalmeasurement theory [21, 22].Wewill refer to amplitude
squaredmeasurements as intensitymeasurements fromnowon.Neither a priori knowledge of the scattering
operator of the systemnor its experimental determination is needed to obtain the symmetry breakingmeasures.
Thedetails of the interactiondonot need to be knowneither,which goes alongwellwith the fact that symmetry
considerations are valid independently of those details.Weprovide both formal andoperational definitions of the
symmetry breakingmeasures. In the case of continuous symmetries, themeasures dependon a real valued
parameter, like the rotation angle in rotations or the displacement in translations.We showhow theparameter-
independent intensitymeasurements allow to evaluate the breaking of the symmetry in a globalway, i.e. for any
value of theparameter. This becomesuseful for uncovering hidden symmetries. Additionally,we show thatwhen
the interaction is unitary, the lowest term in the expansion of themeasurewith respect to a small value of the
parameter, i.e. the local symmetry breaking property,measures the general ability of the system to exchange a
conserved quantitywith the incomingfields (particles), and provides an upper bound for the efficiency of such
exchange, thereby constraining the dynamical evolutionof the system.We start in section 2bydescribing the
formal setting thatwewill use and comment on its applicability. Section 3 contains themainpart of the results for
continuous anddiscrete symmetries, togetherwith the link tomeasurement theory. Examples are provided in
section 4. The global and local symmetry breaking properties are discussed in section 5before thediscussion and
conclusion section.

2. Setting and scope of applicability

In the scattering operator setting [23–25] illustrated infigure 1, an incoming state interacts with the target system
for afinite amount of time and produces an outgoing state. The states are represented by vectors in the incoming
and outgoingHilbert spaces of solutions of their dynamic equations in the absence of the target. The vectors of
complete orthogonal basis for incoming and outgoing states are characterized by the eigenvalues of commuting
operators. In such setting, the relevant information about the target is its scattering operator S: a linear and
boundedmapping that the targetmediates between the incoming and outgoing spaces. A symmetry
transformation is represented by a unitary operator acting on the vectors in these spaces, which can also be used
to transformother operators. There are two kinds of symmetries, discrete like parity, and continuous like
translations. The continuous transformations are generated by aHermitian operator, e.g: linearmomentum
generates translations, and angularmomentumgenerates rotations. The setting is general enough to cover a very
wide range of cases: classical or quantum, single ormulti-particle scattering, with orwithout losses. The details
will be different in each case. TheHilbert spaces could be simple, like in single particle or classicalfield scattering,
or composed by direct sums of product spaces, like inmulti-particle scatteringwhere the number of particles is

Figure 1. (a)An incoming state inF ñ∣ interacts with a target systemduring a finite amount of time (gray region). (b)The interaction
produces an outgoing state Sout inF ñ = F ñ∣ ∣ , where S is the scattering operator of the system. (c)Given a symmetry, both incoming and
outgoingHilbert spaces can be partitioned into orthogonal subspaces characterized by the eigenvalues γ of an operator determined by
the symmetry. The restrictions Sgg¯ of the scattering operator S connect the incoming γ-subspacewith the outgoing ḡ-subspace. The
coupling strengths X S STr=gg gg gg{ }¯ ¯

†
¯ aremeasurable quantities which determine how strongly does the system break the symmetry

(see equations (5) and (8) for continuous and discrete symmetries, respectively).
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not necessarily conserved [26, Chap. 2]. The representations of operators will also change as exemplified by the
different rotationmatrices forfields (particles) of different spin.

It should be noted that this setting does not directly apply to the situationwhere there is no target system, but
rather different incoming beamswhose interaction results in the outgoing beams. In this case, the relevant
scattering operator is the one due to the underlying theory of interacting fields (particles), like in quantum field
theory [27] [28, Chap. 3]. Therefore, our focus here is on the quantification of the breaking of symmetries by
target systems, and not of the breaking of symmetries by the underlying theories.

3.Quantification of symmetry breaking

Let us now exercise our intuition on the idea of quantifying broken symmetries. On the one hand, infigure 2(a)
we consider a sphere whose rotational symmetry is broken by a smaller sphere placed on top of it. On the other
hand, infigure 2(b), the symmetry is broken by stacking three small spheres on top of the larger sphere. Both
systems are non-symmetric under rotations along the ẑ axis, but we intuitively tend to consider that the second
system ‘breaks the symmetrymore’ than the first because its asymmetric part is larger (see figures 2(c) and (d)).
Similarly for themirror reflection across theXZ plane seen infigures 2(e) and (f). In order to transfer these
intuitions onto the previously described formal settingwe start with theway inwhich an operatorO is
transformed by a symmetry transformation represented by the unitary operatorT O TOT: 1 - . The basic
idea formeasuring howmuch does a scattering operator S break a symmetry is to compare Swith its
transformed versionTST−1. If wewanted to compare two three-vectors a andb, we could use the squared
Euclidean normof its difference to compute the real non-negative number

a b

a b

1

2
, 1

2

2 2

-
+

∣ ∣
∣ ∣ ∣ ∣

( )

which is 0 iff a=b, and is upper bounded by 1. The bound is reachedwhen a=−b. The same basic idea can be
used to compare two operatorsA andB:
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-
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   

