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Abstract

Next-generation automotive navigation systems will not only recommend certain
lanes. Instead, they will also provide feedback on whether the driver is currently
using a recommended lane or whether a lane-change is advisable. An especially
intuitive visualization of this information can be achieved in an Augmented
Reality (AR) navigation system. This requires a reliable ego-lane estimation. In
this work, an algorithm for this purpose is developed, relying only on current
production environment sensors. Furthermore, an analysis is performed on the
required pieces for a lane-level AR route guidance system.
The proposed ego-lane estimation determines hypotheses for the current 2D-
position and orientation of the vehicle by the means of a particle filter. By
comparing the estimated position with a digital map, the current lane can be
determined. Input data are Global Positioning System (GPS) position estima-
tes, vehicle odometry, and data from environment sensors built into the used
production vehicle such as front radar, stereo camera, and blind spot monito-
ring: The data is preprocessed in the respective electronic control units (ECUs)
and contains information such as objects in front of the vehicle, detected lane-
markings, and vehicles in the blind spot.
Two types of digital map are employed: A lanelet map describing the geo-
metries of all lane boundaries and a current commercial navigation map that
only contains road-level geometry. To apply measurements with tight likeli-
hoods in situations with sparse particle sets, a combined weight update and
sampling (CWUS) step is proposed that allows for reproducible results even
when initializing the filter over large areas. Performance evaluations on more
than 6 hours or 200 km of data from drives in urban, peri-urban, and highway
scenarios show that the proposed algorithm reliably determines the current lane
and that it is almost always available.
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Abstract

Besides localization, further topics on AR navigation are covered, such as
the development of a possible system architecture. Furthermore, a soft map-
matching applicable to AR applications is proposed and a heuristic that allows
for lane-change recommendations even in situations with unclear map data that
forbids lane-level routing or with uncertain localization.
Keywords: localization, augmented reality, navigation, route guidance, particle
filter
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Kurzfassung

Die nächste Generation von Navigationssystemen im Fahrzeug soll nicht nur
bestimmte Fahrstreifen empfehlen, sondern dem Fahrer auch Rückmeldung
geben, ob er sich aktuell auf dem richtigen Fahrstreifen befindet oder ob ein
Fahrstreifenwechsel zu empfehlen ist. Besonders intuitiv lassen sich solche
Empfehlungen in einem Augmented Reality (AR)-Navigationssystem darstellen.
Zu diesem Zweck ist eine verlässliche Bestimmung des aktuell befahrenen
Fahrstreifens notwendig. Inhalt dieser Arbeit ist der Entwurf eines Algorithmus
zu diesem Zweck auf Basis aktueller Umgebungssensorik in einem Serien-
fahrzeug und die Analyse, welche Bestandteile für ein fahrstreifengenaues
AR-Navigationssystem notwendig sind.
Der vorgestellte Algorithmus zur Fahrstreifenbestimmung verfolgt mehrere Hy-
pothesen für die aktuelle 2D-Position und Orientierung des Fahrzeugs mithilfe
eines Partikelfilters. Durch Vergleich der bestimmten Position mit einer digita-
len Karte kann der aktuelle Fahrstreifen abgeleitet werden. Als Eingangsdaten
werden neben Fahrzeugodometrie und Positionsschätzungen vom Global Posi-
tioning System (GPS) Daten von der im verwendeten Serienfahrzeug verbauten
Umgebungssensorik verwendet: Die bereits in den entsprechenden Steuergerä-
ten vorverarbeiteten Daten von Frontradar, Stereokamera und Totwinkelassistent
beinhalten Informationen zu anderen Objekten vor dem Fahrzeug, erkannten
Fahrstreifenmarkierungen und darüber, ob sich ein anderes Fahrzeug im toten
Winkel befindet.
Als digitale Karte kommen sowohl eine Lanelet-Karte, die Geometrien aller
Fahrstreifenränder beinhaltet, als auch eine aktuelle kommerzielle Navigati-
onskarte, die lediglich Fahrbahngeometrien enthält, zum Einsatz. Um auch in
Situationen mit geringer Partikeldichte noch Likelihoods von Messungen mit
geringer Varianz anzuwenden, wird ein kombinierter Innovations- und Resamp-
lingschritt vorgeschlagen. Dieser Schritt ermöglicht reproduzierbare Ergebnisse
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Kurzfassung

auch bei Initialisierung über einen größeren Bereich. In einer Auswertung auf
mehr als 6 Stunden bzw. 200 km Daten von Fahrten in städtischen, kleinstäd-
tischen und Autobahn-Szenarien kann gezeigt werden, dass der entworfene
Algorithmus treffsicher den aktuellen Fahrstreifen bestimmt und fast immer
verfügbar ist.
Neben der Lokalisierung werden Aspekte eines AR-Navigationssystems behan-
delt: Eine Systemarchitektur wird entworfen, außerdem wird ein weiches Map-
Matching entwickelt, das für AR-Anwendungen geeignet ist. Mittels einer
Heuristik können außerdem Fahrstreifenwechsel empfohlen werden, selbst wenn
die verwendete Karte unvollständig ist und kein fahrstreifengenaues Routing
möglich ist oder wenn die Lokalisierung sich unsicher ist.
Schlagwörter: Lokalisierung, Augmented Reality, Navigation, Routenführung,
Partikelfilter
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1 Introduction

In the 1990s, the US Global Positioning System (GPS) (XU 2007) and the
Russian Global Navigation Satellite System (GLONASS) (HEIN 2000) became
the first fully operational and widely used Global Navigation Satellite Systems
(GNSSs). With their advent, positioning on the surface of Earth changed.
While first GPS accuracy was artificially degraded by selective availability
(HEIN 2000), the achievable positional accuracy increased by improved signal
processing and the rise of techniques such as Real Time Kinematic (RTK) and
Differential GPS (DGPS).
At the same time, in-vehicle navigation systems started to emerge that support
the driver in finding his way to his destination. Initially, these systems relied
on Dead Reckoning (DR) and only displayed the current position on a digital
map such as the Honda Electro Gyrocator in 1981 (HONDA MOTOR CO. 2017).
Actual route guidance was added two years later in Blaupunkt’s EVA (B. SIMON

2017): After entering start and destination coordinates, the system calculated a
possible route and guided by speech output. Due to the lack of storage space
and the high effort of mapping, the covered area was quite limited.
With increasing storage space and map coverage, GNSS positioning, and data
connections, automotive route guidance evolved to what it is now. The starting
coordinate does not need to be entered by the user anymore, maps can cover
groups of countries or continents, and the current delay due to traffic and
possible detours can be displayed. As the level of detail of the used digital
maps has grown, navigation systems with lane recommendation have made
it to the market: When approaching complex urban intersections or highway
interchanges, one or multiple lanes leading to the destination are highlighted.
These systems, however, do not determine whether the vehicle is currently
driving on one of the recommended lanes or whether a lane-change might be
advisable. Hence, lane-level localization is still task of the driver. While this
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1 Introduction

task seems trivial in many cases with two or three lanes, some drivers might be
overstrained when first encountering complex urban intersections.
On other tracks, Augmented Reality (AR) systems have found their way from
very technical applications such as wire bundle assembly (AZUMA 1997) to the
mainstream. AR applications are ubiquitous (IKEA 2013; NIANTIC 2016) and
also the automotive industry started to adopt (BMW GROUP 2017; MATHESON

2012; DAIMLER 2011). Besides entertainment and sales, also navigation sys-
tems can use AR to provide more intuitive ways of route guidance (MULLONI

2012; RAO et al. 2014b; SHEN 2013).
When implementing lane-level guidance in AR, it is not enough to merely
know the recommended lanes. As all contents are displayed relative to the
current position and orientation, the relative position to recommended lanes is
required. This knowledge is equivalent to knowing the currently used lane and
its geometry ahead of the vehicle. Hence, both lane-level AR route guidance
and a traditional navigation system that provides lane-change recommendations
depend on reliable knowledge of the ego-lane. With large urban intersections
being one of the situations where a driver could benefit most from such a system,
a localization algorithm should not fail there.

1.1 Contribution

In this work, such a localization algorithm is developed. The available input
data is restricted to sensors readily available in a production vehicle. Based
on a simple vector map rather than a feature- or landmark-based one, the algo-
rithm is able to reliably determine the current lane in urban, suburban, and
highway scenarios. A combined weight update and sampling step is proposed
that combines benefits of analytical Bayes filters and particle approximations.
This step allows for good localization accuracy and reproducible results while
keeping the number of particles – and hence the required computational power –
within reasonable bounds.
The developed algorithm is adapted to current commercial infotainment maps.
The increased uncertainty in the map data is modeled by a set of heuristics in a
map preprocessing step and the filter itself. Evaluation shows that lane-level

2



1.2 Structure

localization is possible on current maps in many situations. However, challenges
remain when applying the solution to map data without lane-level geometry.
A system architecture for a navigation system that provides lane-change rec-
ommendations is developed. It allows for separate analysis of the three main
system components localization, routing, and visualization. Aspects of an AR
route guidance system related to localization, such as soft map-matching and
lane-change recommendations on incomplete maps are further derived.

1.2 Structure

In the following Chapter 2, a short introduction to relevant fundamentals for this
work, such as digital maps, the available sensor data, DR, and Bayes estimation
theory and practice, is given. Then, the proposed localization method is develo-
ped in Chapter 3: after an overview of related work and the first sections of the
filtering pipeline, a particle-filter based method for lane-precise localization on
a lanelet map is presented, followed by two proposals for adapting it to current
commercial maps. Chapter 4 shows the achievable localization performance
of the proposed algorithms in both simulations and experiments and compares
different design options, parameters, and the variants for different map data.
The developed algorithms are then put into the context of an AR navigation
system in Chapter 5 before Chapter 6 sums up the main findings and identifies
some challenges for future development.
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2 Fundamentals

In this chapter, relevant data and concepts are introduced. First, short introducti-
ons to the used types of digital map are given. The sensor data of the used test
vehicle is described in Section 2.2 as it defines the constraints on the usable
data within this work. Sections 2.3 and 2.4 give an overview on used DR and
filtering methods that are employed in later sections.

2.1 Digital Maps

The digital maps used within this work are of two different types. One is
a commercial navigation map as used for current automotive route guidance
systems. The other one is a lanelet map, originally introduced in the context of
research on automated driving (BENDER et al. 2014).

2.1.1 Commercial Navigation Map

Navigation maps try to describe the road network by a graph whose edges are
denoted as links and connected at nodes. The geometry of roads is described
via shape points which are an ordered list of coordinates corresponding to the
center of the respective road. Each node connecting two links is a common
shape point.
Additional information on the road can be given as link attributes. Among them
are, for example, the number of lanes, speed limits, or functional road classes
describing the role of the road in the road network. Typically, a link can only
have one set of attributes. When, e.g., the speed limit changes, a link is replaced
by two smaller links, each spanning the length of the respective attribute.
Lane attributes typically differ between basic maps, where only the number of
through lanes without turn lanes is given and more detailed lane-level maps. In
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2 Fundamentals

basic maps, some roads are even attributed with zero lanes. Lane-level maps
also contain turn-, acceleration-, and deceleration lanes at situations that are
considered difficult to navigate such as complex urban intersections and highway
interchanges. At these situations, also lane connectivities can be provided that
describe the connections between certain lanes before and after intersections.
Furthermore, lane types, lane-marking types, and the information on whether a
lane is forming or ending at a link can be attributed.
Current commercial navigation maps are made to allow routing and route
guidance at a link-level together with a reasonable visualization of the road geo-
metry and, partially, lane recommendations. This, however, leads to geometric
inaccuracies in different situations: Intersections of directional roadbeds that
are divided by physical dividers are modeled as tetragons and hardly describe
the trajectory a vehicle would take over the intersection. At some intersections,
turn lanes are divided by traffic islands from the rest of the intersection to allow
quick turning and to give pedestrians a two-step way when passing the road.
Such traffic islands are often only included in the map if at least one side has a
certain length such as 25m (HERE 2015) or 40m (TOMTOM 2013). As the
map geometry is used for visualization on a road-level, no explicit lane-level
geometry is included.

2.1.2 Lanelet Map

Lanelet maps (BENDER et al. 2014) have shown their applicability for highly
automated driving (ALTHOFF et al. 2017; KUHNT et al. 2016; ZIEGLER et al.
2014) and provide a similar level of detail to other advanced digital maps such
as the enhanced map (BETAILLE and TOLEDO-MOREO 2010), the Extended Di-
gital Map (NEDEVSCHI et al. 2013), or the local dynamic map (MATTERN et al.
2010) used for vehicular localization (SELLOUM et al. 2009; TOLEDO-MOREO

et al. 2010).
Furthermore, commercial map manufacturers work on comparable map formats
containing lane geometries such as the HERE HD Live Map (BONETTI 2016)
and the TomTom HAD Map and RoadDNA (TOMTOM 2016). Thus, it is
reasonable to use a lanelet map for a lane-level localization solution.
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2.2 Sensor Data

The lanelet format is based on the OpenStreetMap (OSM) format. This format
consists of three basic types of elements: nodes, ways, and relations. A node
represents a coordinate, comparable to shape points in commercial maps. A way
is an ordered lists of nodes, i.e. can describe polylines. A set of nodes and ways
is described by a relation, where each entry can have a certain role. A relation
can have a set of key-value-pairs that allow a user to interpret it as intended.
In a lanelet map, one lane or driving possibility is stored as a relation containing
at least one way each as left and right boundaries. This relation is of type lanelet
and the roles of the boundaries are left and right. Topology can be reconstructed
by comparing left and right ways of a lanelet as well as first and last nodes of
each boundary. The original lanelet map (BENDER et al. 2014) contains further
elements such as regulatory elements that are not used within this work. In
addition to the original lanelet format, the key tunnel with value true has been
introduced to denote tunnel lanelets.
For this work, a lanelet map has been manually created based on satellite images.
Its coverage is shown in Section 4.1.1.

2.2 Sensor Data

The sensor data used in this work is to a great extent defined by the built-in sen-
sors and sensor data processing in the used test vehicle, a 2014 Mercedes-Benz
S-Class (V222). The vehicle is equipped with the then-state-of-the-art driver
assistance systems package Mercedes-Benz Intelligent Drive. This package
contains, among others, Adaptive Cruise Control (ACC) (“DISTRONIC PLUS
with Steering Assist and Stop&Go Pilot”), Lane Departure Warning (LDW)
(“Active Lane Keeping Assist”), and Blind Spot Monitoring (BSM) (“Active
Blind Spot Assist”). The functionality of these driver assistance systems is
based on sensors such as a long range front radar, a stereo multi purpose camera,
and short range radars, respectively. An overview of these and further sensors
is depicted in Figure 2.1. Data from additional sensors such as the ultrasonic
sensors used for the Active Parking Assist or the infrared camera enabling the
Night View Assist are not used within this work. Internal sensors, such as wheel
speed encoders can be accessed via the vehicle bus.
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2 Fundamentals

Additionally, a production level gyroscope, accelerometer, and GPS receiver
are used. An overview of the sensor data available from these sensors is given
in the following.

Figure 2.1: Sensors in 2014 Mercedes-Benz S-Class. Figure from DAIMLER 2012.

2.2.1 Global Navigation Satellite System

In the test vehicle, a u-blox 6 GPS receiver is used. The receiver uses speed
measurements from the vehicle bus for an internal Dead Reckoning to provide
accurate position estimates. The errors of the position estimate can be modeled
as a bias that adds to a Gaussian noise component (CHAUSSE et al. 2005). In
filters that allow non-Gaussian likelihoods, such as a particle filter, an explicit
estimation of the bias vector can be avoided by approximating both errors as a
cumulative uniform distribution.

2.2.2 Visual Lane-Marking Detection

Using video data from a stereo camera, lane-markings in front of the vehicle
are detected. A clothoid model is used to describe the closest left and right
boundary by their respective lateral distance, yaw angle between vehicle and
marking, curvature, and change in curvature. Additionally, the type of marking
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(continuous, broken, block-marking etc.) is available. Discrete lane-change
signals give hints on when a lane-marking is crossed by the vehicle – but need
to be used with care as single- and double lane-changes cannot necessarily be
distinguished.

2.2.3 Front Radar

The processed data from the front radar electronic control unit (ECU) contains
discrete objects in front of the ego-vehicle. For each object, the relative distance,
speed, and acceleration in vehicle x- and y-coordinates are available together
with estimates for the respective standard deviations. Furthermore, an identi-
fication number, a value for the existence probability, a relative lane estimate
(ego-lane, first/second to the left/right), and a classification into groups such
as pedestrian, bicycle, car, truck, and guardrail are provided. No confidence
information is available for the classification.

2.2.4 Blind Spot Monitoring

The short-range backward-facing radars provide information on the existence of
vehicles in the blind spot of the vehicle. However, only the abstract information
on whether the driver shall be warned is available instead of relative distance or
velocity estimates.

2.2.5 Inertial Sensors

A set of sensors provide information on the movement of the vehicle. For all
four wheels, wheel pulse counter values are available as well as the resulting
revolutions per minute (rpm) and rotation direction. The vehicle speed estimated
on these measurements is also provided.
The Electronic Stability Control (ESC) contains a yaw rate gyroscope and
provides the unfiltered current yaw rate and an estimate on the offset of that
value. The steering angle is available as the mean front wheel angle.
From a separate gyroscope, turn rates in three dimensions available. Its turn rates
are calibrated in standstill using acceleration estimates from an accelerometer.

9
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2.3 Dead Reckoning

DR describes the integration of inertial measurements such as speed, turn
rate or wheel angle to determine a current position relative to a starting point
(WALLENTOWITZ and REIF 2010). The simple point mass model used in the
localization algorithm is shortly described here. It reduces the vehicle to a
point mass for which a two-dimensional pose xk = (xk, yk, θk), consisting of
a position xk, yk in a local coordinate frame and an orientation or heading θk
relative to one of the coordinate axes is estimated. This point can move straight
forward in heading direction, i.e. (ESKANDARIAN 2012, p. 408)

xk = xk−1 +
2vk−1

θ̇k−1

sin

(
θ̇k−1Δtk

2

)
cos

(
θk−1 +

θ̇k−1Δtk
2

)

≈ xk−1 + vk−1Δtk cos (θk−1) ,

yk = yk−1 +
2vk−1

θ̇k−1

sin

(
θ̇k−1Δtk

2

)
sin

(
θk−1 +

θ̇k−1Δtk
2

)

≈ yk−1 + vk−1Δtk sin (θk−1) ,

(2.1)

given a speed vk, yaw rate θ̇k, and time difference Δtk = tk − tk−1 at time
instance k. Accordingly, the current heading θk can be determined based on the
previous estimate θk−1 and a yaw rate θ̇k as (ESKANDARIAN 2012, p. 408)

θk = θk−1 +Δtkθ̇k, (2.2)

describing a rotation of the vehicle around its vertical axis.

When using observed speeds v̂k and yaw rate ˆ̇
θk, the respective ideal values can

be replaced in Equations (2.1) and (2.2) by

vk = v̂k + ηk, and

θ̇k =
ˆ̇
θk + νk

(2.3)

to include process noise values ηk and νk (ESKANDARIAN 2012, p. 409).
It must be noted that a more detailed vehicle model such as the bicycle model
(RAJAMANI 2012) allows for a more correct modeling of the vehicle movement,
especially in curves. However, the point mass model provides a reasonable
approximation and requires little knowledge of the vehicle dimensions.
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2.4 Bayes Estimation

In this section, a short overview of the principle of recursive Bayes estimation is
given. Then, its special cases Kalman filter (KF), Extended Kalman Filter (EKF),
and particle filter (PF) – which will be used later in this work – are introduced.
For a detailed introduction to the topic, the reader may refer to THRUN et al.
2005 whose notation is partially adapted in this work. An exhaustive overview
of Bayesian Filters is also provided in CHEN 2003.

2.4.1 Overview

Given a generic state-space model in discrete time, as shown in Figure 2.2, the
goal is to estimate the current non-observable system state xk ∈ R

Nx , k ∈ N

based on the measurements (data) zk ∈ R
Nz , k ∈ N for each time instance k.

Besides measurements, also a control input uk ∈ R
Nu , k ∈ N may be available.

Within this work, no explicit control input is given. Instead, measurements
that describe movement and rotation of the system state, are used in the role of
control input as proposed by THRUN et al. 2005.

xk−1 xk xk+1

uk−1 uk uk+1

zk−1 zk zk+1

. . .

. . .

. . .

. . .

. . .

. . .

input

state

measurement

Figure 2.2: Bayes network, inspired by CHEN 2003.

The system can hence be modeled by two equations

xk = f (xk−1,uk,nk) (2.4)

zk = h (xk,vk) (2.5)
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for a state transition function f : R
Nx �→ R

Nx , a measurement function
h : RNx �→ R

Nz , process noise nk, and measurement noise vk (CHEN 2003).
These equations already take into account that the state xk is complete, i.e.
information on past states does not provide additional information for the present
and future states. This completeness is described by the Markov property in a
probabilistic sense. Furthermore, the connections in the Bayes network show
that the current state xk directly depends only on the current control input
uk and the previous state xk−1 and the current measurement zk only on the
current state xk. These properties can be used to simplify some of the following
distributions.
The initial density p (x0) describes the knowledge of the system state at the
beginning of the estimation. The transition probability from time instance k− 1

to k can be described as

p (xk|x0:k−1, z1:k−1,u1:k) = p (xk|xk−1,uk) , (2.6)

where yk1:k2
= yk1

,yk1+1, . . . ,yk2
refers to a sequence of a certain random

variable y. The likelihood for a certain measurement zk becomes

p (zk|x0:k, z1:k−1,u1:k) = p (zk|xk) . (2.7)

This allows for the estimation of the posterior probability or belief

bel (xk) = p (xk|z1:k,u1:k) (2.8)

by repeated application of the Bayes formula

p (xk|z1:k,u1:k) =
p (zk|xk, z1:k−1,u1:k) p (xk|z1:k−1,u1:k)

p (zk|z1:k−1,u1:k)

= η p (zk|xk, z1:k−1,u1:k) p (xk|z1:k−1,u1:k)

(2.9)

for a normalization factor η equal for all xk (THRUN et al. 2005). Employing
the conditional independence

p (zk|xk, z1:k−1,u1:k) = p (zk|xk) , (2.10)

defining the intermediate belief bel (xk) before the incorporation of measure-
ments from time instance k, and using the theorem of total probability and the
Markov property
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bel (xk) = p (xk|z1:k−1,u1:k)

=

∫
p (xk|xk−1, z1:k−1,u1:k) p (xk−1|z1:k−1,u1:k) dxk−1

=

∫
p (xk|xk−1,uk) p (xk−1|z1:k−1,u1:k−1) dxk−1

=

∫
p (xk|xk−1,uk) bel (xk−1) dxk−1

(2.11)
allows for writing this equation as (THRUN et al. 2005)

bel (xk) = ηp (zk|xk) bel (xk) . (2.12)

The general Bayes filter consists of recursively estimating the belief and inter-
mediate belief, starting with an initial assumption bel (x0) = p (x0).
The analytical evaluation of these equations is difficult or impossible for general
probability distributions that may or may not have an analytic description.
Hence, inference schemes have been developed that either solve the problem for
special cases or approximate the solution on a grid-basis or by random sampling.
In the following, first the Kalman filter is described which allows for an optimal
solution for linear systems with Gaussian noise. Then, the extended Kalman
filter expands the set of problems to nonlinear cases. Finally, the particle filter is
introduced which allows for inference on arbitrary systems with arbitrary noise
functions using Monte Carlo methods, i.e. random sampling.

