
May 07, 2018

Electronic version of an article published in

International Journal of Semantic Computing
Vol. 12, No. 3 (2018) 335-360

https://doi.org/10.1142/S1793351X18400159

c© World Scientific Publishing Company
https://www.worldscientific.com/worldscinet/ijsc

Detection of Control Structures

in Spoken Utterances

Sebastian Weigelt, Tobias Hey, Vanessa Steurer

Karlsruhe Institute of Technology
Institute for Program Structures and Data Organization

Karlsruhe, Germany

weigelt@kit.edu, hey@kit.edu, vanessa.steurer@student.kit.edu
http://ps.ipd.kit.edu

State-of-the-art intelligent assistant systems such as Siri and Cortana do not consider
control structures in the user input. They reliably react to ordinary commands. However,

their architectures are not designed to cope with queries that require complex control flow

structuring. We propose a system to overcome these limitations. Our approach models
if-then-else, loop, and concurrency constructs in spoken utterances explicitly. The model

bridges the gap between linguistic and programmatic semantics.

To demonstrate our concept, we apply a rule-based approach. We have implemented
three prototypes that use keyphrases to discover potential control structures depending

on the type of control structure. However, the full structures are determined differently.

For conditionals we use chunk and part-of-speech tags provided by natural language
processing tools; for loops and concurrency we make use of an action extraction ap-
proach based on semantic role labeling. Additionally, we use coreference information to
determine the extent of the respective structure.

The explicit modeling of conditionals, loops, and concurrent sections allows us to

evaluate the accuracy of our approaches independently from each other and from other
language understanding tasks. We have conducted two user studies in the domain of

humanoid robotics. The first focused on conditionals. Our prototype achieves F1 scores

from 0.783 (automatic speech recognition) to 0.898 (manual transcripts) on unrestricted
utterances. In the second the prototypes for loop and concurrency detection also proved

useful. F1 scores range from 0.588 (automatic speech recognition) to 0.814 (manual
transcripts) for loops and from 0.622 (automatic speech recognition) to 0.842 (manual
transcripts) for concurrent sections respectively.

Keywords: Spoken Language Understanding; Naturalistic Programming; Spoken Lan-

guage Interfaces; End-User Programming.

1. Introduction

Intelligent assistants such as Siri, Google Assistant, Alexa, and Cortana have been

the latest trend in user interfaces [1, 2]. Although these systems appear rather smart

today, there is still much room for improvement. Most notably, intelligent assistants

1

https://doi.org/10.1142/S1793351X18400159
https://www.worldscientific.com/worldscinet/ijsc

May 07, 2018

2 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

struggle with conditional expressions, such as “Book a business class flight to LA.

If no business class tickets are available book economy.” As these systems are built

to process single requests, they will most likely fail to interpret such utterances

correctly. In the above example an intelligent assistant must understand, that the

user wants the system to execute only one of the two potential actions. Furthermore,

the choice depends on a condition that is expressed in the utterance. Presumably,

this type of query is only the beginning; users will soon expect intelligent assistants

to cope with more complex control flow structures, i.e., loops and concurrency. To

fully understand control structures a system has to discover statements that imply

a change in control flow together with their dependent statements, i.e., the actions

that depend on a condition or are supposed to be executed multiple times. The

placement and length of the dependent statements is hard to predict. Often even

humans cannot decide whether a statement is dependent or independent. E.g., if we

add, “also order a Wi-Fi pass for me,” to the above example, it is unclear whether

the ordering of the Wi-Fi pass depends on the availability of business class tickets.

To deal with control structures a system needs a dedicated approach to process

statements that manipulate the control flow in spoken language. The advantages of

such a treatment are:

(a) the development process is single-minded and thus presumably less error-

prone

(b) the evaluation of the approach can easily be conducted intrinsically and

extrinsically

(c) the solution can be replaced by another without influencing other analyses

We propose to infer the semantics of conditionals, loops, and concurrency from

spoken utterances. Our approach focuses on dependent clauses. In contrast to pre-

vious work on control structures, it is capable to determine dependent clauses that

span multiple statements reliably. Our approach is part of the research project

PARSE , which aims at end-user programming in natural language (PNL). The as-

sociated framework is extensible, so-called SLU agents can be added to improve

PARSE ’s language understanding abilities. To separate concerns we have imple-

mented independent agents for each type of control structure. With the aid of the

presented approach PARSE is capable of synthesizing scripts that contain control

structures like the one depicted in Figure 1. The conditional statement starting with

if the laundry is mapped to an if-then-else construct. In the same manner, the signal

word twice is interpreted as a for-loop inside the then-block. Finally, our approach

synthesizes a repeat-until (from wait until the laundry is done) and a concurrent

section (from while you take the laundry from the washer check its condition).

The remainder is structured as follows: First, we discuss related work in Section 2

and introduce the project PARSE in Section 3. Then we discuss the linguistic

fundamentals we need for our approach in Section 4. Subsequently, we present

the implementation of three prototypes that generate semantic representations of

conditionals, loops and concurrent sections from spoken utterances (Section 5).

May 07, 2018

Detection of Control Structures in Spoken Utterances 3

Input: after dinner go to the laundry room and start the washer wait until

the laundry is done while you take the laundry from the washer

check its condition if the laundry is dry iron the shirts and fold

them twice otherwise put the laundry into the dryer

Script:

robot.goTo(laundryRoom);

robot.start(washer);

repeat

robot.wait();

until laundry.done = true

do together

robot.empty(washer);

robot.checkState(laundry);

end do together

if laundry.dry = true then

robot.iron(shirts);

for int i = 0; i < 2; i++ do

robot.fold(shirts);

end for

else

robot.put(laundry, dryer);

end if

Fig. 1: Input/output example: a script synthesized by our tool.

Finally, we discuss evaluation results for manual transcripts and the output of two

automatic speech recognition systems (ASR) in Section 6 before we conclude the

paper (Section 7).

2. Related Work

The processing of control structures is inevitably for PNL. However, the way control

structures are processed differs remarkably in terms of how explicit they are modeled

and treated:

Approaches that aim at code dictation, such as AppleScript [3], Natural Java [4],

or Spoken Java [5, 6] do not consider the ambiguity of control structures. Since

the user has to enter code-like descriptions these approaches leave it up to the

user to properly structure if-then-else or loop constructs. Thus, these approaches

evade challenges like reversed conditional structures or the determination of the

dependent sections. In the main, they use keyword matching and heuristics on

sentence structures to identify control structures.

May 07, 2018

4 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

In the area of end-user PNL systems expect a behavior description rather than

code dictation. Thus, they have to translate conditionals and loops expressed in nat-

ural language into programmatic counterparts. Most approaches integrate control

structures into their language model inherently. E.g., the tool SmartSynth by Le et

al. [7] is an approach for synthesizing scripts for smartphones from written texts. It

detects domain specific keywords and type-based constructs to infer script elements

and data flow. Conditionals play a major role. SmartSynth’s language model ex-

pects a condition at the beginning of a script followed by an action that is triggered

if the condition is true. The more recent work on semantic parsing by Quirk and

Beltagy [8, 9] has a similar objective. Their approach synthesizes so called if-this-

then-that recipes from single statements. As a consequence, both approaches do not

have to decide whether a condition is part of the script or not. Additionally, the

dependent clause is simply everything that is stated after the condition. Vadas and

Curran [10] propose to use Combinatory Categorial Grammars (CCG) [11] to syn-

thesize python code from unrestricted natural language. Their rule-based approach

converts sub-trees of CCG derivations into a hand-crafted logical representation.

