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ABSTRACT  

Metal-organic frameworks (MOFs) featuring isolated coordinatively unsaturated metal sites 

(CUS) have enormous potential as single-site catalysts. In particular, mixed-metal MOFs may 

exhibit unique catalytic properties compared to their monometallic counterparts. Herein, we 

report a thorough fundamental study on the mixed-metal CuPd-HKUST-1 ([Cu3-xPdx(BTC)2]n; 

BTC = 1,3,5-benzenetricarboxylate) including the two-step synthesis, characterization and 

catalytic performance evaluation. The combined results from a multi-technique approach provide 

solid evidence that the chemical properties of HKUST-1 can be tuned via successful 

incorporation of Pd-CUS into the framework leading to the formation of new Cu-Pd and/or Pd-

Pd dimers. The introduction of Pd occurs exclusively at the metal nodes in a controlled manner 

while retaining the structural integrity. All the incorporated Pd ions have an oxidation state of +2 

whereas no PdO or metallic Pd nanoparticles embedded inside MOFs are detected. These mixed-

metal CuPd-MOFs exhibit superior catalytic activity and selectivity for the aerobic oxidation of 

benzyl alcohol to benzaldehyde, and the doped Pd2+-CUS species are identified as isolated single 

active sites. 
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1 INTRODUCTION  

Metal-organic-frameworks (MOFs) featuring novel physical and chemical properties have 

opened up new perspectives in numerous application fields ranging from gas/liquid storage and 

separation, chemical sensing, drug release to electronic devices and catalysis.1-6 Their high 

structural and compositional design flexibility, which can be implemented by guest inclusion, 

solvent-assisted linker exchange, varying organic linker with different structure and coordination 

modes as well as by defect-engineering, allows to precisely tailor MOF materials for specific 

targeted applications. 7-30 In heterogeneous catalysis, the special interest in MOFs results from 

the presence of coordinatively unsaturated metal sites (CUS) at the framework nodes which act 

as isolated single active sites.31,32  

The Cu-based HKUST-1 ([Cu3(BTC)2]; BTC = 1,3,5-benzenetricarboxylate) is a prototypical 

MOF and contains copper-carboxylate paddle-wheel building units exposing intrinsic 

undercoordinated Cu2+ sites (Cu-CUS, see Figure 1),33 which show catalytic activity for a variety 

of reactions, such as α-pinene oxide rearrangement, acetalization of aldehydes with methanol 

and quinoline synthesis.34-38 Recently, it has been reported that the chemical and physical 

properties of MOF materials can be tuned by modification of both organic linkers and metal 

nodes.15-30 The defect-engineered MOFs (DEMOFs) formed via the incorporation of defect 

linkers or different metal ions are expected to show improved catalytic activity with respect to 

the pristine MOFs. However, a thorough atomic-level understanding of DEMOFs remains still a 

major challenge due to the great structural complexity. In particular, there is little information 

available on mixed-metal MOFs produced by the strategy of metal node engineering.39-45 

The controlled integration of Pd2+ cations into the metal nodes of HKUST-1 yielding CuPd 

mixed-metal single-sites is of great interest with regard to the unique catalytic performance of 
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palladium compounds for many reactions such as alcohol oxidation, allylic 

oxidation/rearrangements, olefin hydrogenation and cycloisomerization.46-52 Llabrés i Xamena et 

al.53 have reported that the monometallic Pd-MOF with the molecular formula [Pd(2-pymo)2]n 

(2-pymo = 2-hydroxypyrimidinolate) is active for typical Pd-catalyzed reactions. Although Pd2+ 

possesses a similar effective ionic radius as Cu2+, the synthesis of CuPd mixed-metal HKUST-1 

is a challenging task due to the difficulties in crystallizing 3D structures caused by kinetic 

reasons.54 Recently, Pd0@[(Cu3-xPdx(BTC)2]n was synthesized via one-pot hydrothermal method, 

leading to the coexistence of both Pd2+-CUS at the framework nodes and Pd0 NPs embedded 

inside MOFs.54 However, the exclusive introduction of Pd2+ as framework nodes has not yet been 

achieved. 