( )

The choice ofwhich operator norm · to use is not obvious1.We choose the Frobenius (Hilbert-Schmidt)
operator norm C C CTrF =  { }† , where DTr{ } is the trace ofD.We hence define themeasureM(S,T) of the
breaking of symmetryT by the system represented by S as:

Figure 2.Many of the rotational andmirror reflection symmetries of a sphere are broken by placing either one (a) or three (b) smaller
spheres on top of it.While the symmetries are broken in both cases, intuition suggests that system (b) breaks them ‘more’ than system
(a). Panels (c) and (e) show the rotation andmirror reflection of system (a). Panels (d) and (f) show the rotation andmirror reflection
of system (b).

1
Even the choice of the Euclidean norm in the three-vector case above is arbitrary.
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where the last equality follows because a transformation by a unitary operator does not change the Frobenius
norm. M S T,( ) is dimensionless, and takes values in [0, 1]. The value 0means perfect symmetry.We note that
the upper bound ofM is reachedwhenT and S anti-commute (T S=−ST).

There is an important reason for our choice of operator norm. Atfirst sight, knowledge of S seems to be
required2 for computing M S T,( ). The crucial point about choosing the Frobenius norm is that, as later shown,
it allows to obtain themeasure of symmetry breaking from a reduced set ofmeasurements of the outgoing
intensity in scattering situations3.We nowdiscuss the cases of continuous and discrete symmetries.

3.1. Continuous symmetries
A continuous symmetry is generated by aHermitian operator T i: expq qG = - GG( ) ( ), withΓ†=Γ, and the
transformation depends on a real parameter θ. For example, in the case of rotations θ is the rotation angle, and in
the case of translations θ is the displacement. Then, the symmetry breakingmeasure depends on θ:

M S T

S T ST S T ST
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, 4
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wherewe have used thatT qG( )−1=T q-G( ) becauseT qG( ) is unitary4. The eigenvalues and eigenvectors ofΓ
play an important role inwhat follows. The eigenvalues ofΓ, whichwe denote by γ, are real numbers, and
eigenvectors with different eigenvalue are orthogonal. This allows to decompose the incoming and outgoing
spaces into orthogonal subspaces characterized by the different values of γ (see figure 1(c)).We denote them
γ-subspaces. They are typicallymultidimensional. As stated above, knowledge of S is not needed to compute the
measureM of symmetry breaking in equation (4).M can be obtained by illuminating the target systemwith
eigenvectors ofΓ andmeasuring the total intensity in each outgoing ḡ-subspace. Appendix A.1 shows that
equation (4) can bewritten as:
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where both p q m n- + - and p q n m+ + + must be even. The Xgg¯ in equation (5) are the real valued
coupling strengths that the systemmediates from the subspace of incoming states with eigenvalue γ to the
subspace of outgoing states with eigenvalue ḡ(see figure 1(c) and its caption).We canwrite the Xgg¯ as (see
appendix A.3):

X S S STr , 6F
2= =gg gg gg gg  { } ( )¯ ¯ ¯

†
¯

where Sgg¯ are restrictions of the scattering operator S. As illustrated infigure 1(c), they connect the incoming
γ-subspace with the outgoing ḡ-subspace. In amatrix representation, theirmatrix elements are the blocks that
compose the total scatteringmatrix

S
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2
If we know S, the choice of operator norm is not critical from the operational point of view becausewe can compute any operator normwe

desire.
3
This is a notable simplificationwith respect to the task of obtaining S by experimentalmeans. In general, both amplitude and phase

measurements for complete sets of incoming states and outgoingmeasurements are needed to determine the complex elements of S. Phase
measurements are known to be particularly challenging inmany situations [29, 30]. Smay be analytically and/or numerically obtainedwhen
amodel of the response of the system is available. Then, the experimentally obtained symmetry breakingmeasures allow to test themodel.
4
Then: T T i i Texp exp .1q q q q q= = - G = G = -G

-
G G( ) ( ( )) [ ( )] ( ) ( )† †
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3.2.Discrete symmetries
In the case of discrete symmetries, the role played by the eigenvectors and eigenvalues ofΓ in the continuous case
is played by the eigenvectors and eigenvalues of the symmetry transformationT itself. One difference is that the
eigenvalues ofT do not need to be real. In appendix A.2we show that for a discrete symmetryT:

M S T
X

X
,

1

2
, 8

,

,

*å
å

g g
=

-g g gg

g g gg
[ ]

[ { ( ¯ ) }]
( )¯ ¯

¯ ¯

where {·}denotes the real part.
Equations (5) and (8) can be considered operational definitions of continuous5 and discrete symmetry

breakingmeasures, respectively.We highlight that their validity is independent of the details of the interaction,
which are confined to the gray area infigure 1. In appendix A.3we discuss briefly some generalities of the
experimentalmeasurement of Xgg¯ .

