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ABSTRACT

M ODERN visceral surgery is often performed through small incisions. Compared to
open surgery, these minimally invasive interventions result in smaller scars, fewer

complications and a quicker recovery. While to the patients benefit, it has the drawback
of limiting the physician’s perception largely to that of visual feedback through a cam-
era mounted on a rod lens: the laparoscope. Conventional laparoscopes are limited by
“imitating” the human eye. Multispectral cameras remove this arbitrary restriction of
recording only red, green and blue colors. Instead, they capture many specific bands
of light. Although these could help characterize important indications such as ischemia
and early stage adenoma, the lack of powerful digital image processing prevents realiz-
ing the technique’s full potential.

The primary objective of this thesis was to pioneer fluent functional multispectral imag-
ing (MSI) in laparoscopy. The main technical obstacles were: (1) The lack of image
analysis concepts that provide both high accuracy and speed. (2) Multispectral image
recording is slow, typically ranging from seconds to minutes. (3) Obtaining a quantita-
tive ground truth for the measurements is hard or even impossible.

To overcome these hurdles and enable functional laparoscopy, for the first time in this
field physical models are combined with powerful machine learning techniques. The
physical model is employed to create highly accurate simulations, which in turn teach
the algorithm to rapidly relate multispectral pixels to underlying functional changes.
To reduce the domain shift introduced by learning from simulations, a novel transfer
learning approach automatically adapts generic simulations to match almost arbitrary
recordings of visceral tissue. In combination with the only available video-rate capable
multispectral sensor, the method pioneers fluent perfusion monitoring with MSI. This
system was carefully tested in a multistage process, involving in silico quantitative eval-
uations, tissue phantoms and a porcine study. Clinical applicability was ensured through
in-patient recordings in the context of partial nephrectomy; in these, the novel system
characterized ischemia live during the intervention. Verified against a fluorescence ref-
erence, the results indicate that fluent, non-invasive ischemia detection and monitoring
is now possible.

In conclusion, this thesis presents the first multispectral laparoscope capable of video-
rate functional analysis. The system was successfully evaluated in in-patient trials, and
future work should be directed towards evaluation of the system in a larger study. Due to
the broad applicability and the large potential clinical benefit of the presented functional
estimation approach, I am confident the descendants of this system are an integral part
of the next generation OR.
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KURZFASSUNG

MOTIVATION

Die Überwachung funktionaler Parameter wie Gewebeoxygenierung und Blutvolumen-
anteil ist wichtig für viele minimal-invasive chirurgische Eingriffe. Vor Nierenteilresek-
tionen sollte beispielsweise sichergestellt werden, dass der zu resezierende Teil nicht
mehr durchblutet ist. Die dadurch bedingten Veränderungen der optischen Absorp-
tion und damit auch im Spektrum des reflektierten Lichtes können mittels das Auge
“imitierender”, konventioneller Kameras kaum wahrgenommen werden. Multispektrale
Kameras erfassen subtilere Unterschiede im Spektrum und erlauben somit potentiell
genauere Schätzung funktionaler Veränderungen.

Bislang scheiterte der Einsatz multispektraler Bildgebung in der (minimal-invasiven)
Chirurgie an langen Bildaufnahmezeiten sowie der verzögerten oder nur ungenauen
Schätzung der Oxygenierung.

Die grundlegende Zielsetzung dieser Arbeit war diese Limitationen im Rahmen der mul-
tispektralen Laparoskopie zu überwinden. Dadurch sollte erstmalig das flüssige Schätzen
funktionaler Parameter für das komplette Blickfeld realisiert werden. Insbesondere wur-
den folgende Hypothesen untersucht:

• Wenige, ausgewählte Bänder erfassen die relevante Information.

• Maschinelle Lernverfahren im Zusammenspiel mit hochgenauen physikalischen
Modellen ermöglichen schnelle und genaue Schätzung der funktionalen Parame-
ter.

Eine zusätzliche Randbedingung war dabei, dass es keine andere praktikable Möglichkeit
zur Bestimmung der Oxygenierung in Gewebe gibt. Daher bildeten realistische, simu-
lierte Daten sowie unüberwachte Lernverfahren eine essentielle Grundlage zur Entwick-
lung eines geeigneten Schätzers.

BESCHLEUNIGUNG DER BILDAUFNAHMEZEITEN

Die Aufzeichnung multispektraler Bilder dauert gewöhnlich mehrere Sekunden. Bei der
sequentiellen Erfassung ist die Aufnahmezeit abhängig von der Anzahl der aufgenomme-
nen spektralen Bänder. Durch intelligente Auswahl der informativsten Bänder konnte
diese Anzahl von 20 auf 8 gesenkt. Der dadurch ermöglichte Technologiewechsel re-
duzierte die Bildaufnahmezeit von 10,5 s auf 0,4 s.

Der entwickelte Algorithmus baut auf Arbeiten in der Fernerkundung auf und wählt das
Subset von Bändern mit der maximalen differentiellen Entropie. Diese ist unter An-
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nahme einer multivariaten Normalverteilung der Band-Bildintensitäten direkt propor-
tional zur Determinante der Kovarianzmatrix des Subsets. In Experimenten mit Gewe-
bephantomen und einer fünf Schweine umfassenden Studie konnte gezeigt werden, dass
der vorgeschlagene Ansatz deutlich mehr Information erhält als Vergleichsverfahren.

Des Weiteren wurde erstmalig eine Kamera in der Laparoskopie eingesetzt, die multi-
spektrale Bilder mit über 25 Hertz aufnehmen kann. Die Analyse dieser Bilder wurde
maßgeblich durch den entwickelten Schätzalgorithmus ermöglicht.

SCHÄTZUNG FUNKTIONALER PARAMETER DURCH LERNEN DER

MONTE CARLO INVERSION

Als Ausganspunkt für die Schätzung dienen physikalische Modelle, welche die Interak-
tion von Licht mit Gewebe beschreiben. Bis jetzt waren diese entweder zu vereinfachend
(Lambert-Beersches Gesetz) oder zu langsam (Monte Carlo Simulationen), um in der
Praxis robuste Ergebnisse zu liefern.

Der entwickelte Ansatz kombiniert erstmalig hochgenaue physikalische Modelle mit ma-
schinellen Lernverfahren für die multispektrale Laparoskopie. Durch das physikalis-
che Modell erstellte Simulationen wurden dabei mittels genauer Kenntnisse der optis-
chen Eigenschaften des Laparoskops und der Kamera in den Bandreflektanzraum trans-
formiert. Der Domänenunterschied von Simulationen und realer Messung wurde ex-
plizit adressiert: Eine große Anzahl generischer Simulationen wurde mittels realer Mes-
sungen automatisch auf die gewünschte klinische Applikation angepasst. Das dabei
zum Einsatz kommende Transferlernverfahren vermeidet die durch solche Ansätze oft
verursachte hohe Varianz. Schließlich lernt der Algorithmus anhand der adaptierten
Beispiele, die den Bildern zugrundeliegenden funktionalen Eigenschaften zu bestim-
men. Dies ermöglicht dem Chirurgen die direkte Darstellung operationsrelevanter Pa-
rameter wie Gewebeoxygenierung und Blutvolumenanteil für das gesamte Blickfeld.

Die Evaluation des Algorithmus wurde in einem mehrstufigen Prozess mittels in-silico
Simulationen, Gewebephantomen und in-vivo Aufnahmen von Schweinen durchgeführt.
Abschließend wurde das System im Patienten evaluiert und mit Fluoreszenbildgebung
als Referenz verglichen. Das entwickelte System ermöglichte dabei erstmalig die flüssige
Überwachung der Durchblutung während einer Nierenteilresektion.

SCHLUSSERFOLG

In dieser Arbeit wurde das erste multispektrale System entwickelt, das die instantane
Darstellung funktionaler Gewebeeigenschaften ermöglicht. Die funktionale Gewebe-
analyse ist relevant für viele Eingriffe und wurde während einer Nierenteilresektion er-
folgreich am Patienten evaluiert. Zukünftige Arbeiten sollten die Methode in einer grö-
ßeren Patientenstudie weiter prüfen. Wegen der breiten Einsatzmöglichkeiten und dem
potentiell großen Nutzen funktionaler Bildgebung bin ich zuversichtlich, dass die mul-
tispektrale Bildgebung Teil des OPs der Zukunft wird.
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1
INTRODUCTION

What is essential is invisible to the eye.

The fox from Antoine de Saint Exupéry’s “The Little Prince”

1
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2 1. INTRODUCTION

MOTIVATION

I MAGINE you’re a surgeon. If you looked at the laparoscopic images in Fig. 1.1, could
you make out which of the organs is sufficiently perfused with blood?

(a) Kidney perfused? (b) Kidney perfused?

(c) Kidney perfused? (d) Kidney perfused?

Figure 1.1: Could you tell through which organ blood is flowing? Resolution in footnote.

Even for expert physicians this is extremely challenging - a major problem, since detect-
ing ischemia (lack of perfusion) often is a game of life and death: after anastomosis, the
(re)connection of two tubular structures, leakage in the blood stream can be extremely
critical. In a recent study, 14% of patients showed anastomotic leakage, but even ex-
perienced surgeons could only predict this with 44% sensitivity [106]. Partial nephrec-
tomies are an example of inducing ischemia on purpose: to prevent bleeding, the blood
flow is usually stopped before the kidney tumor is surgically removed. Selective clamp-
ing avoids harmful global ischemia by stopping the blood supply only to the tumorous
area [67]. While this approach could substantially change future partial nephrectomies,
an imaging technique that is suited to characterization of ischemia has yet to be found
[10]. Colonoscopies are another example that illustrates the limitations of current imag-
ing techniques. As a standard procedure recommended in most countries for everyone
over the age of 50, gastroenterologists screen for possibly cancerous polyps. Although
the widespread implementation of such screening programs has reduced the mortality
considerably [9], many lesions are still overlooked by the physicians. In the case of flat
adenoma, up to 42% are missed [90]. These flat adenoma might be identifiable by subtle
changes in perfusion due to angiogenesis in early stages or hypoxia in later stages.

A large body of research aims at developing technical innovations to support the physi-
cian in surgical perception. Many traditional approaches focus on displaying preoper-

Upper left is not perfused (ischemic). Upper right is perfused, as is lower left. The kidney on the lower right is
partly perfused: roughly below the lower instrument the kidney is ischemic, above it is not.
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atively acquired images during the intervention. These “offline” methods cannot react
to the dynamical state of organs or pathologies, leaving the aforementioned changes in
perfusion undetected. This “blind spot” has spurred the novel branch of live functional
imaging. Its goal is the detection and monitoring of changes in metabolism and blood
flow that are mostly hidden to the human eye. One of the most successful examples for
functional imaging is indocyanine green (ICG) fluorescence, which can reveal informa-
tion about tissue perfusion after injection of a near-infrared (NIR) fluorescing dye. A
laser excites the fluorophore, which binds to blood plasma and bile. This then emits a
slightly shifted NIR signal that allows visualizing perfusion up to a depth of about 1cm.
However, fluorescence is not quantitative and complicates the intervention by requiring
injection of the dye, which leads to follow up questions such as: how much dye - and
where is it to be injected?

In this thesis I aim to pave the way for a new success story, a technique that is less in-
vasive and more straightforward to use: multispectral imaging (MSI). MSI aims at de-
tecting subtle changes in amount and oxygenation of blood, both of which influence the
wavelength dependent absorption of light. Multispectral cameras record these changes
by ceasing to “imitate” the eye, which has only a limited capability to detect the result-
ing color changes. Instead, multispectral imagers parse the electromagnetic spectrum
at many, typically narrow, bands of light, often selected to suit a given task. Each pixel
in a multispectral image thus encodes information about the functional state of a tissue,
exemplified in Fig. 1.2. However, the raw measurements are of no use to the surgeon. To
provide a real advantage, the underlying functional causes have to be revealed.

(a) ischemic organ band 1

(c) ROI comparison
(b) perfused organ band 1

Figure 1.2: Comparison of the spectra of perfused and ischemic tissue. (a) one band of an ischemic kidney
recording and a 3x3 region of interest (ROI). (b) the same kidney, but this time perfused. (c) compares the
normalized reflectances in these ROIs (mean with standard deviation as errorbars). The task of functional
imaging is deducing the molecular changes leading to these differences.
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4 1. INTRODUCTION

OBJECTIVES

The primary objective of this thesis was to pioneer fluent (video-rate) functional imag-
ing by means of multispectral imaging for laparoscopy; imagine a laparoscope, which
will, at the press of a button, display information about perfusion. This technique should
be quantitative, allow continuous monitoring and easy workflow integration.

TECHNICAL CHALLENGES

To enable fluent functional imaging, three major challenges had to be addressed:

C1 The lack of image analysis concepts that provide both high accuracy and speed.
Image analysis involves inverting the multispectral camera measurements to de-
termine the molecular tissue composition (see Figure 1.3). This inversion is com-
plex and cannot be done analytically without restrictive assumptions. Further, the
inversion cannot be learned from tissue measurements, as the necessary ground
truth is often not available (see also challenge 2).

C2 A quantitative ground truth for the recordings is hard or even impossible to obtain.
During an intervention, one has to resort to point measurements for reference.
However, functional information for the whole field of view is not detectable with
other methods.

C3 Multispectral image recording is often slow, typically ranging from seconds to min-
utes. This is caused by the need to record many narrow spectral bands. Depending
on recording technique, this inevitably leads to either longer imaging times or im-
ages with a lower spatial resolution.

Figure 1.3: For known tissue compositions and light/camera arrangements (a), well worked out physics can be
used to calculate tissue reflectance (b), that is the fraction of reflected light to incident light, which would be
measured for a pixel in a multispectral image (c). However, solving the inverse problem, from the measured
reflectance to the underlying tissue properties such as oxygenation or perfusion, is not obvious.
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CONTRIBUTIONS

The central guiding hypotheses investigated in this thesis were:

H1 Exact simulations working in conjunction with powerful machine learning tech-
niques can enable accurate, high-speed functional imaging.

H2 The relevant information can be captured by a small, selected subset of bands to
enable faster image recording.

The investigation of these hypotheses spawned the following technical (T) and medical
(M) contributions:

T1: Machine learning-based spectral decoding [195]. For the first time exact physi-
cal models are combined with powerful machine learning techniques to enable func-
tional laparoscopy. The physical model creates highly accurate simulations of colonic
tissue, which are transformed to arbitrary laparoscope and multispectral camera set-
tings through a sophisticated model of the optical system. The resulting reflectance
simulations teach the algorithm to rapidly relate multispectral pixel measurements to
functional changes. Because learning from such simulations has to be performed with
great care, a multistage evaluation process was carried out in a V-model like manner.
Within this framework, a range of in silico evaluations, tissue mimicking phantoms, lab
measurements and data from six pigs ensured that the taken assumptions are valid.

T2: Domain adaptation for MSI [196]. This contribution extends T1 to be applicable
not only to colonic tissue, but almost arbitrary tissues encountered in visceral surgery
(see Figure 1.4). It relies on a highly generic tissue model that aims to capture a large
range of optical parameters that can be observed in vivo. Adaptation of the model to a
specific clinical application based on unlabelled in vivo data is achieved by incorporat-
ing a new concept of domain adaptation that explicitly addresses the high variance often
introduced by such methods. According to comprehensive in silico and in vivo experi-
ments this approach enables estimation of functional properties for various tissue types
without the need for incorporating specific prior knowledge on optical properties.

Figure 1.4: Technical contributions 1+2: Approach to functional estimation. Highly accurate simulations gen-
erate tissue, reflectance pairs. These pairs are fed to a machine learning regressor, which learns the inverse
function so that it can derive functional information about the tissue from the measured reflectances. Addi-
tionally real recordings can be used to remove bias introduced by learning from simulations.
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T3: Information-theoretic band selection [194]. Faster recording of multispectral im-
ages is enabled by capturing only a small, but discriminative subset of bands (see Figure
1.5). The developed band selection method contrasts with competing approaches by
neither relying on labelled training data nor on a sophisticated light-tissue interaction
model. Instead, it extends a concept from the related field of remote sensing to work in
the endoscopic environment. The resulting algorithm selects bands which maximize the
retained differential entropy in a completely unsupervised manner. A phantom and in
vivo porcine study, involving data from five surgeries, support hypothesis H2.

Figure 1.5: Technical contribution 3: The band selection method from chapter 6 can aid in designing new
cameras by selecting the most useful bands. For this purpose, some hyperspectral images are taken. The band
selection algorithm proposed in this thesis can be employed to choose the best multispectral bands for future
recording.

T4: Video-rate, functional imaging capable laparoscope. The final technical contri-
bution is the first video-rate multispectral laparoscope for functional analysis. While ex-
isting systems are bulky and/or slow, this system retains the look and feel of conventional
laparoscopes (see Figure 1.6). This important step towards clinical use was realized by
first-time application of a novel multispectral camera in laparoscopic environments and
further advancement of the powerful analysis methods. Clinical applicability was en-
sured through in-patient recordings, during which the system characterized ischemia
live during the intervention. Verified with a fluorescence baseline, the results indicate
that fluent, non-invasive ischemia detection and monitoring is now possible.

Figure 1.6: Technical contribution 4: A standard RGB laparoscope (top) compared to the multispectral laparo-
scope developed in this thesis (bottom).
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M1: Oxygenation estimation for tissue and cancer characterization. Pig experiments
were conducted in collaboration with the Department for Visceral Surgery of the Heidel-
berg University Hospital. The developed systems were able to detect changes in oxy-
genation of several organs, including kidney, liver and bowel (see Figure 1.7). This result
could have important implications, e.g. for predicting organ function after anastomosis,
transplantations and cancer resections. Furthermore, oxygenation estimation might be
valuable during cancer screening, as hypoxia is an important tumor hallmark.

(a) Bowel before clipping (b) Bowel after clipping

Figure 1.7: Medical contribution 1: oxygenation monitoring, here in a porcine small bowel. (a) RGB and oxy-
genation overlay on the well oxygenated small bowel segment, while a clip was applied. (b) Hypoxia after
clipping the blood supply to this small bowel segment. The colors code oxygenation in percent.

M2: Ischemia monitoring in partial nephrectomy. The system developed in T4 was
evaluated in collaboration with the Department for Urology of the Heidelberg University
Hospital. The in-patient results suggest that ischemia induced before partial nephrec-
tomies can be detected by a sharp drop in the estimated amount of blood in tissue (see
Figure 1.8). Reperfusion lead to a restoration of the pre-ischmeic values within two sec-
onds. This result could lead to a paradigm shift towards selective clamping in partial
nephrectomy, because it allows previously not possible, highly spatially resolved, imme-
diate and repeated monitoring of kidney perfusion.

(a) RGB before ischemia (b) Functional before ischemia (c) Functional during ischemia (30s)

Figure 1.8: Medical contribution 2: ischemia monitoring in a partial nephrectomy patient. (a) Perfused kidney
and (b) the corresponding functional estimate. (c) Functional estimate 30s after ischemia was induced by
clamping. The colors code the blood volume fraction in tissue [%].
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OUTLINE

The next chapter establishes the foundations necessary to put this thesis in context: the
biophysical properties of light-tissue interaction and a short summary of laparoscopic
surgery. After establishing this basis, Chapter 3 thoroughly reviews the state of the art
of MSI with a focus on applications, recording and analysis. Chapters 4 to 7 are the
core methodological chapters, table 1.1 summarizes the relation of these chapters to the
challenges, hypotheses and contributions. Each chapter presents the method, experi-
ments and results in combination with a chapter discussion and conclusion. The thesis
concludes with the author’s reflections on the presented work and on the road ahead in
Chapter 8.

Table 1.1: Overview on methodological chapters.

Challenges Hypothesis Contribution

Chapter 4 C1, C2 H1 T1, M1
Chapter 5 C2 H1 T2
Chapter 6 C2, C3 H2 T3
Chapter 7 C1, C3 H1 T4, M1, M2
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M ULTIPECTRAL imaging is a highly multidisciplinary topic, at the intersection of Bi-
ology, Physics, Medicine and Computer Science. Since the thesis was written from

a Computer Scientist’s perspective, this chapter introduces the background knowledge
from the other fields that is necessary to put the work in context. First, biophysical foun-
dations are established in Section 2.1, then minimally invasive surgery is introduced in
Section 2.2.

2.1. BIOPHYSICAL FOUNDATIONS

On each pixel of the multispectral image, a molecular signature of the tissue is recorded.
To understand how this signal is formed, first a firm grasp on light and tissue interac-
tion needs to be established. Biophotonics is the field which studies these interactions,
some of which are summarized in Figure 2.1. This chapter first focuses on the optical
phenomena necessary to understand multispectral imaging (MSI): absorption (Section
2.1.1) and scattering (Section 2.1.2).

(a) Interactions relevant for multispectral imaging.

(b) Interactions relevant for other Biophotonics techniques.

Figure 2.1: Examples for light-tissue interactions. Photons are denoted by circles, with colors representing the
wavelength. Absorption events are indicated by dotted lines. (a) Multispectral cameras measure light reap-
pearing at the surface due to multiple scattering events. Specular reflections at the tissue surface are generally
a source of nuisance, because they do not encode any tissue specific information but just “mirror” the light-
source. Because light at different wavelengths is absorbed at different magnitudes, white light, which consists
of every color of light, will reappear as colored light. (b) The shift in color caused by fluorescence and in-
elastic scattering can give clues on present fluorophores and the chemical tissue composition. Thermoelastic
expansion caused by the heating with pulsed laser light leads to ultrasound waves, which are measured in
photoacoustic imaging. Figure in parts reproduced from [203].
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For MSI, the dominant interactions are absorption and elastic scattering (or just “scat-
tering” for convenience). Figure 2.2 gives a schematic overview on how these physi-
cal properties influence the signal. To briefly summarize MSI: absorption and scatter-
ing change dependent on the molecular composition of tissue. Since both quantities
not only vary spatially but also with wavelength, measurements at multiple wavelengths
gives a system of equations which can be solved with respect to the molecular composi-
tion.

Figure 2.2: As the exemplary four photons enter the tissue they get scattered and absorbed. Some will reap-
pear at the surface after multiple scattering events. The ratio between diffusely backscattered photons and
total number of photons is called diffuse reflectance. This ratio is dependent on absorption and scattering,
but also on the wavelength of light. Absorption mainly takes place at the oxygenated (red) and deoxygenated
(blue) blood vessels. Scattering happens at small particles like cells, sub-cellular organelles and collagen fibers,
visualized as yellow circles.

2.1.1. ABSORPTION IN BIOLOGICAL TISSUE

Hemoglobin, the molecule that transports oxygen in blood, often is the only notable op-
tical absorber in internal organs [30, 191]. Hemoglobin is responsible for the red color
of blood and internal organs and is present in two main forms: oxygenated and deoxy-
genated [191]. Deoxygenated hemoglobin binds with oxygen when passing through the
lungs. In organs haemoglobin travels through arteries to smaller arterioles and finally
the capillaries, thin vessels through which the oxygen is released to the surrounding cells
due to the difference in oxygen pressure (and the drop in pH which is a consequence of
higher concentration of CO2 [113]). From the capillaries hemoglobin travels to venules
and veins, through the heart and is resaturated with oxygen in the lungs [163]. Figure 2.3
gives an example for capillaries, arterioles and venules in human mucosal tissue.

Optical absorption in biological tissue is also due to several other chromophores, like
melanin, bilirubin, β-carotine, fat and water [98]. In this thesis I mainly investigate the
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Figure 2.3: Microvessels in a humon colon crossection (bar=100µm). Blood flows through the arterioles (a)
which divide into capillaries. From the capillaries blood drains into venules (v) and finally into veins (V).
Reprinted with permission from [168].

visible wavelength range from roughly 450nm to 700nm. In these ranges water and fat
absorption play minor roles. Note however that water, which is transparent in our ev-
eryday world, is opaque in the infrared. Melanin is mainly present in skin tissue and the
eyes, and doesn’t play a major role in the visceral applications of interest in this thesis.
Bilirubin and β-carotine absorption is usually insignificant compared to hemoglobin.
Note, however, that the validity of this statements depend on a case to case basis. A
counterexample is the gallbladder, which has a distinct color due to the bile containing
bilirubin.

Absorption is usually quantified by the absorption coefficient µa(λ) [cm−1], defined as
the probability of photon absorption in a medium per unit infinitesimal path length. Its
reciprocal gives the mean free path length before an absorption event. Blood contains a
mixture of both oxygenated hemoglobin HbO2 and deoxygenated hemoglobin Hb. This
relationship is called oxygenation and can be defined as [191]:

s = CHbO2

CHbT
(2.1)

where CHbT refers to total hemoglobin concentration CHbT =CHbO2+CHb and CHbO2 , CHb

are molecular concentrations [molL−1] of oxygenated and deoxygenated hemoglobin1.
The absorption coefficient µa in tissue can be calculated as [91]:

µa(λ) = log(10) · vHb ·CHbT · (εHbO2 (λ) · s +εHb(λ) · (1− s)) (2.2)

1Hemoglobin concentration can alternatively be given in [gL−1]. In this case, it has to be divided by the gram
molecular weight of hemoglobin, which is 64,500gmol−1 to convert to molar concentration. A typical value
for hemoglobin concentration is 150gL−1 [152].
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where vHb indicates the volume fraction in tissue occupied by blood and ε(λ) the wave-
length dependent extinction coefficient [cm−1 1

molL−1 ]. This wavelength dependence of
the extinction coefficients is the key to functional imaging and shown in Figure 2.4. It
makes measuring s and the product vHbCHbT possible by determining the absorption
coefficient at a minimum of two wavelengths [191].

(a) Transmission oxygenated cap-
illary

(b) Transmission deoxygenated
capillary

(c) Hemoglobin extinction coefficient

Figure 2.4: Oxygenated (HbO2) and deoxygenated (Hb) blood absorb light differently depending on wave-
length. This is shown for capillaries of 9µm diameter in (a) and (b). This wavelength dependent absorption is
the key to functional imaging. It can further be seen why blood appears red: most light is absorbed in the blue
and green wavelength range. The absorption of hemoglobin is determined by the extinction coefficients [152]
shown in (c). Light at 545nm is absorbed the same for both variants, a so called isosbestic point. Although the
extinction coefficient technically includes both scattering and absorption, absorption dominates scattering in
hemoglobin [191].
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2.1.2. SCATTERING IN BIOLOGICAL TISSUE

If only absorption were present, one would not be able to measure a signal when both
the detector (camera/eyes) and the light source are on the tissue surface - as it is the case
in surgery. Due to (possibly multiple) scattering events photons reappear on the surface,
and can thus be measured. These measurements encode information about hemoglobin
concentration and oxygenation because of the probabilistic absorption on the path of
the photon. Light which is directly reflected at the surface (specular reflection) does
not encode function information but the spectrum of the light-source and thus is not of
special interest [62].

(a) Human colon collagen fibre network x74 (b) Human colon collagen fibre network
x10,600

Figure 2.5: Collagen is the main structural protein in the body. (a) shows the layer-wise organization in the
colon. (b) shows a higher zoom to the fibers, which cause light to scatter. Disorganization of the collagen fiber
network can be associated with cancer [91]. Reprinted with permission from [180].