 

 

Figure 1. CuPd mixed-metal HKUST-1 synthesized using the strategy of metal node 
engineering. 
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 5

Here, we report a novel two-step synthesis that enables to produce mixed-metal [Cu3-

xPdx(BTC)2]n (CuPd-HKUST-1) with controllable modification exclusively at the metal nodes, 

giving rise to Cu-Pd and/or Pd-Pd paddlewheels (Figure 1). The successful homogeneous 

incorporation of Pd2+ is confirmed by a comprehensive multi-technique study. Our results reveal 

that the mixed-metal CuPd-MOF exhibits superior catalytic performance compared to the 

pristine HKUST-1 for the selective aerobic oxidation of benzyl alcohol to benzaldehyde. The 

improved reactivity and selectivity are attributed to the presence of doped Pd2+ CUS, acting as 

isolated single active sites.  

2. Experimental  

2.1 Materials. All reagents used in the experiment were purchased from Sigma-Aldrich and 

used as received without further purification. 

2.1.1 Synthesis of Compound 1.  Cu(NO3)2·3H2O (0.288 g, 1.19 mmol) and Pd(OAc)2 

(0.047 g, 0.21 mmol) were loaded into a 25 mL glass bottle followed by adding 6 mL DMF 

(HPLC grade) immediately, and then the mixture was stirred vigorously to completely dissolve 

all metal salts at room temperature for 1 hour obtaining solution A. Ligand H3BTC (0.198 g, 0.94 

mmol) was dissolved in 6 mL DMF in another 25 mL glass bottle to obtain solution B, which 

was then added to the solution A under continuous stirring condition for 1 hour. Subsequently, 

the mixed solution in the glass bottle was sealed and placed into a preheated oven at 343 K for 

12 h. Afterwards, the bottle was taken out and cooled down to room temperature naturally. The 

raw product was collected by centrifugation and then washed by DMF several times to remove 

the unreacted precursors. This raw product was then soaked in DMF and kept in oven at 323 K 

for 3 hours. Finally, the raw product was obtained by centrifugation followed by solvent 
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 6

exchange with acetone (HPLC grade) every 6 h for 6 times (7 mL each time). The yield is 

around 45% for compound 1. Before further measurements, the sample was activated by heating 

at certain temperature for 4 h under dynamic vacuum (around 10-2 mbar). 

2.1.2. Synthesis of Compound 2. All procedures are similar with the synthesis of compound 

1 except the amount of metal precursors, that is, Cu(NO3)2·3H2O (0.184 g, 0.98 mmol) and 

Pd(OAc)2 (0.094 g, 0.42 mmol). The yield for compound 2 is slightly higher, around 50%. 

2.1.3 Synthesis of Pristine HKUST-1. Cu(NO3)2·3H2O (0.338 g, 1.4 mmol) and H3BTC 

(0.200 g, 0.94 mmol) were loaded into a 25 mL glass bottle and then 12 mL DMF (HPLC grade) 

was added. After vigorously stirring for 1 h, the glass bottle was sealed and placed into a 

preheated oven at 343 K for 24 h. Afterwards, the bottle was taken out from oven and cooled 

down naturally to room temperature. The resulting solid was collected by centrifugation 

followed by solvent washing with ethanol, H2O and acetone. The yield is around 55%. 

2.2. Characterization.  The samples were identified by powder XRD over the 2θ range 4 - 

60o with Cu Kα radiation and scan step 0.01313o. HR-XPS was performed using an ultra-high 

vacuum setup equipped with a high resolution Gammadata Scienta SES 2002 analyser. The 

spectra were obtained at pass energy 200 eV with a base pressure around 3×10-10 mbar and an 

analyzer slit width of 0.3 mm. Monochromatic Al Kα (1486.6 eV) was used as incident 

radiation. Energy resolution is better than 0.5 eV and flood gun is used to compensate for 

charging effects. All spectra were calibrated to C1s binding energy at 284.5 eV. The analysis of 

the spectra was performed using CasaXPS software with mixed Gaussian-Lorentzian function 

and Shirley background subtraction. For UHV-FTIR spectra, samples were pressed into a 

stainless steel grid covered by gold and then was mounted on the sample holder, which was 
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 7

specially designed for the UHV-FTIR transmission measurement.55,56 Base pressure in the 

measurement chamber was 8×10-10 mbar. Before measurement, sample was heated at 393 K to 

remove all adsorbed chemical species. CO dosing was carried out by backfilling the 

measurement chamber through a leak valve. Spectra were collected with 512 scans and 4 cm-1 

resolution. TEM and EDS elemental mapping measurement were conducted by JEM-2800, 

JEOL setup with beam energy 200 kV. The effective area of detector is 200 mm2. Resolution is 

0.09 nm and 123 eV for TEM and EDS, respectively. BET surface area and pore size distribution 

were measured by N2 physisorption at 77 K using BelMax sorption machine from BelJapan. 

