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Abstract: Analysis of Global Positioning System (GPS) position time series and its common mode
components (CMC) is very important for the investigation of GPS technique error, the evaluation
of environmental loading effects, and the estimation of a realistic and unbiased GPS velocity field
for geodynamic applications. In this paper, we homogeneously processed the daily observations of
231 Crustal Movement Observation Network of China (CMONOC) Continuous GPS stations to obtain
their position time series. Then, we filtered out the CMC and evaluated its effects on the periodic
signals and noise for the CMONOC time series. Results show that, with CMC filtering, peaks in the
stacked power spectra can be reduced at draconitic harmonics up to the 14th, supporting the point
that the draconitic signal is spatially correlated. With the colored noise suppressed by CMC filtering,
the velocity uncertainty estimates for both of the two subnetworks, CMONOC-I (≈16.5 years) and
CMONOC-II (≈4.6 years), are reduced significantly. However, the CMONOC-II stations obtain
greater reduction ratios in velocity uncertainty estimates with average values of 33%, 38%, and 54%
for the north, east, and up components. These results indicate that CMC filtering can suppress
the colored noise amplitudes and improve the precision of velocity estimates. Therefore, a unified,
realistic, and three-dimensional CMONOC GPS velocity field estimated with the consideration of
colored noise is given. Furthermore, contributions of environmental loading to the vertical CMC are
also investigated and discussed. We find that the vertical CMC are reduced at 224 of the 231 CMONOC
stations and 170 of them are with a root mean square (RMS) reduction ratio of CMC larger than
10%, confirming that environmental loading is one of the sources of CMC for the CMONOC height
time series.

Keywords: Global Positioning System (GPS); Crustal Movement Observation Network of China
(CMONOC); time series; periodic signals; noise; Common Mode Components (CMC); Principal
Component Analysis (PCA); velocity field; environmental loading

1. Introduction

The Crustal Movement Observation Network of China (CMONOC) is an important scientific
infrastructure in China, which initially contained 27 Continuous Global Positioning System (GPS)
stations in 1999 and then was extended to 260 GPS stations since 2011. CMONOC has provided
useful datasets to facilitate the investigations of various geophysical phenomena, such as global plate
motion [1], regional tectonic deformation [2], uplift of the Tibetan Plateau [3], land subsidence of
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the North China Plain [4], environmental loading effects [5–7] and hydrological cycle [8]. Analyzing
the GPS position time series of CMONOC is vital for unbiased velocity estimates, as well as realistic
velocity uncertainty estimates, which is a necessity for appropriate interpretations of the above
mentioned geophysical phenomena. In addition, analyzing the GPS position time series of CMONOC,
a long-running, continental-scale and high-density GPS network, can provide a wealth of information
on the periodic signals, noise characteristics, and sources of the common mode component (CMC) for
GPS position time series, which can be a reference for similar studies over other regions.

Previous studies have reported that periodic signals are present in GPS position time series,
such as the seasonal signals [9], draconitic signal and its harmonics [10], spurious long-period
signals caused by unmodeled short-period signals [11], and other periodic signals due to unknown
reasons [12]. The draconitic signal was found by Ray et al. [10], with significant peaks at 1.04 cpy and
its higher harmonics in the stacked power spectra of 167 International GNSS Service (IGS) stations. It is
considered to be mainly related to the repeat times of the GPS constellation in inertial space with respect
to the Sun [10], although there are controversial opinions on its sources. For instance, Tregoning and
Watson [13] showed that unmodeled diurnal and semidiurnal atmospheric tides can result in spurious
draconitic signals. Rodriguez-Solano et al. [14] found that the peak of the 6th draconitic harmonic of
the north component can be reduced with the Earth radiation pressure taken into account in GPS data
processing. Li et al. [15] found that the draconitic signal could be reduced when considering minor
ocean tides. Additionally, King and Watson [16] suggested another possibility that the draconitic signal
might be partly due to multipath-related errors. Abraha et al. [17] reported that the draconitic signal is
mostly from satellite-related effects with a non-zero contribution of site-specific errors. As the orbital
errors and unmodeled geophysical tide loading effects are spatially correlated while the multipath
effect is a site-specific error source, we will investigate the spatial correlation of the draconitic signal in
this study so that its source can be more reliably speculated.

It is also well known that GPS position time series are temporally correlated [18,19]. The temporal
correlation indicates a colored noise which can be described as a power-law noise (PLN) with a spectral
index κ: P( f ) ∝ f κ . White noise (WN, κ = 0), flicker noise (FN, κ = −1), and random walk noise
(RWN, κ = −2) are three special cases of power-law noise. If the temporal correlation is not taken into
consideration and only WN is assumed, the velocity uncertainties might be underestimated with factors
of 5–10 [20]. Therefore, a proper description of the noise characteristics is essential to the estimation of
realistic velocity uncertainties and to the proper interpretations of geophysical phenomena. To describe
the noise characteristics of the GPS position time series, the maximum likelihood estimation (MLE)
is commonly used [20–22] and a combination of power-law noise plus white noise (PLN+WN) is
assumed as the noise model [21].

Apart from the temporal correlation, existing investigations have acknowledged that GPS position
time series are spatially correlated in regional GPS networks [23,24]. The common mode position
variations, termed as common mode components (CMC), are likely caused by mismodeled and
unmodeled environmental loading, GPS errors, and reference frame definition [25]. Filtering out
the CMC can improve the signal-to-noise ratio of GPS position time series. Several approaches have
been proposed to remove the CMC. One of the most commonly used approaches is stacking filtering,
which was first introduced by Wdowinski et al. [23] with an assumption of an equivalent CMC
for all the stations and then it was applied to a lot of regions around the world, such as Southern
California [26], Nevada-California [27], and the Dead Sea Fault [28]. However, the stacking filtering
may not be appropriate to continental-scale networks in which the CMC becomes inhomogeneous.
To solve this problem, this approach was modified with the consideration of interstation distances and
correlations [29,30]. Another widely used approach to filter out CMC is principle component analysis
(PCA) [25]. The PCA approach allows for unequal CMC in the network and it has been applied to
continental-scale networks with good performances [31–33]. In addition, Teferle et al. [34] mentioned
that the stacking filtering is equivalent to the first principle component time series.
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Furthermore, periodic signals contribute to the temporal noise in GPS position time series [35,36]
and both of them can be affected by CMC filtering. Therefore, CMC filtering has a further effect
on velocity estimates and their uncertainties. Teferle et al. [37] argued that the main periodic terms
(annual and semi-annual) need to be taken into account when computing the CMC so that the velocity
bias due to CMC filtering can be mitigated.

GPS is one of the most important measurement techniques for crustal movement. Since the
early 1990s, GPS has been applied to measure the crustal deformation in China. Wang et al. [38]
firstly reported the present-day crustal deformation in China constrained by GPS measurements.
Then, the crustal deformation in China was further investigated [2,39,40]. However, these works
are mainly based on campaign GPS measurements with which the transient signals are difficult to
observe and the precision and accuracy of the GPS velocity estimates is limited. Owing to the extension
of the CMONOC network to 260 continuous GPS stations and ≈2000 campaign GPS sites in 2011,
the crustal deformation in China can be described with higher precision, as well as with more detailed
information [3,41–43]. However, the noise characteristics of only a portion of the CMONOC stations
were investigated with MLE in previous studies [42]. Thus, a unified, realistic, and three-dimensional
CMONOC GPS velocity field estimated with the consideration of colored noise is still lacking.

In this paper, we homogeneously process the daily GPS observations of 231 CMONOC stations and
filter out the CMC by using the PCA method in Section 2. By comparing the time series before and after
CMC filtering, we evaluate the effects of CMC filtering on the stations’ noise characteristics and velocity
uncertainty estimates in Section 3. As a result, a unified three-dimensional CMONOC GPS velocity
field estimated with the consideration of colored noise is given in Section 4. Additionally, contributions
of environmental loading to the CMC of the CMONOC network are quantified. Conclusions are drawn
in Section 5.

2. Materials and Methods

2.1. GPS Data Processing

We collected the daily GPS observations of 260 CMONOC stations from February 1999 to
August 2015. The observations were then processed with GAMIT/GLOBK software (Ver. 10.5,
http://geoweb.mit.edu/gg/) developed by Massachusetts Institute of Technology, Scripps Institution
of Oceanography and Harvard University, the United States [44]. Station coordinates, orbital parameters,
tropospheric delay parameters, and Earth orientation parameters were estimated. Vienna Mapping
Function 1 (VMF1) [45] and a priori zenith hydrostatic delay from the European Centre for
Medium-Range Weather Forecasts (ECMWF) [46] were adopted for the correction of tropospheric
delay. International Geomagnetic Reference Field 11 (IGRF11) [47] and ionospheric data from the
Centre for Orbit Determination in Europe (CODE) [48] were used for the correction of high order
ionospheric delay. The Finite Element Solutions 2004 (FES2004) model [49] was adopted for modeling
the Ocean tide loading. The observations were weighted according to their elevation angles and
post-fit phase residuals. The cutoff elevation angle was set as 10◦. Meanwhile, we also processed
73 globally evenly-distributed IGS stations as shown in Figure A1 with the same strategy. To speed
up the calculation, the 260 CMONOC stations and 73 global IGS stations were divided into eight and
two interwoven subnetworks, respectively. Afterwards, all of the daily loosely constrained solutions
produced by GAMIT were combined and aligned to the IGb08 reference frame [50] by GLOBK with a
six parameter (three translation and three rotation parameters) transformation which minimizes the
coordinate differences of the globally distributed IGS stations.

