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Abstract Weak vector boson scattering (VBS) at the LHC
provides an excellent source of information on the structure
of quartic gauge couplings and possible effects of physics
beyond the SM in electroweak symmetry breaking. Param-
eterizing deviations from the SM within an effective field
theory at tree level, the dimension-8 operators, which are
needed for sufficiently general modeling, lead to unphysical
enhancements of cross sections within the accessible energy
range of the LHC. Preservation of unitarity limits is needed
for phenomenological studies of the VV j j events which sig-
nify VBS. Here we develop a numerical unitarization scheme
for the full off-shell VBS processes and apply it to same-
sign W scattering, i.e. processes like qq → qqW+W+.
The scheme is implemented within the Monte Carlo program
VBFNLO, including leptonic decay of the weak bosons and
NLO QCD corrections. Distributions differentiating between
higher dimensional operators are discussed.

1 Introduction

Among the scattering processes which can be studied at the
CERN Large Hadron Collider (LHC), weak vector boson
scattering (VBS) is particularly interesting as a probe of
electroweak symmetry breaking. Within the Standard Model
(SM), intricate cancellations between Feynman amplitudes
involving quartic gauge boson interactions, trilinear gauge
boson couplings, and Higgs exchange lead to scattering
amplitudes for longitudinally polarized weak bosons which
do not grow with energy and which, for a light Higgs boson,
respect bounds derived from unitarity. Modifications of the
weak boson couplings, among themselves or to the Higgs
boson, spoil these cancellations and can lead to sizable cross
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section increases. For example, reduced weak boson cou-
plings to the light, mh = 125 GeV Higgs boson and com-
pensation by an additional heavy Higgs in a two-Higgs-
doublet model would lead to a cross section increase at high
energy, as would a change only in the quartic gauge cou-
plings.

Absent clear hints for a particular theory beyond the
Standard Model (BSM), a bottom up approach is conve-
niently formulated within an effective field theory (EFT)
approach [1,2]. Given the observation of a light Higgs boson
at the LHC [3,4], we opt for a linear representation of the
light fields in order to construct dimension-six and -eight
operators for the EFT. To give just one example, a deviation
in the Higgs sector could manifest itself via the dimension-8
term

LS1 = fS1

�4

[
(Dμφ)†Dμφ

] [
(Dνφ)†Dνφ

]
, (1)

in the effective Lagrangian, which is present in the linear
Éboli-basis [5]. Here, the covariant derivative of the Higgs-
doublet field, Dμφ, contains W and Z fields, � is the energy
scale of new physics, and the coupling coefficient fS1 is used
later to allow different strengths for independent dimension-8
operators. This operator will induce an anomalous contribu-
tion to the four-W , four-Z , and WWZZ vertices, which alter
the scattering (predominantly) of the longitudinal degrees of
freedom of the weak vector bosons. The impact of anoma-
lous couplings on VV → VV scattering can be studied at
the LHC via the full process pp → VV j j X as illustrated in
Fig. 1, where the two final state vector bosons V can decay
either leptonically or hadronically.

The current, observed limits for fS1/�
4, derived from

same-sign W scattering by CMS, are [−21.6, 21.8] TeV−4

for 35.9 fb−1 of
√
s = 13 TeV data [6]. We are not aware

of new results for Run-II published by ATLAS. However,
comparing old limits for fS1/�

−4 of [− 118, 120] TeV−4

from 19.4 fb−1 of
√
s = 8 TeV data from CMS [7] and
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Fig. 1 Vector boson scattering contribution to the process pp →
W+W+ j j X

[− 960, 960] TeV−4 from 20.3 fb−1 of
√
s = 8 TeV data

from ATLAS [8], one observes a substantial difference in
precision.1 This difference is mainly due to the different
high-energy extrapolation of the EFT ansatz in the gener-
ation of BSM Monte-Carlo events. The EFT is only valid
up to a certain energy scale �valid < �, where the oper-
ator product expansion breaks down. However, the experi-
ment is only sensitive to the ratio fS1/�

4 and the scale �

is a priori not known. Using just the EFT as input for the
generation of Monte Carlo data will usually overshoot any
result allowed by perturbative unitarity in the high energy
region. Naturally this will result in more stringent lim-
its for the EFT-coefficients. CMS is using this approach
in presenting their limits. ATLAS on the other hand is
using the T-matrix [12,13] unitarization scheme to provide
a theoretically consistent description of the high energy
region, where unitarity would otherwise be violated, with
a proper interpolation to the low energy EFT. T-matrix uni-
tarization leads to lower generated event rates for a given
fS1/�

4, which leads to weaker limits for this Wilson coeffi-
cient.

The effect is demonstrated in Fig. 2, where we compare the
W+W+ invariant mass distribution expected with the current
CMS limit FS1 = fS1/�

4 = 21.8 TeV−4 for a naive EFT
description (dashed pink), with a T-matrix unitarized [12]
prescription, with larger coupling FS1 = 60 TeV−4, which
will give the same fiducial cross section (solid orange his-
togram). Also shown are the SM expectation (solid black)
and the naive EFT expectation for the larger coupling of
60 TeV−4 (dashed brown), which agrees with the T-matrix
unitarized expectation only at small invariant masses. In the
energy range above MWW ≈ 1500 GeV, an LS1 induced
excess above the orange FS1 = 60 TeV−4 curve violates uni-
tarity, i.e. it is unphysical, and should therefore not be con-
sidered to estimate EFT coefficients. This is quite general:

1 The limit in Ref. [8] is determined with coefficients α4, α5 of the non-
linear basis defined in [9]. We used the conversion given in [10,11] to
transform these into limits of the linear Éboli basis.
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Fig. 2 Differential cross section as a function of the invariant mass
mVV of the weak vector bosons for pp → �+ν��

+ν� j j X . The solid
black line represents the SM, while the dashed pink and dashed brown
lines show the EFT cross section for the FS1 = fS1/�

4 anomalous
coupling. The solid orange line shows the T-matrix unitarized curve
with the same fiducial cross section as the pink pure EFT curve. Cuts
defining the fiducial region are given in Eq. (34)

a pure effective Lagrangian/anomalous coupling analysis of
LHC observables, with a finite set of terms in the effective
Lagrangian, is insufficient in practice because the unbounded
growth of amplitudes with energy typically corresponds to
unitarity violation within the energy reach of the LHC. We
thus need a general and versatile unitarization procedure for
the naive EFT amplitudes at high momentum transfers, which
smoothly interpolates to the pure EFT description well below
�valid.

In order to analyze VV j j production data, any unitarity
considerations for VV → VV scattering must be extrapo-
lated from on-shell bosons to the space-like incoming and
time-like outgoing virtualities of the vector bosons which is
implicit in the kinematics of Fig. 1. As we shall see, this
extrapolation will require a few additional assumptions and
will induce some model dependence. To obtain predictions
which are compatible with unitarity, the T-matrix unitariza-
tion prescription can be used. So far, however, an implemen-
tation of this scheme is only available for a small number
of effective Lagrangian operators for VBS due to the diffi-
culty to handle VBS with arbitrarily polarized off-shell vec-
tor bosons in the full VV j j production process [12,13]. In
this paper, we introduce a variant of the T/K-matrix unita-
rization scheme [12,14], called Tu unitarization below, for
general combinations of operators within VBS, for arbitrary
space-like virtualities of the incoming vector bosons, and
describe its implementation in the Monte Carlo generator
VBFNLO [15–17].