Samples were activated at 393 K for 4 h before measurement. TG measurements were carried out 

on a thermo balance with a coupled QMS under helium condition. Heating ramp was 2 K min-1 

until final temperature 723 K. 

2.3. Catalytic Oxidation.  The aerobic oxidation of benzyl alcohol was conducted in a 100 

mL Parr autoclave. The catalysts were pre-activated at indicated temperatures (393 K, 423 K, 

443 K, 473 K) for 6 h under dynamic vacuum conditions (~10-2 mbar). The heating ramp was set 

to 5 K min-1. In a typical run, 96 µL benzyl alcohol, 20 mL toluene as solvent, and 100 mg pre-

activated catalyst were loaded into the reactor followed by purging with oxygen for three times. 

The reactor was then pressurized with 5 bar oxygen and heated to 403 K with a stirring speed of 

700 rpm. During reaction, around 1 mL liquid sample was taken out from the reactor through 

sampling line at appropriate intervals. The solution was centrifuged and then analyzed by gas 

chromatography. 

The samples were analyzed by an Agilent 7820A gas chromatography equipped with a capillary 

column (ZB-WAXplus, 30 m × 0.32 µm × 0.25 µm), a flame ionization detector (FID), and an 

autosampler. The GC was calibrated using several mixed solution with different concentrations 
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 8

to obtain response factor for each compound. The conversion of benzyl alcohol as well as the 

selectivity and yield of products were calculated based on normalization. 

3. RESULTS and DISCUSSION 

3.1. Synthesis and Characterization of Mixed-Metal CuPd-MOFs. We synthesized the 

mixed-metal CuPd-HKUST-1 ([Cu3-xPdx(BTC)2]n) by using a novel two-step approach, in which 

a mixed-metal ion (Cu2+ and Pd2+) solution in dimethylformamide (DMF) was prepared first, and 

H3BTC dissolved in DMF was then added under continuous stirring. The solution was kept in an 

oven at 343 K for 12 h and then cooled to room temperature to obtain the desired samples. 

During the synthesis, we utilized DMF instead of common aqueous alcohol solutions, thus 

avoiding the coexistence of metallic Pd0 nanoparticles (NPs) that could be formed via the 

reduction of Pd2+ ions by alcohols at elevated temperatures.  
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 9

Figure 2. Powder XRD patterns of CuPd mixed-metal MOFs (compounds 1 and 2) and 

simulated pattern of pristine HKUST-1. 

 

The phase purity of the synthesized samples, [Cu2.43Pd0.57(BTC)2]n (1) and 

[Cu1.77Pd1.23(BTC)2]n (2), was demonstrated by powder X-ray diffraction (XRD) data. As shown 

in Figure 2, the XRD patterns match well with the simulated pristine HKUST-1, indicating the 

same framework and the preserved structural integrity after the introduction of Pd2+. The 

increasing Pd2+ doping level leads to slight broadening of the reflections, which is probably 

attributed to a lower degree of crystallinity and the distortion of crystal lattice caused by the 

partial substitution of metal nodes. It should be noted that compared with the simulated pattern, 

no additional reflections at about 40.2o and 46.7o due to Pd(111) and Pd(200) were observed for 

compounds 1 and 2, thus excluding the presence of metallic Pd in both samples.  

Thermogravimetric analysis (TGA) revealed that the decomposition of both CuPd mixed-

metal HKUST-1 samples occurs at ~ 523 K (see Figure S1). The XRD patterns of compound 2 

obtained before and after activation at 393 K as well as after catalytic reaction confirmed again 

the thermal stability of the framework (Figure S2). 
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 10

 

Figure 3. N2 physisorption isotherms and pore size distributions (inset) for CuPd mixed-metal 

MOFs (compounds 1 and 2). Both samples were activated at 393 K under vacuum to completely 

remove adsorbed species prior to the measurement. 

