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Abstract 

The development of a multi-physics continuum model to investigate the operation of solid 

oxide cells converting chemical to electrical energy and vice-versa has been detailed in this 

study. Solid oxide cells are complex devices involving a myriad of physical and chemical 

phenomena on multiple scales: from single particles to stacks of multiple cells. 

Consequently, to identify the bottleneck in performance and lifetime, a multi-scale 

hierarchical approach is necessary to couple detailed reaction chemistry at the nanometer 

scale with bulk transport at the micrometer scale for a single cell and millimeter-meter 

scale for a cell stack. The model establishes a consistent mathematical framework to 

describe the physics over all these scales by solving the governing equations of mass, 

momentum, charge and energy conservation and treating heterogeneous reactions on the 

electrode surface and electrochemical reactions at the electronic-ionic phase interfaces as 

volumetric source terms. The various features of the model are demonstrated using two 

examples. First, the production of syngas (H2+CO) via co-electrolysis of H2O and CO2 in 

a solid oxide button cell, single repeating unit and cell stack is investigated to unravel the 

repercussion of scaling up on performance, capital cost and lifetime. To obtain realistic 

reaction kinetic fit parameters, the model reproduced polarization, temperature and outlet 

gas composition measurements made by Fu et al. on single Ni-GDC|YSZ|LSM-YSZ cells 

[ECS Transactions 35, 2949-2956 (2011)]. Subsequently, the calibrated model was used to 

generate 3-D contour plots to map the performance of a single repeating unit of a F-design 

stack from Forschungszentrum Jülich [Fuel Cells 7, 204-210 (2007)] producing two 

distinct output H2:CO ratios suitable for Fischer-Tropsch synthesis and hydroformylation. 

A parametric analysis revealed optimal operating regimes for the repeating unit and 

underscored the importance of residence time, operating voltage and temperature on 

efficiency and syngas yield. When scaled up from cells to commercial-scale stacks, running 

at highest efficiency minimized temperature gradients across the stack but the low current 

densities led to higher capital costs and larger electrolyzer areas required to produce 

commercial quantities of syngas. Simulating stack operation over a series of operating 

regimes also revealed the stack transients to be governed by heat transport in lieu of the 

faster mass and charge transport. Having established the analytical and optimization 

capabilities of the model, the second example served to enhance the universality of the 
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model by obtaining kinetic parameters intrinsic to a material and independent of electrode 

microstructure. To that end, the model simulated a solid oxide half-cell comprising of a 

porous LSM-YSZ composite air electrode sintered to a dense YSZ electrolyte to investigate 

the oxygen reduction/evolution reaction and thereby acquire kinetics intrinsic to the LSM-

YSZ composite. The electrochemical reduction of O2 was modeled using three candidate 

elementary kinetic mechanisms. Each mechanism included parallel surface and bulk 

pathways for O2 reduction and were driven by three different electric phase potentials. The 

mechanisms were compared against three sets of electrochemical impedance spectra and 

polarization curves measured by Barbucci et al. [J. Appl. Electrochem, 39, 513–521 

(2009)], Cronin et al. [J. Electrochem. Soc., 159(4), B385–B393 (2012)] and Nielsen and 

Hjelm [Electrochimica Acta, 115, 31–45 (2014)] over a wide range of operating 

temperatures (873 K to 1173 K), inlet O2 concentrations (5% to 100%) and overpotentials 

(-1V to +1V). Two of the three mechanisms could quantitatively reproduce the three sets 

of experiments without reparametrizing the kinetics. Yet on analyzing their kinetic and 

thermodynamic parameters, the mechanism postulating the chemisorption of gas-phase O2 

on LSM to form the superoxo-like adsorbate O2
− was determined to be the most realistic. 

These two examples help highlight a modeling tool suitable for solid oxide cell and stack 

design, monitoring and control. 
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Zusammenfassung 

In dieser Arbeit wurde ein physikalisches Mehrskalen-Kontinuum-Modell zur 

Untersuchung von Feststoffoxidzellen (Solide Oxide Cells, SOCs), welche chemische in 

elektrische Energie oder umgekehrt umwandeln können, entwickelt und detailliert 

untersucht. Zur Beschreibung von Feststoffoxidzellen sind eine Vielzahl unterschiedlicher 

chemischer und physikalischer Prozesse in verschiedenen Größenordnungen zu 

berücksichtigen: von einzelnen Partikeln bis zur Kombination von mehreren Zellen zu sog. 

Stacks („Stapel“). Um die Leistungs- und Lebensdauerbeschränkungen solcher Zellen 

aufzudecken, wird eine hierarchische Multiskalen-Herangehensweise benötigt, die die 

chemischen Reaktionen im Nanometer-Bereich, die Transportphänomene im Mikrometer-

Bereich für eine einzelne Zelle bzw. im Millimeter-bis-Meter-Bereich für einen Stack 

koppelt. Das angewandte Modell bildet einen konsistenten mathematischen Rahmen, um 

die physikalischen Prozesse in all diesen Größenordnungen zu beschreiben. Dabei werden 

die fundamentalen Gleichungen für den Massen-, Impuls-, Ladungs- und Energieerhalt 

gelöst, wobei die heterogenen Reaktionen auf der Elektrodenoberfläche und die 

elektrochemischen Reaktionen in den elektronisch-ionischen Grenzflächen als 

volumetrische Quellenterme behandelt werden. Die Eigenschaften des Modells werden an 

zwei Beispielen demonstriert. Zuerst wird die Produktion von Wassergas (H2+ CO) via Co-

Elektrolyse von H2O und CO2 in einer Feststoffoxid-Knopfzelle, einer einzelnen Repeating 

Unit („Wiederholungseinheit“) und einem Stack untersucht, um die Auswirkungen der 

Hochskalierung auf Leistung, Kapitalkosten und Lebensdauer aufzudecken. Um 

realistische kinetische Parameter zu erhalten, wurde das Modell an Messdaten für die 