We excluded 29 stations with observation time spans less than two years or with poor quality.
Thus, only 231 CMONOC stations were analyzed. Their locations and time spans are shown in Figure 1.
Among the 231 CMONOC stations, 27 of them were generally observed for ≈16.5 years and termed
as CMONOC-I, and the other 204 stations were observed since 2011.0 and termed as CMONOC-II in
this paper.

http://geoweb.mit.edu/gg/
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Figure 1. Location map of the selected 231 continuous GPS stations investigated in this study. Squares 
and circles indicate CMONOC-I and CMONOC-II stations, respectively. Plus and multiplication signs 
indicate stations with their east and north components affected by post-seismic deformation (PSD), 
respectively. Several earthquakes in China and surrounding regions are plotted with information 
from the Global CMT Catalog Search (http://www.globalcmt.org/CMTsearch.html [51,52]). 
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Figure 1. Location map of the selected 231 continuous GPS stations investigated in this study. Squares
and circles indicate CMONOC-I and CMONOC-II stations, respectively. Plus and multiplication signs
indicate stations with their east and north components affected by post-seismic deformation (PSD),
respectively. Several earthquakes in China and surrounding regions are plotted with information from
the Global CMT Catalog Search (http://www.globalcmt.org/CMTsearch.html [51,52]).

The resulting position time series for the north, east and up (NEU) components were then handled
separately and modeled with the following function [53]:

x(t) = xR + v(t − tR) +
nj

∑
j=1

bjH
(
τj
)

+
2
∑

k=1
[sk sin(ωkt) + ck cos(ωkt)] +

nl
∑

l=1
al log(1 + ∆tl/Tl) + ε

(1)

τj = t − tj (2)

H
(
τj
)
= 0 for τj < 0

H
(
τj
)
= 0.5 forτj = 0

H
(
τj
)
= 1 for τj > 0

(3)

∆tl = 0 for t < tEQl
∆tl = t − tEQl for t > tEQl

(4)

in which xR and tR are the reference coordinate and epoch, respectively; v is the velocity; t is the epoch
of GPS observations; nj is the number of offset events; j is the ordinal number of the offset events,
j = 1, . . . , nj; τj is the time difference between the epoch of GPS observations t and the epoch of the

http://www.globalcmt.org/CMTsearch.html
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jth offset event tj as defined in Equation (2); H(τj) is the Heaviside step function used to model the
offsets as defined in Equation (3); bj is the jth offset; sk and ck are the coefficients of seasonal signals;
ωk = 2π/pk; p1 = 1 year and p2 = 1/2 year; nl is the number of logarithmic transients caused by
earthquakes; l is the ordinal number of the post-seismic deformation events, l = 1, . . . , nl ; tEQl is
the epoch of the lth earthquake event; ∆tl is the time since the lth earthquake occurred as defined in
Equation (4); and Tl is the transient timescale parameter set as Tl = 1 year as suggested [53].

The offsets due to earthquakes or device changes were identified by checking the earthquake
catalogues and station log files and then inspecting the time series. The earthquakes which lead
to the offsets and/or post-seismic deformation of these CMONOC position time series are listed in
Table A1. Some other offsets caused by unknown reasons were also identified by visual inspection.
All identified offsets were then estimated with Equation (1). Moreover, time series of three north and
nine east components show obvious post-seismic deformation caused by the 2011 Mw 9.0 Tohoku-Oki
earthquake [54] and the 2001 Mw 7.8 Kokoxili earthquake [55]. An example of stations affected by
co- and post-seismic deformation is shown in Figure A2. Outliers in the residual time series were
identified and cleaned according to the three interquartile range (IQR) thresholds [56].

2.2. Regional Filtering of CMC

Residual position time series in regional GPS network include CMC, local effects and random
errors, in which CMC is one of the major spatiotemporal correlated error sources [25]. To extract
and remove the CMC, the PCA technique is introduced with an assumption that the spatiotemporal
patterns of local effects and random errors are separable for those of the CMC [25]. Later on, PCA has
been widely used to extract CMC for regional GPS networks with even continental-scales [31–33].
Here we generally followed the PCA technique adopted by Dong et al. [25] and Serpelloni et al. [31] to
extract and filter out the CMC from the CMONOC residual positions time series for NEU components.
CMONOC-I and CMONOC-II were handled separately in this procedure due to significant differences
between their time spans. Their NEU components were also handled separately. The main procedures
are as follows:

1. Obtain the residual position time series of all stations according to Equation (1) with trend, offsets,
seasonal, and post-seismic terms removed and construct a m × n residual data matrix X, in which
m and n are the number of epochs and stations, respectively.

2. Calculate the covariance matrix B = XTX/(m − 1).
3. Decompose the symmetric matrix B as B = VΛVT and sort the eigenvectors to rank the

eigenvalues in descending order.
4. Consider a linear transformation A = XV, thus we have X = AVT. The columns of A and rows of

VT are termed as principle components (PC) and spatial responses (SR), respectively. The ith PC
and SR are termed as “mode i” together.

5. Normalize each SR and scaling the corresponding PC by SR = SR/a and PC = a·PC, in which a
is the component with the maximum absolute value in this SR.

6. Select the significant PCs to calculate the CMC. CMC = AjVT
j . The columns of Aj are the first j

PCs that are considered to be significant and rows of VT
j are the corresponding SR.

To avoid the CMC from being contaminated, we considered the time series with abnormally large
root mean square (RMS) (>3, >3, and >8 mm in north, east, and up directions, respectively) as outliers
and we excluded them from the calculation of CMC. Moreover, if a station showed an anomalously
large SR while its neighboring stations were with SRs close to zero, this station component was also
excluded. Thus, the PCA may be iterated several times to remove outliers before the final operation.
The excluded stations were filtered with the average CMC of the network [31]. Furthermore, epochs
with observations less than one third of the total number of stations were also excluded.

Figure 2 shows the cumulative percentage of the first 15 CMONOC-I PC eigenvalues and the first
25 CMONOC-II PC eigenvalues. For CMONOC-I, the first PCs represent 41%, 33%, and 35% of the
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total variances for the NEU components, respectively. For CMONOC-II, the first PCs represent 42%,
36%, and 37% of the total variances for the three components, respectively. We also find that, for both
CMONOC-I and CMONOC-II, their second and even higher order PCs have significant eigenvalues,
indicating that the power has spread into several PCs.

Figure 3 shows the first two modes for the NEU components of CMONOC-I. For all three
components of CMONOC-I, their first PCs show significant responses with spatially uniform
distribution whereas their second PCs show indistinctive responses at most of the stations. Figure 4
shows the first four modes for the up component of CMONOC-II. The first principle component
(PC1) shows nearly uniform responses in space with an average of 71%, representing the mean part of
CMC. This result is consistent to Serpelloni et al. [31], but completely different from Ming et al. [33].
Further investigation is still needed to interpret the difference. The responses of PC2 and PC3 oscillate
interactively in space, with a NE–SW gradual transition for the responses of PC2 and a SE–NW gradual
transition for those of PC3. The PC2 and PC3 are likely to represent some parts of the CMC to fit
the sub-regional signal. As for PC4, only a small subset of the stations shows significant response,
indicating it just represents local effects. The first four modes for the north and east components
of CMONOC-II show similar patterns to those of the up component and they are displayed in
Figures A3 and A4, respectively.
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Until now, the CMC has not been rigorously defined, as the nature and spatial distribution of
the CMC are very complex and might be network-dependent. Thus, there is no generally accepted
consensus on the selection of significant PCs to calculate CMC [25]. For a small GPS network with a
spatial scale of 5◦ × 5◦, Dong et al. [25] considered a PC to be significant if more than 50% stations’
responses are larger than 25% and the corresponding eigenvalues exceed 1% of the summation of
all eigenvalues. Whereas for a continental-scale GPS network of the Euro-Mediterranean region
(between longitude 10◦W–35◦E and latitude 30◦N–60◦N), Serpelloni et al. [31] proposed a criterion
that a significant PC should have uniform or gradual varied responses in space as the network is larger
than the wavelength of the CMC and the CMC might partly leak into several PCs. The extents of
CMONOC-I and CMONOC-II (between longitude 70◦E–140◦E and latitude 15◦N–55◦N) are close to
that of the Euro-Mediterranean GPS network. Therefore, the criterion proposed by Serpelloni et al. [31]
is followed in our analysis.