This representation can also represent basic if-then-else structures and loops. The

representation of conditionals is also part of other language formalisms such as

LFG [12] or HPSG [13]. However, they focus on the lexical structure. Thus, deter-

mining the dependent clauses on (potentially ungrammatical) spoken input is out

of scope. Landhäußer and Hug [14] analyzed the usages of loops and concurrency in

written natural language. In a preliminary study they figured out that these control

structures are described radically different in natural language: E.g. one might say,

”Do A three times,” or, ”Do A. At the same time do B.” The first statement is

an implicit description of a loop, the latter of parallel execution. In a prototypical

implementation they used keywords and heuristics on dependency graphs to syn-

thesize control structures. The tool Metafor [15] by Liu and Lieberman is intended

to synthesize code stubs in Python from narrative descriptions. Later it was ex-

tended by Mihalcea et al. [16]. Instead of stubs Metafor now synthesizes executable

Python code. Additionally, they added support for if-then-else constructs and loops.

To synthesize code elements they use a customized parser that generates Subject-

Verb-Object-Object structures. Later, the SVOO structures are mapped to objects

and methods. With the help of keywords and language patterns they infer whether

(conditionals) and how often (loops) these structures shall be executed.

3. PARSE

Our work on detection of control structures in spoken utterances is part of the

project PARSE [17]. The goal of the project is to enable a layperson to program

in plain spoken English. Typical application areas of PARSE are robotics, home

automation, and the like. To facilitate programming with spoken language the sys-

tem must understand the user’s intents. Thus, PARSE is actually a system for

spoken language understanding (SLU) [18]. To achieve deep SLU PARSE takes the

May 07, 2018

Detection of Control Structures in Spoken Utterances 5

Domain
Ontology

Agent A Agent B Agent C

Pre

…P1 Pn

Post

…P1 Pn

Speech
Input

Source
Code

SLU

Fig. 2: The architecture of PARSE .

approach of independent agents. Every agent is responsible for a specific SLU task.

As SLU tasks are interdependent in general, all agents work in parallel and therefore

may benefit from results of other agents. The strict separation of concerns enables

us to either build an agent knowledge-based or probabilistically according to the

SLU task at hand and evaluate it intrinsically. The architecture of PARSE , which

is illustrated in Figure 2, is separated in three independent parts: a pipeline for

pre-processing, an agent-based main execution, and a pipeline for post-processing.

A graph serves as shared data structure for the agents. The pre-processing pipeline

is meant for common natural language processing tasks, e.g., automatic speech

recognition, shallow parsing, and named entity recognition. The user’s utterance

is processed sequentially here. In the last pre-processing step, the initial graph is

built and passed to the main execution module. The main execution is responsible

for SLU. There, agents for deep SLU work in parallel and transform the graph to

publish their results. That way, a semantic representation of the input is created in-

crementally. SLU tasks encompass extraction of actions and topics, context [19] and

coreference analysis, or—as proposed here—the detection of conditionals, loops and

concurrent sections. If the agents are unable to transform the graph into a proper

intention model, the utterance is likely to be incomplete or ambiguous. In such situ-

ations the user is queried for clarification [20]. The post-processing pipeline performs

the steps required to map the user’s intent—modeled in the graph—to functions

of the target system. Target systems are modeled in ontologies as proposed in our

previous project NLCI [21]. We have also shown, that domain ontologies can be

extracted (semi-)automatically from most APIs with small effort.

4. Linguistic Foundation: Conditionals in Natural Language

Conditional branching is the base for any kind of control flow manipulation. In

common programming languages it is the integral part of if-then-else structures

and loops. These constructs are partially derived from their counterparts in natural

language. Humans often use conditionals to structure the discourse or to establish

dependencies between statements. Repetition is also used in natural language. For

example, when humans instruct each other, they use phrases such as “until you

are done” to express that some events or actions are supposed to be conducted

May 07, 2018

6 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

repeatedly until a condition is fulfilled.

In natural language conditionals are stated less formal. However, the syntactic

structure of conditionals follows grammatical rules. The syntactic form of a condi-

tional also influences its semantics and its impact on the discourse. Despite their

importance in natural language there is no commonly shared definition for con-

ditionals. Since many different forms of conditionals can be framed, only generic

definitions are feasible. We refer to the one given by Declerck and Reed [22]:

“A conditional is a two-clause structure in which one of the

clauses is introduced by if (possibly preceded by only, even or

except) or by a word or phrase that has a meaning similar to if,

only if (e.g., provided) or except if (viz. unless).”

Haegeman additionally distinguishes two types of conditionals: event-

conditionals and premise-conditionals [23]. Conditional clauses of event-conditionals

express events (or states) that will lead to an event which is stated in the main

clause. Premise-conditionals structure the discourse. In the following examples (1)

is an event- and (2) is a premise-conditional:

(1) If it rains we will all get terribly wet and miserable.

(2) If [as you say] it is going to rain this afternoon, why don’t we just stay at

home and watch a video?

We expect users of PNL systems to form descriptive utterances or commands.

Most of the conditionals used in descriptions or instructions are event-conditionals.

Thus, our approach will focus on event-conditionals.

In the following subsections we discuss the syntax, semantics, and pragmatics

of conditionals.

4.1. Syntax

Conditionals are two-clause structures; the clause that contains the condition is

called conditional clause, whereas the dependent clause is called main clause. Most

commonly, the main clause is composed of a then-clause, depicting an event that

will occur only if the condition is fulfilled, and an optional else-clause. The latter

describes what happens if the condition is not fulfilled. Syntactically, there are two

ways to structure the clauses of conditionals:

(a) the conditional clause, followed by a then-clause and an optional else-clause:

if-then(-else)

(b) a then-clause, followed by the conditional clause and an optional else-clause:

then-if(-else)

However, the if-then(-else) structure is more commonly used.

May 07, 2018

Detection of Control Structures in Spoken Utterances 7

4.2. Semantics

The semantics of conditionals are often derived from their so-called tense pat-

tern [22]. In linguistics four tense patterns for conditionals are commonly used.

For example, a conditional in tense pattern 1 has a conditional clause in simple

past and a main clause in will future. This pattern is used to express hypothetical

statements such as, “If you stay outside, you will get cold.” We found that none

of the patterns fits conditional descriptions or instructions. Here the conditional

clause may be in simple present, will future, simple past, or even present perfect.

However, we expect the main clause to be in simple present, which is the common

shape of instructions (in imperative mood) and statements.

4.3. Pragmatics

Conditionals are used in different contexts and bear manifold meanings. Thus, there

is no universally valid model for intent understanding. If we focus on the domain of

PNL we can reduce the possible meanings. Assuming that all conditionals can be

translated to if-then-else structures the intent model of conditionals can be described

as follows.

First, a conditional clause must be present. Conditional clauses can be expressed

in various ways, i.e., the same intention can be uttered in different syntactical

structures. As stated by Declerck and Reed [22] a condition is introduced by a

keyword. However, a variety of synonyms can introduce a condition. In the same

way, specific phrases may imply a condition, like in, “the longer you rinse it, the more

it will get clean.” On the contrary, some clauses formed with if or its synonyms do

not shape a conditional at all, as in, “I do not know if he really does it on purpose.”

Besides the conditional clause, the intended reference frame of the conditional must

be determined. The reference frame characterizes the boundaries of the conditional

structure, in particular:

(a) the extent of the conditional clause

(b) the position (before or after the conditional clause) and extent of the then-

clause

(c) the existence and extent of the else-clause

The conditional clause encompasses a keyword and one or more phrases. Usually it

ends with the beginning of the then-clause (if the then-clause follows the conditional

clause). However, then-clauses can be introduced by a keyword as well as without.