Scattering occurs when a photon is absorbed and re-emitted in a possibly different direc-
tion [143]. It is most probable if the scattering structure matches the optical wavelength
and has a refractive index different to the surrounding medium [191]. In tissue this may
be caused by collagen fibrils (Fig. 2.5), cells or subcellular organelles such as lysosomes,
mitochondira and Golgi apparati [64, 98, 191]. It can be described by two factors: (1) the
frequency of interaction and (2) a factor describing the directionality of scattering [191].
The frequency of scattering is usually quantified by the scattering coefficient µs [cm−1],
defined as the probability of photon scattering in a medium per unit infinitesimal path
length. As in the case of absorption coefficient, the reciprocal gives the mean free path
length before a scattering event occurs [191].

Assuming scattering is symmetric relative to the direction of the incoming photon, the
directional component can be described by a probability distribution of the scattering
angle Θ. The expectation of the cosine of Θ is referred to as anisotropy, quantified by
the anisotropy factor g = E(cos(Θ)) [64]. Thus, an anisotropy of 1 describes virtually no
scattering, 0 isotropic scattering and -1 completely backward scattering. When inserted
in the approximate Henyey Greenstein [89] phase function

p(Θ) = 1

4π

1− g 2

(1+ g 2 −2g cos(Θ))
3
2

(2.3)
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the anisotropy allows sampling from the probability density function p(Θ) [64].

Both µs and g are wavelength dependent and can be calculated exactly using Mie’s scat-
tering theory [132] or fitted to measurements with heuristic, exponential curves [98].
Mie theory is a direct consequence of the Maxwell equations, applicable in the case of
homogeneously distributed spherical particles, when some properties like the particles
radii and refractive index are known [91]. Although particles in tissue are not spherical,
some studies suggest that modelling tissue as homogeneous spheres is a plausible ap-
proximation [29]. Experimental determination of both µs and g is challenging [98]. In
practice, one often measures the reduced scattering coefficient µ

′
s =µs (1−g ) [cm−1] and

one of g or µs . Experimental measurements of g suggest tissue scatters highly in the for-
ward direction [98] and anisotropy increases with wavelength. This is surprising, as Mie
theory would suggest that scattering is more isotropic when wavelengths get larger than
particle size. One of several possible explanations following [98] is that the scatterers in
tissue are not homogeneous and of the same size, but there are mesoscopic (À 10µm)
structures which cause this effect.

2.1.3. FURTHER READING

“Biomedical Optics - Principles and Imaging” [191] from Lihong V. Wang and Hsin-I Wu
is a book tailored specifically to biomedical optics. A comprehensive overview on tissue
optics from a modelling and experimental point of view can be found in “Optical prop-
erties of biological tissues: a review” from Steven L. Jacques [98]. Džena Hidowić-Rowe
and Ela Claridge show how a detailed model of colonic tissue can be derived from exper-
imentally measured literature values in “Modelling and validation of spectral reflectance
for the colon” [91]. If one wants to expand upon the physical foundation of absorption
and scattering, “Absorption and scattering of light by small particles” by Bohren et al.
[20] starts from the Maxwell equations. This book is not focused on biomedical optics,
but might be recommendable for people with a strong physics background and interest.

2.2. LAPAROSCOPIC SURGERY

Laparoscopic (also called minimally invasive) surgery (MIS), aims to minimize damage
inflicted to patients during visceral interventions. Metallic or plastic tubes of usually 5-
10mm diameter called trocars are placed into small incisions made in the abdomen.
Insufflating the abdomen with CO2 through the first trocar creates the pneumoperi-
toneum, which ensures enough working space following procedure. The first trocar is
used to host the laparoscope (Figure 2.6). The lens system projects the image from the
abdomen onto a camera attached at the end. Additional trocars (usually 1-4) are placed
with the help of the laparoscope to host instruments during the intervention.

Although modern MIS techniques can be traced back over a hundred years [121], rapid,
widespread acceptance only took place in the late 80s and early 90s [108, 187]. To-
day, MIS is commonplace in procedures on inner organs [203], with for example 96%
of cholecystectomies in the United States of America being performed laparoscopically
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Figure 2.6: Schematic depiction of a laparoscope inserted in the pneumoperitneum. Figure reprinted with
permission from [172].

[183]. MIS have been found to result in smaller scars, fewer complications and quicker
recovery compared to open surgery [203]. Together with the related flexible endoscopy,
the field is growing rapidly, with the market projected to reach 38 billion US$ by 2018
[203].

The lack of haptic feedback in minimally invasive interventions require the physician to
rely on visual cues alone. This makes tasks like tissue discrimination during cancer re-
sections more difficult [203]. The same challenge arises in flexible endoscopy, where a
flexible tubular instrument is used e.g. to screen for cancer in the gastrointestinal tract.
In this thesis, I refer to endoscopy for both laparoscopy and flexible endoscopy. The fol-
lowing state-of-the art chapter will explore possible uses for MSI in endoscopy, followed
by an in-depth analysis of multispectral recording and analysis.
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M ULTISPECTRAL imaging (MSI) was first proposed for use in remote sensing in the
mid 80s [71]. Since then, the technique has been adopted in many fields, includ-

ing pedestrian detection [96], art conservation [55, 119], food quality control [52] and
detecting details in crime scenes that would otherwise be invisible [114]. In the biomed-
ical field, MSI techniques have been used literally from head [49, 56, 92] to toe [202] in
the human body.

However, in minimal-invasive surgery MSI is still in a research stage with no commercial
laparoscopic devices available. To enable clinical use of MSI, the state of the art should
be advanced in three aspects:

1. Multispectral imaging must provide clear clinical benefits over existing techniques
- either through better patient outcomes or simpler workflow integration.

2. Multispectral image recording should be at a speed of 25Hz or faster and at HD
resolution to provide immediate and exact feedback.

3. Analysis methods have to be in real-time and at video rates, while not compromis-
ing on performance.

This chapter will analyze advances in these topics in the above order.

3.1. APPLICATIONS OF MULTISPECTRAL IMAGING IN ENDOSCOPY

Multispectral imaging devices record the spectral signatures of tissue for the whole field
of view of the camera. This high resolution information characterizes the tissue sur-
face, as the reappearing light does not penetrate tissue deeper than about 1 to 3mm
[17]. Because MSI needs accurate knowledge about the spectral distribution of the light,
the inherently controlled lighting conditions of endoscopic interventions make these the
special interest and focus of this review and thesis. Possible interventional uses include
organ classification [3, 133, 204] and identification of important structures such as blood
vessels, nerves or the ureter [4, 58, 141, 142, 158]. In my opinion, most promising for en-
doscopic applications are early cancer detection for screening purposes and perfusion
monitoring. Both will be analyzed in depth in the following.

3.1.1. CANCER DETECTION

The hope that multispectral imaging could aid in early cancer detection is mainly at-
tributed to two effects: angiogenesis and hypoxia. Angiogenesis, the formation of new
blood vessels, is an important cancer hallmark . This neovascularisation is induced by
the tumor due to its need for nutrients such as oxygen [83]. Angiogenesis happens al-
ready in premalignant stages, and therefore could serve as an early indicator during
cancer screenings. Hypoxia is defined as low oxygen tension and can be observed in
tumor areas with malfunctioning vasculature, which are often significant in size [45]. As
multispectral imaging can estimate total hemoglobin (linked to angiogenesis) and oxy-
genation (linked to hypoxia), there is reasonable hope it can help in cancer detection,
e.g. to increase adenoma detection rates during screenings.
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Kaneko et al. [105] reasoned that real-time oxygenation estimation in flexible endoscopy
can help in cancer screening. Though not truly multispectral (only three, carefully se-
lected bands), this work is interesting because of its innovative approach and convinc-
ing study design. Oxygenation estimation was done in real-time (not further specified)
and evaluated on 40 patients. Significant differences were detected between neoplastic
and non-neoplastic areas in esophagus and colorectum. Similarly, Han et al. [82] aimed
for early detection of colorectal cancer with a true multispectral system. They directly
classified colorectal cancer, meaning classification on the camera measurements with-
out estimating functional parameters as oxygenation. Images were acquired from 12
patients and it was not mentioned how the tumor regions were identified besides being
manually marked. Martinez-Herrera et al. developed a light modulating, multispectral
gastroscope [129]. They collected data from 17 patients and direct classification was per-
formed, comparing various feature sets and classifiers. Hohmann et al.[93] evaluated a
multispectral system on 14 gastric cancer patients. The tumor margins were determined
by medical experts. It was noted that this ground truth might not be completely accu-
rate, as medical experts can not determine these with certainty. Several classifiers were
tried to directly classify cancerous tissue. The results showed quite low sensitivity and
specificity. Fazwy et al. characterized another endoscopic system [51] for measuring
blood volume fraction and oxygenation in the lung with possible application in lung
cancer detection. They performed measurements on 10 healthy patients, so no func-
tional analysis of malignancies was done. Gu et al. [77] presented preliminary results on
12 gastroscopy patients, showing that multispectral images provide higher contrast for
cancerous tissue than RGB imaging.

While endoscopic patient studies such as the above are rare, multispectral cancer detec-
tion in ex vivo [5, 36, 57, 74, 117, 201], animal models [2, 124, 125, 170] and easily acces-
sible cancers like head and neck [14, 81, 122, 173] and skin [42, 54, 84] are widespread.
Comprehensive overviews on the role of multispectral imaging in cancer detection can
be found in [123] and [126].

3.1.2. PERFUSION MONITORING

Perfusion can be defined as the volume of blood that flows through the capillaries of a
certain tissue or organ in an interval of time [193]. Ischemia is the stopping or reduction
in perfusion and can lead to irreversible damage. Depending on the organ, this damage
will occur within minutes to hours. The damage is caused by the imbalance between
supply and demand, since cells still consume oxygen and other nutrients, but no new
oxygenated blood is arriving [47]. Because of reduced oxygenation and the lower amount
of blood in ischemia, multispectral imaging has potential to characterize perfusion.

Ischemia can be prompted by several reasons. It can for example be caused by a physi-
cian voluntarily. An example for this is partial nephrectomy, where a kidney tumor is
surgically removed. To reduce bleeding during the resection, ischemia can be induced
by clamping the supplying hilar vessel. Studies suggest that (warm) ischemia can be
sustained about 20 minutes before damages occur [179]. Olweny et al [145] used a mul-
tispectral system to monitor kidney oxygenation during robot-assisted partial nephrec-
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tomy in 18 patients, aiming to predict postoperative kidney function in the future. Sev-
eral other similar studies on the kidney in open settings were conducted by this group
[94, 182, 209].

Ischemia can also be a unwanted side effect after surgery. Two prominent examples are
organ transplants and anasotomsis, the reconnection of two tubular sections. Clancy et
al. [32, 33] performed uterine transplants in rabbit and sheep models with a multispec-
tral laparoscope. They found that post transplantation oxygenation has a lower baseline
levels compared to pre-transplantation readings. These measurements were in line with
data from pulse oximetry acquired in parallel. In future studies they aim to investigate if
the measured oxygenation values can serve as a predictor for long time survivability. In
another variant of the system [30] they investigated measurement of bowel oxygen sat-
uration. The main focus of this work was the comparison of oxygenation determined by
multispectral imaging and BGA during clamping of bowel segments in a porcine model.
The determined pearson correlation coefficient between BGA and multispectral imaging
was 0.76. Clancy argued comparing oxygenation of both systems needs some considera-
tion: Blood for the BGA has to be drawn from a larger vessel, while multispectral imaging
will measure an average of venous and arterial blood in the tissue imaged at a specific
pixel. Furthermore, BGA readings are highly temperature dependent, a 2° Celsius differ-
ence in temperature can account for up to 9% difference in oxygenation measurement.
They argued that systems like these could help predict success of bowel anastomosis,
e.g. after cancer resection.

3.1.3. CONCLUSION

To date, no one breakthrough application for endoscopic MSI has been identified. Two
of the most promising areas for minimally invasive multispectral imaging are cancer de-
tection and perfusion monitoring. In colonic cancer screenings, the goal can be to in-
crease adenoma detection rate compared to white-light colonoscopy. Perfusion mon-
itoring could help in assuring that the correct vessel has been clamped before partial
nephrectomy. Currently this can be tested with ICG fluorescence, which disturbs the
surgical workflow and can potentially be replaced by completely passive MSI. Other ap-
plications like anastomosis and organ transplant success verification are relevant appli-
cations as well. However, here the benefit of MSI will be harder to test, as for example
anastomotic leakage has indications besides postoperative ischemia.

While there are strong indications that MSI could help in the aforementioned applica-
tion, reliable proof of clinical benefit is hard to establish and currently missing. There-
fore, an application with a clear reference method should be identified. The application
proposed in this thesis is perfusion monitoring in partial nephrectomy. The system was
compared to the more invasive ICG fluorescence baseline in Chapter 7, indicating that
MSI can detect ischemia by monitoring blood volume fraction. Two other main chal-
lenges for MSI are not-standardized recording and analysis, which are discussed in the
following.
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3.2. RECORDING OF MULTISPECTRAL IMAGES IN ENDOSCOPY

Use in laparoscopy places high requirement on multispectral systems. The ideal systems
should

1. be lightweight and compact, so it can be attached to a laparoscope and held during
the intervention

2. record images at video rates (25Hz and above), to give immediate feedback and
avoid motion artifacts or blurring

3. provide high resolution images (ideally HD) to capture intricate details

4. be able to display conventional RGB images

Current multispectral endoscopes are quite far from this ideal piece of hardware. Two
techniques are commonly employed for multispectral image recording in endoscopy:
staring systems and snapshot systems. Figure 3.1 shows typical systems as found in lit-
erature. The next section reviews these techniques and their endoscopic implementa-
tions. Section 3.2.2 discusses band selection techniques, which can benefit both staring
and snapshot systems.

(a) Leitner et al. [117] (b) Clancy et al. [30]

Figure 3.1: Two staring systems that filter light at the camera level. (a) The highly sensitive, but bulky EMCCD
camera and the fast switching AOTF allow relatively fast recording of eight bands in 5Hz. (b) The slow switching
LCTF and standard monochrome camera record an image stack in about 3s, but feature a smaller form factor.
Pictures adapted with permission from [117] and [30].

3.2.1. RECORDING TECHNIQUES

Light back-scattered to the surface encodes information about the present molecules,
varying at wavelengths. Since measuring at one exact wavelength would not yield enough
photons, multispectral recording techniques integrate them from within a band of light.
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Recording several bands of light leads to a 3D image cube with two spatial and one spec-
tral dimension. The broadness of the bands is often characterized by the full width at
half maximum (FWHM) [118], the distance in nm of the two wavelengths where trans-
mission is at 50% of the maximum.

Multispectral images can be recorded using point-scanning (whiskbroom), line-scanning
(pushbroom), staring or snapshot approaches [62, 118, 123]. Whiskbroom and pushb-
room techniques perform spatial scanning and are not suitable for interventional MSI
[123]. This leaves the spectral scanning staring systems and snapshot systems which
record both spatial and spectral information at once, summarized in Fig. 3.2.

(a) Staring filtering at camera (b) Staring filtering at light source (c) Snapshot filtering at pixel level

Figure 3.2: Three ways to record multispectral images. Staring system perform time sequential wavelength
scanning either (a) in front of the camera or (b) after the light source. This filtering can be done by LCTFs,
AOTFs or fast filter wheels. (c) Snapshot systems acquire the full spectral-spatial data-cube at once, e.g. by
filtering directly on pixel level.

STARING SYSTEMS

Staring systems acquire images with full spatial information at the cost of temporal res-
olution by sequentially switching the recorded band. This switching takes place at light
source level or before the detector. Most commonly, filter wheels [31, 51, 77, 82, 195, 196],
liquid crystal tunable filters (LCTF) [30, 32–34, 210] and acousto-optical tunable filters
(AOTF) [117] are used for switching in endoscopic snapshot systems. LCTF and AOTF
systems are flexible in wavelength selection, an often important requirement for re-
search purposes. AOTFs enable fast switching of wavelengths in about 0.1ms, LCFTs
switch considerably slower, taking around 150ms [61], albeit offering better blocking ef-
ficiency and acceptance angles than AOTFs [117]. Both AOTF and LCTF suffer from low
throughput of about 30% [61]. The transmission efficiency of competing fast filter wheel
systems is near 100% [31]. However, these systems suffer from bulky setups and cannot
switch wavelengths without manipulating the device. Other disadvantages of fast filter
wheels mentioned in literature are slow wavelength switching, misregistration due to fil-
ter movement, mechanical vibration and narrow spectral range [118]. However, besides
the slow wavelength switching, which is faster than conventional LCTF but slower than
for AOTFs, these disadvantages could not be observed in this thesis.
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A simple ways to realize such a multispectral staring system is to place an AOTF, LCTF or
fast filter wheel between endoscope and a monochromatic camera [30–34, 117, 210] (Fig.
3.2a). The LCTF-based systems acquire image stacks in 3 to 41 seconds in the reviewed
literature. The differences are caused mainly by number of recorded bands, light source
and camera quantum efficiency. The AOTF technique has been explored in an ex vivo
setting by Leitner et al. [117]. They were able to record eight band multispectral images
at 5Hz or 51 band images at 1.25s. The system is quite bulky, using a highly sensitive EM-
CCD camera as detector (see Fig. 3.1a). Due to the better light throughput and relatively
fast switching, Clancy et al. [34] were able to record eight-band multispectral images at
4Hz with a fast filter wheel.

A somewhat more involved, second option is switching bands at the light source as in
[51, 94, 105, 145, 182, 209] (Fig. 3.2b). This requires a control unit to synchronize light
source and camera [51]. Fawzy et al. [51] presented a system which filters light by means
of a fast filter wheel. Each of the slots was occupied by one of six customized triple-band
filters. These triple-band filters had three narrow peaks in the red, green and blue. A
conventional RGB camera was used to collect the reflected light. The system was able
to record 3x6=18 band multispectral images at 15Hz. Similar systems, but with classical
one band filters, were presented in [82] and [77]. Hohmann et al. used a modified light
source to illuminate tissue in 6 different bands in gastroscopy. Their system acquired
multispectral images in 2Hz. Kaneko et al. [105] recorded images using a conventional
RGB probe. They illuminated tissue sequentially with broad band light and laser light
which is sensitive to oxygenation. In [209] Zuzak et al. presented the digital light pro-
cessing DLP® hyperspectral system. In DLP® light is first dispersed by a grating. The
spectrally unfolded light hits a micro-mirror array with 768 by 1024 fast switching mir-
rors. Each of the mirrors either directs light to a heat sink or propagates it forward to-
wards the target tissue. The system can therefore produce almost arbitrary shapes of
light. Recording with 3Hz is possible in three-shot mode, where three selected bands of
light are used for illumination. The DLP® was patented by Zuzak et al. [208] and used in
various kidney related studies [94, 145, 182].

SNAPSHOT SYSTEMS

Snapshot imagers acquire the complete spectral and spatial information in a single im-
age, at the cost of resolution [118]. Various techniques have been proposed [80], but
only few have found application in biomedical imaging [62]. Even less have found en-
doscopic usage, likely due to device compactness and, in the case of tomographic and
Fourier based solutions, computational complexity [62]. One of few published endo-
scopic systems is the image mapping spectroscopy (IMS) device presented in [109]. The
IMS concept is layed out in Fig. 3.3a. It is based on a custom designed image mapper,
which contains micro mirrors to map spatially close zones to isolated zones on a CCD
camera. A prism is used to spectrally resolve the pixels in these isolated zones. The map-
ping back to a 3D multispectral datacube is then a simple reshuffling operation. IMS
systems need a large-format camera, which normally have low frame rates [62] (e.g., 5.2
frames per seconds in [109]). Spectrally resolving detector arrays (SRDA) are another
technique for snapshot multispectral imaging. The imec (Leuven, Belgium) SRDA sen-
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sor uses Fabry-Pérot filters at pixel-level, arranged in a mosaic pattern (see Fig. 3.3b). It
can record images with up to 170Hz and records 16 bands in the visible or 25 bands in the
near-infrared. This and the Pixeltech (Largo, FL, USA) PixelCam™ which only records
four relatively broad bands, are to my knowledge the only commercially available snap-
shot sensors.

(a) IMS snapshot concept (b) imec snapshot concept

Figure 3.3: Two principles for snapshot recording. The IMS concept (3.3a) maps spatially close regions to
separate zones on the CCD using micro mirrors. Before the light reaches the CCD it is spectrally distributed
by a prism. The imec concept (3.3b) performs filtering using Fabry-Pérot elements on top of each pixel. The
pattern of these filters is repeated in a mosaic pattern. Pictures adapted with permission from [109] and [63].

Currently, staring systems outnumber snapshot devices. No clear standard technology
has been established for snapshot imaging, although where are some competing tech-
nologies, like computed tomographic imaging spectrometer (CTIS), IMS and SRDA. The
first snapshot multispectral endoscope was presented by Kester et al. [109], who in-
vented the IMS concept. The presented IMS endoscope operates in visible wavelength
ranges and is able to record 200x200x48 images with 5Hz. Another recently proposed
snapshot system featured a flexible 10x10 fiber optic [120]. The distal end of this fiber
optic was rearranged to a 100x1 line. This line is resolved spectrally by a spectrograph
and imaged with a CCD, similar to pushbroom multispectral imagers. Rearranging the
image pixels restores the spatial information. With this technology, Lim et al. manage
to record images with 10x10x756 resolution in 6Hz. The imaged wavelengths are in the
range of 400-1000nm.

3.2.2. MULTISPECTRAL BAND SELECTION

Band selection can help mitigate the aforementioned problems of slow image recording
and low resolution: sequentially recording staring techniques suffer from long image
recording times, often in the range of seconds [16]. Aside from the surgeon not patient
enough to wait for seconds for one image, tissue and instrument movement misalign
the recorded stack, thus rendering the measured spectra invalid. Some sequential tech-
niques, such as the fast filter wheel, have only limited slots available, so reduction to this
number of slots is a must. With proper band selection imaging time usually reduces lin-
early with the number of bands for staring techniques. The one-shot recording snapshot
techniques have differing issues. While they can record an image stack all at once, the
image resolution decreases with the increasing number of bands. Modern surgery how-
ever is performed at full HD resolutions (1920 x 1080 pixel) and some vendors already
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Table 3.1: Overview on relevant band selection methods.

Group Modality label-
free

Method Data Application

Wood et al.
[197]

Fluo-
rescence

no wrapper ex vivo cancer detection

Han et al. [82] MSI no filter in vivo colorectal cancer
Lu et al. [125] MSI no filter in vivo cancer detection
Nouri et al.
[141, 142]

MSI yes filter in vivo surgical visual-
ization

Gu et al. [77] MSI yes filter in vivo gastric abnor-
malities

Preece et al.
[153]

MSI yes wrapper in silico physiological pa-
rameters

Wirkert et al.
[194]

MSI yes filter in vivo physiological pa-
rameters

are offering 4K (4096 x 2160 pixel) solutions. This dwarfs the spatial resolution of current
multispectral snapshot sensor such as the Ximea (Muenster, Germany) MQ022HG-IM-
SM4X4-VIS (512 × 272 pixel), with drawbacks that subtle textural changes in tissue might
remain hidden. Band selection can mitigate this drastic difference, as a smaller number
of bands recorded leads to higher resolutions.

Note that band selection is different from dimensionality reduction methods as prin-
cipal component analysis (PCA), which reduce the dimensionality by finding a subset
composed of combinations of bands/features. This does not reduce imaging time, be-
cause usually all bands have to be recorded to compute the axes found by PCA. Band
selection is however closely linked to variable/feature selection, in which algorithms can
be grouped roughly in filter, wrapper and embedded methods [79]. Filter methods de-
termine the best features as an independent preprocessing step. Wrapper methods use
the performance metric for a given task (e.g. accuracy of tumor detection) to rank fea-
ture sets. Finally, embedded methods are directly part of the training process of a ma-
chine learning algorithm trying to find a solution to a specific task. While filter methods
can rely on unsupervised correlation analysis, wrapper and embedded methods usually
need labelled training data.

Due to its early adoption in the field, a large body of work in band selection is available
in the field of remote sensing (see e.g. [13, 27, 78, 161, 167]). Moreover, band selection
is employed in fields like food safety [43] and histopathology [148]. This state of the art
review will be restricted to algorithms with relations to interventional imaging. See table
3.1 for an overview of this approaches, described briefly in the following.

Wood et al. [197] explored band selection in context of distinguishing fluorophores.
To this end they selected the bands which maximize the Area Under the Curve (AUC) of
a Naïve Bayesian classifier’s Receiver Operating Charactersitic (ROC). More specifically
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they used a greedy algorithm to remove bands which contribute the least to the AUC
while having a low AUC if taken on their own. The algorithm was evaluated on phan-
toms and lung cancer biopsies, which were stained with an exogenous fluorophore. They
concluded that three wavelengths provide essentially as much information as using all
sixteen wavelengths.

Han et al. [82] selected the most discriminative bands for detecting gastric tumors.
These were selected by maximizing the symmetric class-conditional Kullback-Leibler
(KL) divergence, a sub-optimal, greedy algorithm [43] search algorithm, chosen because
the number of subsets grows exponentially with the number of bands. This algorithm
iteratively adds bands to the selection set based on the largest incremental increase on
the symmetric KL measure. After selecting the bands in this manner, a SVM was trained
to detect cancerous tissue on a pixel level. The algorithm was evaluated on 12 patients
and a total of 21 colorectal tumors and bands recorded in the visible wavelength range.
They concluded that reasonable tumor detection performance can be achieved with 5
out of 28 bands.

Lu et al. [125] performed band- and feature selection for hyperspectral images recorded
in a mouse head and neck tumor model. They employed the maximal relevance and
minimal redundancy (mRMR) framework [150]. Maximal relevance is characterized by
high mutual information between the bands and the classes. Minimal redundancy is
characterized by minimal mutual information between bands. As in [82], the band se-
lection results were generated by iterative adding of the band which maximizes a combi-
nation of these two criteria. The authors recorded hyperspectral data with a total of 226
bands in the visible and near infrared wavelength. Tumor v non-tumor reference was
established using in vivo GFP fluorescence. The authors resorted to pseudo GFP ground
truth due to difficulties matching the images to real, but deformation-prone histopatho-
logical ground truth. Due to the difficulty to establish reliable reference data, I think
band selection methods should ideally not require labelled in vivo data (the label-free
column in table 3.1). The following approaches aim to find the best bands without the
need for ground truth.

Nouri et al. [141, 142] inspected a number of unsupervised, thus label-free, band se-
lection algorithms. The algorithms, originating from the remote sensing community,
were evaluated within the context of hyperspectral ureter surgery. Compared to other
state-of-the art works, the band selection was performed in a large spectral range (400-
1700nm), enabled by using a system consisting of two cameras, one for the VIS-NIR and
one for the NIR-SWIR spectral range. Instead of finding bands which separate a certain
class, the authors aimed to find the best three bands to visualize instead of RGB to the
surgeon. They evaluated the differing methods by several contrast and entropy measures
and measured how the bands can differentiate structures as the ureter and fat. Two find-
ings here are of special interest in our context: a variant of the Sheffield index, which is
also employed in this thesis (Chapter 6.1.3) shows best results for ureter discrimination
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and the fact that inclusion of middle infrared information provides substantially better
discrimination results. Unfortunately incorporating middle infrared bands is not pos-
sible for silicon based standard cameras, as the material is not sensitive to light in this
range. The work of Nouri et al. [141] is similar to our work [194] and was published
basically at the same time. Our work further differs by the endoscopic setting and the
oxygenation estimation as target criterion.

Gu et al. [77] selected three bands to discriminate gastric abnormalities from benign
tissue. As [141, 142] they aimed to replace the RGB image with the selected bands. Their
algorithm first selected the band with the highest variance from a set of 27 bands in
the visible. Subsequent bands were added iteratively with the criterion of minimizing
mutual information compared to the previous selection. The bands were determined
using 29 images from 12 patients with gastric abnormalities. The authors claim that
the selected bands increase contrast, however this statements seems to lack quantifiable
evidence.