Here we slightly modify the quantitative criteria proposed by Dong et al. [25] so that the
selection also meets the criterion proposed by Serpelloni et al. [31]. For CMONOC-I, we consider a
PC to be significant if more than 50% stations have SRs with absolute values larger than 50% and
the corresponding eigenvalues exceed 1% of the summation of all eigenvalues. For CMONOC-II,
we consider a PC is significant if more than 30% stations have SRs with absolute values larger than
30% and the corresponding eigenvalues exceed 1% of the summation of all eigenvalues. Consequently,
only the first PCs are treated as CMC for the NEU components of CMONOC-I, while the first
three PCs are selected for the three components of CMONOC-II. We set stricter selection criteria
for CMONOC-I because its number of stations is relatively small (only 22 stations used for the
NEU components, respectively) and its interstation distances are very large (usually >500 km), so it is
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difficult to distinguish the CMC and local effects if only a fraction of stations show significant responses.
To illustrate the effects of CMC filtering, unfiltered and filtered height time series of three CMONOC-II
stations and their CMC are shown in Figure A5. These stations, Mulei (XJML, 43.8◦N, 90.3◦E), Hebi
(HAHB, 35.7◦N, 114.5◦E) and Cangxian (HECX, 38.5◦N, 116.9◦E), are characterized by the maximum,
medium, and minimum vertical RMS reductions in CMONOC-II after the filtering, respectively.
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To illustrate the effects of the number of PCs used to estimate the CMC and to test the criteria
proposed in this paper, Figure 5 compares the interstation correlation coefficients for the residuals
of the CMONOC-II stations’ up component time series without CMC filtering or filtered with CMCs
derived from the first, the first three and the first five PCs, respectively. Compared with the unfiltered
time series, the interstation correlation coefficients are reduced with CMC filtering using only the first
PC. However, the average interstation correlation coefficients still range from −0.15 to 0.31, indicating
that the first PC is not enough to filter out the CMC of the CMONOC-II up component time series.
As for the residuals of the time series filtered with the first three and the first five PCs, their average
interstation correlation coefficients are rather small and their differences are insignificant, indicating
that the first three PCs are enough to filter out the CMC of the CMONOC-II up component time series.
This result suggests that the criteria used to extract CMC is proper here.
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3. Results

3.1. Spatial Correlation

Figure 6 illustrates the interstation correlation coefficients between the residual time series of
different CMONOC stations for the unfiltered and filtered time series, respectively. The interstation
correlation coefficients for the NEU components of the unfiltered time series exhibit a similar behavior:
the correlation coefficients decrease gradually with increasing interstation distances and with average
correlation coefficients of 0.37, 0.30 and 0.32 for the three components, respectively. Moreover,
the correlation coefficients between stations can be as large as 0.8 (average value around 0.5) with
interstation distance of 500 km, and then decrease to zero with an interstation distance of about
4000 km for all the three components. These results validate the existence of spatial correlation in
the unfiltered residual time series for all three component time series, which is consistent with other
regional GPS networks, such as in Mexico [29] and also in China [57].

After CMC filtering with PCA, the average correlation coefficients are only 0.1 for short interstation
distances (tens of kilometers), and reduce to zero rapidly with interstation distances of about 700 km
for all the three components. That is to say, some local scale errors still remain in the filtered time
series as we conservatively adopted only the first several PCs to represent the regional CMC. However,
the significant reduction of the interstation correlation coefficients indicates that PCA is an effective
filtering technique for suppressing the CMC in such a large regional GPS network and the criteria for
choosing significant PCs used in this paper are appropriate.

3.2. Periodic Signal

By investigating and comparing the periodic signals in the unfiltered and filtered time series,
we address several questions in this section. For instance, which periodic signals (e.g., the draconitic
signal) are significant in the CMONOC time series? Do these signals contribute to the CMC?
Is the draconitic signal spatially correlated in the CMONOC network? As the significant difference
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of observing time span between CMONOC-I (≈16.5 years) and CMONOC-II (≈4.6 years) may
lead to different resolutions in detecting periodic signals, these two subnetworks are treated
separately. Firstly, the power spectra of each time series was generated by Lomb-Scargle periodogram
technique [58,59] with an oversampling factor of 4 [60]. Then, the spectra for the NEU components of
the unfiltered and filtered CMONOC-I stations were stacked respectively. Similarly, the spectra for
the NEU components of the unfiltered and filtered CMONOC-II stations were stacked, respectively.
These so-called stacked power spectra were also adopted by [10,13,16] to detect anomalous periodic
signals in GPS position time series.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 32 
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Figure 6. Correlation coefficients between the residual time series of different CMONOC stations
as a function of interstation distances in kilometers (left panels) and histograms of the interstation
correlation coefficients (right panels). The interstation correlation coefficients of the unfiltered and
filtered time series are shown as blue and orange dot marks, respectively. Moreover, they are smoothed
by a boxcar smoother with a full width of 50 km and shown as the blue and red lines, respectively.

In theory, if two periodic signals (with periods of T1 and T2, respectively, and T1 > T2) are to be
distinguishable, the time span of the time series must be no shorter than T1T2/(T1−T2), according
to the Rayleigh criterion [61]. In reality, longer time series may be needed due to the noise in the
observations [12]. Thus, at least 25.4 years are needed to distinguish the annual and draconitic signals,
which exceeds the time span of our GPS observations. Nevertheless, the CMONOC-I time series
can distinguish the annual and draconitic signals from their second and higher harmonics (at least
12.7 years is needed) The CMONOC-II time series can distinguish from their 6th and higher harmonics
(at least 4.2 years are needed).

Figure 7 shows the stacked power spectra of the unfiltered and filtered CMONOC-I residual time
series with annual and semi-annual signals removed. The slopes of the stacked spectra in the log-log
plot (equal to the spectral index κ) are close to −1 (FN, κ = −1) at low frequencies and close to 0 (WN,
κ = 0) at high frequencies indicating a FN + WN character on average. To focus on the draconitic
harmonics and some other periodic signals, a zoom-in of Figure 7 is shown in Figure 8. Peaks at
the frequencies of the annual harmonics can be seen at the third annual harmonics for all the three
components, but not visible for its higher harmonics. However, significant peaks at the frequencies
of the first eight draconitic harmonics are clearly visible. Moreover, peaks can also be found at the
frequencies of some other draconitic harmonics, such as the 10th for the up component and the 11th,
12th, and 14th for the north component. In addition, peaks are obvious at the frequencies of 24.75,
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25.74, and 26.74 cpy, equal to periods of 14.76, 14.19, and 13.66 days, for all the three components
(except the 25.74 cpy for the north component). These signals are likely to be the spurious long-period
signals caused by the aliasing effects of the unmodeled short-period tidal signals (diurnal O1 tide and
semidiurnal M2 tide) [11,62]. The 13.66-day period spectra might also be related to the semi-monthly
Mf tide. As for the filtered solution, several peaks at the frequencies of the draconitic harmonics are
reduced in their stacked spectra, especially at the frequencies of the 6th draconitic harmonic for the
north and east components and at the frequencies of the 8th draconitic harmonic for the up component.
Moreover, the peaks at the frequencies of the 7th and 10th draconitic harmonics for the up component
even become insignificant. In addition, the tri-annual signal and the periodic signals with frequencies
of 24.75, 25.74, and 26.74 cpy are also reduced. Furthermore, some unknown signals are also reduced
significantly, such as 3.32 cpy for the up component and 3.26 and 4.42 cpy for the north component.
These unknown signals will be investigated in our future work.