2.4.2 Kalman Filter

To allow for the use of a Kalman filter (KALMAN 1960), the dynamic system
must be modeled by linear equations, i.e. Equations (2.4) and (2.5) become

xk = Fxk−1 +Guk + nk (2.13)

zk = Hxk + vk (2.14)

with matrices F , G, H of respective dimensions and nk, vk zero-mean Gaus-
sian with corresponding covariance matrices R and Q, respectively.
Within the filter, the state is represented as a Gaussian and described by its mean
μk and covariance Σk. The estimation of the intermediate belief is denoted as
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prediction and performed by plugging the mean of the previous state estimate
μk−1 and the current control input uk into the state transition function (THRUN

et al. 2005)
μk = Fμk−1 +Guk. (2.15)

The covariance matrix is predicted as

Σk = FΣk−1F
T +R. (2.16)

In the innovation or measurement update step, the Kalman gain is determined
based on the covariance prediction and the measurement noise as

Kk = ΣkH
T
(
HΣkH

T +Q
)−1

. (2.17)

This gain is then used to determine the new mean and covariance estimates
(THRUN et al. 2005)

μk = μk +Kk (zk −Hμk) , (2.18)

Σk = (I −KkH)Σk. (2.19)

2.4.3 Extended Kalman Filter

The KF can be extended to nonlinear systems with a dynamic system model as
in Equations (2.4) and (2.5) by linearization up to the first term of the Taylor
expansion. The Jacobians JF,k and JH,k are determined as

JF,k =
∂f (xk−1,uk,nk)

∂xk−1

∣∣∣∣
xk−1=μk−1

(2.20)

JH,k =
∂h (xk,vk)

∂xk

∣∣∣∣
xk=μk

. (2.21)

The prediction and innovation of the estimated mean are performed using
the nonlinear functions f (μk−1,uk, 0) and h (μk, 0), respectively. In the
calculation of intermediate covariance, Kalman gain, and posterior covariance,
the Jacobians JF,k and JH,k are used like the system matrices F and H ,
respectively. (THRUN et al. 2005)
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2.4.4 Particle Filter

Unfortunately, many problems are neither linear nor is it possible to describe
all relevant probabilities as unimodal Gaussians. In such cases, it is in general
difficult or impossible to find an analytic description of the posterior distribution.
It is, however, possible to approximate the distribution by a set of random
samples, also called particles. This group of methods is referred to as particle
filter or sequential Monte Carlo methods – inspired by physical random number
generators such as dies and roulettes used in casinos (CHEN 2003). Other names
for methods of this type include bootstrap filtering (GORDON et al. 1993) or
condensation (ISARD and BLAKE 1998).
A PF iteratively follows the same sequence of steps as a KF or EKF. However,
the steps are not performed for two parameters that describe the complete belief
but rather on a multitude of samples. Whilst the covariance is not directly
estimated in the filter, an importance weight is assigned to each particle and
modified in the measurement update step.
Initially, a set of n samples is drawn from p (x0), each particle i is assigned the
same importance weight w[i]

0 = 1
n (ARULAMPALAM et al. 2002)1. This initial

distribution can represent an initial guess for the system state or be uniformly
distributed over the whole state space.
The prediction step is similar to the one in the EKF: Each particle i is transfor-
med following the transition function (THRUN et al. 2005)

x
[i]
k = f

(
x
[i]
k−1,uk,n

[i]
k

)
(2.22)

where x[i]
k−1 is the state of particle i and n[i]

k a realization of the random variable
nk. That means that a random component modeling the process noise of the state
transition is added to every particle’s state in the prediction step. This increases
the covariance of the sample set similar to the increase in the covariance in a
Kalman filter.

1The actual value of the weight is irrelevant as long as it is the same for all particles. The importance
weights can later be normalized to sum up to 1.
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In the update step, the likelihood function p
(
zk

∣∣∣x[i]
k

)
is evaluated for each

sensor measurement zk and particle i at its respective position in the state space
and multiplied onto its importance weight (THRUN et al. 2005)

w
[i]
k = w

[i]
k−1p
(
zk

∣∣∣x[i]
k

)
. (2.23)

This equation is simplified for the case of one measurement per time instance k.
Of course, it can be easily extended to situations with asynchronous measure-
ments that lead to multiple or no measurements in a single step by multiplying
the likelihood values for each measurement to an overall importance weight
factor.
Over time, the weights of few particles tend to grow while most will converge
toward zero. This effect is referred to as particle or weight degeneracy (DOUC

and CAPPÉ 2005). One option to compensate this effect is to perform a resam-
pling, i.e. to draw new samples from the existing particle set, depending on their
accumulated importance weight. Multiple algorithms exist for this purpose and
differ on how the new samples are drawn. An overview is given in DOUC and
CAPPÉ 2005. For example, in multinomial resampling, the particles are kept in
order and the cumulative weights are determined. Then, n random numbers are
drawn from a uniform distribution over [0, 1] and for each number r the particle
i is chosen that fulfills

i = argmin
i

⎛
⎝ i∑

j=0

w[j] ≥ r

⎞
⎠ . (2.24)

With this approach, it can happen that the same particle is drawn n times
even though it does not carry the complete weight of the set. In systematic or
low-variance resampling, only one random number q is drawn from a uniform
distribution over

[
0, 1

n

]
and n new particles are drawn that fulfill

i = argmin
i

⎛
⎝ i∑

j=0

w[j] ≥ q +
m

n

⎞
⎠ ∀m ∈ {0, 1, . . . , n− 1} . (2.25)

In resampling, however, it must be taken care of that particle degeneracy is not
replaced by sample impoverishment, the situation where there is no diversity
among the particles (ARULAMPALAM et al. 2002).
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Some types of particle filter can be proven to converge to the approximated pos-
terior distribution for large particle numbers n → ∞ under certain constraints
(DOUCET et al. 2001). However, the possible number of particles is limited
by the computational capabilities of the used machine and the complexity of
likelihood evaluations. When lane-level localization methods based on a particle
filter are presented in the next chapter, one point is to consider this and to keep
at least the most relevant hypotheses – i.e. particles – alive.
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With these fundamentals at hand, it is now possible to design methods for lane-
precise localization. After an overview of related work, the first sections of the
filtering pipeline are developed: Calibration of inertial sensor data (Section 3.2)
and preprocessing radar data (Section 3.3). A particle filter approach for lane-
precise localization is developed and described in detail in Section 3.4. This
approach is then adapted to commercial maps in two variants that are presented
in Section 3.5.

3.1 Related Work

Within this chapter, methods for lane-precise localization of a road vehicle
using a given set of sensor data and different digital maps are developed. In
this field, a notable number of approaches have been published. As this thesis
lies in the context of AR applications, one might think of using algorithms
known in the virtual reality (VR)/AR community. However, these approaches
mostly do not provide a localization relative to a digital road map. Relevant
publications for the overall AR navigation system are reviewed in Section 5.1
while the focus within this section lies in approaches on vehicle localization.
Three main branches exist: There is absolute positioning, where the goal is
to accurately determine the position relative to a coordinate frame spanning
Earth. Localization relative to digital maps can be split into methods relying on
sensor-specific features and point landmarks, and others using pure geometric
map data. A coarse overview of the first two branches is shown in the following.
Then, a more detailed survey on the latter is given.
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3.1.1 Absolute Positioning

Absolute positioning is nowadays widely based on Global Navigation Satellite
System such as GPS, GLONASS, or Galileo. While the price for survey grade
receivers with techniques such as RTK and DGPS has decreased over the last
decades, they remain too expensive for the use in automotive navigation systems.
DGPS allows for horizontal errors below 3m when close to a base station (DU

and BARTH 2008) and when fused with vehicle odometry, average errors below
1m can be achieved (CARON et al. 2007).
Often, Bayes filters such as KF and its derivatives or PF are used to improve
raw GNSS fixes by relative movement (CARON et al. 2007; EL NAJJAR and
BONNIFAIT 2005; KRAKIWSKY et al. 1988). These approaches can be divided
into loosely coupled methods, where GNSS position estimates are used (EL

NAJJAR and BONNIFAIT 2005), and tightly coupled methods on the raw pseudo-
range measurements (Y. LI et al. 2006). Besides GNSS and inertial measure-
ments, also map data can be used to improve the position estimate: In FOUQUE

et al. 2008, an EKF includes heading information from a digital map to support
the orientation estimate. Due to the possible offset of map data and the one-
dimensional description of road links, no position information from the map
are used.
When trying to determine the currently used lane, all positioning methods suffer
from this drawback: Often, the absolute accuracy of current commercial digital
maps is around 5m. Hence, a centimeter-accuracy position may still not match
with the correct lane or even road in the map. For accurate lane assignment,
relative localization methods are required.

3.1.2 Feature-based Localization

A widespread approach to localization in research on automated driving is based
on features or landmarks that may or may not be sensor-specific. In the basic
concept, a feature map is generated in a mapping or reference drive. In the
mapping drive, often high-precision GNSS setups are used (e.g. SCHREIBER et
al. 2013). Alternatively, state-of-the-art simultaneous localization and mapping
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(SLAM) techniques allow for the generation of a map by solving an optimization
problem (e.g. LATEGAHN and STILLER 2012).
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The sensors used for environment perception vary: Some groups use a monocu-
lar camera (CHARMETTE et al. 2009; NODA et al. 2011), others employ stereo
camera rigs (LATEGAHN and STILLER 2012; PINK 2008; SCHREIBER et al.
2013) or laser scanners (LEVINSON et al. 2007; QIN et al. 2012). Sometimes,
the map is reduced to features that can be used by different sensors in the locali-
zation step (TESSIER et al. 2007). A different approach is shown in CORNICK

et al. 2016: They employ a ground penetrating radar to generate an underground
map and use this map for localization. Their motivation is that the underground
changes its appearance less frequently than overground structures such as trees
or parking cars – or just the illumination situation. However, research also
tackles the problem of finding features that are robust against e.g. changes in
illumination (LATEGAHN et al. 2013).
With the used sensor, also the used features and their source for the mapping
process varies: In PINK 2008 and NODA et al. 2011, aerial or satellite images
are used to extract features, e.g. lane-markings on the roads. Other features
present in road environments are curbs and intersections (QIN et al. 2012).
In the localization step, different methods are used. Among these are different
optimization methods such as least squares in graph-optimization (LATEGAHN

and STILLER 2012), a modified iterative closest points approach (PINK 2008)
or a direct least median of squares (NODA et al. 2011). Alternative approaches
include particle filters (LEVINSON et al. 2007; QIN et al. 2012) and particle
swarm optimization (CORNICK et al. 2016). LEVINSON et al. later change from
a particle filter to a histogram filter and estimate the probability distribution over
a grid in the surroundings of a current coarse position estimate (LEVINSON and
THRUN 2010). Like this, they avoid situations where no particle is close to the
actual position.

3.1.3 Localization on Vector Maps

The transition from feature- and landmark-based maps to pure vector maps is
fluent. While lane-markings can be considered and used as landmarks, they
also often determine the vector-based geometry of the lanes. One possible
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cut can be made at the level of detail of mapped lane-markings: If the exact
position of each dash of broken lane-markings is available or stop lines and
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arrow markings are mapped, one might consider it a feature map as e.g. in
SCHREIBER et al. 2013. Similarly, lane-markings or lane boundaries may be
mapped as one-dimensional lines (BENDER et al. 2014) or as two-dimensional
areas with two boundaries themselves (TAO et al. 2013). Within this section, an
overview of localization methods on maps with road or lane geometry is given.
One approach to determining the currently driven lane is based on absolute
positioning: By estimating the current position as accurately as possible and
comparing it to an accurate digital road map, the current lane can be found.
This approach is used by DU et al. who use a low-cost DGPS receiver with a
local base station and a lane-level road map constructed from aerial images.
Through curve-to-curve matching of some of the last points onto the acquired
lane centerlines, the current lane can be estimated. In extensive tests, they can
correctly determine the current lane in 97% of the time. (DU and BARTH 2008)
Similarly, BAUER et al. estimate the current position with a many-dimensional
particle filter whose system state contains, among others, the vehicle position
and orientation, receiver clock error and drift, troposphere and ionosphere errors,
and whether a line-of-sight connection to the tracked satellites is available. They
can determine the ground truth lane in 96.5% of the evaluated 10 minutes data
set after initialization from the ground truth position. (BAUER et al. 2016)
However, current road maps have limited absolute accuracy and any road link
can be mapped up to 5m away from its actual position. Furthermore, it is
not always clear how lanes arrange around the mapped centerline of a road.
A perfect absolute position is hence only of limited use in determining the
currently used lane on current commercial maps.
Most other approaches employ some kind of relative localization. Often, other
vehicles, infrastructure, and road-markings are used. Somewhere between
absolute positioning and relative localization lies the work of DAO et al.: A
group of vehicles determine their respective positions by combining GPS and
DR. They communicate their position estimate to other vehicles and each
vehicle can estimate the probabilities for which vehicle being on which of
the available lanes. In simulations, they can in general determine the correct
lane but sometimes lane-changes are detected too late (DAO et al. 2006). In
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real-world experiments, up to 95% correct lane estimates can be achieved for
moving cars, while at walking speeds the success rate is even higher (DAO et al.
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2007). Unfortunately, cooperative solutions to localization are not possible in a
standalone navigation system.
Like for feature-based localization, Bayes theory is used in many approaches
toward lane-level localization. Bayesian networks are used in POPESCU et al.
2012 and NEDEVSCHI et al. 2013. With a camera, a set of road features like
lane-marking types and direction arrows are detected. An extended digital
map contains lane-level information like lane-width, the type of markings and
arrows, and the position of the centerline in approaches to intersections. Through
inference the probabilities for different lanes is determined and can then be used
as input to a particle filter algorithm. With the static Bayesian network, 5.6% of
incorrectly identified lanes remain, with the following particle filter, the error
rate can be reduced to 3.5% in an 8 km test set.
Alternatively, a discrete Bayes filter (histogram filter) can be employed as pro-
posed by MAYER et al. 2014 and SVENSSON and SÖRSTEDT 2016. SVENSSON

and SÖRSTEDT split the in-lane-localization and lane assignment into two sepa-
rate problems. The relative positions and velocities of other vehicles are found
by fusing radar and camera data and used to validate the lane hypotheses. A
lane-change detection provides hints on whether the vehicle is still traveling
on the same lane as in the previous time instance. No explicit evaluation on
the recall ratio is given and the time-series analysis is still limited to two-lane
scenarios in SVENSSON and SÖRSTEDT 2016.
Continuous state variables are possible when an EKF is used as in TAO et al.
2013: The authors fuse GPS and lane-markings from a camera image with a
digital map that contains the inner boundaries of both lane-markings for each
lane. Through the estimated covariance, an integrity value can be provided. In
experiments, the absolute error was never larger than three standard deviations.
On average, the position error was 0.26m but at most 1.56m which is considered
lane-precise by the authors. It remains unclear how the system is initialized and
what happens if the initialization is not within the correct lane.
MATTHAEI et al. also employ an EKF. In their work, they perform pose
estimation relative to an occupancy and reflectance grid that were previously
mapped using lidar and camera data. By including stationary structures in
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the map, the approach does not require lane-markings for lateral localization.
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With the proposed method, the lateral error remains below 0.75m most of the
evaluated distance on an inner city main road (MATTHAEI et al. 2014). However,
in this work, a lidar sensor should be avoided. Furthermore, the used grid maps
are far more detailed than the intended vector maps.
Multiple hypotheses for the current lane or pose can be tracked with a particle
filter as has been done for example in CHAUSSE et al. 2005. Their filter estimates
the 2D-pose of a vehicle equipped with steering angle and speed sensors as well
as a GPS receiver and a camera. Lane-markings detected by the camera are
used in the update step to validate particle positions relative to a highly accurate
digital map. They can achieve low standard deviations of the particle cloud in
experiments and show how lane-changes and roundabouts can be handled.
A particle filter fusing only GNSS and DR with a digital map is shown in
TOLEDO-MOREO et al. 2009: A GNSS update is performed depending on
the quality of the current fix. The map data is incorporated in such that only
positions on the road are valid. They achieve mean errors of 0.57m when using
Frenet coordinates but the horizontal positioning errors do not allow for reliable
lane-level positioning – even provided a map with high absolute accuracy. This
approach is extended by SELLOUM et al. 2009 to allow for direct use of Frenet
coordinates in the prediction step. The position accuracy stays within the same
region.
While CHAUSSE et al. 2005 and others compare the position to lane-markings
with where they are detected in a camera image, MATTERN et al. 2010 follows
an inverse approach: The map data is transformed into image hypotheses for
each particle and the coherence between predicted and actual image is used to
update importance weights. Their map features curbs, lane-markings where the
actual position of dashes can be reconstructed, and stop lines retrieved from
aerial images. Lane-level accuracy is proven by reaching a lateral position error
of 0.35m.
Similarly, VAN HAMME et al. 2013 only relies on image data from a monocular
camera. Using visual odometry, the texture of the ground is extracted close to
the vehicle trajectory. Then, linear sections are classified into road surface and
not-road surface with a Gaussian mixture classifier. The position within the
classified road surface provides hints on the currently used lane. In an evaluation
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of 32 segments of 120m each, 94% correct lane assignments can be achieved if
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the whole segment is used. By only using image data, the approach is limited
by the camera aperture angle to roads with at most three lanes.
Another interesting method is proposed by SCHÜLE: Radar sensor measure-
ments are integrated into a local radar map. As the position of the vehicle
relative to the radar map is known, this local map can be matched with a digital
road map to achieve a global pose estimate of the ego-vehicle. With that ap-
proach, the mean error can be reduced compared to pure GPS-based navigation
(SCHÜLE et al. 2011). A local lane map based on camera data is proposed as
an alternative to the radar map. It allows for similar accuracy to the radar map
(SCHÜLE et al. 2013).
ECKEL employs particle filters for both airborne tracking and lane-level loca-
lization. For the latter, she estimates the current link and lane together with
the longitudinal offset along the one-dimensional links. An EKF estimates the
current absolute position. This position is used in the measurement update step
to weight the particles as well as lane-marking types and lane-changes from a
visual lane-marking detection. The evaluation focuses on road bifurcations and
does not give insight on the overall performance of the algorithm. (SZOTTKA

2013)
When detecting not only the markings of the ego-lane but also neighboring
lanes, these data can be used for localization as well. LU et al. 2014 shows an
approach based on these and observed lane-changes to figure out the used lane
of an OSM. In an evaluation on KITTI data, the lane selection is successful in
around 78%. Reasons for errors are, among others, differences in the number of
lanes between ground truth position and filtered position, and road barriers that
are recognized as lane-markings.
Instead of lane-markings, KUHNT et al. employ objects detected by environ-
mental sensors such as cameras or lidars. These objects are assumed to be
traveling on the roads digitized in a lanelet map. When initializing the filter at
the ground truth position, the absolute position error stays below 1.5m for most
of the evaluated 10 minute drive and the accuracy can be considered lane-level.
(KUHNT et al. 2016).
An approach similar to SELLOUM et al. 2009; TOLEDO-MOREO et al. 2009 is
used in F. LI et al. 2017: By mainly tracking possible positions through DR and
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The focus of the work lies in not only providing the correct lane but also integrity
measures. In around 51% of the time, the correct lane is identified but the filter
keeps multiple hypotheses which almost always include the correct lane.
A method not based on a specific filtering technique is proposed in C. R. SIMON

2012: Based on production sensors such as a camera and radar, environment
models are estimated and used to determine the current lane. A line model uses
up to eight lane-markings detected by a multi-purpose camera. The marking
type allows for estimating the direction of travel of each modeled lane and
the distance to the road boundary. Moving and standing vehicles are fused in
an object model for the same purpose. In extensive experiments throughout
Germany, the correct number of lanes can be determined in 75% of the time, the
correct lane index in 85% of the time if road boundaries are detected. Including
map data that contains the correct number of lanes allows to increase the ratio
of correct lane assignments to 90%. Yet, the result in urban scenarios is not yet
perfect: Almost 20% of the lane assignments are false within cities.
MEINKE 2015 proposes a method based on optimization. Trajectory pieces are
fitted against centerlines of lanes in a lanelet map. The residuals of the least-
squares minimization and penalties based on environment sensor data determine
a score that is used to determine the current lane. While the achievable error rate
is low, restricting evaluation to situations where one hypothesis stands out over
the others reduces the system availability to around 60% of the time. (RABE

et al. 2016a)

3.2 Sensor Calibration

For the use in the localization solution, a suitable source to drive the Dead
Reckoning has to be chosen. For this purpose, the performance of the point
mass model described in Section 2.3 has been evaluated for two different yaw
rate estimates: one available on the vehicle bus from the ESC and one from a
directly attached gyroscope. Their error properties are important for the DR
component of the localization solution. Hence, the characteristics of the errors
are described and methods for sensor calibration have been developed. Due to
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the errors have been compared to the position and course estimates of a u-blox
6 GPS receiver with activated DR.
As the GPS receiver exhibits a notable latency that would distort estimates for
distance and yaw, its latency is estimated first. Then, the distance estimate based
on wheel speeds is characterized and the behavior of different vehicle models
is evaluated. Calibration schemes for the velocity and yaw rate estimates are
proposed.

3.2.1 GPS Latency

The used GPS receiver provides estimates for the current position, course, and
speed at a frequency of 1Hz. The speed estimates can be compared to speed
estimates of other vehicle sensors and used to determine the latency between
both values.
One option to do that is the maximization of the cross-correlation coefficient
between the GPS speed estimate u and the vehicle speed from the speed control
system or wheel speeds v, both available at 50Hz. For this purpose, the high-
frequency speed is downsampled by a factor of 50 after being shifted in time by
the number of time steps p corresponding to the latency τ (RABE et al. 2016b):

p̂ = argmax
p

ρuv (p) =

∑n
k=0 ukv50k−p√∑n
k=0 u

2
kv

2
50k−p

. (3.1)

This can be used to estimate the latency as τ̂ = p̂ · 0.02 s to be around
τ̂ ≈ 0.35 . . . 0.4 s. As data from different drives in 2015 and 2016 have been
used, it can further be determined to be not changing much over time.
Another possibility is to use the travelled distance between two GPS fixes and a
minimum mean squared error (MMSE) approach: Using the simple point mass
vehicle model described in Section 2.3, position estimates x(t) relative to a
starting point are created. These position estimates are first shifted in time by a
possible latency τ and positions x(tGPS + τ) at time instances corresponding
to GPS fixes tGPS are linearly interpolated. The distances

dτv (tGPS) = ‖x (tGPS + τ)− x (tGPS + TGPS + τ)‖ (3.2)
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between two interpolated positions and the corresponding distances between
two GPS fixes dGPS (tGPS) are determined and the respective mean squared
error

MSEτ =
1

N

N∑
1

(dτv (tGPS)− dGPS (tGPS))
2 (3.3)

is calculated. The latency estimate τ̂ is the value τ that minimizes the mean
squared error:

τ̂ = argmin
τ

(
1

N

N∑
1

(dτv (tGPS)− dGPS (tGPS))
2

)
. (3.4)

This value can be estimated to be τ̂ ≈ 0.4 s which is used throughout this work.

3.2.2 Distance Estimate

When using wheel speed sensors to estimate the distance travelled, several
parameters play a role. Due to the vertical deflection of the tire changing for
different wheel speeds, the effective rolling circumference changes with vehicle
speed (RAJAMANI 2012), even though within tight boundaries (SCHRAMM et al.
2014). Additionally, tire air pressure, temperature, tire tread wear, and of course
changing the wheels or tires have influence on the actual rolling circumference.
To evaluate and model this influence, one can either use detailed models of tires
and environment or estimate the behavior using GPS measurements.
Using the dynamic wheel circumference available from the vehicle bus as a
starting point, the deviation of speed and distance estimates from their respective
real values is estimated using the distances between two GPS fixes and distance
estimates based on wheel speeds measurements, as in Equation (3.2). The
evaluation is based on a data set of around 8.5 hours or 365 km.
From the deviation in estimated distance for different speeds in Figure 3.1, one
can see that the speed-based distance is lower than the actual distance for higher
speeds. This is caused by the used wheel circumference being smaller than the
actual wheel circumference. The effect is increased for higher speeds by using
a constant wheel circumference.
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Figure 3.1: Deviation in estimated distance travelled in one second between GPS and wheel speeds
using a constant wheel circumference of 2.15m. Polynomial fit of the form a(dτv)

2 + bdτv depicted
as dashed line.

Fitting a function of the form a(dτv)
2+ bdτv into the data in a least-squares sense

yields the distance deviation

Δd = dGPS − dτv ≈ 0.0001

1m
(dτv)

2 + 0.0041dτv . (3.5)

To determine the behavior of the noise, this term is subtracted from the distance
deviation, as shown in Figure 3.2. A slight increase in the deviation with higher
speeds can be observed.
To determine the behavior over different speeds, the data is sorted into bins
of 5m/s width and the standard deviation is estimated for each bin, leading
to the stairstep graph in Figure 3.2. It can be seen that the standard deviation
varies between 0.04 m/s and 0.21 m/s but is neither decreasing or increasing
monotonically with increasing speed. The increased standard deviations for
the [5m/s, 10m/s) and [15m/s, 20m/s) bins is due to an increased number of
outliers. These happen e.g. in curves because the GPS position estimate tends
to cut corners in a different manner than the used vehicle model. The overall
standard deviation for the used data set is around σv = 0.15m/s.
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Figure 3.2: Deviation in estimated distance traveled in one second between GPS and wheel speeds
corrected by the polynomial term in Equation (3.5). Standard deviation estimates for the 5m/s bins
shown as stairs.