123



Eur. Phys. J. C   (2018) 78:759 Page 3 of 15  759 

The paper is organized as follows. We introduce the full
set of bosonic dimension-8 operators with a list of current
experimental limits in Sect. 2. In Sect. 3, we first con-
sider how unitarity relations can be extended to off-shell
VBS processes. Beyond the definition of off-shell polar-
ization vectors, this entails partial wave decomposition for
off shell sub-amplitudes for VV → VV scattering and its
fast numerical implementation. The Tu unitarization model,
which we have implemented in VBFNLO for same-sign W
scattering, is introduced in Sect. 3.3. Section 4 is devoted to
numerical results for same-sign W -scattering, i.e the process
pp → W+W+ j j X → �+ν��

+ν� j j X at NLO QCD preci-
sion, which is now implemented in VBFNLO including Tu
unitarization for any combination of the dimension-8 oper-
ators listed in Sect. 2. We compare our Tu unitarized model
with naive EFT descriptions for different dimension-8 oper-
ators. Furthermore, we will also give examples of observ-
ables helping to distinguish experimentally between differ-
ent subclasses of dimension-8 operators. Final conclusions
are drawn in Sect. 5.

2 Effective field theory description of anomalous
quartic gauge couplings

The bottom-up EFT framework is useful to quantify devia-
tions from the SM in a model independent way and, once
experimental evidence for such deviations is discovered, it
gives hints, from which BSM effect a possible anomaly might
originate. Short of such a desirable situation, experimental
limits on the Wilson coefficients serve as a measure of the
experimental precision. Two EFT representations are mainly
used to describe BSM contributions for anomalous quartic
gauge couplings, the linear and non-linear representation.
They can be distinguished due to the different ordering of
the EFT expansion

LEFT =
∑
i

fi
�di−4Oi , (2)

which is written in terms of operators Oi of energy dimen-
sion di , corresponding Wilson coefficients fi (which allow
for variations in importance of the individual operators) and
energy scale of new physics, �. In the non-linear representa-
tion, the Higgs couplings are treated as additional free param-
eters and deviations in the Higgs sector can already be intro-
duced at lowest order [18]. This was well motivated before the
experimental Higgs discovery in case of a heavy or strongly
interacting Higgs [19,20]. However, since no deviations from
the light SM Higgs predictions have been observed so far,
we choose the linear Higgs representation, where deviations
from the SM predictions for Higgs couplings and trilinear or

quartic gauge boson couplings first appear at energy dimen-
sion di = 6 [21–23].

Anomalous quartic gauge couplings (aQGC) are induced
at the dimension-6 level already. However, they are not inde-
pendent of changes in the Higgs couplings or of anomalous
trilinear gauge couplings. These three-boson couplings are
most easily measured in Higgs production or decay or in
vector boson pair production (qq̄ → V1V2), at the LHC, and
little additional information is to be expected from the mea-
surement of the significantly smaller VBS cross sections.
Also, the tensor structure of dimension-6 operators is not
general enough to allow for sufficiently uncorrelated varia-
tions of the 81 helicity amplitudes which, in principle, can
be probed in a VBS process, V1V2 → V3V4, with massive
vector bosons. In this paper, we study aQGC which enter
the EFT at lowest order at dimension-8 without contribut-
ing to anomalous trilinear gauge interactions or to HVV
couplings.

The contributing CP conserving operators can be assem-
bled from three SM building blocks. One building block
is the covariant derivative acting on the Higgs doublet
field,

Dμ� ≡
(

∂μ + i
g′

2
Bμ + igWi

μ

τ i

2

)
�, (3)

which affects the coupling of longitudinal modes of the gauge
bosons. Here, the Higgs, H is embedded in the Higgs doublet
field in the unitary gauge:

� =
(

0
v+H√

2

)
. (4)

The other building blocks are the field strength tensors

Ŵμν = ig
τ i

2
(∂μW

i
ν − ∂νW

i
μ − gεi jkW

j
μW

k
ν ), (5a)

B̂μν = i

2
g′(∂μBν − ∂νBμ) , (5b)

which are normalized such that [Dμ, Dν] = Ŵμν + B̂μν

for the covariant derivative in Eq. (3). The abelian parts of
these field strength tensors lead to couplings of the transverse
degrees of freedom of the gauge fields.

The dimension-8 operators are separated into longitudinal,
transverse, and mixed contributions, corresponding to the
occurrence of the building blocks above. A revised list of
dimension-8 operators from [5] and [24] is given in Eqs. (6)–
(8). In comparison to the operators defined in [5], we choose a
different normalization for the field strength in Eq. (5), which
is accompanied by an additional factor of ig or ig′/2. These
normalization choices are labeled as “Éboli” for [5] and the
normalization in Eq. (5) as “VBFNLO”, in the following.
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For the longitudinal operators the two normalization
choices coincide:

OS0 =
[(
Dμ�

)†
Dν�

]
×

[(
Dμ�

)†
Dν�

]
, (6a)

OS1 =
[(
Dμ�

)†
Dμ�

]
×

[
(Dν�)† Dν�

]
(6b)

OS2 =
[(
Dμ�

)†
Dν�

]
×

[(
Dν�

)†
Dμ�

]
. (6c)

Compared to Ref. [5], the longitudinal operator set is
extended by the operator OS2 , which is needed for a simul-
taneous matching to the non-linear basis for all weak boson
flavor combinations in VBS [11,24,25]. The mixed set is
given by

OM0 = Tr
[
ŴμνŴ

μν
] ×

[(
Dβ�

)†
Dβ�

]
, (7a)

OM1 = Tr
[
ŴμνŴ

νβ
] ×

[(
Dβ�

)†
Dμ�

]
, (7b)

OM2 = [
B̂μν B̂

μν
] ×

[(
Dβ�

)†
Dβ�

]
, (7c)

OM3 = [
B̂μν B̂

νβ
] ×

[(
Dβ�

)†
Dμ�

]
, (7d)

OM4 =
[(
Dμ�

)†
ŴβνD

μ�
]

× B̂βν, (7e)

OM5 =
[(
Dμ�

)†
ŴβνD

ν�
]

× B̂βμ, (7f)

OM ′
5

=
[(
Dμ�

)†
ŴβμDν�

]
× B̂βν, (7g)

OM7 =
[(
Dμ�

)†
ŴβνŴ

βμDν�
]
. (7h)

The operator OM6 of the original operator set in [5] is not
independent of the others (OM0 = 2OM6 ) and can there-
fore be omitted. We have added OM ′

5
, which is the hermitian

conjugate of OM5 , and has to be included to complete the
operator set. Finally, the purely transverse operators are

OT0 = Tr
[
ŴμνŴ

μν
] × Tr

[
Ŵαβ Ŵ

αβ
]
, (8a)

OT1 = Tr
[
ŴανŴ

μβ
] × Tr

[
Ŵμβ Ŵ

αν
]
, (8b)