Polarisierung, die Temperatur und die Gaszusammensetzung am Ausgang angepasst, 

welche von Fu et al. in einer Einzel- Ni-GDC|YSZ|LSM-YSZ-Zelle gemessen wurden 

[ECS Transactions 35, 2949-2956 (2011)]. Außerdem wurde das so kalibrierte Modell 

verwendet, um 3D-Kontour-Plots zu erstellen, welche die Leistung einer einzelnen Zelle 

eines F-Design-Stacks des Forschungszentrums Jülich [Fuel Cells 7, 204-210 (2007)] 

abbilden. Dabei wurden am Ausgang zwei verschiedene H2/CO-Verhältnisse gewählt, 

welche kommerziell für die Hydroformylierung und die Fischer-Tropsch-Synthese zum 

Einsatz kommen. Eine parametrische Analyse zeigte die optimalen Betriebsbedingungen 

für eine Repeating Unit auf, wodurch die Bedeutung von Aufenthaltsdauer, Spannung und 
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Temperatur für die Effizienz und die Wassergas-Ausbeute unterstreichen wird. Im Falle 

einer Hochskalierung von einzelnen Zellen zu kommerziell eingesetzten Stacks führte der 

Betrieb bei höchster Effizienz zu den geringsten Temperaturgradienten innerhalb des 

Gerätes. Jedoch die geringen Stromdichten führten zu höheren Kapitalkosten und größeren 

Elektrolysator-Flächen für eine industrielle Wassergas-Produktion. Die Simulation eines 

Stacks für verschiedene Betriebspunkte zeigte auf, dass der Stack im Bereich des schnellen 

Massen- und Ladungstransports vom Wärmetransport limitiert wird. Nachdem die 

analytischen und die Optimierungsmöglichkeiten eruiert wurden, dient das zweite Beispiel 

dazu, die Universalität des Modells zu verbessern. Dafür wurden kinetische Parameter 

bestimmt, welche intrinsisch für ein Material und damit unabhängig von der Mikrostruktur 

der Elektrode sind. Zuletzt wurde das Modell für eine Simulation einer Feststoffoxid-

Halbzelle genutzt, welche aus einer porösen LSM-YSZ-(Sauerstoff)-Elektrode, die auf 

einen dichten YSZ-Elektrolyten gesintert wurde, besteht. Dabei wurde die Kinetik der 

Sauerstoffreduktionsreaktion untersucht, wobei eine intrinsische Kinetik für die YSM-

LSZ-Elektrode erhalten wurde. Für die Modellierung der elektrochemischen Reduktion 

von O2 wurden drei verschiedene Mechanismen verwendet. Jeder Mechanismus 

beinhaltete hierbei den parallelen Transport von Sauerstoff-Spezies über die 

Partikeloberfläche und durch das Teilchen hindurch, wobei drei verschiedene elektrische 

Potentiale die Reduktion antrieben. Die Mechanismen wurden mit drei Sets von 

elektrochemischen Impedanz-Spektren und Polarisationskurven verglichen, welche von 

Barbucci et al. [J. Appl. Electrochem, 39, 513–521 (2009)], Cronin et al. [J. Electrochem. 

Soc., 159(4), B385–B393 (2012)] und Nielsen und Hjelm [Electrochimica Acta, 115, 31–

45 (2014)] über einen weiten Bereich von Betriebstemperaturen (873 K bis 1173 K), 

Einlass-O2-Konzentrationen ( 5% bis 100%) und Überpotentialen (-1 V bis +1 V) 

aufgenommen wurden. Zwei der drei Mechanismen konnten quantitativ diese drei 

experimentellen Sets ohne neue Parametrisierung der Kinetik wiedergeben. Durch Analyse 

der thermodynamischen Parameter und der Kinetik konnte jener Mechanismus, der die 

Chemisorption eines gasförmigen O2-Moleküls unter Bildung einer Super-Oxo-O2
 --

Spezies auf der LSM-Oberfläche postuliert, als der am besten der Realität entsprechende 

identifiziert werden. Diese zwei Beispiele heben somit hervor, dass diese Modellierung für 

SOC- bzw. Stack-Design, -Überwachung und -Steuerung ein geeignetes Werkzeug 

darstellt.  
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Nomenclature 

Latin 

aC carbon activity factor 

A specific area [m-1] or pre-exponential factor for reaction rate constant 

B permeability [m2] 

c volumetric concentration [mol m-3] or surface concentration [mol m-2] 

C capacitance per unit area [F m-2] 

Cp specific heat capacity at constant pressure [J kg-1 K-1] 

d diameter [m] 

D diffusion coefficient [m2 s-1] 

D* tracer self-diffusion coefficient [m2 s-1] 

D*,0 tracer self-diffusion coefficient in pure oxygen [m2 s-1] 

E lumped electric potential difference [V] 

𝐸a Activation energy 

𝐸CO2  Activation energy for CO2 electrochemical reduction [J mol-1] 

𝐸H2O Activation energy for H2O electrochemical reduction [J mol-1] 

𝐸O2  Activation energy for O2 electrochemical reduction [J mol-1] 

F Faraday constant [C mol-1] 

Fede→ic view factor for thermal radiation from electrode to interconnect 

G0 standard molar Gibbs free energy [J mol-1] 

Gz Graetz number 

h elements of matrix H 

hconv heat transfer coefficient due to convection [W m-2 K-1] 

hsurr heat transfer coefficient of the surroundings due to convection [W m-2 K-1] 

H 
matrix to evaluate diffusion coefficients used in Dusty Gas Model or 

molar enthalpy [J mol-1] 

i current density [A m-2] 

J molar flux [mol m-2 s-1] 

kb backward reaction rate constant 

kf forward reaction rate constant 
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K total number of species 

l lattice constant 

L length [m] 

�̇� mass flow rate per unit area [kg m-2 s-1] 

�̇�syn total syngas produced by a single planar cell in a day [kg day-1] 

𝑛e number of electrons 

Nu Nusselt number 

OO
x  lattice oxygen 

p pressure [Pa] 

Pr Prandtl number 

�̇� heat flux [W m-2] 

�̇�𝑖 net heat flux due to current [W m-2] 

r reaction rate [mol m-2 s-1] 

R universal gas constant [J mol-1 K-1] 

Rb backward reaction 

Rcontact contact resistance [Ω m2] 

Rf forward reaction 

Rp polarization resistance [Ω m2] 

Rrad thermal resistance to radiation [m-2] 

Re Reynolds number 

S molar entropy [J mol-1 K-1] 

�̇�𝑘 production rate of species k due to reactions [mol m-2 s-1] 