3.2.3 Yaw Estimate

Two sources of yaw rate estimates are available. To choose one of them, it
matters how much their values and properties differ. The vehicle provides an
unfiltered and unadjusted yaw rate together with a current offset estimate via
the vehicle bus. Additionally, a gyroscope is available that is calibrated by
compensating its slowly varying component. The pose estimates based on these
data sources are compared to the course and position estimates from the GPS
receiver to estimate their drift over time.
To this end, the DR model was initialized at a GPS position estimate and then
aggregated over time. The resulting position estimates for an exemplary log
file depicted in Figure 3.3 give an impression of their error. After around 7 km
through downtown and 19 km over highways, the position estimates based
on both the gyroscope and ESC data differ noticeably from the GPS position
estimates while the general shape of the trajectory can be recognized.
For the ESC yaw rate, the behavior with and without the offset estimate by the
ECU is compared. Its characteristics can be seen in Figure 3.4: One can see that
the estimates using the offset estimate (blue curve) exhibit noticeable changes
over time.
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Figure 3.3: Evolution of position estimates of GPS and point mass vehicle model based on gy-
roscope and ESC yaw rate with different offset estimates.
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Figure 3.4: Deviation in estimated yaw difference in one second between GPS and point mass
vehicle models using ESC yaw rate with and without ECU estimated offset, and with online
estimated offset as described.
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When ignoring this offset estimate (orange curve), the deviation remains rather
constant – though biased – for the whole time. The observed bias was determi-
ned to stay around −0.09 ◦/s for most of the logged data. It seems promising
to estimate the yaw rate offset online. For this purpose, it is interesting whether
it changes over different yaw rate values.
No strong correlation between these two values is present, as can be seen in
Figure 3.5. Hence, it is reasonable to only estimate a constant bias online.
This is done by finding the median of the deviations of the course differences
between the raw ESC yaw rate and the GPS course estimate. It is started as
soon as 20 GPS measurements are available and determined over a window of
at most 300 values.
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Figure 3.5: Deviation in estimate course difference in one second between GPS and point mass
vehicle models based on ESC yaw rate and gyroscope over GPS change in course estimate.

With this approach, the yaw bias is compensated to a large extent, compare
Figure 3.4, and the drift in the trajectory is kept within reasonable bounds, as
seen in Figure 3.3: Even after around 26 km of driving, the estimated trajectory
using the online ESC offset lies close to the GPS trace. To quantify the influence
of this correction, outliers that may occur due to incorrect GPS course estimates
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when standing and similar situations are filtered out by first determining the
median absolute deviation (MAD) and then removing all deviations that deviate
from the median more than twice the estimated population standard deviation
σ = 1.4826 ·MAD (WILCOX 2001). In a second step, the sample standard
deviation and mean are estimated from the reduced sample set.
The original yaw estimate based on the ESC yaw rate and the offset provided
by the ECU has a mean of μθ̇,offs = −0.009◦/s and a standard deviation
of σθ̇,offs = 0.111◦/s. Without this offset, a noticeable non-zero mean of
μθ̇,raw = −0.095◦/s, with a lower standard deviation of σθ̇,raw = 0.022◦/s
can be observed. When estimating the offset online and reducing it accordingly,
the mean can be reduced to μθ̇,onl = 0.0013◦/s with a standard deviation of
σθ̇,onl = 0.020◦/s.
The directly attached gyroscope is already calibrated by another system com-
ponent using information from an accelerometer. The resulting data does not
exhibit an almost constant offset as the ESC yaw rate does. Experiments with
the proposed online calibration could not improve the statistics of the sensor
readings. For this gyroscope, a mean deviation of μθ̇,gyro = 0.021◦/s with a
standard deviation of σθ̇,gyro = 0.069◦/s was determined. For these reasons,
both the online offset-corrected ESC yaw rate and the gyroscope yaw rate are
considered as data source for the yaw rate estimate.

3.3 Preprocessing Radar Data

Before fusing radar data into a localization algorithm, one should take a detailed
look at it. Objects classified as vehicles might be infrastructure, reflexions, or
in other ways not correctly identified environment. An example is shown in
Figure 3.6, where a lot of single measurements and small object clusters can be
seen along the bottom to top stretch in the figure. These objects are classified as
vehicles but correspond to posts of a fence rather than actual vehicles that have
driven to the left of the ego-vehicle. The only actual vehicles in this figure are
the green and yellow segments at the top left end of the trajectory.
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Figure 3.6: Radar objects with existence probability above 70% classified as cars and trucks over
a trajectory of around 600m (blue). Tracked objects with same id are depicted in the same color.
Lane-markings detect by the front-facing camera are depicted in black to provide orientation.

A similar behavior can be seen upon examination of radar objects classified as
guardrails. Furthermore, many stationary objects are classified as guardrails and
hence one can find many vehicles standing on or besides the road e.g. when
parking or waiting in a traffic jam among them. Therefore it is required to
preprocess the radar data and filter out objects that do not represent interesting
parts of the environment. This approach can also be described as a type of
gating method known in target tracking (MITCHELL 2007).

3.3.1 Moving Objects

As many stationary objects are classified as cars and trucks by the radar, the main
criterion to distinguish vehicles is their estimated velocity and actual movement.
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Hence, objects are filtered in this manner: When an object with a certain id first
appears, its position relative to the ego-vehicle is projected to a local coordinate
frame and its initial position and velocity is stored. With the next measurement
of this object, its new estimated position in local coordinates is determined and
it is checked whether it is plausible given the estimated relative velocity and
the traversed distance. If the new position is not plausible or too much time
has passed since the last observation, the object is reset. Otherwise, the new
position is stored along with the initial one and the distance between the newest
and initial position is compared to two thresholds: If the total distance is above
e.g. 8m, the object is accepted as a vehicle. Otherwise, if the total distance is
above e.g. 3m but the object has already been observed many times, it can also
be accepted. If the total distance is below both thresholds, the object is stored
and the system waits for the next measurement of the same object.
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Figure 3.7: Radar objects classified as cars and trucks after filtering stage.
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Additionally, objects further away from the ego-vehicle have proven less reliable
and hence vehicles with a distance above 70m from the ego-vehicle are not
forwarded. This allows to track moving objects further away and use them as
soon as they come closer. Objects that have been observed during high yaw rates
of the ego-vehicle are discarded as well. The result can be seen in Figure 3.7
where no unwanted measurements remain and only the vehicles depicted in
green and yellow at the top left situation are left.

3.3.2 Stationary Objects

In a similar manner, implausible stationary objects are sorted out. Only objects
that occur multiple times around the same projected absolute position are
accepted. As soon as an object is observed at a significantly different position,
the observation count is reset. Again, objects further away than 70m from the
ego-vehicle are not forwarded but used for the aggregation step.

3.4 Particle Filter Localization on Lanelet Map

This section describes a particle filter-based approach to lane-precise localization
on a lanelet map. After the description of the estimated system state, it leads
through the algorithm as shown in Figure 3.8.
The particles are initialized as described in Section 3.4.2. To use two different
input signals for the odometry prediction, two particle sets are used and their sta-
tes are varied in two separate prediction steps (Section 3.4.3). Map information
is incorporated in a map update (Section 3.4.4). The combined weight update
and sampling step used for the distances to detected lane-markings is motivated
and explained in Section 3.4.5 while the general measurement update step is
presented in Section 3.4.6. Section 3.4.7 shows the used resampling method
applied on the two particle sets, while, finally, in Section 3.4.8 the method for
producing a lane hypothesis from the particle set is shown.
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Figure 3.8: Overview of used particle filter algorithm and corresponding sections in this chapter.

3.4.1 System State

The system state chosen for the particle filter is the 2D-pose, i.e. of the form
(RABE et al. 2017)

xk = (xk, yk, θk) , (3.6)
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describing the vehicle’s position in 2D in a local coordinate frame (xk, yk)
and its heading (θk) for time step k ∈ N. Within this work, the heading θk
is generally used as a clockwise measure starting with 0 pointing towards the
North or y-axis.
To better handle vertical slopes and fully exploit the data from a 3-axis gyro-
scope, it would be beneficial to instead estimate the 3D-pose, i.e. also the height
and roll and pitch angles. However, this would increase the dimensionality
of the state space and require a much higher number of particles for a similar
result, leading to higher computational load (THRUN et al. 2005). Hence, the
system state is restricted to the 2D-pose and slopes are dealt with by increasing
the variance of the noise in the position prediction. The distance traveled on a
rather steep road with slope of 15% deviates only by around 1.12% from the
distance projected onto a flat ground.
As two sources for yaw rate measurements – ESC and directly attached gyro-
scope – provide acceptable quality but may still lead to trajectories drifting away
from the actual position over time, both measurements are incorporated. To do
this, one could use another filter stage before the particle filter. In this approach,
the particles are divided into two groups that each use one of the sources for
yaw rate measurements, very similar to the interacting multiple model (IMM)
algorithm (GENOVESE 2001). It can be easily expanded to incorporate further
vehicle models such as a bicycle model or one based on visual odometry when
suitable sensor data is available. This could also be understood as expanding
the system state xk to a fourth dimension, the discrete value mk which vehicle
model is currently used by a particle:

xk = (xk, yk, θk,mk) . (3.7)

However, this understanding can become confusing as the vehicle model state
mk is not varied within the prediction step. Hence, during this work, each
particle’s used vehicle model is treated separately from the other dimensions of
the system state.
To check whether a particle is still positioned on a mapped lanelet and to apply
the measurement update based on detected lane-markings, the distances and
orientation relative to the current lanelet are needed. Therefore, the system
state is actually not stored in a local coordinate frame but in lanelet relative
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coordinates as visualized in Figure 3.9. The currently used lanelet and segments
of the left and right polyline boundary are stored together with the lateral
distances to the boundaries, the longitudinal offsets to the beginning of the
current segment and the angle to the boundary. These can be easily transformed
into local or global coordinates.

oL

oR

tR

tL

R

L

Figure 3.9: Stored particle coordinates for particle shown in red on lanelet with left and right
boundaries in blue and green, respectively: Lateral distances tL, tR, longitudinal offsets oL, oR,
and angles αL, αR (RABE et al. 2016b).

3.4.2 Initialization

The best guess for the initial pose is provided by GPS. To account for the latency
of the GPS pose estimate, this position is predicted using a history of speed and
yaw rate measurements and the vehicle model used in the prediction step. The
used GPS receiver exhibits only small noise around the actual position but can in
some occasions exhibit a bias of more than 20m. This could be mitigated by first
estimating the bias by map-matching or observing the behavior of the position
estimate over a longer time period. However, this would mean that the system
requires some time and distance traveled before initializing the localization.
Therefore, the initial distribution p (x0|m) is assumed as a circular uniform
distribution with radius of 25m around the position estimate as proposed in
CHAUSSE et al. 2005. This also avoids a significant preference of a single
lane over others at initialization as would happen when assuming a Gaussian
distribution. The lanelet map m is taken into account by discarding any particle
that would be initialized off-road, i.e. not on any lanelet, immediately and
generating a new particle. The initial orientation follows a Gaussian distribution
around the GPS course estimate. To allow for two particle sets with different
prediction steps, each particle is randomly assigned to one of these sets.
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3.4.3 Prediction

In the prediction step, the intermediate belief

bel (xk) = p (xk|z1:k−1,u1:k) (3.8)

before the incorporation of the current measurement zk is estimated based on
the previous state xk−1 and the control input uk by sampling from

p (xk|xk−1,uk) (3.9)

(THRUN et al. 2005). In practice, this transition is performed using the motion
model and the control input consists of noisy measurements of the current
vehicle speed and yaw rate which are in general received asynchronously.
Accordingly, the prediction step is divided into separate position and orientation
predictions. The orientation prediction estimates the current vehicle heading
from the yaw rate measurement θ̇k as

θ
[i]
k = θ

[i]
k−1 −Δtk ·

(
θ̇k + ν

[i]
k

)
(3.10)

with the realization ν
[i]
k of νk ∼ N

(
0
◦
s , σ

2
θ

)
, where the standard deviation

σθ depends on the used yaw rate source. Depending on which particle set the
particle belongs to, either the bias-corrected ESC or directly attached gyroscope
yaw rate measurement and the respective time difference Δtk is used.
The position prediction is the same for both particle sets. Each particle i is
moved forward in its heading direction following1

x
[i]
k = x

[i]
k−1 + d

[i]
k · sin

(
θ
[i]
k−1

)
(3.11)

y
[i]
k = y

[i]
k−1 + d

[i]
k · cos

(
θ
[i]
k−1

)
(3.12)

where dk is the distance estimate

d
[i]
k = Δtk ·

(
vc,k + η

[i]
k

)
(3.13)

1Please note that the sine and cosine terms in Equations (3.11) and (3.12) are switched compared to
Equation (2.1) due to the definition of the heading θk as the clockwise angle with θk = 0 oriented
toward the y-axis in this work as opposed to the definition of θk = 0 oriented toward the x-axis
and increasing counter-clockwise in ESKANDARIAN 2012.
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where vc,k is the speed measurement at time step k corrected as described in
Equation (3.5) and η[i]k is the realization of a Gaussian random variable following

ηk ∝
⎧⎨
⎩
N
(
0m

s , 0.01
2v2c,k

)
, vc,k ≥ 10m

s

N
(
0m

s , 0.1
2 m2

s2

)
, vc,k < 10m

s .
(3.14)

Despite Section 3.2.2 showing that the deviation in estimated distance traveled is
not increasing for higher speeds, a noise component proportional to the current
speed measurement is chosen for speeds above 10m

s . This is due to experience
showing larger deviations between the position estimated by the particle filter
and the actual position for higher speeds, likely occurring because of suboptimal
sampling.

3.4.4 Map Update

An environment map m can be incorporated into the belief

belm (xk) = p (xk|z1:k−1,u1:k,m) (3.15)

by considering the probability p (xk|m) in the prediction step as

p (xk|uk,xk−1,m) ∝ p (m|uk,xk−1,xk) p (xk|uk,xk−1)

≈ p (m|xk) p (xk|uk,xk−1)

=
p (xk|m) p (m)

p (xk)
p (xk|uk,xk−1)

∝ p (xk|m) p (xk|uk,xk−1)

p (xk)

(3.16)

(THRUN et al. 2005). The approximation

p (m|uk,xk−1,xk) ≈ p (m|xk) (3.17)

omits the pose history leading up to xk. This may lead to likelihoods larger
than zero for pose estimates that moved through obstacles. Hence, for this
approximation to be valid, high-frequency pose updates have to be ensured
together with bounded process noise in the prediction step.
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It has to be noted that the map m itself is not a random variable and hence
probabilities conditioned on m are not to be understood in a mathematical
sense but rather as an intuitive description of a model for the environment
that allows for vehicles to travel on the road and with an orientation similar
to the orientation of the road at that point. As the area besides any lanelets is
considered impassable, p (xk|m) = 0 for all offroad positions.
In practice, this is implemented as follows: After every move prediction, every
particle is checked whether it is still within the boundaries of its previous lanelet.
In case a particle has left its previous lanelet to the left or right, it is assigned to
a respective neighbor lanelet if one exists. Otherwise, the particle is discarded.
When a particle leaves its previous lanelet towards the beginning or end, the
same procedure is performed. However, a lanelet may have multiple precursors
or successors: in this case, the particle is multiplied and travels on on each of
the precursing or succeeding lanelets. The weights of the copies are not changed
as most of them will soon leave their respective lanelets and be discarded.
Consider the case where a lane splits into two successors, A and B, that continue
into different roads: Say hypothesis A is correct and the odometry measurements
describe a vehicle movement that agrees with the shape of lanelet A – and,
possibly, its respective successors. On the other hand, hypothesis B describes
a noticeable different shape. Then, particles following hypothesis B will soon
reach the boundary of their respective lanelet. Then, for these particles a suitable
neighboring or succeeding will be searched. However, in most cases, this lanelet
will not have a neighbor on the respective side as hypothesis A has just split
away on that side. Hence, most of the particles having followed hypothesis B
will leave their lanelet and be discarded. The particles following hypothesis A,
however, will still have a weight that reflects its importance relative to possible
other hypotheses C, D, etc.
In case neither hypothesis A nor B are correct, it is possible in a similar way
that the motion model agrees with the shape of one of the hypotheses’ lanelets.
Then again, the particles following this respective hypothesis will continue to
have a weight that describes its importance relative to the correct hypothesis.
Alternatively, it is of course possible that particles on both hypotheses will soon
be discarded. It is not possible that both hypotheses are correct and very unlikely
that both contain lanelets that describe the future vehicle movement very well.
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This procedure will lead to a situation where the estimate for the absolute
position is false for a short period of time. However, it ensures the correct ratios
of lane probabilities after the next characteristic piece of vehicle trajectory for
the used model where all particles are always assigned to a certain lanelet.
Besides the position components xk, yk of the system state xk, the map also
provides information on the orientation θk. When a vehicle is traveling on the
road, it is likely that it is oriented similar to the current road segment. As stated
above, it is crucial to perform weight updates based on the map often enough
to avoid particles moving through impassable regions. For the yaw rate, the
area to avoid moving through is an orientation perpendicular to the current road
segment. With the measured yaw rates and bounded noise variables, this will
not happen even within a few time instances. Additionally, this assumption is
only coarse compared to orientation measurements from lane-marking detection.
Due to these reasons, the orientation map update is synchronized with lane-
marking detections and only evaluated when no lane-markings are detected.
Then, a weight

w
[i]
map,θ = max

{
cos
(
θ
[i]
map,L,k + θ

[i]
map,R,k

)
, wmap,θ,min

}
(3.18)

is determined, where θ[i]map,S,k, S ∈ {L,R} denotes the orientation difference
to the left and right lane-boundary at the current position, respectively. The
weight function using the sum of both angles rather than their average may
seem unintuitive and not resemble a proper likelihood but has lead to reasonable
results in experiments.
If lane-markings are observed, a weight based on the measured and actual
orientation to the lane-markings is determined as described in Section 3.4.6.3.

3.4.5 Combined Weight Update and Sampling
based on Detected Lane-Markings

Measurements from the lane-marking detection give a good estimate for the
position within and the orientation towards the currently used lane. Despite
the intuitive assumption that the position within the lane is negligible for deter-
mining the currently used lane if lane-changes are reported when the vehicle

43



3 Localization

laterally passes a lane-marking, knowing the position and orientation within the
lane allows for noticing lane-changes even by odometry when no lane-markings
can be detected. In this section, the spline model used for the polylines is
described first. The concept of combined weight update and sampling (CWUS)
is motivated and described in Section 3.4.5.2 and extended to a more general
version in Section 3.4.5.3.

3.4.5.1 Spline Interpretation of Lane Boundaries

The mapped polyline boundaries of the lanelets do not perfectly represent the
actual road boundaries. Therefore, optimized geometric Hermite (OGH) curves
as introduced by YONG and CHENG 2004 and applied to lane centerlines by
PETRICH et al. 2013 are used to interpolate between mapped points. OGH
curves are cubic splines that are mathematically smooth and minimize strain
energy.
With two points P0, P1 at the ends of a segment and two tangent vectors V0,
V1 at these points, compare Figure 3.10a, an OGH curve can be expressed as

Q(s) = (2s+ 1)(s− 1)2P0 + (−2s+ 3)s2P1

+ (1− s)2sa0V0 + (s− 1)s2a1V1

(3.19)

for s ∈ [0, 1], where

a0 =
6 〈P1 − P0,V0〉 ‖V1‖2 − 3 〈P1 − P0,V1〉 〈V0,V1〉

4 ‖V0‖2 ‖V1‖2 − 〈V0,V1〉2
, (3.20)

a1 =
3 〈P1 − P0,V0〉 〈V0,V1〉 − 6 〈P1 − P0,V1〉 ‖V0‖2

〈V0,V1〉2 − 4 ‖V0‖2 ‖V1‖2
(3.21)

(YONG and CHENG 2004). In the middle of lanelets, the tangent vectors can be
defined as

V0 = P1 − P−1, (3.22)

V1 = P2 − P0 (3.23)

for points P−1 and P2 before and after the current segment, respectively. At
lanelet beginnings or ends, the respective neighboring points P−1, P2 are the
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mean coordinates of the second last points of the previous and second points of
the following lanelets, respectively. In case of no previous or following lanelets,
they are defined in direction of the last segment as

P−1 = 2P0 − P1, (3.24)

P2 = 2P1 − P0. (3.25)

A resulting OGH curve it depicted in Figure 3.10b.

V0

V1

P0

P1

(a) Map input. (b) OGH spline.

Figure 3.10: Map input as polyline in blue and corresponding OGH spline for example map
segment. Points P0,P1 and tangent vectors V0,V1 for the second line segment are annotated.
First segments of two succeeding lanelet boundaries shown in black, assumed first and last segment
tangents in dashed green.

To determine the distance and angle of a particle to this curve, first the parameter
s that minimizes the distance

r(s) = Q(s)− x
[i]
k (3.26)

from the curve to the particle in a least-squares sense is determined using the
Gauss-Newton algorithm. When using the relative longitudinal offset of a
particle within a segment – compare Figure 3.9 – as initial guess

s0 =
oS

‖P1 − P0‖ , S ∈ {L,R} , (3.27)
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the estimated longitudinal offset

si = si−1 − 〈Q′(si−1), r(si−1)〉
‖Q′(si−1)‖2

(3.28)

exhibits only minor changes |si − si−1| < 10−3 in many evaluated cases.
Hence, within this work, only one step of this iterative algorithm is performed.
With this, the current distance to the lane boundary is the distance to the point
Q(s1) and the yaw difference is the difference between the direction of the
tangent Q′(s1) and the global heading of the particle.

3.4.5.2 Combined Weight Update and Sampling

In a straight-forward manner, the particles would now be weighted according to
the difference between their observed distance and yaw to the lane boundaries
and the respective values determined from their position on the lanelet map.
But as the likelihood is a lot tighter than the intermediate belief at the first
lane-marking observation after initialization, this can quickly lead to unwanted
effects: In a small simulation, a set of 50 randomly drawn particles is initialized
on three lanes as shown in the example realization in Figure 3.11a. Process
noise from the prediction step is emulated by having the particles move slightly
around their original position. All sensor input is ignored except for the distance
to the lane-markings – without loss of generality, it provides a constant distance
estimate of 2m to both the left and right marking, leading to the likelihood
shown in Figure 3.11b. After 10 filter steps of “prediction”, measurement update,
and resampling, the particle distribution may look like the one in Figure 3.11c.
Only few particles lie close to the likelihood’s peaks and are assigned a high
weight. Over time, clusters develop around a few particles that have been
initialized close to these maxima. As these surviving particles are in general not
equally distributed over several lanes and spread over them differently due to
different initial heading angles, the particle set does not represent the distribution
that we expect from the sensor measurements very well anymore: The particle
sets on the center and right lane are concentrated in four groups – despite no
sensor having given any information about the longitudinal position on the road.
This sample impoverishment has also been noted by MILSTEIN et al. 2002.
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(a) Initial particle distribution. (b) Likelihood.

(c) After 10 steps of prediction, weighting, and
resampling.

(d) After 10 steps of prediction, combined
weight update and sampling, and resampling.

Figure 3.11: Exemplary particle distributions on a three-lane road segment at initialization (a) and
after 10 filter steps (c, d). Exemplary Gaussian likelihood for lane-marking detection with standard
deviation σm,k = 0.5m for lane-width wl = 4m (b) (RABE et al. 2017). See text for more
detailed description.

Furthermore, the lane sumweights are supposed to indicate the lane probabilities.
After the last step of resampling – i.e. all particles have the same weight and the
number of particles indicates the lane probability as well –, there are now 27, 6,
and 17 particles on the respective lanes. Again, no sensor observation should
have discriminated the center lane against the left lane.
As this unwanted effect is strongest in sparse particle sets and tight likelihoods,
there are intuitive solutions against it: By increasing the number of particles, the
set becomes more dense and the effect is reduced. However, this also increases
the computational load. Alternatively, one could widen up the likelihood and
have more particles partially agree with it. This would mainly reduce how fast
the effect strikes and at the same time discard valuable information. Similarly,
increasing the process noise fights the symptom of clustering as the particles
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fill up the empty spaces more quickly – but again discards information from
odometry.
To make the best out of the computational resources and the available sensor
data, this section describes an alternative approach to the problem following
the ideas of the Kalman filter (KALMAN 1960) and the “likelihood” particle
filter mentioned in ARULAMPALAM et al. 2002. Using a combined weight
update and sampling step, one can achieve a particle distribution as shown in
Figure 3.11d after 10 filter steps. One can easily notice that the longitudinal
distribution is much less clustered than before and there are 16, 18, and 16
particles, respectively, on the three lanes – just as after initialization.
In the approach by Arulampalam et al., the particles are not sampled from the
intermediate belief and then weighted according to the likelihood but instead
sampled from the likelihood and weighted according to the intermediate belief
to estimate the product of both. When instead assuming the lateral component
of intermediate beliefs and likelihoods to be Gaussian, their product can be
calculated – resembling a Kalman filter approach – and then the new set of
particles can be sampled from the product distribution.
First, the mean μp,s,k and standard deviation σp,s,k of the particles constituting
the intermediate belief are estimated separately for each segment s of both left
and right boundaries of each currently used lanelet using a maximum likelihood
estimator

μ̂p,s,k =

∑ns

i=1 w
[i]
k x

[i]
k∑ns

i=1 w
[i]
k

(3.29)

and

σ̂2
p,s,k =

∑ns

i=1 w
[i]
k

(
x
[i]
k − μ̂p,s,k

)2
(∑ns

i=1 w
[i]
k

)
− 1

(3.30)

for ns particles in segment s. At forming lanes, on rural roads without center
lane-marking, or in situations with bad road marking, the detected lane might
not coincide with the boundary of the currently used lanelet. Therefore, also the
distance and orientation to the boundaries of possible neighboring, oncoming,
and – at splits – other lanelets are considered by finding the boundary segment
s for each particle i that minimizes the deviation between position on the map
and detected distance. When both the left and right lane-marking are detected,
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boundary segments are chosen that agree well for both sides – otherwise situati-
ons may occur where the determined corresponding boundary is the same for
both sides.
The means μm,k for the likelihoods are the observed distances to the left and
right lane-markings, their standard deviations σm,k are fixed beforehand. The
overall distribution for the respective boundary segment s is then a Gaussian
N
(
μc,s,k, σ

2
c,s,k

)
with (RABE et al. 2017)

μc,s,k =
μp,s,kσ

2
m,k + μm,kσ

2
p,s,k

σ2
p,s,k + σ2

m,k

(3.31)

and
σc,s,k =

σp,s,kσm,k√
σ2
p,s,k + σ2

m,k

. (3.32)

Sampling from the product distribution can be performed by shifting each
particle i laterally by (RABE and STILLER 2017)

Δx
[i]
k = μc,s,k − σc,s,k

σp,s,k
μp,s,k +

(
σc,s,k

σp,s,k
− 1

)
x
[i]
k . (3.33)

This shift describes how a sample from the intermediate belief distribution
followingN (μp,s,k, σ

2
p,s,k) should be moved in space to become a sample from

N (μc,s,k, σ
2
c,s,k). It is motivated as depicted in Fig. 3.12. First, a sample xk

from the intermediate distribution is taken and transformed to a sample of the
standard normal distribution:

xs =
xk − μp,s,k

σp,s,k
. (3.34)

This sample of the standard normal distribution can then be transformed to a
sample of the new distribution as

x′k = σc,s,kxs + μc,s,k. (3.35)
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The distance between both samples is

x′k − xk = σc,s,kxs + μc,s,k − xk

= σc,s,k
xk − μp,s,k

σp,s,k
+ μc,s,k − xk

=
σc,s,k

σp,s,k
(xk − μp,s,k) + μc,s,k − xk

=
σc,s,k

σp,s,k
xk − σc,s,k

σp,s,k
μp,s,k + μc,s,k − xk

= μc,s,k − σc,s,k

σp,s,k
μp,s,k +

(
σc,s,k

σp,s,k
− 1

)
xk.