Figure 9 shows the stacked power spectra of the CMONOC-II residual time series. Similar to
CMONOC-I, the behavior of all the three components of CMONOC-II’s spectra follows like FN at
low frequencies and like WN at high frequencies. Several peaks at the frequencies of the draconitic
harmonics can also be seen but with broader bands. A zoom-in of Figure 9 is also shown in Figure 10.
As the time span of the CMONOC-II is ≈4.6 years, the annual and draconitic signals can only be
distinguished from their 6th harmonic onwards in theory. Thus, the broad peaks for the third to 5th
draconitic harmonics are surely leaked by the corresponding annual harmonics. Moreover, only peaks
at the 6th, 8th, 12th, and 14th draconitic harmonics for the north component, 6th to 9th draconitic
harmonics for the east component, and 6th draconitic harmonics for the up component are identified
to be caused by the draconitic signal. Moreover, the stacked power spectra of the filtered CMONOC-II
time series show that the peaks are reduced significantly around the frequencies of the annual and
draconitic harmonics, and only the peaks at the frequencies of 6th to 9th draconitic harmonics are still
distinguishable. Moreover, the signals with frequencies of 24.75 cpy for the north and up components,
and frequency of 25.74 cpy for the east component are also reduced significantly.
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Figure 7. Stacked power spectra of the unfiltered (blue) and filtered (red) CMONOC-I residual time
series with annual and semi-annual signals removed. The stacked power spectra for the up and
east components have been shifted upward for clarity (by factors of 5000 and 100, respectively).
Vertical black and gray lines indicate the annual (1 cpy) and draconitic (1.04 cpy) oscillations and their
harmonics up to the 4th. Vertical green lines indicate the frequencies of 24.75, 25.74, and 26.74 cpy.
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3.3. Noise Characteristics

To investigate the effects of CMC filtering on the noise characteristics of CMONOC time series,
the Hector software (Ver. 1.7, http://segal.ubi.pt/hector/) with MLE was employed. Hector is a fast
GPS position time series analysis software developed by Bos et al. [22] to meet the urgent demands
of noise characterization for the rapidly increasing numbers of GPS stations and the accumulated
GPS observations in recent years. A combination noise model of the PLN + WN is used as it is
able to offer detailed description of the noise characteristics with the spectral index being estimated.
Moreover, since CMONOC-I and CMONOC-II have significantly different observing time spans,
they are investigated separately in this section.

Figure 11 illustrates the spatial distribution characteristics of the WN amplitudes, PLN amplitudes,
spectral indices and velocity uncertainties of the unfiltered time series estimated with the PLN + WN
model. The WN amplitudes of all the three components increase from north to south and reach
their maximums at the southernmost China, indicating a general latitude dependence, which is
consistent with [19,20]. However, the latitude dependence is not obvious for the PLN amplitudes,
spectral indices and velocity uncertainties, though there are several scattered southern stations with
extraordinary large values. In addition, the WN amplitudes generally vary up to 2 mm and up to
6 mm for the horizontal and vertical components, respectively. The PLN amplitudes generally vary
from 2 to 6 mm/year−κ/4 and from 6 to 18 mm/year−κ/4 for the horizontal and vertical components,
respectively. The spectral indices are generally from −0.6 to −1.6 for the horizontal and from −0.6 to
−1.2 for vertical components, respectively. The velocity uncertainties generally vary up to 0.8 mm/year
and up to 2.4 mm/year for the horizontal and vertical components, respectively.

As a comparison, Figure 12 illustrates the spatial distribution characteristics of the WN amplitudes,
PLN amplitudes, spectral indices and velocity uncertainties of the filtered time series estimated with
the PLN + WN model. After CMC filtering, the PLN amplitudes and velocity uncertainties are
generally reduced significantly. However, some stations in Yunnan province (between longitude
97◦E–107◦E and latitude 20◦N–30◦N) still show significant PLN amplitudes and velocity uncertainties.
Most of these stations are excluded from the calculation of CMC because of their abnormal non-linear
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variations and just filtered with the average CMC of the network. Their abnormal non-linear variations
might be related to the droughts that occurred in Yunnan [8].
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Figure 11. The WN amplitudes for the NEU components (a–c); PLN amplitudes for the NEU
components (d–f); spectral indices for the NEU components (g–i) and velocity uncertainties for the
NEU components (j–l) of the unfiltered time series estimated with the PLN + WN model.

Table 1 lists the mean and standard deviations of the WN amplitudes, PLN amplitudes, spectral
indices, velocity uncertainties, and RMS of the CMONOC-I time series before and after CMC filtering.
After the filtering, the average WN amplitudes are slightly reduced in horizontal but enlarged in the
vertical direction, indicating that the WN component is probably correlated to site-specific errors that
cannot be removed by CMC filtering. Nevertheless, their average PLN amplitudes show significant
reductions for all the three components of the filtered time series, with average reduction ratios of
27%, 20%, and 27% for the NEU components, respectively. Moreover, the average spectral indices
are slightly reduced for the north and up components. As for the velocity uncertainty estimates,
they are reduced by 4%, 18%, and 16% on average for the NEU components, respectively, Furthermore,
obvious RMS reductions can also be noticed from Table 1, indicating an improved signal-to-noise ratio.
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Figure 12. Same as Figure 11, but for the CMC filtered time series.

Table 2 lists the mean and standard deviations of the WN amplitudes, PLN amplitudes, spectral
indices, velocity uncertainties and RMS of the CMONOC-II time series before and after CMC filtering.
The average WN amplitudes are also slightly reduced in horizontal but enlarged in vertical after the
filtering, which are similar to the changes of WN amplitudes for the CMONOC-I time series. However,
compared with the reduction ratios of CMONOC-I stations’ PLN amplitude, the CMONOC-II stations’
PLN amplitude show much larger reductions for all the three components after CMC filtering,
with average reduction ratios of 47%, 46%, and 52% for the NEU components, respectively. Moreover,
the CMONOC-II stations’ velocity uncertainty estimates also obtain greater reduction ratios after CMC
filtering, with average reduction ratios of 33%, 38%, and 54% for the NEU components, respectively.
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Table 1. Mean and standard deviations of the WN amplitude (σWN), PLN amplitude (σPL), spectral
index, and velocity uncertainty (σvel.) and the RMS of the unfiltered and filtered CMONOC-I time
series estimated with the PLN + WN model.

Unfiltered Time Series Filtered Time Series

N E U N E U

σWN (mm) 1.0 ± 0.3 1.1 ± 0.5 2.0 ± 2.0 0.9 ± 0.3 1.0 ± 0.5 2.7 ± 1.7
σPL (mm/year−κ/4) 4.2 ± 0.9 4.1 ± 1.1 14.9 ± 3.1 3.1 ± 1.2 3.4 ± 1.5 11.1 ± 4.2

κ −1.2 ± 0.1 −1.3 ± 0.2 −0.9 ± 0.1 −1.3 ± 0.2 −1.3 ± 0.2 −1.0 ± 0.2
σvel. (mm/year) 0.2 ± 0.1 0.2 ± 0.1 0.4 ± 0.2 0.2 ± 0.1 0.2 ± 0.2 0.3 ± 0.2

RMS (mm) 2.4 ± 1.2 2.6 ± 1.3 6.6 ± 2.3 2.1 ± 1.3 2.3 ± 1.6 5.7 ± 2.7

Table 2. Same as Table 1, but for the CMONOC-II time series.

Unfiltered Time Series Filtered Time Series

N E U N E U

σWN (mm) 0.7 ± 0.3 0.9 ± 0.4 1.3 ± 1.4 0.6 ± 0.3 0.7 ± 0.4 1.9 ± 1.2
σPLN (mm/year−κ/4) 3.4 ± 0.7 3.3 ± 0.8 12.5 ± 1.6 1.9 ± 0.9 1.9 ± 1.0 6.1 ± 2.0

κ −0.9 ± 0.2 −1.0 ± 0.2 −0.9 ± 0.1 −1.0 ± 0.4 −1.0 ± 0.4 −0.7 ± 0.3
σvel. (mm/year) 0.3 ± 0.2 0.3 ± 0.2 0.9 ± 0.3 0.2 ± 0.3 0.2 ± 0.2 0.4 ± 0.3

RMS (mm) 1.5 ± 0.4 1.6 ± 0.5 5.0 ± 0.9 1.1 ± 0.6 1.1 ± 0.6 3.6 ± 1.1

To quantitatively estimate the effects of the filtering on geophysical parameters, we compare the
station velocities between the filtered and unfiltered time series estimated with the PLN + WN model.
Their differences are displayed in Figure 13. The majority of the differences are within ±0.3 mm/year
and within ±0.6 mm/year for the horizontal and vertical components, respectively.
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4. Discussion

4.1. Characteristics of the Draconitic Harmonics

Figures 7–10 have demonstrated that CMC filtering with PCA is capable to decrease the draconitic
harmonics for both CMONOC-I and CMONOC-II. Compared with CMONOC-I, CMONOC-II shows
a more significant reduction. We attribute this difference to the fact that the spatial correlations
between the CMONOC-II stations are more significant as their interstation distances are much smaller
and, thus, more CMC components are reduced by the filtering. In addition, a considerable part
of the CMONOC-I stations are not included in the calculation of CMC and just corrected with the
average responses. In general, these results indicate that the CMC in the CMONOC time series
contains the draconitic harmonic and some other periodic signals, thus supporting the conclusion
drawn by Amiri-Simkooei [63] and Amiri-Simkooei et al. [12] that the draconitic signal is correlated in
space. However, these results cannot exclude the possibility that the draconitic signal is partly due to
site-specific effects as suggested by King and Watson [16] because there are still several peaks visible at
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the frequencies of the draconitic harmonics and the estimation of the power spectrum has uncertainty.
Moreover, these results are consistent to the conclusions of Abraha et al. [17].