Preece et al. [153] were selecting bands with a different idea. First Kubelka-Munk
light transport theory based simulations were created for assessing pigmentation of hu-
man skin. After adapting these simulations to a set of virtual filters, a genetic algo-
rithm was employed to find the best subset for recovering papillary dermis thickness and
blood/melanin content. They ensured the bands can invert the parameters uniquely by
differential-geometric reasoning. Incorporation of ground truth coming from simula-
tions allowed circumventing problems related to real ground truth determination men-
tioned in [125].

3.2.3. CONCLUSION

No off the shelf recording solution is available for endoscopic multispectral imaging. The
four requirements mentioned in the beginning of this section are met by no single sys-
tem. I predict the successful system will only record a very limited, but highly expressive,
number of bands, making band selection, as presented in Chapter 6, a prerequisite for
future system design.

Devices for recording split into staring and snapshot systems, each with unique proper-
ties. While staring systems mainly suffer from slow image recording, snapshot devices
acquire images at higher rates, at the cost of resolution. Staring systems which manipu-
late the light source have some advantages. They do not require bulky imagers, but can
use the conventional camera, as e.g. done in [51, 105]. Moreover, they can modulate light
intensity to the needed output for narrow or broad bands. This allows design of systems
which mix broad RGB bands with selected, task specific narrow bands as in [105]. Since
the light source is modified, these devices are harder to certify for in-patient use [93] and
need synchronization of camera and light source. Acquiring a high number of spectral
bands with systems like these has so far proven unsuccessful. Snapshot systems on the
other hand do not suffer from image misalignment and leave the light source untouched.
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The completely passive recording technique might make using these systems easier in
clinical practice. On the downside, current snapshot devices lack high-resolution image
acquisition.

Chapter 7 presents the to my knowledge first laparoscope which acquires multispectral
images in 25Hz and above. This compact system is the first to fulfill both the first and sec-
ond initially mentioned requirement, which was made possible by the first endoscopic
use of the imec snapshot sensor. Using methods presented in Chapter 7.2, the system
can further display RGB information. The research question of high resolution MSI is
remaining. However, the system offers higher spatial resolution (512x272x16) than exist-
ing snapshot devices. I strongly believe that multispectral band selection as presented
in Chapter 6 is one of the key element to removing this last obstacle.

3.3. ANALYSIS OF MULTISPECTRAL IMAGES

Multispectral images can be analyzed by unraveling the functional tissue properties (Sec-
tion 3.3.2) or by directly trying to estimate the end target, such as the presence or absence
of a disease (Section 3.3.4). A challenge when employing functional approaches is the
evaluation, which is discussed in Section 3.3.3. Both approaches to analysis commonly
employ the calibration steps described in the next section.

3.3.1. CALIBRATION

In biomedical applications, multispectral images are of interest because they can cap-
ture information about the molecular properties of the underlying tissue. However, raw
multispectral image measurements are dependent on the light source, device optics and
camera characteristics. Consider two images recorded of the same tissue but under dif-
ferent light sources. The intensity of the second light source being twice that of the first in
the red wavelengths. This would cause the recordings in the second image to be brighter
in the corresponding wavelengths. A calibration step is typically performed by acquiring
a dark and a white image. The dark image, D(x, y,λ), is recorded in complete darkness
and the white image, W (x, y,λ), is taken from a standard white target1. The multispec-
tral image I (x, y,λ) is transformed to band reflectance R by applying the transformation
[123]

R = I −D

W −D
, (3.1)

where D accounts for the dark current of the camera and W for the lighting conditions.
All mathematical operations are performed pointwise. The images are all of the same
size I ,W,D,R ∈ Rhxw x|b|, with the first two dimension being the image height h and
width w and the last one being the number of spectral bands |b|.
For a static scene, with the camera and light source being at same pose for tissue and
white target, the above transformation is sufficient. This can for example be the case

1Commonly recorded from a completely diffuse reflecting surface, using National Institute of Standards and
Technology certified Spectralon targets, which diffusely reflects 99% of light in the visible [48, 123]
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when haemodynamics are monitored on the open brain’s surface or in microscopy. This
cannot be guaranteed in the dynamic scenes encountered in multispectral endoscopy
. Consider again two images of the same tissue, but the light source is being closer to
the tissue when recording the second image. The measured image will be brighter in all
bands, because of more incident light per surface area. If the surface is assumed to be
Lambertian2 , measurements change multiplicatively in spectral dimension, dependent
on pose of light source and camera [36]. Dividing by the mean in spectral direction [196]
removes the multiplicative factor. By applying this transformation information can be
lost, since the molecular changes in tissue can also lead to multiplicative changes in
spectral reflectance.

Depending on camera setup, additional calibrations can be necessary. The dark current
can be time and temperature dependent and the camera response can be non-linear.
Calibration methods in such situations have been discussed in [76, 86, 107, 127].

3.3.2. FUNCTIONAL PARAMETER ESTIMATION

One way to interpret the multispectral images is to estimate the underlying functional
information of the tissue for each image pixel. After linking the multispectral image
pixel measurements to causing functional effects, like blood volume fraction and oxy-
genation, so called parametric maps can be displayed to the surgeon, see Fig. 3.4 for an
example. These functional images can be used to guide surgical decision. To be able
to calculate the functional information, usually a physical model is needed to establish
the function-measurement relationship. The most prominent models are based on the
Beer-Lambert law or Monte Carlo reasoning, briefly explained in the following.

Figure 3.4: Oxygenation map (right), revealing a hypoxic adenoma in the center. Left image shows the same
scene as RGB. Reprinted with permission from [105].

BEER-LAMBERT

Most systems for interventional in vivo multispectral imaging as [30, 138, 209] use linear
estimation approaches based on the modified Beer-Lambert law [92, 162]. It states, that

2A surface which is diffusely reflecting isotropically in the spectral domain and the intensity follows the Lam-
bert cosine law [115]
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the following relationship holds for spectral reflectances r (λ) and absorption a(λ):

a(λ) =− log(r (λ)) =µa(λ)L+G (3.2)

with L being the path length travelled by the photons and G is a geometry dependent
term e.g. accounting for scattering losses. If hemoglobin is the only notable absorber,
this leads to:

a(λ) = εHbO2 (λ)CHbO2 L+εHb(λ)CHb L+G . (3.3)

If more than one measurements are available, indicated by vector notation a, we write
for convenience:

a =− logr = Hx. (3.4)

Here, H is the matrix composed of (εHbO2 , εHb, 1) and x = (CHbO2 L, CHb L, G)T . Using
linear least squares regression, the optimal solution x̂ is determined by:

x̂ = (H T H)−1H T a. (3.5)

This enables calculation of oxygenation by s = CHbO2 L
CHbO2 L+CHb L . Note, that total hemoglobin

concentration can only be determined up to a constant factor L, because L CHbT = L(CHb+
CHbO2 ).

While being fast, the method is based on the assumptions that light travels an equal
path length L in tissue regardless of wavelength, that scattering is constant and that ab-
sorption is low compared to scattering [92]. These assumptions do not hold up in real
tissue. Red light penetrates the tissue deeper than blue light, because blood absorbs
photons less in the red wavelength range. The scattering is also wavelength dependent,
e.g. dropping by about 20% from 500nm to 620nm within the bowel [30, 98]. Sometimes,
the linear regression may calculate physically impossible negative values. In these cases
one can resort to much slower non negative least squares regression.

From a theoretical standpoint Beer-Lambert’s law is defined for spectral reflectances
r (λ), so reflectances at specific wavelengths, while the camera measures reflectance
rcamera in a certain band of light bi (after the transformations in the previous subsec-
tion). In many practical application, like [30, 33, 34, 209], the Beer-Lambert approach is
nonetheless used for the band reflectance measurements. Regression is then based on:

acamera = B Hx. (3.6)

With B (for bands) being the linear transformation matrix to transform spectral reflec-
tances to band reflectances. However, in reality the transformation happens on image
acquisition level, rcamera = B r. This means, that Equation 3.6 cannot be used for regres-
sion with rcamera, as

acamera = B Hx =−B logr 6= − logBr =− logrcamera. (3.7)

When narrow bands are recorded, this might not play a big role, which is probably why
most endoscopic approaches [30, 33, 34, 94, 145, 182, 209] used the Beer-Lambert based



3.3. ANALYSIS OF MULTISPECTRAL IMAGES

3

31

approach and Equation 3.6 for oxygenation determination. In case of broadband cam-
eras like RGB or the camera used in Chapter 7 this effect can however not be neglected
anymore. One possible solution is to transform band reflectances to spectral reflectances
as a preprocessing step. For this purpose, several approaches have been explored. Nishi-
date et al. [139, 140, 200] used Wiener estimation to restore spectral reflectance. They
determined the Wiener matrix, a linear transformation of the band reflectances which
minimizes squared reflectance reconstruction error [200]. This transformation of RGB
data to multispectral data is highly underconstrained and can be made more stable by
adding a regularization term [103]. Non-linear spectral reflectance reconstruction has
also been done in the community [57, 100], using a neural network based approach [128].
An approach outside of medicine has recently been proposed at CVPR [198]. It estimates
both illumination and spectral reflectance in a bi-linear system by leveraging linearity
assumptions and knowledge about typical illuminations and reflectances.

MONTE CARLO

Alternative to the simple Beer-Lambert approach are more accurate, non-linear, forward
models based on diffusion approximation [18, 50, 157], δ-P1 [51, 164], Kubelka-Munk
[35, 46, 188, 189], Monte Carlo methods [36] and others [57, 202]. Most of these come
in closed form, so at least the forward model can be evaluated rapidly. This is not the
case for the widely accepted gold standard for describing photon transport in biological
tissue, Monte Carlo (MC) simulations [206].

The MC simulations can produce arbitrary exact results at the cost of run time by simu-
lating photon transportation [206]. They estimate quantities which can be characterized
by an expectation value of many independently propagated photons. Examples for these
quantities are spectral reflectance and fluence [191]. MC simulations can be applied if
the medium is loosely packed so that scattering events can be considered as indepen-
dent [191]. MC programs offer varying degrees of freedom, allowing varying complexity
in modelling e.g. geometry and physical phenomenon.

The multi-layered Monte Carlo (MCML) is probably the most commonly employed in-
homogeneous Monte Carlo model [206]. In MCML [190] tissue is modeled as infinite,
homogeneous slabs. Each of these slabs is characterized by its depth d , g , µa , µs and
refractive index n. Photons are fired perpendicular in an infinitely narrow beam onto
the tissue, in which they are probabilistically propagated and absorbed. E.g., the Henyey
Greenstein phase function from Equation 2.3 is used to sample the scattering angle from
g . The back-reflected photons (more correct: photon packets) are recorded and their
ratio to totally fired photons gives spectral reflectance. Note that simulations are not de-
fined by the wavelength of light in MCML. The wavelength is indirectly coded by setting
the wavelength dependent parameters µa , µs and g . That means one run of the simu-
lation framework will give spectral reflectance at only one exact wavelength. MCML is
not capable of simulating complex geometry or effects as fluorescence. For this, more
complex frameworks like Geant4 [8] need to be used.

The drawback of all MC methods is that they are time and resource intensive, since the
propagation of many photons has to be simulated individually. To mitigate this, modern
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approaches employ the graphics processing unit (GPU) to simulate photon migration
in parallel [7]. Additional speed-up can be achieved by using non-optimal acceleration
techniques [206]. Like Beer-Lambert, MC present a forward model for photon propaga-
tion. However, because the problem is non linear, inversion is not as easy as in the Beer-
Lambert case, where simple least squares fitting is a reasonable choice. On the contrary,
inverting the Monte Carlo forward model is an active area of research, summarized in
the following.

Claridge et al. investigated Monte Carlo inversion [36] on excised colon cancer tissue.
The forward simulations were created with a sophisticated layered model for colonic
tissue from a previous work [91]. They varied three parameter related to blood content,
mucosa thickness and scattering in five steps to create a total of 35 = 125 simulated spec-
tra. The other parameters were set to standard values. For inversion the spectrum closest
to the measurements w.r.t. euclidean norm was determined. They found that inverting
spectra like this is non-unique within the noise level. Consequently, subsequent spa-
tial regularization was employed under the assumption that parameter values change
smoothly.

This thesis aims at inversion using machine learning. In other literature, this was ex-
plored in context of skin [188, 189] and the ocular fundus [175]. The ocular fundus
work [175] is to my knowledge the only work combining Monte Carlo simulation and
machine learning. It used a neural network to derive parameters like macular pigment
and retinal hemoglobins. Main drawback of their work was that the modelled spectra
do not fit the real recordings. Before inversion, they therefore applied a heuristic “shift
and scale” operation on the simulations. They noted this mismatch might be caused by
insufficient variability in their model and that comprehensive in vivo measurements of
absorption and scattering properties are not available. Machine learning was used for
melanoma screening in [188, 189]. In both works Kubelka-Munk theory was used for
forward modelling. The earlier work [189] regression was done with support vector ma-
chine and evaluated in silico. In the later work [188] nearest neighbor classification to
find the nearest spectrum replaced support vector regression. Advantage of the nearest
neighbor approach is, that the determined spectrum can be compared to the measured
one as a sanity check. The method was used to determine physiological parameters for
benign caucasian, asian and african american skin. While the values determined was as
expected, for example showing higher melanin concentration in african skin, an evalua-
tion with melanoma was not performed.

Many approaches can be found in the related fields of Diffuse Reflectance Spectrography
(DRS) which acquires multispectral data at single points. In this field, forward simula-
tions are inverted using lookup tables [88, 137, 166], Levenberg–Marquardt [207], Gauss-
Newton [146], phantoms [11] and machine learning [28]. While the challenges are not
quite the same, methods in DRS are of interest for translation to multispectral imaging.

3.3.3. EVALUATING FUNCTIONAL APPROACHES

One of the detriments of the functional estimation methods is that they are notoriously
hard to evaluate. The main difficulty is that no established reference technique exists,
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which can provide functional values such as oxygenation in the whole camera field of
view.

For reference values established during the intervention, one can resort to point mea-
surements. These can be taken via blood gas analysis (BGA) by drawing blood from a
vessel within the field of view [30]. The main disadvantage is that this directly mea-
sures arterial or venous blood from within the vessel, while the MSI measures the aver-
age oxygenation in tissue. Furthermore, BGA has to be carefully calibrated, as it is highly
temperature sensitive. Another approach for acquiring point measurements are pulse
oximeters. These can provide point transmission measurements of arterial blood at a
peripheral part of the organ and also suffer from the fact they record arterial blood only
[32]. Ground truth oxygenation measurements can be circumvented by correlation anal-
ysis to other parameters. This was e.g. done by Best et al. [16], who tried to correlate high
or low oxygenation values in partial nephrectomy patients with glomerular filtration rate
(GFR) to predict the outcome of the surgery. Kaneko et al. [105] compared local changes
in oxygenation between neoplastic and non-neoplastic regions. In this thesis a fluores-
cence baseline was chosen to evaluate if MSI can detect kidney ischemia after clamping
the organ.

Figure 3.5: Schematic depiction of the oxygenation phantoms from [105]. A capillary was simulated by a glass
tube filled with blood, surrounded by intralipid for scattering. Oxygenation was changed by adding sodium
hydrosulphite and controlled by transmission measurements. Reprinted with permission from [105].

Reference can also be established by means of tissue mimicking phantoms. These typ-
ically combine a scattering medium with an absorber, both are bound by a matrix ma-
terial. Popular choices for scattering media include milk, intralipid or Polymer micro-
spheres. Matrix materials range from water and agar to RTV silicone, dependent on
requirements such as solidity and time stability [151]. Absorption for determining oxy-
genation should be provided by whole blood, in other cases materials like ink can be suf-
ficient. Sodium hydrosulphite can be used to reduce oxygenation. Phantoms can mimic
capillaries by putting blood in a glass tube surrounded by intralipid [105] (see Figure 3.5)
or imitate the layered structure of tissue [166]. A phantom study was also conducted in
this thesis, Chapter 4.3.2. To date, phantoms are not standardized and measuring the
ground truth values for the phantoms is not easy. For an excellent review on phantom
creation techniques, please refer to [151].
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Yet another option is to utilize highly accurate simulations for validation, as done in this
thesis and other works such as [36, 102, 153, 175]. The main advantage of this approach
is that ground truth values for the simulations are inherently available. The main dis-
advantage is that errors go unnoticed if the simulations are not corresponding to reality.
Validity of the simulations was ensured by tissue mimicking phantoms and spectrometer
measurement in this work.

3.3.4. OTHER TECHNIQUES

Kaneko et al. proposed a more heuristic approach to functional imaging. They recorded
three carefully selected bands. One band in the red should capture variations in illumi-
nation, caused e.g. by distance and angle to tissue. Red was chosen, because absorp-
tion in this region is low thus this band is sensitive mostly to changes in lighting, e.g.
caused by distance and angle to tissue. A second broad band in the green spans several
isosbestic points (points where oxygenated and deoxygenated blood absorption is the
same). They reasoned this band is robust to variations in oxygenation. The third band
is a small band centered at 473nm, where oxygenated and deoxygenated hemoglobin
absorption is differing and thus sensitive to oxygen. Using the red and the green band,
they normalized the 473nm against changes in lighting and total hemoglobin absorp-
tion. This approach is capable of real-time oxygenation estimation. Unfortunately it is
not clear from the publication how the authors arrive at absolute values for oxygenation,
as the system as described should only be able to measure relative differences.

Functional parameter estimation is one way to interpret multispectral images. The main
drawback with the approach is the need for a physical model. Options for analyzing to
circumvent this need might thus be appealing. One widely adopted approach is tak-
ing the spectral measurements directly and train machine learning algorithms like SVM
[2, 82, 93, 117, 125, 129] to detect structures of interest. This approach can also be ex-
tended to jointly process spectral and spatial information as texture [124, 133, 204]. One
downside is that acquiring labeled training data is often not straightforward. In the
important example of cancer detection it is challenging to map the histopathological
ground truth back to the in vivo measurement, because the histopathological analysis
involves cutting the tissue and sever deformations [125]. Another disadvantage is that
changes to the imaging system, like the camera, necessitate re-acquisition of the train-
ing data.

To circumvent the physical modeling and the necessity of ground truth label acquisition,
unsupervised clustering methods like principal component analysis (PCA) have been
proposed [58, 157, 158, 210]. PCA finds a subset of orthogonal axis in data space which
minimizes data projection error under Euclidean distance. The resulting images in PCA
space are similar to the parametric maps of the functional approach. Downside is that
these maps are difficult to interpret [123]. Furthermore, the PCA axes are data depen-
dent, so they might change depending on application, imaging system and data set.
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3.3.5. CONCLUSION

Interpretation of multispectral images is an active area of research. Functional parame-
ter estimation has the advantage of displaying information familiar to the physician and
with clear physical meaning, such as oxygenation. Identifying the best physical model
for this task is not trivial - it must not be too simplistic to capture important relation-
ships, but also shall not offer too many hard to tune degrees of freedom. Direct or un-
supervised classification methods can be an alternative to functional imaging, but need
recorded data for training the algorithms. In my opinion the choice of algorithm should
be task dependent. If data acquisition and labelling is easy I recommend skipping the
physical modelling and instead directly classify the image. This option was explored by
students supervised by me in the context of automatic organ labelling [133, 204]. If the
physician is on the search for indications with a clear physiological interpretation, I rec-
ommend functional estimation as done in this thesis.

As of today, approaches for functional estimation in minimally invasive environments
were based on linear assumptions [30, 33, 34, 94, 145, 182, 209], with limitations recog-
nized in literature [30, 92, 138, 202]. More sophisticated non-linear inference has been
explored in other domains, but has not been translated to endoscopic environments.
Most likely reason are difficulties to perform non-linear inversion on high resolution im-
ages in video rates. Furthermore, more complicated models rely on correct ranges for
several free parameters. Measuring typical ranges for these is complex and thus not al-
ways available [18, 98, 175]. In this thesis I present a method to enable video-rate Monte
Carlo inversion based on machine learning techniques (chapters 4 and 7). To specifically
address the often unknown parameter ranges, the first method to domain adaptation is
presented in Chapter 5. This method automatically adapts a general data set to the de-
sired tissue by incorporating real measurements. Validation of functional techniques is
challenging and was performed with a multi-stage V-model like fashion, involving in sil-
ico simulations, phantom measurements and an in vivo porcine study (see Chapter 4.3).

3.4. THE BIGGER PICTURE

While this thesis focuses on functional imaging from multispectral images, competing
techniques for functional imaging should not go unnoticed. A special focus will be given
to techniques which are capable of monitoring perfusion or close to multispectral imag-
ing and clinical translation.

3.4.1. BLOOD GAS ANALYSIS

Modern blood gas analysis (BGA) was pioneered by John W. Severinghaus in the 1950
[165]. Among other things, BGA usually measures partial oxygen pressure by a plat-
inum cathode and a silver/silver chloride anode [1]. At constant temperature, the cur-
rent resulting from the consumption of oxygen at the cathode is linearly linked to the
partial oxygen pressure [1]. Partial oxygen pressure is linked to oxygenation by the oxy-
gen–hemoglobin dissociation curve [37]. The shape of this curve is dependent on factors
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like temperature and thus is a possible source of error [30, 37]. BGA devices are largely
used by clinical pathologists today [165]. In anesthesiology and critical care, the tech-
nique of choice rather is pulse oximetry because it is non-invasive and provides imme-
diate and continuous feedback [37].

3.4.2. PULSE OXIMETRY

The principle of oximetry, first described in [130], performs transmission measurements
of at least two wavelengths of light in the red and infrared. Beer-lamberts law is used to
calculate oxygenation as explained in Chapter 2.1.1. However, measurements can be dis-
turbed by scattering losses and additional absorbers as melanin [199]. The central idea
in pulse oximetry is that while the other absorbers stay constant, arterial blood arrives
newly with each heartbeat [199]. By dividing the dynamic part by the static component,
one calibrates to only measuring the dynamic part of the signal, and thus only measur-
ing arterial blood [199]. The probes are placed on the finger, earlobe or toe [37]. Today,
pulse oximetry is one of the most common monitoring modalities in the OR [104].

3.4.3. DIFFUSE REFLECTANCE SPECTROSCOPY

Pulse oximeters perform transmission measurements. These can be easily taken at ex-
tremities like fingers and toes, where light can shine through. However, if one wanted
to measure oxygenation directly on site at large organs, a different technique is needed.
Diffuse refletance spectroscopy (DRS) measures light diffusely reflected to the surface
[166]. Commonly, one fiber delivers light, while collecting fibers at varying distances
measure the reflected light. While the instrumental setup is relatively straightforward
for DRS [166], analysis involving the diffuse approximation [207] or Monte Carlo meth-
ods [146, 166] is still ongoing research. DRS can at least theoretically enable non-invasive
point measurements of oxygenation, hemoglobin concentration and thickness of the
first epithelial layer [166]. The DRS principle powers commercially available oxygena-
tion measurement probes such as the moorVMS-OXY (Moor Instruments, Cologne, Ger-
many). Concepts of the contact based DRS are similar to multispectral imaging, which
becomes apparent by an alternative name for multispectral imaging: imaging spectroscopy
[118].

3.4.4. FLUORESCENCE

Both DRS and pulse oximetry can enable continuous point based monitoring of tissue
oxygenation. Like MSI, fluorescence is a so called wide-field technique, providing non-
contact measurements in a large field of view. In case of laparoscopy this field of view is
equal to the normal field of view of the laparoscope. This is a significant advantage, as it
allows the physician to monitor e.g. perfusion in a large area at once.

Fluorophores can be excited with light of a suitable wavelength to raise them to a higher
energy level [191]. As they relax to the ground state, they may emit light of a slightly
different, longer wavelength [191]. This process is called fluorescence and the occurring
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wavelength shift is called the Stokes shift. Because of the Stokes shift, it is possible to
separate incident and fluorescing light. One can e.g. excite the ICG fluorophore with a
780nm diode and collect the fluorescing light using a bandpass filter at 820nm.

Fluorophores can be endogeneous or exogeneously injected. In autofluorescence en-
dogenous molecules like collagen are excited and might give clues w.r.t. precancerous
lesions as some studies suggest [156]. The only exogeneous fluorophore currently ap-
proved for clinical use is ICG. It binds to blood and bile fluid and can be identified in
up to 1-2cm depth, because it operates in the so called optical near infrared “window”
with low absorption from hemoglobin and water. ICG is used in urology and surgery
for ischemia and sentinel lymph node detection [6]. Due to its success across many dis-
ciplines, laparoscopic vendors offer ICG capable devices3. The next frontier for flores-
cence imaging will be moving away from the relatively unspecific ICG and towards tumor
binding dyes [203]. These could let tumors “glow” during surgery, potentially solving
many practical issues like tumor margin detection and metastasis identification [203].
In 2011, the first in-patient fluorescence-guided surgery with a tumor specific dye was
conducted [185].

3.4.5. OTHER TECHNIQUES

Fluorescence introduced a way of light-tissue interaction different from the explained
absorption and scattering. Yet another possible, but rare interaction is elastic scattering,
also referred to as Raman scattering. Raman spectroscopy investigates the shift in wave-
length due to elastic scattering [191]. Because molecules have different peaks w.r.t. this
shift, Raman spectroscopy encodes specific molecular information, in fact more specific
than DRS or fluorescence [40]. However, since Raman scattering is very rare compared
to inelastic scattering events, the technique is often referred to as insensitive [24]. To-
day, there are already endoscopic research probes for point based Raman spectroscopy
measurement [144], however, clinical translation has yet to jump several hurdles [26].

Polarization is another fundamental physical property of electromagnetic waves which
can be leveraged in imaging. Structural proteins such as collagen change the polariza-
tion state of light. As disorganization of the collagen fiber matrix is an important cancer
hallmark [91], potential measurement of collagen fiber orientation could give important
cues in early cancer detection [66]. First polarization endoscopes have been realized in
research settings [154]. Clinical adoption of polarization imaging has to overcome sev-
eral challenges both from an analytic and experimental point of view [66].

Structural frequency domain imaging (SFDI) is a recent technique first proposed in 2009
[39]. By illuminating the tissue surface with at least two sinusoidal illumination patterns
with differing frequencies, one can determine absorption coefficient and the reduced
scattering coefficient at the wavelength of the illumination source. Thus this technique
can be employed for oxygenation measurement and is based on optical absorption and
scattering as multispectral imaging. First in-patient trials showed promising results [68]

3Examples: IMAGE1 S, Karl Storz (Tuttlingen, Germany). 1588 AIM Platform, Stryker (Kalamazoo, Michigan,
US). da Vinci Si, Intuitive Surgical (Sunnyvale, California, US). PINPOINT, Novadaq (Mississauga, Kanada).



3

38 3. STATE OF THE ART

and recent progress was made towards real-time acquisition and processing of SFDI data
[186].

When rough surfaces are illuminated with coherent light they show random interference
patterns, referred to as laser speckles [12]. When small objects like blood cells move, this
speckle pattern changes as well [12]. By analyzing the statistics of the speckle move-
ment, in time or in space using a small ROI, one can draw conclusion about blood flow
velocities [12]. By measuring blood flow, laser speckle provides additional information
compared to solely oxygenation measurements [92]. Laser speckle was first proposed in
the 1980 and is most prominently used to analyze brain haemodynamics [19, 44]. Re-
cently, the technique has been translated to the endoscopic domain and tested in an ex
vivo setting [160].