(3.36)
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Figure 3.12: Transformation of a sample from one normal distribution N (μp,s,k, σ
2
p,s,k) to

another N (μc,s,k, σ
2
c,s,k) via the standard normal distribution.

By applying the lateral shift described in Equation (3.33), the set of particles
approximates the product of the intermediate belief and likelihood for the lateral
position component by the particle positions without weights being assigned.
This approach is not only applied directly after initialization, where the assumed
GPS distribution is much wider than the one of the lane-marking detection,
but also helps to keep consistency with the map in case of map errors such as
inaccurately digitized lane boundaries. While the dead reckoning might follow
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the true path of the vehicle, the goal is the localization relative to the map and
with this approach, the dead reckoning trajectory is corrected to comply with
the map without widening up the intermediate beliefs with huge process noise
in the prediction step.

3.4.5.3 Robust Combined Weight Update and Sampling

The approach described in the previous section is already very useful in terms
of performance and reproducibility of lane-precise localization. However, the
assumptions of normal distributed intermediate belief and likelihood are not
perfect: As described in Section 3.4.2, the initial particle distribution p (x0)

is uniformly distributed in the position dimensions. Hence, the intermediate
belief bel (x0) will be far from a normal distribution at the first lane-marking
observation. Additionally, the camera might detect other lines in its image than
the actual lane-markings, the lanelet boundaries in the map may not describe
the lane-markings well or the actually corresponding marking may not be
found. To be more robust against such outages, the likelihood is typically not
chosen as a pure normal distribution, but might be a lower-bounded normal
distribution – corresponding to an upper bounded influence function Ψ – or
a mixture likelihood consisting of a normal and a uniform part. Therefore,
the approach is extended to mixture distributions for both the intermediate
belief and the likelihood. To achieve this, it is necessary to first estimate the
intermediate belief bel (xk) and then transform the particles to fit the product
distribution.

Estimating the Intermediate Belief When defining the parameter vector

Θ = {θ1, θ2} = {{π1, a1, b1} , {π2, μ1, σ1}} (3.37)

with π2 = 1− π1 and shorthands Ui and Ni for the uniform distribution

Ui = U (x; ai, bi) =

{
1

bi−ai
, x ∈ [ai, bi]

0, else,
(3.38)
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and the normal distribution

Ni = N (x;μi, σi) =
1√
2πσi

exp

(
− (x− μi)

2

2σ2
i

)
, (3.39)

the problem of estimating the mixture intermediate belief can be written as
estimating a distribution of the form (RABE and STILLER 2017)

g (x;W,Θ) = π1f1 (x;W, θ1) + π2f2 (x;W, θ2)

= π1U1 + (1− π1)N1

(3.40)

with particle weightsW =
{
w[1], . . . , w[N ]

}
. To handle each particle according

to which part of the distribution it belongs to, the probability (RABE and
STILLER 2017)

φi,j = p
(
z[i] = j

∣∣∣x[i];w[i],Θ
)

(3.41)

that a particle i belongs to the component fj , j ∈ {1, 2} has to be estimated
as well. This can be done using an iterative expectation maximization (EM)
algorithm to maximize the expected complete data log likelihood (CORETTO

and HENNIG 2011; GEBRU et al. 2016)

Θ̂ = argmax
Θ

E [ln (g (X|W,Θ))] . (3.42)

The expectation can be written as (RABE and STILLER 2017)

Q
(
Θ,Θ(t)

)
= E [ln (P (X,Z|W,Θ))]

=

N∑
i=1

ln

⎛
⎝ 2∑

j=1

πjfj

(
x; θ

(t)
j , w[i]

)⎞⎠ (3.43)

for step t of the algorithm with

f1(x; θ1, w
[i]) = (U (x; a1, b1))

w[i]

(3.44)

and
f2(x; θ2, w

[i]) = (N (x;μ1, σ1))
w[i]

. (3.45)

with the weight w[i] of particle i. Any w[i] �= 1 corresponds to a w[i]-fold
observation of the respective sample or particle. This is intuitive for integer
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w[i] but can be easily extended to real numbered weights (GEBRU et al. 2016).

In the next step, GEBRU et al. replace
(N (μ, σ2

))w[i]

by N
(
μ, σ2

w[i]

)
, which

is proportional to
(N (μ, σ2

))w[i]

. While this scaling may be irrelevant in the
Gaussian-only mixture GEBRU et al. are dealing with, it has to be taken care
of in the uniform/normal mixture case. Hence, it seems more intuitive to use(N (μ, σ2

))w[i]

and carry w[i] through the derivation, leading to (RABE and
STILLER 2017)

Q
(
Θ,Θ(t)

)
=

N∑
i=1

2∑
j=1

(
φ
(t)
i,jw

[i] ln (πjfj)
)

=
N∑
i=1

(
φ
(t)
i,1w

[i] ln (π1f1) + φ
(t)
i,2w

[i] ln (π2f2)
)

=
N∑
i=1

(
φ
(t)
i,1w

[i]

(
lnπ1 + ln

1[a1,b1]

b1 − a1

))

+

N∑
i=1

(
φ
(t)
i,2w

[i]

(
ln

1− π1√
2πσ1

− (xi − μ1)
2

2σ2
1

))
(3.46)

with fj = fj

(
x; θ

(t)
j , 1
)

for better readability. Following CORETTO and

HENNIG 2011, one may choose a1 = mini x
[i] and b1 = maxi x

[i]. The other
parameters can be found through derivation: As

∂Q
(
Θ,Θ(t)

)
∂μ1

=

N∑
i=1

(
φ
(t)
i,2w

[i]x
[i] − μ1

σ2
1

)
!
= 0, (3.47)

∂Q
(
Θ,Θ(t)

)
∂σ1

=

N∑
i=1

(
φ
(t)
i,2w

[i]

(
− 1

σ1
+

x[i] − μ1

σ3
1

))
!
= 0, (3.48)

and
∂Q
(
Θ,Θ(t)

)
∂π1

=

N∑
i=1

(
φ
(t)
i,1

1

π1
+ φ

(t)
i,2

1

π1 − 1

)
!
= 0, (3.49)

we find the parameters for the next iteration as (RABE and STILLER 2017)

μ
(t+1)
1 =

∑N
i=1 φ

(t+1)
i,2 w[i]x[i]∑N

i=1 φ
(t+1)
i,2 w[i]

, (3.50)
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σ
(t+1)
1 =

√√√√√∑N
i=1 φ

(t+1)
i,2 w[i]

(
x[i] − μ

(t+1)
1

)2
∑N

i=1 φ
(t+1)
i,2 w[i]

, (3.51)

and

π
(t+1)
1 =

∑N
i=1 φ

(t+1)
i,1 w[i]∑N

i=1 w
[i]
(
φ
(t+1)
i,1 + φ

(t+1)
i,2

) =

∑N
i=1 φ

(t+1)
i,1 w[i]∑N

i=1 w
[i]

, (3.52)

with

φ
(t+1)
i,j =

π
(t)
j fj

(
x[i];w[i], θ

(t)
j

)
g
(
x;W,Θ(t)

) . (3.53)

Iterating can be stopped when the change in the parameters becomes small.

Sample Transformation The intermediate belief estimated this way can be
used to extend the combined weight update and sampling step to mixture
distributions. As the parameters of the likelihood are self-defined except for the
mean of the normal part, one can calculate the resulting posterior as (RABE and
STILLER 2017)

(π1U1 + (1− π1)N1) · (πmUm + (1− πm)Nm) =

π1πmU1Um + π1 (1− πm)U1Nm+

(1− π1)πmUmN1 + (1− π1) (1− πm)Nc

(3.54)

with Ui and Ni as in Equations (3.38) and (3.39), respectively, and μc and σc

as in Equations (3.31) and (3.32). Um = 1[am,bm] (bm − am)
−1 describes the

uniform component of the mixture likelihood, where the boundaries am and
bm are chosen as the respective distances to the left and right boundaries of
the road.
Each particle i can now be transformed to be a sample of the product distribution.
This transformation depends on whether it belonged to the uniform or normal
part of the intermediate belief and on which part of the likelihood is applied.
This can be statistically modeled with realizations of two independent uniform
random numbers ri, qi ∈ [0, 1] as depicted in Figure 3.13.
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Particle i

ri ≤ φi,1?

particle from U1 particle from N1

qi ≤ πm?

do nothingtransform from
U1 to U1Nm

qi ≤ πm?

transform from
N1 to Nc

yes no

yesno yes no

Figure 3.13: Decision tree for combined weight update and sampling with mixture intermediate
belief and likelihood, following (RABE and STILLER 2017).

The transformation from N1 to Nc is performed as in Equation (3.33). To
transform a sample from the uniform U1 to the cut off Gaussian U1Nm, one
can go via the standard distributions U (x; 0, 1) and N (x; 0, 1) (RABE and
STILLER 2017). For this purpose, one normalizes

x[i](1) =
x[i] − a1
b1 − a1

, (3.55)

then transforms from the uniform to the normal distribution as

x[i](2) =
√
2 · erf−1

(
2x[i](1) − 1

)
, (3.56)

and finally
x[i](3) = σmx

[i](2) + μm. (3.57)

Like this, the samples x[i] = a1 and x[j] = b1 are transformed to x[i](3) = −∞
and x[j](3) = ∞, respectively, which obviously cannot be samples of the cut
off Gaussian U1Nm. This can also happen to other samples. Therefore, all
resulting samples with x[i](3) > b1 or x[i](3) < a1 are replaced by random
samples from U1Nm.
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Sample Transformation for Correlated Outliers Errors in the lane-marking
detection may stem from misdetections, where e.g. shadows, bitumen lines,
guardrails, or other linear structures are detected rather than the actual lane-
marking or road boundary. Due to this and the tracking performed within the
lane-marking detection, misdetections occur mostly not individually but in
batches. Hence, approaching erroneous measurements by randomly assigning a
particle to either component of the mixture distribution at each measurement
may lead to further errors in the localization.
With this in mind, the particle state can be extended by two boolean variables
that define whether lane-markings on the left and right side can currently be
trusted. To have particles in the not reliable state for more than one time step,
this can be modeled as a Markov chain with the transition probabilities p12 and
p21 chosen according to the desired stationary behavior, as seen in Figure 3.14.

reliable not reliable p22

p21

p11

p12

Figure 3.14: Markov chain with states whether lane-marking is reliable or not.

Given a desired stationary not reliable probability p2 = πm and one transition
probability, e.g. p21, one can determine the other transition probabilities as

p11 =
1− p2 − (1− p22) p2

1− p2
,

p12 = 1− p11,

p22 = 1− p21.

(3.58)

The given transition probability p21 can be chosen such that a desired average
length of stay in not reliable state is achieved. These states are updated in
every resampling step using a random number from a uniform distribution
U (0, 1). Now, the particle’s state determines whether it is assumed to be part
of the uniform or Gaussian part of the likelihood and the lower decisions in
Figure 3.13, “qi ≤ πm?”, are replaced by “particle in not reliable state?”.
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3.4.6 Measurement Update

In the measurement update step, the weight

w
[i]
k ∝ p

(
z1:k

∣∣∣x[i]
k

)
(3.59)

is calculated using the likelihood of incoming measurements zk given the
current particle state. This leads to the set of weighted particles approximating
the posterior belief

bel = p (xk|z1:k,u1:k) . (3.60)

For each type of measurement zs,k and particle i, a separate weight w[i]
s,k is

determined. The new overall weight is determined as the product of the indivi-
dual weights determined in that time instance k with the previous weight of the
particle w[i]

k−1:

w
[i]
k = w

[i]
k−1 ·
∏
s

w
[i]
s,k. (3.61)

As the sensor measurements arrive in general asynchronously, the product is
calculated only over the respective weights w

[i]
s,k in time instance k. In the

practical implementation, the particle weights are stored in a linear scale and are
normalized to sum to 1 whenever a resampling step is performed. Figure 3.15
gives an overview of the sensor data used in the measurement update step
which are shown in more detail within this section. Detected lane-markings
are depicted as well as their angle is used for a weight update. The use of the
lateral distance to them in a combined weight update and sampling step has
been motivated and described in Section 3.4.5.

Measurement Update

moving radar objects

stationary radar objects

blind spot monitoring

angle to lane-marking

Figure 3.15: Overview of sensor data used in measurement update.
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3.4.6.1 Radar Data

Observed radar objects can give a hint where on the roadway the ego-vehicle
is located. Intuitively, other moving vehicles should drive on the road while
guardrails should be situated next to it. With the relative position of detected
and prefiltered objects, every particle can be weighted according to whether
an observed object is plausible given its current position. For this purpose,
the relative coordinates of an object are projected from each particle and the
smallest distance d from the resulting position to the surrounding lanelets is
determined, with positions on lanelets denoted with negative distances d < 0m.
Then, a weight is determined depending on the plausibility of the calculated
distance, i.e. (RABE et al. 2017)

w
[i]
radar =

⎧⎨
⎩exp

(
− d2

2σ2
radar

)
, d > 0m

1, else
(3.62)

for observed moving cars and trucks and

w
[i]
radar =

⎧⎨
⎩1, d > 0m

exp
(
− d2

2σ2
radar

)
, else

(3.63)

for observed guardrails. In both cases, the weight is lower bounded with minimal
weights wradar,car,min and wradar,guardrail,min, respectively.
However, objects might be erroneous in their relative position and classification.
Thus, an average contradiction value is determined as

r =

n∑
i=1

1− w
[i]
radar

1− wradar,t,min
, (3.64)

where wradar,t,min is the minimal weight for the respective object type
t ∈ {car, guardrail}. This summand is chosen such that the importance weig-
hts assigned to particles to which the observation complies perfectly add no
value to r, those with coarse contradictions add value 1, and those in between
are partly counted depending on their distance. If this value exceeds a threshold
rth, it is assumed that the measurement is erroneous. In that case, the weights
are not applied to the particles.
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3.4 Particle Filter Localization on Lanelet Map

A series of contradictions can be an indicator that the filter has converged to a
wrong lane. Therefore, it is kept track how often an observed car or truck leads
to such many contradictions that r < rth. If that happens at least 5 times in one
second, a number of new particles is created to provide hypotheses that better
fit the current observations. Furthermore, the localization is set unavailable
(compare Section 3.4.8) for half a second. Objects classified as guardrails are
not used for this partial reinitialization as even after filtering them, they still
contain many erroneous measurements.

3.4.6.2 Blind-Spot Monitoring

The idea behind observations from the blind-spot monitoring system is the same
as for vehicles detected by the front radar. The difference is that it is only known
whether another vehicle is observed in the blind spot and not where exactly it
is. Therefore, the weight can only take fixed values for each side. It depends
on whether a neighboring lane in the direction of an observed vehicle exists
according to the map or not:

w
[i]
BSM,L =

{
1, lane exists to the left

wBSM,min, else
(3.65)

for observed vehicles on the left side, and accordingly for the right. If a vehicle
is observed on only one side, the overall blind-spot monitoring weight is the
weight for the respective side. Otherwise, the overall weight

w
[i]
BSM = w

[i]
BSM,Rw

[i]
BSM,L (3.66)

is used.
As for the radar objects detected by the front radar, the number of contradictions
for each observation is counted and the weight is not applied if it exceeds a
threshold. Due to the high reliability of the blind-spot monitoring system, a
partial reinitialization with new particles is already triggered for two highly
contradicting observations in one second.
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3.4.6.3 Angle to Lane-Marking

The observed angle θmarking,k to the lane-marking used in a classical weight
update with

w
[i]
marking = max

{
cos
(
θmarking,k − θ

[i]
map,k

)
, wmarking,min

}
(3.67)

with the angle θ[i]map,k to the tangent to the OGH curve.

3.4.7 Resampling

When importance weights from all measurements have been applied to the
particles, the variance in the particle weights has increased. Eventually, the
particle set will contain few particles with high weight and many with negligibly
low weight, known as particle degeneracy (DOUCET et al. 2000). This problem,
however, can be solved by performing a resampling step.
In this approach, resampling is performed whenever the effective sample size
(DOUCET et al. 2000)

neff =
1∑n−1

i=0

(
w[i]
)2 (3.68)

falls below a threshold nth = 0.8n. In the resampling step, new particles are
drawn from the original set according to their importance weights w[i]. To
reduce variance compared to randomly drawing from all particles, a systematic
resampling method widely used in literature (DOUC and CAPPÉ 2005; DOUCET

and JOHANSEN 2009; HOL et al. 2006; HWANG and SUNG 2013) is used. It
should be noted that it is not guaranteed for the general case that this resam-
pling scheme leads to particle sets more consistent with the true probability
distribution (DOUC and CAPPÉ 2005).
However, the main goal of the localization system is to figure out the currently
used lane and it is crucial to keep the correct hypothesis alive. Therefore, a
component of niching known from genetic algorithms (BIENVENÜE et al. 2002)
is added where each lanelet is considered as a niche with its respective particle
population: The empirical probabilities nl

n of all used lanelets l after resampling
are compared to the estimated probabilities

p̂l =
∑

xi on lanelet l

w[i] (3.69)
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before resampling. Three cases can be distinguished:

1. nl > �np̂l�: too many new particles; discard nl−�np̂l� random particles
on lanelet l from new particle set,

2. nl = �np̂l�: new particle number okay, and

3. nl < �np̂l�: too few new particles; sample �np̂l�−nl additional particles
on lanelet l into new particle set.

This approach tends to favor lanelets with small estimated probability.
During resampling, most new particles are assigned to the prediction group
their ancestor belonged to. A small percentage of particles can randomly mutate
to the other group – or one of the others, in case of more groups. Like this,
particles from a vehicle model or yaw rate source that currently fits the actual
trajectory only badly are automatically reduced by being assigned lower weights
in the measurement update and then being discarded in the resampling step.
Whenever both models describe the vehicle’s behavior equally well, the number
of members of both groups will level out over time.

3.4.8 Lane Hypothesis and Availability

The output of the algorithm is the hypothesis on the currently used lane and the
estimated probability mass function over all available lanes. To find the lanelet
probability estimates, first all lanelet sum weights p̂l are calculated according to
Equation (3.69) and then the lanelet with maximum sum weight

lhyp = argmax
l

p̂l (3.70)

is determined. In the evaluation, longitudinal positioning is not in the main
focus and the particles may span over some short succeeding lanelets even with
converged filter. In these cases, the probability estimate on the lanelet hypothesis
p̂lhyp would not properly describe the lateral positioning. Therefore, the sum
weights of lanelets directly before and after the hypothesis are added to the
evaluation probability p̂e,l. In the example particle distribution in Figure 3.16,
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the hypothesis is lanelet 4 and the corresponding evaluation probability estimate
adds the probability estimates for lanelets 3 and 5:

p̂e,4 = p̂4 + p̂3 + p̂5. (3.71)

The same is performed for all neighbors of the hypothesis lanelet, i.e.

p̂e,1 = p̂1 + p̂0 + p̂2 (3.72)

for the left neighbors and

p̂e,7 = p̂7 + p̂6 + p̂8 (3.73)

for the right neighbors, and then continued in the same manner on further
occupied lanelets starting with the remaining lanelets with highest sum weight.

0 1 2

3 4 5

6 7 8

Figure 3.16: Example particle distribution on nine lanelets. Outer lanelet boundaries are shown in
blue and green, respectively, and inner ones in dashed gray.

The value of the highest evaluation probability maxl p̂e,l can be seen as an
indicator whether the algorithm has converged onto a single lane and whether its
result is reliable. If this value is above a threshold probability pth, the system is
considered available. This threshold is of course an important design parameter
as it allows for a tradeoff between high availability and low error probability. If
the value is chosen very low, the system will be available in most cases but it is
likely to accept a wrong solution in ambiguous situations. If the value is chosen
too high, the error probability will drop but the system will rarely be available.
Apart from the evaluation probability, also contradictions by observations of the
blind-spot monitoring and front radar (Sections 3.4.6.1 and 3.4.6.2) can reduce
the confidence in the result and set the system unavailable.
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3.5 Localization on Commercial Map

For the use in a lane-level navigation system, a probability mass function
over possible lane indices in the given situation is required. The lanelet l
with the highest evaluation probability argmaxl p̂e,l defines the situation and
the evaluation probabilities for all neighboring lanelets are determined. Lane
indices are counted from 0 on the left to nlanes − 1 on the right. In the example
of Figure 3.16, we assign probabilities to the left (0), middle (1) and right
(2) lane. Aggregated particle weight on lanelets that are no neighbors of the
lanelet hypothesis is not considered, but the probabilities are not re-normalized.
Therefore the sum of the lane index-based probability mass function can be
lower than 1.

3.5 Localization on Commercial Map

Current commercial maps used within automotive navigation systems are not
designed for lane-level localization. While they feature the number of lanes and
how they are connected over complex intersections and highway interchanges,
geometry data is only available on road link level. This lack of lane-level
geometry data is detrimental for a localization solution that relies on vehicle
odometry. To deal with this, the localization scheme developed in Section 3.4 is
adapted in several aspects as described in the following section.
First, map data is preprocessed automatically before using it for localization to
exploit available hints on lane-level geometry as shown in Section 3.5.1. The
filter itself is adapted in some general aspects that are described in Section 3.5.2.
These include the use of additional data available in the map as well as the
handling of unclear situations. Furthermore, besides a classical PF method
described in Section 3.5.3, an alternative that combines an EKF for in-lane
positioning and a PF for lane assignment is developed (Section 3.5.4).

3.5.1 Preprocessing Map Data

In the preprocessing step, the available map data is exploited to achieve an
estimate for the lane-geometry and provide hints to the algorithm in unclear
situations. The preprocessing consists of several individual steps described in
the following.
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3 Localization

3.5.1.1 Lane Offset to Centerline

According to digitalization guidelines, the road centerline lies in the middle
of the available through lanes. Special lanes such as turn, acceleration, and
deceleration lanes are not considered when determining the middle of the road.
This is visualized in Figure 3.17: If turn lanes are equally distributed on the
left and right side, the centerline is in the middle of the roadbed. If different
numbers of turn lanes occur on both sides, the centerline does not describe the
center of the roadbed. This offset of the centerline to the left is determined in a
the first processing step as

oi =
nspecial lanes left − nspecial lanes right

2
, (3.74)

where left and right are the respective directions seen in digitalization direction.

turn lane

through lane

through lane

turn lane

centerline
o1 = 0

(a) Centerline in middle of roadbed.

turn lane

through lane

through lane

through lane

centerline
o2 = 0.5wl

(b) Centerline with offset.

Figure 3.17: Examples for position of centerline in roadbed depending on type of lanes.