Also it might be placed either in front of the conditional clause or after it. Thus, the

separation of conditional and then-clause is not obvious in all cases. The maximal

extent of the then-clause might be limited by an else-clause. But as discussed before,

the else-clause is optional. However, if an else-clause exists it is always introduced by

a keyword or the negation of the condition, e.g., if not. From a syntactical point of

view, its extent is unrestricted. Thus, its end can only be determined pragmatically.

These uncertainties make it impossible to derive the pragmatic of conditionals from

May 07, 2018

8 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

if I leave do the laundry else assist me with cooking

Fig. 3: Expected user input to the system.

the syntactical structure solely.

5. Detection of Control Structures

In the following we describe the rationale behind our approaches to detect condi-

tionals, loops, and concurrency. As described in Section 3 and Section 4 we expect

control structures uttered in spoken language. Since PARSE is a framework for PNL

user utterances are descriptions or instructions. Those utterances may contain one

or more control structures or none at all. The wording and length of the utterances

is unrestricted.

Transcriptions of spoken utterances, either generated by hand or with an ASR,

usually lack punctuation. However, punctuation bears information about the in-

tended control flow, as shown in the following examples:

(3) Clean the kitchen. [If I am still at work IF] [do the laundry THEN].

(4) clean the kitchen if I am still at work do the laundry

In (3) the dependent clauses of the conditional can be determined clearly due to the

present punctuation. Without punctuation, such as in (4), the reference frame of

the conditional becomes unclear. Now, “clean the kitchen,” may be the then-clause

of the expression or an independent preceding sentence. Likewise, the phrase, “do

the laundry,” can be interpreted differently. It either forms the then-clause or an

independent instruction.

Besides the missing punctuation, spoken language commonly features hesita-

tions, such as uhm or ehm. Additionally, ASR transcriptions introduce word errors.

Thus, the approaches must be as robust as possible.

5.1. Conditionals

Our approach to detection of conditionals is grounded on the grammatical features

discussed in Section 4. Figure 3 shows an expected user input. Note that conditionals

of this sort might be located anywhere in the utterance.

If we have a closer look at this example, it becomes clear that keywords (in

boxes) play an important role for the identification of conditionals. As discussed in

Section 4 the conditional clause (green) is introduced by the word if or a word or

phrase with a similar meaning. Similarly, the else-clause (orange) begins with the

word else or a synonymous phrase or word. The then-clause (blue) in the example

is not introduced by a keyword (but can be introduced by then or a synonym). If

we additionally take into account that a conditional can appear anywhere in the

May 07, 2018

Detection of Control Structures in Spoken Utterances 9

[IfSBAR] [INP] [leaveVP] [doVP] [the laundryNP]

Fig. 4: Example sentence with chunk tags.

input and else-clauses are optional, it becomes apparent that an approach based on

keywords or string matches is insufficient. Instead, the sentence structure might be

useful to infer the reference of the condition. E.g., usually the condition keyphrase is

followed by a noun and an imperative verb. If another imperative verb follows (and

is not linked to the previous, e.g., with a conjunction) we can infer that the second

verb already belongs to the then-clause. This is the case for “do the laundry” in

Figure 3.

We have implemented our prototype as an agent for PARSE . Thus, we can

utilize all results provided by its pre-processing pipeline and other agents. The

pre-processing pipeline provides—among other results—part-of-speech (POS) and

chunk tags. In computational linguistics chunks refer to a flat representation of the

sentence structure composed of its constituents. Figure 4, shows a sentence with

chunk tags: the tag SBAR refers to a subordinating conjunction, NP to a noun

phrase, and VP to a verb phrase.

Additionally, another agent offers reference analysis information. It adds coref-

erence and identity information to PARSE ’s graph representation. E.g., given the

utterance, “if the laundry is dry iron it and fold the laundry afterwards,” the agent

infers that both occurrences of laundry and the it all refer to the same entity

laundry.

Our prototypical implementation uses a set of grammars to infer the structure

of conditionals. All production rules are derived from the linguistic characteristics

of conditionals discussed in Section 4.

Our approach processes the input in two phases. First, we locate basic condi-

tional structures with a keyword search and a simple grammar that uses chunk

and POS tags. Second, we determine the reference frames of the conditionals. In

this step we expand the basic structures utilizing advanced grammars and reference

information.

5.1.1. Basic Conditional Structure

To identify basic conditional structures we first search for keywords. The keywords

we used for our approach are listed in Table 1. We use the grammar depicted in

Figure 5 to build the basic structures around the keywords. If the grammar can

not produce a valid tree for the keyword, the keyword is discarded. The result of

the first step is a candidate set of basic if-, then-, and else-structures. Note that

to this point the structures are not connected. Since many then-clauses are not

introduced by a keyword we miss them at this point. The basic structures represent

the simplest way to express conditionals. Hence, they can be seen as the minimal

construct our approach is able to extract from the input.

May 07, 2018

10 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

Table 1: The list of used keyphrases for the detection of conditionals.

Clause Type Keywords/-phrases

conditional clause if, when, suppose(d) that, supposing that, whenever,

in case, in the case that, unless, on condition that,

providing that, provide(d) that, as long as, else if

then-clause then, please, if so, you can, you have to, could you,

would you

else-clause else, if not, otherwise, elseways, alternatively, instead,

either, rather, oppositely

conditional → if-clause then-clause

conditional → if-clause then-clause else-clause

if-clause → if-keyword NP VP

then-clause → then-keyword VP | VP
then-clause → then-keyword NP VP | NP VP

else-clause → else-keyword VP

else-clause → else-keyword NP VP

Fig. 5: Context-free grammar describing the basic structures.

The rationale behind the production rules for the basic structures is as follows:

The basic structure of the if-clause consists of the keyword itself followed by a noun

phrase and a verb phrase. The entity that the condition refers to resides in the noun

phrase. In a minimal setting the noun phrase is succeeded by a verb phrase only.

Such a minimal example would be, “if I leave.” The basic structure of a then-clause

can be formed in two ways, depending on the voice (or mood) of the utterance. First,

for the imperative mood, a verb phrase is sufficient to express a command, like in, “if

I leave stop.” Second, for descriptive utterances in active voice a sequence of a noun

phrase followed by a verb phrase is needed, e.g., “if I leave the robot must stop.”

The same applies to the else-clause. Therefore, we can reuse the production rules

for the then-clause. However, contrary to the then-clause, a keyword is mandatory.

This is the case because the else-clause is optional. Therefore, it must be introduced

by a keyword to adhere to the English grammar.

As mentioned before, we miss all then-structures, which are not introduced by

a keyword. Because omitting the keyword is more common, we added a special

treatment for then-clauses that does not rely on the keyword search. To identify

missing then-clauses we process all consecutive if- and else-structures. We apply

the production rules for then-clauses to the phrases between these structures. If a

valid structure can be extracted, it is added to the set of candidates for basic then-

structures. Finally, we assemble the candidates using the first two production rules

of the basic grammar. Thus, we end up with a candidate set of basic if-then(-else)

May 07, 2018

Detection of Control Structures in Spoken Utterances 11

if-clause → if-keyword NBS

NBS → NPB VPB | NPB VPB Conj NPB VPB

NPB → NP CC NPB | NP PP NPB | NP
VPB → VP CC VPB | VP PP NPB| VP PP VPB | ADVP VPB |

VP VMD | VP VMD CC VPB | VP
CC → Conj | Neg

VMD → ADJP | ADJP CC VMD | ADVP | ADVP CC VMD | PRT |
PRT CC VMD

Fig. 6: Excerpt of the context-free grammar used for if-clauses.

structures.