3.3. The Frobenius norm link tomeasurement theory
Further analysis of the key quantities Xgg¯ ties the symmetry breakingmeasures to generalizedmeasurement
theory [21, 22]. The Xgg¯ can also bewritten as (see appendix A.3)

X , , 92åå b h g=gg
h h

hg∣ ( ¯ ¯ )∣ ( )¯
¯

where ,b h ghg ( ¯ ¯ ) are the coordinates of the outgoing state produced by the systemupon interactionwith the
incoming state inh gñ∣ . The inh gñ∣ are themembers of an orthonormal basis of incoming states. The coordinates

,b h ghg ( ¯ ¯ ) refer to a similar outgoing basis withmembers outh gñ∣ ¯ ¯ . The η and h̄ labels are composite indexes that
complete the characterization of the basis states. Equation (9) shows that the Xgg¯ , and hence the symmetry
breakingmeasures, are directly determined by themodulus squared of complex amplitudes , 2b h ghg(∣ ( ¯ ¯ )∣ ).
When the theory ofmeasurement isminimally extended beyond classical probability theory in order to explain
interference effects, it is precisely the squares of complex amplitudes which arise naturally and provide the origin
of the trace-rule for computing the probabilities ofmeasurement outcomes. The extensions encompass
quantummechanics [22] and generalizations thereof [21].We take this link as a vindication of our (and that of
others [17]) choice of the Frobenius norm.

4. Examples

Before providing numerical examples, we place some aspects of two prominent phenomena due to symmetry
breaking in the context provided so far. First, the vacuumexpectation value of theHiggs boson is ameasure of
the electroweak symmetry breaking, and can be interpreted as the vacuum-mediated coupling of fermionswith
different eigenvalues of the chirality operator. And second, the ferromagnetic phase transition is related to the
breaking of rotational symmetry caused by the alignment of electron spins. In this case, the relevant Xgg¯ to be
measured are the couplings between subspaces of different angularmomenta. Then, the corresponding
symmetry breakingmeasure of equation (5) can be seen as a degree of phase transition, as proposed in [19]with a
different symmetry breakingmeasure.

Let us now go back to the two systems offigure 2 in the context of classical electromagnetic scattering and
provide examples of theoretically computed symmetry breakingmeasures. For simplicity, we consider a
monochromatic excitation. Appendix B contains the description of the numerical calculations.We remark that
while we choose the particular case of classical electromagnetic scattering for convenience, the ideas and results
contained in the article apply to the general case in the scattering setting. Figure 3 shows the angle-dependent
breaking of rotational symmetry along the ẑ axis. The continuous red line corresponds to the system in
figure 2(a), and the long-dashed green line to the system infigure 2(b). The short-dashed blue linewill be
discussed later. Our initial intuition is reflected and quantified by the results: the systemwith three small spheres
breaks rotational symmetrymore strongly than the systemwith one small sphere for all θ.We now consider the
mirror symmetry across theXZ plane shown infigures 2(e) and (f). The breaking of themirror symmetry across
theXZ plane is 5.46 10 4´ - for the system infigure 2(a) and 1.89×10−3 for the system infigure 2(b), again
confirming and quantifying our intuition. The results also show a reassuringmutual consistency between the
measures of the breaking of different symmetries in the same system. For each of the two systems, the above
given numbers for the breaking of themirror symmetry coincide exactly with the values of rotational symmetry

5
It is worth noting that the number ofΓ eigenvalues can be infinite. For example, when considering rotations, γ and ḡ can take any integer

value. In theory this implies that an infinite number of Xgg¯ has to be obtained. In practice, the response of a systemof finite size will
eventually fall rapidly as themodulo of the angularmomentum eigenvalue increases. This provides a limit to the number of needed Xgg¯ for
the rotation case. Similar arguments can be found in other cases.

5

J. Phys. Commun. 2 (2018) 095002 I Fernandez-Corbaton



breaking for θ=π infigure 3. Indeed, in these two systems, themirror symmetry and the rotation byπ along
the ẑ axis have the same effect.