OT2 = Tr
[
ŴαμŴ

μβ
] × Tr

[
ŴβνŴ

να
]
, (8c)

OT5 = Tr
[
ŴμνŴ

μν
] × B̂αβ B̂

αβ, (8d)

OT6 = Tr
[
ŴανŴ

μβ
] × B̂μβ B̂

αν, (8e)

OT7 = Tr
[
ŴαμŴ

μβ
] × B̂βν B̂

να, (8f)

OT8 = B̂μν B̂
μν B̂αβ B̂

αβ, (8g)

OT9 = B̂αμ B̂
μβ B̂βν B̂

να. (8h)

Same-sign W boson scattering is the VBS process which
can be measured with the highest precision, due to a siz-
able signal cross section and a particularly low QCD back-
ground [6–8]. In Sect. 4 we will concentrate on this process,
to which only operators with exactly four W± fields can
contribute at tree level. This eliminates all operators with a

hypercharge field strength, B̂μν . The remaining ones have
been probed by ATLAS [8] and CMS [6,7] in same-sign W
scattering, and the results are summarized in Table 1.

In comparing the different normalization of Éboli and
VBFNLO, one finds that the limits for VBFNLO differ by
about one order of magnitude only, whereas the limits in
the Éboli normalization vary by up to two orders of magni-
tude. The difference is simply due to consistently factorizing
the small electroweak couplings, which are expected for any
model explaining the EFT, into the definition of the oper-
ators for the VBFNLO normalization convention. For the
8 TeV data, the ATLAS result incorporates a unitarization
model to prevent the generation of unphysical events at high
energy, which violate unitarity constraints. The correspond-
ing bound on fS1/�

4 for the same-sign W scattering pro-
cess observed by ATLAS [8] is approximately one order of
magnitude weaker than the CMS

√
s = 8 TeV limit, which

indicates the impact that unitarization can have on quoted
experimental results.

3 Unitarity for VBS: going off-shell

We need to apply unitarity considerations to electroweak pro-
cesses of the type pp → ψ̄1ψ2ψ̄3ψ4 j j at O(α6) (LO) and
at O(α6 αs) (NLO), i.e. including QCD corrections. At the
parton level, the ψi represent decay leptons of two vector
bosons, the initial pp state represents the scattering partons
(quarks or anti-quarks in the LO case) and j j stands for
the final state partons yielding two tagging jets. Represen-
tative Feynman graphs for the 8-fermion processes at LO
are given in Fig. 3 and include vector boson emissions off
quark lines as in Fig. 3a as well as VBS contributions as
in Fig. 3b. The BSM physics, which we consider via the
introduction of bosonic operators, will only contribute to the
VBS subprocess VV → VV . The SM contributions to the
complete process are gauge invariant by themselves, they are
“small” and they respect perturbative unitarity. Splitting the
full amplitude into the SM and a BSM piece,

Mpp→4 f j j = MSM
pp→4 f j j + MBSM

pp→4 f j j , (9)

it is, therefore, sufficient to unitarize the BSM piece only,
via the VBS subprocess, which means that we neglect the
interference of SM and BSM amplitudes for unitarization.2

3.1 Identification of the VV → VV subamplitude

Within the VBFNLO approach, the entire VV → VV sub-
process is contained inside a leptonic tensor, which then is

2 As we will see, unitarized cross sections exceed SM expectation by
more than an order of magnitude, which justifies this approximation.

123



Eur. Phys. J. C   (2018) 78:759 Page 5 of 15  759 

Table 1 Experimental limits (in TeV−4) on the coefficients of dimension-8 operators, fi/�4, from observation of pp → W±W± j j X

Measurement CMS, 13 TeV[6] CMS, 13 TeV ATLAS, 8 TeV[8] CMS, 8 TeV[7]
Normalization Éboli VBFNLO VBFNLO (T-matrix) Éboli

fS0 /�
4 [−7.7,7.7] [−7.7,7.7] [−38,40]

fS1/�
4 [−21.6,21.8] [−21.6,21.8] [−960,960] [−118,120]

fM0 /�
4 [−6.0,5.9] [−14,15] [−33,32]

fM1/�
4 [−8.7,9.1] [−22,21] [−44,47]

fM6/�
4 [−11.9,11.8] [−28.7,28.9] [−65,63]

fM7/�
4 [−13.3,12.9] [−31.4,32.3] [−70,66]

fT0 /�
4 [−0.62,0.65] [−3.7,3.8] [−4.2,4.6]

fT1/�
4 [−0.28,0.31] [−1.7,1.8] [−1.9,2.2]

fT2 /�
4 [−0.89,1.02] [−5.3,6.0] [−5.2,6.4]

(a) (b)

Fig. 3 Examples of Feynman graphs contributing to vector boson scattering

contracted with quark currents, Jμ
p→ jV . These represent the

emission of a virtual vector boson, V , off an initial parton in
Fig. 3b. This structure is well suited to implement the BSM
amplitude as

MBSM
pp→4 f j j = Jμ

p1→ jV1
J ν
p2→ jV2

MBSM
V1V2→4 f μν, (10)

where MBSM
V1V2→4 f μν denotes the BSM contribution to the

leptonic tensor.
The quark currents, Jμ

p→ jV , and the decay currents,

Jμ

V→ f̄ f
, are conserved, since we are neglecting fermion

masses, and this allows for a simple expansion of the off-shell
vector boson propagators in terms of polarization vectors of
fixed helicity. When writing

MBSM
pp→4 f j j = Jμ

p1→ jV1
J ν
p2→ jV2

DV1
μα(q1) D

V2
νβ (q2)

×Mαβγ δ

V1V2→V3V4
DV3

γρ(q3) D
V4
δσ (q4)

×Jρ

V3→ f̄ f
Jσ

V4→ f̄ f
, (11)

the vector boson propagators may be taken as

Dμν
V (q) = −i

q2 − m2
V + i mV �V

(
gμν − qμqν

q2

)

≡ −i

q2 − m2
V + i mV �V

∑
λ

ε
∗μ
J (q, λ)εν

M(q, λ)

(12)

since the qμ terms are contracted with a conserved current
and, thus, vanish. The indices J and M on the polarization
vectors distinguish between those that are contracted with
the currents, εJ , and the polarization vectors contracted with
the VBS matrix element, εM. Furthermore, we generalize
the definition of the polarization vectors for off-shell vector
bosons with four-momentum q to

ε
μ
J (q,±) = ∓ 1

√
2
√
q2
x + q2

y

×
(

0; qzqx|	q| ∓ iqy,
qyqz
|	q| ± iqx ,−

q2
x + q2

y

|	q|

)
=ε

μ

M(q,±),

(13a)
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ε
μ
J (q, 0) = NJ

(
|	q|, q0

	q
|	q|

)

NM

(
|	q|, q0

	q
|	q|

)
= ε

μ

M(q, 0), (13b)

where NM and NJ have to fulfill NJNM = 1/q2 as nor-
malization factors for the longitudinal polarization vectors.
One could choose the individual factors to be equal in mag-
nitude. However, in order to match the proper normalization
for on-shell weak bosons and thus to reproduce the correct
normalization of VV → VV scattering amplitudes for lon-
gitudinal V , we set