Photoacoustic tomography PAT (sometimes also referred to as optoacoustic tomogra-
phy) promises to determine information about hemoglobin absorption deep inside the
tissue. PAT is a contact based techniques, which illuminates tissue with laser light and
recollects a sound wave with a (conventional) ultrasound device (light in - sound out)
[184, 203]. These sound waves are emitted due to thermoelastic expansion happening
when by laser pulses are absorbed [15, 192]. If a tunable laser is used, PAT can deter-
mine oxygenation similarly to multispectral imaging by measuring absorption at multi-
ple wavelengths, as e.g. done in [112]. This and the high penetration depth compared
to other optical techniques are the main advantages of PAT [203]. The actually mea-
sured signal is a product of absorption and light fluence. Accounting for the fluence
term which disturbs the absorption measurement is an open research question [184].
PAT is a highly active field of research with first commercial systems on the market [184]
and recent advantages in transabdominal characterization of e.g. Chron’s disease [112].

Perfusion cannot only be assessed with optical techniques. Doppler ultrasound e.g. is a
contact based technique which can asses perfusion in large blood vessels by examining
the doppler shift of the ultrasound signal [38]. Blood-oxygen-level dependent contrast
function magnetic resonance imaging (Bold fMRI) non-invasively measures oxygen sat-
uration [70]. The magnetic field surrounding blood cells is dependent on the oxygen
state of hemoglobin: deoxygenated hemoglobin is paramagnetic due to unpaired elec-
trons while oxygenated hemoglobin is diamagnetic. This change in the magnetic field
causes spin relaxation times to change, making oxygenation detectable in the T2* im-
age.

3.4.6. CONCLUSION

Techniques for functional imaging differ considerably. Some notable axes of variation
are leveraged physical phenomenon, energy needed, penetration depth, contact requi-
rement and the measured parameter.

Already used in clinical practice, the most advanced method is in the authors opinion
fluorescence. The main advantage of MSI is the easier workflow integration, as it does
not necessitate injection of a dye. Especially in the common use case of ischemia mon-
itoring MSI can potentially replace fluorescence. Although both MSI and fluorescence
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can be used for ischemia detection, the techniques provide complementary informa-
tion; oxygenation can only be determined by MSI, but fluorescence penetrates tissue
deeper and has the unique potential to bind directly to tumors .

Techniques like DRS and BGA are not competing to multispectral imaging, as they offer
point-based measurements. However DRS and BGA have been used to evaluate mul-
tispectral techniques [30, 68]. PAT, doppler ultrasound and fMRI have radically differ-
ent workflow integration and thus will be used in differing clinical scenarios. Emerging
techniques such as laser speckle, polarization imaging and SFDI could become interest-
ing additions or alternatives to MSI. Which techniques are fit for widespread clinical use
remains to be seen.

3.5. CONCLUSION

This chapter reviewed the state of the art with respect to medical application, recording
hardware, analysis methods and other techniques for functional imaging.

In the authors opinion, one of the most important needs for MSI is demonstrating the
patient benefit after incorporation of the technique into the clinical workflow. The state
of the art so far has focused on preliminary, preclinical studies. Some smaller patient
trials have been conducted, indicating that MSI can help spotting tumors and charac-
terize perfusion. However, in none of these the real clinical benefit of the technique has
been assessed by comparison with a reference technique. The multispectral system de-
veloped for this thesis was evaluated by means of a fluorescence reference in Chapter 7.
These in-patient results indicate MSI is suited for perfusion monitoring and should be
further evaluated in larger scale studies.

Recording of MSI is either done through spectral or spatial scanning. Both methods
have disadvantages, either long imaging times or a lower resolution image. Both dis-
advantages might be mitigated by intelligent selection of the most informative bands, as
done in Chapter 6. The authors opinion is that the fast recording snapshot techniques
are preferable to slower staring techniques in endoscopic applications. Slow recording
leads to misaligned or blurred multispectral images, which makes analysis very challeng-
ing. This is more detrimental than missing intricate details due to the low resolution of
snapshot techniques. However, the choice of snapshot devices is very limited. Chapter 7
describes the first use of the imec snapshot sensor in laparoscopy, premiering video-rate
MSI recording in this field.

The key advantage over traditional non-invasive diagnostic medical imaging devices is
that functional imaging can provide live feedback to the surgeon. To realize this advan-
tage, the analysis of the images must be immediate and expressive. So far, MSI analysis
in laparoscopy relied on the restrictive assumptions of the Beer-Lambert law. These re-
striction to not apply for the method proposed in the next two chapters, which combines
powerful Monte Carlo methods with state of the art machine learning techniques.
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Figure 4.1: Overview on the approach to functional laparoscopy. In the offline phase, n examples (ti )n
1 are

drawn from a point-wise model of artificial tissue. For each of these samples, highly accurate simulations
calculate the spectral reflectance ri . After transforming this spectral reflectance to band reflectance xi space,
it is ready to serve as input for a machine learning algorithm. The algorithm learns how to relate the reflectance
measurement of a pixel to a functional tissue parameter yi ∈ ti . This functional parameter can e.g. be tissue
oxygenation or blood volume fraction. In the online phase, the trained machine learning based regressor f̂
is applied to real multispectral images and within milliseconds generates an estimate for each (multispectral)
pixel in the image.

P ERFUSION visualization is highly relevant for surgical treatments as it can e.g. point
out ischemic regions. Changes related to perfusion can also be closely linked to can-

cer, because important hallmarks of cancer such as hypoxia (deprivation of oxygenated
blood) and angiogenesis (formation of new blood vessels) are characterized by changes
in oxygenation and blood volume fraction.

Multispectral imaging (MSI) can potentially monitor intricate changes in tissue perfu-
sion, which are quantified by blood volume fraction and oxygenation and cannot easily
be seen by the human eye. Deciphering this information, i.e., estimating the molecular
composition of tissue on the basis of multispectral images, remains challenging. Most
systems for interventional in vivo multispectral imaging [30, 105, 138] use linear estima-
tion approaches based on the modified Beer-Lambert law [162]. While fast, these meth-
ods are restricted to estimating oxygenation, require small multispectral bandwidths and
rely on a number of unrealistic assumptions regarding tissue composition (See Chap-
ter 3.3.2). More sophisticated ex vivo tissue analysis methods leverage highly accurate
Monte Carlo methods for more accurate assessment of physiological parameters. The
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drawback of these methods is that they are too slow for real-time estimation of tissue
parameters when dealing with high-resolution multispectral images; they are thus not
suited for application during surgery or interventional procedures. For an in-depth dis-
cussion of these topics, please refer to Chapter 3.3.

To overcome these issues, the approach presented in the following is the first capable
of video-rate estimation of physiological parameters during minimally invasive inter-
ventions by combining the accuracy of Monte Carlo based approaches with the speed
of state-of-the-art machine learning (ML) algorithms. The central idea is to simulate a
reflectance measurement caused by an artificial tissue (Section 4.1) and use these tis-
sue/reflectance pairs as input for ML regression (Section 4.2). The resulting regressor
can be applied to multispectral images acquired during an intervention to estimate the
tissue parameters for each pixel. Figure 4.1 shows an overview of the presented method.
This method was evaluated in a multi-stage process, involving simulations, tissue phan-
toms, and an in vivo study on six pigs (Section 4.3). The chapter ends with a discussion
of the method and experiments in Section 4.4 and the conclusion in Section 4.5.

4.1. THE FORWARD MODEL

The forward model consists of three parts: (1) a layered tissue model formally describes
the composition of possible tissues (Section 4.1.1). (2) Highly realistic simulations of
spectral reflectances are computed using tissues drawn from the model (Section 4.1.2).
(3) Transformation of the simulation to the camera space in Section 4.1.3. This process of
sample creation and transformation is represented by the blue box in the offline training
part of Figure 4.1.

4.1.1. LAYERED TISSUE MODEL

Inspired by the typical layer structure of the colon and other epithelial tissues, a tissue
t inspected during minimally invasive surgery is modeled as a layered structure. Each
layer l is characterized by a set of optically relevant tissue properties: l = {vhb, s, amie,b, g ,n,d}.
Where the parameters describe the following:

vhb blood volume fraction [%], the amount of blood occupying a unit volume of tissue

s the ratio [%] of oxygen-bound hemoglobin to total hemoglobin, also referred to as
oxygenation

amie a parameter quantifying the amount of scattering [cm−1] by the reduced scattering
coefficient at 500nm.

b the scattering power, a term which characterizes the exponential wavelength de-
pendence of the scattering (see Eq. 4.2)

g anisotropy factor, characterizes the directionality of scattering

n the refractive index
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d the layer thickness [µm]

the optical and physiological parameters amie, b, g , vhb and s influence the optical ab-
sorption and scattering coefficients. As in [91], the absorption coefficient µa at wave-
length λ is calculated by

µa(vhb, s,λ) = vhb chb (s ·εHbO2(λ)+ (1− s) ·εHb(λ)) ln(10)(64,500gmol−1)−1. (4.1)

εHbO2 and εHb are the molar extinction coefficients of oxygenated and de-oxygenated
hemoglobin1 and chb is the molar concentration of hemoglobin in human blood. As
discussed in Chapter 2.1.1, hemoglobin, the oxygen transporter in human blood, can
be assumed to be the only notable absorber. As in [36] oxygenation is assumed to be
constant across layers. This is a reasonable assumption if the layers share a common
blood supply as e.g. in the colon. The reduced scattering coefficient µ′

s is calculated by
an empirical power law

µ′
s (amie,b,λ) = amie(

λ

500nm
)−b . (4.2)

This simple heuristic approximation to measurements of reduced scattering was pro-
posed in [98] for the visible wavelength range. The anisotropy factor g is assumed con-
stant over the wavelength range. With g and µ′

s , the scattering coefficient µs can be

calculated by µs (amie,b,λ) = µ′s (amie,b,λ)
1−g [98]. Refer to Chapter 2.1 for more details on

the above parameters. Pixel independence is implicitly assumed, by modelling tissue as
homogeneous, infinite slabs. This leads to less assumptions on the 3D composition of
tissue as e.g. vessels, but prevents modelling cross-talk between pixels.

A TISSUE MODEL FOR COLONIC TISSUE

The tissue instances t have to be drawn from tissues T expected during intervention. If
e.g. colon anastomosis success verification is the target application, a model for colonic
tissue is needed. An exemplary model is shown in table 4.1. The values were chosen to
mimic colonic tissue literature when available and drawn randomly from these param-
eter ranges to form t. The molar hemoglobin concentration chb was set to 120gL−1, a
typical value in the colon as opposed to 150gL−1 in general human tissue [91].

4.1.2. CALCULATION OF SPECTRAL REFLECTANCE

The spectral reflectance denotes the portion of light returning to the surface for each
wavelength. This quantity is a property of the tissue and independent on the measure-
ment system. To generate such a reflectance spectrum r from a tissue drawn from the
layered model, a function rsim is evaluated at wavelengths λ

r (λ,t) = rsim(λ,t) = rsim(λ, l1, ..., lk ). (4.3)

1Values taken from [152]
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Table 4.1: Parameter ranges for the colon tissue model and their usage in the simulation set-up as described in
Section 4.1.2.

vhb[%]
[36]

s[%] amie[ 1
cm ]

[98]
bmie

[98]
g n [36] d [mm]

[91]

layer 1 : 0-10 0-100 18.9±10.2 1.289 .8-.95 1.36 .6-1.1
layer 2 : 0-10 0-100 18.9±10.2 1.289 .8-.95 1.36 .4-.8
layer 3 : 0-10 0-100 18.9±10.2 1.289 .8-.95 1.38 .4-.6

µa(vhb, s,λ) = vhb (s ·εHbO2(λ)+ (1− s) ·εHb(λ)) ln(10)120gL−1 (64,500gmol−1)−1

µs (amie,b,λ) = amie
1−g ( λ

500nm )−bmie

simulation framework: GPU-MCML[7], 106 photons per simulation
simulated samples: 10K
sample wavelength range: 450-700nm, stepsize 2nm

In this thesis, a multi-layered MC (MCML) approach was chosen for evaluation of rsim,
because MC models are widely considered to be the gold standard for calculating how
light travels through biological tissue (see Chapter 3.3.2). The MC tissue optics simula-
tion irradiates multi-layered tissue with photon packets [190]. Depending on the proper-
ties of the layers, the photons will be probabilistically reflected, scattered and absorbed.
Among other attributes, the photons reflected at the tissue surface due to (possibly mul-
tiple) scattering events can then be measured.

The MC simulation was evaluated in the [450nm, 720nm] wavelength interval in 2nm
steps. The open-source GPU-MCML implementation from [7] was used as simulation
framework. The number of photon packets fired was set to 106 in all simulations and the
diffuse reflectance was taken as the reflectance value.

4.1.3. ADAPTATION TO IMAGING SYSTEM

The simulations evaluated in the last section yield spectral reflectances at specific wave-
lengths. The spectral reflectance is an inherent property of the tissue and independent
on the measurement system and lighting. In this section the camera independent spec-
tral reflectances are converted to values proportional to image intensities measured by
the camera.

The multispectral sensor integrates this reflectance over the bands b j ∈ b. The camera
intensity measurement i j is dependent on the following factors:

r (λ,t) the spectral reflectance for the tissue.

l j (λ,p) linear factors subsuming the response of b j , the quantum efficiency of the camera,
the irradiance of the illuminant (e.g., Xenon or Halogen) and other components in
the imaging system like the transmittance of the laparoscope optic [175]. Can be
dependent on the position in the image p.

τ(·) the camera response function, often intentionally non-linear to cover a higher
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range of irradiances within the possible image intensities [76]

w j camera noise for band j , mainly coming from (1) shot noise due to the particle
nature of light and (2) dark noise, which is dependent on sensor temperature and
linear in integration time [86]. The constant offset caused by the dark noise is
assumed to be zero in the following, as it can be removed by simple subtraction of
a dark image in practice.

For large image intensities, the often Poisson distributed noise sources can be approxi-
mated by multiplicative Gaussian noise [86, 107, 127]. Because all reasoning is done on
pixel level, geometric distortions caused by lens effects are not relevant. Putting all of
this together, an image intensity can be simulated by

i j (t) = τ
(

w j ·
∫ λmax

λmin

l j (λ,p) · r (λ,t)dλ

)
. (4.4)

Assuming τ(·) is linear and that the spatial inhomogeneities of the light source are inde-
pendent of wavelength l j (λ,p) =α(p)l j (λ) the model simplifies to

i j (t) =α(p) ·w j ·
∫ λmax

λmin

l j (λ) · r (λ,t)dλ (4.5)

The factor α(p) accounts for constant multiplicative changes in intensity. The reason for
these changes are differences in distance or angle of the camera to the tissue and the
internal scaling of electrical current to values measured by a camera [36].

4.2. MACHINE LEARNING BASED INVERSION

With the method described so far, simulated image intensities depend on the image
brightness α(p) and the spectral distribution of light reaching the sensor l j (λ).

To make the data more robust to changes in l j (λ), each band intensity is divided by the

its volume 1 j =
∫ λmax
λmin

l j (λ)dλ. The results is referred to as band reflectance in this thesis:

r j (t) = i j (t)

1 j
=α(p) ·w j ·

∫ λmax

λmin

l j (λ)∫ λmax
λmin

l j (λ)dλ
· r (λ,t)dλ. (4.6)

This corresponds to the calibration with a white target for real measurements described
in Chapter 3.3.1.

The multiplicativeα(p) is accounted for by normalizing with the sum of all bands, trans-
forming the data to what is further referred to as normalized reflectance:

r j ,n(t) = α(p)r j (t)

α(p)
∑

k rk (t)
= r j (t)∑

k rk (t)
. (4.7)

thus removing dependence onα(p). As a final transformation− log is taken from the nor-
malized reflectances and the resulting values are divided by their `2 norm, transforming
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the data to what is called normalized absorbance x j in the following:

x j (t) = − logr j ,n(t)√∑
k (− log(rk,n(t)))2

. (4.8)

This last transformation is strictly speaking not necessary, but leads to better experimen-
tal results in regression. Given a noise model W and a tissue T , the training input data
for the regressor X = (x(t1), ...,x(tm))T can be simulated.

Any machine learning regressor can be trained for specific tissue parameters y ∈ t, such
as oxygenation and blood volume fraction. A machine learning regressor is a function
fθ , parametrized by parameters θ. It maps input features, in this case the described x, to
labels y , in this case functional parameters. Machine learning methods aim to find the
parameters which minimize the expected risk R:

f̂ = argmin
fθ

R( fθ , Xtrain,ytrain, l (·, ·)) = 1

|Xtrain|
∑

l ( fθ(xtrain), ytrain) (4.9)

It thus tries to determine the function which maps the training features Xtrain closest
to the training labels ytrain. The notion of closeness is provided by the real valued loss
l , which is often amended by a regularizing term to prevent overfitting to the training
data. The functions, often also called hypothesis, and minimization technique differ
substantially depending on method.

In the example of random regression forests, the functions are defined by an ensemble
of decision trees. The path a feature traverses in a tree depends on comparisons taking
place in the nodes. The output of the function is calculated from the leafs the feature
landed in. Because the determination of the optimal trees is NP-complete, learning the
trees is usually done by a greedy algorithm, which iteratively adds nodes [23]. Due to
the multidisciplinary focus of this thesis, a detailed description of machine learning and
the used methods is beyond the scope of this thesis. Please refer to good books on the
subject, such as [134].

APPLICATION TO in vivo RECORDINGS

The trained regressor can be applied to each pixel of an in vivo acquired multispectral
image. This image needs to undergo the same transformations as the simulations. First
the images I are transformed to normalized reflectance by correcting by a dark D and
white image W: XI = I−D

W−D and dividing by the mean in the spectral dimension (also see
Chapter 3.3.1). As the simulations in Equation 4.8, the data is further transformed to
absorbance and normalized by an additional `2 norm. This ensures real recordings and
simulations are in the same space, which is independent of multiplicative changes in
illumination.

4.3. EXPERIMENTS AND RESULTS

The experiments assess the approach in a V-model-like fashion, depicted in Fig. 4.2. This
section starts with the evaluation of the spectral reflectance simulations, on which all
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other reasoning is based on in Section 4.3.2. Following the transformation from spectral
reflectance to normalized reflectance space is investigated in Section 4.3.3. Ultimately,
Section 4.3.4 investigates the inversion method, both in silico and in vivo in a porcine
study.

Figure 4.2: Experiments have been performed in a v-model-like fashion. The machine learning builds on band
reflectances, which build on the spectral reflectances; thus experiments have been performed in the reverse
order to ensure the basis for the methods on top is sound.

4.3.1. GENERAL SETTING

Closeness of spectra is measured with the `2 norm. Variations with standard deviationσ
around a meanµ (e.g. around a mean camera measurement) are given in signal-to-noise
ratio SNR:= µ

σ .

SIMULATIONS

If not mentioned otherwise, all experiments were conducted with 15,000 training sam-
ples generated from the model specified in Section 4.1.1 and tested with a separate set
of 5,000 samples. A sample consists of a pixel-wise band reflectance measurement x and
the functional parameters y = (vhb , s)T .

IN VIVO RECORDINGS

A custom-built multispectral laparoscope was constructed during Justin Iszatt’s Bach-
elor thesis, supervised by me. The system combines a Richard Wolf (Knittlingen, Ger-
many) laparoscope and light source with a Pixelteq (Largo, FL, USA) 5 Mpix VIS-NIR
Spectrocam (see Fig. 4.3). To limit the effects of chromatic aberration, achromatic lenses
were used. The Spectrocam is fast filter wheel based system with eight filter slots, syn-
chronized with a monochromatic, integrated camera which records 12bit images. The
filters can be chosen from a pool of narrow or broad filters of available filters or cus-
tomized. The eight selected filters for this work had central wavelengths of 470nm, 480nm,
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511nm, 560nm, 580nm, 600nm, 660nm and 700nm, determined with the method from
Chapter 6. The full width at half maximum of the bands is 20nm, except for the 480nm
band where it is 25nm. The sequential acquisition of one multispectral image stack takes
400ms and images are downsampled images to one fourth of the original size. This leads
to a resolution of 1228x1029 pixels, which is similar to modern laparoscopic HD optics.
Contrary to [30], no further post-processing in the form of image registration or Gaus-
sian smoothing was performed. The calibration steps described in Section 4.2 were per-
formed, for which the dark image was recorded by covering the laparoscopic optic and
the white image was taken using a Labsphere (New Hampshire, US) Spectralon® white
reference target.

Figure 4.3: The multispectral laparoscope, constructed during the Bachelor thesis of Justin Iszatt. It combines
the fast filter wheel based Spectrocam with a conventional laparoscope. The connection from laparoscope to
F-mount is customized and houses an achromatic lens. The eight filters of the Spectrocam were chosen with
the method from Chapter 6.

Camera noise estimation. A rough estimate of the camera’s SNR was determined by
calculating the mean intensities for each band, using all downsampled images acquired
during one experiment. The mean intensities were subtracted by the dark current and
divided this result by a camera noise estimate for the determined mean intensities. This
leads to SNRs ranging from 29 for the 470nm band to 47 for the 660nm band. The dif-
ferences in SNR are mainly caused by the hemoglobin absorption, light source spectrum
and camera quantum efficiency. To train the random forest, the SNR was set to ten to ac-
count for variations caused by camera-tissue movements. This is also motivated by the
in silico results, which indicated that the method is relatively robust to conservatively
estimated noise levels.

4.3.2. SPECTRAL REFLECTANCE

The spectral reflectances were created from a layered tissue model (Section 4.1.1) with
Monte Carlo simulations (Section 4.1.2). The experiments in this section investigate
the variations in the simulations and how they compare to spectrometer measurements
from artificial tissue.
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MONTE CARLO SIMULATION VARIATION

The purpose of this evaluation is determining the noise level which has to be expected
due to the random nature of MC.

Ten samples were drawn from the colon tissue model specified in table 4.1 and each
simulation was performed 100 times. The minimum measured SNR for one wavelength
over all simulated spectra was 185. Figure 4.4a shows the corresponding spectra. For
comparison, the same evaluation was done with a factor of 1000 less photons. This leads
to a drop in minimum SNR to 5, shown in Fig. 4.4b.

(a) The spectrum with the worst SNR (106

photons)
(b) The spectrum with the worst SNR (103

photons)

Figure 4.4: Investigation of noise in the MC simulation process. The left image shows the worst result for the
simulated number of photons. Since the 100 spectra almost perfectly overlap, almost no difference can be
seen. As comparison, the right image shows an example with a factor of 1,000 less photons.

PHANTOM EXPERIMENTS

To make sure the spectral reflectance simulation are corresponding to real measure-
ments, they were compared to tissue phantoms.

In a joint work with Fraunhofer PAMB, liquid phantoms were created in Jasmin Mangei’s
Bachelor Thesis. Fresh porcine blood served as absorber, scattering was simulated us-
ing intralipid. After flushing with pure oxygen, the saturation was controlled by adding
sodium hydrosulphite salt in different concentration. Three well plates were created,
featuring different amounts of blood and intralipid. In each plate oxygenation was var-
ied in twelve wells, starting from full oxygenation. The amount of blood and intralipid
chosen for plate one mimics typical colonic tissue. Plate two and three vary these pa-
rameters by increasing blood volume (plate two) and scattering (plate three).

A spectrometer recorded the reflectance created by each of the wells. The 15,000 simu-
lations created by the colonic tissue model specified in table 4.1 were compared to these
reflectance measurements to test if the created simulations correspond to the phantom
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reflectances. The worst mean squared difference was 0.0048 (median: 0.00076). A sum-
mary of the results for the three plates can be found in Figures 4.5, 4.6 and 4.7.

(a) Plate 1 (2% blood, 1% intralipid) and the best
overall match

(b) Plate 1 parameter estimates

Figure 4.5: The first well plate with normal blood volume fraction and scattering values. (a) The best fit of sim-
ulations to spectrometer measurements. The direction of increasing amounts of deoxygenating salt is shown
by the grey lines. (b) shows the oxygenation (sao2) and blood volume fraction (vhb) mean and standard de-
viation estimated from the five best fits. As expected oxygenation drops from full oxygenation. Blood volume
fraction should remain constant but varies around the (correct) values of 2%.

4.3.3. ADAPTATION TO IMAGING SYSTEM

Realistic spectral reflectances are an important first step. However, the transformations
happening in the image recording process need to be also taken into account when
learning from simulations. This section investigates the assumptions made in Section
4.1.3.

LIGHT SOURCE

Moving from equation 4.4 to equation 4.5 assumes spatial and spectral independence of
the illumination: l j (λ,p) = l j (λ)a(p). This is true if the normalized light irradiance is in-
dependent on the exiting angle from the laparoscope tip. To test for this the laparoscope
was attached about 7cm above a white tile. The spectral response of the white tile was
measured by spatially sweeping the spectrometer over the tile. If the independence con-
dition is met, the normalized spectrometer counts are equal independent on position
on the homogeneous diffuse surface, and thus independent on the exit angle of light.

Figure 4.8 shows both the normalized and the not normalized measurements. The me-
dian SNR of the normalized measurement was 39 (minimum: 11) in the 460-710nm
range.
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(a) Plate 2 (15% blood, 1% intralipid) and the worst
match of all well plates

(b) Plate 2 parameter estimates

Figure 4.6: The second well plate with increased amount of blood (vhb). The 15% of blood in the well plates ex-
ceeds the highest simulated amount of 10% (a) The overall worst fit of measurements to simulations, probably
caused by insufficient range of simulations (b) A drop in oxygenation (sao2) can be detected, but does not start
from the expected full sao2. Blood volume fraction peaks at 10%, which is the highest value in the simulation
database (see Table 4.1).

CAMERA NOISE AND LINEARITY

A linear camera response is assumed in equation 4.5. To check, the laparoscope was
placed about 7cm above a white tile and the integration time was varied to record typi-
cal intensity values encountered during in vivo scenarios. One hundred recordings of a
central 10x10 ROI per integration time were taken to get a stable estimate for the mean
intensity and SNR.

Figure 4.9a shows the line fit to the mean recordings and the SNR for different exposure
times. Figure 4.9b shows the worst fit of these recordings to a normal distribution, deter-
mined by a D’Agostino and Pearson’s based test2.

IMAGING SYSTEM

Light exiting from the light source is reflected on the tissue surface, passes through the
laparoscope, the filter and finally reaches the camera, where it is transformed into elec-
tric current. This experiment evaluates these transformations are correctly represented
in the model.

The relative irradiance of the light source and the transmissions of the laparoscope and
of the filters were measured. Quantum efficiency of the camera was taken from its ref-

2Tested with the scipy.stats.mstats.normaltest function of scipy v0.19 [101]
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(a) Plate 3 (2% blood, 3% intralipid) and the median
match over all well plates

(b) Plate 3 parameter estimates

Figure 4.7: The third well plate with increased amount of scattering. (a) The median match of measurements
to simulations over all well plates shows how the simulations and the measurement coincide. (b) The drop in
oxygenation (sao2) and the values close to the correct amount of blood (vhb) were estimated from the five best
fits.