 

To further support the incorporation of Pd2+ ions into the framework nodes, we carried out N2 

adsorption-desporption experiments at 77 K. Both CuPd mixed metal MOFs (1 and 2) show the 

type IV N2 physisorption isotherms (see Figure 3), suggesting the presence of micropores and 

mesopores. Hierarchical porosity distribution is illustrated in the inset of Figure 3, and the 

average pore sizes are around 2.9 and 2.4 nm for compounds 1 and 2, respectively. The 

mesopores presumably originate from defects (e.g. missing paddlewheels) created by the acetate 

modulator (CH3COO-), and they are expected to facilitate diffusion of reactants and products 

(i.e., benzyl alcohol, benzaldehyde and benzoic acid) to or from the metal-CUSs.12-15 Total pore 

volumes were determined to amount to 0.88 cm3 g-1 for 1 and 0.78 cm3 g-1 for 2. The specific 

surface areas of both CuPd-MOFs (1206 and 1284 m2 g-1 for 1 and 2, respectively, derived by 
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applying the BET equation) are still comparable to the pristine HKUST-1,57-60 indicating that 

Pd2+ should be located at the metal nodes (i.e., Cu2+-Pd2+ and/or Pd2+-Pd2+ PWs, see Figure 1), 

instead of occupying the pores. In addition, the results from TEM-EDS elemental mapping 

revealed a homogeneous distribution of Cu and Pd components in the framework for both 

compounds 1 and 2 (Figure 4 and Figure S3), which indicates again the successful incorporation 

of Pd2+ ions into the framework of HKUST-1. 

 

Figure 4. TEM image and EDS metal mapping for CuPd mixed-metal HKUST-1 (compound 2). 

 

3.2. XPS and UHV-FTIRS Analysis.  The CuPd mixed-metal MOFs (compounds 1 and 2) 

were further characterized by high-resolution X-ray photoelectron spectroscopy (HR-XPS) to 

identify the oxidation states of metal components. The coexistence of palladium and copper in 

compounds 1 and 2 was verified by the survey scan (Figure S4). Figure 5 presents the 

deconvoluted Cu 2p and Pd 3d XPS data. The Cu 2p spectra are dominated by the 2p3/2 peak at 

934.7 eV, which is ascribed to the intrinsic Cu2+ ions in HKUST-1 as further confirmed by the 

typical shake-up satellites centered at about 940 and 944 eV. Importantly, the Pd 3d XPS data for 
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both CuPd-MOFs show only one doublet at 338.3 eV (Pd 3d5/2) and 343.7 eV (Pd 3d3/2), 

matching very well with the characteristic binding energies of Pd2+ species,54,61 demonstrating 

that all palladium species in the CuPd mixed-metal HKUST-1 are in the oxidation state of +2. 

This result further supports the conjecture that all Pd2+ ions serve as framework nodes (Cu2+-Pd2+ 

and/or Pd2+-Pd2+ PWs). A quantitative analysis reveals that the Pd/Cu ratio also increases with 

increasing Pd2+ doping level. The corresponding O 1s spectra showed only one peak at 531.8 eV 

originating from carboxylate groups in the framework (data not shown), while no indication of 

the formation of any oxide species was detected. Thus, we can definitely rule out an assignment 

of the Pd2+ species to PdO NPs. 

In addition, the deconvolution of the Cu 2p regions reveals the existence of Cu+ as minor 

species in both CuPd-MOFs (Figure 5a), and around 6% and 15% of Cu2+ (934.7 eV) are 

reduced to Cu+ (932.4 eV) once activated at 393 K under UHV conditions for compounds 1 and 

2, respectively. For comparison, the XP Cu 2p spectrum of pristine HKUST-1 synthesized by 

copper nitrate and activated at 393 K was presented in Figure S5, and only around 4% Cu+ was 

observed. These results suggest that the modification of the Cu2+ nodes via doping with Pd2+ is 

accompanied by the formation of a small amount of Cu+. 
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Figure 5. (a) Cu 2p and (b) Pd 3d regions of the deconvoluted XPS data for CuPd mixed-metal 

MOFs (compounds 1 and 2) after activation at 393 K. 