NJ = mV

q2 , NM = 1

mV
. (14)

With these definitions, the BSM contribution to the lep-
tonic tensor becomes

MBSM
V1V2→4 f,μν =

4∏
i=1

1

q2
i − m2

Vi
+ i mVi �Vi∑

{λi }
ε∗
J,μ(q1, λ1)ε

∗
J,ν (q2, λ2)MV BS

λ3,λ4;λ1,λ2

εJ (q3, λ3) · JV3→ f̄1 f2 εJ (q4, λ4) · JV4→ f̄3 f4 . (15)

The full anomalous VBS information is contained in the
helicity amplitudes

MV BS
λ3,λ4;λ1,λ2

(q3, q4; q1, q2)

= εM,α(q1, λ1)εM,β(q2, λ2)

Mαβγ δ

V1V2→V3V4
ε∗
M,γ (q3, λ3)ε

∗
M,δ(q4, λ4). (16)

For on-shell vector boson momenta, they correspond to the
normal VV → VV helicity amplitudes induced by the
dimension-8 operators. For the full pp → 4 f j j process,
however, we are dealing with incoming space-like four-
momenta q1 and q2, and outgoing time-like four-momenta
q3 and q4, which means that the initial and final states of
even the elastic W+W+ → W+W+ process do not properly
match.

In the presence of dimension-8 operators, the tree level
VBS amplitudes MV BS can rise with the fourth power of
the center-of-mass energy,

√
s. For example, the BSM part

of the helicity amplitude MV BS
+−;+−, for the operator OT0 , is

given by

MV BS
+−;+− = fT0

�4 2g4 cos4
(

�

4

) [
s2 − s(q2

1 + q2
2 − 2m2

W )

+ 4m2
W (q2

1 + q2
2 ) − 2m2

W

s
(q2

1 − q2
2 )2

]
, (17)

where the time-like momenta are approximated as on-shell,
q2

3 = q2
4 ≈ m2

W . This example also shows that unphysical,
strong enhancements are possible for large s and for large
q2
i , independently.

In order to avoid unphysical behavior, within the energy
range probed by the LHC, the subprocess amplitudes
MBSM

pp→4 f j j of Eq. (10) need to be replaced by unitarized ver-
sions, for Wilson coefficients of practical interest. Since we
intend to describe BSM interactions of the known SM bosons,
the unitarization has to act at the level of VV → VV scat-
tering instead of the full pp → 4 f j j subprocess: working
at the latter level, unitarity alone would e.g. allow replace-
ment of the well-known narrow Breit Wigner propagator for
the W by a broad spectral function, keeping the leptons pro-
duced in W → �ν on top of resonance for virtuality ranges
of hundreds of GeV, which would also result in large cross
section increases. Our choice of the physics which we want
to describe, forces us to match the off-shell VBS amplitudes
MV BS to unitarized on-shell VV → VV scattering ampli-
tudes, which can be defined from first principles. The guiding
principles here are

• In the on-shell limit, q2
i → m2

Vi
, the unitarized off-shell

amplitude must reduce to the corresponding unitarized
on-shell amplitude.

• For large virtualities, q2
i , and modest s (which is allowed

for the incoming space-like bosons) the unitarized off-
shell amplitude should not exceed the corresponding on-
shell unitarity bound.

• The unitarization procedure must reduce to the EFT limit
when the absolute values of all invariants (q2

i , and the
Mandelstam variables, s, t and u) are small compared to
�2, which sets the new physics scale.

These principles must now be applied to the unitarization of
the off-shell VBS amplitudes.

3.2 Unitarity relation for 2 → 2 amplitudes

It is useful to briefly recall the derivation of unitarity rela-
tions as exposed, for example, in Ref.[26]. Starting point of
any unitarization procedure is the unitarity of the scattering
matrix S

S = 1 + iT, (18)

2ImT = −i
(
T − T†

)
= T†T = TT†, (19)

where, exploiting momentum conservation, the i → f
matrix elements are given by

T f i = (2π)4δ(Pf − Pi ) T f i (20)
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Truncating the sum over intermediate states to the two-boson
subspace, the elements of the 2 → 2 scattering matrix,
T f i (q3, q4 ← q1, q2), have to fulfill the condition

T f i − T ∗
i f

= i
∑
n

∫
d3qn,3d3qn,4

(2π)32q0
n,3(2π)32q0

n,4

(2π)4δ(Pi − qn,3 − qn,4)

︸ ︷︷ ︸
λ1/2(s,q2

n,3 ,q2
n,4)

8s(2π)2
d�

Sn T ∗
n f Tni

(21)

2Im(T f i ) =
∑
n

λ1/2(s, q2
n,3, q

2
n,4)

8πs
Sn

∫
d�

4π
T ∗
n f Tni , (22)

where Sn is the statistical factor for identical particles, Sn = 1
2

for the W+W+ case to be concentrated on later. Exploit-
ing angular momentum conservation, every 2 → 2 helicity
amplitude Mλ3λ4←λ1λ2 = T f i can be expanded in corre-

sponding partial wave amplitudes A j
λ3λ4←λ1λ2

Mλ3λ4←λ1λ2 (�, ϕ)

= 8πN f i

jmax∑
j=max(|λ12|,|λ34|)

(2 j + 1)A j
λ3λ4←λ1λ2

d j
λ12λ34

(�) eiλ34ϕ,

(23)

where d j
λ12λ34

denotes a Wigner d-function, λi j = λi − λ j ,
and N f i = N f i (q3, q4; q1, q2) is a normalization factor.
Note that for the dimension-8 operators described in Sect. 2,
only partial waves up to jmax = 2 contribute.3

Performing the angular integral in Eq. (22), the partial
wave amplitudes A j are found to satisfy the relation

2Im(A j
λ3λ4←λ1λ2

)

=
∑
n

NniNn f

N f i

λ1/2(s, q2
n,3, q

2
n,4)

s
Sn

∑

λ′
1,λ

′
2

A j ∗
λ′

1λ
′
2←λ3λ4

A j
λ′

1λ
′
2←λ1λ2

(24)

where we have separated the sum over intermediate states
into an explicit helicity sum and a sum over n, which cor-
responds to a sum over possible boson flavor combinations.
Choosing

Nni = s

λ1/4(s, q2
n,3, q

2
n,4)λ

1/4(s, q2
1 , q2

2 )

1√
SnSi

(25)

3 Since at most three partial waves contribute, knowledge of the helicity
amplitude MV BS

λ3λ4←λ1λ2
(�) at three angles is sufficient to determine all

partial wave amplitudeA j
λ3λ4←λ1λ2

for a given set of helicities. We have
implemented this procedure in VBFNLO.

with Källén function

λ(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 2x1x2 − 2x1x3 − 2x2x3,

(26)

and analogously for Nn f and N f i , the phase-space factor in
Eq. (24) is canceled, resulting in a form analogous to Eq. (19).
Note that for the case at hand,W±W± → W±W± scattering,
the statistical factors are all equal, Si = S f = Sn = 1/2.
However, the above description readily generalizes to more
complex cases like W+W− → W+W−, Z Z , Zγ, HH etc.