3.5.1.2 Shape Adaptation at Merges and Bifurcations

Link centerlines are digitized such that their respective end points share the
same coordinate. This leads to a distortion of lane geometries as depicted for a
simple case in Figure 3.18a: Two links, A with two lanes and B with one lane,
merge into link C with three lanes. A corrected merge in this situation might
look like the one shown in Figure 3.18b. Here, all three lanes from links A and
B turn smoothly into link C. This can be achieved by moving the last shape
point of the two merging links.
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link A

link B

link C

(a) Uncorrected.

link A

link B

link C

(b) Corrected.

Figure 3.18: Digitalization at merge of two links A, B into one link C.

However, in general the numbers of lanes do not match perfectly and some of
the links may have a previously determined lane offset. Sometimes, bifurcations
or merges happen at intersections and further links share the same node, or one
link splits into three links at trifurcations. Hence, in a first step, possible links
that make up a bifurcation or merge are collected by comparing the direction of
the link with the most lanes to the directions of the other links. If the difference
in lanes to and from the considered node is at most 1, the shape points of
the merging or splitting links (A and B in Figure 3.18) are moved laterally to
the direction of their first or last segment, respectively. Defining the direction
corrected lane offsets

o′i =

{
oi, regarded node is reference node

−oi, else
(3.75)

and using the numbers of lanes nlanes,i of the three links i ∈ {A,B,C}, the
displacement can be determined as

dA = wl

(
1

2
(nlanes,A − nlanes,C) + o′A + o′C

)
(3.76)

and

dB = wl

(
1

2
(nlanes,C − nlanes,B) + o′B + o′C

)
. (3.77)

A possible third link at a trifurcation or merge of three links is not moved.

3.5.1.3 Spline Geometry

Commercial maps may be even more angular than lanelet maps. Therefore,
OGH splines as described in Section 3.4.5.1 are used as well when evaluating
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distances to lane-markings. The map data provide entry and exit angles for
many links to their neighbors that describe the orientation of a vehicle when
entering of leaving a link. Of these angles, the one closest to the direction of the
last segment is used for the direction of the tangent at the end of the spline. If
no entry or exit angles are available, the direction of the first or last segment,
respectively, is used.

3.5.1.4 Additional Lanes

Current infotainment maps contain turn lanes in situations such as highway
interchanges and complex urban intersections. However, these data are not
available everywhere. For many links, only the through lanes are attributed. In
these cases, one cannot be completely sure whether a turn lane exists. To cope
with this problem, possible turn lanes are introduced. Given that no information
about turn lanes is available in the map for a certain link, it is checked into
which direction one can turn from that link for all allowed travel directions.
If it is possible to turn right, a possible turn right lane is added. For turn left
maneuvers, a possible turn lane is only added for one-way links: The area of
the possible turn lane is already occupied by the lanes for the oncoming traffic
and the evidence for a turn lane is not strong enough to change the position of
available through lanes.

link A link B

link C

link D
link E

Figure 3.19: Intersection with possible turn lanes depicted as striped areas.

The concept is visualized in Figure 3.19: Without turn lane information for the
five depicted links, one can assume that it is possible to turn left or right from
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link B. Link B is a one-way road and hence can have turn lanes on either side.
From link C, one may only go straight or turn right. Accordingly, a turn lane
might exist on the right side. Link D allows to turn left into E or go straight.
However, it is a two-way road and no turn lane can be produced in this situation.
For link A, it is only possible to move straight onto link B; in this case, no
possible turn lanes are added. Section 3.5.2.3 describes how the localization
filter deals with this uncertain type of lanes.

3.5.1.5 Lane-Width

For the map preprocessing, a constant lane-width is assumed for all road links.
However, experience has shown that highway ramps and roundabouts feature
wider lanes. Hence, they are treated as being 50% wider than the rest of the
lanes. Furthermore, lanes of different roads are not the same width in practice.
For example, highway lanes are wider than lanes in residential areas. For the
combined PF/EKF localization, it is straightforward to estimate the current
lane-width as described in Section 3.5.4.1. The pure PF scheme relies on a fixed
lane-width estimate for all links.

3.5.1.6 Intersection Polygons

Lane geometry on intersections is not available in current infotainment maps.
Instead, complex intersections are digitized with up to four nodes as depicted in
Figure 3.20. The geometry that results from this digitalization and intersection
internal links always being mapped as having only one lane, does not represent
actual trajectories over the intersection well.
Using lane-marking or object observations together with this map in a loca-
lization filter, can lead to irritating results: For example, the ego-vehicle is
located at the cyan triangle in Figure 3.20 and another vehicle is turning left
over this intersection and is noticed by the radar sensor – depicted as the red
point. Projecting the relative position of the observed vehicle onto the map will
result in it being assumed somewhere in the middle of the intersection and off
any mapped road for most particles close to the real position.
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•
•

•

Figure 3.20: Centerlines at complex intersection and resulting lane geometry. Actual ego-vehicle
position depicted as cyan triangle, an observed vehicle as red point. Two alternative hypotheses for
ego-vehicle position depicted as gray triangles with corresponding projections of observed vehicle
as gray points.

vehicle is projected onto actual links. Hence, the wrong par
ticles would be given a higher importance weight.
Similar to the actual geometry of lanes over intersections, the geometry of
turn lanes around traffic islands (“bypasses”) is often not represented well in
current maps. They are digitized separately only if one side is longer than e.g.
25m (HERE 2015) or 40m (TOMTOM 2013). Again, both the ego-vehicle and
observed other vehicles might travel over unmapped bypasses and distort the
localization result.
As a solution, intersection polygons are introduced. They describe an area of
an intersection in which hypotheses for the current position can travel freely
following vehicle odometry, without being affected by measurement updates. To
cover both the unknown lane geometry within an intersection and the possible
existence of bypasses around the intersection, their borders are drawn into the
oncoming links, compare Figure 3.21.
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3.5 Localization on Commercial Map

Figure 3.21: Complex intersection with intersection polygon.

3.5.2 Adaptations to Localization

Besides preprocessing the map, it is also necessary to adapt the localization
algorithm to the different type of map and its accuracy. Information collected
during preprocessing, such as possible turn lanes and intersection polygons
need to be incorporated in a meaningful way into the filter. These adaptations
are described in this section.

3.5.2.1 Link Transition

The map preprocessing steps toward better lane geometry described in Secti-
ons 3.5.1.1 and 3.5.1.2 already improve the continuity of mapped lanes. How-
ever, there remain situations where the correct transitions from one lane to
another are unclear: In a transition from two to three lanes (Figure 3.22a) with
both links having equal lane offset, the right lane of link A can lead to either the
right or center lane of link B. Similarly, when the lane offset changes by half a
lane but the number of lanes does not change (Figure 3.22b), the right lane of
link A can lead to either lane of link B. For the left lane of link A, however, it is
quite clear that it will connect to the left lane of link B.
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link A link B

(a) From two to three lanes.

through lane

through lane

link A
through lane

turn lane

link B

(b) A lane becomes turn lane.

Figure 3.22: Transitions between two links with unclear lane transitions.

This is handled based on the difference |nlanes,i − nlanes,j | of the number of
lanes and the offset difference |oi − oj | between a source link i and a target link
j. If the number of lanes is equal, |nlanes,i − nlanes,j | = 0 and the difference
in offset |oi − oj | < 1, particles are moved laterally by the difference in offset
d = (oi − oj)wl. For bigger differences in offset, it assumed that turn lanes
end or emerge and the geometry is acceptable. Hence, particles are not moved.
For a change in number of lanes by |nlanes,i − nlanes,j | = 1 and a diffe-
rence in offset of |oi − oj | = 1, particles are moved laterally by half a lane:
d = 0.5 (oi − oj)wl. If the offset of both links is the same, oi = oj , particles
are moved laterally randomly by half a lane, with 50% chance each for being
moved to the left or right. The same happens if one link has two lanes more
than the other, |nlanes,i − nlanes,j | = 2, and the offset differs by half a lane,
|oi − oj | = 0.5. In all other cases, the particles are not moved.

3.5.2.2 Direction Measurement

Similar to the lanelet instance of the particle filter localization, the particles
heading against the travel direction of their current link can be penalized. It
can be legitimate to drive against the travel direction of the current link, e.g.
when overtaking or going round another vehicle. However, this assumption is
only reasonable if the two direction lanes are not physically divided. Hence,
the penalty for going against intended travel direction is chosen differently,
depending on whether a physical divider is present, i.e. depending on whether
the link is one-way or not.
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3.5.2.3 Additional Lanes

In Section 3.5.1.4, possible turn lanes have been introduced. The filter has
to adapt to not certainly knowing whether these lanes actually exist. Hence,
they are seen as drivable for both the ego-vehicle and other vehicles. At the
same time, they are also considered as off-road and it is acceptable to observe
stationary objects that are projected onto these additional lanes.

3.5.2.4 Stationary Radar Objects

In general, roads with two carriageways separated by a physical divider are
digitized as two separate links. However, at many intersections, two-way
roads split up to incorporate small traffic islands to accomodate traffic signs or
traffic lights, compare Figure 3.23a. These traffic islands are often too small
or not relevant enough to navigation to digitize both carriageways separately
(Figure 3.23b).

(a) Reality. (b) Digital map. (c) Acceptable areas.

Figure 3.23: Small traffic islands in reality and digital map and acceptable areas for stationary
objects when traveling in rightward direction.

The assumption that stationary objects detected by the radar should be off-road
does not hold true anymore in this case: The traffic island area is mapped as
road. To handle this situation, not only stationary objects projected into off-road
areas are acceptable, but also a patch on the leftmost lane of oncoming traffic,
as depicted in Figure 3.23c for the case of moving in rightward direction.
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3.5.2.5 Lane Connectivity Measurement Update

Current maps contain information on lane connectivity at complex intersec-
tions. This information describes which lane of a link before the intersection
is connected to which lanes of which links after the intersection. Partially,
intermediate links are included or this information is even available at lane
configuration changes.
Small uncertainties or errors in longitudinal position estimation may lead to
incorrect lane estimates after a turn over an intersection. This effect can be
reduced by incorporating a measurement update step using lane connectivities.
To achieve this, the current lane and link on which a particle is moving is stored.
As soon as a particle reaches a new link – possibly over an intersection polygon –,
it is evaluated whether the previous and new lane are connected. If not, the
particle is assigned a reduced weight, i.e.

w[i]
conn =

{
1, lanes connected

wconn,min, else.
(3.78)

3.5.2.6 Lane-Marking Type Measurement

The commercial map contains lane-marking types for some of the lane segments.
These data can be used as a hint on the currently used lane: If the detected
lane-marking type matches the one in the map, a lane is more likely than one
without a match. However, the map and the lane-marking detection do not
differentiate between the same set of lane-marking types. Also, experience has
shown that some types are more easily confused than others. This leads to the
weighting matrix for the two lane-marking types shown in Table 3.1. The most
significant confusion is between solid / continuous markings and any broken /
dashed type. Confusion between different broken / dashed types is significantly
more likely and hence has a reduced impact on the particles’ importance weight.
In cases where the lane-marking types are not included in the digital map, a
simplified scheme is used. It is based on the highway assumption that the
outermost lane-markings are solid and inner ones are dashed. With the possible
turn lanes introduced in Section 3.5.1.4, all types of lane-markings are accepted
– i.e. the weight factor is 1 – as it is not sure whether these lanes actually exist.
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Table 3.1: Weighting matrix for lane-marking types when data is available in map

Observed type broken contin-
uous

broken
narrow

block
marking

Mapped
type

dashed 1.0 0.9 1.0 0.99

solid 0.95 1.0 0.95 0.95

short dashed 1.0 0.9 1.0 0.99

shaded blocks 0.99 0.9 0.99 1.0

other types 1.0 1.0 1.0 1.0

Furthermore, a central line dividing a roadbed into two groups of lanes with
different driving directions may be either solid or dashed. The resulting scheme
is shown in Table 3.2.

Table 3.2: Weighting matrix for lane-marking types when no data is available in map for different
positions relative to road boundary (r.b.) or road center

Observed type broken contin-
uous

broken
narrow

block
marking

≥ 1 lane to r.b. 1.0 0.975 1.0 1.0

no lane to r.b. 0.99 1.0 0.99 0.99

possible lane to r.b. 1.0 1.0 1.0 1.0

line is center line 1.0 1.0 1.0 1.0

When applying the lane-marking weight it must be noted that the camera sees
the road in front of the vehicle which might already be a different link in the
map. Furthermore, the longitudinal accuracy of lane-marking types is low in
the used map: type changes may be more than 20m shifted from where they
occur in reality. Hence, not only the lane-markings of the current link of each
particle is considered but also previous and following links if they have the same
number of lanes and the particle is close to the end of its current link.
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3.5.2.7 Lane Hypothesis

Just like for the particle-filter based localization on lanelet maps, the output of
this localization method is a hypothesis on the current lane and an estimated
probability mass function over all lanes of the current link. However, the evalu-
ation method described in Section 3.4.8 cannot be directly used for this filter:
To avoid fluctuation of the lane hypothesis probability whenever transitioning
from one link to another, the lane probabilities of the previous and following
links are added to the lane probabilities of the current link.
For any lanelet, the succeeding and preceding lanelets can be easily determined
and neighboring lanelets in general don’t share any precursors or successors. In
a commercial map with unclear lane geometry, the correspondences to lanes of
other links are not certain, as depicted in Figure 3.22. Hence, a similar heuristic
approach to the link transitions described in Section 3.5.2.1 is required.
If the succeeding or preceding lanelets are unclear, half of the lane probability
of each possible successor or precursor, respectively, is added to the lane proba-
bility at the current link, comparable to the transition scheme in Section 3.5.2.1.
Like this, a reasonable estimate for the lane probability mass function can be
achieved and fluctuation at link transitions can be reduced.
Additionally to the probabilities for lanes, also a probability estimate for inter-
sections is determined by summing the weight of all particles that are currently
within an intersection polygon, i.e.

p̂intersection =
∑

xi on intersection

w[i]. (3.79)

3.5.3 Particle Filter Localization

For the PF approach, each particle stores its 2D-pose (Equation (3.6)). However,
additional freedom of movement compared to the lanelet-based localization
is required: While for the lanelet map and the used data set, it was a valid
assumption that the vehicle is only driving within the boundaries of mapped
roads. When using a commercial infotainment map, some lanes or bypasses
around traffic islands might not be included in the map data. In Sections 3.5.1.4
and 3.5.1.6, possible turn lanes and intersection areas have been introduced.
These need to be integrated into localization.
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However, it is still possible that existing turn lanes are not in the map or bypasses
are further away from the intersection point as expected. In these cases, it is
necessary to allow particles to travel off-road. While the prediction step remains
the same, the measurement update has to be changed: Off-road, there is no
meaningful way to incorporate lane-markings as it is unclear to which lane
boundary observed lane-markings may correspond. Similarly, it is questionable
whether an off-road pose hypothesis is better when an observed vehicle is on-
road. Hence, particles are not immediately discarded when leaving a mapped
roadbed but instead are assigned minimal weight at every observation. This
avoids off-road particles being favored over on-road particles but reduces their
influence compared to particles on the road with every update.
The desired behavior at intersections is more clear: A particle shall move freely
when on an intersection and neither be preferred nor penalized over a particle
traveling on a normal road. Otherwise, the localization result might be distorted:
When a group of particles with a certain extent along the road approaches an
intersection, at some point some particles will be within the intersection polygon
and others will still be outside. If now a weight is applied to the particles that
favors either of the groups, the algorithm will converge to the favored part of
the particle distribution – which is not necessarily the more correct part.
Therefore, an intersection mode is introduced that is enabled as soon as at least
10% of the particles are located within an intersection polygon. In intersection
mode, no measurements updates that require knowledge of lane geometry or re-
lationship between lanes are applied on any particle. This includes observations
from BSM and updates using the digital map as well as the CWUS step based
on lane-markings. Updates from radar objects are applied. Vehicles may be
moving on any trajectory over the intersection, but also stationary structures like
signposts or traffic lights can be positioned on parts of the intersection. Hence it
is acceptable for both stationary and moving objects to be inside an intersection
polygon.

75



3 Localization

3.5.4 Combination of Particle Filter
and Extended Kalman Filter

Experience has shown that the geometric accuracy of current commercial info-
tainment maps leads to difficulties in tuning the described particle filter-based
approach for lane-level localization on this kind of map. During localization
on an accurate lanelet map, the filter relies on the accuracy of the vehicle
orientation estimate as it allows tracking lane-changes even without detected
lane-markings (Section 3.4). Even when interpolating the road geometry with
a spline, the orientation of mapped road in a commercial map is not reliable
and all observations regarding the orientation of the vehicle relative to the road
need to consider this insecurity of at least a few degrees. Hence, the particle
cloud is only kept together by the combined weight update and sampling step
and quickly diverges when no lane-markings are detected or the vehicle enters
an intersection. To fully cover the whole pose space, a much higher number of
particles would be required.
However, as the CWUS step introduced in Section 3.4.5 already borrows from
the Kalman filter for in-lane localization, it seems reasonable to divide the filter
into two components for in-lane localization and lane-assignment that interact
with each other as shown in Figure 3.24.
The digital map is preprocessed as before to describe intersection areas and
heuristically reconstruct lane geometries. Based on observed lane-markings and
the current vehicle speed, an EKF determines the lane-width and the vehicle’s
position and orientation within the lane (Section 3.5.4.1). This information,
the preprocessed digital map, and the remaining environment sensor data are
used to feed two particle filters: One performs the actual lane-assignment
(Section 3.5.4.2) by restricting particles to mapped road links and another
that handles intersection traversals (Section 3.5.4.3). Finally, the current lane-
hypothesis is determined (Section 3.5.4.4).
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Figure 3.24: Overview of used combined particle-/Kalman filter algorithm and corresponding parts
in this section.

3.5.4.1 In-Lane Localization

The in-lane localization component is an EKF that estimates the mean μk and
covariance matrix Pk of the system state

xEKF,k = (wk, ok, αk) (3.80)

describing the lane-width wk, offset to lane-center ok, and orientation to lane-
center αk at time instance k. For the filter, the road is assumed to be straight
and of constant width, leading to the prediction step

μ̄k = f (μk−1, vk,Δtk) =

⎧⎪⎪⎨
⎪⎪⎩
wk = wk−1

ok = ok−1 + sin (αk−1)Δtkvk

αk = αk−1.

(3.81)
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Linearization of this model leads to the Jacobian

JF,k =
∂f (x)

∂x

∣∣∣∣
x=x̂k−1

=

⎡
⎢⎣1 0 0

0 1 cos (αk)Δtkvk
0 0 1

⎤
⎥⎦ (3.82)

that is then employed in the prediction of the covariance matrix (THRUN et al.
2005)

P̄k = JF,kPk−1J
T
F,k +Rk (3.83)

with the process noise covariance matrix Rk.
In the measurement update step, either the left or right lane-marking may be
observed, leading to the two linear measurement models

zL =

[
dL
αL

]
= JH,k,L,zxk + qk,L =

[
z 1 0

0 0 1

]⎡⎢⎣wk

ok
αk

⎤
⎥⎦+ qk,L (3.84)

and

zR =

[
dR
αR

]
= JH,k,R,zxk + qk,R =

[
z −1 0

0 0 1

]⎡⎢⎣wk

ok
αk

⎤
⎥⎦+ qk,R, (3.85)

with the measurement noise qk,S for the respective side S ∈ {L,R} and
z ∈ {− 1

2 ,
1
2 ,

3
2

}
, depending on which lane-marking is observed: in different

situations, the observed left lane-marking may be either the closest left (z = 1
2 )

or right (z = − 1
2 ) lane-marking or the second lane-marking on the left (z = 3

2 ).
The same occurs accordingly for the observed right lane-marking. Of course,
z is in general not constant in time instance k and detection side S but these
indices are omitted for readability. Hence, the observation error

ek,S(z) = ‖zS − JH,k,S,zμ̄k‖ (3.86)

is evaluated for the three discrete values of z and z is chosen to minimize this
observation error

z = argmin
z

(ek,S(z)) = argmin
z

(‖zS − JH,k,S,zμ̄k‖) . (3.87)
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With the Kalman gain

Kk = P̄kJ
T
H,k,S,z

(
JH,k,S,zP̄kJ

T
H,k,S,z +Qk

)−1
, (3.88)

the new state estimate μk and covariance estimate Pk can be found as (THRUN

et al. 2005)
μk = μ̄k +Kk (zS − JH,k,S,zμ̄k) (3.89)

and
Pk = (I −KkJH,k,S,z) P̄k (3.90)

with S ∈ {L,R}.
Whenever |ok| > wk

2 , the estimated in-lane position has changed to an adjacent
lane. In this case, a lane-change signal is emitted that includes the information
whether the lane has changed to the left or to the right. Furthermore, the state
dimension ok is reset to

o′k = ok − sgn (ok)wk. (3.91)

3.5.4.2 Lane-Assignment

As previously, following multiple hypotheses for the current lane and vehicle
position is done with a particle filter-based approach. Particles can be either on
a road link or on an intersection. Samples on a mapped road link are treated as
follows.

System State For the lane-assignment on road links, the system state

xRL,k = (lk, ik, sk, yk) (3.92)

is estimated with the current road link lk, the current lane ik, link segment sk,
and the offset along this segment yk. Whilst this state looks four-dimensional,
it contains essentially only 1.5 degrees of freedom: it describes a position in a
two-dimensional space which is restricted to discrete lanes on links. ik describes
a discrete position lateral to the link while (sk, yk) contain the position along
the link.
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Initialization For the initialization, all links in the vicinity of the current
predicted GPS position estimate are determined and assigned a probability
according to their distance and orientation to the position estimate. Particles
are then initialized among these links following these probabilities. For this,
the closest point on the link to the GPS position estimate is determined. Then,
the particle is randomly assigned to a lane. Finally, the positional inaccuracy is
taken into account by moving the particles along the link randomly, following
the assumed variance of the GPS error.

Transformation from Intersection Mode If a particle is not initialized at the
very first start of the filter but is rather transformed from a sample leaving an
intersection, initialization differs in these aspects: The particles are not assigned
to the lanes following a uniform distribution. Instead, its stored lane from
before the intersection is considered. If lane connectivities are available from
the map, higher probabilities are assigned to lanes connected to the previous
lanes while other lanes are only considered with reduced probability. If no lane
connectivities are available and the lane structure is similar to the one before
the intersection – compare Section 3.5.2.7 –, the previous probabilities are used
to a smaller extent with a larger noise component. Lane-changes that have been
detected during intersection traversal are applied afterwards.

Prediction As the particle state does not contain a rotational component, only
speed estimates are used in the prediction step. Speed estimates are used similar
to Section 3.4.3. However, a noise component with larger variance is used to
account for the decreased accuracy of the map data.

Measurement Update Radar objects and BSM events are used in the measu-
rement update step as described in Section 3.4.6. However, GPS pose estimates
are also used in the update step to perform a kind of gating, comparable to
CHAUSSE et al. 2005; F. LI et al. 2017, but also including the GPS heading
estimate. For this purpose, for each particle the link segment orientation at the
particle’s position is used. It is defined as the linearly interpolated segment
orientation between the current segment and the previous or next segment for
all particles further than half a segment away from the link end. For particles
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close to the link end, the segment orientation from the map is used. It has to
be noted that using the wheel speeds for the particle prediction and in the DR
processing of the GPS receiver might lead to data incest problems (HÉRY et al.
2017). However, by only using the GPS position for eliminating particles far
away from the current GPS position estimate, this occurs to not pose a problem.
The absolute deviation

e
[i]
θ,k =
∣∣∣θ[i]l − θGPS,k

∣∣∣ (3.93)

between the particle heading θ
[i]
l and the GPS heading estimate θGPS,k is used

to assign a weight following

w
[i]
GPS,θ =

⎧⎪⎨
⎪⎩
1, e

[i]
θ,k ≤ 5◦

exp

(
−

(
e
[i]
θ,k−5◦

)2

2σ2
radar

)
, else.

(3.94)

Allowing maximum weight for all deviations below 5◦ and reducing the weight
only for bigger deviations allows to only punish particles on wrong links
or segments and not introduce unwanted effects on particles on inaccurately
mapped links.

Resampling As in Section 3.4.7, a systematic resampling step is applied
whenever the effective sample size falls below a fixed threshold. However,
the niching technique allowing particles on less populated lanes to survive, is
not used.

3.5.4.3 Intersection Mode

Any particle that enters an intersection polygon is transformed to intersection
mode and treated as follows.

System State In the intersection mode, the 2D-pose

xk = (xk, yk, θk) (3.95)

is estimated. This allows for free movement on the intersection where the
vehicle is not restricted to mapped lanes.
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Initialization Intersection particles are initialized based on the states of the
road link particle filter and the in-lane position EKF when entering an inter-
section. For this purpose, first the current global pose estimate x

[i]
k of each

particle is determined. Then it is moved laterally and rotated according to the
variances in these states estimated by the in-lane position EKF. This allows to
incorporate the uncertainty about the position and orientation within the lane
with the current position estimate on discrete lanes in a straightforward matter.