Figure 4.8: Raw and normalized spectrometer measurements of light source under varying light exit angles.
The median SNR of the normalized spectra to the mean spectrum is 39.

erence sheet. To test if these components are correctly taken into account, color tiles3

with known reflectance were measured with the camera. For each color tile, the trans-
formation described in equation 4.7 was applied without adding noise and compared to
the normalized mean of ten camera measurements. Figure 4.10 shows an overview on
these matchings for all color tiles. The mean error of all color tile measurements is -0.7%

3Measured from a X-Rite (Grand Rapids, MI, USA) ColorChecker classic
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(a) Mean measurements, line fit, and the SNR (b) Worst normal fit. The measurement histogram
is depicted in blue, the Gaussian induced by mean
and standard deviation is overlayed in green.

Figure 4.9: (a) Measuring linearity for typical ranges of camera brightness commonly encountered during in-
terventions. The line fits to the measurements almost perfectly, indicating the camera is linear. SNRs, deter-
mined from 100 repeat measurements of a central 10x10 ROI each, grow approximately linear with camera
brightness. (b) shows the measurements which fit worst to a normal distribution (500ms exposure time).

and the standard deviation is 5.4%.

Figure 4.10: Color tiles measured with spectrometer and camera. The artificial optical system was applied to
the spectrometer measurements to transform them into camera space. The first row are color tiles of constant
reflection, starting with 99% reflectance in the upper left.
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SIMULATIONS MATCHING TO IN VIVO

In a final test it is investigated if simulations and in vivo measurements occupy the same
subspace.

For this purpose, bowel images from six pigs were collected and measurements of a
100x100 center ROI were extracted and dark and white corrected (Eq. 3.1). Simulations
created as in table 4.1 were transformed following equation 4.8 and Gaussian noise w
with a mean of 1 and standard deviation of 0.1 was added to simulate a SNR of 10.

The first three principal components explain 97% (=79%+12%+6%) of the simulated vari-
ance. For in vivo data, 95% (=89%+3%+3%) of the variance lies on first three principal
components of the simulated data. For qualitative assessment the in vivo measurements
were projected on the first two principal components of the simulated data in Fig. 4.11.
The real bowel measurements lie close to the mode of the simulations in this subspace.

Figure 4.11: Bowel, spleen, abdominal wall, gallbladder and liver measurements from five pigs projected onto
the first two principal components of the simulated reflectance data plotted in brown. The images on the left
show the 560nm band recorded for the first pig. The depicted measurements are taken from the red ROI. For
some pigs, no Gallbladder measurements were performed. The bowel measurements lie close to the mode of
the simulated data. The other organs lie more to the boundaries of the simulated density estimates. This is the
expected result, as the simulations specified in Table 4.1 were created to mimic colonic tissue.

4.3.4. INVERSE MODEL

The previous experiments were designed to ensure the simulations resemble real tissue
and that the measurement process is understood. The experiments in this section exam-
ine the inversion performance. A set of in silico (Section 4.3.4) and in vivo (Section 4.3.4)
experiments assesses the accuracy, robustness and run-time of the new method com-
pared to the widely applied linear Beer-Lambert regression model described in 3.3.2.
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INVERSION METHOD AND TRAINING

To validate our approach to functional estimation, a prototype was implemented within
the Python scikit-learn framework [149]. Random forest (RF) regression [23] was chosen
for the inversion (see Chapter 4.2), due to its rapid evaluation and training speed. The RF
parameters were determined by five-fold cross-validation and grid search on the training
data, varying the maximum forest depth from three to ten in increments of one. The
minimum samples per leaf were evaluated for one, five, ten, 20 and 100. The number
of trees was set to ten to keep the computational effort manageable. Experiments with
larger and deeper forests showed no change in performance. The best forest parameter
setting had a depth of nine and a minimum of ten samples per leaf. These parameters
were used in the subsequent experiments.

The noise for each band was varied by modifying the signal-to-noise ratio SNR: σw j =
x j

SNR . If not mentioned otherwise, the SNR was set to ten. To simulate a typical multi-
spectral camera, the spectrum was parsed in 10nm increments from 470−680nm. For
each of these central wavelengths a 10nm sliding average simulated the filter bandwidth
bk (λ).

IN SILICO QUANTITATIVE VALIDATION

In the in silico experiments it was investigated how factors like the number of samples,
noise and domain switch influence the regression result.

Dependency on noise. In these experiments, Gaussian noise of equation 4.8 was var-
ied. First the performance of the classifier while adding noise of the same distribution for
training and testing data (Fig 4.12) was investigated. For SNRs above ten our approach
outperforms the linear Beer-Lambert approach. Since the determination of noise is not
trivial the effect of different magnitudes of training and testing noise (Fig 4.13) was also
investigated. Even under these conditions our approach showed lower errors for SNRs
above 20.

As vhb cannot be measured by the baseline method, no comparison has been made here.
The median absolute error stays below 1.6±1.2% regardless of noise and below 1±1.1%
for SNRs larger than 10.

Performance under domain switch. Knowledge about the model may not always be
available. Furthermore, malignancies can change the parameter ranges. An example of
such a malignancy are carcinomas which, due to angiogenesis, may show abnormally
high values for vhb. To test the effect of different parameter ranges, samples were cre-
ated from a second model with the values specified in table 4.2. As in the colon model
oxygenation was assumed constant across layers. As an additional constraint all layers
were normalized so they totaled a maximum of 2mm in depth.

When training with this model, and testing on the colon model the median absolute
errors of the proposed method and the baseline are the same. The proposed method’s
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Figure 4.12: Absolute oxygenation estimation error if training and testing data are based on the same noise
distribution: zero-mean Gaussian noise with standard deviation corresponding to the SNR. Depicted are the
median and interquartile ranges as a function of the amount of noise for baseline and the proposed random
forest based method with 15,000 training samples. Reprinted with permission from Wirkert et al. [195].

Table 4.2: Parameter ranges for the generic tissue model.

vhb s amie g n d
l1 0-100% 0-100% 18.9±10.2cm−1 [98] 0.8-0.95 1.33-1.54 [98] 0-2000µm
l2 0-100% 0-100% 18.9±10.2cm−1 [98] 0.8-0.95 1.33-1.54 [98] 0-2000µm
l3 0-100% 0-100% 18.9±10.2cm−1 [98] 0.8-0.95 1.33-1.54 [98] 0-2000µm

75% quartile error is 3% higher and the 25% quartile error is 0.7% lower than the baseline.

Accuracy and run-time compared to state-of-the-art regression methods. The Python
implementations (scikit-learn v0.18.1 [149]) of the proposed random forest regression
were compared with with Support Vector Regression (svr) and k-nearest neighbor (knn).
The parameters for svr were selected with grid search to be the radial basis function ker-
nel (rbf) with C = 100 and γ = 10. Five neighbors were used for knn as in [188] and the
algorithm parameter of the scikit implementation was set to auto. The experiment was
conducted on a Intel Core™i7 CPU@3.20GHzx6 machine.

As can be seen in Fig. 4.14, the random forest regression is at least two orders of magni-
tudes faster than either of the baseline approaches. It took 0.18±0.01 seconds to evaluate
s and vhb for a megapixel image. The median absolute error was 5.4% for rf, 4.8% for svr
and 5.5% for knn. The linear Beer-Lambert method evaluates one megapixel in 0.03 sec-
onds.

Number of samples. As the generation of training data is time consuming even with
the graphics processing unit (GPU) accelerated MC simulation used in this publication,
the data necessary for training the regressor was analyzed. Figure 4.15 shows stabiliza-
tion after training with about 104 samples.
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Figure 4.13: Effect of unequal test and training noise. Depicted are the median absolute error in oxygenation
estimation and corresponding interquartile ranges as a function of the amount of noise for baseline and the
proposed random forest based method with 15,000 training samples. Reprinted with permission from Wirkert
et al. [195].

Figure 4.14: Mean computation time for estimation oxygenation for a multispectral imaging stack of dimen-
sion 1,000x1,000x8, where eight is the number of spectral bands used. Compared are the proposed random
forest approach (rf), Support Vector Regression (svr) and k-nearest neighbors (knn). Reprinted with permis-
sion from Wirkert et al. [195].

QUALITATIVE IN VIVO EXPERIMENTS

When blood supply to tissue is stopped, both oxygenation and blood volume fraction
should go down. The qualitative in vivo experiments, conducted in collaboration with
the Department for Visceral Surgery of the Heidelberg University Hospital, investigated
if the expected drop could be measured.

Small bowel experiment. In a first experiment, blood supply to a small bowel seg-
ment was stopped in a porcine model by clipping three vessels connected to the seg-
ment. To simulate real operating conditions the multispectral video of the breathing
swine was recorded while moving the camera and the instruments. Mean oxygenation
of the clipped bowel segment was determined by manually segmenting the bowel seg-
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Figure 4.15: Median absolute error in oxygenation estimation as a function of the number of training samples.
The results stabilize after training with about 104 samples. Reprinted with permission from Wirkert et al. [195].

ment and excluding specular regions by thresholding. A sharp drop in oxygenation was
detected after clipping. Figure 4.16b visualizes the estimation result derived from all 315
multispectral image stacks of the recorded video. Example frames during clipping are
shown in Figure 4.17.

(a) bowel before clipping
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Figure 4.16: Qualitative validation of the proposed method in a porcine small bowel (a). The plot (b) shows the
mean oxygenation in the small bowel segment as a function of time. The vertical lines show the time points at
which the three vessels were clipped. The first two clips were applied to the same vessel. The high variations
before setting the third clip and after setting the forth clip are caused by fast camera movements. After setting
the last clip, the camera was removed and reinserted about nine minutes after setting the first clip. Example
frames during clipping are shown in Figure 4.17. Reprinted with permission from Wirkert et al. [195].

Liver experiment. In a second experiment, images of a porcine liver were recorded di-
rectly after lethal drug delivery. Mean oxygenation was determined over all image pixels
except for specular regions, which were excluded by thresholding. A steady drop of oxy-
genation and blood volume fraction was measured as shown in Fig. 4.18, which shows
the estimation results for all 51 recorded image stacks.
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(a) before clipping (b) setting of the fourth clip (c) nine minutes after apply-
ing first clip

Figure 4.17: Visualization of bowel oxygenation estimation. The clipped colon segment was segmented to
estimate mean oxygenation. The color bar shows oxygenation in percent. Reprinted with permission from
Wirkert et al. [195].
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(c) mean blood volume frac-
tion over time

Figure 4.18: (a) Qualitative validation of the proposed method in a porcine liver. The plots show the (b) mean
oxygenation and (c) blood volume fraction after lethal drug delivery as a function of time. Specular pixels were
excluded by simple thresholding. Reprinted with permission from Wirkert et al. [195].

4.4. DISCUSSION

In this chapter the first machine learning based method to estimate physiological pa-
rameters from laparoscopic multispectral images was presented. It is based on gener-
ating labeled training data using a physical model and highly accurate MC simulations.
Random forests are used to invert the MC spectra and derive oxygenation and blood vol-
ume fraction for every pixel in the recorded image.

The estimation of these parameters is valuable for monitoring and detecting ischemia.
This can be of relevance in operations like partial nephrectomies, colectomies or organ
transplants. The method could also be applied in minimally-invasive cancer-screenings
such as colonoscopy, where it could help in finding polyps and flat adenoma. To guaran-
tee practical applicability in these scenarios, special emphasis was given to developing a
fast, and robust method without compromising on estimation performance.

Unlike the compared state-of-the-art Beer-Lambert method, the presented approach is
capable of estimating both oxygenation and blood volume fraction. Due to the underly-
ing MC framework, it is not restricted to assumptions such as constant light penetration
depth and scattering losses. In the following the forward model, the proposed inversion
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technique and the results are discussed.

Forward model. Oxygenated and de-oxygenated hemoglobin were chosen as sole ab-
sorbers in the model because they are the only notable absorbers of visible light in hu-
man tissue besides melanin, which, however, is mainly contained in the skin [98] and
thus irrelevant for visceral applications. Note that the model allows for easy integration
of further absorbers (if necessary) by modification of equation 4.1. Modification of the
tissue composition requires investigation as to whether the generated spectra can still
be inverted, e.g. by using the regression techniques presented in this paper.

The anisotropy is hard to measure and is not well understood for human tissues, as ex-
periments and the results from theoretical analysis by Mie’s scattering theory do not
coincide [98]. Most experiments come to the conclusion that human tissue is strongly
forward scattering with quite high levels of g in the visible range [98]. Therefore, the
anisotropy factor was modelled to be in a range that covers most of the the experimental
values depicted in [98].

Inversion by random forest regression. Random forest regressors were chosen be-
cause they are capable of near real-time regression of megapixel multispectral images.
Additionally random forest regressors are inherently multi-variate and thus allow joint
oxygenation and blood volume fraction estimation. However, as can be seen in chapter
7, neural networks are equally suited for the task.

From a machine-learning standpoint, the Gaussian noise w added to the reflectances in
Eq. 4.8 necessary to prevent over-fitting of the regressor. The term models noise from the
camera, tissue/camera movement during image acquisition and model inaccuracies. A
simple noise model was chosen, which adds zero mean Gaussian noise dependent on
reflectance and SNR: wi ∼ N (0, ri

SNR ). In future works more complex models could be
explored. One possibility could e.g. be to add more noise to bands which are expected
to record darker images. Model inaccuracies can e.g. be the presence of additional un-
known absorbers, chromatic aberration, cross talk between pixels caused by inhomoge-
neous tissue or tissue structures not modelable by a multi-layer model. To account for
the latter two, 3D MC simulations would be a viable option for future experiments. Such
a set-up would need careful design to both ensure the modeling of realistic tissue and be
general enough to cover a relevant tissue variability

To account for constant multiplicative illumination changes, the `1 norm was applied.
Other normalizations proposed to account for these changes are the usage of image quo-
tients [175] or division by the integral of the reflectance spectrum [36]. The l 1 norm was
chosen because it is more robust to noise than image quotients; the integral can be tricky
to calculate if the spectral bands are unevenly spaced and sparse.

The additional normalizations of transformation to absorbance and further `2-norma-
lization could be left out in principle because non-linear regressors were applied. It was
found however, that doing these normalizations improves the mean absolute regression
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errors by more than 4% in the presented method. The also analyzed support vector re-
gression did not necessitate the `2 normalization and transformation to absorption. The
k-nearest neighbor result dropped by 10% when omitting normalizations.

An additional use-case of the developed method is as an in silico testing stage for hard-
ware set-ups. It could, for example, help in choosing the most relevant multispectral
bands. Furthermore the framework can be used to compare different inversion tech-
niques. The Python framework was made available on GitHub4.

Experimental set-up. MC models are considered to be the gold standard for calculat-
ing how light travels through biological tissue (Section 3.3.2). For this thesis, the MCML
implementation was chosen to create the reflectance spectra. Aside from being more
accurate than e.g. the diffusion approximation or the modified Beer-Lambert law it is
easy to configure and flexible.

Its main drawback is the time consumption. With the set-up described in Section 4.3,
the evaluation of one reflectance spectrum took about 16s by an off-the-shelf desktop
PC with an NVIDIA GeForce GTX 660 Ti graphics card. The simulation of 15,000 spectra
used for training our regressor therefore took less than three days. Because it is only
required for training, this one-time investment of three days’ computation was not seen
as critical.

Experimental results. Experiments in section 4.3.2 indicated that the simulated spec-
tral reflectances show low variance with repeat simulation and fit well to spectrometer
measurements of phantoms with varying oxygenation, blood and scattering. The blood
volume fraction for plate one and three estimates a correct approximate mean of 2%.
Plate two has a blood volume fraction of about 15% which is not contained in the simu-
lations (which peak at a maximum of 10%), the fitted simulations consequently are close
to the maximum of 10%. Somewhat disconcerting, the vhb estimates for plate one vary
around the constant, correct value, overestimating vhb for high oxygenation values and
underestimating for low oxygenation values. This behavior cannot be observed in plate
three and will thus be investigated in further phantom studies. The estimated oxygena-
tion values start from high baselines and reduced when more salt was added, which is
in line with expectations. Further phantom studies are currently ongoing in cooperation
with Fraunhofer PAMB and will additionally provide quantitative oxygenation values.

The experiments in Section 4.3.3 support the modeling assumptions made in Section
4.1.3. Spatial/spectral independence of the light source is fulfilled. Further the camera
response is linear, and camera noise is sufficiently close to normal distribution. Addi-
tional experiments investigated the understanding of the optical system and that the
measurements by the camera and simulations vary in the same subspace. A finding here
is that 95% of the measurements variance is taking place in the first three components
of the simulated data, but a much higher portion lies in the first PC compared to the
simulated data (89% versus 79%). Probable reason for this is a systematic difference of

4https://github.com/swirkert/ipcai2016

https://github.com/swirkert/ipcai2016
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recordings and simulations: all oxygenation levels are present in the simulations, while
the measurements only capture healthy, and thus well oxygenated, tissue.

The in silico study in Section 4.3.4 investigated the performance of the proposed ma-
chine learning MC inversion approach. The inversion method outperforms the baseline
method for SNRs above ten and is as good as the baseline for lower SNRs. This is true
even if the training noise is set to a fixed SNR of ten and the testing noise is varied. A
high drop in performance occurred when applying the method to data from a differ-
ent domain. The next chapter investigates reducing this performance gap by employing
the first method to domain adaptation for multispectral functional imaging. Other ad-
vanced non-linear methods showed comparable performance but lack the rapid evalua-
tion speed shown by the choice of random forests. The methods inverts 106 spectra with
more than 5Hz. As the camera records images with 2.5Hz the method is fast enough for
real-time processing of these images.

In both in vivo experiments, the drops in oxygenation and blood volume fraction have
been observed, caused by clamping or lethal injection. The initial value of oxygenation
of 70-85% in both experiments is in line with literature [68]. The drop in oxygenation of
the bowel is in line with the experiments performed in [30]. The drop in oxygenation of
the liver after euthanasia is also expected. The blood volume fraction probably decreases
due to loss of blood pressure and subsequent drainage of blood from the liver surface
due to gravity. The results on liver tissue are especially encouraging, as the regressor was
trained on data tailored to colonic tissue.

The SNRs of the down-sampled camera images was determined to range from 29-50 in
the experiments. The recorded images were quite dark with mean values within the low-
est 10% of the camera’s dynamic range. This can be ameliorated with a different light
source. This and the next chapter rely on relatively dark Halogen light. Further, Halogen
is brighter in red compared to blue. Thus the darker blue bands exhibit more noise, an
effect which is currently not modeled. The system developed in chapter 7 uses a Xenon
light source which does not suffer from these problems. Additionally, due to the 400ms
long image acquisition, tissue/camera movement introduces noise due to misaligned,
sequentially recorded multispectral image stacks. To this end, a snapshot camera is used
in Chapter 7 to record images fluently with 25Hz.

4.5. CONCLUSION

The method described here features both the flexibility and realism of Monte-Carlo based
approaches coupled with the speeds that are comparable to those of simple online meth-
ods. According to extensive in silico and in vivo experiments, this method is more flexible
and accurate than the commonly used Beer-Lambert law-based regression and orders of
magnitude faster than regression approaches developed for skin and ex vivo multispec-
tral image analyses. Due to its robustness, non-linear estimation capability and rapid
execution time the method has a high potential for future application in interventional
multispectral imaging.



4

64 4. MACHINE LEARNING BASED MONTE CARLO INVERSION

One remaining issue is the need to know the approximate tissue composition to be able
to create forward simulations. The next chapter aims to generalize the approach so
that the method can be to almost arbitrary tissues encountered during visceral inter-
ventions.
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Parts of this chapter have been published in the 20th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) 2017 [196]
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T HE last chapter presented an approach to estimate oxygenation and blood volume
fraction from multispectral images (MSI). Due to the lack of real annotated data, it

relies on simulations of tissue reflectances to learn the transformation from reflectance
to physiological parameter. The simulations utilize Monte Carlo methods, and are based
on a layered model of tissue presented in Chapter 4.1.1. However, the bounds and distri-
bution of the model parameters are hard to determine and highly dependent on experi-
mental conditions [98].

Ideas in the field of domain adaptation (DA) can help overcome this bottleneck. DA is a
branch of machine learning which addresses problems caused by mismatching marginal
distributions of source and target domains’ input data p(xsource) 6= p(xtarget) [147]. This
correspond to simulated source data and real target data in this thesis. The approaches
to DA can be grouped into: (1) instance-transfer methods [75, 176, 177], which use the
source instances for training, but assign a weight to each instance. These weights are
high if the probability of drawing the sample in the source domain is small compared
to the probability of drawing it in the target domain and vice versa. Instance-transfer
methods are applicable if samples from the target domain have a non-zero probability
of occurring within the source domain. If this is not the case (2) feature-representation
transfer methods can be used. These either find a transformation to a feature repre-
sentation invariant to the domain shift [53, 60, 73, 178]; or transform the features of the
source domain to resemble features from the target domain [22].

This chapter describes the first use of DA methods to tackle the problems of unknown
specifics for model parameters. This instance-transfer method is described in Section
5.1. The following study in Section 5.2 with seven pigs shows that (1) the model captures
a large amount of the variation in real tissue and (2) the DA based approach enables
highly accurate functional parameter estimation. The chapter closes with a discussion
(Section 5.3) and a brief conclusion (Section 5.4).

5.1. METHODS

The functional parameter estimation method presented in Chapter 4 is based on accu-
rate knowledge of the biophysical properties captured in the layered tissue model. How-
ever, depending on the experimental conditions, the values of these parameters can have
significant variations. For example, blood volume fraction measurements in the colon
from Zonios et al. [207] and Skinner and O’Brien [169] differ by 1-2 orders of magnitude
[91]. This motivates the need for a more general framework that is less reliant on tissue
specific parameter measurements.

The developed approach, illustrated in Fig. 5.1, aims to compensate for the lack of de-
tailed prior knowledge related to optical tissue properties by applying DA. The hypothe-
ses are that (1) a highly generic tissue model can be used to obtain spectral reflectances
that cover a large range of multispectral measurements observable in vivo and that (2)
samples of real (unlabelled) measurements can be used to adapt the data to a new tar-
get domain. Section 5.1.1 describes how the generic data set is generated while Section
5.1.2. introduces the approach to DA.
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Figure 5.1: Overview on the approach. First a large number of generic, labelled, tissue-reflectance samples
are simulated. The desired physiological parameter yi and the reflectances adapted to the imaging system xi
are used for training a base regressor f̂base with the methods described in the last chapter. Weights (βi )n

1 are
calculated to fit the simulated data to measurements. These weights adapt the base regressor to the in vivo
measurements. Applying the adapted regressor f̂DR to new images yields their functional parameter estimates
ŷ.

5.1.1. DATA SET GENERATION USING A GENERIC TISSUE MODEL

The method relies on a single comprehensive data set, which can be used with various
camera setups and is representative of a large variety of target structures in the human
body. This data set captures a wider variety of tissue parameters compared to the data set
tailored to colonic tissue from Chapter 4. By increasing the range, the density of samples
naturally decreases. To account for this, the data set size was increased by a factor of 50.

The layered tissue model developed in Chapter 4.1.2 was used to create the data set con-
sisting of camera independent tissue-reflectance pairs (ti ,ri (λ,ti )), i ∈ {1...n}. The pa-
rameters were varied within the ranges shown in Table 5.1 for each of the three layers.

As before each layer is described by its value for blood volume fraction vhb, scattering co-
efficient amie, scattering power bmie, anisotropy g , refractive index n and layer thickness
d . Oxygenation s is again kept constant across layers. Following the values in [98] and in
contrast to Chapter 4, bmie is varied, covering all soft, fatty and fibrous tissues. Ranges of
vhb were increased by a factor of three to potentially model pathologies. Together with
values for hemoglobin extinction coefficients εHb and εHbO2 from the literature, absorp-
tion and scattering coefficients µa and µs are determined for usage in the Monte Carlo
simulation framework. The simulated range of wavelengths λ is large enough for adapt-
ing the simulations to cameras operating in the visible and near infrared. To account for
a specific camera setup, spectral reflectance ri is transformed to normalized reflectances
xi , j (t) at the j th spectral band, using Equations 4.6 and 4.7 from Chapter 4.1.3. In this
chapter we skip the additional normalization to absorption (Equation 4.8) to limit the
number of design choices.

5.1.2. DOMAIN ADAPTATION

The combination of normalized reflectances and corresponding physiological parame-
ter (X,y) serve as training data for any machine learning regression method f to obtain
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Table 5.1: The simulated ranges of physiological parameters, and their usage in the simulation set-up as de-
scribed in Section 5.1.1. Important changes compared to the last chapter are marked in bold font.

vhb[%] s[%] amie[ 1
cm ] bmie g n d [mm]

layer 1-
3:

0-30 0-100 5-50 .3-3 .8-.95 1.33-
1.54

.02-2

µa(vhb, s,λ) = vhb(sεHbO2(λ)+ (1− s)εHb(λ)) ln(10)150gL−1(64,500gmol−1)−1

µs (amie,b,λ) = amie
1−g ( λ

500nm )−bmie

simulation framework: GPU-MCML[7], 106 photons per simulation
simulated samples: 500K
sample wavelength range: 300-1000nm, stepsize 2nm

the regressor f̂base, which corresponds to a regressor without DA. The functional param-
eter estimates during an intervention can be determined using this baseline regressor by
evaluating f̂base(x′) = y ′ for each recorded multispectral image pixel x′.

Working with tissue samples from a simulated source domain ps (x, y) will inevitably
introduce a bias with respect to the target domain pt (x, y). Covariate shift occurs if

ps (y |x) = pt (y |x) and therefore pt (x,y)
ps (x,y) =

pt (y |(x)pt (x)
ps (y |(x)ps (x) =

pt (x)
ps (x) = β(x). If pt is contained in

the support of ps , weighing the sample loss by β in the empirical risk (Equation 4.9) can
correct for the covariate shift [95].

The appeal of this method is, that only recordings x′i and no labels y ′
i are necessary for

adaptation. While the concept of covariate shift has been applied with great success in
a number of different medical imaging applications [72, 87], challenges related to trans-
ferring it to this problem are estimation of high dimensional β, and high variance intro-
duced by weighting, both addressed in the next two subsections.

FINDING β WITH KERNEL MEAN MATCHING AND RANDOM KITCHEN SINKS

Kernel mean matching (KMM) is a state-of-the-art method for determining β [75, 95].
KMM minimizes the mean distance of the samples of the two domains in a reproducing
kernel hilbert space (RKHS) H , using a possibly infinite dimensional lifting φ : IRm →
H . In its original formulation [95], the kernel trick k(x,x′) = 〈φ(x),φ(x′)〉 was used to
pose KMM as a quadratic problem. In this problem domain it is not feasible because
calculating the Gram matrix is quadratic in the (high) number of samples. To overcome
this bottleneck, the KMM objective function [95]

argmin
β

‖ 1

n

n∑
i=1

βiφ(xi )− 1

n′
n′∑

i=1
φ(x′i )‖2, s.t. βi ∈ [0,B ] and |

n∑
i=1

βi −n| ≤ n
Bp
n

(5.1)

is minimized directly. This objective function matches the empirical means of simula-
tions and real data in H . The first boundary condition limits the maximum influence of
individual training samples, the second condition ensures βi p(x) is close to a probabil-
ity distribution [75]. The variables n and n′ denote the number of samples in the source
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and target domain. Equation 5.1 cannot be minimized directly due to the possible in-
finite dimension of φ. The random kitchen sinks method [155] finds an approximate
representation of φ(xi ) ≈ z(xi ) by sampling from the Fourier transformation of a shift
invariant kernel. This enables solving the convex KMM objective function in its non-
kernelized form using a standard optimizer.