5.Global and local symmetry breaking

The short-dashed blue line infigure 3 represents the rotational symmetry breaking of the systemdisplayed next
to it, where three small spheres are placed around a larger sphere in away that achieves a three-fold discrete
rotational symmetry. This symmetry is reflected in the zeros of the symmetry breaking function at θ=±2π/3.
It is important to note that, for continuous symmetries, the knowledge of the Xgg¯ coupling strengths allows us to
use equation (5) for computing the symmetry breaking for any θ. This global reach is very useful for uncovering
‘hidden’ symmetries of the system, and could be exploited to improve current techniques [13, 14].

Let us now turn to the local properties of continuous symmetry breaking by a system. Roughly speaking, we
are after the symmetry breaking at the onset of the transformationwhen 0q  . It is straightforward to show
(see appendix C) that, to lowest order in θ, which is actually θ2

M S T
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S S
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Tr , ,
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G G
=G G[ ( )] {[ ] [ ]}
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†

Wecan take the boxed expression as the θ independent ‘slope’ of symmetry breaking. It is proportional to the
Frobenius norm squared of the commutator between S and the generatorΓ. The value ofBΓ can be obtained
from the Xgg¯ coupling strengths with the formula

B
S S
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4Tr 4
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2å

å
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=
-g g gg

g
g

gg
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{[ ] [ ]}
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( ¯ )
( )

†

†
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which results fromkeeping only the terms containing θ2 in equation (5). It can be shown (appendixD) that when
BΓ=0 all other higher order terms also vanish and M S T, 0q =G[ ( )] for all θ.

Wewillfinish discussing a linkwith dynamical evolution. In the absence of absorption and gain, we show in
appendix C that the expression

C B S S X4Tr , 12S
,

2å g g= = -
g g

ggG G( { }) ( ¯ ) ( )†

¯
¯

provides i) a directmeasure of the excitation independent ability of the system to exchange the quantity
represented byΓwith the incoming states, and ii) an upper bound for such exchangewith any normalized
incoming state. For example, exchanges of linear and angularmomenta are responsibles for the forces and

Figure 3.Dimensionlessmeasure of the breaking of rotational symmetry by eachof the three systems displayed inside thefigure as a
functionof the rotation angle θ. Themeasure is computedusing equation (4)particularized to rotations. For each system, the rotation
axis is centered in themiddle of the larger sphere and is perpendicular to the plane of the paper. The green long-dashed line corresponds
to the system infigure 2(b), and is always above the continuous red line corresponding to the system infigure 2(a). This agreeswithour
initial intuition in this respect (see the beginningof section 3), and allows to quantify it. The zeros at θ=±2π/3of the blue short-dashed
line reflect the discrete rotational symmetry of the corresponding system (see section 5).

6

J. Phys. Commun. 2 (2018) 095002 I Fernandez-Corbaton



torques exerted by the externalfields (particles) onto the system. These exchanges satisfy conservation laws
ultimately due to symmetry. This, and previous [16] links, between symmetry breaking and dynamical
constraints, togetherwith recent extensions ofNoether’s theorem [16, 31], provide starting points for the precise
quantitative connection between symmetry breaking and the joint evolution of the fields (particles) and target
system.

6.Discussion and conclusions

Before finishing, we comment on the possibility of a particular extension of the ideas and results contained in
this article.Modern studies of symmetry breaking in the context of quantum field theory are probing the
invariance of our fundamental theories under discrete and continuous symmetries, like CPT and Lorentz
invariance [32–34]. These symmetries are assumed to hold in currentmodels, but their breaking is predicted
or at least allowed in some of the theories that ultimately aim to achieve the unification of gravity with the other
known interactions. As previously stated, the scattering setting thatwe have used is adapted for quantifying
the symmetry breaking of a target system, not of the underlying theory of interactions [27][28, Chap. 3].
Nevertheless, the following extension seems plausible. In a target-less scenario we consider several incoming
beams offields (particles) that will interact and result in outgoing products. Themapping between incoming and
outgoing is nowprovided by the Sth operator due to the underlying theory of interactions. Conceptually, it seems
plausible to use equations (5) or (8) to quantify the breaking of a symmetryT by the operator Sth in the following
way.When considered as a single entity, all the incoming beams together should be prepared as an eigenstate of
T, and the cross-couplings Xgg¯ to outgoing subspaces with different eigenvalue should bemeasured (see
figure 3(c)). Then, equations (5) or (8) can be applied.