5.1.2. Reference Frame

After the identification of basic structures, we infer the reference frames of the

conditionals. To do so, we expand the candidates using two different techniques:

(a) syntactically, using additional grammars and

(b) pragmatically, using (co-)reference and identity information.

Both techniques were designed conservatively, i.e., we try to extend the basic struc-

tures but ensure that we do not include statements which were intended to be

independent. We decided to focus on precision rather than recall to mimic human

behavior. As mentioned in Section 1 even humans struggle with determining the

reference frame. However, in unclear situations humans tend to assume that a state-

ment is independent rather than dependent.

Syntactical Extension To extend the basic structures we use additional gram-

mars in a first step. These grammars can produce expanded if-, then-, and else-

structures. The most important production rules for the if-grammar are illustrated

in Figure 6. We do not apply a common NLP parser to identify the clause struc-

tures for several reasons. First, NLP parsers are designed to process written text.

Thus, they struggle with ungrammatical language and missing punctuation. Sec-

ond, NLP parsers usually provide a full parse. Instead we are interested in partial

parses, that are robust and precise. Third, by defining our own grammar, we are

able to integrate structural characteristics of conditional clauses into the produc-

tion rules. The production rules are derived from grammatical characteristics. First

of all, some syntactic structures link phrases. Conjunctions and negations create

homogeneous blocks of noun phrases and verb phrases. We call this type of con-

solidation noun phrase block (NPB) and verb phrase block (VPB). Examples are

“the laundry and the lunch” or “eat not drink”. Note that the production rules for

verb phrase blocks encompass additional linking structures like adverbial phrases

and prepositional phrases. The latter can also link verb phrases and noun phrase

May 07, 2018

12 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

conditional

then-clause

VBS

NPB

NP

laundrythe

VPB

VP

do

if-clause

NBS

VPB

NPB

NP

lunch

PP

for

VP

leave

NPB

NP

I

if-keyword

when

Fig. 7: Parse tree for “when I leave for lunch do the laundry”.

blocks to produce inhomogeneous verb phrase blocks. We can join the phrase blocks

to form so called noun block structures (NBS) and verb block structures (VBS) de-

pending on the order of blocks. The context-free grammar for if-clauses only has

a NBS production rule because one can not begin an if-clause with a verb phrase

(or a verb phrase block). The grammars for then- and else-clauses are composed

of more production rules. Also the definition of phrase blocks differs slightly. If we

cannot expand a candidate structure, we fall back on the basic structure. Figure 7

shows the parse produced by the grammar for if-clauses (Figure 6) and then-clauses

(not depicted here).

Extension using references As discussed before, our approach to extend the

basic structures based on syntactical features is rather conservative. Thus, we found

that we need an approach that captures the user’s intent more accurately. As a

first step towards intention extraction for conditionals, we focus on coreference and

identity information. The basic idea is as follows. If the same entity is mentioned

in consecutive phrases, it is very likely that the phrases belong to the same type of

clause. The example in Figure 8 illustrates the idea.

The technique presented in the previous paragraph identifies “do the laundry”

as the then-clause. However, the following phrases “iron it and fold it” are most

likely intended to belong to the then-clause as well.

To handle such cases we extract all coreference relations provided by PARSE ’s

agent for coreference analysis. We consider all so-called coreference chains (in the

example: it → it → laundry). As spoken utterances yield no reliable information

about sentence boundaries we are not able to distinguish between inter- and intra-

May 07, 2018

Detection of Control Structures in Spoken Utterances 13

if I leave do the laundry iron it and fold it

coref coref

Fig. 8: Example illustrating useful coreference information.

sentential coreference. Thus, we treat all references alike. We add all phrase blocks,

which are part of the chain, to the clause that contains the first element. In the

example we would expand the then-clause by the phrase blocks “iron it” and “fold

it”. Of course, we split up coreference chains that span basic structures of different

type. Using coreference chains our approach can reliably determine reference frames

of multiple statements.

5.2. Concurrency & Loops

For our approach on concurrency and loops we can draw less from linguistic theory.

Repetition and concurrency are not regularly used in natural language. Also, the

semantics are manifold and often ambiguous. Consequently, there are no commonly

accepted syntactical constructs to express these kinds of semantic structures. How-

ever, if we want to provide PNL, we have to deal with concurrency and repetition;

sooner or later users will expect that they can use these constructs to create longer

and more complex commands. As loops usually contain some kind of termination

condition, we can reuse the approach for detecting the conditional clause (see Sub-

subsection 5.1.1).

We used the work of Landhäußer and Hug [14] as orientation. Their approach

follows the intuition that control structures are introduced by keyphrases. Some-

times the keyphrase reveals the type of the control structure; in other cases an

in-depth analysis of the context is needed. This includes the number and order

(and placement) of the dependent clauses. Landhäußer and Hug also note that a

keyphrase may bear additional information. E.g., if one says, “do A twice!” A is

supposed to happen two times, i.e., the keyword twice not only indicates a for-loop

but also an iteration count of two.

However, their approach heavily depends on written input; the syntactical pat-

terns they use to detect control structures are based on dependency graphs (pro-

vided by Stanford CoreNLPa, which does not work properly for spoken input) and

punctuation, which is not available as discussed in Section 5. Also, we came to the

conclusion that some keyphrases are not used properly and some assumptions they

made (regarding the sentence structure) are not valid in general.

Thus, we developed an all-new approach. We also use keyphrases. However, we

assign types to keyphrases. The type determines how we perform the following

syntactical analysis of the dependent phrases. Instead of chunk tag patterns we use

ahttps://stanfordnlp.github.io/CoreNLP/

May 07, 2018

14 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

Table 2: The list of keyphrases used for concurrency detection.

Type Keywords/-phrases

Wrapping at once, simultaneously, coevally, concurrently, synchronistically,

during

Separating at the same time, while, whilst, meanwhile, in the meantime,

while doing so

Opening and while, while, and whilst, whilst

Ending at the same time, in the meantime, while doing so

information about the performed actions provided by another PARSE agent. This

agent infers the relationships between actors, actions, and objects (i.e., parameters)

in the utterance based on semantic role labeling (SRL).

To detect concurrent sections and loops we partially parse the words around

keyphrases for fitting actions. We use adapted rule sets for different types of

keyphrases. Finally, we examine the number of affected actions to determine the

extent of the dependent clauses. We will detail the approaches for concurrency and

loops—both implemented as PARSE agents—in the upcoming subsections.

5.2.1. Concurrency

As discussed in Subsection 5.2 there is no linguistic grounding for concurrency.

Therefore, we define concurrency as a structure consisting of two or more clauses

(referred to as concurrent clauses). Each clause encompasses one or more events

(i.e., actions in the context of end-user programming) that (are supposed to) hap-

pen simultaneously. The programmatic counterparts are code sections that can be

processed by multiple threads in parallel, e.g., the OpenMP pragma omp parallel

sections. In natural language we expect that concurrent clauses are indicated by cer-

tain keyphrases. E.g., one might say, “do A while you do B” or “simultaneously do

A and B.” The examples show that the clause structure depends on the keyphrase.

In the first example the keyphrase separates the two concurrent clauses while it

opens the clause structure in the second.