Diagonalizing the partial wave helicity amplitudes, the
eigenvalues a j (s) will lie on an Argand circle of radius unity,
which implies

|Re(a j (s))| ≤ 1. (27)

We will refer to this limit as the unitarity bound on the scat-
tering amplitude. Alternatively one could use |a j (s)| ≤ 2,
which is reached for a purely imaginary scattering ampli-
tude. This comparison shows that the precise place at which
a (real) tree level amplitude violates unitarity is somewhat
ambiguous. However, a polynomial growth with energy, as
implied by a truncated EFT, is clearly forbidden by the uni-
tarity relation of Eq. (24).

For on-shell W±W± → W±W± scattering the specifica-
tion of virtualities in the above equations is superfluous, of
course. However, we want to extend the formalism to the uni-
tarization of the off-shell amplitudesMV BS of Eq. (15), with
space-like momenta q1 and q2 and time-like momenta q3 and
q4 which are somewhat off the W Breit–Wigner peak.4 For
this general case, Eq. (23) together with the normalization
factor of Eq. (25) defines the partial wave amplitudes to be
used below.

Allowing free virtualities of the external particles leads
to a new problem, however: already at tree level the scatter-
ing amplitudes A j

λ3λ4←λ1λ2
no longer form normal matrices,

i.e. TT† �= T†T when states with different virtualities are
identified, i.e. when they are associated with a single on-
shell state. While the mismatch becomes sub-dominant for
virtualities much smaller than the center of mass energy, i.e.
for |q2

i |/s  1, we here need an interpolation which also
works for modest center of mass energies and virtualities,
reproducing the EFT results, and which allows us to take
the exact, off-shell helicity amplitudes MV BS as input for
the unitarization in all regions of phase space. The proposed
generalization will be described in the next section.

4 We have tried various options of replacing the off-shell by on-shell
helicity amplitudes, which form a normal scattering matrix [27]. How-
ever, one typically faces significant cross section changes for large vir-
tualities of the incoming vector bosons, which are not sufficiently sup-
pressed by the propagators for dimension-8 operators or higher. Our
solution avoids these problems.
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3.3 Implementation of unitarization: the Tu model

Using a truncated EFT model at tree level for large energy
scales will violate unitarity above a certain energy. For cur-
rent experimental limits on the EFT coefficients, this unphys-
ical behavior happens within the energy reach of the LHC, as
demonstrated in Fig. 2. Therefore, an extended model must
be used to ensure that generated differential cross sections are
not becoming unphysically large. Several procedures, with
different high energy behavior, are available to extrapolate
the EFT beyond its validity range. One possibility, which
has been used in VBFNLO in the past, is the introduction of
(somewhat ad hoc) form-factors which multiply the full BSM
amplitude MVBS of Eq. (15) to ensure the unitary bound of
Eq. (27).

Theoretically more attractive is the substitution of the tree
level amplitudes by versions, which, at least approximately,
satisfy the unitarity condition of Eq. (24). One such procedure
is the linear T-matrix projection for the intermediate 2 → 2
interaction matrix that is introduced in [12,13]. With this
projection, the 2 → 2 scattering amplitudes will approach the
perturbative unitarity bound at high energies and are matched
to the naive EFT at low energies. Given the starting point
of a normal5 tree level interaction matrix T0, the procedure
corresponds to the substitution of T0 by

TL =
(
1 − i

2
T†

0

)−1 1

2

(
T0 + T†

0

)
. (28)

The T-matrix unitarization model has been implemented
for the OS operators [12,13,28], which enhance the scatter-
ing of longitudinal vector bosons. In these implementations,
an analytical approach has been chosen to provide T-matrix
unitarized results at high center of mass energies. The next
step in this program is the expansion of the method for opera-
tor classesOM andOT , i.e. the implementation for additional
helicity combinations of the vector bosons [29].

Contrary to the analytical ansatz chosen in [12,13,28],
which requires approximations which become exact only
in the limit of s � m2

V , |q2
i |, we here opt for a numerical

approach, which gives us greater versatility for the additional
dimension-8 operator classes, allowing investigations of arbi-
trary regions of phase space. As mentioned in the introduc-
tion, we here limit ourselves to the doubly charged channels,
i.e. to scattering of two same-sign W± bosons.

In the case of on-shell scattering, the interaction matrix
becomes hermitian, at tree level, and we can expand the
denominator in Eq. (28), to improve numerical stability, as

TL =
(
1 + 1

4
T0T0

)−1 (
T0 + i

2
T0T0

)
. (29)

5 ReT0, ImT0, T0 and T†
0 commute.

As mentioned in the last section, the interaction matrix of
the 2 → 2 vector boson scattering subprocess, within the pro-
cess pp → W±W± j j , is not normal, because the momenta
of the incoming vector bosons q1, q2 are space-like and the
momentum of the outgoing vector bosons q3, q4 are time-
like and almost on-shell. Although an extended procedure
for non-normal interaction matrices is provided in [12], it is
not feasible for a numerical approach.

To generalize Eq. (29) for off-shell sub-amplitudesMVBS,
we distinguish states with time-like and space-like bosons as
separate classes, labeling the corresponding matrix elements
with s for space-like and t for time-like momenta. This leads
us to consider three cases for the partial wave amplitudes A j

defined in Eq. (23),

At←s = A j
λ3,λ4;λ1,λ2

(q3, q4; q1, q2), (30a)

As←t = A j
λ3,λ4;λ1,λ2

(k3, k4; k1, k2), (30b)

At←t = A j
λ3,λ4;λ1,λ2

(q3, q4; k1, k2) , (30c)

which correspond to the amplitudes of the actual physical
subprocess, with time-like final momenta and space-like ini-
tial momenta, its hermitian adjoint, and an approximately
on-shell amplitude, respectively. As←s is omitted, because a
purely space-like 4-point function does not appear as a sub-
amplitude in a scattering process initiated by two particles
only. The additionally introduced time-like momenta k1, k2

and space-like momenta k3, k4 in Eq. (30) point in the same
direction in 3-space as the original qi , but with swapped vir-
tualities. More precisely, the invariant mass of the scattering
weak boson pair,

√
s, is kept fixed and

	ki ‖ 	qi , (31a)

k2
1 = q2

3 , k2
2 = q2

4 , k2
3 = q2

1 , k2
4 = q2

2 . (31b)

We can identify the matrices of the right hand side of Eq. (29)
by following the guiding principles introduced in Sect. 3.1.
The matrix T0 in the numerator has to be At←s to guarantee
a reduction to the EFT limit for low energy scales. Addi-
tionally, the virtualities of polarization vectors in the sum
over intermediate states have to be the same in order to guar-
antee reduction to the correct vector boson propagator (see
Eq. (12)), i.e. in matrix multiplication of the helicity ampli-
tudes in Eq. (30) only the productsAi←tAt← j orAi←sAs← j

are allowed. The unitarized interaction matrix has to be of
transition type t ← s and, thus, the matrix product in the
numerator is determined to be At←tAt←s . The denominator
has to behave as t ← t , which leaves only open the possibil-
ity of a linear combination of At←tAt←t and At←sAs←t for
the matrix product in the denominator.