Sc Schmidt number 

t time [s] or thickness [m] 

T temperature [K] 

Tsurr temperature of the surroundings [K] 

u velocity [m s-1] 

Vm molar volume of lattice 

VO
∙∙ lattice oxygen vacancy 

vol volume per unit length [m2] 

w width [m] 

wfac weighting factor 
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W molecular weight [kg mol-1] 

X species mole fraction 

y spatial coordinate [m] 

Y species mass fraction 

z spatial coordinate [m] 

□ vacant site 

Greek 

𝛽 charge transfer coefficient  

𝛾 percolation probability 

𝛾syn syngas yield 

Γ density of available active sites [mol m-2] 

𝛿 Kronecker delta 

𝛿s mean distance for surface diffusion 

Δ difference of quantities 

𝜖 porosity 

𝜖rad thermal radiation emissivity  

𝜁 number of adsorption sites 

𝜂 overpotential [V] or thermal efficiency 

𝜃 surface coverage 

𝜅 temperature coefficient for pre-exponential factor 

𝜆 thermal conductivity [W m-1 K-1] 

𝜇 viscosity [kg m-1 s-1] 

𝜈 stoichiometric coefficient or vibrational frequency 

𝜈f volume fraction 

𝜉 surface coverage coefficient for activation energy 

𝜌 density [kg m-3] 

𝜎 charge conductivity [S m-2] 

𝜎𝑆𝐵 Stefan-Boltzmann constant [W m-2 K-4] 

𝜏const time constant [s] 

𝜏fac tortuosity factor  

𝜙 local phase potential [V] 
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∇ gradient of vector 

Subscripts 

2PB two-phase boundary  

3PB three-phase boundary  

a anodic 

ae air electrode 

ae/elyt interface between the air electrode and the electrolyte 

act activation 

b bulk phase of a material 

c cathodic 

ch channel 

cell cell 

CO2 CO2 reaction pathway 

CT charge transfer  

diff diffusion 

DL electric double layer at the interface between electronic and ionic phases 

el electronic phase 

el/io interface between electronic and ionic phases 

ede electrode 

elyt electrolyte 

echem electrochemical reactions 

fe fuel electrode 

fe/elyt interface between the fuel electrode and the electrolyte 

g gas phase 

gas/ede interface between the gas phase and the electrode surface 

hchem heterogeneous surface reactions 

i reaction index or inlet 

ic interconnect 

io ionic phase 

h hydraulic 

H2O H2O reaction pathway 
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j species index 

k species index 

Kn Knudsen 

l species index 

m electric phase index 

o outlet 

ohm ohmic 

p particle 

pore pore 

plate interconnect plate 

q stack component index 

r reaction 

RU repeating unit 

rad radiation 

rev reversible 

rib interconnect rib 

s solid phase or surface 

Superscripts 

DGM pertaining to the Dusty Gas Model 

e effective property 

el electronic phase 

eq equilibrium 

io ionic phase 

V volumetric quantity 

′ pertaining to reactants 

′′ pertaining to products 
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Chapter 1 

Introduction 

Solid Oxide Cells (SOC) offer an efficient, decentralized and clean alternative to 

conventional power and chemical generation processes. SOCs are the high temperature 

counterparts of the more well-known low temperature polymer electrolyte membrane 

(PEM) cells and are theoretically more energy and power dense than both PEM cells and 

Li-ion batteries. They can either be run in “fuel cell” mode i.e. Solid Oxide Fuel Cell 

(SOFC) or in “electrolysis” mode i.e. Solid Oxide Electrolysis Cell (SOEC). In a SOFC, 

the fuel, typically H2, flows over the anode and an oxidant, typically air, flows over the 

cathode. The two electrodes are separated by a dense O2- ion-conducting electrolyte which 

is impervious to gas flow. The oxygen in the air consume electrons supplied by the cathode 

thereby rendering it positive. The O2- ion so created, are conducted across the electrolyte 

to the anode where they oxidize H2 to form steam and release electrons thereby rendering 

the anode negative. The electrons so released are collected by current collectors or 

interconnects and passed through an external circuit. The exact opposite sequence of events 

characterizes a SOEC. The electrons supplied by an external source to the now negative 

cathode reduce an incoming flow of steam into H2 and O2-. The O2- ions are transmitted 

through the electrolyte to the positive anode where they oxidize to form O2 gas and release 

electrons back to the external circuit. Ergo. the reducing electrode (cathode) and oxidizing 

electrode (anode) along with their polarity are flipped when going from SOFC to SOEC 

mode as illustrated in Fig. 1.1. Thus, to avoid confusion, the two electrodes are henceforth 

referred to in the entire manuscript as the fuel electrode denoting the electrode where H2 is 

consumed or produced and the air electrode where O2 is consumed or produced. As seen in 

the figure, the fuel electrode is always negative, and the air electrode is always positive. 

The underlying transport phenomena taking place in the co-flow planar cell shown in the 

figure include gas transport in the channels, gas diffusion through the porous electrode 

microstructures, and electron and ion transport through the interconnected clusters of 

electron and ion- conducting phases in the electrodes. The various modes of transport are 
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Figure 1.1. A schematic showing the different components and the underlying processes of 

(a) Solid Oxide Fuel Cell operating on H2 and air and (b) Solid Oxide Electrolysis Cell 

operating on steam and air. 

subsequently coupled to heterogeneous surface reactions in the fuel electrode, for example 

in direct internal reforming (DIR) cells running on methane, and electrochemical reactions. 

These physico-chemical processes form an intricate web with any one of them being 

responsible for limiting the performance of the cell. Thus, a computational model capable 

of untangling this intricate web is highly useful as both a tool for analysis and diagnostics 

as well as a predictive tool for design with a focus on improving the performance, reliability 

and lifetime of the device. 
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In the present work, the ongoing efforts of developing such a modeling tool are described. 

The features, capabilities and pitfalls of the model are illustrated using two very different 

example studies. The first deals with the modeling of a solid oxide co-electrolysis cell and 

stack of cells. This example illustrates the hierarchical nature of the modeling approach 

taken and analyzes the outcomes and ramifications of scaling up from lab-scale button cells 

to commercial stacks. The second example investigates the O2 reduction/evolution reaction 

in a half-cell or symmetrical cell to isolate the effects of the random porous electrode 

microstructure, and uncover kinetics intrinsic to the material, thereby moving us a step 

closer to truly universal predictive models. The motivation behind picking these two 

modeling cases is expounded further in the following sub-sections.   