Prediction Prediction is performed based on speed and yaw rate measure-
ments as in the original particle filter described in Section 3.4.3.

Measurement Update As no lane structure is available on intersections, ab-
stract measurements from BSM and lane-marking types are not incorporated.
Furthermore, the structure of paved and drivable areas and stationary infrastruc-
ture in between is unclear. Hence, radar measurements are also not used. GPS
is used in the same way as for the road link mode of this filter.

3.5.4.4 Lane Hypothesis

A lane hypothesis can only be determined based on particles on road links.
In the first step, preliminary lane weights p̂′l,k, l ∈ {0, . . . , N − 1} are then
determined at time instance k as in the PF approach in Section 3.5.2.7. However,
if the current in-lane position estimate is close to the lane boundary and its
variance is non-zero, the system cannot be certain about on which lane the
vehicle is currently located. The same holds for arbitrary positions in the lane
for large variance values, i.e. when the estimated Gaussian posterior spans
over multiple lanes. Hence, in a second step, the previously determined lane
weights p̂′l,k are distributed over the existing lanes using the respective parts of
the posterior of the in-lane position as depicted in Figure 3.25: The overall lane
probabilities p̂l,k at time k are the sums of highlighted areas under all in-lane
position densities restricted to one lane l,

p̂m,k =

N−1∑
l=0

p̂′l,k

∫ (l+1)wk

x=lwk

1√
2πσ2

ok

exp

(
(x− ok − (l + 0.5)wk)

2

2σ2
ok

)
dx.

(3.96)
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In the shown example with preliminary lane probabilities p̂′0,k = 0.1, p̂′1,k = 0.7,
and p̂′2,k = 0.2 and an in-lane position estimate 1m left of the center of the
lane with a certain standard deviation, this leads to overall lane probabilities of
p̂0,k ≈ 0.25, p̂1,k ≈ 0.57, and p̂2,k ≈ 0.15. It can be seen that all preliminary
lane probabilities influence the overall lane probability of their left neighbor
in this scenario. If the in-lane position is accurately known, e.g. through
reliable and repeated lane-marking detection, the influence of preliminary lane
probabilities onto neighbor lanes is reduced.
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Figure 3.25: Influence of preliminary lane probabilities p̂′l,k of lanes l ∈ {0, 1, 2} onto the overall
probability p̂0,k of lane 0 for in-lane position estimate with non-zero variance. Probability densities
depicted scaled by

√
2πσ2 for better visibility.

83





4 Experimental Results

This chapter shows the performance of the presented localization solutions and
puts them in comparison. The main aspects of the performance are the system
availability and the error probability. In the first section, an introduction to the
evaluation methods and metrics is given. Section 4.2 presents the performance
results for the particle filter localization based on lanelet maps described in
Section 3.4. Then, the results for the approaches based on commercial map data
are given in Sections 4.3 and 4.4. Finally, a comparison between the presented
algorithms puts them into context.

4.1 Evaluation Methods and Metrics

The main part of the performance evaluation within this chapter is based on off-
line evaluations of data logged from a test vehicle. Offline evaluations allow for
parameter adjustment and repeated evaluation on the same data set. Especially
with approaches that contain random aspects – such as the particle filter – it is re-
quired to determine whether the performance spread between different runs stays
within reasonable bounds or is highly dependent on the realization of random
variables. The used test tracks are described in Section 4.1.1. Section 4.1.2
gives an overview of the used data set for the evaluation. In Section 4.1.3, the
evaluation logic is described: How is the ground truth determined and how is a
correct lane assignment defined?

4.1.1 Test Tracks

Evaluation of the localization solution is restricted to the area covered by the
used map. The particle filter-based localization described in Section 3.4 works
on a lanelet map that was generated manually based on satellite images. This
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map covers two main tracks in Sindelfingen/Böblingen and Stuttgart and the
connecting highways BAB81, BAB831, and B 14 and segments from L1187
and L 1015. A total of around 2700 lanelets describe the area shown in overview
in Figure 4.1.

Figure 4.1: Lanelet map coverage overview, Sindelfingen in the bottom left corner, Stuttgart in the
top right corner. The nodes that define the lanelet map geometry are depicted in yellow, some of the
used track data overlayed in magenta. Background map c©OpenStreetMap contributors.

The test track for suburban scenarios lies around the Mercedes-Benz plant
Sindelfingen, see Figure 4.2. The urban scenarios are tested in downtown
Stuttgart around the federal highways B 14, B 27, and B 27a, as shown in
overview in Figure 4.3. This includes the major intersections at Arnulf-Klett-
Platz, Gebhard-Müller-Platz, and Charlottenplatz that feature up to seven lanes
per direction as well as the tunnel below Schlossplatz. While most of the map is
based on satellite images, the tunnel segment was drawn using DR tracks.
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Figure 4.2: Lanelet map coverage Sindelfingen/Böblingen. Nodes of map in yellow, polyline
segments (lanelet boundaries) in blue and green, some of the used track data in magenta. Background
map c©OpenStreetMap contributors.

4.1.2 Test Data

A total of around 6.5 hours or 230 km of logged data are used for the evaluation.
The ratio of time spent on certain lane configurations, i.e. the number of lanes
in driving direction, is shown in Table 4.1 for all data and for these three
scenarios: These data contain around 80 minutes or 31 km on urban roads in
downtown Stuttgart. Around 3.5 hours or 92 km have been driven on suburban
roads in and around Sindelfingen and Böblingen. The rest of the data, some
107 km or 97 minutes, contain highways. Within these data, also some urban or
suburban pieces are contained, for example tracks toward or from the highway,
or intersections between exit and entry ramps when changing driving direction.
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Figure 4.3: Lanelet map coverage Stuttgart. Nodes of map in yellow, polyline segments (lane-
let boundaries) in blue and green, some of the used track data in magenta. Background map
c©OpenStreetMap contributors.

As the map contains mainly larger roads, i.e. urban sections of the federal
highways B14, B27, and B27a, most data sets begin and the localization filter is
initialized on multi-lane roads. This can increase ambiguity at initialization and
increase convergence duration until the first certain localization result.
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Table 4.1: Percentage of time spent on certain lane configurations

No. of lanes 1 2 3 4 5 6 7

% total 13.8 46.8 24.5 10.1 4.0 0.6 0.2

% urban 6.4 30.8 27.0 13.8 18.0 3.0 1.0

% suburban 18.8 51.3 20.8 9.0 0.1 – –
% highway 6.0 28.9 38.9 24.6 1.7 – –

Especially in urban scenarios, lane-markings are not always visible. Table 4.2
gives an overview of the amount of time that lane-markings are available in
the used data set. In the highway scenario, both lane-markings can be detected
in a vast majority of the cases (82%) and in less than 10% of the time, no
lane-marking is observed. Less markings are available when driving in builtup
areas. In 25% to around 28% of the time, no lane-markings are detected in the
urban and suburban scenarios. During these unavailabilities, the algorithm has
to perform localization based on data from other sensors.

Table 4.2: Percentage of time with available lane-markings

Available markings only left only right both neither

% total 11.4 11.7 55.0 21.9

% urban 14.8 14.7 42.0 28.4

% suburban 13.0 13.6 48.4 25.0

% highway 4.9 4.5 82.0 8.7

4.1.3 Ground Truth and Evaluation Logic

One aspect of the performance evaluation is the error probability, i.e. the
percentage of time or distance in which the localization solution is available
but the estimated lane is not correct. Due to the lack of a highly accurate
DGPS system and a reliably geo-referenced map, the ground truth data required
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measurements. For localization on a lanelet map, the ground truth contains
the correct lanelet with a precision of around 0.25 seconds. However, due
to ambiguous situations at lanelet transitions or imperfect GPS positioning,
the noted determined timestamp might not be as accurate. Hence, during
performance evaluation, the lanelet hypothesis at a certain time instance t is
determined as described in Section 3.4.8, and then all correct lanelets between
t − 0.5 s and t + 0.5 s are looked up in the ground truth data. If the lanelet
hypothesis is equal to any of the ground truth lanelets within that 1 second
interval or any direct precursor or successor of those, it is considered correct.
Performance evaluation can be performed based on time or distance traveled.
While the qualitative result of both options is very similar and both can be
used to differentiate between a good and bad algorithm, some quantitative
differences can occur. The evaluations in this work are based on the time passed.
If the lanelet hypothesis at tk is correct, the complete time interval tk − tk−1

will be considered correct – and accordingly for false and unavailable lane
assignments.

4.2 Particle Filter Localization on Lanelet Map

This section shows results of the particle filter-based localization described in
Section 3.4 in a simulated scenario in Section 4.2.1 as well as on real-world
data from suburban, urban, and highway scenarios in the following sections.

4.2.1 Simulation

While its performance on actual vehicle data and a digital map of the real world
is the qualifying criterion for the quality of a localization algorithm, it is also
interesting to examine its behavior in a simulation. Like this, sensor and map
inaccuracies can be controlled and it is easier to reason certain design decisions
and evaluate convergence behavior. This section shows how the particle filter
approach performs in a simulation. It compares a traditional importance weight
update step with the proposed combined weight update and sampling. Then,
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4.2.1.1 Simulation Setup

The artificial signals in the simulation mimic the ones from vehicle log files
in their interfaces and frequency. As the simulation shall mainly evaluate the
influence of environment sensors on the localization, the velocity measurements
describe a forward movement with constant velocity, the yaw rate measurements
a straight trajectory. GPS data gives positions around the center lane of the
map, moving from one end of the map forward with the same velocity as the
odometry measurements; a circular uniform distribution with a radius of 15m
around the measured position is used for the simulations. The GPS heading is
oriented in movement direction.
All scenarios include visual lane-marking detection that detects a constant
distance of 2m and angle of 0◦ to the left and right marking. The lane-marking
type is not used. In Section 4.2.1.3, different data from the radar sensor are
provided:

1. no radar objects

2. vehicles on ego- and first neighboring lanes

3. vehicles on all lanes

The used map contains three parallel straight lanes. In the scenarios used in
Sections 4.2.1.3 and 4.2.1.4, a fourth lane and a digitalization error are added,
respectively.

4.2.1.2 Traditional Weight Update vs. Combined
Weight Update and Sampling

As motivated in Section 3.4.5, it is important that a filter does not converge
towards one hypothesis if the sensor data does not contradict the other hypot-
heses. Hence, the scenario described in the toy example in Section 3.4.5.2
is evaluated in more detail: The simulated vehicle is traveling on a perfectly
straight three-lane road and lane-marking detection provides a constant distance
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Performing this experiment with traditional importance weight update steps
leads to the results shown in Figure 4.4. ForNP = 100 particles, there are cases
for each lane where its probability converges to 0 or 1. The median probability
for the center and right lane are closer to 0 than to 1

3 . The used particle set is
too small and the results are quite random.

(a) 100 particles. (b) 500 particles.

(c) 1000 particles. (d) 4000 particles.

Figure 4.4: Lane hypothesis probabilities in 100 repetitions over time with traditional weight
update for different NP. Left lane depicted in blue, center lane in red, right lane in green. Median
probability as line. Boxplot whiskers with 1.5× interquartile range. Figures (b) and (d) taken from
RABE and STILLER 2017.

When increasing the number of particles, the variation between the repetitions
decreases and the median probability gets closer to 1

3 . For 4000 particles, all
lane probabilities stay between 0.25 and 0.4 for half of the repetitions but in few
repetitions, the lane probabilities can still reach 0.1 and 0.7.
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With a CWUS step and a Gaussian assumption for the intermediate belief and
the likelihood, the median lane probability stays around 1

3 for all used particle
set sizes, see Figure 4.5. Already with 100 particles, a variation comparable to
the one achieved with 4000 particles using a traditional weight update can be
achieved. The reproducibility of the results is significantly higher and with 1000
particles, the lane probabilities stay within the [0.25, 0.4] corridor for almost all
repetitions.

(a) 100 particles. (b) 200 particles.

(c) 500 particles. (d) 1000 particles.

Figure 4.5: Lane hypothesis probabilities in 100 repetitions over time with Gaussian CWUS. Figure
(c) taken from RABE and STILLER 2017.

A similar result can be achieved under the assumption of mixture distributions
for the intermediate belief and the likelihood, as shown in Figure 4.6.
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(a) 100 particles. (b) 500 particles.

Figure 4.6: Lane hypothesis probabilities in 100 repetitions over time with mixture CWUS. Figure
(b) taken from RABE and STILLER 2017.

4.2.1.3 Influence of Moving Radar Objects

Three-lane road In the next step, other vehicles detected by radar are also
incorporated. The ego-vehicle is driving on the middle one of three lanes and
moving objects on all three lanes are available. Hence, the probability of the
middle lane is expected to converge towards 1, whereas the other two converge
towards 0. Again, both proposed schemes for incorporating lane-markings are
compared at different numbers of particles NP.
The results are shown in Figure 4.7. Using a traditional weight update andNP =

100 particles, the median result converges as expected but in a noticeable amount
of cases, the probability of the middle lane tends to zero. When increasing the
number of particles to NP = 500, the results are much more reproducible and
only in some cases, the probability of the middle lane is small after 10 and 20
seconds. After at least 30 seconds, the filter result is as expected.
When in turn using a CWUS step with either Gaussian or mixture assumption,
the result is already reproducible with 100 particles and very similar to the result
with 500 particles. The particle efficiency for a desired result reproducibility
has been increased.

Four-lane road, vehicles on first neighbor lane With the same observations
as in the previous scenario but on a four-lane road, the situation is ambiguous
as the vehicle might be on either of the two center lanes.
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(a) Traditional update, NP = 100. (b) Traditional update, NP = 500.

(c) Gaussian CWUS, NP = 100. (d) Gaussian CWUS, NP = 500.

0 10 20 30 40 50 60 70 80 90 100
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

hy
po

th
es

is 
pr

oa
bil

ity

(e) Mixture CWUS, NP = 100. (f) Mixture CWUS, NP = 500.

Figure 4.7: Lane hypothesis probabilities in 100 repetitions with detected vehicles for NP ∈
{100, 500} and different methods to use lane-markings. Road with three lanes.

In some vehicle architectures, only objects on the direct neighbor lanes can be
transmitted. In this case, the expected result is that the probabilities for the outer
lanes converge to zero and those of the inner lanes to 0.5.
The results in Figure 4.8 show that again, a traditional update in combination
with a small particle set leads to irreproducible behavior: With NP = 100,
the median probability of the inner left lane is the only one not converging to
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zero and for each of the four lanes, there exist situations where its probability
converges to 1. This effect can be reduced with NP = 500, but the estimated
probabilities for the inner lanes still vary between 0 and 1.

(a) Traditional update, NP = 100. (b) Traditional update, NP = 500.

(c) Gaussian CWUS, NP = 100. (d) Gaussian CWUS, NP = 500.
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(e) Mixture CWUS, NP = 100. (f) Mixture CWUS, NP = 500.

Figure 4.8: Lane hypothesis probabilities in 100 repetitions over time with detected vehicles on the
direct neighboring lanes for NP ∈ {100, 500} and different methods to use lane-markings. Road
with four lanes. Outer left lane depicted in blue, inner left lane in red, inner right lane in green,
outer right lane in yellow.
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Employing a CWUS step instead, the results are already more reproducible with
NP = 100. For NP = 500, the probabilities of the inner lanes only rarely leave
the corridor [0.4, 0.6] within the 100 second simulation. This result agrees with
the two previous ones.

Four-lane road, vehicles on all lanes If additionally vehicles on the second
neighboring lane can be detected, one can expect the filter output to converge
to the correct lane. In this case, the ego-vehicle is on the inner left lane and
vehicles on the outer right lane are detected less frequently as on the direct
neighboring lanes.
The results are depicted in Figure 4.9 and show that with a traditional weight
update used for lane-marking detection, the particle set size NP = 100 is still
too small to produce useful results. With NP = 500, the filter converges to the
correct lane after around 60 seconds in almost all cases but the variation before
is significant.
With the proposed CWUS method, NP = 100 is enough to provide reliable
results after around 20 seconds. Increasing the sample size to NP = 500 allows
for a faster convergence and more reproducibility already after 10 seconds.
Again, the results are comparable for both Gaussian and mixture assumptions
for intermediate belief and likelihood.
Results comparable to these can be achieved with a combination of BSM
information – which only gives information about the direct neighbor lanes –
and detected guardrails or road boundaries – which can reduce ambiguity on
four- or more-lane roads.

4.2.1.4 Influence of Map Errors

Digital maps are in general not perfect. The digitalization rules of mapping
companies require 5m absolute position accuracy and 1m relative position
accuracy for maps for Advanced Driver Assistance System (ADAS) applications
(HERE 2015; TOMTOM 2016). As the absolute position accuracy is smaller
than the assumed GNSS error, no performance loss is expected at this point.
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(a) Traditional update, NP = 100. (b) Traditional update, NP = 500.

(c) Gaussian CWUS, NP = 100. (d) Gaussian CWUS, NP = 500.
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(e) Mixture CWUS, NP = 100. (f) Mixture CWUS, NP = 500.

Figure 4.9: Lane hypothesis probabilities in 100 repetitions over time with detected vehicles on all
lanes for NP ∈ {100, 500} and different methods to use lane-markings. Road with four lanes.

However, the relative position accuracy of the used lanelet map is better than the
quality requirements posed by mapping companies. Hence, it is interesting to
find out whether relative positioning errors influence the localization solution.
To evaluate this, the three-lane map used for the previous experiments has
been changed such that the whole road exhibits a bend of a whole lane-width –
around 4m – to the right over a length of 14m. The sensor data is the same as
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before, i.e. the vehicle is moving in a straight line and detecting left and right
lane-markings, and, in the second case, other vehicles. The vehicle passes the
mapped bend after around 54 seconds. Again, a traditional importance weight
update step is compared to the proposed CWUS step. 100 repetitions have been
carried out and NP = 500 particles have been used.

(a) Traditional update, no vehicles. (b) Traditional update, with vehicles.

(c) Gaussian CWUS, no vehicles. (d) Gaussian CWUS, with vehicles.

(e) Mixture CWUS, no vehicles. (f) Mixture CWUS, with vehicles.

Figure 4.10: Lane hypothesis probabilities in 100 repetitions over time for NP = 500, with and
without detected vehicles, and different methods to use lane-markings. Road with a bend. Figure
(a), (c), and (e) taken from RABE and STILLER 2017.
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Only lane-markings In the first case, only lane-markings are observed. Using
a traditional update, as shown in Figure 4.10a, the lane hypothesis probabilities
vary a lot between different repetitions before passing the bend. When passing
the bend, in most cases all particles on the right lane (green line) are lost
and the left and center hypotheses share the particle weight. However, the
variation between repetitions increases further and in some cases, only one of
the hypotheses survives.
When employing a CWUS step, the particles follow the mapped lane more
closely and all lane hypotheses still exist after the bend. With both a Gaussian
(Figure 4.10c) and a mixture CWUS step (Figure 4.10e), the variation between
iterations increases slightly after the bend. The median result stays around 1

3 ,
even though the right lane’s probability is slightly reduced when using a mixture
likelihood.

Lane-markings and other vehicles In the second scenario, observations of
other vehicles are used as well. The ego-vehicle is moving on the middle lane.
With a traditional lane-marking update, as in Figure 4.10b, most particles on the
middle lane move straight ahead at the bend and end up on the left lane when
passing the bend. In few repetitions, some particles remain on the middle lane
and keep the correct hypothesis alive. However, with the used process noise,
the filter has no chance to adapt to the map error.
Both variants of the proposed CWUS step manage to keep most particle weight
on the correct hypothesis despite the map error, compare Figures 4.10d and 4.10f.
The median probability of the middle lane is slightly reduced at the bend and the
variation of the left and middle lane probabilities slightly increased afterward.
We can see that employing a CWUS step for lane-marking detection allows the
filter to handle this kind of map error.

4.2.2 Optimal System Design

The achieved error rate and availability on real world sensor data and maps is
the qualifying criterion for a localization solution. To achieve this, a suitable
parameter set needs to be found: The used set of sensor data needs to be
determined, the several inputs need to be weighted according to their reliability,
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and likelihood functions and process noises need to be modeled. Throughout
development, this has been performed on a reduced data set by comparing
results achieved with different parameters.
A parameter that can be treated separately is the threshold pth above which a
lane hypothesis is accepted and the system is considered available. Intuitively,
it allows for a trade-off between error rate and availability: A low threshold
increases the availability but also leads to a higher error rate. In turn, the error
rate can be reduced with a high threshold – at the cost of lower availability.
To choose this parameter, one can either define a target error probability, e.g.
0.5% of time, or minimize a cost function that weights the error rate re stronger
than the unavailability 1− ra, such as

C = 10re + (1− ra) . (4.1)

The aggregated result of the system using a Gaussian CWUS step is shown over
the threshold parameter pth in Figure 4.11. As expected, a higher availability
comes at the cost of a higher error rate: When choosing pth = 0.8, an average
error rate of r̄e = 0.29% of time can be achieved at an average availability of
r̄a = 93.8%. Reducing this threshold to pth = 0.6, the availability increases to
r̄a = 97.5% on average, while the error rate rises to r̄e = 0.57%.
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Figure 4.11: Error rate over availability of time for different threshold probabilities
pth ∈ {0.5, 0.51, . . . , 0.99} and 100 repetitions with different random seeds. Mean and me-
dian with markers at pth ∈ {0.5, 0.6, . . . , 0.9, 0.99}, percentiles over repetitions as whiskers from
respective median.
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If a lane-precise navigation function requires a mean error rate of at most
r̄e = 0.5%, this can be achieved with threshold parameter pth = 0.64. In this
case, the system is available r̄a = 96.8% of the time. Minimizing the cost
function in Equation (4.1) leads to the similar threshold

pth = argmin
pth

(10re + (1− ra)) = 0.65, (4.2)

where an error rate of r̄e = 0.45% at an availability of r̄a = 96.5% can
be achieved. If not noted otherwise, the following results use the threshold
parameter of pth = 0.64.

4.2.3 Behavior in Different Scenarios

The goal of the described approach is to reliably determine the currently used
lane in many situations that are relevant for navigation, including urban down-
town scenarios. To see whether any scenario poses special challenges for the
algorithm, the result has been evaluated separately in real-world data collected
in drives in urban, suburban, and highway scenarios described in Section 4.1.1.

Suburban Scenario The suburban data set based on drives in Sindelfingen
and Böblingen is handled very well by the algorithm, compare Figure 4.12a.
For the given threshold parameter pth = 0.64, a mean error rate r̄e = 0.4% can
be achieved with an availability of r̄a = 96.8%. Even in the 95th percentile, the
error rate does not exceed r95,e = 0.82%. With a higher threshold parameter
pth = 0.94, the average error rate decreases to r̄e = 0.1% with an availability
of still r̄a = 90.1%.

Urban Scenario The higher number of lanes per direction and more compli-
cated road structure makes the downtown scenario in general more difficult.
However, the proposed system excels in this discipline and reaches an average
error of r̄e = 0.37% of time for the given threshold parameter – at an availability
of r̄a = 96.2%, as shown in Figure 4.12b. The fifth worst error rate in 100
repetitions lies at r95,e = 0.74%. Again, it is possible to reduce the average
error rate to r̄e = 0.1%. In this scenario, this requires a threshold of having
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4.2 Particle Filter Localization on Lanelet Map

pth = 94% of the particle weight on one lane and yields an availability of
r̄a = 80.9%.

(a) Suburban scenario. (b) Urban scenario.

(c) Highway scenario.

Figure 4.12: Error rate over availability of time for different scenarios and different threshold
probabilities pth and 100 repetitions. Depiction as in Figure 4.11

Highway Scenario Lane-level localization has been tested on highways with
a more straightforward histogram filter (MAYER et al. 2014). Therefore, the
parameter set for this algorithm has been optimized for performance in urban
situations. This leads to the performance on highway scenarios depicted in
Figure 4.12c: With the used threshold parameter, the average error rate is
r̄e = 0.81% at an availability of r̄a = 97.5%. Yet, the results are reproducible
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with different random seeds and the 95th percentile of the error rate lies at
r95,e = 0.91%.
In all three scenario types, lane estimates occur that are supported by around
50-60% of the particle weight but do not agree with the ground truth lane. In the
highway scenario, however, even when increasing the lane probability required
to accept a lane hypothesis up to 99%, the mean error rate does not decrease
below a residual of r̄e = 0.28%. This means that in some situations almost all
particles are located on the wrong lanelet. Analysis of the remaining situations
with wrong lane assignment shows two main error causes:

• Longitudinal error: The longitudinal position of the particle set is not
directly corrected by any observation. GPS is only used for initialization
and, during the localization, for estimating the yaw rate bias. Opposed
to urban and suburban situations, this error can accumulate over longer
distances and lead not only to a spread in position, but in some cases also
to a position offset. This offset then transforms to a lateral offset after the
first intersection after exiting the highway.