DOUBLY ROBUST COVARIATE SHIFT CORRECTION

Estimators trained using weighted samples can yield worse result than estimators not
accounting for the covariate shift. The reason is that only few samples are effectively
“active", leaving less samples to train the algorithm. However, using the unweighted
training samples often leads to a reasonable, but biased, estimator [159]. Intuitively the
unweighted base regressor f̂base defined in Section 5.1.1 can be used to obtain an initial
estimate. Subsequently, another estimator aims to refine the results with emphasis on
the samples with high weight. This is the basic idea of doubly robust (DR) covariate shift
correction [159]. Specifically, residuals δi = yi − f̂base(xi ) weighted by β from the Section
5.1.2 train an estimator f̂res on (X,δ,β). The final estimate is f̂dr(x

′
) = f̂base(x

′
)+ f̂res(x

′
).

5.2. EXPERIMENTS AND RESULTS

The quality of the generic tissue model (Chapter 5.2.2) as well as the performance of the
DA-based physiological parameter estimation approach (Chapter 5.2.3) was validated
on a comprehensive in silico and in vivo MSI data set (Chapter 5.2.1).

5.2.1. EXPERIMENTAL SETUP

The multispectral images were recorded with the multispectral laparoscope described
in Chapter 4.3.1. The images were taken from seven pigs and six organs (liver, spleen,
gallbladder, bowel, diaphragm and abdominal wall) in a laparoscopic setting. For all
experiments the data set described in Chapter 5.1.1 was used for training. The stan-

dard deviation σw of noise term w was set using σw = xo
j

SN R , where xo
j is the normalized

reflectance without added noise. If not mentioned otherwise, the signal-to-noise ratio
(SNR) was set to twenty. Random forest regression was used as inversion method with
parameters as in Chapter 4.3.4. 1000 random directions were drawn from the RKHS in-
duced by the radial basis function (RBF) kernel with the random kitchen sink method.
The σ value of the RBF was set to the approximate median sample distance and the B
parameter of the KMM to ten. The L-BFGS-B minimizer [25] (scipy v0.19) was used to
minimize the KMM objective function.

5.2.2. VALIDITY OF TISSUE MODEL

One of the prerequisites for covariate shift correction is that the support of the distribu-
tion of in vivo measurements is contained in the support of the simulated reflectances.
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To investigate this for a range of different tissue types (cf. Chapter 5.2.1) a total of 57 im-
ages was collected, measurements from a 100x100 region of interest (ROI) were extracted
and corrected by a flatfield and dark image. The first three principal components explain
98% = 81%+13%+4% of the simulated variance. For in vivo data, 97% = 89%+4%+4% of
the variance lies on the first three principal components of the simulated data.

For a qualitative assessment the in vivo measurements were projected on the first two
principal components of the simulated data. A selection can be seen in Fig. 5.2. Except
for gallbladder, all of the in vivo data lie on the two dimensional manifold implied by the
simulated data. Fig. 5.3 illustrates how changes in oxygenation and perfusion influence
the distribution of the measurements.

Figure 5.2: Five organs from five pigs projected onto the first two principal components of the simulated re-
flectance data plotted in brown. For some pigs, no Gallbladder measurements were performed. The images
on the left show the 560nm band recorded for the first pig. The depicted measurements are taken from the red
ROI. Except for gallbladder, organs lie on the non-zero density estimates of the simulated data (See Sect. 5.3).

Figure 5.3: Liver tissue measurements before and after sacrificing a pig. The grid indicates how varying oxy-
genation (sao2) and blood volume fraction (vhb) changes the measurements in the space spanned by the first
two principal components of the simulations. Note that these lines can not be directly interpreted as sao2 and
vhb values for the two points, because other factors such as scattering will cause movement on this simplified
manifold.
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5.2.3. PERFORMANCE OF DOMAIN ADAPTATION

The domain adaptation was investigated under two points of view: (1) The in silico ex-
periments focus on the benefit of DR DA and DA for oxygenation estimation. Due to the
lack of ground truth data, these experiments were performed in silico. (2) The in vivo
experiments investigated if the weighting method selects samples such that the distri-
bution of simulations and measurements match more closely.

In silico experiments. To validate the DA approach to physiological parameter estima-
tion with reliable reference data, in silico experiments were performed with simulated
colon tissue as target domain. For this purpose, 20,000 colon tissue samples with cor-
responding ground truth oxygenation from the last chapter at an SNR of 20 were used.
15,000 reflectance samples were selected for DA while the remaining 5,000 samples were
used for testing. All experiments were run five times to reduce random influences.

A first experiment investigated the general effect of DA and DR DA compared to no DA.
Additionally, the number of training samples was varied between 104 and 5·105 to inves-
tigate how the data set size influences results. The DR DA method reduced the median
absolute oxygenation estimation error compared to the base estimator by 25-26% and
by 9-12% compared to a version without the DR correction (Fig. 5.4). Training DR DA
with 500,000 instead of 10,000 samples reduced the error by 7.1%.

Figure 5.4: The generic data set was adapted with the proposed DR DA method to the in silico colon data set
from the last chapter. Depicted is a boxplot of the absolute oxygenation estimation error for no adaptation, the
proposed method without the DR correction and the proposed DR DA method. As a reference the results from
training and testing on the colon data set are shown. This would be the best possible result. Boxplot, whiskers
extend the low/high quartiles by 1.5 IQR, extreme values not shown.

Several weight determination algorithms have been proposed in literature [72, 87, 176].
The influence of the weight determination method has been investigated by compar-
ing the chosen KMM method to the logistic regression classifier weight determination
implementation from [72]. Figure 5.5 shows the oxygenation error results with and with-
out the DR correction. The percentual median absolute oxygenation error for the KMM
method is slightly higher (0.2 percentage points) without the DR correction and the same
with the DR correction.
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Figure 5.5: The generic data set was adapted with the proposed doubly robust domain adaptation (DR DA)
method to the in silico colon data set from the last chapter. Depicted is the absolute oxygenation estimation
error for two different weight determination algorithms. Both algorithms lead to similar results after applying
the DR DA. Boxplot, whiskers extend the low/high quartiles by 1.5 IQR, extreme values not shown.

The effect of DR estimation should be greater for lower effective sample sizes, which

can be approximated by meff ≈ ‖β‖2
1

‖β‖2
2

[111]. To investigate the effect of DR correction as

function of effective sample size a second validation scheme was adopted from [159].
The complete data set was split in three disjoint subsets:

1. The first data set was chosen to be the source data set.

2. The second data set was resampled to form an artificial target distribution and
used for weight determination.

3. The third data set was resampled to the same artificial target distribution and used
for testing the regressor, trained on the weighted first data set.

To create an artificial target distribution the second and third data set were resampled
by the following procedure: On the second data set, minimum tmin, maximum tmax and
the standard deviation σpc of the first principle component was determined. Bot target
distributions were created from set two and three by sampling with replacement with
N (tmin +α(tmax − tmin),0.1σpc) from the subsampling distribution. The α values con-
trolled the location of the target distribution and as a consequence also varied meff.

Parameter α was varied from 0 to 1 in 10 equidistant increments. The B parameter was
set to 100 to allow effective sample sizes smaller than 10%. The the root mean squared
error for each α was determined for DR and DR DA. The ratio of DR DA to DA varies
with the number of source training samples and effective sample size, ranging from no
benefit to over 30% improvement. The results are summarized in Fig. 5.6.

In vivo experiments. Because no oxygenation ground truth was available for the in
vivo measurements, a different metric had to be employed. Thus the distance of the dis-
tributions of measurements to simulations weighted by the measurements was investi-
gated. As notion of closeness served the Euclidean distance of the weighted simulation
mean 1

n

∑n
i βi xi to the mean of the images. This distance was calculated for each organ.
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(a) 10,000 training samples (b) 100,000 training samples

Figure 5.6: Investigation of doubly robust domain adaptation (DR DA) compared to DA without DR correction
as a function of effective sample size. The y-axis show the quotient of domain adaptation and doubly robust
domain adaptation RMSE.

The weighted distance was 34-91% (median 78%) smaller than the unweighted average.
See Fig. 5.7 for a depiction in the principal component space.

Figure 5.7: The distribution of in vivo measurements and adapted in silico reflectances in the principal com-
ponent space of the simulations. For graphical clarity the distributions are visualized as their two principal
axes in this space with lengths scaled by the square root of the corresponding eigenvalues.

Further the generalizability of the method to new subjects (here:pigs) was investigated.
More specifically, simulations weighted by a set of subjects were compared to data from
previously unseen subjects. The analysis was performed on bowel data from six pigs
(Ctotal). All combinations of three pigs, Ctest, were selected in a leave-three-out manner.
The images from these pigs were used as test cases. From the corresponding remaining

three pigs of each selection a second selection was made (CDA-i =
(
3
i

)
for i = [1, 2, 3]),

and each CDA-i was used independently to determine the weights to be applied to the
generalized simulation data, using the domain adaptation approach. This allowed in-
vestigation of the effect of additional in vivo samples, thus the generalization capability
of the approach. To evaluate, for each Ctest, the Euclidean distance was determined be-
tween the centroid of the reflectances of the test pigs from: (a) the weigthed centroid of
the simulated reflectances (shown in blue in Figure 5.8) and, (b) the unweighted centroid
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of the simulated reflectance; as a function of the number of pigs used in CDA-i. Moving
from one to two training pigs, the weighted sample distance decreases. Adding a third
pig for training leads to similar median values, but smaller 75 percentile values.

Figure 5.8: Investigation of effect of varying number of pigs used for domain adaptation. Using more pigs for
training reduces median and/or 75 percentile distance. Boxplot, whiskers extend the low/high quartiles by 1.5
IQR, extreme values not shown.

5.3. DISCUSSION

This chapter introduced the first domain adaptation approach to functional parameter
estimation from multispectral imaging data. It (a) does not rely on labelled images, (b)
does not require specific prior knowledge of optical tissue properties and (c) is indepen-
dent of camera model and corresponding optics. Thus it is broadly applicable to a wide
range of clinical applications. Instabilities potentially caused by DA were addressed by a
large training data set and incorporation of a DR correction method.

Data set. The method is built around a generic data set that can automatically be adap-
ted to a given target anatomy based on samples of unlabelled in vivo data. Because it
is capturing tissue in larger ranges than the model used in Chapter 4.1.1, the size was
increased, forming the to my knowledge largest data set of MC simulated spectral tissue
reflectances. Creating spectral reflectances at 2nm steps allows simulation of virtually
any real multispectral camera by applying the transformations from Chapter 4.1.3.

According to porcine experiments with six different target structures, the first three prin-
cipal components of the simulated data set capture 97% of measured in vivo variations.
These three axes probably mainly represent the blood volume fraction, oxygenation and
scattering. Visual inspection of the first two principal components showed the captured
organ data lie within the simulated data, an important prerequisite for the subsequent
DA to work. Gallbladder is the exception, most likely due to its distinctive green stain,
caused by the bile shining through. Modelling the bile as another chromophore and ex-
tending the data set accordingly would be straightforward.
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Domain adaptation. Instance-transfer DA was performed, weighting simulations to
match the measurements using the KMM objective function (Equation 5.1). An im-
portant methodological component in this context was the integration of the recently
proposed DR correction method to address the instabilities when few effective training
samples are selected.

The in silico experiments demonstrate the potential performance boost when adapting
the generalized model to a specific task using the presented DA technique. This per-
formance boost was observed, even if the weight determination method was exchanged
(Figure 5.5). As expected, the DR correction has the most significant impact if the num-
ber of training samples is low (Figure 5.6). Incorporating the DR correction almost al-
ways led to better results. These quantitative benefits in performance are especially en-
couraging, since they show benefit although ps (y|x) = pt (y|x) was not explicitly verified.
This condition would be violated if several simulated functional parameter settings lead
to similar measurements, but only some of these are present in real tissue. Gretton et
al. [75] noted, that the method usually performs well even if the condition is not strictly
fulfilled. To introduce as little arbitrary choices as possible, evaluation reflectances were
normalized with Equation 4.6, skipping the additional, strictly not necessary normal-
ization (Equation 4.8). Influence of differing kinds on normalization and their interplay
with the domain adaptation remains an open research topic.

The in vivo experiments showed that weighted simulations resemble real measurements
more closely their unweighted counterparts. This is quantified by the distance of the
weighted and unweighted simulation mean to the measurement mean. The distance
reduced for all tested organs, supporting the hypothesis that the method can be used to
“tailor” the generic simulations to specific tasks. Further, both bias and variance of these
means reduce when increasing the number of porcines used for weight determination
from one to two. Adding a third pig further decreased the variance. This result requires
some caution in interpretation. While the weighted distance of the centroids reduces,
this does not necessarily imply better performance of the algorithm. Using only well
oxygenated in vivo colon samples might e.g. lead to reduced weighted distances. How-
ever, focusing on oxygenated samples will likely lead to a regressor which cannot create
correct estimates for deoxygenated tissue.

5.4. CONCLUSION

This chapter addressed the important bottleneck of lack of annotated MSI data with a
novel domain adaptation-based method to functional parameter estimation. This al-
lows use of highly accurate Monte Carlo based approaches in problem domains where
specific knowledge about tissue is scarce.

A remaining issue to be addressed is the problem of 2.5Hz recording and analysis. While
relatively fast for a multispectral system, it is far from the 30-60Hz of conventional RGB
systems. To this end, the next chapter will focus on selecting a small subset of multispec-
tral bands to speed up recording. Chapter 7 presents the first multispectral laparoscope
able to both record and analyze multispectral images at video-rates.
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Parts of this chapter have been published in Computer-Assisted and Robotic Endoscopy 8899 (2014) [194].
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W HILE the previous chapters focused on multispectral image analysis, this chapter
investigates the question of which bands should be recorded. Band selection is re-

lated to two major challenges in multispectral imaging. Sequentially recording staring
techniques suffer from long image recording times, often in the range of seconds (Chap-
ter 3). Due to tissue and instrument movement, long acquisition times lead to misalign-
ment of the recorded stack, thus rendering the measured spectra invalid. Reducing the
number of recorded bands leads to faster image acquisition and thus less misalignment.
The competing snapshot techniques record an image stack all at once, but spatial reso-
lution decreases with increasing number of bands.

The central guiding hypothesis of this chapter is that a small but principled selection of
bands can retain most of the information necessary for the subsequent analysis. Prior to
the presented method [194], biomedical band selection approaches relied either on the
availability of labelled training data or sophisticated knowledge of the tissue (Chapter
3.2.2). As discussed in the previous chapters, both these requirements are hard or even
impossible to meet.

The next section of this chapter presents the Endoscopic Sheffield Index (ESI), a novel
method for band selection in endoscopic environments. The experiments in Section 6.2
evaluate the approach both on phantoms and in vivo data from five pigs. The results are
discussed in Section 6.3 and a conclusion and outlook is given in Section 6.4.

6.1. METHODS

The featured approach selects bands for surgical applications, requiring neither labelled
training data nor a predefined light-tissue interaction model. The principle idea is to
once carefully record a large number of bands and use them to select the subset of the
recorded bands b ∈ B (see Fig. 6.1), based on the developed information-theoretic ap-
proach, which adapts a method known in the remote sensing community as the Sheffield
index (SI) to work in a laparoscopic environment. Before the SI can be applied, several
normalization steps remove noise sources which would introduce misinformation. The
whole process is shown in Figure 6.1.

The multi-spectral imaging system used to acquire these high dimensional image stacks
is described in the following Section 6.1.1. Section 6.1.2 explains how to model the mea-
sured image intensity as a function of illuminant, imaging system and underlying tissue.
Section 6.1.3 presents the ESI.

6.1.1. MULTISPECTRAL IMAGING SYSTEM

A custom designed hardware set-up was developed by partners at Imperial College [33],
depicted in Figure 6.2 (a). It combines a Karl Storz (Knittlingen, Germany) laparoscope
and light source with a Varispec™(PerkinElmer, Waltham, MA, USA) VIS Liquid Crystal
Tunable Filter (LCTF) and a Thorlabs (Newton, NJ, USA) DCU 223M monochrome cam-
era to acquire the spectral images. The LCTF can be tuned to record bands of varying
width in a spectral range of 400-720nm. The switching time between bands is 50ms.
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Figure 6.1: Band selection can aid in designing new cameras by selecting the most useful bands. For this
purpose, some hyperspectral images are taken. After several normalizations are performed to account for un-
informative noise sources, unsupervised band selection chooses bands which maximize differential entropy.

Figure 6.2: The hardware set-up, adapted from [33] and depicted in (a) used to collect spectral image stacks
(b). The image stacks are used to estimate underlying tissue parameters such as hemoglobin oxygenation,
visualized in (c). Red pixels represent high hemoglobin oxygenation. Reprinted with permission from Wirkert
et al. [194].

6.1.2. FORMAL ENDOSCOPIC IMAGE ACQUISITION MODEL

The reasoning behind the band selection algorithm is based on the image acquisition
model from chapter 4.1.3, briefly revisited here:

i j (t) =α(p)
∫ λmax

λmin

l j (λ) · r (λ,t) ·w j dλ. (6.1)

where

a(p) subsumes the spatially dependent part of the illumination and imaging system
specific constants as a scaling factor to account for the camera’s detector range

l j (·) subsumes the wavelength dependent part of the illumination and wavelength spe-
cific parts of the imaging system, namely quantum efficiency of the camera, trans-
mission of the lapararoscope, the j th filter response, acquisition time and gain

r (λ,t) is the light-tissue interaction model, relating tissue t to its reflectance.



6

80 6. BAND SELECTION

t(p) is a parameter vector representing the composition of the tissue at p, like e.g.
hemoglobin concentration, diameters and refraction index of scattering param-
eters. With slight abuse of notation written as t in the following

w j A noise term. Subsumes camera noise and noise due to image misalignment.

The integration over the spectrum accounts for the extension of the recorded band.

6.1.3. ENDOSCOPIC SHEFFIELD INDEX

In endoscopic applications spectral imaging is impeded by two main factors: firstly the
stack of spectral images acquired is misaligned owing to the motion of the endoscope
and the tissue. Secondly illumination in endoscopic procedures is highly inhomoge-
neous due to the radial attenuation of light, the varying organ morphology and proper-
ties of the imaging system. To compensate for motion, the spectral images are aligned
with a feature driven approach proposed in [174]. Camera noise can be removed by
applying Gaussian smoothing [30] or anisotropic diffusion filtering [133]. To eliminate
the effects of the inhomogeneous lighting and the 3-dimensional structure of tissue a(p)
image quotients are used [175]. This is also known as discounting the illuminant and
means all band intensities i j are divided by one selected band’s intensity ik ∈ B , which
was subsequently excluded from analysis B ′ = B\{k}:

i j (t)

ik (t)
=

∫ λmax
λmi n

l j (λ)r (λ,t)dλ∫ λmax
λmi n

lk (λ)r (λ,t)dλ
. (6.2)

Subsequently, the image is divided by a reflectance standard with constant reflectance

1 j ∝
∫ λmax
λmi n

l j (λ)dλ, measured at a central location. Doing this normalizes the integral
w.r.t. the volume of l j (λ). This ensures that wavelength dependent lighting intensities,
filter/camera quantum efficiencies and filter volume do not influence the band selection
result:

i j (t)

ik (t)1 j
∝

∫ λmax
λmi n

l j (λ)∫ λmax
λmi n

l j (λ)dλ
r (λ,t)dλ∫ λmax

λmi n
lk (λ)r (λ,t)dλ

. (6.3)

As a final step we apply the logarithm to both sides:

m j (t) := log
i j (t)

ik (t)1 j
. (6.4)

This can be motivated by the exponential relation of chromophore absorption and mea-
sured intensity, which is the essence of Beer-Lambert’s law (See Chapter 3.3.2) and by ex-
perimental analysis of the distribution of intensity values which were negatively skewed.

Now that the data is prepared to be as independent to tissue movement and lighting as
possible, the subset of bands b̂ ⊂ B ′; |b̂| = p; p < |B ′| can be chosen in a way to retain
maximum of information on m j (t). This can be done by finding the b ⊂ B ′; |b| = p with
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the maximal determinant for the covariance matrix (sometimes referred to as Sheffield
Index):

SI = det(Cov(mb(t))). (6.5)

where mb(t) is the random vector formed by concatenation of m j (t), j ∈ b. This is equal
to finding the bands with the maximum entropy assuming mB ′ (t) has an underlying mul-
tivariate normal distribution. For a complete derivation please refer to [167].

6.2. EXPERIMENTS AND RESULTS

The experimental evaluation is performed for phantom data and in vivo surgical images.
As reflectance standard a Labsphere (North Sutton, NH, USA) Spectralon reflectance
standard with near constant reflectance in the visible and near infra-red spectrum was
chosen. For evaluation purposes, the modified Beer-Lambert’s (chapter 3.3.2) law was
used to determine relative chromophore concentration.

6.2.1. PHANTOM EXPERIMENTS

Combinations of oxygenated and de-oxygenated hemoglobin are often the only notable
absorbers in human tissue. The fraction of oxygenated hemoglobin to total hemoglobin
concentration is referred to as oxygenation and is highly relevant for many diagnoses
as mentioned in chapter 3.1. The phantom experiments investigate how the number of
selected bands influences the systems capability to estimate oxygenation.

Because oxygenation is hard to reproduce artificially it was emulated by mixing two
chromophores, methylene blue (MB) and Congo red (CR). Five 3×3 grids of wells were
built (see Fig. 6.3 (a)), containing mixtures starting with 90% CR and 10% MB descending
in 10% steps to the final 10% CR, 90% MB well. To maximize the evaluated combinations
of CR and MB concentrations, the two chromophores were acquired at molar concen-
trations of 20µM, 30µM and 50µM. Five grids were constructed according to the above
scheme for the combinations (20µM CR, 50µM MB), (30µM CR, 50µM MB), (30µM CR,
30µM MB), (50µM CR, 30µM MB) and (50µM CR, 20µM MB).

With the set-up described in Section 6.1.1 31 spectra were recorded, ranging from 500nm
to 650nm in 5nm steps. The 540nm band was used to discount the illuminant (see Sec-
tion 6.1.3). Relative CR concentration was estimated using the modified Beer-Lambert.
Evaluations were performed with leave one grid of wells out cross-validation.

The relative CR concentration estimation as a function of selected bands was deter-
mined. Figure 6.4 shows that seven bands achieve estimation results similar to 30 bands,
using RMSE as metric. A detailed look at the estimation result of one exemplary grid of
wells is available in Fig. 6.3. It can be seen that the results for three bands are notably less
robust than the results for seven or 30 bands. The chosen baseline method was to select
the bands with the maximum variance [79]. The result is significantly worse than the
proposed approach, showing the importance of accounting for inter-band covariances.
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(a) RGB (b) true CR concentration (c) all bands (30)

(e) our method seven
bands

(f) our method three bands (g) seven max variance
bands

Figure 6.3: Comparison of the (30µM MB, 30µM CR) grid of wells estimation results with different numbers of
bands. The missing pixels in the wells are saturated pixels and were excluded from evaluation. Red means high
Congo red (CR) concentration. Reprinted with permission from Wirkert et al. [194].

6.2.2. In vivo EXPERIMENTS

Eventually the purpose of this work was to find the best filter for the fast filter wheel
based multispectral laparoscope (Section 4.3.1) with eight filter slots. Because the fast
filter wheel technique allows shorter integration and acquisition times the effect of mo-
tion is greatly reduced and near-real-time operation is possible. One filter is needed to
discount the illuminant, leaving seven slots. The in vivo experiments thus investigate if
the band selection algorithm is able robustly determine the seven most relevant bands
by analyzing several image stacks taken from different animals. Furthermore oxygena-
tion estimation accuracy is evaluated similar to the phantom experiments and compared
with several baseline methods.

For five different pigs, three in vivo spectral image stacks each of the serosal porcine
small bowel surface were analyzed. Twenty-one bands were recorded from 470 to 670nm
in ten nm steps, with a total acquisition time of 10.5s per image stack. The images were
aligned using the algorithm described in [174]. The 580nm band was chosen to discount
the illuminant as this band shows very similar extinction coefficients for oxy- and deoxy-
hemoglobin and thus is not likely to be chosen as a relevant band. Band selection was
performed doing leave one porcine out cross validation in order to not train on image
stacks coming from the test animal.

The optimal band combination determined was (470 480 490 520 550 590 670), with one
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Figure 6.4: The Root Mean Square Error (RMSE) of the relative Congo red (CR) concentration estimation of all
analyzed spectra in the phantom experiments as a function of the number of selected bands. Reprinted with
permission from Wirkert et al. [194].

validation choosing band 510 instead of 520 and one validation choosing band 620 in-
stead of 590. The chosen bands are depicted in Figure 6.5 in combination with the refer-
ence spectra of oxygenated and de-oxygenated hemoglobin.

As in the phantom experiments, the oxygenation estimation performance was compared
for seven bands and 20 bands estimate. Again, the modified Beer-Lambert’s law was used
for estimation. The 20 band results were defined as reference values, reasoning that the
selected bands should be able to produce stable, similar results. Figure 6.6 shows how
the median absolute errors and inter quartile ranges (IQRs) are distributed on each of
the acquired data sets for the three and seven band ESI estimate. As baselines the ESI
was compared with the seven maximum variance bands and seven equidistant bands,
keeping the normalizations and registration described in 6.1.3 in place. The results for
all image stacks combined can be found in Fig. 6.7 In Fig. 6.8, exemplary oxygenation
estimates are shown.

6.3. DISCUSSION

The ESI presented in this chapter identifies the most relevant spectral bands. It adapts a
popular information theoretic approach stemming from the remote sensing community
to the endoscopic environment. The overall approach and the results are discussed in
the following.

ESI. The ESI enables band selection without the need to obtain labelled training data
or simulated data. By maximizing the differential entropy, the selected bands retain a
maximium of information provided in the images, taking into account inter-band co-
variances. In endoscopic environments, the plain SI suffers from misinformation in-
troduced by the imaging system, lighting and tissue motion/structure. To this end, im-
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Figure 6.5: The oxy- and deoxy-hemoglobin absorption curves with LCTF responses taken into account. Also
indicated are the chosen bands with their respective center wavelength and full widths at half maximum
(FWHM). The legend denotes which animal has been left out from training. Reprinted with permission from
Wirkert et al. [194].

age registration and illumination normalization were introduced as preprocessing steps
forming the ESI in Section 6.1.3. The ESI is easy to implement and selects seven bands
out of 20 in less than a minute using an unoptimized Octave implementation.

One limitation of the study could be seen in the fact that the method requires the un-
derlying data to be multivariate normal distributed. Non-linearities could be caused
by light scattering on particles as collagen and wavelength dependent tissue penetra-
tion depths of light. Preliminary analyses of intra-band variances and inter-band scatter
plots showed no gross deviations from results expected by normal distributions. The op-

timal selection of i bands out of n needs evaluation of

(
n
i

)
subdeterminants. While this

is feasible for 20 to 30 bands, this number will explode when band selection should be
performed from hundreds of bands. In these cases, heuristics as done by Han et al. [82]
can be applied.

The information maximized by the ESI algorithm can come from oxygenation, but might
also be generated by amount of blood in tissue or variations in scattering. A further in-
vestigation could investigate if the domain adaptation method developed in Chapter 5
can be used to find the best task and domain specific bands. One approach could be to
first generate simulations weighted by real data as in 5.1.2. From these weighted sim-
ulations the bands can be selected by a wrapper method with respect to a metric like
RMSE. This would provide the best bands for a specific task, such as cancer hypoxia de-
tection, without the need for labeled in vivo data. Contrary to the approach presented
in this chapter, a sophisticated light-tissue interaction model would be needed. A fur-
ther interesting topic would be studying band selection in context of the optimal wave-
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Figure 6.6: Comparison of the median absolute estimation errors and Inter Quartile Ranges (IQRs) for each
in vivo image stack. As baselines to the endoscopic Sheffield Index (ESI) the result for the seven bands with
the highest variance and the result for seven equidistant bands is depicted. Reprinted with permission from
Wirkert et al. [194].

