KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Verlagsausgabe
DOI: 10.5445/IR/1000086316
Veröffentlicht am 08.10.2018
Originalveröffentlichung
DOI: 10.1038/s41535-018-0118-z

Microscopic origin of Cooper pairing in the iron-based superconductor Ba₁₋ₓKₓFe₂As₂

Böhm, Thomas; Kretzschmar, Florian; Baum, Andreas; Rehm, Michael; Jost, Daniel; Hosseinian Ahangharnejhad, Ramez; Thomale, Ronny; Platt, Christian; Maier, Thomas A.; Hanke, Werner; Moritz, Brian; Devereaux, Thomas P.; Scalapino, Douglas J.; Maiti, Saurabh; Hirschfeld, Peter J.; Adelmann, Peter; Wolf, Thomas; Wen, Hai-Hu; Hackl, Rudi

Abstract:
Resolving the microscopic pairing mechanism and its experimental identification in unconventional superconductors is among the most vexing problems of contemporary condensed matter physics. We show that Raman spectroscopy provides an avenue towards this aim by probing the structure of the pairing interaction at play in an unconventional superconductor. As we study the spectra of the prototypical Fe-based superconductor Ba1−xKxFe2As2 for 0.22 ≤ x ≤ 0.70 in all symmetry channels, Raman spectroscopy allows us to distill the leading s-wave state. In addition, the spectra collected in the B1g symmetry channel reveal the existence of two collective modes which are indicative of the presence of two competing, yet sub-dominant, pairing tendencies of dx2−y2 symmetry type. A comprehensive functional Renormalization Group and random-phase approximation study on this compound confirms the presence of the two sub-leading channels, and consistently matches the experimental doping dependence of the related modes. The consistency between the experimental observations and the theoretical modeling suggests that spin fluctuations play a significant ro ... mehr


Zugehörige Institution(en) am KIT Institut für Festkörperphysik (IFP)
Publikationstyp Zeitschriftenaufsatz
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2397-4648
URN: urn:nbn:de:swb:90-863167
KITopen ID: 1000086316
HGF-Programm 43.21.01; LK 01
Erschienen in npj quantum materials
Band 3
Heft 1
Seiten Article No.48
Vorab online veröffentlicht am 20.09.2018
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page