This linear combination has to suppress both the poly-
nomial rise with the invariant mass of the scattering sys-
tem,

√
s, as well as the rise with the space-like virtualities

123



Eur. Phys. J. C   (2018) 78:759 Page 9 of 15  759 

q2
1 and q2

2 . Time-like virtualities are of no concern once the
dependence on s is addressed, because s provides an upper
limit for q2

3 and q2
4 . Contributions involving high virtuality

space-like momenta, especially for the transverse operators,
will eventually lead to an unphysical cross section growth at
s  |q2

1 |, |q2
2 |. An example is given in Eq. (17). Either the

s q2
1/2 or the q4

1/2m
2
W /s term could become dominant at low√

s. To ensure that the unitarized amplitude will not rise due
to un-suppressed space-like virtualities and therefore become
unphysical, the denominator has to contain at least as many
space-like states as the numerator. Hence, the matrix product
At←tAt←t has to be omitted and we arrive at the unitarization
formula

Aunit
t←s =

(
1 + 1

4
At←sAs←t

)−1 (
At←s + i

2
At←tAt←s

)
.

(32)

In this off-shell extension of the linear T-matrix unita-
rization, the eigenvectors of denominator and numerator
will only align exactly in the on-shell limit. In fact, since
At←s is not normal, (non-aligned) eigenvectors can only
be defined for the hermitian and the anti-hermitian parts
of At←s separately. As a result, the suppression of large
enhancements cannot be guaranteed for states which fall
along eigenvectors of small eigenvalues of the denominator.
For the case at hand, W+W+ scattering, this is not prob-
lematic for the operators OS , where only one helicity com-
bination, namely the purely longitudinal ones, will receive
a leading contribution, proportional to s2. However, multi-
ple helicity combinations will receive a strong enhancement
if at least one coefficient of transverse or mixed dimension-
8 operators is non-zero. Therefore, the formula in Eq. (32)
is still not satisfactory. Using the maximal eigenvalue a2

max
of the matrix product At←sAs←t instead, individually for
each j = 0, 1, 2 partial wave, will ensure that the result-
ing amplitudes are always below the unitarity limit. Our
final unitarization formula, which we call the Tu model,
reads

Tu = Aunit
t←s =

(
1 + 1

4
a2

max

)−1 (
At←s + i

2
At←tAt←s

)
,

(33)

and fulfills all the guiding principles listed at the end of
Sect. 3.1. Note that other choices would be possible for the
suppression factors 1/(1+a2

max/4). For example, a2
max could

be taken the same for the j = 0, 1, 2 partial waves. This
would correspond to a common overall form-factor, i.e. the
dynamical suppression of the EFT growth would set in at a
unique scale of new physics for all helicity combinations and
partial waves. Clearly, such changes correspond to different
models of the BSM dynamics. Here, we use the Tu model

because it is closer to the previous T-matrix unitarization
model of Ref. [12].

The unitarization procedure inherent in the Tu model, via
the a2

max term in the denominator of Eq. (33), introduces an
infinite tower of additional (s/�2)n suppressed terms in the
amplitude and, thus, is equivalent to extending the effective
Lagrangian with very specific terms of higher energy dimen-
sion. At the same time it provides an analytic continuation
of the amplitudes to the energy region where the EFT breaks
down. Since unitarity constraints are observed, this exten-
sion is phenomenologically superior to the use of a naive
EFT, truncated at a fixed energy dimension, and can consis-
tently be used in the high energy regime of the LHC. The Tu
model should not, however, be understood as a realistic ultra-
violet completion of the low energy, truncated EFT. Rather,
it provides an estimate for the upper bound of VBS differ-
ential cross sections at high energy, given a particular EFT
description at low energy.

4 Consequences for LHC physics

Both the newly introduced Tu-model and T-matrix unitariza-
tion modify the naive EFT description in slightly different
ways, but we expect both to agree at asymptotically large
energies, s � m2

W , |q2
i |, when a single helicity configuration

and, thus, a single large eigenvalue of the scattering matrix
dominates the high energy behavior. In order to demonstrate
these features, we start with a comparison of the three mod-
els, using Wilson coefficients near the present experimental
limits for the dimension-8 operators. Next we discuss their
impact on various observables, with an eye to distinctions
between the different operator classes.

The Monte-Carlo generator VBFNLO is used to calculate
distributions and fiducial cross sections for the vector boson
scattering process pp → W+W+ j j X → �+ν��

+ν� j j X at
NLO QCD for

√
s = 13 TeV. Here, �+ denotes a positron

or anti-muon in the final state. The jets are defined by anti-kt
clustering [30] with radius R = 0.4. They are ordered by
transverse momenta and the tagging jets at NLO are defined
as the two hardest jets. As default, we use the CT10 PDF
set [31], and electroweak parameters are determined within
the GF -scheme with the measured values of GF , mW , mZ

and mH as input. For the fiducial cross section we follow the
recent CMS analysis [6] and use the following cuts, dubbed
VBF cuts:

m�� > 20 GeV, m j j > 500 GeV,

p�
T > 20 GeV, p j

T > 30 GeV, pmiss
T > 30 GeV

|η�| < 2.5, |η j | < 5, �η j j > 2.5 .

(34)

In Fig. 4, we compare the prediction of the naive
EFT (dashed pink), the linear T-matrix unitarization (solid
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Fig. 4 Comparison of Tu model and linear T-matrix unitarization. Dif-
ferential cross section as a function of the invariant mass mWW of the
weak vector bosons for pp → �+ν��

+ν� j j X . The solid black line
shows the SM, while the dashed pink line shows the cross section for the

FS1 anomalous coupling using the present CMS upper limit. The solid
orange and blue lines show the a unitarized curve with the same fiducial
cross section as the EFT curve using the T-matrix and the Tu model,
respectively. Cuts defining the fiducial region are given in Eq. (34)

orange), the newly introduced Tu model (solid blue) and
the SM (solid black) for the longitudinal operator OS1 as
a function of the invariant mass of the vector boson pair. The
coefficient for the naive EFT is chosen as the current exper-
imental limit, FS1 = fS1/�

4 = 21.8 TeV−4, of CMS [6]
at

√
s = 13 TeV. For the unitarized models, T-matrix and

Tu , we choose the coupling such that the fiducial cross sec-
tion of the naive EFT and the Tu model coincide within the
VBF cuts of Eq. (34). The number of produced events in the
unitarized model are therefore nearly identical to the naive
EFT expectation within the high energy region used by CMS
to set the experimental bound, and thus the chosen value of
FS1 = 60 TeV−4 approximates the present bound on this cou-
pling for the two unitarized models. Note that the coupling
for the unitarized models is approximately a factor 3 larger
than for the naive EFT description. The expected excess of
events with invariant masses above 2 TeV in the naive EFT
description will violate unitarity and is therefore unphysical.
Figure 4b shows that the events of this unphysical high energy
tail need to be redistributed to energies between 800 GeV and
2 TeV for the unitarized models, leading to the weaker limit
on the Wilson coefficient. Limits on the dimension-8 coef-
ficient derived with the naive EFT model overestimate the
sensitivity of experiments to the scale of high energy BSM
effects. As displayed in Fig. 4a, the Tu model reproduces
the linear T-matrix unitarization prescription very well in the
high energy range, with barely visible differences at interme-
diate energies, below MWW ∼ 2 TeV, which can be traced to
subleading effects in q2

i /s. The deviation of the unitarization

models from the SM at high energies is greatly reduced as
compared to the naive EFT, and is a valid description beyond
the point of unitarity violation in the naive EFT model.