In conclusion, we have introduced observation-based symmetry breakingmeasures that combine two very
general concepts: symmetry and intensitymeasurements. Besides applications in the spectroscopic
determination of the symmetries of target systems, the generality of their definition and their tight connection to
measurementmake these symmetry breakingmeasures good candidates for establishing quantitative relations
between symmetry breaking and its effects across a verywide range of physics, like for example in phase
transitions and dynamic evolution. I believe that the full potential of the systematic quantification of symmetry
breaking has not yet been established, and that it will be a very productive research area.
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AppendixA.Measuring symmetry breaking

A.1. Continuous symmetry
Wenowprove that, for a continuous symmetryT iexpq q= -G( ) ( ), equation (4) can bewritten as equation (5).
First, we address its numerator. The expansion of the exponential
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whichwe then use twice to show that the operator inside the trace in the numerator of equation (4) can be
written as:
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wherewe also use the hermiticity of any power of : s sG G = G( )† .
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The trace of any operatorO is a basis independent quantity. In particular, we can use a basis of incoming
states where all its vectors are eigenvectors of : in inh g g h gG G ñ = ñ∣ ∣ for real γ, to write

O OTr , A4
,

in inå g h h g= á ñ
h g

{ } ∣ ∣ ( )

where η is a composite index collecting the rest of the eigenvalues characterizing each basis vector, and the
summation index represents sums over discrete eigenvalues and integrals over continuous ones.

The trace of the operator of equation (A3) is theweighted sumof the traces of the operators S Sq p n mG G G+† ,
which, using equation (A4)wewrite as
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where for the second equality we use that the inh gñ∣ are eigenvectors ofΓwith real eigenvalues γ, and the third
contains the definition of Sout

inh gF ñ = ñhg∣ ∣ as the outgoing state corresponding to an incoming inh gñ∣ .
It is clear from equation (A5) that the numerator of equation (4) can be obtained from the collection of real

numbers q m p n
out outg áF G F ñhg hg+ +∣ ∣ . Let us now consider one of them.

Weuse the coordinates of the outgoing state in an outgoing basis of eigenstates ofΓ outh gñ{∣ ¯ ¯ }
S , , A6out

in

,

outåh g b h g h gF ñ = ñ = ñhg

h g

hg∣ ∣ ( ¯ ¯ )∣ ¯ ¯ ( )
¯ ¯

andwrite

X

,

, A7

q m p n q m p n

q m p n

out out
,

2å

å

g g g b h g

g g

áF G F ñ =

=

hg hg

h g

hg

g
g
hg

+ + + +

+ +

∣ ∣ ( ¯ ) ∣ ( ¯ ¯ )∣

( ¯ ) ( )
¯ ¯

¯
¯

where in the first equality we use that sG is diagonal in the outh gñ{∣ ¯ ¯ }basis, with elements ḡ s, and the second one
implicitly defines X , 2b h g= åg

hg
h

hg∣ ( ¯ ¯ )∣¯ ¯ . That is, Xg
hg
¯ is the portion of the total Euclidean squared normof the

outgoing state outF ñhg∣ contained in the ḡ-subspace.We nowplug the result of equation (A7) back into
equation (A5), andmanipulate it to obtain:

S S

X

X

X

Tr

, A8

q p n m q m p n

q m p n

q m p n

q m p n

,
out out

,

,

,

å

å å

å å

å

g

g g

g g

g g

G G G = áF G F ñ

=

=

=

h g

hg hg

h g g
g
hg

g g h
g
hg

g g
gg

+ + +

+ +

+ +

+ +

{ } ∣ ∣

( ¯ )

( ¯ )

( ¯ ) ( )

†

¯
¯

¯
¯

¯
¯

where the last equality defines X X,å =h g
h g

gg¯ ¯ . That is, the outgoing intensity accumulated in the ḡ-subspace
upon separate excitation of the systemby the inh gñ∣ incoming states forfixed γ and all η.

We now treat the denominator of equation (4):

S S S S

X X

4 Tr 4 4

4 4 . A9

,

in in

,
out out

, ,

å å

åå å

g h h g= á ñ = áF F ñ

= =
h g h g

hg hg

h g g
g
hg

g g
gg

{ } ∣ ∣ ∣

( )

† †

¯
¯

¯
¯

equation (4) canfinally bewritten as:

M S T

X

i

p q n m
X

,

1

4
. A10

n m

p q m n p q n m
q m p n

,
, 0,0

,p q n m
p q

, , ,
, 0,0å
å å

q
q

g g=

g g gg
g g gg

G

¹

- + - + + +
+ +

¹( )
[ ( )]

( )
! ! ! !

( ¯ ) ( )
¯ ¯

( ) ( )

¯ ¯
( ) ( )

Wenote that there are restrictions in the possible values of (p, q, n,m) besides the ones indicated in the formula.
Since M S T, qG[ ( )] is real, we can restrict the exponent in i p q m n- + - to be even. Also, M S T, qG[ ( )] is an even
function of θ. This is readily shown from equation (4) using thatT T 1q q- =G G

-( ) ( ) and the cyclic property of
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the trace ABC BCATr Tr={ } { }. This restricts the exponent in p q n mq + + + to also be even. Equation (A10) can be
considered an operational definition of the θ-dependent breaking of a continuous symmetry.