 

The chemical nature of Cu- and Pd-CUS sites was further investigated by ultrahigh vacuum 

Fourier transform infrared spectroscopy (UHV-FTIRS) using CO as a probe molecule (Figure 6). 

After CO adsorption at 100 K, all three samples (pristine HKUST-1, CuPd-MOFs 1 and 2) 

exhibit one sharp dominating band at 2178 cm-1 due to Cu2+-CO species. For the pristine Cu-

MOF, there are two weak bands at 2118 and 2128 cm-1 in the lower-frequency range originating 

from Cu+-CO species. The redshift in frequency is attributed to the enhanced π back-donation. 

Given that the extinction coefficient of Cu+-CO is much higher than that of Cu2+-CO,62 the IR 

results indicate a very low concentration of intrinsic Cu+ defects (a few percent) in the pristine 

HKUST-1, in line with the XPS results (Figure S5). For CuPd-MOFs 1 and 2, one new band 

appears at about 2140 cm-1, and its intensity increases with increasing Pd2+ doping level. This 

band is assigned to Pd2+-CO species, which is consistent with literature.63 It is known that CO 

bound to metallic Pd0 sites is characterized by vibrational frequencies typically lower than 2100 

cm-1. As shown in Figure 6, no any IR bands were observed in the low-frequency region, 

confirming the absence of additional Pd0 NPs embedded in the pore. In addition, the relative 

concentration of Cu+ species increases along with the introduction of Pd2+. These UHV-FTIRS 

results provide solid evidence for the formation of CuPd mixed-metal HKUST-1 in a controlled 

manner, in excellent agreement with the XPS observation. 
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Figure 6. (a) The UHV-FTIR spectra obtained after exposing the pristine HKUST-1 and CuPd 

mixed-metal MOFs (compounds 1 and 2) to CO at 100 K. (b) Thermal stability of various CO 

species adsorbed on CuPd-MOF 2 monitored by temperature-dependent IR spectroscopy. Prior 

to the measurements, all samples were activated at 393 K to remove adsorbed impurities. 

 

During CO adsorption over CuPd-MOFs 1 and 2 at 100 K, the bands at 2140 cm-1 (Pd2+-CO) 

and 2128 cm-1 (Cu+-CO) appear first followed by the main peak at 2178 cm-1 (Cu2+-CO) as 

shown in Figure S6. Furthermore, the thermal desorption of different CO species was 

investigated by temperature-dependent UHV-FTIRS that allows to gain deeper insight into the 

interaction between CO and various metal-CUS sites. The major band at 2178 cm-1 (Cu2+-CO) 

disappears first at 115 K followed by the 2128 cm-1 band (Cu+-CO) at ~230 K. The band at 2140 

cm-1 (Pd2+-CO) finally vanishes at about 270 K (Figure 6b). Overall, based on the temperature-

dependent FTIR results, the binding energies of CO at different metal-CUS sites follow the 

sequence Pd2+ > Cu+ > Cu2+. 
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3.3. Selective Oxidation of Benzyl Alcohol to Benzaldehyde.  The aerobic oxidation of 

alcohols to their corresponding aldehydes or ketones in the liquid phase is an important and 

promising reaction in organic synthesis. The selective oxidation of benzyl alcohol to 

benzaldehyde is often used as a probe reaction to assess the catalytic activity of catalysts, and 

benzaldehyde is the second most important aromatic compound in the cosmetic and flavor 

industry. Pristine and CO2-expanded HKUST-1 samples with large mesopores (13–23 nm) have 

been reported to be highly active and selective for benzyl alcohol oxidation to benzaldehyde 

under mild reaction conditions.64,65 However, the addition of a co-catalyst such as TEMPO 

(2,2,6,6-tetramethyl-piperidine-1-oxyl) and a base like sodium carbonate is indispensable for 

both studies. In the present work, the synthesized CuPd mixed-metal MOFs are employed to 

catalyze this reaction in the absence of these additives.  

Table 1: Comparison of Catalytic Activities of Pristine HKUST-1 and CuPd Mixed-Metal 

MOFs for Benzyl Alcohol Oxidation after 7 h. 