1.1 Co-electrolysis of CO2 and H2O
1 

Unlike PEM cells, SOECs can be used for the co-electrolysis of steam and carbon dioxide. 

The higher operating temperature allows for the use of cheaper, more stable and less active, 

non-noble metal catalysts, thereby preventing CO-poisoning [1]. Additionally, higher 

temperatures lead to higher reaction rates thereby reducing the electrical energy demand 

since a notable amount of reaction energy is supplied by heat [2]. 

Subsequently, the industrial implementation of SOECs is very promising, as waste heat 

from other processes can be used to heat the cells leading to an increase in both thermal 

and cost efficiency. Here, co-electrolysis of steam and carbon dioxide is of special interest. 

The two reactants, typically waste products in an industrial plant, are turned into “syngas” 

(CO+H2), a valuable and very commonly used reagent in the chemical industry.  

Syngas is used to produce synthetic fuels or other liquid hydrocarbons via Fischer-Tropsch 

synthesis or for methanol synthesis and hydroformylation [3]. In today’s industry, it is 

mainly produced in large scale plants by either catalytic steam reforming (STR), auto-

thermal reforming (ATR) or catalytic partial oxidation (CPOX) of hydrocarbons, typically 

methane [3,4]. While there have been considerable efforts to improve these processes to 

produce hydrogen for cars and other fuel cell applications [5–7], all of them rely on natural 

gas or other fossil fuels as a resource. In addition, these processes require a relatively big 

                                                 
1 Parts of this section have been taken from A. Banerjee, Y. Wang, J. Diercks and O. Deutschmann, 

Hierarchical Modeling of Solid Oxide Cells and Stacks producing Syngas via H2O/CO2 Co-electrolysis for 

Industrial Applications, Appl. Energy 230 (2018) 996-1013. 
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scale to be capital cost effective and the produced H2:CO ratio cannot be easily adjusted, 

leading to different processes and plants being required to produce syngas for different 

applications [8]. In contrast to these conventional methods, co-electrolyzers consume 

carbon-dioxide instead of fossil fuels, can produce an adjustable H2:CO ratio [9], and can 

be conveniently decentralized and varied in scale by the stacking of unit cells. 

As renewable energy sources are increasingly integrated in electricity grids, the demand 

for flexible electricity storage to buffer the more volatile power production of wind and 

solar plants grows. Utilizing solid oxide cells for co-electrolysis offers a flexible solution 

to store the excess electricity as an industrially valuable product whilst using industrial 

waste as a reactant. The prospect of chemically converting carbon dioxide, a “greenhouse 

gas”, into polymers, hydrocarbons and base chemicals without relying on fossil fuels is 

highly promising, especially when renewable energy is used to operate the cell. 

In light of this, the performance of SOECs as single cells and cell stacks for co-electrolysis 

has been experimentally investigated by several groups [10–13]. Chen et al. tested different 

oxygen electrodes in a 10-cell stack and showed the feasibility of long term operation [10] 

while Reytier et al. presented a high performance stack design using 10 and 25 cells [11]. 

Cinti et al. utilized both model and experiment to uncover that chemical as well as 

electrochemical reactions contribute to the obtained syngas ratio and that it can be easily 

adjusted by the inlet H2O/CO2 ratio as well as thermodynamic operating conditions [12]. 

However, Nguyen et al. have found degradation in co-electrolysis to be a little higher than 

in steam electrolysis in long term tests of over 8000 hours [13].   

Since the various physico-chemical phenomena taking place inside a solid oxide co-

electrolysis cell join together to form a complex interconnected network, several modeling 

studies have also been performed to help better understand these devices and uncover the 

processes limiting their performance [2,14–19]. Xie et al. and Li et al. developed models 

to understand the reaction and transport processes of a SOEC during co-electrolysis leading 

to insights on surface species and coverage, coking processes and adsorption/desorption 

rates [14,15]. Aicart et al. found the anode activation overpotential, i.e. the oxygen 

evolution reaction, to be the main contributor to the cell voltage increase [16] while 

Kazempoor et al. elucidated the importance of contact resistance, activation polarization 

and the influence of the water-gas shift reaction on the electrolyzer performance [17]. Ni 
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developed a 2-D thermal model to investigate the heat/mass transfer dependencies for 

planar cells [18] while Luo et al. used a 2-D thermal model to analyze and improve the 

efficiency and conversion of tubular cells [2,19]. 

However, to achieve commercial yields of product gases, single cells need to be stacked 

into larger units. Given the size of an industrially used SOEC stack, the behavior of each 

cell is dependent on its position in the stack because of temperature gradients resulting 

from heat exchange with the surroundings. Since an increase in temperature improves 

reaction kinetics, gas transport through the porous electrodes, and oxygen ion transport 

through the solid electrolyte, it might not be sufficient to model an isolated unit cell or 

repeating unit under isothermal or adiabatic conditions as reported in [2,18–20] to analyze 

stack performance. 

Due to co-electrolysis in ceramic cells being a relatively new field of study, the research 

focus has primarily been on improving materials and cell design, with very few 

publications focusing on the integration of the process into larger systems. Fu et al. 

performed an economic assessment of a co-electrolyzer to produce syngas for a commercial 

Fischer-Tropsch plant using process modeling and sensitivity analysis [21].  A systems-

level model has also been used to combine a co-electrolysis plant and a Fischer-Tropsch 

plant in an industrial environment to calculate system efficiency and analyze production 

costs [22]. However, to the author’s best knowledge, the effect of transitioning from lab-

scale unit cells to commercial scale stacks on cost, performance and reliability has not yet 

been investigated. 