To detect concurrent sections we proceed as follows. First, we extract keyphrases.

We define four different types of keyphrases:

• Wrapping: The concurrent clauses can either be placed before or after the

keyphrase. However, we assume that after the keyphrase is more common.

• Separating: The keyphrase is placed between the concurrent clauses.

• Opening: The keyphrase precedes the concurrent clauses.

• Ending: The keyphrase succeeds the concurrent clauses.

The keyphrases and their respective types are listed in Table 2. Note that some

keyphrases have two types. E.g., while has the primary type Separating and the

May 07, 2018

Detection of Control Structures in Spoken Utterances 15

Wrapping Wrapping

Separating

Ending

Opening

event A event B keyphrase event C event D

Fig. 9: Overview of the spans of the concurrency keyphrase types.

secondary type Opening ; the order of the types corresponds to the row number in

the table.

After we have extracted the keyphrases, we proceed with the detection of the

dependent clauses. As discussed before, we cannot use a parser or dependency parser

to determine dependent clauses. Instead, we use a PARSE agent that detects actions

(along with the actor and parameters, specified by means of wh-words, i.e., who,

what, where, when, and how). The detection is based on the SRL tool SENNA [24].

SRL is challenging as such (SENNA achieves F1 75.49% for CoNLL-2005 Shared

Tasks on Semantic Role Labeling [25]), on spoken input the performance decreases

further. In a preliminary study SENNA proved to be more robust than others in

our domain. Also, SENNA is relatively fast, which is a critical requirement in an

interactive setting. To improve the quality of the SENNA’s results, we added some

heuristics to recover from typical misclassifications on spoken language.

We determine concurrent clauses according to the keyphrase type. Figure 9

illustrates the relation between keyword type and extracted clauses. We decided to

determine clauses conservatively, i.e., we extract only one event per clause, because

without punctuation anything else is close to guessing. E.g., if one states, “do A

do B while you do C and D,” it is unclear whether only the events B and C are

supposed to happen at the same time, or A and B simultaneously to C and D. On

the other side, we are able to combine and even nest multiple clauses as long as any

pair of clauses has a keyphrase. E.g., from statements such as, “do A while you do B

in the meantime do C,” we can infer that A, B, and C are simultaneous events. Also,

we are able to resolve some elliptic references with the help of the agent for action

detection. Whenever two actors perform the same action (or whenever more than

one parameter of the same type is involved in an action) the action is mentioned

only once, e.g., “John and Mary turn” or “Get me an orange and an apple”. In

such cases the agent duplicates the predicate. Hence, we can determine the correct

concurrent clauses for expressions like “John and Mary turn simultaneously”.

If we cannot determine the concurrent clauses with the primary type of the

keyphrase, we repeat the process with the secondary type. Whenever we are unable

to extract two clauses per keyphrase, we discard it. We decided not to integrate

May 07, 2018

16 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

conditional concurrent sections into our approach. We found out that they behave

just like the nested version: an if-then-else structure with a concurrent section inside

the then- or else-block. Therefore, we can simply let the agent discussed here and

the one presented in Subsection 5.1 work independently.

5.2.2. Loops

Again, lacking a linguistic grounding, we define looping as follows. A loop is a struc-

ture consisting of two clauses, where one clause contains a condition and the other

clause encompasses one or more events (i.e., actions, in the context of end-user

programming) that (are supposed to) happen multiple times as long as a condi-

tion holds. The former clause corresponds to the termination condition of loops in

programming languages. Subsequently, we call this type of clause loop conditional

clause. The latter is the equivalent to (programming) statements inside the loop

body, called loop body clause in the following. We expect that repeated events are

indicated by keyphrases such as while or three times. The keyphrase usually re-

sides inside the loop conditional clause and possibly bears additional information

as discussed later.

In programming languages different types of loops are used. For our approach we

focus on the detection of linguistic structures that can be mapped to while, do-while,

and for (each) loops. These are commonly used in popular programming languages.

Also, natural language counterparts exist for these loop types. However, repetition

can be stated in many ways, which makes the mapping to program structures dif-

ficult. The exemplary statements, “turn twice,” and “while the fridge is open take

out beverages,” where the first can be interpreted as a for loop and the second as a

while loop, illustrate this issue. The term twice in the first example not only indi-

cates a for loop but also the number of iteratons. The same applies to phrases like,

“four times.” In the second example the keyword while is followed by a condition

statement (that determines the termination condition of the repetition). This ex-

tends to keyphrases such as until, as long as, and the like. Furthermore, the keyword

while is ambiguous, since it is also a keyphrase for concurrency. For disambiguation,

we examine the context of the keyphrase. If it is succeeded by condition statements

it is most likely used to indicate a loop; otherwise it indicates concurrency.

To detect loops in spoken utterances we first search for keyphrases. If the condi-

tion is not inherently stated in the keyphrase, e.g., twice or three times, we perform

a partial parse around the keyphrase, as we do for conditional clauses in Subsub-

section 5.1.1. However, only a subset of the grammar rules can be applied here.

For conditionals we allowed statements and events/actions as conditional clauses.

Because of the ambiguity of keyphrases discussed above, only statements are legit

termination conditions for loops. Thus, we use the grammar shown in Figure 10 to

extract loop conditional clauses.

After we have extracted the keyphrases and conditions we categorize them.

We use the same types like in Subsubsection 5.2.1 except Separating. Instead, we

May 07, 2018

Detection of Control Structures in Spoken Utterances 17

loop-conditional-clause → loop-keyphrase NBS

NBS → NPB VPB | NPB VPB Conj NPB VPB

NPB → NP CC NPB | NP PP NPB | NP
VPB → VP VMD | VP VMD CC VPB

CC → Conj | Neg
VMD → ADJP | ADJP CC VMD | PRT |

PRT CC VMD

Fig. 10: The context-free grammar used for loop conditional clauses.

Table 3: The list of used keyphrases for loop detection ([CD] is a wildcard for any

word with POS tag CD (cardinal number)).

Type Keywords/-phrases

For twice, thrice, [CD] times

Wrapping while, as long as, until, till

Opening and while, and as long as

Ending repeat this until, repeat it until, do it until, do this until

Wrapping

For

Ending

Opening

event A event B keyphrase event C event D

Fig. 11: Overview of the spans of the loop keyphrase types.

define the type For, where the keyphrase hints at a for loop structure and indicates

the number of iterations. The loop body clause precedes the keyphrase in that

case. Table 3 lists the keyphrases we use for loop detection and their respective

types. Note that unlike the concurrency keyphrases all keyphrases for loops have

an unambiguous type.

The detection of the dependent clause (the loop body clause) is similar to the

respective process for concurrency. Again, the choice of considered events depends

on the type of keyphrase and is illustrated in Figure 11. The loop body clause can

be placed before or after the keyphrase. Note that without punctuation we can

only determine loop body clauses that encompass one event (for similar reasons as

discussed in Subsubsection 5.2.1).

May 07, 2018

18 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

take a cup and stow it away until the dishwasher is empty

coref

Fig. 12: Example illustrating useful coreference information for loops.

5.2.3. Extension using references

The approaches presented in Subsubsection 5.2.1 and Subsubsection 5.2.2 are rather

conservative; they restrict the number of events per concurrent clause to two and

per loop body clause to one. To detect longer clauses we adopt the approach of

extension of clauses by means of coreference information (see Subsubsection 5.1.2).

The approach is grounded on the intuition that events, which affect the same objects

or places more likely belong together than others. Thus, we can determine identical

objects (or places) by tracing coreference chains as described in Subsubsection 5.1.2.