A.2.Discrete symmetry
In order to prove equation (8), we start bywriting its numerator as

S TST S TST

S S S TST T S T S T S T TST

S S S TST TS T S

Tr

Tr

2 Tr Tr , A11

1 1

1 1 1 1

- -
= - - +
= - +

- -

- - - -

{[ ] [ ]}
{ }

{ } { } ( )

†

† † † † † † † †

† † † † †

wherewe have used the unitarity ofT:T T T T TT I,1= = =-† † † , and the cyclic property of the
trace ABC BCATr Tr={ } { }.

Thefirst term in the last line of equation (A11) is S S X2 Tr 2 ,= åg g gg{ }†
¯ ¯ , as per equation (A9).We now

work on the second term:

TS T S S TST

TS T S S TST

S T S S TS

X

Tr

, ,

, A12

,

in in

,

in in in in

, ,

2

,

2

,

*

* *

* *

å

å

å å å

å

g h h g

g g h h g g g h h g

g g b h g g g b h g

g g gg

+

= á + ñ

= á ñ + á ñ

= +

= +

h g

h g

h g h g

hg

h g

hg

g g
gg

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

{ }
∣ ∣

[ ∣ ∣ ∣ ∣ ]

¯ ∣ ( ¯ ¯ )∣ ¯∣ ( ¯ ¯ )∣

( ¯ ¯ ) ( )

† † † †

† † † †

† † †

¯ ¯ ¯ ¯

¯
¯

where in the second equality we useT ,in in* *h g g h gñ = ñ∣ ∣ (·)† denoting complex conjugation, in the thirdwe
use equation (A6), and in the fourth the definition of Xgg¯ in appendix A.1 or equation (A14).

Going back to equation (A11), the numerator of equation (8) is then

X X X2 2 1 , A13
, , ,

* * *å å åg g gg g g- + = -
g g

gg
g g

gg
g g

gg( ¯ ¯ ) [ { ( ¯ ) }] ( )
¯

¯
¯

¯
¯

¯

withwhich equation (8) follows immediately.

A.3.Measurement considerations
Wenowdiscuss some aspects of the experimentalmeasurement of Xgg¯ .We recall their definition from
appendix A.1:

X X , , A142å åå b h g= =gg
h

g
hg

h h

hg∣ ( ¯ ¯ )∣ ( )¯ ¯
¯

where ,b h ghg ( ¯ ¯ ) are the coordinates of the outgoing state upon excitationwith the incoming inh gñ∣ .
Operationally, we can fix γ and ḡ , successively excite the target with inh gñ∣ for all η, measure , 2b h gåh

hg∣ ( ¯ ¯ )∣¯
for each η, i.e. the outgoing intensity in the ḡ-subspace, andfinally add up the results for all η to obtain Xgg¯ .

If Sgg¯ denotes the restriction of the scattering operator to incoming states in the γ-subspace and outgoing
states in the ḡ-subspace, the above described procedure will yield:

X S S S S STr . A15F
in in 2å g h h g= á ñ = =gg

h
gg gg gg gg gg ∣ ∣ { } ( )¯ ¯
†

¯ ¯
†

¯ ¯

Theway tomeasure the intensity in an outgoing ḡ-subspace depends on the particular situation. For
example, if wewant tomeasure the intensity in each of the two helicity subspaces in nano-optics, wemay first
collimate the field outgoing from a localized scatterer with helicity preserving lenses, and then use quarter wave
plates, linear polarizers andChargedCoupledDevice (CCD) cameras (see the setup in [35,figure 1] for an
example that collects the forward transmitted outgoing field from ananohole. A similar setupwould also be
needed in reflection). Simultaneousmeasurements of the intensity in several ḡ-subspaces are also possible. The
setup in [35, figure 1] can be extendedwith a polarizer beam-splitter after the quarter wave plate, and an extra
CCD camera tomeasure the outgoing intensity in both±helicity subspaces simultaneously. Similarly,
simultaneousmeasurements of the intensity in different angularmomentum subspaces can be
performed [36, 37].

Let us now turn to the excitation. In the previous discussionwe have assumed that the illuminating field is a
single inh gñ∣ , and that the input values of η and γ are successively changed to obtain all the Xgg¯ by accumulation
of the X ,

g
h g
¯ . This is not the only possible excitation strategy. For example, let us assume that the incoming state is

a generalΓ eigenstate
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, A16inå a h h gF ñ = ñg
h

∣ ( )∣ ( )

where theα(η) are uncorrelated complex randomvariables with zeromean and equal varianceσ2.Wewill now
show that, while the intensity in the outgoing ḡ-subspace is then random, its average value is proportional to
Xgg¯ . The deviation from the average will be reduced as the output intensitymeasurements are integrated over
more instances of the random incoming state. In optics, a spatial lightmodulator can be used to obtain the
subsequent realizations of the random excitation.