• Erroneous sensor data: In one situation in the data set, the railing of
a highway ramp throws a shadow onto the road in front of the vehicle
and is interpreted as a lane-marking for some hundred meters. The lane-
marking observation is not robust to an error over such a long time and the
particle set changes to a wrong lane. Error propagation effects lead to the
lane-estimate only being corrected after a significant distance has been
traveled and hence has noticeable influence on the overall performance in
this scenario.

Influence of Number of Lanes Apart from the location of the current road
and its speed limit, also the number of lanes in driving direction may have an
influence on the localization performance. In Figure 4.13, the accuracy and
availability are depicted for different lane configurations. As the ego-vehicle
was located on one- to three-lane roads for around 85% of the used data, it is
understandable that the overall result is very close to the the 0.4% to 0.5% error
achieved on these segments. The increased error rate for four-lane roads is due
to the detected railing that already lead to increased error rates for the highway
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scenario and is now responsible for almost half of the false lane assignments
on four-lane roads in the evaluated data set. Within the evaluated data, the
localization works successfully on roads with more than four lanes: Average
error rates between 0.12% (five lanes) and 0.22% (seven lanes) can be achieved.
It shall be noted, however, that the underlying sample for five- to seven-lane
roads is rather small.

(a) Error rate. (b) Availability.

Figure 4.13: Error rate and availability over number of lanes for 100 repetitions with different
random seeds.

The achieved availabilities vary slightly with means between r̄a = 95.7%

(two lanes) and r̄a = 98.5% (five lanes). Only seven-lane roads yield even
r̄a = 99.8%, mainly because the filter has already converged before the road
splits up before an intersection in the few cases that the road becomes that wide.

4.2.4 Convergence Behavior

Apart from the overall availability, it is also relevant how long the system takes
from startup to the first useful lane-assignment output. This duration is heavily
dependent on the lane configuration at initialization and hence on the used data
set. A histogram over 100 repetitions of the used data set is shown in Figure 4.14.
In the suburban and highway scenarios, the algorithm converges to a trustworthy
solution in less than a second in a couple of situations. For nine of the ten data
sets in which this happens, the particle filter is initialized on one-lane roads,
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such as small suburban roads or highway ramps. These convergence durations
correspond to distances driven of less than 7 meters, mostly between 1 and
2meters.
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Figure 4.14: Time from initialization to first available localization for different scenarios (stacked)
for 100 repetitions with different random seeds. Mean duration depicted as asterisk, median with 5th

and 95th percentile as errorbars for each scenario. Linear scale below 1 second, logarithmic above.

The maximum convergence duration observed is 80 seconds in a suburban file.
Here, the filter is initialized on a two-lane road shortly before a red traffic light
where the car waits for around 70 seconds. On the segment before the traffic
light and during the waiting, no observations leading to filter convergence can
be observed.
In total, the average convergence duration is 13.5 seconds or 69 meters. In 95%
of the cases, the filter delivers a result in less than 43.4 seconds or 199 meters.
The average durations vary slightly for the different scenarios between 11.1
(highway) and 15.0 (suburb) seconds, which corresponds to 53 (suburb) to 94
(urban) meters. The difference is larger in the median convergence duration with
around 2.1 seconds (suburb) and 10.7 seconds (urban) or 19 meters (suburb)
and 66 meters (urban). It can be seen that the number of lanes at initialization
and the traffic situation and observations after initialization have a significant
influence on filter convergence.
When the convergence period is not considered in the overall performance,
the availability rises to 98.5% for the chosen threshold parameter pth = 0.64.
As less total time is considered, also the ratio of time with erroneous lane
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assignment rises slightly from 0.49% to 0.5%. The result is shown for different
threshold probabilities in Figure 4.15. The initial unavailability before the first
reliable localization result contributes more than half of the total unavailable
time for many relevant values of pth.
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Figure 4.15: Error rate over availability of time for different threshold probabilities and 100
repetitions with different random seeds when not counting convergence to total time. Depiction as
in Figure 4.11.

4.2.5 Comparison of Proposed Method

To rank the proposed aspects of the localization algorithm, their respective
performance is compared with instances where they are disabled and a sim-
pler alternative is used. In the following, the CWUS approach described in
Section 3.4.5 is replaced by a traditional weight update step. Then, the influence
of the mixture distribution assumptions on intermediate belief and likelihood
(Section 3.4.5.3) is evaluated. Furthermore, the effects of the proposed prepro-
cessing or filtering step on radar objects (Section 3.3) and the use of multiple
particle sets with different prediction models (Section 3.4.3) are evaluated.

4.2.5.1 Combined Weight Update and Sampling

As seen in the simulations in Section 4.2.1.2, using a CWUS step for incorpora-
ting detected lane-markings increases the reproducibility of the result as well
as the chance for the correct hypothesis to stay alive over differently seeded
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repetitions. A CWUS step should yield improved performance and lower vari-
ation within the results. Figure 4.16 shows the results of this comparison to a
system with traditional weight update based on lane-markings. The error rate
with CWUS (0.49%) is significantly lower than without (12.6%) at comparable
availability values. Furthermore, the error rate variation between 90% of the
repetitions is 0.4% with CWUS and 2.3% without.

(a) Error rate. (b) Availability.

Figure 4.16: Comparison between performance with and without combined weight update and
sampling: Error rate and availability for 100 repetitions with different random seeds for complete
data set and urban scenario.

The difference between both approaches increases even more when looking
specifically at the downtown data set: Here the traditional weighting leads to
20.5% false lane assignments as opposed to 0.37% with the proposed CWUS
step. In both cases, the variation in the availability is slightly increased without
CWUS. This is because without CWUS, the correct hypothesis can only be
favored if at least one particle happens to be close to the correct position within
that respective lane.

4.2.5.2 Robust Combined Weight Update and Sampling

As shown in the previous section, employing a CWUS step for integrating
detected lane-markings into the filter leads to a significant performance gain.
However, it can be reasoned that the Gaussian assumptions on the intermediate
belief and the likelihood do not model their actual shapes well. Hence, the
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approach has been extended in Section 3.4.5.3 to support mixtures of Gaussian
and uniform distributions.
Through the iterative nature of the used EM algorithm for estimating the inter-
mediate belief, the computational requirements have been increased. But does
the increased complexity also improve localization performance? And does
the seemingly more accurate model depict the actual particle distribution better
than the plain Gaussian?
To find out, the results using a Gaussian assumption are compared to both appro-
aches to mixture assumptions – one with determining the belonging of particles
to either part of the mixture likelihood independently for each measurement,
and one with an additional state whether the lane-marking measurements are
reliable using a Markov chain.
A comparison of the results on the whole data set and in the urban scenario is
shown in Figure 4.17. For this evaluation, an outlier probability of πm = 0.25

was used. One can notice an increased error rate of around 0.7% over all data
when using the independent mixture approach, while the error rate using the
Markov mixture approach (0.51%) does not differ significantly from the result
with normal assumption (0.49%). In turn, the availability is slightly reduced for
both mixture versions (96.5% and 96.4%, respectively) compared to the simple
approach (96.8%). This is mainly due to the system trusting the lane-markings
less – despite the lane-markings being a reliable data source within the used
data set.
In the urban scenario, the Markov mixture approach shows a slightly reduced
error rate (0.31% compared to 0.37%) but at the cost of an increased variation
within the repetitions with different random seeds. This can be due to the lane-
markings or the mapped lane boundaries being a little less reliable in downtown
– but at the same time, the system does not always favor the particles with
the correct lane-marking reliability state. Given the variation between the 100
repetitions, the difference in availability is insignificant.
In the suburban and highway data sets, the algorithm using the normal assump-
tion for the intermediate belief outperforms the versions with the mixture
assumptions – leading to the best performance on the complete data set. Hence,
while the normal assumption is not a correct model for the distribution of the
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particles before the measurement update, it still leads to the best localization
performance.

(a) Error rate.

(b) Availability.

Figure 4.17: Comparison between performance for different combined weight update and sampling
settings: Normal assumption and mixture assumption with independent and Markov modeling.
Error rate and availability for 100 repetitions with different random seeds for complete data set and
urban scenario.

However, if the data is corrupted, the robust CWUS step has its advantages
(RABE and STILLER 2017). To emulate corrupt lane-markings, 10% of the
measured distances to the lane-markings have been randomly selected at run-
time and have been replaced by random values between 0m and 3m or – at
around 3% chance – by a signal-not-available value. This randomization has
been performed independently for the left and right sides.
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The evaluation has been restricted to an urban scenario and the CWUS step with
normal belief estimation and likelihood and the mixture model handling each
particle independently for each lane-marking observation. While the availability
remains around the same for both approaches, the error rate reaches 2.9% for
the normal assumption but remains around 0.67% for the mixture model, as
shown in Figure 4.18.

(a) Error rate. (b) Availability.

Figure 4.18: Comparison between performance for different combined weight update and sampling
settings with corrupted lane-marking data: Normal assumption and mixture assumption with
independent modeling. Error rate and availability for 100 repetitions with different random seeds
for complete data set and urban scenario.

Overall, the approach that was modeled to allow for outliers within the data does
not provide improved performance on the actual sensor data from the vehicle.
When introducing artificial noise to the lane-marking measurements, its stability
versus erroneous measurements can be seen.

4.2.5.3 Preprocessed Radar Data

Besides the way of handling detected lane-markings, a preprocessing step
for radar objects has been proposed in Section 3.3. By using this gating-like
method, the localization performance can be improved: With raw radar data,
the vehicle is assigned to a wrong lane on average in re = 0.73% of the time
while with preprocessed data, this reduces to the re = 0.49% found before. The
availability is not affected significantly and stays around ra = 96.8%, as shown
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in Figure 4.19. The performance gain is around the same for all three scenarios,
i.e. in urban, suburban, and highway environments.

(a) Error rate. (b) Availability.

Figure 4.19: Comparison between performance with and without radar data preprocessing: Error
rate and availability for 100 repetitions with different random seeds.

4.2.5.4 Multiple Prediction Models

Incorporating two different yaw rate measurements allows for a gain in the
overall localization performance. When using only the ESC yaw rate, the filter
reaches re = 1.3% error rate compared to the re = 0.49% with both, while the
availability stays close to the optimal one at ra = 96.5%. In turn, relying only
on the gyroscope yaw rate leads to even re = 4.4% of false lane assignments
at an availability of only ra = 93.6%. This is mainly due to the gyroscope
yaw being calibrated only in standstill and most of the used log files begin with
non-zero velocity when entering the mapped area. An overview of these results
is shown in Figure 4.20.

4.2.6 Behavior Without Environment Sensors

In the complete sensor setup, three types of data from environment sensors
are used: lane-markings, radar objects, and BSM events. To determine the
importance of each on the localization performance, the algorithm was run with
either of them or combinations being ignored.
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(a) Error rate. (b) Availability.

Figure 4.20: Comparison between performance with two particle types compared to either type:
Error rate and availability for 100 repetitions with different random seeds.

Given the result overview in Figure 4.21, one can see that the influence on the
performance on the complete data set differs significantly between the types
of data. While disabling BSM with lane-markings and radar objects enabled
(“no BSM”) has negligible effect (re = 0.49%, ra = 96.5%), lane-markings
are more crucial to successful lane-assignment (re = 4.2%, ra = 84.5% in “no
lane-markings”).
There are a few reasons for this: Intuitively, the lane-marking detection only
helps to determine the position and orientation within a lane but does not
discriminate which lane is used. However, through the combination of vehicle
movement in the prediction step and regular measurements on the position
and orientation within a lane, lane-changes can be detected in most cases and
minor errors in odometry can be compensated. Especially drift in odometry and
spreading of the particles over the whole roadbed can be avoided by regular
incorporation of lane-marking observations. Like this, it is possible to keep
a correct lane-assignment as soon as the filter has converged to the correct
hypothesis.
Interestingly, the performance is significantly better without any lane-markings
than with incorporating them in traditional weight steps as seen in Section 4.2.5.1.
Even when only lane-markings are available and no observation that allows
localization relative to other lanes or the road boundary (“only lane-markings”),
the error rate stays lower (re = 1.8%) at better availability (ra = 91.3%). But it
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cannot reach the performance that can be achieved by a combination of sensors
that allow for positioning within a lane and relative to the rest of the road.

(a) Error rate.

(b) Availability.

Figure 4.21: Comparison of performance with and without certain environment sensors: Error rate
and availability for 100 repetitions with different random seeds.

Without radar objects (“no radar”), the error rate is around twice the rate with
the complete sensor setup (re = 0.97%). Comparing this to the case without
radar objects and BSM events (“only lane-markings”), one can see that BSM
events do actually have an influence on the overall result. This can also be seen
when comparing the influence of BSM in the three scenarios (Figure 4.22): In
the urban scenario, it seems like using BSM actually increases the error rate from
re = 0.27% to re = 0.37% and also the variation among the 100 repetitions at
a small reduction in availability. The data contains a few situations where the
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vehicle is e.g. on the rightmost lane but still a BSM event on the right side is
triggered. In these situations, using the BSM events as a trustworthy source of
information whether the vehicle is on the outermost lane, can be maleficial. In
the suburban scenario, however, including BSM increases availability slightly
at no increase in error rate. On highways, BSM events are beneficial for the
reproducibility as the 95th percentile of the error rate can be reduced to 0.91%
compared to 1.5% without BSM. The availability is again slightly increased.

(a) Error rate.

(b) Availability.

Figure 4.22: Comparison of performance with and without BSM in different scenarios: Error rate
and availability for 100 repetitions with different random seeds.

Without any information from environment sensors (“no sensors”), the availabi-
lity drops to around ra ≈ 55% while the error rate increases to re ≈ 10%. That
means, the system is still available and performs a correct lane assignment in
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around 45% of the time based only on the digital map and vehicle movement. A
comparison of the three scenarios shows that for the no sensor-case the error rate
is higher than average on highways and the availability is higher than average
in suburban scenarios. Both these results are reasonable: On the one hand the
map provides less valuable information on highways that would enable the
system to benefit from lane-changes and turns. Especially, there are no one-lane
sections that have to be passed in order to continue the drive. On the other hand,
the suburban scenario has a lower average number of lanes and a noticeable
amount of one-lane sections. Within the one-lane section, the filter can assure
itself where it is, and within the high number of dual-lane sections, a single
lane-change leads to the filter converging to one of the lanes. However, the
situation with no environment sensors can be improved by modeling in the
particle filter that the vehicle tends to drive in the center of the current lane. A
model and evaluation for this is shown in KASTL 2017.

4.3 Particle Filter Localization
on Commercial Map

In this section, the performance of the particle filter-based localization on
commercial map data, as described in Section 3.5.3 is evaluated. Besides overall
results, attention is put on an analysis of situation where the algorithm fails.

4.3.1 Evaluation Metrics

The evaluation is based on the same data as for the version on the lanelet map.
However, only five repetitions are performed for each log file and parameter set
to get an impression of the achievable error rate and availability. The ground
truth is based on the lanelet map ground truth but abstracted from unique lanelet
IDs to a lane index of a number of existing lanes. If e.g. the leftmost of three
parallel lanelets is correct in the original ground truth, now any lane that is the
leftmost of three lanes is considered correct. Furthermore, a slightly adapted
evaluation scheme is used. As the current pose estimate may not only be located
on mapped lanes but also within intersection polygons (Section 3.5.1.6) or on
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4.3 Particle Filter Localization on Commercial Map

lanes that are not stored in the map (Section 3.5.1.4), additional result states
emerge. Besides the system being not available and the lane estimate being
correct or false, these are introduced:

• intersection: the majority of the importance weight is on intersections

• offlink: the majority of the importance weight is off any mapped road

• map false: the number of lanes of the current link estimate does not
agree with any correct lanelet group – note that this may either describe a
situation where the commercial map has a false lane number attributed or
the link hypothesis is wrong

• map guessed, estimate correct: the mapped number of lanes of the current
link does not agree with the ground truth but the number of lanes including
additional lanes (Section 3.5.1.4) does; also the result is correct

• map guessed, estimate false: as before, but the result is incorrect

With now eight result states rather than three, a visualization in 2D for different
threshold values is not suitable. Hence, charts over different threshold parame-
ters pth are used with the ratios for each of the states stacked. The variations
between the minimum and maximum results of every each state are depicted
with black error bars.

4.3.2 Quantitative Results

Results are depicted in Figure 4.23. For a threshold of pth = 0.7, the algorithm
delivers a false lane estimate on a correct map in 6.2% of the time while a
correct estimate can be produced in 67.4% of the time. These values vary
among the 15 repetitions with different random seeds between 5.7%–7.7% and
64.7%–68.7%, respectively. In around 7.3% of the time, the system is localized
on an intersection and 3.3% of the time off any mapped link. This leaves 3.1%
where the map is wrong or the vehicle is localized on a wrong link. In only
0.3% and 0.2% of the time, the number of lanes of the road is guessed and the
result is correct or false, respectively. This means that the system is available in
87.7% of the time.

117



4 Experimental Results

��� &�� ��� ��� ��� 	���
*���)��������(���������

��

���

%��

&��

���

	���
J�

�#
��

���
���


�
��


�
���

��
���


�
��

��
�


����)�#�
��
#����#�
���)�
��"�+(�))��A�#����#�
��"�+(�))��A����)�
����
�F
��"����)�

Figure 4.23: Ratios of time for respective result states over threshold parameter pth. The ratios are
stacked. Missing percentages to 100% are times where the system is not available. Minimum and
maximum ratios of 15 repetitions as black error bars.

4.3.3 Critical Situations

To analyze the challenges of the filtering solution on a current commercial map,
some critical situations are analyzed. On one log file with data from Stuttgart,
the system provides a false lane assignment in more than 20% of the time. This
file contains a couple of situations that are difficult to handle: First, the filter
converges correctly to the right lane in a two-lane tunnel segment. Then, the link
geometry is inaccurate and does not agree with the dead-reckoned trajectory
while at the same time, no lane-markings are detected. The influence of the
observed tunnel walls is not high enough, especially it does not change the
proposal distribution, to avoid that the particle cloud changes to the left lane.
The particle cloud then stays there up to a traffic light after the end of the tunnel.
In the following, the particles first follow the actual lane-change to the left and
leave the mapped links, but find back to the road and the correct lane through
some sections with missing lanes.
After a U-turn, the majority of particles lands on the wrong lane due to a com-
bination of inaccurate longitudinal localization, odometry, and map geometry.
While the following lane-change helps the filter to find back to the correct
right lane, inaccurate heading estimates before following intersections lead the
particles to incorrect lane-changes at following intersections.
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4.4 Combination of Particle Filter and Extended Kalman Filter on Commercial Map

Later in the log file, the mapped number of lanes often disagrees with the actual
number of lanes. This makes it difficult to find the correct lane in the sections
with the correct number of lanes.
Overall, it can be seen that the filter is not very robust against inaccuracies in
the map, especially regarding the orientation of link segments, the number of
lanes, and unclear lane connections.

4.4 Combination of Particle Filter
and Extended Kalman Filter
on Commercial Map

The evaluation for the localization scheme with a combination of PF and EKF
follows the same structure as for the PF on commercial map data. However, as
particles cannot leave the mapped roads, the number of evaluated states reduces
from eight to seven. For the evaluation, the number of particles was reduced to
NP = 400, as the particle filter state is of lower dimension.

4.4.1 Quantitative Results

While the computational requirements can be reduced with this approach, also
the resulting performance decreased. For a fixed threshold parameter pth = 0.7,
the algorithm now delivers wrong lane estimates in 11.3% of the time and
correct estimates in 53% of the time given correct map data. The vehicle is
localized on an intersection in 8.2% of the time and on assumingly wrong map
data around 2.9% of the time. The time spent on links where the number of lanes
has been guessed correctly is not significant. The variance between different
random realizations stays low. An overview of the results for different threshold
parameters is depicted in Figure 4.24.
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Figure 4.24: Ratios of time for respective result states over threshold parameter pth. The ratios are
stacked. Missing percentages to 100% are times where the system is not available. Minimum and
maximum ratios of 15 repetitions as black error bars.

4.4.2 Critical Situations

To see situations which are difficult for the combined filtering system, one log
file was picked where the performance decreased significantly compared to the
pure particle filter approaches and significant situations were analyzed. The
filter initially converges onto the correct lane and follows the performed lane-
changes. After a turn, it still remains on the correct lane. Then, a lane-change
to the right cannot be followed as the map does not yet contain the new lane.
The particle filter is reinitialized and follows the next turn but as the heuristic
geometry reconstruction connects the correct turn lane to a wrong successor.
As the particle filter follows the connected lanes, it moves onto a false lane.
The estimated lane remains false as no further lane-change is detected and no
relevant radar objects are detected. Only through another reinitialization at a
following intersection, where the estimated lane turns, the filter can come back
to the correct lane estimate.
From these observations it becomes clear that the filter keeps its lane reliably
once converged. But at the same time, it cannot recover from incorrectly
connected lanes unless environment sensors provide strong hints on a wrong
convergence. It can be seen in other data sets that relying on lane-marking
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detection only to determine the in-lane position and lane-changes leads to some
missed lane-changes.

4.5 Discussion

For navigation systems supporting lane-change recommendations, reliable lane-
level localization is needed. While approaches for accurate absolute positioning
and localization on landmark-based maps have been subject of publications,
using merely a simple geometric map and production vehicle sensors to provide
lane-accurate localization in urban, suburban, and highway scenarios has not
presented before.
Experimental results show that the solution proposed within this work allows
for robust lane-level localization on lanelet maps using a combination of front
radar, front camera, inertial sensors, GNSS, and radar-driven BSM available in
a current production vehicle. The proposed filter exploits the different types of
measurements of this sensor setup. Without the information from the camera,
the filter output becomes much less reliable. This shows that the information
where the vehicle is located within the lane is important for estimating on which
lane the vehicle is.
Surprisingly, BSM deteriorates the performance in urban scenarios while it can
improve it in highway scenarios. This is due to the different characteristics of
both scenarios: in urban scenarios, BSM provides a couple of false positives
where infrastructure has been mistaken for other vehicles. The limitations of
this sensor are less grave in a well-structured highway scenario and can support
the estimation there.
The proposed combined weight update and sampling method relies on some
Gaussian assumptions for the particle distributions which are not completely
valid. However, it leads to an improvement in performance compared to a
standard particle filter algorithm. These assumptions improve the particle
sampling. However, other methods that improve the proposal distribution, such
as e.g. an unscented particle filter (VAN DER MERWE 2004), could allow for a
similar performance with reasonable amount of particles. Extending the CWUS
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approach to mixture distributions of a Gaussian and a uniform do not improve
the performance on the given data set.
Through the evaluations, it also becomes clear that the proposed solution relies
heavily on accurately mapped road and lane geometry. Despite several adapta-
tions that model the uncertainty of a current commercial navigation map, the
achieved performance is significantly worse with higher error rates and lower
availability. A combination of a particle filter and Extended Kalman Filter
was proposed to better handle the geometric inaccuracy of the map. But while
strongly restricting the particles to their respective current lane avoids erratic
behavior in some situations, the result did not improve over the pure particle
filter approach. Instead, its inability of free movement even increases the error
rate further.
This leads to the conclusion that accurate lane-geometry in the digital map is
beneficial for reliable lane-level localization. It can be expected that similar re-
sults to those on the lanelet map can be achieved on commercial lane-level maps
such as HERE HD Live Map (BONETTI 2016) or TomTom Highly Detailed
Map (TOMTOM 2016). To further improve the results, hints supporting the
longitudinal localization of the vehicle could help, such as mapped pedestrian
crossings or stop lines.
Despite the extensive data set used for the evaluation, the system has only
been tested in a restricted geographic area. Before worldwide use, it should be
evaluated in multiple countries with different traffic situations and types of road
markings.
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5 Application Example:
Automotive AR Navigation

Route guidance is one of the most promising use cases of automotive AR
systems. After an overview of related work in Augmented Reality in Section 5.1,
a system architecture is defined for such a system based on the localization
schemes in Chapter 3. Further issues related to localization for this application
are treated in Sections 5.3 and 5.4.