4.2. Changes of the Noise Characteristics Due to CMC Filtering

In Section 3.3, the CMONOC-I and CMONOC-II time series have been analyzed with the
PLN + WN, respectively. For both of the CMONOC-I and CMONOC-II, their PLN amplitudes and
velocity uncertainties are reduced after CMC filtering, consistent with prior studies [31,57,64]. However,
as the two subnetworks have significant differences in the time span of observations, the number of
stations, and interstation distances, they may show some differences in their noise characteristics before
and after CMC filtering. Before CMC filtering, the average WN amplitudes, PLN amplitudes and
RMS of the CMONOC-II time series are lower than those of the CMONOC-I time series, which may
be due to the fact that the quality of the latest observations are better than the early observations.
While the average velocity uncertainties of the CMONOC-II time series are larger than those of the
CMONOC-I time series as their time span of observations are much shorter. Comparing the effects of
CMC filtering on CMONOC-I and CMONOC-II time series, one can find that the CMONOC-II time
series show much larger reductions in PLN amplitude and velocity uncertainty estimates for all three
components, indicating that the CMONOC-II time series benefit more from CMC filtering. This may
be because that the CMONOC-II subnetwork has shorter interstation distances and the first three PCs
are used for the calculation of its CMC, whereas only the first PC is used to calculate CMC of the
CMONOC-I subnetwork.

Table A2 lists the velocity estimates and their uncertainties for the unfiltered and filtered NEU
component time series for the CMONOC stations estimated with the PLN + WN model. Moreover,
the horizontal and vertical velocity field of the CMC filtered CMONOC time series estimated with the
PLN + WN model are shown in Figures 14 and 15, respectively. The velocity estimates of CMONOC
stations provide abundant information on the tectonic deformation over the mainland China and we
will focus on it in our future work.
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4.3. Environmental Loading Effects on the CMC

Environmental loading is one of the potential candidates for the CMC (Dong et al., 2006). In this
section, the contributions of environmental loading to the CMC of the CMONOC network is quantified.
As environmental loading effects are usually most significant in vertical, only the CMONOC height
time series are analyzed. We firstly obtained the vertical environmental loading displacements for the
CMONOC stations predicted with loading products from German Research Centre for Geosciences
(GFZ) [66], in which atmospheric loading, non-tidal oceanic loading and hydrological loading effects
are taken into account. Environmental loading displacements at a station are shown in Figure A6 as
an example.

We then calculated and compared the RMS of CMC for the CMONOC height time series before
and after environmental loading correction as shown in Figure 16a,b. RMS reduction ratios of the
corresponding CMC are shown in Figure 16c. For the CMONOC height time series before and
after environmental loading correction, the RMS of CMC range from 1.4 mm to 5.0 mm and from
0.3 mm to 4.7 mm with medians of 3.4 mm and 2.7 mm, respectively. In addition, the according RMS
reduction ratios of CMC range between −9.1% and 77.8%, with a median of 18.4% at station Wuqia
(XJWU, 39.7◦N, 75.2◦E). To illustrate and compare the time series before and after environmental
loading correction, station XJWU is selected as an example as shown in Figure 17. Before loading
correction, the RMS of station XJWU’s unfiltered and filtered height time series are 4.1 mm and 2.8 mm,
respectively. After loading correction, the RMS of station XJWU’s unfiltered and filtered height time
series are 3.6 mm and 2.6 mm, respectively. Accordingly, the RMS of CMC for station XJWU’s height
time series decrease from 3.0 mm to 2.4 mm after the environmental loading correction.
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In general, 224 of the 231 stations show a decrease in the RMS of CMC after the environmental
loading correction and 170 of them are with a RMS reduction ratio of CMC larger than 10%,
confirming that environmental loading is one of the sources of CMC for the CMONOC height time
series, which is consistent with Zhu et al. [6].Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 32 
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5. Conclusions

Daily position residual time series of 231 CMONOC GPS stations have been analyzed to
investigate the effects of CMC filtering with PCA on the periodic signals and noise characteristics.
The source of the draconitic signal in the CMONOC GPS position time series was discussed. The noise
characteristics of the CMONOC-I (27 stations, ≈16.5 years) and CMONOC-II (204 stations, ≈4.6 years)
stations before and after CMC filtering have been compared, and possible reasons for their differences
have been discussed, such as the differences in time span of observations, number of stations,
and interstation distances. Therefore, a unified, realistic, and three-dimensional CMONOC GPS
velocity field estimated with the consideration of colored noise is given. Furthermore, contributions
of environmental loading to the CMC of CMONOC were quantified as well. The following are the
main findings:
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1. The stacked power spectra of the CMC-filtered CMONOC residual time series show that peaks
are reduced significantly at frequencies of tri-annual, draconitic harmonics up to 14th, and 24.75,
25.74, and 26.74 cpy, indicating that the CMC of the CMONOC network contains draconitic
harmonics and some other periodic signals. These results support the view that the draconitic
signal is spatially correlated. However, the possibility that the draconitic signal is caused by
site-specific effects cannot be ruled out because of the weakened, but still visible, peaks at the
frequencies of the draconitic harmonics.

2. For the unfiltered time series, the velocity uncertainties of the CMONOC stations estimated
with an assumption of the PLN + WN model generally vary up to 0.8 mm/year and up to
2.4 mm/year for the horizontal and vertical components, respectively. After CMC filtering,
the average white noise amplitudes are slightly reduced in horizontal but enlarged in vertical
for both the CMONOC-I (≈16.5 years) and CMONOC-II (≈4.6 years) stations. Nevertheless,
the average power-law noise amplitudes are significantly suppressed by CMC filtering. Therefore,
the velocity uncertainty estimates of north, east and up components for both the CMONOC-I
and CMONOC-II stations are reduced. Compared with CMONOC-I, the CMONOC-II stations
obtain greater reduction ratios in velocity uncertainty estimates with average values of 33%,
38%, and 54% for the north, east, and up components, respectively. These results indicate
that CMC filtering can suppress the colored noise amplitudes and improve the precision of
velocity estimates.

3. After environmental loading correction, vertical CMC are reduced at 224 of the 231 CMONOC
stations. In addition, 170 of them are with an RMS reduction ratio of CMC larger than 10%,
confirming that environmental loading is one of the sources of CMC for the CMONOC height
time series.
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Figure A2. An example of stations affected by co- and post-seismic deformation. Station Hegang 
(HLHG) is located in Northeast China and about 1500 km away from the epicenter (red solid circle) 
of the Mw 9.0 Tohoku-Oki Earthquake. The gray curve indicate the fitting curve of east component 
modeled with Equation (1). The black curves indicate the fitting curves of the NEU components 
modeled with Equation (1), but without the logarithmic term. The post-seismic deformation is not 
significant for north or up components of HLHG and, thus, there is no need to be taken into 
consideration in the function model. As for the east component of HLHG, obvious post-seismic 
deformation can be noticed and, thus, a logarithmic term needs to be included in the function model. 

Figure A1. Location map of the globally distributed 73 IGS stations which are generally selected
from the core network of IGb08 reference frame (ftp://igs.org/pub/station/coord/IGb08_core.txt).
The black and blue dots indicate two subnetwork stations, respectively. The red pentagrams indicate
the common stations of these two subnetworks.
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Figure A2. An example of stations affected by co- and post-seismic deformation. Station Hegang
(HLHG) is located in Northeast China and about 1500 km away from the epicenter (red solid circle)
of the Mw 9.0 Tohoku-Oki Earthquake. The gray curve indicate the fitting curve of east component
modeled with Equation (1). The black curves indicate the fitting curves of the NEU components
modeled with Equation (1), but without the logarithmic term. The post-seismic deformation is
not significant for north or up components of HLHG and, thus, there is no need to be taken into
consideration in the function model. As for the east component of HLHG, obvious post-seismic
deformation can be noticed and, thus, a logarithmic term needs to be included in the function model.
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Figure A5. Unfiltered time series (red, shifted upward by 150 mm) and their residual time series (orange,
shifted upward by 110 mm) obtained with Equation (1), common mode error (green, shifted upward by
70 mm), and filtered time series (blue, shifted upward by 30 mm), and their residual time series (purple)
obtained with Equation (1) for the selected three vertical position time series of the CMONOC-II
stations, in which station XJML, HAHB and HECX are characterized by the maximum, medium and
minimum RMS reduction in CMONOC-II after the filtering, respectively.
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Table A1. The earthquakes which caused co-seismic and/or post-seismic deformation of the 
CMONOC stations (http://www.globalcmt.org/CMTsearch.html [25,26]). 