If coreference spans a keyphrase, we break up the chain. An example is shown in

Figure 12. There, the basic approach for loops determines only the event “stow it

away” as loop body clause. With the help of coreference information we can add

“take a cup” to the clause.

6. Evaluation

To evaluate our approach to detection of control structures in spoken utterances

we conducted two user studies. The first involved nineteen participants and focused

on conditionals, the second on loop and concurrency detection and was conducted

with ten participants. For both we let the subjects describe tasks for a robot. We

took recordings and transcribed them. Additionally, the recordings were processed

by two different automatic speech recognition systems, Google’s Speech APIb and

IBM Speech to Textc [26]. For all three textual representations of the utterances we

annotated the expected control structures and their respective reference frames to

provide a gold standard. We calculate precision, recall and the F1 score to measure

the performance of our approaches. In the following subsections we first present the

experimental design of our studies, afterwards we discuss the results.

6.1. Experimental Design

Our user studies each comprise two scenarios containing a household robot in a

kitchen setting. In all scenarios the robot is supposed to fulfill a certain task. The

tasks were designed to provoke the use of conditionals, loops, and concurrency.

Subjects were encouraged to describe the necessary steps to accomplish the tasks.

The instructions the participants received contained no concrete wording, just a

bhttps://cloud.google.com/speech/, 2017-10-04
chttps://www.ibm.com/watson/developercloud/speech-to-text.html, 2017-10-04

https://cloud.google.com/speech/
https://www.ibm.com/watson/developercloud/speech-to-text.html

May 07, 2018

Detection of Control Structures in Spoken Utterances 19

Manual Transcript: please go to the cupboard and bring me juice

ASR Transcript: please go to the what god and bring me jewels

Fig. 13: Example of an alignment between a transcription and an ASR output.

high level description of the tasks and figures that showed the setting. We took

continuous recordings, one per subject and scenario. As the subjects were able to

describe the task as they liked, we received quite different recordings. They vary in

length from five up to 28 seconds and in instructions for the robot from a minimal

set of two up to thirteen. We transcribed all recordings according to the guideline by

Kiesling et al. [27] and prepared a gold standard for each. Additionally all recordings

were transcribed with Google’s Speech API and IBM Speech to Text to measure

the robustness of our approaches to speech recognition errors.

To compare the results for the outputs of the ASRs with the ones for the manual

transcripts, we aligned the text produced by the ASRs with the transcripts as shown

in Figure 13. If the ASR produces more or less words the output is aligned at the

next matching word. Words that have not been recognized by the ASR can result

in a false negative. Similarly, words produced by the ASR that do not occur in

the transcripts may result in false positives. In average IBM’s ASR produces more

words than the manual transcripts have. In most cases the ASR does not recognize

long words and generates unrelated alternatives instead, like in Figure 13 (cupboard

vs. what god). Contrarily, Google’s ASR produces less words, mainly because it does

not generate an output if its confidence is not above a threshold.

To retrieve the output of our agents we first run the pre-processing pipeline of

PARSE . Afterwards, we execute the agents for action detection and coreference res-

olution multiple times to simulate PARSE ’s parallel SLU processing. The resulting

graph is fed into the respective agent for evaluation.

6.1.1. Conditionals

The user study designed to evaluate conditional detection consists of two scenarios

with the following tasks. In the first scenario the robot should take the dirty dishes

from the table and put them into the dishwasher and the clean dishes into the cup-

board. In the second scenario it is supposed to prepare the long drink Screwdriver.

Therefore, the robot should go to the fridge and check if it contains fresh oranges.

If that is the case it should get them together with the vodka; otherwise the robot

is supposed to get the orange juice instead.

Nineteen subjects participated in this study, three female and sixteen male.

Fifteen are undergraduate students from different departments, the remainder are

graduates. All but two (Russian, Azeri) are native German speaker. However, all

but five assessed their own English skills to be at least ‘advanced’ (CEFR level B2)

and eight of them even higher. All participants gave descriptions for both scenarios.

An overview of the collected data is shown in Table 4.

May 07, 2018

20 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

[go INDP] [to INDP] [the INDP] [fridge INDP] [if IF] [there IF] [is IF] [milk IF]

[bring THEN] [it THEN] [to THEN] [me THEN] [otherwise ELSE] [bring ELSE] [me ELSE]

[water ELSE]

Fig. 14: Example of the gold standard for conditionals.

Table 4: Overview of the evaluation data for the user study on conditionals.

Scenario 1 Scenario 2 Total

Recordings 19 17 36

Words (manual transcripts) 556 538 1094

Words (Google ASR) 547 516 1063

Words (IBM ASR) 590 578 1168

Conditionals 28 19 47

Recordings without conditionals 4 2 6

Conditionals without else-clause 17 9 26

We prepared a gold standard for each transcription. Unfortunately two record-

ings for the second scenario were unusable. The grammatical flaws made it impos-

sible to infer the intended script, i.e., we were not able to provide a gold standard.

We annotate the clauses as per-word labels. Thus, a word can either have the

label INDP (independent phrases), IF (if-clause), THEN (then-clause), ELSE (else-

clause). The gold standard for the utterance, “go to the fridge if there is milk

bring it to me otherwise bring me water,” is illustrated in Figure 14. This labeling

approach implicates that a word labeled with THEN which should have been labeled

with ELSE results in a false negative (the missing ELSE label) and a false positive

(the THEN label which was not expected).

6.1.2. Concurrency and Loop

The two scenarios of the second user study are set-up in the same environment as

the first but comprise tasks aiming at a different purpose. In the third scenario the

robot should take a cup to the sink and read the news while washing the cup. In

the fourth scenario the robot is supposed to empty the dishwasher. We anticipate

that subjects use concurrency in the third and repetition in the fourth scenario.

Ten subjects participated in this study, two were female and eight male. Four

are graduate and two are undergraduate students from different departments. The

remainder are PhD students. All are native German speaker. However, seven as-

sessed their own English skills to be at least ‘experienced’(CEFR level C1), three

‘proficient’(CEFR level C2). All participants gave descriptions for both scenarios.

In nineteen of twenty recordings the subjects used concurrency or repetition. An

overview of the collected data is shown in Table 5.

May 07, 2018

Detection of Control Structures in Spoken Utterances 21

[wait CS1:Act1] [until CS1:Key] [the laundry is done CS1:Cond] [while CS2:Key]

[taking out the laundry CS2:Act1] [check its moisture CS2:Act2]

Fig. 15: Example of the gold standard for concurrency and loops.

Table 5: Overview of the evaluation data for the user study on concurrency and

loops.

Scenario 3 Scenario 4 Total

Recordings 10 10 20

Words (manual transcripts) 282 287 569

Words (Google ASR) 282 280 562

Words (IBM ASR) 299 314 613

Control Structures 10 9 19

Actions 20 17 37

Recordings without Control Structures 0 1 1

For the preparation of the gold standard for concurrency and repetition, we

determine the keyphrase, the condition (where applicable), and the respective ac-

tions. The gold standard for the utterance, “wait until the laundry is done while

taking out the laundry check its moisture,” is illustrated in Figure 15. The control

structures are numbered consecutively (CS*); the tag is completed by the elements

(Key, Cond, and Act*). Note that the number of actions varies. Thus, the num-

ber of expected elements per control structure is different. Consequently, longer

control structures (i.e., the ones containing more actions) influence precision and

recall stronger. However, otherwise determining the dependent clause (concurrent

and loop body clauses) would be imprecise.