The intensity in the outgoing ḡ-subspace due to the excitation of the target with the random eigenstate ofΓ
in equation (A16) is

P S S , A17= áF F ñgg g gg gg g∣ ∣ ( )¯ ¯
†

¯

which is a randomvariable. Its average P gg{ }¯ is X2s gg¯ :

S S S S

S S

S S

S S X , A18

,

,

2

2 2

*

*

 





å

å

å

å

a h a h g h h g

a h a h g h h g

a h g h h g

s g h h g s

áF F ñ = á ñ

= á ñ

= á ñ

= á ñ =

g gg gg g
h h

gg gg

h h
gg gg

h
gg gg

h
gg gg gg

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

{ ∣ ∣ } ( ˆ ) ( ˜ ) ˆ∣ ∣ ˜

{ ( ˆ ) ( ˜ )} ˆ∣ ∣ ˜

{∣ ( ˆ ) ∣} ˆ∣ ∣ ˆ

ˆ∣ ∣ ˆ ( )

¯
†

¯
ˆ ˜

¯
†

¯

ˆ ˜
¯
†

¯

ˆ
¯
†

¯

ˆ
¯
†

¯ ¯

where the third equality follows because theα(η) are uncorrelated and have zeromean, and the last one follows
from equation (A15).When using Pgg¯ to compute equations (5) and (8), the factorσ2 will be present in both
numerator and denominator and cancel out.

Appendix B.Numerical calculations

The symmetry breakingmeasures shown figure 3 and given in the text are computed numerically by first
obtaining the scatteringmatrix of the systems and then applying equation (4). The S-matrix of each system is
readily computed usingMie theory and compositeT-matrix techniques [38], which use the basis ofmultipolar
fields truncated to amaximummultipolar order jmax. Dipolar interactions correspond to j=1, quadrupolar
interactions to j=2, and so on.We use here jmax=10, beyondwhichwe neglect the rest of the (very small)
terms in the infinite dimensional scatteringmatrix. Indeed, in each of the three systems, the sumof all squared
j=10 terms is less than a part in 105 of the total sumof squared terms for j=1K10. After obtaining theT-
matrix, the S-matrix is given by: S I T2= + , where I is the identity.We have restricted the calculations to
monochromatic excitations for simplicity. In units of wavelength, the radii of the big and small spheres in
figures 2 and 3 are 0.5 and 0.1, respectively, and the smallest separation between them0.01. The spheres are
surrounded by vacuumand have a relative permittivity equal to 10.Once the S-matrix is known, the only piece
missing for computing equation (4) is thematrix representation of the symmetry operators. The rotation
matrices in themultipolar basis can be obtained for example from [39, equations 7.3-(15-17)], and themirror
symmetrymatrices frommultiplying thematrix representing a rotation byπ along the ŷ axis with thematrix
representing the parity operator, whose elements can be obtained from [39, equation (11.4)–(11.7)].

AppendixC. The slope of symmetry breaking in conservation laws

In order to obtain the lowest order termof ameasure of continuous symmetry breaking, we substitute
T STq q-G G( ) ( ) by its approximation usingT i I iexpq q q= - » - GG( ) ( ) , andT I iq q- » + GG( ) . The
difference between the original and transformed operators is then:

S T ST

S I i S I i i S S, , C12

q q
q q q q

- -
» - - G + G = - G - G G

G G( ) ( )
( ) ( ) [ ] ( )

where [S,Γ]=SΓ−ΓS is the commutator between S andΓ.We keep only the first term, linear in θ, and readily
obtain from equation (4)
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M S T
S S

S S
B,

Tr , ,

4Tr
. C22 2q q q»

G G
=G G[ ( )] {[ ] [ ]}

{ }
( )

†

†

Wecan take the boxed expression as the θ independent ‘slope’ of symmetry breaking. As per equation (11):

B
S S

S S

X

X

Tr , ,

4Tr 4
. C3

,
2å

å
g g

=
G G

=
-g g gg

g
g

gg
G

{[ ] [ ]}
{ }

( ¯ )
( )

†

†
¯ ¯

¯ ¯

Going back to the systems infigure 2, the slope of symmetry breaking for rotations along the ẑ axis are:
B 4.06 10J

3
z
= ´ - for the system infigure 2(a), and B 2.92 10J

2
z
= ´ - for the system infigure 2(b).

We now show that in the absence of absorption and gain, the expression

C B S S X4Tr , C4S
,

2å g g= = -
g g

ggG G( { }) ( ¯ ) ( )†

¯
¯

provides on the one hand a directmeasure of the ability of the system to exchange the quantity represented byΓ
with the incoming states, and, on the other hand, an upper bound for such exchange for any normalized
incoming state.