5.1 Related Work

AR applications can be divided into image-based and position-based approaches.
The first group adds virtual objects to a local environment whose shape is
known or modeled. The approaches to localization include tracking features or
landmarks in the field-of-view of a camera and are similar to visual odometry
(SCHÖPS et al. 2014) and SLAM (SALAS-MORENO et al. 2014) methods known
from feature-based localization (Section 3.1). These methods are often run on
handheld devices such as smartphones and require low computational effort
(SALARIAN and ANSARI 2015).
In the other group, one tries to accurately determine the global position and
display virtual objects whose positions are known in absolute coordinates. As
for automotive route guidance, a global position and/or a location relative to a
digital map – which in turn is given in global coordinates – is required, the focus
in this overview lies on position-based AR and AR navigation applications.
Methods for estimating the 2D-pose are proposed by PARK et al. 2012 and LIN et
al. 2011. PARK et al. improve the pose estimate by using edges from camera data
and buildings in a digital map for location based services. Panoramic images
are employed for tracking by LIN et al. to display points of interest (POIs) in
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5 Application Example: Automotive AR Navigation

automotive AR. However, as the orientation seems to derive from the position
differences between two consecutive GPS fixes at 1Hz and no extrapolation
is described, the estimated pose is probably not available at high-frequency.
Furthermore, the 3D-pose estimate including all three orientation angles is
required for proper overlay of virtual objects over real environment.
SCHALL et al. 2009 describes a method to estimate this 3D-pose for handheld
devices: DGPS/RTK data is fused with barometric heights, information from
an IMU, and a visual orientation tracker. Another approach using an EKF
to estimate the current pose in a tightly coupled IMU, GPS and image data
scenario is proposed in OSKIPER et al. 2012. It is used for outdoor position
based AR with head-mounted displays (HMDs).
Among the first adopters to AR route guidance are HU and UCHIMURA. For
their vision-based car navigation system (VICNAS), they estimate the absolute
vehicle pose based on DGPS and gyroscope data in a simple extrapolation
from the last trustable GPS position. The pose estimate is supported by a
model matching between features in image data and road shape data from a
digital map. A prototypical user interface allows for navigation by superposition
of virtual objects on the camera image (Figure 5.1a) (HU and UCHIMURA

2004). The approach has later been extended to estimate the road geometry in
front of the vehicle. In an EKF, parameters such as the width of the lane, the
lateral displacement to the lane-marking, clothoid parameters, and the camera
orientation are determined based on map and camera data (WANG et al. 2011).
A resulting road geometry estimate is shown in Figure 5.1b.

(a) Maneuver-based. (b) Lane-geometry.

Figure 5.1: Implementations of AR navigation system VICNAS. Images taken from HU and
UCHIMURA 2004 and WANG et al. 2011, respectively.
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Further AR navigation systems are demonstrated by the University of Linz and
Siemens AG (SIEMENS AG 2005) as well as by the University of Karlsruhe
and Harman Becker Automotive Systems (SHEN 2013; VACEK et al. 2006).
VACEK et al. track multiple lanes using particle filters and detect intersections
by finding intersecting lanes. Supported by navigation system data, direction
attributes are assigned to the found lanes and arrows are drawn on recommended
lanes. As seen in Figure 5.2a, the system works well in example situations but
the authors note that the intersection extraction and lane attribution are not yet
robust enough and only three lanes are supported.

(a) VACEK et al. 2006. (b) LEE et al. 2015.

Figure 5.2: Implementations of AR navigation system in VACEK et al. 2006 (left) and LEE et al.
2015 (right). Images taken from respective publications.

Another lane-level AR navigation system is proposed in LEE et al. 2015.
Lane-change recommendations are visualized in a head-up display (HUD)
(Figure 5.2b) but the system is only evaluated in an indoor testbed. No details
are given on how the currently used and recommended lanes are determined.
Further insight on the challenges and experiences during the development of
an automotive AR system is given by RAO et al. The influence on the E/E
architecture of a vehicle regarding bandwidth, latency, and synchronization are
highlighted in RAO et al. 2014a while the overall system design, pose estimation
algorithm, and test setup are described in RAO et al. 2014b.
A further interesting use case besides route guidance and lane-marking high-
lighting is shown by SCHÜLE: Given a relative localization on a digital road
map using radar and camera data, the upcoming road geometry is highlighted in
a night vision camera image to provide guidance on rural roads (Figure 5.3a).
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(a) SCHÜLE et al. 2013. (b) GEORGE et al. 2012.

Figure 5.3: AR road course information (left) and metaphors for obstacle detection system (right).
Images taken from respective publications.

Other research puts more focus on human-machine interface (HMI) aspects.
BERGMEIER and BUBB 2008 compare different HMI variants in a non-stereo-
scopic AR-HUD with regard to the perceived depth. Use cases are navigation,
driver assistance systems, and night vision. A detailed study on use cases and
concepts for automotive AR is also given by TÖNNIS 2008. With user studies in
a prototypical implementation in a driving simulator, questions like the creation
of spatial context and guiding the attention in dangerous situations are discussed.
A visualization metaphor for driver assistance systems is developed in GEORGE

et al. 2012. The system monitors what the driver is looking at and only high-
lights what is detected by a Mobileye camera but unseen by the driver. The
visualization shown in Figure 5.3b displays different types of danger, levels of
dangerousness and criticality in a single metaphor.

5.2 System Architecture

The lane-precise AR navigation system can be divided into three main parts as
depicted in Figure 5.4: localization, routing, and visualization. The localization
block determines the currently used road link or lane. For the case that no lane-
precise localization is possible, a heuristic approach based on a map-matching
result is employed. These methods are described in detail and evaluated in the
following sections. Localization logic decides on a suitable localization result
and provides the respective information to other components.
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Localization

Routing

Visualization

Lane-Precise
Loc. (Ch. 3)

Lane Heuristic
(Sec. 5.4)

Map-Matching
(Sec. 5.3)

Loc. Logic

Figure 5.4: System architecture of AR navigation.

Routing takes as an input the desired destination and calculates a suitable
route consisting of links and recommended lanes leading to that destination.
Existing lane-level navigation systems mostly recommend one or multiple
lanes at a maneuver. For a route guidance system that provides lane-change
recommendations, the routing block must also produce lane recommendations
for road segments when approaching a maneuver. For this purpose, the road
network graph needs to be traversed against travel direction up to the current
link, if possible.
The visualization section differs significantly from traditional navigation sys-
tems: First, it determines based on localization and routing, whether a lane-
change is required within the upcoming road section. Then, a navigation carpet
is generated using the digital map and sensor data. The resulting carpet is then
sent to the rendering engine to be displayed in an AR video.
For the exemplary results shown in Figure 5.5, the lane-precise localization
described in Section 3.4 is used whenever possible and complemented by
heuristic lane-change recommendations (Section 5.4). Routing and visualization
are implemented in a simple manner: For turn right and exit right maneuvers,
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the vehicle is guided as far right as possible in steps of one lane; similarly for
turn left maneuvers. For the visualization, a navigation carpet is generated
directly from commercial map data and moved laterally such that the closest
part of the navigation carpet lies on the ego-lane or one of the neighboring lanes.
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Figure 5.5: Examples for AR lane-change recommendation. Ego-lane highlighted in yellow in
first image.

5.3 Map-Matching for Automotive AR

This section is based on the work of Andreas Danner during his internship
(DANNER 2015: implementation, parametrization) and the resulting publication
(RABE et al. 2015).
Traditional navigation systems employ a map-matching step to determine the
currently used road. In this step, visualized in Figure 5.6a, the current position
estimate, for example a GNSS fix, is pulled to the closest point on a mapped road.
In modern variants, not only a single point is considered but also trajectories
or sets of points and map topology (AUER et al. 2017; GEORGY et al. 2012;
QUDDUS and VELAGA 2012). In both cases, however, the road is assumed
one-dimensional. This leads to a problem when using this kind of map-matching
in an AR navigation system, depicted in Figure 5.6b: When a trajectory such as
the blue one is map-matched, this is likely to result in the red dashed line. Even
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if the angular components of the matched trajectory are kept free, this will lead
to virtual objects in a video image moving around rather than staying at virtually
fixed position. As soon as the trajectory starts into the turn, the vehicle and its
AR frame move to the right while the map-matched position goes straight ahead.
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GNSS fix 

matched 
position 

(a) Map-matching.

actual trajectory 

conventionally 
map-matched 

trajectory 

centerline 
digitalization 

street outline 

(b) Problem with conventional map-matching in AR.

Figure 5.6: Principle of conventional map-matching and challenge in case of AR system (RABE

et al. 2015).

On the other hand, an AR system that displays objects with absolute coordinate
reference stored in a map requires some kind of map-matching. As the estimated
pose is based on GNSS measurements with a local Dead Reckoning (RAO et al.
2014b), it might exhibit a noticeable offset to its actual position. If this position
was used directly in an AR system, virtual objects, such as maneuver arrows
at intersections or house numbers, would appear with an offset as well. Hence,
a map-matching scheme is required that allows for some free movement to
allow realistic movement of virtual objects but also constrains the position to
the map to allow for accurate object positioning. A possible method is shown in
overview in Figure 5.7 and explained in the following.
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In this case, virtual objects seem to move to the right with the vehicle. At some
point during the turn, the map-matching will switch from the link leading to the
intersection to the new link. At this moment, all virtual objects will instantly
change their appearing position.
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Figure 5.7: Block diagram of proposed algorithm (RABE et al. 2015).

5.3.1 Traditional Map-Matching

First, the closest link to the pose estimate xi,k is determined, taking into account
the distance and difference in heading between the pose and the link’s centerline.
The previously matched road segment is considered to avoid continuous road
switching in case of adjacent roads. This block yields the current road segment
and the vehicle’s position matched to the road centerline xmm,k.

5.3.2 Allowed Driving Corridor

The corridor construction block determines a function that maps an absolute
input distance to the centerline din to a similar output distance. The transfer
function is designed such that lane-changes and obstacle avoidance maneuvers
– i.e. the vehicle’s small-signal behavior – are mapped directly while the total
deviation to the lane centerline is limited to reasonable values. A possible
implementation for one-way roads is (RABE et al. 2015)

g(x) =

{
tanh (3x− 1.3014) , x > 0.8

x, x ≤ 0.8,
(5.1)

where x = din

w for the estimated road width w = 3m · nlanes.
This design allows for free movement in the inner 80% of the road and leads the
output position deviation into saturation when moving toward the edge of the
road. The numeric parameters are chosen to allow a smooth transition between
both parts. If desired, the inner area can be widened by changing the threshold;
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the outer area can allow for larger deviations by reducing the factor in the tanh()
function and adapting its shift accordingly.
As roads may widen up with additional lanes when approaching intersections, a
wider corridor is used in these cases. Similarly, a comparable transfer function
is used for two-way roads.

5.3.3 Offset Vector Estimation and Correction

The small-signal behavior of the relative pose is represented optimally when
the input pose stays within the corridor defined in Equation (5.1). To achieve
this even for larger GNSS offsets, an offset vector is estimated based on the
input and map-matched positions. As a point-to-line-matching only allows for
estimation of the lateral deviation – and effect also observed in SCHREIBER

et al. 2013 when matching against line features in a camera image –, separate
offset vectors are stored for different vehicle headings: The possible headings
are split into 24 sectors of 15◦ and the offset vector for any direction is only
estimated when traveling almost (±7.5◦) in the respective orientation. The
resulting observed offset vector os,k for sector s is always perpendicular to the
respective sector orientation and defined as the exponentially filtered difference
in x- and y-components between the input position xi,k and the map-matched
position xmm,k,

os,k =

[
ox,s,k
oy,s,k

]
= (1− α)

[
ox,s,k−1

oy,s,k−1

]
+ α

[
xmm,k − xi,k

ymm,k − yi,k

]
, (5.2)

where α is set to a value around α ≈ 10−3 to accommodate for the slow changes
in the estimated offset at a pose frequency of 100Hz.
The longest of the estimated offset vectors ok = maxs ‖os,k‖ corresponds to
the actual offset and is used for correcting the input position before the actual
AR map-matching step. To reduce the influence of old estimates that might
have become invalid, each offset vector is only considered valid for a certain
distance after its last change. Influence of outliers is reduced by only applying
the estimated offset when at least three offset vectors are valid.
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5.3.4 Position Estimation

The actual map-matching step consists of solely applying the transfer function
from Equation (5.1) onto the offset corrected position estimate[

xcorr,k

ycorr,k

]
=

[
ox,k
oy,k

]
+

[
xi,k

yi,k

]
. (5.3)

The map-matched position estimate can then be used by the AR engine.

5.3.5 Results

The proposed scheme can be evaluated by observing resulting trajectories
superimposed on satellite images and in AR videos. Position data from around
one hour of drives around Stuttgart have been visually evaluated using Google
Earth. Figure 5.8a depicts how the input trajectory (green) is matched onto the
road (purple trajectory): While the general shape is preserved and hence virtual
objects keep their respective positions, the trajectory is moved onto the mapped
road link and a possible offset of absolutely positioned objects is reduced.

(a) Urban intersection. (b) Tunnel exit (left).

Figure 5.8: Exemplary results: input trajectory in green, map-matched trajectory in purple (RABE

et al. 2015). Image source: GeoBasis-DE/BKG, Google Earth.

When traveling through tunnels, the pose estimate may drift due to the lack of
GNSS reception. At the end of the tunnel, new GNSS fixes are acquired and
the estimated pose is corrected accordingly. This effect is shown in Figure 5.8b
where a tunnel on the left is left and the input trajectory (green) is corrected.
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(a) Straight arrow. (b) Turn right arrow.

Figure 5.9: Position of objects on map. Travel direction from top right to bottom left (RABE et al.
2015). Image source: GeoBasis-DE/BKG, Google Earth.

The map-matched trajectory (purple) stays close to the mapped link throughout
the tunnel and even stays within the roadbed when the input is corrected.
To evaluate the influence on offset reduction of virtual objects with absolute
coordinates, two such objects have been created in their assumed perfect posi-
tion: A straight arrow on the middle of three lanes (Figure 5.9a) and a turn right
arrow on the rightmost lane (Figure 5.9b). The situations are evaluated in an
urban scenario with a significant GNSS offset of more than 10m.

(a) Without map-matching. (b) With map-matching.

Figure 5.10: Straight arrow in video (RABE et al. 2015).

In Figure 5.10a, one can see that the straight arrow seems to be positioned on the
physical divider between the directional roadbeds rather than on the middle lane.
Comparison with the longitudinal position with map-matching (Figure 5.10b)
shows that it actually positioned on the opposing roadbed behind the physical
divider. It is only interpreted as being positioned within the physical divider due
to the lack of occlusion of virtual objects behind real objects. The recognized
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position in the image with map-matching, however, lies within the central lane
as intended by the absolute position.
The same effect occurs with the turn right arrow depicted in Figure 5.11. Again,
an offset to the left can be seen when using the input position. With the proposed
map-matching scheme, the arrow is positioned within the rightmost lane as
intended.

(a) Without map-matching. (b) With map-matching.

Figure 5.11: Turn right arrow in video (RABE et al. 2015).

The proposed map-matching scheme leads to the desired results when analyzed
in satellite images and AR video. While the offset of virtual objects with
absolute positions is reduced, the shape of the original trajectory is kept and
map-matching does not introduce noticeable movement of stationary virtual
objects in AR video.

5.4 Lane-Change Recommendations
in Unclear Situations

This section is based on the work of Benjamin Joswig during his internship
(JOSWIG 2016: implementation, parametrization) and the resulting publication
(RABE and JOSWIG 2016).
Current commercial infotainment maps contain the complete number of lanes
including turn lanes mainly in front of large urban intersections and highway
interchanges. In other situations, the number of through lanes is attributed
to provide an estimate for the importance and throughput of the road. Lane-
connectivities are not known in those situations. However, lane-level navigation
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may also be desired in these cases where it is not possible to determine recom-
mended lanes and perform a reliable ego-lane assignment. In these cases, a
different approach to lane-level navigation is required that combines lane-level
localization and lane recommendation. Its goal is to determine whether another
lane exists in the direction of the next maneuver, e.g. whether the ego-vehicle
is positioned on the rightmost lane when approaching a turn right maneuver.
This differs from many localization problems in that the system should not find
out where the vehicle is located but rather where it is not. These situations are
called possible lane-changes in the following.
This approach is based on vehicles detected by the front radar and BSM system
and lane-marking detection. It further incorporates vehicle speed and turn
indicator state for its heuristic.

5.4.1 Determining Possible Lane-Changes

Turn maneuvers are provided by the system 100m to 500m before the actual
maneuver. Within this section, the system can determine possible lane-changes.
Whenever a turn maneuver is provided, the algorithm determines whether
another intersection lies on the way to the maneuver. In that case, it could
only find turn lanes for the upcoming intersection and not for the maneuver
intersection. Hence, it waits until the next intersection and then looks for further
intersections. If no more intersection lies between vehicle and maneuver, the
system uses the data from the environment sensors to estimate separate scores.
These scores relate to the probability of the existence of another lane in turn
direction, i.e. for possible lane-changes.
For the lane-marking-based score, highway-like lane-markings are assumed,
i.e. the outermost lane-markings are continuous, the inner ones some kind of
broken type. The score is increased every time a non-continuous lane-marking
is detected in maneuver direction. The increase depends on the number of
mapped lanes at the current position and the detected lane-marking types in
both directions as depicted in Figure 5.12. The motivation for this is that before
a turn right maneuver, a continuous left lane-marking gives a strong hint on
being on the leftmost lane, leading to an increased chance for further lanes to
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5 Application Example: Automotive AR Navigation

the right. Accordingly, the number of lanes according to the map – which might
be zero if no lane-attribution is available – gives an idea of the size of the road.

number of 
through lanes
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other direction

> 1 broken
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Figure 5.12: Influence of detected lane-markings on score.

The precise values for the score weights were tuned empirically in sample
situations. The score is automatically reset if a continuous lane-marking in
turn direction has been detected at least five times. For turn left maneuvers
on bidirectional roads, this data is not used as the central lane separator to the
oncoming traffic may be mistaken for a lane-marking between adjacent lanes.
Similar scores are determined based on data from the front and blind spot
radars: Whenever an object has been detected in front of the vehicle and
assigned to the same relative lane multiple times, it is considered valid. A
lane-change in maneuver direction is assumed possible as soon as one radar
object is considered valid. For the BSM system, a single vehicle in the blind
spot leads to maximum score.
Whenever a lane-change is performed, it needs to be reconsidered whether
another lane-change is possible. Hence, the system tries to determine lane-
changes from the available sensor data. Of course, lane-changes observed
by the lane-marking detection are considered. However, further methods are
required as the system does not always provide lane-changes and lane-markings
are not always visible. Whenever the relative lanes of two valid radar objects
change within a close time period, it can be assumed that a lane-change has been
performed. Alternatively, a lane-change of one valid object during an active
turn indicator also gives a hint on a performed lane-change.
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5.4.2 Results

The heuristic has been evaluated on 144 turn maneuvers in urban and highway
situations. Of these, 85 were turn right maneuvers, 59 turn left maneuvers.
Possible lane-changes are denoted as positives and situations where the vehicle
is already on the outermost lane as negatives. It is crucial to avoid false positives
as they might lead the driver onto grass verges, sidewalks, or into oncoming
traffic. Hence, the system has been tuned to rather not recommend anything
than prematurely recommending lane-changes.
The results are shown in overview in Table 5.1. It can be seen that a majority
of possible lane-changes can be detected for turn right maneuvers. In these
cases, the possible lane-changes are detected after 2.8 seconds or 20meters, on
average. The false positives occur in situations with very short turn lanes or with
intersections shortly before the actual maneuver. The one false positive occurs
in a situation where a moving object is detected to the right of the ego-vehicle,
i.e. on the sidewalk.

Table 5.1: Detected possible lane-changes (RABE and JOSWIG 2016).

Turn right Turn left
Negative Positive Negative Positive

False 15.3% 1.2% 18.6% 1.7%
True 31.8% 51.8% 42.4% 37.3%

Precision 97.8% 95.7%
Recall 77.2% 66.7%

In two thirds of the possible lane-changes to the left, this was detected. The
increased false negative ratio, compared to the turn right scenario, is due to the
ignorance of the lane-marking detection on bidirectional roads. Again, one false
positive occurs. This time, it is due to a curb being continuously classified as a
broken lane-marking. For the true positives, possible lane-changes were found
after, on average, 3.9 seconds or 25m.
The evaluation has been performed offline on the same data for turn left and
turn right maneuvers. Therefore, the vehicle rarely followed recommended lane-
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changes. Six lane-changes have been performed during turn right maneuvers;
three before and three after a possible lane-changes had been detected. All of
them could be detected by the lane-change recognition. No lane-changes to the
left occurred during active turn left maneuvers.
It can be seen that the method can support a traditional localization scheme
in situations where the number of total lanes is unsure. With only few false
positives, the method can be used for an infotainment system. As the data from
the three sensors are used completely independent, it can also be used when not
all sensors are available.

138



6 Conclusion and Outlook

This work showed that it is possible to reliably determine the currently driven
lane using only current production vehicle sensors and a digital map containing
lane-geometry data. Neither highly accurate global positioning using DGPS
or RTK-GPS nor feature- or point-landmark-based maps are required. The
developed method enables next-generation automotive route guidance applica-
tions such as lane-level AR navigation and lane-change recommendations in
traditional navigation systems.
In Chapter 1, this work was motivated and its main contributions described.
Chapter 2 provided an insight into fundamentals and restrictions of the used
map and sensor data and gave a short introduction into dead reckoning and
Bayes estimation.
The localization algorithm was developed in Chapter 3: Two data preprocessing
steps are performed before the actual localization filter. The localization is
based on a particle filter approach that is extended by a combined weight update
and sampling step to allow the use of tight likelihoods even when the particles
are spread widely over the state space.
The approach is adapted to current commercial infotainment maps in two ways.
For both, map data is preprocessed and some changes to the handling of sensor
and map data are made. One version is also based on a particle filter with a
combined weight update and sampling step, the other combines an Extended
Kalman Filter and a particle filter over the remaining dimensions.
Chapter 4 assesses the results achieved with the proposed approach: A simula-
tion showed that the reproducibility of the results is increased by the use of the
proposed combined weight update and sampling step in both the Gaussian and
mixture variant, compared to a traditional importance weighting step on lanelet
maps. Furthermore, smaller map errors can be handled better when employing
a combined weight update and sampling step.
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Evaluations on log data from real drives in urban, suburban, and highway
scenarios showed that error rates of 0.5% can be achieved with the system being
available in more than 96% of the time. In a comparison between the combined
weight update and sampling step and traditional importance weighting, the
benefits of this step could be shown again. However, the extension of using
mixture distributions in the combined weight update and sampling rather than
simplifying it to Gaussians does not bring a significant advantage on the used
data set. Unavailability of sensors like visual lane-marking detection and radar
objects reduces the achievable performance just like using only one type of
odometry rather than two different sources.
The evaluation of the localization adapted to commercial map data showed that
in some situations, the filter can still find the currently used lane. However, the
overall availability and accuracy are reduced.
Chapter 5 puts the proposed localization solution into the context of an augmen-
ted reality navigation system: First, a possible system architecture that allows
for separate design and analysis of individual components of the navigation
system is described. Then, two algorithms that can be useful for tasks required
in an AR navigation system are proposed and briefly evaluated. One allows
for map-matching on a traditional commercial navigation map by defining a
corridor in which the vehicle may move and softly restricting the estimated
position within this corridor. The other uses available sensor and map data in a
heuristic manner to determine whether a drivable lane is available in the turn
direction at an upcoming navigation maneuver. This allows for a lane-level
navigation in situations where precise map data is not available or the algorithm
presented in Chapter 3 cannot provide a certain lane estimate.
Due to the uncertainty of the localization on commercial map data, further
development in this direction might be needed or, alternatively, map data with
accuracy comparable to the used lanelet maps is required. In this context, further
adaptations can be thought of: To avoid losing the correct hypothesis, it can be
useful to switch from a particle filter method to a 3D histogram filter around the
current GNSS position or around a map-matched position from another system.
Instead of combining an EKF and PF, a discrete Bayes filter (“histogram filter”)
can be used to distinguish between a set of in-lane positions determined with
an EKF. The respective EKFs can be reinitialized after intersections to exploit
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the acquired information on the lateral (then longitudinal) position and to avoid
relying on possibly uncertain longitudinal (then lateral) position information. To
avoid errors through map inaccuracies, the map can be modeled probabilistically
as in SLAM methods. To this end, information such as the number of lanes and
the connection between lanes of different links can be modeled as a part of each
particle’s state.
Considering the lane-level AR navigation, further work on visualization, i.e. the
fusion of map and sensor data on the road in front of the vehicle, is required.
Together with lane-level routing and the presented localization method, impor-
tant steps toward a intuitive new generation of automotive navigation systems
can be taken.
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For next-generation automotive navigation systems, an especially intui-
tive visualization of recommended lane-changes can be achieved by 
using Augmented Reality (AR). This requires reliable ego-lane estimation. 
An algorithm for this purpose is proposed, relying only on current pro-
duction environment sensors. Furthermore, an analysis is performed on 
the required pieces for a lane-level AR route guidance system.

The current ego-lane is estimated by the means of a particle fi lter. Its 
input sensors are GPS, vehicle odometry, and abstract data from environ-
ment sensors such as front radar, stereo camera, and blind spot monitor-
ing. Besides a lanelet map with lane-level geometry, a current commer-
cial navigation map with only road-level geometry is used. A combined 
weight update and sampling step is proposed that allows for repro-
ducible results even when initializing the fi lter over large areas. Perfor-
mance evaluations on more than 6 hours or 200km of data from drives 
in urban, suburban, and highway scenarios show that the proposed 
algorithm reliably determines the current lane and that it is almost 
always available.

Besides localization, further topics on AR navigation are covered, such as 
the development of a possible system architecture, a soft map-matching 
applicable to AR applications, and a heuristic that allows for lane-change 
recommendations even in situations with unclear map data that forbids 
lane-level routing or with uncertain localization.
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