Catalyst  
Activation 

Temperature (K) 
Conversion (%) Selectivity (%) 

Pristine HKUST-1 423 5 99 

CuPd-MOF (1) 423 42 95 
 
 
CuPd-MOF (2) 
 

no activation 51 94 
393 67 93 
423 71 92 
443 54 90 
473 49 86 

 

The results of the catalysis test are summarized in Table 1. Pristine HKUST-1 activated at 423 

K leads to only 5 % conversion at 403 K and 5 bar O2 after 7 h, indicating the low activity of 

Cu2+-CUS for this reaction. In comparison, CuPd-MOFs 1 and 2 activated at the same 
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temperature result in 42% and 71% conversion, respectively, verifying that Pd2+-CUS species are 

the dominant active sites. The selectivity to benzaldehyde is high (> 91%), and the only side 

product is benzoic acid produced by overoxidation (Scheme 1). Furthermore, the influence of the 

catalyst activation temperature was also investigated. With increasing activation temperature to 

423 K, a maximum conversion of 71% is reached, which can be attributed to more available 

active sites by removing pre-adsorbed species like H2O. However, a further increase to 473 K 

causes a strong decrease of the conversion to 49%. Probably, the incorporation of Pd2+ in the 

metal nodes influences the thermal stability resulting in slight changes of the framework 

structure at higher activation temperatures (Figure S1). 

 

    

 

                                  Scheme 1. Benzyl alcohol oxidation. 
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Figure 7. Conversion of benzyl alcohol and selectivity to benzaldehyde as a function of time for 

CuPd mixed-metal MOFs: compounds 1 (blue) and 2 (red). 

As shown in Figure 7, CuPd-MOF 2 with higher Pd2+ doping level is the most active catalyst, 

leading to 93% conversion and 89% selectivity to benzaldehyde after 22 h. The oxidation of 

benzyl alcohol is derived to be a first-order reaction with compounds 1 and 2 (Figure S7). The 

reaction rate constants are calculated to amount to 0.073 and 0.140 h-1 for CuPd-MOFs 1 and 2, 

respectively. They are proportional to the metal weight ratio of Pd2+ (i.e., 5% and 9.73% of Pd2+ 

for compounds 1 and 2 based on EA), demonstrating again the crucial role of Pd2+-CUS in this 

reaction.  

It is worth mentioning that various PdII complexes were applied in aerobic alcohol oxidation in 

homogeneous catalysis,66-68 and a catalytic cycle including the formation of a PdIIalcoholate 

species followed by β-elimination leading to a PdIIH species and the formation of a PdIIOOH 

species was proposed.66 The same reaction mechanism may also apply to the CuPd mixed-metal 

HKUST-1 containing highly dispersed Pd2+-CUS as isolated, single active sites. Importantly, no 

notable difference is observed for the XRD patterns before and after reaction (see Figure S2), 

indicating the well-preserved structural integrity during the reaction. Overall, these results 

suggest a strategy to bridge homogeneous and heterogeneous catalysis. 

4. CONCLUSIONS 

In summary, we successfully synthesized CuPd mixed-metal HKUST-1 featuring Cu-Pd and/or 

Pd-Pd dimers via incorporation of Pd2+ into the pristine Cu-MOF by using a novel two-step 

synthesis. The CuPd-MOFs were characterized by a multi-technique approach including XRD, 

TEM-EDS, HR-XPS, and UHV-FTIRS. The results demonstrate consistently that the metal node 
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engineering occurs via introduction of Pd in a controlled fashion yielding mixed-metal HKUST-

1 with a homogeneous distribution of Pd and Cu cations while retaining the structural integrity. 

These CuPd-MOFs exhibit superior activity and selectivity for the aerobic oxidation of benzyl 

alcohol to benzaldehyde, and the highly dispersed Pd2+-CUS sites are identified as isolated single 

active sites. The CuPd-MOFs are also expected to be active for a variety of other aerobic 

oxidation reactions, in analogy to PdII complexes in numerous homogeneously catalyzed 

oxidation reactions. More generally, our work provides a new path to rationally design 

catalytically active mixed-metal MOFs in a controllable manner based on the incorporation of a 

second metal component exclusively at framework-nodes acting as single active sites. 
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