Time 
(Greenwich Mean Time) 

Epicenter 
Magnitude (Mw) 

Longitude (°) Latitude (°) Region 
20 September 1999 120.8 24.2 Nantou, Taiwan, China 7.6 
14 November 2001 92.9 35.8 Kokoxili, Qinghai, China 7.8 
26 December 2004 94.3 3.1 Indian Ocean 9.0 

8 October 2005 73.5 34.4 Pakistan 7.6 
12 May 2008 104.1 31.4 Wenchuan, Sichuan, China 7.9 

6 October 2008 90.5 29.7 Dangxiong, Xizang, China 6.3 
11 March 2011 143.1 37.5 Tohoku-Oki, Japan 9.1 
20 April 2013 103.1 30.2 Lushan, Sichuan, China 6.6 
21 July 2013 104.3 34.6 Minxian,Gansu, China 6.0 

12 February 2014 82.6 36.2 Yutian, Xinjiang, China 6.9 
25 April 2015 85.3 27.9 Nepal 7.9 
12 May 2015 86.1 27.7 Nepal 7.2 

Table A2. Three-dimensional velocity estimates and their uncertainties of the CMC filtered 231 
CMONOC stations estimated with the PLN + WN model. The reference frame is IGb08. 

Station Lat. (°) Lon. (°) 
Velocity (mm/year) Velocity Uncertainty (mm/year) 
N E U N E U 

AHAQ 117.0 30.6 −11.17 33.03 0.72 0.06 0.07 0.36 
AHBB 117.3 32.9 −10.78 32.79 0.18 0.10 0.06 0.40 
BJFS 115.9 39.6 −10.69 30.20 1.83 0.24 0.18 0.16 
BJGB 117.2 40.7 −10.48 29.78 1.57 0.05 0.05 0.23 
BJSH 116.2 40.3 −11.28 29.55 0.82 0.09 0.07 0.15 
BJYQ 116.0 40.4 −10.59 30.66 1.14 0.09 0.06 0.19 

CHUN 125.4 43.8 −11.77 25.89 0.27 0.12 0.14 0.45 
CQCS 107.2 29.9 −9.15 34.68 0.27 0.09 0.17 0.19 
DLHA 97.4 37.4 1.03 37.23 0.70 0.15 0.32 0.23 
DXIN 100.2 41.0 −4.58 30.72 1.15 0.13 0.10 0.18 
FJPT 119.8 25.5 −11.71 31.22 0.40 0.30 0.47 0.28 

Figure A6. Vertical displacement time series due to atmospheric loading (ATML, red), non-tidal
oceanic loading (NTOL, green), hydrological loading (HYDL, blue), and their summation (SumL,
orange) predicted with GFZ loading products and GPS height time series (black) for station XJWU.
The ATML, NTOL, and HYDL time series are shifted upward by 60, 45, and 30 mm, respectively.

Table A1. The earthquakes which caused co-seismic and/or post-seismic deformation of the CMONOC
stations (http://www.globalcmt.org/CMTsearch.html [51,52]).

Time
(Greenwich Mean Time)

Epicenter
Magnitude (Mw)

Longitude (◦) Latitude (◦) Region

20 September 1999 120.8 24.2 Nantou, Taiwan, China 7.6
14 November 2001 92.9 35.8 Kokoxili, Qinghai, China 7.8
26 December 2004 94.3 3.1 Indian Ocean 9.0

8 October 2005 73.5 34.4 Pakistan 7.6
12 May 2008 104.1 31.4 Wenchuan, Sichuan, China 7.9

6 October 2008 90.5 29.7 Dangxiong, Xizang, China 6.3
11 March 2011 143.1 37.5 Tohoku-Oki, Japan 9.1
20 April 2013 103.1 30.2 Lushan, Sichuan, China 6.6
21 July 2013 104.3 34.6 Minxian, Gansu, China 6.0

12 February 2014 82.6 36.2 Yutian, Xinjiang, China 6.9
25 April 2015 85.3 27.9 Nepal 7.9
12 May 2015 86.1 27.7 Nepal 7.2

Table A2. Three-dimensional velocity estimates and their uncertainties of the CMC filtered
231 CMONOC stations estimated with the PLN + WN model. The reference frame is IGb08.

Station Lat. (◦) Lon. (◦)
Velocity (mm/year) Velocity Uncertainty (mm/year)

N E U N E U

AHAQ 117.0 30.6 −11.17 33.03 0.72 0.06 0.07 0.36
AHBB 117.3 32.9 −10.78 32.79 0.18 0.10 0.06 0.40
BJFS 115.9 39.6 −10.69 30.20 1.83 0.24 0.18 0.16
BJGB 117.2 40.7 −10.48 29.78 1.57 0.05 0.05 0.23
BJSH 116.2 40.3 −11.28 29.55 0.82 0.09 0.07 0.15
BJYQ 116.0 40.4 −10.59 30.66 1.14 0.09 0.06 0.19

CHUN 125.4 43.8 −11.77 25.89 0.27 0.12 0.14 0.45

http://www.globalcmt.org/CMTsearch.html
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Table A2. Cont.

Station Lat. (◦) Lon. (◦)
Velocity (mm/year) Velocity Uncertainty (mm/year)

N E U N E U

CQCS 107.2 29.9 −9.15 34.68 0.27 0.09 0.17 0.19
DLHA 97.4 37.4 1.03 37.23 0.70 0.15 0.32 0.23
DXIN 100.2 41.0 −4.58 30.72 1.15 0.13 0.10 0.18
FJPT 119.8 25.5 −11.71 31.22 0.40 0.30 0.47 0.28
FJWY 118.0 27.6 −11.50 33.03 0.93 0.16 0.14 0.47
FJXP 120.0 26.9 −11.46 32.96 1.06 0.08 0.15 0.23

GDSG 113.6 24.8 −10.59 33.60 −0.06 0.11 0.44 0.57
GDZH 113.6 22.3 −11.18 33.68 5.75 0.07 0.09 0.40
GDZJ 110.3 21.2 −10.50 33.67 2.06 0.20 0.23 0.40
GSAX 95.8 40.5 −0.24 31.27 0.21 0.12 0.09 0.13
GSDH 94.7 40.1 0.48 30.81 −0.01 0.17 0.26 0.19
GSDX 104.6 35.6 −6.69 36.40 0.68 0.06 0.04 0.19
GSGL 102.9 37.5 −4.78 34.37 1.96 0.45 0.48 1.07
GSGT 99.8 39.4 −3.38 31.61 1.24 0.09 0.08 0.18
GSJN 105.8 35.5 −8.49 34.68 0.67 0.18 0.08 0.44
GSJT 104.1 37.2 −5.29 34.75 1.09 0.08 0.25 0.13
GSJY 98.2 39.8 −1.93 31.51 2.02 0.17 0.16 0.19
GSLX 104.6 35.0 −7.01 35.52 0.91 0.10 0.11 0.26
GSLZ 103.7 36.1 −0.75 40.94 −2.66 1.75 0.75 0.23
GSMA 102.1 34.0 −4.25 41.41 1.31 0.35 0.13 0.27
GSML 100.8 38.4 −2.92 33.02 0.68 0.11 0.12 0.19
GSMQ 103.1 38.6 −5.50 32.48 −0.30 0.37 0.06 0.71
GSMX 104.0 34.4 −5.92 38.08 0.83 0.12 0.14 0.36
GSPL 106.6 35.5 −8.95 35.06 1.04 0.05 0.61 0.48
GSQS 106.2 34.7 −7.71 33.77 0.34 0.22 0.20 0.37
GSWD 104.8 33.4 −8.15 36.17 −0.24 0.39 0.31 0.50
GUAN 113.3 23.2 −11.03 32.64 0.55 0.20 0.32 0.97
GXBH 109.2 21.7 −8.41 33.30 2.20 0.31 0.14 0.45
GXBS 106.7 23.9 −9.07 34.60 −1.07 0.16 0.12 0.65
GXHC 108.0 24.7 −9.30 34.54 1.07 0.08 0.11 0.36
GXNN 108.1 22.6 −9.22 33.85 2.07 0.14 0.09 0.55
GXWZ 111.2 23.5 −9.43 34.24 −1.57 0.16 0.16 0.47
GZFG 107.7 28.0 −9.42 33.32 1.89 0.37 0.60 0.82
GZGY 106.7 26.5 −9.01 34.94 0.37 0.05 0.20 0.70
GZSC 104.9 26.6 −8.73 34.68 1.46 0.08 0.10 0.31
HAHB 114.5 35.7 −10.81 32.43 −0.54 0.06 0.09 0.42
HAJY 112.4 35.2 −10.35 33.14 0.19 0.15 0.09 0.56
HAQS 114.0 32.8 −10.61 34.24 −1.64 0.04 0.08 0.40
HBES 109.5 30.3 −9.99 34.10 1.94 0.19 0.11 0.81
HBJM 112.2 31.1 −10.73 34.77 0.83 0.19 0.34 0.38
HBXF 112.0 32.0 −10.48 33.69 1.20 0.10 0.06 0.58
HBZG 111.0 30.8 −9.26 34.57 0.10 0.47 0.44 0.49
HECC 115.8 40.9 −10.64 29.85 1.28 0.10 0.05 0.21
HECD 117.9 41.0 −9.85 29.81 0.71 0.08 0.12 0.36
HECX 116.9 38.5 −9.74 30.82 −24.12 0.43 0.38 2.34
HELQ 114.3 38.2 −10.48 32.11 4.24 0.08 0.14 0.49
HELY 114.7 37.4 −10.37 33.23 1.17 0.20 0.14 0.25
HETS 118.3 39.7 −6.33 27.70 2.39 0.77 0.89 1.43
HEYY 114.2 40.1 −10.90 32.47 1.01 0.12 0.39 0.31
HEZJ 114.9 40.8 −9.91 30.08 2.05 0.34 0.19 0.29
HIHK 110.2 20.0 −10.43 33.02 −1.25 0.37 0.13 0.57
HISY 109.5 18.2 −8.15 34.07 2.68 0.26 0.63 0.75