Figure 6.7: Comparison of the overall median absolute estimation errors and Inter Quartile Ranges (IQRs). As
baselines to the endoscopic Sheffield Index (ESI) the result for the seven bands with the highest variance and
the result for seven equidistant bands is depicted. Reprinted with permission from Wirkert et al. [194].

length range for MSI. This thesis focused on visible light, because standard endoscopic
light sources operate in this range. However, there there are indications that the infrared
wavelength range is better suited for certain tasks such as ureter discrimination [142].

Experiments. The phantom experiments showed that relative CR concentration esti-
mation done with seven bands yields results comparable to using all 30 bands. The in
vivo hemoglobin oxygenation estimates also confirmed that seven bands show results
similar to all 20 bands. Using only three bands yields median errors up to a factor of
two larger and higher variance compared to the seven band estimate. Additional exper-
iments using the ESI without the normalization, which is the SI with motion compensa-
tion led to results worse than the worst baseline method. For animal 4, the 620nm band
was chosen opposed to the 590nm band chosen in all the other cross-validations. The
results for this animal are noticeably worse. Re-evaluation with the 590nm band showed
errors similar to the other animals. This suggests that the higher errors for animal four
are caused by the suboptimal selection of the 620nm band.

The three band ESI performs comparably to the seven equidistant band selection. Over-
all, the seven band ESI error is 36% lower than the best baseline method in the in vivo
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(a) animal 1b spectral image sam-
ple

(b) 20 bands oxygenation estima-
tion

(c) seven bands ESI

(e) three bands ESI (f) seven bands max variance (g) seven bands equidistant

Figure 6.8: The estimated hemoglobin oxygenation with various band numbers and methods for animal 1b.
Red means high oxygenation. Reprinted with permission from Wirkert et al. [194].

experiments. The seven bands estimate had a median deviation of only 5% from the 20
bands estimate. The band selection almost always chooses the same bands with only
twelve spectral image stacks as training data in the in-vivo study. Interestingly, while the
670nm band was always chosen as relevant band, its neighbouring bands are not chosen
in the seven band estimate, although they show similarly high differences between oxy-
and deoxy-hemoglobin (see Figure 6.5). This is most likely due to high dependencies
between these bands.

In this study image stacks from four different animals served as training data. Future
work should investigate how much diversity in animals and number of sample images is
necessary to obtain robust estimation. Ideally, a single surgery should be sufficient for
training. The presented results encouraged swapping the LCTF with a fast filter wheel,
using the filters determined in this chapter. This system was used in chapters 4 and 5.
The technology change reduced image acquisition times from 10.5s to 0.4s. Due to the
higher frame-rate this system is less susceptible to tissue motion and thus more robust.

6.4. CONCLUSION

This chapter described the Endoscopic Sheffield Index (ESI), which can be used to deter-
mine the most informative spectral bands. To my knowledge this was the first adoption
[194] of an unsupervised spectral band selection technique for endoscopic applications.
It enables band selection without the need to obtain labelled training data or simulated
data. The experiments include a porcine study and showed that the selected bands are
highly suited for oxygenation estimation.

In conclusion, the ESI presented in this work can to be used for band selection in endo-
scopic procedures and could thus enable highly time resolved spectral tissue classifica-
tion. For single-shot recording snapshot cameras the technique can increase resolution:
if the 16 off-the-shelf bands from the camera used in the next chapter were to be replaced
with the eight bands proposed in this chapter the relatively low resolution would double.
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Figure 7.1: The video-rate multispectral laparoscope (left), compared to a standard RGB laparoscope (right).

The vision that has driven this thesis is a laparoscope that looks and feels familiar to the
surgeon; and yet; at the press of a button gives immediate access to functional informa-
tion. The system presented in chapters 4 and 5 records and analyses images at a speed
of approximately 2.5Hz. This low frame rate leads to misaligned multispectral image
stacks and hinders widespread adoption by surgeons as these generally prefer seamless
feedback. Furthermore, the system is too bulky and heavy to be held steadily during
interventions.

While the last chapters focused on algorithms and camera design, this chapter is devoted
to a entire system ready to be used by the physician. It presents the first multispectral
laparoscope capable of recording and analyzing images at video rates (25Hz). An im-
portant feature of this system is that it boasts a form factor similar to a conventional
laparoscope (see Figure 7.1). To asses the true clinical benefit of the new device, it was
used for detection of ischemia during an in-patient partial nephrectomy.

With its focus on a holistic system, this chapter touches upon all the main topics of mul-
tispectral imaging: recording, analysis and application. The new laparoscopic recording
system is presented in the next Section. Section 7.2 describes how the analysis method
from chapters 4 and 5 can be extended to give immediate feedback. This system was
used for recording during in-patient partial nephrectomy, an application discussed in
Section 7.3. The results of the experiments, presented in Section 7.4 are discussed in
Section 7.5; concluding thoughts can be found in Section 7.6.
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7.1. VIDEO-RATE LAPAROSCOPE: IMAGE RECORDING

The laparoscope builds upon the Ximea (Muenster, Germany) MQ022HG-IM-SM4X4-
VIS multispectral snapshot camera. The small (26x26x31mm) and light (32g) multispec-
tral camera records images with the imec (Leuven, Belgium) mosaic snapshot sensor
with a frame rate of up to 170Hz for image cubes of 512×272×16 resolution and a bit
depth of 10. The sensor acquires the complete multispectral image at a single snapshot,
using a 4x4 repeating mosaic pattern. Figure 7.2 shows the mosaic pattern when zoomed
into a single image.

Figure 7.2: In vivo image recorded with the Ximea camera. The zooms in the right images reveal the mosaic
pattern.

The Ximea was connected via Universial Serial Bus (USB) 3.0 with a MSI GT73VR 7RF-
297 Titan Pro 4K Gaming Notebook with Nvidia GeForce GTX1080 8GB graphics card.
A C-mount to laparoscope adapter, provided by Richard Wolf (Knittlingen, Germany),
connected the Storz (Tuttlinge, Germany) 26003BA 30°laparoscope lens to the camera.
Light was provided with the Storz D-light P Xenon light source. The system is depicted
in Figure 7.3, for a comparison to the previous Spectrocam system, refer to Figure 7.4.

Figure 7.3: The proposed system, which connects the Ximea snapshot camera to a Storz laparoscope. .

As tissue reflects red brighter than blue, a 335 - 610nm bandpass filter1 was placed be-
tween connector and laparoscope. This ensures both information from red and blue are
recorded at more balanced camera counts, and thus similar noise levels.

1Thorlabs (Newton, NJ, USA), FGB37 - Ø25 mm BG40 Colored Glass Bandpass Filter, 335 - 610 nm
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Figure 7.4: The slower and bulkier Spectrocam fast filter wheel system presented in Chapter 4. .

7.2. VIDEO-RATE LAPAROSCOPE: IMAGE ANALYSIS

The random forest approach proposed in chapter 4 needs about 0.14s to generate the
functional images for this camera, thus not fulfilling the 25Hz requirement. To match
the fast recording with equally fast analysis, the random forests were replaced with con-
volutional neural networks (CNN) [116]. CNNs were chosen for three reasons:

1. modern CNN libraries natively offer GPU acceleration, thus provide rapid infer-
ence.

2. Image demosaicing and calibration can naturally be formulated as (convolutional)
operations within the CNN architecture.

3. CNNs can operate on whole images and image patches, thus taking advantage of
neighbourhood information for contextual information processing.

Two networks were created. The offline training network (Figure 7.5a) determines weights
and biases for functional estimation. The trained weights and biases are put into the live
evaluation network (Figure 7.5b), which runs within a C++ application on the notebook
and processes new images during the intervention. The networks can be separated into
several modules, explained in the following.

DATA PREPARATION

The data preparation module is for training only. It’s propose is to convert the simula-
tions of spectral reflectance into data which as closely as possible resembles measure-
ments from the Ximea camera.

The generic spectral reflectance simulations specified in Chapter 5, Table 5.1 were reused
for this purpose. Through camera quantum efficiency and filter transmission measure-
ments provided by the manufacturer and light source relative irradiance, laparoscope
transmission and glass filter transmission measurements from a spectrometer, the spec-
tral reflectance simulations were transformed to normalized reflectance space (Chapter
4, Equations 4.5 and 4.7).
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(a) Training network (b) Live evaluation network

Figure 7.5: The principle flowgraph of the developed CNN, with modules described in more detail in the
manuscript text. (a) The network used for training, whose weights and biases determined for the convolu-
tion blocks are copied into the live evaluation network. (b) The live evaluation network is used during the
intervention. The raw camera image is preprocessed within the CNN framework in the calibration and nor-
malization modules. The learned Conv/ReLU blocks estimate both oxygenation and blood volume fraction. A
second branch simultaneously estimates an RGB image to provide a reference familiar to the surgeon.
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(a) Two simu-
lated spectra

(b) Reshaped
to mosaic

(c) Expanded to 3x3 and stained xi with x j
(marked red)

Figure 7.6: Instead of performing regression on single pixels, the presented approach takes into account small
neighborhoods. Within this neighborhood the tissue can change. (a) To simulate these spatial changes in
tissue, for each simulated sample xi a random “staining sample” x j was selected. (b) Both are reshaped into
the mosaic pattern recorded by the sensor. (c) Elements of xi were replaced by elements of x j with a certain
probability. Replaced elements are indicated with a red border in this example. The process of rearrangement
and staining was repeated 3x3=9 times to form a small simulated patch of data. Figure 7.15 shows the effect of
this procedure.

These pixel-wise normalized reflectance simulations were used as basis for functional
estimation in the previous chapters. However, the mosaic pattern of the imec sensor has
a certain spatial extent. Changes in tissue composition within the mosaic could thus lead
to abrupt changes of the measured spectra at these locations. To account for this effect,
mosaics were simulated by rearranging the simulated normalized reflectances xi in the
mosaic pattern. A second, randomly drawn, disturbing simulation x j was arranged in
the same manner. The pixels of the original mosaic are exchanged with pixels of the
disturbing mosaic with a certain probability (e.g. 20%).

To make the results more robust, a small patch of 3x3 mosaics was simulated, so that
one training sample consist of 9=3x3 mosaics with the same base xi and staining x j re-
flectances. The whole procedure is shown in Figure 7.6. To model sensor noise, zero
mean Gaussian noise was added to the simulations as in previous chapters. Oxygenation
and blood volume fraction were selected to be the functional parameters for regression.
These were set to the mean values within the first 250µm within the artificial tissue. The
simulated mosaic patches served as input to the normalization module, which is part of
the training and of the live evaluation network.

NORMALIZATION

The mosaic images are demosaiced to separate spectral and spatial domains into in-
dividual axis. This can for example be realized with bilinear interpolation [205] or by
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learning the interpolation within the CNN framework [65]. Because demosaicing is not
the focus of this chapter, it was implemented by stacking each mosaic of 4x4 to a 16
dimensional vector. This operation was implemented by shifting a 4x4 kernel with 16
output channels and a stride of four over the image. Each of the 16 channels had a 1
entry in the extracted mosaic pixel and zeros elsewhere. This simple way of demosaicing
introduces a small spatial misalignment.

Both real measurements and simulations need to be normalized to account for constant
changes in illumination. These changes are caused by varying light source intensities or
laparoscope poses (Chapter 3.3.1). In this chapter, this was done by dividing each of the
demosaiced reflectances by its `2 norm. The further normalization to absorbance done
in Chapter 4 did not show any benefit for CNNs and thus was omitted. The normalized
reflectances served as input for the functional estimation module.

FUNCTIONAL ESTIMATION

The functional estimation module is “heart” of the network, in which the relationship
between input data and functional parameters is established.

It was composed of several convolution/rectified linear units (ReLU) [136] blocks. In
the most simple realization, all blocks are 1x1 convolutions, denoting the same result
as a fully connected, pixel-wise network applied to each image pixel. If patch-wise 3x3
mosaic input is generated as described in Section 7.2, the first two layers are 2x2 con-
volutions, followed by 1x1 feature transformations. Because of the fully convolutional
architecture, patches and images of arbitrary sizes can serve as input to the network.
The number of convolutional layers and filters depend on the implementation, weights
and biases are learned with respect to the loss described next.

LOSS

The loss is the objective function to be minimized during training. An Euclidean loss was
chosen, defined as

1

2N

N∑
i
||ytrue,i −ypred,i ||22, (7.1)

with N being the elements in the training batch. Functional parameters come in differ-
ing ranges. In the employed data set, oxygenation varied from 0-100%, while blood vol-
ume fraction only ranged from 0-30%. To ensure that different ranges of the estimated
parameters do not influence the loss, the real ytrue and estimated ypred were scaled. This
scaling was determined on the training data so that the training labels range from 0 to 1
for each parameter. The trained weights and biases were copied to the in vivo evaluation
network.

CALIBRATION

Before the normalization and functional estimation can be applied to the in vivo net-
work, the camera images are transformed to reflectance (see Chapter 3.3.1).
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Two images were recorded before the intervention for this purpose: a dark image with
no light and a white image, taken from a white reflectance standard. They were stored in
the network to be simply added (−dark) and multiplied (1/(white−dark)).

RGB ESTIMATION

To show the physician a familiar image as a reference during the intervention, an RGB
image was simultaneously estimated.

This calculation took place in a separate path and aimed to reconstruct an idealized RGB
filter response FRGB ∈R3xm from the multispectral systems response Fmultispectral ∈R|b|xm

using a linear transformation T ∈R3x|b|:

FRGB = T ·Fmultispectral (7.2)

with m being the number of parsed wavelengths and |b|, the number of multispectral
bands. Filter matrix Fmultispectral can incorporate light source irradiance and transmis-
sion of the laparoscope to make the estimation inherently white balanced. The linear
transformation T was found by least squares regression and put into the network. Here
the transformation were represented by three 1x1 filters, one for each R, G and B, with
no biases.

7.3. VIDEO-RATE LAPAROSCOPE: APPLICATION

The target application is partial nephrectomy, in which a kidney tumor is surgically re-
moved. During these interventions, often the renal artery has to be clamped to prevent
bleeding [179]. Verification of correct clamping is not straightforward; especially if the
preferable selective clamping of a segmental artery is performed, in which ischemia is
induced only in the cancerous part of the kidney [21, 131]. One possibility to ensure cor-
rect clamping is to check perfusion with indocyanine green (ICG) fluorescence: after ICG
is injected in the blood stream, it binds to the plasma. The bound ICG travels through
the blood stream and accumulates in the internal organs, especially in the kidney and
liver within a minute [59, 181]. No fluorescent signal thus corresponds to no perfusion.
Due to long washout periods of about 30 minutes, this test is not repeatable if the wrong
segment has been clamped [59]. Multispectral imaging (MSI) could be a possible substi-
tute for the only once applicable fluorescence method. Likewise, ICG fluorescence can
serve as gold standard perfusion estimate for MSI.

7.4. EXPERIMENTS AND RESULTS

The previous section described a translational solution for MSI in laparoscopy. This sec-
tion aims at analyzing the proposed system with respect to recording, analysis and the
performance in a first human subject.

Section 7.4.1 presents the experimental setup in the operating room (OR), the CNN pa-
rameters and metrics. The in-patient results are summarized in Section 7.4.2, including
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a comparison to baseline methods. The employed CNN analysis method is evaluated in
Section 7.4.3 and the novel recording system setting is assessed in Section 7.4.4, with a
special focus on the imec mosaic sensor.

7.4.1. GENERAL SETTING

This section gives an overview on the context in which the recordings were conducted,
the standard CNN settings and training procedure and general metrics.

In vivo recording. In the scope of this thesis, multispectral recordings were taken from
a patient undergoing partial nephrectomy. To ensure a sterile environment, a sterile
laparoscope was connected with the rest of the system via a sterile, disposable camera
cover. To guarantee successful renal clamping, ICG fluorescence measurements were
taken, using a da Vinci® Si (Intuitive Surgical, Sunnyvale, CA, USA) surgical system. The
white and dark images as well as relative irradiance measurement were taken after the
intervention.

CNN training procedure. For training the inversion, the simulation sets described in
Chapter 5 were used. The batch size for training was set to 500 (out of 500,000) for all
experiments, testing was done on the separate set of 50,000 simulations. One epoch
is defined as one forward/backward pass through all the training examples (i.e. 1,000
training steps). To enable inference in C++, the Caffe [99] deep learning framework was
used. Minimization was guided by the Adam optimizer [110] with standard parameter
settings and a base learning rate of 0.005. The learning rate was multiplied with 0.1 ev-
ery 300 epochs. To prevent overfitting to the simulations, a L2 regularization term for
the weights was added by setting the weight decay parameter to 0.001. Weights were
initialized with the Xavier initialization [69], biases were initialized to 0.1.

Baseline methods. Two baseline methods were investigated: the random forest ap-
proach, with parameters and normalizations as described in Chapter 4 and the standard
Beer-Lambert regression (Chapter 3.3.2). Beer-Lambert is not applicable directly, be-
cause the measured bands are broad and show second order peaks (see Section 7.4.4).
To still enable Beer-Lambert estimation, the 16 band data was transformed to 12 narrow
virtual bands. The linear transformation to these virtual bands was determined by an
algorithm of the camera manufacturer.

Standard metrics. Oxygenation and blood volume fraction were estimated. Metrics
were calculated on the absolute percentual errors of these functional parameters with
ground truth provided by the separate test set. These are referred to as oxygenation and
blood volume fraction error in the in silico evaluations. All in silico experiments were
conducted five times to reduce random influences. If not mentioned otherwise, results
refer to the concatenation of these five runs (e.g. the median error of all five runs).
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(a) Before (b) During (c) After

Figure 7.7: Fluorescent signal recorded before, during and after applying the clamps. (a) Before injection, no
fluorescent background signal was detected. (b) After clamps had been applied and ICG was injected, no signal
was detected in the liver. (c) Release of the clamp and thus reperfusion of the kidney was immediately followed
by a clear green fluorescent signal.

7.4.2. In patient APPLICATION

Recordings were taken from a patient undergoing partial nephrectomy in collaboration
with the Department for Urology of the Heidelberg University Hospital. The experiment
was conducted in three phases:

0. A baseline non-fluorescing image was taken to spot potential background signals.
A video was taken from the unclamped kidney with the da Vinci®. Baseline mea-
surements were also acquired with the MSI system (sequence 1).

1. The renal artery was clamped and the kidney was monitored at video rate by the
MSI system for about 90s. ICG was prepared by mixing ICG PULSION 50mg pow-
der with 10ml of distilled water. After applying a second clamp 2ml of the ICG
solution were admitted to the central venous catheter. A second video from the da
Vinci® was taken to ensure the clamping successfully stopped perfusion.

2. The clamp was removed and the reperfusion was monitored with the MSI system
(sequence 2). An video of the perfused kidney was acquired with the da Vinci®.

The fluorescent videos taken before, during and after clamping confirmed perfusion was
stopped (see Figure 7.7). The data acquired from the MSI system is analyzed in the fol-
lowing. First functional estimation with the proposed approach is presented, next it is
compared to two baseline methods for oxygenation estimation.

OXYGENATION AND BLOOD VOLUME FRACTION TRACKING

Two candidates for characterizing ischemia are blood volume fraction and oxygenation.
This experiments investigates if the parameters correlate with perfusion and hence how
suited they are for ischemia monitoring.

A template matching based2 ROI tracker was developed to follow an ROI through the
videos. Due to substantial movement and thus perspective change, the ROI was reini-
tialized at approximately the same position after (1) applying the first clamp (2) applying
the second clamp (3) before releasing the clamps.

2Using opencv-python [97] v3.2.0.6 method matchTemplate, with TM_CCOEFF_NORMED parameter
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Figure 7.8a depicts the mean oxygenation and blood volume fraction after the artery
was clamped (sequence 1). It can be observed that after the clamp was applied, both
parameters reduced. Blood volume fraction dropping by more than 50% in less than 15s.
Figure 7.8b shows some key frames from the sequence.

The approximately same ROI was tracked for the sequence 2, in which the clamps were
released. The results in Figure 7.9a show both blood volume fraction and oxygenation
sharply increasing after the clamp was released. Figure 7.9b shows four key frames.

METHOD COMPARISON

To get a qualitative feel for the performance of the proposed method, results for oxygena-
tion estimation were compared to the standard Beer-Lambert (BL) approach and to the
random forest (RF) method presented in Chapter 4. Further, the proposed simulation of
small neighborhoods was compared to other possible simulation schemes.

Comparison to BL and RF. Figures 7.10 and 7.11 show the oxygenation as estimated
by the different methods for the same ROI as before. The standard deviations of the oxy-
genation within the ROI are also depicted. The mean standard deviations measured in
sequence 1 were 4.6 (CNN), 9.2 (RF) and 20 (BL) percentage points. The mean standard
deviations measured in sequence 2 were 3.7 (CNN), 8.5 (RF) and 13.4 (BL) percentage
points. Figure 7.12 shows example oxygenation images of sequence 1, estimated by the
different methods.

Comparison to pixel-wise training and no staining. Contrary to conventional pixel-
level analysis, Section 7.2 proposed processing a small 3x3 neighborhood. To model tis-
sue changes within the small region, some pixels were exchanged by other spectra, re-
ferred to as “staining”. To investigate the effect of staining and patch-wise learning, four
networks were trained, one for each combination of patch-wise v pixel-wise and staining
v no staining.

Figures 7.13 and 7.14 show the oxygenation as estimated by the different methods for
the same ROI as before. The standard deviations of the oxygenation within the ROI are
also depicted. The mean standard deviations measured in sequence 1 were 4.3 (patch
+ staining), 8.8 (patch + no staining), 5.9 (pixel + staining) 7.4 (pixel + no staining) per-
centage points. The mean standard deviations measured in sequence 2 were 3.6 (patch
+ staining), 8.8 (patch + no staining), 5.8 (pixel + staining) and 7 (pixel + no staining)
percentage points. Figure 7.15 shows an oxygenation image of sequence 1, estimated by
the different methods. Blood volume fraction estimates were similar for all compared
methods.
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(a) Mean functional parameters monitored while applying clamps to renal artery. “R”
indicates reinitialization of the ROI. Example frames are depicted in Fig. 7.8b.

(b) Example frames corresponding to Fig. 7.8a. The small green lines mark the ROI.

Figure 7.8: Sequence 1: two clamps were applied to the renal artery. A drop both in oxygenation and blood
volume fraction was measured in the ROI.
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(a) Mean functional parameters monitored while blood flow was restored. “R” indicates
reinitialization of the ROI. Example frames are depicted in Fig. 7.9b.

(b) Example frames corresponding to Fig. 7.8a. The small green lines mark the ROI.

Figure 7.9: Sequence 2: when releasing the last clamp, a sharp increase in both parameters was measured in
the ROI.



7

100 7. FIRST FLUENT IN-PATIENT ANALYSIS AND RECORDING

(a) Mean oxygenation estimated by different methods while applying clamps to renal
artery. Example frames are depicted in Figure 7.12.

(b) Standard deviation of oxygenation estimated by different methods while applying
clamps to renal artery.

Figure 7.10: Sequence 1: two clamps were applied to the renal artery. (a) shows the oxygenation estimate for
the proposed CNN method and the baseline Beer-Lambert and random forest approaches. The small dip of
oxygenation within the first minute after clamping could only be measured with the proposed CNN approach.
Beer-Lambert frequently estimates impossible oxygenation values greater than 100%. (b) The standard devia-
tion of the different methods within the ROI. The other methods furthermore produce more noisy estimates.
“R” indicates reinitialization of the ROI.
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(a) Mean oxygenation estimated by different methods while releasing clamps to renal
artery.

(b) Standard deviation of oxygenation estimated by different methods while releasing
clamps to renal artery.

Figure 7.11: Sequence 2: last clamp is released from renal artery. (a) shows the oxygenation estimate for the
proposed CNN method and the baseline Beer-Lambert and random forest approaches. Beer-Lambert fre-
quently estimates impossible oxygenation values greater than 100%. All methods detect the reoxygenation
after releasing the clamp. (b) The standard deviation of the different methods within the ROI. While all meth-
ods seem to follow the same trend, the CNN estimate is substantially less noisy. “R” indicates reinitialization
of the ROI.
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Figure 7.12: Sequence 1: example frames from the proposed CNN method and the two baseline methods corre-
sponding to Figure 7.10. The CNN results are substantially less noisy; the Beer-Lambert approach repeatedly
estimated physically impossible oxygenation values greater than 100%. The small green lines mark the ROI
analyzed in Figure 7.10.

7.4.3. EVALUATION OF ANALYSIS METHOD

In this chapter, the previously used random forests were exchanged by CNNs. These ex-
periments evaluate the execution speed, the convergence of the training procedure, the
differences caused by changes in network architecture and compares CNNs to the ran-
dom forest and conventional Beer-Lambert approach. Except for the run time analysis
the experiments were conducted in the in silico setting described in Section 7.4.1.

VIDEO-RATE ANALYSIS

One of the main advantages of the CNN approach is that images can be processed end-
to-end on the GPU. This means new camera images are directly processed by the CNN
architecture depicted in 7.5b, which incorporates image calibration, normalization and
functional and RGB estimation.
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(a) Mean oxygenation estimated by different methods while applying clamps to renal
artery. Example frames are depicted in Figure 7.12.

(b) Standard deviation of oxygenation estimated by different methods while applying
clamps to renal artery.

Figure 7.13: Sequence 1: two clamps were applied to the renal artery. Different training methods for the CNN
are compared: either the training is based on a small neighborhood (patch) or a single pixel (pixel). For both
these methods additional noise coming from nearby tissues can be simulated (staining) or not (no staining).
(a) All methods show the same general trend. The proposed approach estimates higher non-ischemic oxygena-
tion. (b) The standard deviation of the different methods within the ROI. While all methods seem to follow the
same trend, the proposed method is substantially less noisy. An example frame marked as circled 1 is depicted
in Fig. 7.15. “R” indicates reinitialization of the ROI.
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(a) Mean oxygenation estimated by different methods while releasing clamps to renal
artery.

(b) Standard deviation of oxygenation estimated by different methods while releasing
clamps to renal artery.

Figure 7.14: Sequence 2: last clamp is released from renal artery. Different training methods for the CNN are
compared: either the training is based on a small neighborhood (patch) or a single pixel (pixel). For both these
methods additional noise coming from nearby tissues can be simulated (staining) or not (no staining). (a) All
methods show the same general trend. The proposed approach estimates higher non-ischemic oxygenation,
which is physiologically more plausible. (b) The standard deviation of the different methods within the ROI.
While all methods seem to follow the same trend, the proposed method is substantially less noisy. “R” indicates
reinitialization of the ROI.
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(a) RGB (b) oxygenation [%] color code

(c) patch wise + staining (proposed) (d) patch wise + no staining

(e) pixel wise + staining (f) pixel wise + no staining

Figure 7.15: Example oxygenation estimates using different simulated input data for CNN training, corre-
sponding to Figure 7.13. (a) RGB image for context. The lower two thirds of the images show a well perfused
kidney. (c) The proposed network qualitatively performs best. It trains on a small simulated neighborhood
(patch). To account for changes in tissue within this region, the simulated patch was “stained” by random
other tissue samples as described in Section 7.2. The method detects vessels as highly oxygenated with slightly
smaller values estimated for surrounding tissue. This indicates the vessels are arteries, which deliver oxygen
to the adjacent tissue. (d) Without adding staining pixels in the training input, the patch wise network seems
to overfit, estimating mostly high/low values. (e + f) As expected, estimation done for each multispectral pixel
individually leads to noisier results.