1.2 Oxygen reduction/evolution reaction2 

One of the major stumbling blocks towards commercialization of SOCs is the optimal 

design of air electrodes and selection of materials that readily catalyze the oxygen 

reduction/evolution reaction (ORR) [23]. In fact, polarization resistance due to slow ORR 

kinetics is widely acknowledged to be the dominant source of losses especially in the low-

intermediate temperature range of operation for SOCs [24,25] as well as for solid oxide co-

electrolysis cells [13,16,26]. Acceptor-doped transition metal oxides with high electron 

                                                 
2 Parts of this section are taken with permission from [49] A. Banerjee, O. Deutschmann, Elementary kinetics 

of the oxygen reduction reaction on LSM-YSZ composite cathodes, J. Catal. 346 (2017) 30-49. 
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conductivities serve as attractive low cost alternatives to noble metals for use as air 

electrodes owing to their superior oxygen exchange coefficients [27,28]. Lanthanum 

strontium manganite (LSM) is one such material. Although newer materials have been 

developed with superior catalytic activity towards O2 reduction, LSM remains 

technologically relevant due to its excellent blend of catalytic activity, thermal and 

mechanical stability, and compatibility with yttria-stabilized zirconia (YSZ), a traditional 

SOC electrolyte [24]. However, owing to its poor ionic conductivity, the active area for 

catalytic reaction is insufficient in single phase LSM electrodes. A potential solution is the 

introduction of an ionic YSZ phase resulting in a porous LSM-YSZ composite. The state 

of the art LSM-YSZ composite air electrodes perform significantly better than the single 

phase LSM air electrodes due to a much larger utilization region [29–31].  

A vital component in improving the design and performance of LSM-YSZ composite air 

electrodes is a deeper understanding of the underlying ORR mechanism. To that end, 

electrochemical impedance spectroscopy (EIS) has emerged as a powerful measurement 

technique to spell out the fundamental processes occurring in an electrode. Numerous 

experimental studies employing EIS, as reviewed comprehensively by Adler [24], have 

been performed to try and gain deeper insights into the reaction pathways and rate-limiting 

steps for oxygen reduction on SOFC air electrodes. However, the measured spectra are 

complex, influenced by many factors and thus difficult to interpret, especially for 

composite electrodes [32]. 

From a modeling standpoint, various quantum chemical and molecular dynamics studies 

have been conducted on non-stoichiometric oxides in general [33–35], and LSM in 

particular [36–38], to try and uncover oxygen reduction kinetics from first principles. 

While these studies are crucial to determining the stability and energy of different transition 

states and reaction intermediates, the microscopic particle simulations are unable to 

simulate macroscopic measures of performance like impedance spectra and polarization 

curves. This limitation of the quantum chemical approach is overcome by continuum 

models that serve as a bridge between microscale molecular simulations and macroscale 

impedance measurements. Multi-physics based continuum models, employing elementary 

kinetics informed by density functional theory (DFT), have already been used to simulate 

impedance spectra and polarization curves for a few fuel and air electrodes [39–42]. Yet, 

owing to the complexity and randomness the porous microstructure, none of these 
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mechanisms have been demonstrated to be ‘intrinsic’, i.e. capable of reproducing large sets 

of experimental data from distinct and independent sources for a given reaction system and 

for a given material. This fact precludes SOC models from being a universal predictive 

design tool, since the kinetic models are only valid for the set of experiments against which 

they were calibrated. 

The use of elementary kinetics is also not without its own challenges. Kinetic rate constants 

comprising of pre-exponential factors and activation energies for all elementary steps must 

be specified, alongside thermodynamic parameters like enthalpies and entropies of all 

reacting species, to ensure a thermodynamically consistent mechanism. Therefore, it is 

important to select reaction systems which have a sizeable repository of kinetic and 

thermodynamic data published in the literature, as candidates for detailed mechanistic 

models. Since, LSM-YSZ composites are a staple of the SOFC community, O2 reduction 

on LSM-YSZ composites has been investigated for well over ten years [24]. It is a well-

characterized reaction system (both numerically and experimentally) and is ideally suited 

to elementary kinetic modeling.    

1.3 Objectives of the present work 

The first objective of the present work is to develop a comprehensive and consistent model 

with sufficient flexibility to handle the different length and time scales of the physics 

involved in a solid oxide cell. As the modeling domains scale up from lab-scale half or 

symmetrical cells used for material characterization (µm-mm length scales) to commercial 

stacks (cm-m length scales), a hierarchical modeling approach is paramount to ensure 

information from physics occurring at the nm-µm length scales is not lost. The modeling 

methodology described in Chapter 2 illustrates such a modeling approach and the results 

presented in Chapter 3 demonstrate the capabilities of the hierarchical cell and stack model 

using solid oxide co-electrolysis as an example case.  

Once such a model has been established, the second objective is to make strides towards 

the development of a SOC model that can be used as a universal tool for cell and stack 

design, reliability and lifetime estimates as well as real-time monitoring and maintenance 

of the solid oxide cell and stack. A very important step in attaining this objective is the 

development of an electrochemical reaction kinetic expression decoupled from transport 

effects and intrinsic to the material. As mentioned earlier in section 1.2, SOC models are 
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frequently restricted to being diagnostic and analytical tools since the electrochemical 

reaction kinetic models typically need to be re-parameterized when trying to reproduce 

experimental data from two cells comprising of the same materials and configuration. This 

is due to the significant influence of the electrode microstructure on kinetics as underlined 

in Fig. 1.2. The figure depicts the substantially different EIS curves measured under air and 

an operating temperature of 973.15K for the same LSM-YSZ half-cell sintered under the 

same conditions by three different research groups [43–45]. The difference in the EIS 

responses is solely due to the random microstructure resulting from the sintering process. 

This randomness of the microstructure is one of the reasons for the lack of intrinsic kinetic 

expressions mentioned earlier in section 1.2 as the kinetic fit parameters likely contain 

contribution due to gas or charge transport through the microstructure. Since the model 

developed in this work can separate the effects of transport from kinetics, the pursuit of an 

intrinsic kinetic model for the O2 reduction/ evolution reaction on LSM-YSZ composite air 

electrodes is detailed in Chapter 4. 

Lastly, the relative success or failure of the presented work in accomplishing the objectives 

set here is discussed in Chapter 5 along with a summary of the key results, conclusions and 

recommendations for future work. 

 

Figure 1.2. Nyquist plots for LSM-YSZ half-cells from different literature sources [43–45] 

illustrating the effect of the random electrode microstructure resulting from the electrode 

sintering process.  