HLAR 119.7 49.3 −11.32 25.79 1.44 0.10 0.09 0.30
HLHG 130.2 47.4 −15.90 24.38 0.29 0.78 1.45 0.54
HLWD 126.1 48.7 −12.24 25.21 0.25 0.44 0.41 0.83
HNLY 113.6 28.2 −10.35 33.72 0.03 0.08 0.08 0.59
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Table A2. Cont.

Station Lat. (◦) Lon. (◦)
Velocity (mm/year) Velocity Uncertainty (mm/year)

N E U N E U

HNMY 109.8 27.9 −9.71 34.51 0.68 0.06 0.20 0.29
HRBN 126.6 45.7 −11.76 24.98 −0.45 0.16 0.18 0.21
JIXN 117.5 40.1 −10.12 28.17 1.74 0.12 0.06 0.17
JLCL 123.5 44.6 −11.62 28.38 −0.55 0.26 0.23 0.35
JLYJ 129.5 42.9 −16.81 26.47 −0.11 0.32 0.70 0.44
JSLS 119.4 31.3 −11.39 33.56 −1.92 0.27 0.12 1.14
JSLY 119.5 34.7 −12.05 32.06 0.47 0.06 0.08 0.26
JSNT 120.9 32.0 −11.78 32.83 −1.33 0.10 0.13 0.31
JSYC 120.0 33.4 −9.76 32.46 −11.28 0.44 0.27 1.46
JXJA 115.1 26.7 −11.13 33.93 −0.44 0.06 0.31 0.37

KMIN 102.8 25.0 −16.73 33.53 −1.67 0.39 0.97 0.75
LALB 102.2 19.9 −6.25 31.40 2.23 0.40 0.28 0.34
LALX 105.0 18.2 −8.74 31.52 2.68 0.40 0.44 0.47
LHAS 91.1 29.7 15.50 46.66 1.79 0.12 0.15 0.38
LNDD 124.3 40.0 −10.68 26.09 0.13 0.27 1.12 0.37
LNJZ 121.7 39.1 −12.03 29.42 0.63 0.29 0.11 0.42
LNYK 122.6 40.7 −11.64 27.76 1.20 0.12 0.26 0.31
LUZH 105.4 28.9 −9.56 34.65 0.73 0.10 0.19 0.12
NMAG 122.6 43.3 −11.00 28.74 1.67 0.10 0.15 0.33
NMAL 120.1 43.9 −10.92 28.74 1.20 0.12 0.10 0.36
NMAY 101.7 39.2 −5.25 31.82 1.51 0.23 0.05 0.12
NMAZ 105.7 38.8 −6.63 31.84 0.92 0.26 0.21 0.33
NMDW 117.0 45.5 −10.53 28.40 −0.24 0.12 0.08 0.29
NMEJ 101.1 42.0 −4.50 31.41 1.12 0.23 0.03 0.26
NMEL 111.9 43.6 −9.61 29.52 1.70 0.17 0.30 0.17
NMER 123.7 50.6 −11.28 25.12 0.71 1.92 1.37 0.50
NMTK 111.3 40.3 −10.57 31.58 1.61 0.18 0.40 0.41
NMWH 106.8 39.7 −9.62 32.42 3.75 0.12 0.19 0.29
NMWJ 108.1 41.3 −9.43 30.09 0.86 0.12 0.27 0.29
NMWL 122.0 46.0 −10.96 27.57 1.12 0.17 0.17 0.56
NMZL 116.0 42.2 −10.20 29.60 1.33 0.28 0.03 0.20
NXHY 105.6 36.6 −6.55 34.59 −0.93 0.10 0.15 0.18
NXYC 106.3 38.5 −7.34 32.04 −4.25 0.68 0.62 0.49
NXZW 105.2 37.6 −5.62 33.25 1.52 0.05 0.13 0.16
QHBM 100.7 32.9 −4.94 44.90 1.02 0.07 0.05 0.18
QHDL 98.1 36.3 2.53 38.02 0.58 0.08 0.11 0.27
QHGC 100.1 37.3 −2.10 37.58 0.63 0.14 0.07 0.34
QHGE 94.8 36.1 4.53 37.16 0.20 0.14 0.13 0.65
QHLH 93.3 38.7 3.12 34.62 2.86 0.50 0.15 0.38
QHMD 98.2 34.9 0.50 45.52 1.62 0.07 0.09 0.42
QHME 101.4 37.5 −3.12 37.09 1.35 0.10 0.14 0.40
QHMQ 100.2 34.5 −1.12 42.30 0.51 0.17 0.05 0.22
QHMY 90.8 38.5 7.16 35.51 1.06 0.14 0.07 0.22
QHQL 100.2 38.2 −3.13 34.70 1.67 0.15 0.34 0.30
QION 109.8 19.0 −10.93 31.64 0.39 0.20 0.15 0.28
SCBZ 106.7 31.8 −9.13 34.33 1.21 0.04 0.06 0.20
SCDF 101.1 31.0 −12.25 43.38 1.60 0.09 0.48 0.33
SCGY 105.9 32.4 −8.33 34.56 0.58 0.19 0.79 0.38
SCGZ 100.0 31.6 −9.30 47.06 −0.60 0.11 0.42 0.33
SCJL 101.5 29.0 −17.82 39.77 2.03 0.10 0.06 0.52
SCJU 104.5 28.2 −7.61 34.73 0.51 0.17 0.27 0.84
SCLH 100.7 31.4 −11.09 46.19 1.16 0.06 0.19 0.28
SCMB 103.5 28.8 −8.99 35.25 0.22 0.13 0.21 0.32
SCML 101.3 27.9 −19.49 48.87 −2.91 0.07 0.24 0.39
SCMN 102.2 28.3 −16.29 39.10 0.32 0.05 0.09 0.20
SCMX 103.8 31.7 −6.48 45.06 9.28 0.24 0.31 0.34
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Table A2. Cont.

Station Lat. (◦) Lon. (◦)
Velocity (mm/year) Velocity Uncertainty (mm/year)