6.2. Results

To assess the validity of our approaches we measure precision, recall and F1 score.

For each approach we compare the results for manual transcripts and transcripts

provided by the ASR. Additionally, we determine the influence of coreference infor-

mation for each of the settings.

6.2.1. Conditionals

The evaluation results for the conditional detection user study are summarized in

Table 6. The results are promising. On manual transcripts we achieve an F1 score

of 0.862 without coreference information. For ASR outputs the results are equally

good, 0.736 for Google and 0.751 for IBM. The difference between the values for

transcripts and ASR outputs is in the expected range. Both ASR have a word error

rate (WER) of approximately 15%. Unfortunately, a word error does not result in

May 07, 2018

22 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

Table 6: Conditional detection evaluation results.

Option Precision Recall F1

Transcription 0.930 0.803 0.862

Transcription with coreference 0.934 0.864 0.898

Google Speech 0.817 0.670 0.736

Google Speech with coreference 0.824 0.704 0.760

IBM Speech to Text 0.862 0.665 0.751

IBM Speech to Text with coreference 0.869 0.712 0.783

an individually missed word; they affect the surrounding words as well. E.g., if an

ASR does not recognize a keyword the whole conditional is likely to be missed.

Moreover, word errors lead to grammatically erroneous phrase structures, which

can not be parsed with our grammars. Thus, achieving F1 scores of at least 0.736

is a promising result. The slightly better result for IBM’s ASR can be explained by

its generally lower WER.

The evaluation results show that our approach focuses on precision (up to 0.930)

rather than recall (up to 0.803). We identified three main causes for missing a con-

ditional. First, the pre-processing tools produce erroneous output. Besides the word

errors introduced by the ASRs, the part-of-speech and chunk taggers add noisy

data as well. Thus, our approach has to deal with unexpected phrase structures. In

these cases our grammars can not produce entirely correct clause structures. The

same applies to the second reason: unexpected wording by the subjects. Some sub-

jects gave grammatical wrong descriptions. In most cases, our approach was able

to identify the intended conditionals partially. Finally, a few subjects used sentence

structures we had not in mind when we designed the grammars. An example are

noun phrases directly succeeding an adverb. In most cases these noun phrases in-

dicate the start of a new clause. However, in rare cases the noun phrase belongs to

the preceding clause. Our grammars consider the more common case only.

The approach to use coreference information to extend the reference frames

improves the recall remarkably (improving the recall on transcripts by 7.6%). The

results by clause type depicted in Table 7 show that only then- and else-clauses are

improved. The subjects did not use any references in conditional clauses. Thus, the

values remain unchanged. The positive effect on the recall for then- (14.2%) and

else-clauses (14.6%) can be explained as follows. Some subjects gave rather long

description with clauses composed of several phrases. Our syntactical approach is

able to identify simple compounds of phrases only. The coreference approach can

identify long sequences comprising several dependent instructions as long as the

same entity is referred more than once. Encouragingly, also the precision increases

slightly. We expected a drop in precision as our coreference approach can introduce

false positives. At least for our small data set this was not the case.

May 07, 2018

Detection of Control Structures in Spoken Utterances 23

Table 7: Evaluation results by clause type (Transcription with/without coreference).

Clause Type Precision Recall F1

conditional clause 0.960 0.932 0.946

conditional clause with coreference 0.960 0.932 0.946

then-clause 0.900 0.795 0.844

then-clause with coreference 0.911 0.908 0.910

else-clause 0.944 0.405 0.570

else-clause with coreference 0.951 0.464 0.624

Table 8: Concurrency detection evaluation results.

Option Precision Recall F1

Transcription 0.889 0.800 0.842

Transcription with coreference 0.750 0.800 0.774

Google Speech 0.867 0.433 0.578

Google Speech with coreference 0.867 0.433 0.578

IBM Speech to Text 0.933 0.467 0.622

IBM Speech to Text with coreference 0.933 0.467 0.622

6.2.2. Concurrency

The outcome of the evaluation for concurrency detection is summarized in Ta-

ble 8. The results for manual transcripts are promising. The F1 score of 0.842 shows

that the approach is generally feasible. Most notably, the high precision is encourag-

ing. The usage of secondary types for keyphrases only improved recall but does not

introduce additional false positives. In total, our approach detects nine out of ten

concurrent sections. In the process it only determines three actions inappropriately.

The usage of coreference information does not improve recall. As shown in Ta-

ble 5 the subjects stated twenty concurrent actions. With ten concurrent sections in

total, that means all actions occur in pairs. This kind of clause structure is already

covered by our grammar-based approach. Thus, coreference information is not use-

ful to discover additional actions. Instead, the coreference extension introduces five

false positive actions.

The results for the ASR transcripts are less positive. Our approach only de-

tects half of the concurrent sections. Additionally, we miss one (IBM Speech to

Text) respectively two (Google Speech) actions. These numbers are the result of

word recognition errors. E.g., both ASR struggle with the word while and recognize

why instead. This erroneous recognition is responsible for two of the five missed

concurrent sections. Just like on manual transcripts coreference information has no

influence. At least, precision remains at a high level in all variants; we do not detect

a false positive concurrent section and only a negligible number of actions.

May 07, 2018

24 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

Table 9: Loop detection evaluation results.

Option Precision Recall F1

Transcription 1.000 0.514 0.679

Transcription with coreference 1.000 0.686 0.814

Google Speech 0.917 0.324 0.478

Google Speech with coreference 0.882 0.441 0.588

IBM Speech to Text 0.889 0.235 0.372

IBM Speech to Text with coreference 0.889 0.235 0.372

6.2.3. Loops

Table 9 shows the evaluation results for loop detection. The F1 score of 0.679 for

the basic approach on manual transcripts is satisfactory. However, we only detect

six of the nine loops the subjects stated. Additionally, our grammar-based approach

misses eleven actions, five of them are missed because the loop keyphrase was not

detected. To some extent, the outcome is attributable to the language experience

of the subjects. As discussed in Subsubsection 6.1.2, all are native German speaker.

As a consequence, they used some unusual grammatical constructs such as, “for

every piece you find in there” or “if there are still any pieces left repeat the step.”

Our grammar-based extraction of keyphrases and conditional statements is unable

to cope with such expressions.

The conservativeness of our approach is shown by a precision of 1.000. This is a

pleasant result in our use case. However, recall is relatively low (0.514).

We address this issue by the use of coreference information. It improves the

performance on manual transcripts considerably. We are able to detect six addi-

tional actions. That means, with the help of coreference information we are able to

determine all actions if we successfully detect a keyphrase. Furthermore, the coref-

erence extension does not produce any false positive results. As a result, the F1

score increases by 20%.

Again, the results for the ASR transcripts are worse. Our approach only detects

four (Google Speech) respectively three (IBM Speech to Text) of the expected loops.

Thus, overall recall decreases remarkably. Once more, word recognition errors on

keyphrases are the primary reason. E.g., IBM Speech to Text recognizes the phrases

“do this until” as “do it is under” in one recording. Consequently, our approach

misses the keyphrase until, the following condition, and all three actions that are

supposed to be repeated. This results in five false negatives for this example alone.

Since Google Speech recognizes this phrase correctly and coreferential extension is

applicable in this case, this also explains the difference in the results for the ASR.