9 

 

Chapter 2 

Modeling Methodology3 

A description of the general set of governing equations used to model a solid oxide cell in 

different configurations namely button cell, half-cell, planar cell or repeating unit (RU)4, 

and a stack of cells or repeating units is presented in this chapter. The assumptions and 

methodology specific to the two cases presented in Chapters 3 and 4 are discussed in their 

respective chapters. For example, the details of co-electrolysis of H2O and CO2 and ORR 

electrochemistry are reported in Chapters 3 and 4 respectively. 

Before setting up the system of governing equations, the different SOC configurations are 

briefly summarized. A button cell is a single SOC used to characterize the cell performance. 

The gas flow to a button cell is perpendicular to the cell and can be approximated one-

dimensionally along the cell thickness. Current collection is accomplished by metallic (e.g. 

gold or platinum) grids [46]. A half-cell is essentially a button cell where either the fuel or 

air electrode has been replaced by an ideal counter electrode since the focus of interest is 

the other working electrode. For example, in Chapter 4, the experiments simulated are 

performed on half-cells with the working electrode being the air electrode and the fuel 

electrode replaced by an ideal counter electrode. As the name implies, in a planar cell or 

RU the gas flow is parallel to the surface of the cell as the gas is now bounded by the 

electrode surface on one side and metallic interconnects on the other three sides [47]. The 

planar flow results in a 2-D effect as the diffusion through the membrane-electrode 

assembly (MEA) i.e. the electrodes and electrolyte, is transverse to the gas flow. The 

metallic interconnects help facilitate current collection as well as act as a separator between 

neighboring repeating units when the cells are placed on top of each other to form a stack. 

                                                 
3 Parts of this section are taken with permission from [49] A. Banerjee, O. Deutschmann, Elementary kinetics 

of the oxygen reduction reaction on LSM-YSZ composite cathodes, J. Catal. 346 (2017) 30-49 and from A. 

Banerjee, Y. Wang, J. Diercks and O. Deutschmann, Hierarchical Modeling of Solid Oxide Cells and Stacks 

producing Syngas via H2O/CO2 Co-electrolysis for Industrial Applications, Appl. Energy 230 (2018) 996-

1013. 

 
4 A repeating unit is essentially a planar unit cell comprising of a single air and fuel channel flanked by 

interconnect plates on all four sides. A planar cell comprises of multiple repeating units. 
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The introduction of interconnects however, creates an additional resistance to the flow of 

electrons due to imperfect contact at the electrode-interconnect interfaces and modifies the 

thermo-fluidic transport in the cell. 

Whether flowing axially or radially, the physics describing the path of the reactant gas 

molecules after percolating into the porous electrodes is identical for all configurations. 

Driven through the porous matrix of ion and electron conducting electrode particles by 

ordinary and Knudsen diffusion in conjunction with Darcy flow, the reactant gas molecules 

participate in thermochemical reactions on the electrode surface and combine with 

electrons and O2- ions at the electrode-electrolyte interfaces to form the desired products. 

Schematic representations of the modeling domain showing the hierarchical approach used 

to simulate solid oxide co-electrolyzers in Chapter 3 and the half-cell used to investigate 

the ORR kinetics in Chapter 4 are shown in Figs. 2.1 and 2.2. The figures illustrate the 

physics involved and the course charted by the gas molecules.  

In formulating the mathematical model, the following assumptions were made 

1. The sintered porous electrodes are approximated as a homogeneous continuum of 

spherical particles with random percolating clusters of charge conducting particles 

interspersed with spherical pores. 

2. The thin metallic grids in button cells have no impact on bulk gas transport and offer 

no resistance to charge transport, i.e. they are ideal current collectors. 

3. The inlet flow rate to the button cells is sufficiently high to ensure perfect mixing, i.e. 

there are no spatial concentration gradients.  

4. The plug flow model describes the flow in the RU gas channels. 

5. The inlet and outlet gas manifolds of the stack are not modeled. 

6. Species and charge transport are one dimensional along the thickness of the electrodes. 

7. The dense electrolyte is a pure ionic conductor, i.e. there is no electronic leakage across 

it. 

8. The voltage applied to the RU has no axial gradients since the interconnects have 

minimal electronic resistance. 
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Figure 2.1. (a) Schematic of the modeling domain of an example 10 cell stack for co-electrolysis of steam and carbon dioxide. (b) Front-view of a 

single repeating unit of the stack showing the various components. (c) Cut-away view along the xy-plane of the repeating unit illustrating the different 

physico-chemical processes. 
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Figure 2.2.  Schematic of the modeling domain illustrating the various transport phenomena 

and oxygen reaction pathways through the LSM and YSZ particles. 

9. Electronic and ionic conduction in the porous composite electrodes are modeled using 

Ohm’s law and the diffusive fluxes due to charge carrier concentration gradients are 

neglected.  

10. For half-cells, the counter electrode is ideal and the potential drops across the current 

collector-working electrode and electrolyte-counter electrode interfaces are neglected, 

i.e. the cell voltage, 𝐸𝑐𝑒𝑙𝑙, is equal to the sum of the potential drops across the working 

electrode and electrolyte. 

11. The electrodes and interconnects are assumed to be gray and opaque. 

12. Local temperature gradients in the solid components of a stack are negligible, i.e. all 

the solid components including the electrodes, electrolyte and interconnects are lumped 

into one solid phase when constituting the energy conservation equation for the stack. 

The system of differential algebraic equations arising as a result of these assumptions is 

based on a framework detailed in prior publications on button cells [48,49], single planar 
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unit cells [20,50,51] and stacks [52]. In the following subsections, the principal elements 

of the model are discussed. 

2.1 Mass and Momentum Conservation 

2.1.1 Bulk gas phase 

In the absence of concentration gradients due to perfect mixing, a steady-state lumped 

continuously-stirred tank reactor (CSTR) model is used to calculate the mass fraction of a 

species k, 𝑌𝑘, in the gas compartment of a button cell as a function of the inlet species mass 

fraction 𝑌𝑘,i and the inlet mass flow rate �̇�i, 

 𝑌𝑘 =
�̇�i𝑌𝑘,i − 𝐽𝑘𝑊𝑘

�̇�i − ∑ 𝐽𝑘𝑊𝑘
𝐾g

𝑘=1

 (2.1)  

Here, 𝑊𝑘 is the molecular weight of k, 𝐽𝑘 is the molar flux of k coming from the electrode 

and 𝐾g is the total number of gas-phase species. A CSTR model has been previously shown 

to capture low frequency contributions to the impedance spectra due to gas conversion [53], 

though in the high-flow limit as considered here, such contributions are neglected. 