N E U N E U

SCNC 105.9 31.0 −9.58 34.82 1.28 0.10 0.19 0.12
SCNN 102.7 27.1 −16.34 37.93 0.67 0.61 0.36 0.27
SCPZ 101.7 26.5 −17.80 36.01 1.06 0.09 0.08 0.15
SCSM 102.4 29.2 −12.19 38.08 1.86 0.05 0.06 0.34
SCSN 105.6 30.5 −8.83 34.30 1.50 0.04 0.11 0.21
SCSP 103.6 32.6 −10.03 41.08 1.43 0.14 0.15 0.34
SCTQ 102.8 30.1 −9.66 35.94 2.92 0.18 0.29 0.45
SCXC 99.8 28.9 −16.99 41.52 2.82 0.05 0.12 0.34
SCXD 102.4 28.3 −14.15 38.71 0.17 0.04 0.09 0.19
SCXJ 102.4 31.0 −6.05 40.86 0.30 0.35 0.24 0.19
SCYX 102.5 28.7 −13.09 38.12 −0.91 0.13 0.16 0.30
SCYY 101.5 27.4 −17.60 38.62 0.80 0.10 0.10 0.16
SDCY 119.5 36.8 −11.46 31.38 1.84 0.11 0.07 0.47
SDJX 116.4 35.4 −11.06 32.74 1.82 0.13 0.08 0.30
SDLY 118.3 35.0 −12.42 31.71 2.72 0.94 0.28 0.70
SDQD 120.3 36.1 −11.34 31.78 1.24 0.05 0.05 0.19
SDRC 122.4 37.2 −11.38 31.25 −2.27 0.10 0.14 0.65
SDYT 121.4 37.5 −10.96 30.29 0.68 0.17 0.07 0.18
SDZB 118.0 36.8 −11.28 32.24 0.92 0.27 0.17 0.42
SHA2 121.2 31.1 −11.77 31.93 −1.55 0.15 0.17 0.48
SHAO 121.2 31.1 −13.32 32.16 −1.91 0.25 0.24 0.27
SNAK 108.8 32.8 −9.81 34.62 1.45 0.25 0.28 0.40
SNMX 106.7 33.1 −10.57 35.06 −1.39 0.68 0.28 0.82
SNTB 107.3 34.1 −9.60 35.28 1.06 0.06 0.10 0.43
SNXY 108.4 35.2 −9.27 34.18 1.28 0.06 0.06 0.37
SNYA 109.5 36.6 −10.47 32.08 2.16 0.12 0.59 0.27
SUIY 130.9 44.4 −12.49 24.52 −1.14 0.11 0.18 0.40
SXCZ 113.2 36.2 −9.58 30.04 1.34 0.25 0.29 0.23
SXGX 111.9 36.3 −9.69 32.54 3.02 0.36 0.10 0.61
SXKL 111.6 38.8 −8.84 32.73 2.97 0.12 0.06 0.71
SXLF 111.4 36.1 −10.14 33.63 1.77 0.08 0.09 0.39
SXLQ 114.0 39.4 −10.32 32.39 1.87 0.05 0.05 0.25
SXTY 112.4 37.7 −9.21 33.87 −0.28 0.47 0.58 0.51
SXXX 111.2 35.1 −8.69 33.03 1.38 0.44 0.14 0.47
SXYC 112.9 37.6 −10.62 32.55 2.26 0.09 0.09 0.55
TAIN 117.1 36.2 −11.73 30.76 0.92 0.10 0.05 0.27
TASH 75.2 37.8 23.46 25.44 1.34 0.15 0.15 0.35
TJBD 117.4 39.7 −11.65 30.62 1.11 0.20 0.04 0.29
TJBH 117.7 39.1 −11.92 31.96 −16.82 0.49 0.24 0.28
URU2 87.6 43.8 5.17 30.83 1.41 0.18 0.23 0.79
URUM 87.6 43.8 6.89 32.52 1.63 0.34 0.36 0.43
WUHN 114.4 30.5 −10.73 32.28 0.03 0.28 0.20 0.51
WUSH 79.2 41.2 15.17 30.30 1.16 0.12 0.17 0.21
XIAA 109.0 34.2 −6.77 30.06 −5.10 0.30 0.47 0.31
XIAG 100.3 25.6 −16.68 29.96 0.67 0.14 0.25 0.33
XIAM 118.1 24.4 −12.82 32.57 0.61 0.14 0.12 0.26
XJAL 88.1 47.9 3.72 28.83 0.31 0.37 0.30 1.16
XJBC 78.8 39.8 17.37 29.21 0.49 0.11 0.10 0.21
XJBE 86.9 47.7 3.34 29.20 −0.14 0.09 0.12 0.25
XJBL 75.0 38.7 21.97 24.10 −0.41 0.25 0.35 0.65
XJBY 83.7 42.8 7.75 31.59 1.08 0.15 0.26 0.33
XJDS 84.9 44.3 6.68 31.88 0.72 0.08 0.09 0.20
XJFY 89.5 47.0 3.15 29.58 0.20 0.24 0.10 0.35
XJHT 79.0 37.2 18.38 26.28 0.31 0.22 0.12 0.24
XJJJ 94.3 42.8 0.54 32.55 1.45 0.07 0.05 0.17

XJKC 83.0 41.7 10.92 32.23 −1.12 0.09 0.10 0.24
XJKE 86.2 41.8 8.06 31.22 −0.40 0.17 0.28 0.53
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Table A2. Cont.

Station Lat. (◦) Lon. (◦)
Velocity (mm/year) Velocity Uncertainty (mm/year)

N E U N E U

XJML 90.3 43.8 3.39 32.19 1.13 0.08 0.14 0.16
XJQH 91.0 46.2 2.54 31.35 0.51 0.11 0.13 0.15
XJQM 85.5 38.1 8.63 28.83 −0.10 0.32 0.19 0.20
XJRQ 88.2 39.0 6.62 29.97 −0.67 0.06 0.04 0.11
XJSH 86.1 44.2 5.00 31.66 1.49 0.07 0.07 0.22
XJSS 90.3 42.9 3.84 32.27 −0.27 0.07 0.06 0.12
XJTC 82.9 46.8 2.38 28.37 0.00 0.15 0.21 0.39
XJTZ 83.7 39.0 11.41 29.25 0.54 0.31 0.04 0.18
XJWL 86.7 42.9 6.84 32.33 1.10 0.17 0.05 0.21
XJWQ 81.0 45.0 4.22 29.32 1.22 0.14 0.06 0.22
XJWU 75.2 39.7 14.86 28.82 −0.20 0.18 0.26 0.37
XJXY 83.3 43.4 7.17 30.65 1.99 0.05 0.05 0.40
XJYC 77.4 37.9 20.92 27.25 −0.80 0.18 0.11 0.29
XJYT 82.0 36.4 13.85 25.58 −0.42 0.30 0.20 0.34
XJZS 80.4 42.7 7.99 31.48 1.70 0.09 0.16 0.14
XNIN 101.8 36.6 −3.76 37.88 −0.36 0.17 0.13 0.23
XZAR 87.2 29.3 21.06 40.03 3.06 0.19 0.39 0.33
XZCD 97.2 31.1 −4.74 50.20 1.93 0.11 0.15 0.71
XZCY 97.5 28.7 −9.34 42.22 4.20 0.17 0.18 0.52
XZDX 91.1 30.5 13.77 47.03 2.31 0.29 0.10 0.59
XZGE 80.1 32.5 17.96 30.82 0.99 0.08 0.10 0.30
XZNQ 92.1 31.5 9.10 50.73 0.86 0.29 0.18 0.70
XZRK 88.9 29.2 21.54 42.39 2.27 0.18 0.16 0.32
XZRT 79.7 33.4 17.72 30.21 1.48 0.28 0.21 0.76
XZYD 88.9 27.4 29.84 39.90 −0.26 0.56 0.34 0.90
XZZB 84.2 29.7 22.35 36.60 2.00 0.60 0.26 0.68
XZZF 86.9 28.4 24.02 40.01 4.74 0.31 0.22 0.98
YANC 107.4 37.8 −9.43 31.99 1.60 0.11 0.09 0.21
YNCX 101.5 25.0 −16.38 31.63 1.40 0.06 0.08 0.16
YNDC 103.2 26.1 −12.33 34.99 1.82 0.12 0.09 0.50
YNHZ 103.3 26.4 −11.45 34.91 3.49 0.29 0.21 0.64
YNJD 100.9 24.4 −16.11 29.06 1.91 0.54 0.49 0.43
YNJP 103.2 22.8 −8.42 34.33 0.87 0.35 0.15 0.46
YNLA 100.0 22.6 −9.92 28.61 −0.78 0.41 0.70 0.83
YNLC 100.1 23.9 −13.21 29.85 0.34 0.17 0.71 0.22
YNLJ 100.0 26.7 −18.19 32.54 1.16 0.07 0.06 0.13

YNMH 100.5 21.9 −9.93 28.26 1.05 0.76 1.01 0.57
YNMJ 101.7 23.4 −14.35 31.01 1.98 0.39 0.25 0.30
YNML 103.4 24.4 −9.85 35.53 1.15 2.33 0.76 0.44
YNMZ 103.4 23.4 −9.13 33.72 −0.25 0.34 0.27 0.32
YNRL 97.8 24.0 −7.87 23.50 1.10 0.26 0.30 0.64
YNSD 99.2 24.7 −13.70 26.88 1.85 0.09 0.08 0.33
YNSM 101.0 22.7 −13.65 29.20 −1.84 2.73 1.00 0.43
YNTC 98.4 25.0 −10.34 24.65 1.95 0.09 0.43 0.31
YNTH 102.8 24.1 −13.11 33.04 2.40 0.13 0.19 0.21
YNWS 104.2 23.4 −10.57 32.14 3.82 0.87 0.89 0.18
YNYA 101.3 25.7 −16.45 33.30 2.15 0.04 0.10 0.15
YNYM 101.9 25.7 −16.97 33.83 1.72 0.27 0.13 0.18
YNYS 100.8 26.7 −16.97 35.98 1.95 0.08 0.17 0.17
YNZD 99.7 27.8 −20.66 34.02 −1.76 0.13 0.18 0.38
YONG 112.3 16.8 −10.80 29.73 0.76 0.40 0.40 0.95
ZHNZ 113.1 34.5 −11.40 32.76 2.42 0.06 0.13 0.33
ZJJD 119.3 29.5 −11.71 33.07 0.56 0.07 0.10 0.75

ZJWZ 120.8 27.9 −11.67 32.37 0.10 0.07 0.13 0.38
ZJZS 122.0 30.1 −11.29 32.32 0.05 0.11 0.11 0.27
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