May 07, 2018

Detection of Control Structures in Spoken Utterances 25

7. Conclusion and Future Work

We have presented an approach to detection of control structures in spoken ut-

terances. It is part of the research project PARSE . PARSE aims at end-user pro-

gramming in natural language. In this context, the mapping of conditionals, repe-

titions, and concurrent actions in natural language to their programmatic counter-

parts is a crucial task. Fortunately, programmatic constructs such as if-then-else,

do-while loops, and parallel sections are derived from the respective language con-

cepts. However, natural language is less formal. Thus, the mapping from language

to programmatic concepts is not trivial. E.g., the extent of dependent clauses in

natural language is uncertain while blocks are stated explicitly in programming

languages. Also, keywords can be omitted in natural language. Therefore, a simple

keyword-based approach is infeasible.

We have implemented three so-called SLU agents. The agent that detects condi-

tionals uses part-of-speech and chunk tags to identify if-, then-, and else-structures.

We apply context-free grammars and heuristics that rely on coreference informa-

tion to infer the reference frame of the conditionals. The agents that detect loops

and concurrent sections rely on a SRL-based action detection provided by another

agent. The approaches are detached from each other and further linguistic analyses.

Therefore, we are able to evaluate them intrinsically. First results are encouraging.

We have conducted two user studies with four scenarios comprising a household

robot in a kitchen setting; 29 subjects participated in total. Our conditional detec-

tor achieved an F1 score of 0.898 on manual transcripts inputs and 0.783 on outputs

generated by IBM’s automatic speech recognition system. The loop and concurrency

approaches are comparable on manual transcripts (F1 0.814 and 0.842), but more

sensitive to word recognition errors. Furthermore, we have shown that the usage of

coreference information improves results remarkably (up to 9.5% on F1 score for

else-clauses and up to 20% for loop body clauses).

Future work will focus on a more precise inference of the dependent clauses, i.e.,

the reference frame. The context model we have proposed in [19] might be useful.

For the time being, we had to resort to a rule-based approach because of data

sparseness. However, the feature set we use is well suited to be applied to statistical

methods. We plan to implement and compare various machine learning approaches

as soon as we have a sufficient data set available. Then, our rule-based approaches

can serve as strong base lines.

References

[1] J. R. Bellegarda, Spoken Language Understanding for Natural Interaction: The
Siri Experience, in Natural Interaction with Robots, Knowbots and Smartphones
(Springer, New York, NY, 2014), pp. 3–14.

[2] R. Dale, The return of the chatbots, Natural Language Engineering 22 811–817
(September 2016).

[3] W. R. Cook, Applescript, in Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages HOPL III, ACM, New York, NY, USA, pp.

May 07, 2018

26 Sebastian Weigelt, Tobias Hey, Vanessa Steurer

1–1–1–21.
[4] D. Price, E. Riloff, J. Zachary and B. Harvey, NaturalJava: A Natural Language

Interface for Programming in Java, in Proceedings of the 5th International Conference
on Intelligent User Interfaces IUI ’00, ACM, New Orleans, Louisiana, USA, pp. 207–
211.

[5] A. Begel, Spoken Language Support for Software Development, in 2004 IEEE Sym-
posium on Visual Languages and Human Centric Computing pp. 271–272.

[6] A. Begel and S. Graham, Spoken programs, in 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing pp. 99–106.

[7] V. Le, S. Gulwani and Z. Su, Smartsynth: Synthesizing Smartphone Automation
Scripts from Natural Language, in MobSys’13 2, p. 5.

[8] C. Quirk, R. J. Mooney and M. Galley, Language to Code: Learning Semantic Parsers
for If-This-Then-That Recipes, in Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing pp. 878–888.

[9] I. Beltagy and C. Quirk, Improved semantic parsers for if-then statements, in Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) 1, pp. 726–736.

[10] D. Vadas and J. R. Curran, Programming With Unrestricted Natural Language, in
Proceedings of the Australasian Language Technology Workshop pp. 191–199.

[11] M. Steedman, The Syntactic Process (MIT Press, 2000).
[12] R. M. Kaplan and J. Bresnan, Lexical-functional grammar: A formal system for

grammatical representation, Formal Issues in Lexical-Functional Grammar 29–130
(1982).

[13] C. Pollard and I. A. Sag, Head-Driven Phrase Structure Grammar (University of
Chicago Press, August 1994).

[14] M. Landhäußer and R. Hug, Text Understanding for Programming in Natural Lan-
guage: Control Structures, in Proceedings of the 4th International Workshop on Re-
alizing Artificial Intelligence Synergies in Software Engineering

[15] H. Liu and H. Lieberman, Metafor: Visualizing Stories As Code, in Proceedings of
the 10th International Conference on Intelligent User Interfaces IUI ’05, ACM, New
York, NY, USA, pp. 305–307.

[16] R. Mihalcea, H. Liu and H. Lieberman, NLP (Natural Language Processing) for NLP
(Natural Language Programming), in Proceedings of the 7th International Conference
on Computational Linguistics and Intelligent Text Processing CICLing’06, Springer-
Verlag, Berlin, Heidelberg, pp. 319–330.

[17] S. Weigelt and W. F. Tichy, Poster: ProNat: An Agent-Based System Design for Pro-
gramming in Spoken Natural Language, in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE) 2, pp. 819–820.

[18] G. Tur and R. De Mori, Spoken Language Understanding: Systems for Extracting
Semantic Information from Speech (Wiley, April 2011).

[19] S. Weigelt, T. Hey and W. F. Tichy, Context Model Acquisition from Spoken Utter-
ances, in The 29th International Conference on Software Engineering & Knowledge
Engineering, pp. 201–206.

[20] S. Weigelt, T. Hey and M. Landhäußer, Integrating a Dialog Component into a Frame-
work for Spoken Language Understanding, in RAISE’18 :IEEE/ACM 6th Interna-
tional Workshop on Realizing Artificial Intelligence Synergies in Software Engineering

[21] M. Landhäußer, S. Weigelt and W. F. Tichy, NLCI: A Natural Language Command
Interpreter, Automated Software Engineering (August 2016).

[22] R. Declerck and S. Reed, Conditionals: A Comprehensive Empirical Analysis (Walter

May 07, 2018

Detection of Control Structures in Spoken Utterances 27

de Gruyter, January 2001).
[23] L. Haegeman, Conditional Clauses: External and Internal Syntax, Mind & Language

18 317–339 (September 2003).
[24] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa, Natural

Language Processing (Almost) from Scratch, J. Mach. Learn. Res. 12 2493–2537
(November 2011).

[25] X. Carreras and L. Màrquez, Introduction to the CoNLL-2005 Shared Task: Seman-
tic Role Labeling, in Proceedings of the Ninth Conference on Computational Natural
Language Learning CONLL ’05, Association for Computational Linguistics, Strouds-
burg, PA, USA, pp. 152–164.

[26] G. Saon, T. Sercu, S. Rennie and H.-K. J. Kuo, The IBM 2016 English Conversational
Telephone Speech Recognition System, in Interspeech 2016 pp. 7–11.

[27] S. Kiesling, L. Dilley and W. D. Raymond, The variation in conversation (ViC)
project: Creation of the Buckeye Corpus of Conversational Speech, Ohio State Uni-
versity, Columbus, OH (2006).

	Introduction
	Related Work
	PARSE
	Linguistic Foundation: Conditionals in Natural Language
	Syntax
	Semantics
	Pragmatics

	Detection of Control Structures
	Conditionals
	Basic Conditional Structure
	Reference Frame

	Concurrency & Loops
	Concurrency
	Loops
	Extension using references

	Evaluation
	Experimental Design
	Conditionals
	Concurrency and Loop

	Results
	Conditionals
	Concurrency
	Loops

	Conclusion and Future Work