In Table 2, we list the estimated bounds on the full set of
dimension-8 coefficients for the Tu model, derived as above
by matching the fiducial cross section to the one obtained in
the naive EFT model. We stress that these numbers should
be taken as rough estimates only, to be superseded by full
experimental analyses. Their main purpose here is for use in
subsequent figures. They illustrate deviations from the SM
which are at the edge of what is presently allowed experi-
mentally. The bounds on these Wilson coefficients in the Tu
model are about a factor of 3 weaker than the correspond-
ing bounds derived within the naive EFT, for all three types
of dimension-8 operators. Note, also, that the normalization
conventions differ between Éboli and VBFNLO definitions
for mixed and transverse operators. In the following we use
the notation Fi = f Eboli

i /�4 for Wilson coefficients of oper-
ators Oi defined with the Éboli normalization.

The differential cross section as a function of the invari-
ant mass of the W-pair in Fig. 4 cannot be accessed exper-
imentally, because the 4-momentum of the neutrinos is not
measurable. A more readily accessible observable is the dif-
ferential distribution in the invariant mass of the two charged
leptons, which is correlated to a sufficient degree to the invari-
ant mass of the two vector bosons. Figure 5 shows the cor-
responding distribution for one non-zero coefficient of each
class, namely the longitudinal OS1 (Fig. 5a), the transverse
OT0 (Fig. 5b) and the mixed OM0 (Fig. 5c) operator. For all
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Table 2 Experimental limits (in TeV−4) on dimension-8 operators
from the observation of pp → W±W± j j X by CMS [6] (first column)
and corresponding estimates for the bounds on the Wilson coefficients

fi/�4 in the Tu model (second column). Columns three and four give
the corresponding numbers for the VBFNLO normalization of opera-
tors. See text for further details

Measurement CMS, 13 TeV Corresponding Tu CMS, 13 TeV Corresponding Tu
Normalization Éboli Éboli VBFNLO VBFNLO

fS0 /�
4 [−7.7,7.7] [−22,22] [−7.7,7.7] [−22,22]

fS1/�
4 [−21.6,21.8] [−50,60] [−21.6,21.8] [−50,60]

fM0 /�
4 [−6.0,5.9] [−20.0,14.5] [−14,15] [−35,49]

fM1/�
4 [−8.7,9.1] [−29,23] [−22,21] [−56,71]

fM6/�
4 [−11.9,11.8] [−39,30] [−29,29] [−72,94]

fM7/�
4 [−13.3,12.9] [−44,33] [−31,32] [−79,107]

fT0 /�
4 [−0.62,0.65] [−1.35,1.60] [−3.7,3.8] [−8.0, 9.5]

fT1/�
4 [−0.28,0.31] [−0.61,0.85] [−1.7,1.8] [−3.6, 5.0]

fT2 /�
4 [−0.89,1.02] [−2.1, 2.6] [−5.3,6.0] [−12, 15]

three coefficients, the Tu model is suppressed at high energy
scales where the EFT description violates unitarity. How-
ever, the high energy tails differ by approximately one order
of magnitude between the longitudinal operator OS1 and the
transverse operator OT0 . The differential cross section of the
mixed operator in the the Tu model lies between these. Below
500 GeV, the event production is mainly driven by SM contri-
butions, as indicated by the fact that the SM curve coincides
with the Tu model curve for all three operators.

In an attempt to distinguish the different operator types,
we study the transverse momentum of the leading tagging
jet, pT,max( j), and the difference of the two lepton trans-
verse momenta, �pT,�� = |pT,�1 − pT,�2 |. To optimize the
ratio of BSM to SM events for the following study, Fig. 5
suggests a cut, m�+�+ > 500 GeV, on the charged lepton
pair invariant mass. We show only the transverse and the
longitudinal operators in the following and omit the mixed
operators, which fall somewhat in between.

In Figs. 6a and 7a, the differential cross sections as a
function of pT,max( j) and �pT,��, respectively, are plotted.
On the right-hand-side, in Figs. 6b and 7b the same curves
are shown as normalized distributions, which helps to better
expose differences in shape. We compare the slope of the SM
(solid black), the longitudinal operator OS1 (Tu : solid blue,
naive EFT: dashed pink) and the transverse operatorOT0 (Tu :
solid brown, naive EFT: dashed purple).

Since incoming transversely polarized weak bosons lead
to a harder jet pT distribution than longitudinally polar-
ized bosons [32], and since the transverse operators enhance
the transverse components, we expect more events at larger
pT,max( j) for the transverse operators as compared to the
longitudinal ones. This is clearly borne out in Fig. 6, which
shows a considerably harder pT,max( j) spectrum for the OT0

operator than for OS1 . The cross section enhancement for the
longitudinalOS1 operator occurs at small pT , which is typical

for incident longitudinal bosons. At large pT,max( j), where
incident transversely polarized W s dominate, the SM and
OS1 curves coincide, indicating that the underlying anoma-
lous quartic gauge coupling is mostly longitudinal.

Anomalous transverse operators produce cross section
enhancements also at large pT,max( j). Here, an interesting
difference can be observed between the naive EFT model
and our Tu model: Tu unitarization considerably softens the
pT,max( j) spectrum (dashed purple to solid brown curves).
This effect is caused by the suppression of any large enhance-
ment of the VV → VV partial wave amplitudes, irrespective
of its origin. For the transverse operators one finds unphys-
ically large enhancements also at high virtualities of the
incoming W s, while the 2 → 2 center of mass energy,√
s = mWW , remains small. Such an enhancement would

not be corrected by a unitarization attempt which relies only
on suppression at large s, such as the form-factor unitariza-
tion implemented previously in VBFNLO.6 Thus, one needs
to be cautious when devising observables for transversely
polarized scattering based on a naive EFT approach: The
large enhancement at high pT,max( j) for the purpleOT0 curve
is an artifact of the missing unitarization. The properly unita-
rized distribution has a shape which is almost identical to the
SM curve in Fig. 6b, which is also dominated by incoming
transversely polarized W s. Rather, the distinction between
incoming longitudinal and transverse weak bosons has to
rely on the differences in the 0 < pT,max( j) < 200 GeV
region, where, fortunately, also the bulk of the cross section
is concentrated in all cases.

A transversely polarized W+ with helicity λ = +1 tends
to emit the charged anti-lepton in the forward direction rela-

6 This problem for a form-factor implementation can easily be cured
by generalizing the functional dependence of the form-factor, e.g. to
F(s, q2

1 , q2
2 ) = (1 + z(s2 + (q2

1 + q2
2 )2)/�4

FF )n , with n ≤ −1 and a
phase factor z = 1 or z = i .