7

106 7. FIRST FLUENT IN-PATIENT ANALYSIS AND RECORDING

To evaluate the exact run time of the model, it was executed on over 1,000 images, on a
notebook3. The worst time for a complete forward pass of the network was 6.4ms (me-
dian 5.4ms), transferring the camera image to the GPU took a maximum of .9ms (median
.8ms). This leads to a total run time of less than 7.5ms, or more than 133Hz. The goal of
analysis with at least 25Hz was thus realized.

TEST ERROR CONVERGENCE

This experiment should ensure that the performance of the network has converged be-
fore training was aborted.

Comparing oxygenation estimation error on the test set after ten and 1000 epochs of
training, the worst of the five runs showed 4.4 percentage points lower performance for
the ten epoch result. After 100 epochs the difference reduced to 2.9 percentage points,
after 700 epochs the difference was 0 percentage points. Differences in blood volume
fraction errors were smaller. For all further experiments the training was conducted for
1000 epochs.

CNN SETUP

This experiment investigated the influence of CNN architectures on the function esti-
mation performance.

Six architectures for CNN regression were tested. They vary the number of convolu-
tion/ReLU blocks and the number of filters learned by in each of these blocks. The in-
vestigated architectures were 2 Layer (L) 50 filters (F), 4L 25F, 4L 50f, 4L 100F, 8L 50F. The
8 layer network was an exception with 50 filters in the first 4 layers and 10 filters in the
last 4 layers. Figure 7.16 shows the oxygenation and blood volume fraction results for the
5 runs of each network.

(a) Median oxygenation estimation results for each of
the five runs

(b) Median blood volume fraction estimation results
for each of the five runs

Figure 7.16: Influence of network architecture.

A Welch’s T-test for independent sample of scores4 with a 5% significance threshold com-
pared the standard 4L 50F network to the other architectures. Significant difference in

3MSI GT73VR 7RF-297 Titan Pro 4K Gaming Notebook with Nvidia GeForce GTX1080 8GB graphics card.
4Using scipy.stats.ttest_ind v19.0 [101]
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oxygenation estimation performance were determined comparing to the 2 layer network
(p-value=0.002) and to the eight layer network (p-value=0.004). For blood volume frac-
tion, only the difference to the 4L 100F network was found significant.

CNN COMPARED TO OTHER ESTIMATORS

To ensure the CNN approach is suited for functional estimation it was compared to RF
regression and BL estimation.

The evaluation was limited to oxygenation estimation performance, since BL cannot de-
termine blood volume fraction. Further, since BL can only process single input spectra,
only a single mosaic was simulated, contrasting the 3x3 mosaic input used in the other
experiments. The evaluation was done with a staining probability of 20% and with no
staining, to give results more comparable to the previous chapters. The oxygenation
error was 7.9 (12.5)% for CNN, 8.5 (13.3) % for RF and 11.4 (18.1)% for the BL method
(stained results are in brackets) See Figure 7.17 for a boxplot of these results.

(a) Estimation methods, evaluated with “un-
stained” data

(b) Estimation methods, evaluated with “stained”
data

Figure 7.17: Comparison of Beer-Lambert, random forests and the proposed CNN approach. “Staining” refers
to a method to inject additional shot noise described in Section 7.2. Boxplot, whiskers extend the low/high
quartiles by 1.5 IQR, extreme values not shown.

7.4.4. EVALUATION OF IMAGE RECORDING

In chapters 4 and 5 the Spectrocam, a fast filter wheel based camera, was used (Chapter
4.3.1). This slow sequentially recording camera was switched with the Ximea snapshot
camera; the system now further uses a Storz laparoscope and Xenon light source, in con-
trast to the previously employed Wolf laparoscope and Halogen light source. Aside from
the speed of image recording, the most significant difference between the two systems
are the cameras. The recording speed of the Ximea camera and the “second order” peaks
specific to the new sensor were investigated in the following. Other properties of the new
system have been analyzed in Appendix A.
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VIDEO-RATE RECORDING

The Ximea camera can record up to 170 multispectral images per second. This easily
surpasses the 2.5Hz recording of the Spectrocam. However, this value is more of theo-
retical nature, because proper illumination and thus sufficient camera counts have to be
ensured.

The Xenon light source provided brighter and spectrally more even light than the pre-
viously used Halogen light source. During the patient study, the exposure time was set
to 40ms, recording images with 25Hz. This exposure time was enough to ensure a well
lit scene at typical laparoscopic distances with the Xenon light source. Thus video-rate
recording is achieved.

CAMERA EVALUATION

The sensor records 16 multispectral bands. Spectral response of these bands are pro-
vided by the camera manufacturer and depicted in Figure 7.18. Several of the bands
show two peaks in spectral response. They are caused by the measurement principle of
the Fabry-Péro filters, which lead to so called “second order” peaks depending on cavity
height of the filter, refractive index of material and the cosine of the incident light. These
second order peaks can be quite pronounced (see bands 5-12) and are a challenge work-
ing with the sensor: as the two peaks are in the red and blue, changes in oxygenation will
be less strongly measured, as illustrated in Fig. 7.19. The consequences are explored in
the following in silico evaluation.

To investigate the influences of the second order peaks, three setups were compared:

1. the real 16 band imec filters,

2. idealized imec filters with no second orders and a gaussian response at the sen-
sors central wavelength and a broadness defined by a Full-Width at Half Maximum
(FWHM) of 10nm,

3. The Spectrocam from chapters 4 and 5 with the filters at 470, 480, 511, 560, 580,
600, 660, 700nm center wavelengths and 20nm FWHM, except for the 480nm band
with 25nm FWHM.

As Figure 7.20 shows, second orders led to a 1.7 percentage points higher oxygenation
error and higher IQRs compared to the idealized system. The error of the Spectrocam is
2.5 percentage points lower than the imec system. Median blood volume fraction errors
were within 3.5-3.6% for all systems.

SENSITIVITY TO SETUP CHANGES

This experiment evaluated robustness of the imec camera to setup changes. It mimics
changes in the OR, such as use of a different light source or laparoscope, by simulating
different setups for training and testing. This corresponds to changing the setup fol-
lowed by a new white balance.



7.5. DISCUSSION

7

109

(a) Bands 1-8 (b) Bands 9-16

Figure 7.18: The filter responses of the 16 imec bands. Some bands, such as 5-12 show two peaks in spectral
response, which in this thesis is referred to as “second orders”.

A summary of results for the imec and Spectrocam system is depicted in Figure 7.21.
While the imec system was rather robust to smaller changes in optical system (differ-
ent laparoscope with similar, but not same transmission), performance was reduced
when switching from Xenon to Halogen light. The Spectrocam system was robust to
both changes.

7.5. DISCUSSION

This chapter introduced the first laparoscopic multispectral system which is able to flu-
ently (≥ 25Hz) record and analyze multispectral images. To enable this fluent recording,
the sequential fast filter wheel used in chapters 4 and 5 was exchanged by a snapshot
multispectral camera, which acquires spatial and spectral information within one image.
Switching the random forest regression from the previous chapters with a CNN based re-
gression approach allowed fast, end-to-end processing of the multispectral images. The
results acquired during a partial nephrectomy suggest that multispectral imaging could
replace the more invasive ICG method in this context.



7

110 7. FIRST FLUENT IN-PATIENT ANALYSIS AND RECORDING

(a) Transmission of example band and oxy-
genated/deoxygenated reflectances

(b) Sensor integration from oxygenated to deoxy-
genated

Figure 7.19: By having a second, small peak in the red wavelengths, the sensor measures at high and low wave-
lengths at the same time. As spectral reflectance is higher at wavelengths above 560nm, even the small peak
has an influence. This is further investigated in (b), which summarizes contributions to the camera measure-
ment from below and above 560nm when changing from complete oxygenation to complete deoxygenation.
Deoxygention will cause a higher measurement in the blue wavelengths and a lower wavelengths in the red
wavelengths. Thus two peaks work against each other, leaving a less pronounced change in measurement.

In the following the in-patient results are discussed, followed by a review of the novel
recording and analysis methods in context of the in vivo and in silico experiments.

Application: in-patient partial nephrectomy. Quantitative evaluation of multispec-
tral images is not straightforward, as was discussed in Section 3.3. What can be tested
however is if the technique meets a clinical need. In this chapter, this clinical need was
perfusion monitoring during partial nephrectomy. ICG fluorescence served as a refer-
ence for the presented technique.

The in-patient results show the first video rate monitoring of oxygenation and blood vol-
ume fraction during partial nephrectomy. Before clamping the oxygenation in the ROI
was about 80%, a value comparable to in-human measurements from [68]. The blood
supply to the kidney was stopped before resection of a tumor by applying two clamps.
After clamping, blood volume fraction dropped from 15 to 5% in the tracked ROI within
15s. Oxygenation reduced at a slower pace from 80 to 65% in about 90s (Figure 7.8).
When the blood flow was restored, both parameters restored to their pre-clamping base-
line within 2s (Figure 7.9). This is a hint that blood volume fraction is the better param-
eter to characterize perfusion changes. The results are in line with the ICG reference
method, a first indication it could be replaced with the less invasive and quantitative
MSI.

The slower reduction of oxygenation could be explained by most of the blood imme-
diately drained from the organ after the clamp was applied, but the oxygen contained
in the remaining blood being only slowly consumed. Further, a small increase in oxy-
genation was observed in the first ten seconds after the clamp was applied, followed by
a larger drop in the next 10s. This effect can also be seen in the example images, Fig.
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(a) Oxygenation performance (b) Blood volume fraction performance

Figure 7.20: Comparison of the imec sensor, an idealized imec sensor and the Spectrocam from previous chap-
ters. Boxplot, whiskers extend the low/high quartiles by 1.5 IQR, extreme values not shown.

(a) Oxygenation performance (b) Blood volume fraction performance

Figure 7.21: Consequences of switching light source or laparoscope during the intervention on estimation
performance. Results based on simulations of the imec sensor and the Spectrocam system from previous
chapters. Boxplot, whiskers extend the low/high quartiles by a 1.5 IQR, extreme values not shown.

7.8b images 1-3. A possible reason could be that the venous blood is transported from
the kidney faster than the arterial blood, which loses pressure due to clamping. This
brief imbalance might lead to a small increase of oxygenation until most of the venous
blood has left the kidney. In both recorded sequences (see figures 7.8 and 7.9) periodic
oscillations of oxygenation and blood volume fraction occur with a frequency of approx-
imately 3-4 per 15s. These correspond with the respiratory cycle of the patient. However,
it is unlikely that the oscillations correspond to real changes in physiology but are caused
by tracking of the 2D roi template on the 3D kidney surface. This could also be the rea-
son for the dip in oxygenation shortly before the second clamp was applied, which was
preceded by abrupt changes of camera pose. To reduce perspective effects caused by the
high curvature of the kidney in the up-down direction of the image, the ROI was chosen
to be wide (20-30 pixel) but small in height (10 pixel). An alternative hypothesis for the
observed fluctuations would be that the pose influences the measurements. This is un-
likely, because inspection of the complete images (see Figure 7.8b images 3 and 4) seems
to indicate that the estimation results are unaffected by the change in pose.
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Further animal and in-patient studies is currently planned with the Department for Urol-
ogy of the Heidelberg University Hospital. The animal trials will investigate the influence
of pose and monitor the functional parameter estimates on a longer timescale in a con-
trolled environment. The clinical study will further test the hypothesis that ICG can be
replaced by MSI for detecting ischemia during partial nephrectomies. Further studies
could also determine if oxygenation can serve as an outcome predictor for postopera-
tive renal function, as studied by Best et al. [16]. If this were possible, the surgeon could
adapt the surgery to the current state of the kidney, e.g. by early unclamping if otherwise
long-term damage could be foreseen due to low oxygenation readings.

Recording: new snapshot system. The fast filter wheel used in the previous chapter
had narrow (20nm FWHM) filters, which were recorded sequentially. Due to this se-
quential, 400ms long, recording, the image stacks can be misaligned by often inevitable
motion. This misalignment leads to invalid measurements and is a serious difficulty
when working with the sensor, which eventually led to switching the Spectrocam with
the Ximea camera, which relies on an imec sensor. The main advantage of the imec
snapshot sensor is it records 16 bands simultaneously, within 40ms through a repeat-
ing 4x4 mosaic pattern (Fig. 7.2). Together with to the light weight and small form fac-
tor (Fig. 7.1) the camera meets important speed and ergonomic constraints for clinical
translation. In the following the specifics of the imec sensor are discussed in context of
functional imaging.

A challenge in working with the camera are the second order peaks in the spectral bands
(Fig. 7.18). The two peaks are mainly located in red (>580nm) and blue (<500nm). A the-
oretical analysis (Fig. 7.19) revealed a potential problem: reduction in oxygenation leads
to a lower measurement in the red, but a higher measurement in the blue. By integrating
over two peaks at the same time, the measured effect of oxygenation changes is small
compared to measuring only a single peak. This theoretical result was confirmed by the
in silico experiments in Chapter 7.4.4, where a theoretical system without the second
peaks performed 1.7 percentage points better in oxygenation estimation. These results
also show that the eight Spectrocam bands, which were selected with the method from
the last chapter, perform better than even the idealized 16 band setup. This establishes
further support for the band selection results.

Another problem caused by the two peaks is that the system is more sensitive to changes
in the optical system during the intervention. While in silico experiments in Chapter
7.4.4 showed that small changes like exchanging the laparoscope lens can be neglected,
switching from Xenon to Halogen light leads to worse results. The previously used Spec-
trocam system remains unaffected. The likely reason being, that if the response f j (λ) of
the filters is narrow as in the Spectrocam, changes in lighting l (λ), optical system o(λ)
and spectral reflectance r (λ) are close to constant. They are therefore not expected to
have strong impact on band reflectance r j :

r j =
∫ λmax
λmin

o(λ)l (λ) f j (λ)r (λ)dλ∫ λmax
λmin

o(λ)l (λ) f j (λ)dλ
≈

∫ λmax
λmin

α · f j (λ)r (λ)dλ∫ λmax
λmin

α · f j (λ)dλ
≈
α

∫ λmax
λmin

f j (λ)βdλ

α
∫ λmax
λmin

f j (λ)dλ
=β. (7.3)
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The broad second order peaks of the imec chip make this approximation not applicable.
This could complicate clinical use of the sensor, because a switch in light source would
require retraining the algorithm. One straightforward solution would be to precompute
several regressors for common light sources. The white balance could be used to detect
the most likely light source and switch to the respective regressor.

Because the sensor acquires images through the 4x4 mosaic pattern, the resolution of the
image is low compared to conventional HD laparoscopic cameras. The low resolution
functional image is probably sufficient for clinical practice. However, the RGB image
needs to be available at HD resolutions. Several solutions can be imagined:

1. The multispectral laparoscope can be a standalone system, only providing func-
tional information. This would require switching of laparoscopes during the inter-
vention and thus severely interfere with the standard workflow.

2. The RGB image estimated from the MSI can be interpolated to higher resolutions.
Relying on the MSI for RGB estimation alone is dangerous, because the MSI does
not capture the full spectral information (e.g. due to a bandpass filter, the imec
sensor is restricted to the 450nm to 650nm spectral range).

3. Similarily to 3D laparoscopes, a two chip (MSI + RGB) solution can be envisioned.
The image would be taken from the currently active sensor. This would lead to
light lost, due to a prism that splits light before the two sensors. However, this
might be a practical solution, especially if further developments of the imec sensor
are more quantum efficient.

Another theoretical limitation of the sensor is the spatial extent of the mosaics. Changes
in tissue within one mosaic could lead to misaligned spectra. In the investigated case of
kidney perfusion monitoring this was not viewed as critical, because the organ surface
is relatively homogeneous and the vessels could be delineated clearly. However, this
high resolution might be a requirement for other tasks, like searching for small spatial
changes in metabolism, as caused by micro-metastases. Interpolation to higher spatial
resolution might be done within the CNN framework discussed in the next paragraph.

Analysis: CNN regression. Random forests were exchanged with CNNs, mainly be-
cause of their inherent GPU acceleration, capability of end-to-end-processing and the
innate ability to incorporate spatial regularization by analyzing the pixel neighborhood.
The CNNs can perform the regression on the whole image in 130Hz, compared to 7Hz
of the random forest (RF) regression used in Chapter 4. During this time the CNN addi-
tionally performs white/dark balancing, normalization and computes an RGB estimate.

The RF method and the conventional Beer-Lambert (BL) were evaluated in-patient to
serve as a qualitative baseline for the CNN approach (Section 7.4.2). Because BL can-
not estimate blood volume fraction, only oxygenation was considered. While it seemed
all methods can estimate the general trend, the RF and especially the BL produced very
noisy estimates (see Figure 7.12). Probably due to this reason they miss the initial oxy-
genation drop within the first minute after applying the clamps in the ROI. Qualitative
analysis of the example images show that the CNN method can delineate small vessels,
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despite delivering much smoother results. To be applicable, the broad filter responses
have to be transformed to narrow virtual bands for BL. This is an additional source of
error and is not necessary for the presented estimation method, which directly learns
dependencies from simulated band reflectances. The BL repeatedly estimates physi-
cally impossible oxygenation values higher than 100%. These impossible values could
be remedied by a non-negativity constraint (Section 3.3.2). Such constraints prevent a
closed form solution of the problem and thus fast estimation, the strongest asset of BL
regression.

Instead of evaluating the functional parameters for each pixel individually, a small region
of interest was taken into account (Chapter 7.2). The simulated homogeneous tissue
patches were stained randomly with pixels from another tissue, to account for changing
tissue states within the covered neighborhood. This technique was compared in Section
7.4.2 to conventional pixel-wise regression and regression without this staining proce-
dure (see Figure 7.15). Incorporating neighborhood delivered stabler results. If staining
was omitted, the CNNs seemed to overfit to the simulations, producing less plausible in
vivo and more than twice as noisy results. The proposed, simple procedure can serve as a
baseline for more involved, future approaches. One idea is to simulate a small patch with
one base tissue and a second tissue overlayed as simple geometric shape, such as lines
or circles. Using such simplified artificial structures to learn the CNN was successful in
optic flow applications [41]. However, evaluating different patch simulation techniques
needs more in vivo recordings, as in silico comparisons are not meaningful.

As shown in the comparison of stained and unstained simulation approaches, overfitting
can be an issue. In this chapter, L2 regularization and the four layer network was cho-
sen for in vivo application, opposed to the better performing, but more parameter-heavy
eight layer network. Future architectures should explore a higher numbers of filters in
combination with dropout regularization [171]. The principle issue remains, that over-
fitting to simulations cannot be spotted during the in silico network training. In future
work elaborate phantoms could validate the CNN results. Furthermore, recordings from
healthy organs can be used to check if the oxygenation results are within plausible limits.

The presented network architectures provide a foundation for future, more explorational
studies. The Conv/ReLU blocks could be amended by residual connections [85]. More
involved, learned demosaicing and denoising [65] could provide cleaner, high resolution
imaging and remove the small spatial misalignment caused by the current demosaicing.

7.6. CONCLUSION

This chapter implemented important steps required for moving multispectral imaging
from a research environment into a more application oriented phase. Both recording
and analysis of the multispectral images is now live and fluent, giving immediate and
precise feedback to the surgeon. The system successfully detected and monitored is-
chemia during partial nephrectomy. If supported by further studies, the complete and
usable system presented here could enable the transfer of MSI into the clinical environ-
ment.
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The most important future task is thus the evaluation of this system in a larger study. Fu-
ture work should identify further areas of application in which multispectral imaging can
provide benefits. Our next field of investigation is detection of otherwise often missed
flat adenoma in colon cancer screening. Due to the broad applicability and the large po-
tential clinical benefit of the presented functional estimation approach, I am confident
the descendents of this system are an integral part of the next generation OR.





8
CONCLUDING THOUGHTS

Unanfechtbare Wahrheiten gibt es überhaupt nicht, und wenn es welche gibt, so sind sie
langweilig.

Dubslav von Stechlin in Theodor Fontane’s “Der Stechlin”
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When I first learned of multispectral functional imaging (MSI), the possibilities seemed
endless: with this technique one might monitor ischemia, detect cancer and other dis-
eases, help clinicians in identifying tumor margins or verify surgery success; surely, it
seemed to me, the future of interventional care would be bright and multispectral. How-
ever, soon dark spots became apparent. While enlightening from a research perspective,
the chance that an actual physician would want to use one of the systems presented in
the literature were low. The systems were bulky, slow devices, recording images that were
analyzed with basic, limited methods. My vision became to develop a system that clini-
cians would want to use. I imagined it to be lightweight and fast, backed up by powerful
image processing to interpret the information.

The main achievement of this thesis is an image analysis method which premiers live
(25Hz) calculation of functional information without resorting to restrictive simplifying
assumptions. At the heart of this method lies an approach that combines sophisticated
Monte Carlo based simulations of light-tissue interaction (Chapter 4) with convolutional
neural networks (CNNs, Chapter 7), one of the most powerful machine learning tech-
niques. The networks relate multispectral measurements to underlying functional pa-
rameters such as oxygenation. They employ simulations, which are generated offline
(and thus pre-intervention), as examples to learn this complicated relationship. Once
the relationship is established, the method enables rapid (7.5ms) determination of func-
tional information from images acquired during surgery. Throughout this work, a strong
focus was put on an accurate understanding of multispectral image formation. However,
learning from simulations has to be done with care, as they never fully mimic reality. To
more closely resemble real measurements the first transfer learning method in this field
(Chapter 5) was presented. By incorporating in vivo measurements, it adapts masses
of generic simulations of visceral tissue to the desired application, such as liver surgery.
This technique is key to applying the parameter-hungry Monte Carlo methods to various
domains. A V-model like validation chain investigated the simulation process, the cor-
rect understanding of image formation and the functional estimation performance. The
results gained by employing in silico evaluations, tissue mimicking phantoms, lab mea-
surements and a porcine study involving six pigs supported the hypothesis that rapid
and accurate functional estimation can be learned from simulations.

The second main achievement is the incorporation of the analysis method in a novel de-
vice which matches the speed of analysis with a corresponding speed of image recording.
This device is the first laparoscope to use a multispectral snapshot camera (Chapter 7).
Its sensor records at several multi-peaked bands, which prevents use of common analy-
sis approaches. By employing the CNN approach it was possible to use this camera for
the first ever fluent display of oxygenation during an intervention with MSI. In these in-
human-patient measurements, ischemia was successfully detected and monitored. By
presenting a device which can record and analyze multispectral images at video rates,
one of the main limitations of MSI was overcome.

One remaining challenge is the low resolution of the acquired images. By studying the
hypothesis that most of the information is captured by few spectral bands (Chapter 6) a
small but discriminative set of bands was identified. Equipping the off-the-shelf snap-
shot camera with these selected bands would be a step towards high resolution MSI.
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Together, the in-patient results, the novel device and the powerful but rapid algorithm
for analysis realized my initial vision of a truly usable system. Therefore the chance
of further clinical translation of this system is high. For future researchers, this thesis
sketches a map that guides towards successful application of MSI. On this map there are
areas that are left for exploration; new minds will need to fill this uncharted territory:

Computer scientists have two choices when analyzing multispectral images. They can
use physical models to derive the functional information or directly learn from training
images, for example to spot a tumor. If MSI devices become more standardized, and
thus more training data is available, the direct approach might become feasible. On this
exciting path all the powerful tools provided by modern machine learning techniques
would be usable. The presented functional approach could be extended to work outside
of the controlled laparoscopic environment. Generalization of the method to arbitrary
lighting scenarios would allow use in the vast applications of open surgery. Other re-
searchers might investigate what else is hidden in the spectral signature. Can we go be-
yond oxygenation and blood volume fraction? Can we incorporate other optical effects
like fluorescence or polarization in the presented method?

Physicists would be needed to develop devices capable of recording such multimodal
information. Imagine a system recording both multispectral and fluorescence signals
concurrently. The ability of such devices to monitor perfusion with MSI and visualize tu-
mors with targeted fluorescence could unlock new clinical workflows. To evaluate these
systems, biophysical experts are needed to create highly realistic tissue mimicking phan-
toms. Recent advances in bioprinting of 3D tissue [135] might close this in my opinion
most important gap: the unavailability of realistic looking and properly controlled gold
standards.

The medical doctors finally should test the nuts and bolts of the devices. Only they as
end users can judge the benefit. This can only be determined in larger studies, which
evaluate MSI in context of perfusion monitoring and early cancer detection and screen-
ing. Going further, MSI might complement non-invasive imaging modalities: intraop-
erative measurements from MSI could be fused with preoperative perfusion MRI mea-
surements to identify tumor margins. Ultimately, the most exciting consequences of
widespread MSI might be the unforeseen findings. What will we learn from visualizing
oxygenation at a large scale?

With the combined ideas from the mentioned talents and the seal of approval from the
physicians the medical companies will build the new functional devices. Afterwards we
can take care of what really counts, the final and often forgotten member of the chain:
the patient.





A
IMEC NOISE, LINEARITY AND

IMAGING SYSTEM

TRANSFORMATION

The linearity and noise of the Ximea camera were evaluated, two important parameters
for working with the imec sensor. Further, it was tested how well the transformation
from spectral reflectance to camera reflectance is understood with this sensor.

A.1. SENSOR NOISE AND LINEARITY

One prerequisite of the employed method is a linear camera response (see chapter 4.1.3).
To check, the laparoscope was placed above a white tile and the integration time was
varied to record images at differing intensity levels. One hundred recordings each were
taken for each integration time to get a stable estimate for the mean value and the pos-
sibility to estimate the variance of the values.

Figure A.1a shows the line fit to the mean recordings (taken from a 10x10 central ROI on
the images) and the SNR for different exposure times. Figure A.1b shows the worst fit of
these recordings to a normal distribution, according to a D’Agostino and Pearson’s based
test1. The median p-value was 0.003%.

A.2. IMAGING SYSTEM

Light exiting from the light source is reflected on the tissue surface, passes through the
laparoscope, the filter and finally reaches the camera, to be transformed into electric

1Tested with the scipy.stats.mstats.normaltest function of scipy v0.19
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(a) Mean measurements, line fit and the SNR (b) Worst normal fit. Blue measure-
ment histogram, green the Gaussian
induced by mean and standard devia-
tion.

Figure A.1: (a) Estimating linearity for the dynamic range of the sensor. The line fits to the measurements is
almost perfect, indicating the camera is linear. SNRs, determined from a 100 repeat measurements each, seem
to grow approximately linear as well with camera brightness. (b) shows the measurements which fit worst to a
normal distribution (20ms exposure time).

current. When simulating camera reflectance, all the elements on the path of light need
to be considered.

To judge the overall understanding of the imaging system transformation, color tiles with
known reflectance were measured with a spectrometer and the camera as in Chapter
4.3.3. For each color tile, spectrometer and camera measurements were transformed to
camera reflectance. Figure A.2 shows an overview on these matching for all color tiles.
The mean error of all color tile measurements is 0.2% and the standard deviation is 2.9%.



A.2. IMAGING SYSTEM
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Figure A.2: Color tiles measured with spectrometer and camera. The artificial optical system was applied to
the spectrometer measurements to transform them into camera reflectance space.
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