In a planar RU, a transient plug flow model enforces species continuity in the gas channels,  

 

 

𝜕(𝜌g𝑌𝑘)

𝜕𝑡
= −

𝜕(𝜌g𝑢𝑌𝑘)

𝜕𝑧
+

1

𝑡ch
𝐽𝑘𝑊𝑘 ,                  𝑘 = 1, … , 𝐾g (2.2)  

Here, 𝑌𝑘 is the mass fraction of k, 𝜕𝑧 is the finite volume element length along the flow 

direction, and 𝑡ch is the channel thickness. The local mean velocity 𝑢 is evaluated from the 

momentum equation by assuming constant pressure in the gas channels, 

 
𝜕(𝜌g𝑢)

𝜕𝑡
= −

𝜕(𝜌g𝑢𝑢)

𝜕𝑧
+ 𝑢 ∑

1

𝑡ch
𝐽𝑘𝑊𝑘

𝐾g

𝑘=1

                  (2.3)  

and, the local gas density 𝜌g is obtained from the ideal-gas equation of state,  

 𝜌g =
𝑝

𝑅𝑇

1

∑ 𝑌𝑘/𝑊𝑘
𝐾g

𝑘=1

 (2.4)  

where, 𝑅 is the universal gas constant and 𝑇 is the local temperature. 

To check whether the plug flow model is reasonable to describe the species transport within 

the RU gas channels, Raja et al. defined a range of validity based on the product of the 
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characteristic Reynolds and Schmidt numbers [54]. For example, over the range of 

conditions investigated in Chapter 3, the flow in the long and thin gas channels (𝐿ch>>𝑑ch) 

is laminar (6≤𝑅𝑒≤20) and the Schmidt number (𝑆𝑐) is ~0.1-1. Therefore, the product of the 

Reynolds and Schmidt numbers are of the order of 10-1-100. The lower and upper bounds 

of the range of validity are given by the ratios 𝑑ch/𝐿ch and 𝐿ch/𝑑ch and are 10-2 and 101 

respectively for the RU geometries studied. Thus, 𝑑ch/𝐿ch< 𝑅𝑒𝑆𝑐 <𝐿ch/𝑑ch indicating that 

the flow is fully developed with concentration gradients one dimensional along the stream-

wise direction.  

2.1.2 Porous media 

Mass transport through the pore phase of the porous electrodes is modeled using the 

transient reaction diffusion equation to evaluate species densities 𝜌𝑘.  

In the pore phase of the electrodes, 

 
𝜕(𝜖𝜌𝑘)

𝜕𝑡
= −

𝜕(𝐽𝑘𝑊𝑘)

𝜕𝑦
+ �̇�𝑘𝑊𝑘𝐴gas/ede

V ,                  𝑘 = 1, … , 𝐾g (2.5)  

and, 

 
𝜕(𝜖𝜌g)

𝜕𝑡
= − ∑

𝜕(𝐽𝑘𝑊𝑘)

𝜕𝑦

𝐾g

𝑘=1

+ ∑ �̇�𝑘𝑊𝑘𝐴gas/ede
V

𝐾g

𝑘=1

 (2.6)  

Here, 𝜖 is the porosity of the porous media, 𝜕𝑦 is the finite volume length along the 

thickness, �̇�𝑘 is the molar production rate of k due to heterogeneous reactions on the 

electrode surface, and 𝐴gas/ede
V  is the specific surface area of the electrode.  

The species molar flux 𝐽𝑘 present in all the governing equations for mass transport in the 

gas phase is evaluated using the Dusty-Gas model (DGM), 

 𝐽𝑘 = − [∑ 𝐷𝑘𝑙
DGM∇[𝑋𝑙]

𝐾g

𝑙=1

+ (∑
𝐷𝑘𝑙

DGM[𝑋𝑙]

𝐷𝑙,Kn
e

𝐾g

𝑙=1

)
𝐵g

𝜇
∇𝑝] (2.7)  

The contributions due to diffusion and advection are given by the first and second terms 

respectively. A pressure gradient ∇𝑝 arising because of density fluctuations due to species 

addition/depletion leads to an advective flux driven by a Darcy velocity in the porous 

media. The permeability or resistance 𝐵g of the porous media to Darcy flow is given by the  
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Carman–Kozeny relationship for a bed of densely-packed spherical particles [55], 

 𝐵g =
𝜖3𝑑p

2

72𝜏fac(1 − 𝜖)2
 (2.8)  

where, 𝑑p is the particle diameter. 

𝐷𝑘𝑙
DGM in Eq. 2.7 are DGM diffusion coefficients which are obtained by inverting a matrix 

H whose elements ℎ𝑘𝑙 are given by 

 ℎ𝑘𝑙 =  [
1

𝐷𝑘,Kn
e + ∑

𝑋𝑗

𝐷𝑘𝑗
e

𝑗≠𝑘

] 𝛿𝑘𝑙 + (𝛿𝑘𝑙 − 1)
𝑋𝑘

𝐷𝑘𝑙
e  (2.9)  

Here, 𝐷𝑘,Kn
e  is the effective Knudsen diffusion coefficient, 𝐷𝑘𝑙

e  is the effective binary 

diffusivity between species 𝑘 and 𝑙, 𝑋𝑘 is the mole fraction of k, and 𝛿𝑘𝑙 is the Kronecker 

delta. 𝐷𝑘,Kn
e  considers diffusive transport due to collisions of the gas molecules with the 

pore walls and is a function of the mass of the molecule and the pore diameter 𝑑𝑝𝑜𝑟𝑒, 

 𝐷𝑘,Kn
e =

𝜖

𝜏𝑓𝑎𝑐

𝑑𝑝𝑜𝑟𝑒

3
√

8𝑅𝑇

𝜋𝑊k
 (2.10)  

whereas, diffusion due to inter-molecular collisions are given by 𝐷𝑘𝑙
e  [56],  

 𝐷𝑘𝑙
e =

𝜖

𝜏fac
𝐷𝑘𝑙 (2.11)  

The binary diffusivities 𝐷𝑘𝑙 and the mixture viscosity 𝜇 are evaluated using standard 

expressions derived from kinetic theory [57]. 