We have recently shown that for any incoming state inF ñ∣ the exchange ofΓ can bewritten as ([31, equation
3])

S S , C5in ináDGñ = áF G - G F ñ∣ ∣ ( )†

and split into the average value of two hermitian operators related to non-unitary interaction and asymmetry,
respectively. This is an improvement overNoether’s theorembecause it allows to consider and quantify the
exchange ofΓ in the presence of absorption or gain. If there is no absorption or gain, we canwrite ([31, equation
3])

S S, . C6in ináDGñ = áF G F ñ∣ [ ]∣ ( )†

Wenote that the above two equations are obtained in [31] in the context of conservation laws for the
electromagnetic field. It is nevertheless clear that their derivation does not depend on the nature of the incoming
and outgoing states, and applies to the general scattering setting.

The normof the operator S S, G[ ]† in equation (C6) is then a quantity of interest. It provides an excitation
independent indication of the ability of the system to exchangeΓwith the incoming states. It turns out that the
Frobenius normof S S, G[ ]† is equal to the expression in equation (C4):

S S S S S S

S SS S

S S

B S S X

, Tr , ,

Tr , ,

Tr , ,

4Tr , C7

F

,

2å g g

G = G G

= G G

= G G

= = -
g g

ggG

 [ ] {( [ ]) ( [ ])}

{[ ] [ ]}

{[ ] [ ]}

( { }) ( ¯ ) ( )

† † † †

† †

†

†

¯
¯

where the third equality follows because SS† is the identity when S is unitary, and the fourth and fifth follow from
equations (C2) and (11).

Additionally, the performance of themost efficient electromagnetic field for transferringΓ to the system can
be bounded by equation (C4).

S S
S S S S

B S S X

,
, ,

4Tr , C8

F
in in

in in
1

,

2

 

å

s

g g

áF G F ñ
áF F ñ

G G

= = -
g g

ggG

 
∣ [ ]∣

∣
( [ ]) [ ]

( { }) ( ¯ ) ( )

†
† †

†

¯
¯

whereσ1(A) is the largest singular value ofA, thefirst inequality follows readily by using the singular value
decomposition of S S, G[ ]† , the second one is a known inequality between different operator norms [40, p. 17-6],
and the equalities follow again from equations (C2) and (11).

Table C1 shows the values of CSG forΓ representing the angularmomentum along the ẑ axis Jz, and the
performance achieved by the optimalmonochromatic incoming state for inducing torque for the three systems
infigure 3.

AppendixD. B M S T ST0 , 01q q q= = "G G G
-⟹ [ ( ) ( ) ]

Wefirst rewrite the denominator of the symmetry breakingmeasurement for general θ in equation (4) by using
the commutator between S andT qG( ):
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S T ST T S, . D1q q q= -G G G[ ( )] ( ) ( ) ( )

Wenote that

S T ST S ST S T T

S T T

,

, , D2

q q q q q
q q

- - = - - -
= -

G G G G G

G G

( ) ( ) { ( ) [ ( )]} ( )
[ ( )] ( ) ( )

withwhich

S T ST S T ST

T S T S T T

S T S T

Tr

Tr , ,

Tr , , , D3

q q q q
q q q q

q q

- - - -
= -
=

G G G G

G G G G

G G

{[ ( ) ( )] [ ( ) ( )]}
{ ( )[ ( )] [ ( )] ( )}
{[ ( )] [ ( )]} ( )

†

†

†

where the last equality follows from the cyclic property of the trace ABC BCATr Tr={ } { }.
The last line of equation (D3) reflects the expected result that the symmetry breaking is zero if S andT qG( )

commute.Wewillfinish proving the statement on this section’s title by showing that
S S T, 0 , 0qG = =G[ ] ⟹ [ ( )] , withwhichwe conclude that if the slope of symmetry breakingBΓ vanishes, it
means that all other higher order terms vanish as well.

In order to show that S S T, 0 , 0qG = =G[ ] ⟹ [ ( )] weuse thatT iexp l
i

l0

l

q q= - G = å q
G =

¥ - G( ) ( ) ( )
! to

write

S T
i

l
S, , . D4

l

l
l

0
åq

q
=

-
GG

=

¥

[ ( )] ( )
!

[ ] ( )

Wecanwrite [S,Γl] as a function of [S,Γ] and [S,Γl−1]

S S S S S

S S S

S S

,

,

, , , D5

l l l l l

l l

l l

1 1

1 1

1 1

G = G - G = GG - GG
= G + G G - GG
= G G + G G

- -

- -

- -

[ ]
{[ ] }
[ ] [ ] ( )

andfinish by noting that [S,Γ0]=[S, I]=0, and that [S,Γ]=0 by assumption, which thenmeans that, for
l=2, [S,Γ2]=0 because of equation (D5), and so on for all l.
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