123



 759 Page 12 of 15 Eur. Phys. J. C   (2018) 78:759 

500 1000 1500 2000 2500
M( + +)[GeV]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

dσ
/d

M
[fb

/G
eV

]
pp → W+W+jj → +ν +ν jj

FS1= 21.8 TeV−4, EFT

FS1= 60.0 TeV−4, Tu model

SM

(a) Anomaly due to OS1

500 1000 1500 2000 2500
M( + +)[GeV]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

d σ
/d

M
[fb

/G
eV

]

pp → W+W+jj → +ν +ν jj

FT0= 0.65 TeV−4, EFT

FT0= 1.60 TeV−4, Tu model

SM

(b) Anomaly due to OT0
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(c) Anomaly due to OM0

Fig. 5 Differential cross section as a function of the invariant mass
m�� of the charged leptons for pp → �+ν��

+ν� j j X . The solid black
line shows the SM, while the dashed pink solid line shows the cross
section for the anomalous coupling using the present CMS upper limit.

The solid blue line shows the a unitarized curve with the same fiducial
cross section as the EFT curve using the Tu model. The fiducial region
is defined in Eq. (34)

tive to the W -momentum, which leads to a high lepton pT .
This is in contrast to a negatively polarized W+, which pro-
duces a relatively soft �+, and the nearly equally shared
energy between �+ and neutrino for the decay of an ener-
getic, longitudinally polarized W . Thus, �pT,�� promises to
distinguish (λ3, λ4) = (+,+) helicities (high �pT,��) from
e.g. the (0, 0) or (+,−) helicity combinations at lower aver-
age �pT,��.

The corresponding differences are clearly exhibited in
Fig. 7. Also for the �pT,��-distributions, the slopes of the
dimension-8 operator enhancements are noticeably influ-

enced by the Tu model. The unphysical events at larger
�pT,�� are suppressed because �pT,�� and

√
s = mWW are

highly correlated. The Tu model prediction for the longitudi-
nal operators and the SM have more events at �pT,�� below
1000 GeV and receive a large suppression for larger �pT,��.
As expected, the transverse operator produces a broader dis-
tribution, i.e. the enhancement due to (λ3, λ4) = (+,+)

polarization is clearly visible. For this observable, the uni-
tarization model even increases the discrimination power
between different operators types.
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Fig. 6 Differential cross section as a function of pT,max( j) for pp →
�+ν��

+ν� j j X . The solid black line shows the SM, the dashed lines
show the naive EFT prediction within present CMS bounds, and the

solid blue and brown lines show the corresponding Tu model for OS1

and OT0 . Beyond the cuts in Eq. (34) we impose m�� > 500 GeV
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Fig. 7 Differential cross section as a function of �pT,�� for pp →
�+ν��

+ν� j j X . The solid black line shows the SM, the dashed lines
show the naive EFT prediction within current CMS bounds, and the

solid blue and brown lines show the corresponding Tu model for OS1

and OT0 . Beyond the cuts in Eq. (34) we impose m�� > 500 GeV

5 Discussion and conclusions

The parameterization of new physics effects in vector boson
scattering via anomalous quartic gauge couplings or an effec-
tive field theory, including operators up to dimension-8, is a
useful tool for analyzing VBS at the LHC. However, because
of the large energy reach of hadron colliders, which spans
from low energies and momentum transfers where the pure

EFT description is valid, to regions of phase space where the
polynomial growth of partial wave amplitudes with energy
exceeds unitarity limits, the naive EFT description must be
generalized to a model which respects unitarity bounds. In
this paper, we have developed the Tu model, which is one
such generalization and which closely mirrors a K-matrix or
linear T-matrix unitarization of anomalous VBS amplitudes.
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The Tu model has been implemented as a purely numer-
ical procedure in the Monte Carlo program VBFNLO [15],
which allows to analyze VBS at NLO QCD precision, for
arbitrary dimension-8 operators [17]. The Tu model is con-
structed such that it reduces to the naive EFT approximation
in all phase space regions where this description is valid, and
it smoothly interpolates to a unitarized description for VBS
at high virtualities. These high virtualities may either corre-
spond to high boson-pair invariant masses, mV3V4 , signified
by high energy and transverse momentum of the produced
vector bosons in V1V2 → V3V4, or to highly off-shell incom-
ing V1 or V2, i.e. large space-like q2

i , which corresponds to
pp → V3V4 j j X events with tagging jets at very high trans-
verse momentum. Unphysical growth of VBS cross sections
at high tagging jet pT , (see Fig. 6) which is present in a naive
EFT implementation even at small mV3V4 , also needs to be
suppressed, and the Tu model does provide this regulariza-
tion.

The purely numerical implementation grants great versa-
tility and avoids analytical approximations, like neglecting
m2

W /s or q2
i /s suppressed terms in a high energy approxi-

mation. It allows for arbitrary combinations of dimension-
8 operators to be present in the effective Lagrangian in
its present VBFNLO implementation, and thus provides
a general unitarized framework to analyze the effects of
dimension-8 operators in VBS at the LHC. An extension
to EFT-operators of higher energy dimension would also be
straightforward. One should note, however, that the unitariza-
tion procedure already induces an infinite tower of additional
(s/�2)n terms in the amplitude and, thus, extends the EFT
beyond fixed order.

The numerical isolation of off-shell VV → VV helicity
amplitudes at intermediate steps of the calculation, allows,
with little additional effort, to generate events for selected
center of mass helicities in the BSM VV → VV contribu-
tion, similar to a recent implementation in the PHANTOM
Monte Carlo [33,34]. So far, the implementation of the Tu
model has been tested and is available for same-sign W -
boson scattering, more precisely for pp → W±W± j j X →
�±ν��

±ν� j j X . However, the generalization to single charged
VBS (WZ -scattering) and neutral channels will become
available soon [35].

For same-sign W scattering we have analyzed distribu-
tions which promise a differentiation between individual ten-
sor structures of the operators in the EFT expansion, beyond
the only theoretically accessible di-boson invariant mass dis-
tribution in Fig. 4 or the invariant mass distribution of the two
same-sign charged leptons in Fig. 5. The transverse momen-
tum distribution of the tagging jets, e.g. pT,max( j), which
is shown in Fig. 6 is a good separator between longitudinal
and transverse polarization of the incident weak bosons. The
charged lepton transverse momentum difference, �pT,��,

which is shown in Fig. 7, can be used to distinguish different
combinations of W polarizations in the final state.

For the same-sign W case considered in this paper, we
have shown in Fig. 4 that the Tu model closely agrees
with the T-matrix unitarization discussed by the WHIZARD
group [12] for longitudinal W+W+ scattering. However, the
treatment of subleading, m2

W /s or q2
i /s suppressed terms is

different and means that the two schemes provide different
unitarization models. The numerical framework which is now
set up in the VBFNLO program allows for easy implementa-
tion of variants of the Tu model, such as taking into account
more than just the largest eigenvalue of the tree level scatter-
ing matrix for the denominator when going from Eq. (32) to
Eq. (33), or by exploring other mappings of these real eigen-
values onto the Argand circle. We leave such investigations
to future work.
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