DGM owes its name to the fact that it treats the pore walls as uniformly distributed ‘dust 

particles’ and considers the ‘dust particles’ to be a pseudo-species in the dusty gas mixture. 

DGM combines the Stefan-Maxwell formulation for multi-component ordinary diffusion 

with Knudsen diffusion through addition of momentum transfer and utilizes the Chapman-

Enskog kinetic theory to combine transport fluxes due to diffusion and advection. DGM is 

superior to the commonly used advective-Fick model (AFM) since DGM incorporates the 

experimentally observed Graham’s law of diffusion while AFM assumes equimolar 

counter diffusion [58]. Therefore, when dealing with multiple gas-phase species and low 

pore diameters, as is the case with porous SOC electrodes, DGM presents itself as the most 

suitable choice. 

Equations 2.8, 2.10 and 2.11 require the evaluation of a factor 𝜏fac to account for the long 
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winding nature of the diffusion path 𝐿diff
e  present in a randomly percolating pore cluster of 

a porous medium as opposed to the straight diffusion paths 𝐿diff present in the bulk gas 

phase. The factor, commonly called the tortuosity factor, is defined according to [56],  

 𝜏fac = (
𝐿diff

e

𝐿diff
)

2

 (2.12)  

For a bed of randomly-packed spheres, 𝜏fac can be evaluated analytically as a function of 

the porosity of the medium [59], 

 𝜏fac = (1.23
(1 − 𝜖)4/3 

𝜖
)

2

 (2.13)  

However, Eq. 2.13 tends to underestimate 𝜏fac. While, experimental 𝜏fac values measured 

by X-ray tomography and FIB-SEM techniques range from 1.8-2.8 for electrode porosities 

of 0.45-0.5 [60–62], the corresponding analytical values from Eq. 2.13 are in the range of 

0.95-1.5. This result underscores one of the limitations of approximating the sintered 

electrode microstructure as a bed of spherical particles. To tackle this problem, Zhu and 

Kee [50] have previously used a much lower value of 𝜖=0.35 to qualitatively reproduce 

measurements for a Ni-8YSZ electrode with 𝜖=0.54. The same approach is followed here.    

On the electrode surfaces, a mass balance gives the coverages 𝜃𝑘 of the adsorbed reaction 

intermediates 𝑘, 

 
𝜕𝜃𝑘

𝜕𝑡
=

𝜁𝑘 �̇�𝑘

Γs
 (2.14)  

where 𝜁𝑘 is the number of adsorption sites required by 𝑘 and Γs is the density of available 

active sites on the surface (or surface site density). For common electrode materials like Ni 

and YSZ, Γs = 2.66×10-9 mol cm-2 [20] and 1.25×10-9 mol cm-2 [41]. The surface site density 

of LSM is evaluated based on a unit cell cut along the (100) plane of the perovskite crystal 

having a lattice constant of 3.7975Å. The (100) plane, which is the most stable among the 

low-index surfaces [14], has four active Mn sites at the corners shared among four adjacent 

unit cells leading to a total site density of 6.934×1014 cm-2 (i.e. 1.15×10-9 mol cm-2). 

The formulation of the reaction source term �̇�𝑘 in Eqs. 2.6 and 2.14 is specific to the 

reaction systems studied and is thus defined separately in Chapters 3 and 4. 
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2.1.3 Boundary Conditions 

The solution of spatial gradients in Eqs. 2.2, 2.3, 2.5 and 2.6 mandate appropriate fixed 

value or constant flux conditions at the axis boundaries of the modeling domain. For the 

species and momentum conservation equations in the channel, the inlet is set to a specified 

gas composition and flow velocity respectively. To solve the species transport equations in 

the porous electrodes, the species composition at the channel-electrode interface is set to 

the species composition in the channel bulk. At the electrode-electrolyte interface, the 

species flux is set to zero for all species not participating in charge transfer reactions. For 

the electrochemically active species, the species flux is calculated from the current density 

𝑖, 

  
𝐽𝑘 =

𝜈𝑘𝑊𝑘𝑖

𝑛e𝐹
 (2.15)  

where, 𝜈𝑘 is the stoichiometric coefficient of species 𝑘 in the charge transfer reaction 

(negative for reactants and positive for products), 𝑛e is the number of electrons transferred 

and 𝐹 is the Faraday constant.  

2.2 Charge Conservation 

2.2.1 Distributed Charge Transfer  

The analogous form of the volume-averaged species continuity equation for charge 

conservation is the so-called ‘distributed charge transfer model’, which conserves charge 

individually for the ionic and electronic phases, in each finite volume of the MEA. A flux 

of charge, or current density, driven by gradients in charge concentration, or electric 

potential, enters a finite volume where charge is either lost or gained by the bulk volume 

due to charge accumulation and consumed or produced due to electrochemical reactions. 

The remaining flux of charge exits the volume. Since it is typically assumed that charge 

accumulation takes place only in the electric double layers (DL) at the interface of the two 

phases, no net charge is gained by the MEA bulk [63]. Thus, for the electronic phase 

 𝑖𝑒𝑙 =
𝜕

𝜕𝑦
(𝜎el

e 𝜕𝜙el

𝜕𝑦
) = 𝑖F

V + 𝑖DL
V  (2.16)  

and, for the ionic phase 

 𝑖io =
𝜕

𝜕𝑦
(𝜎io

e 𝜕𝜙io

𝜕𝑦
) = −(𝑖F

V + 𝑖DL
V ) (2.17)  
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Here, 𝜎el
e  and 𝜎io

e  are the effective electronic and ionic conductivities, 𝜙el and 𝜙io are the 

local electronic and ionic bulk phase potentials and 𝑖F
V and 𝑖DL

V  are the volumetric faradaic 

and capacitive current source terms respectively.  

A simple Helmholtz model is used to calculate the volumetric current source term due to 

charge accumulation at the electric double layer between the electronic and ionic phases 

[64], 

 𝑖DL
V = 𝐴el/io

V 𝜕

𝜕𝑡
(𝐶DL

el/io
Δ𝜙) (2.18)  

where 𝐶DL
el/io

 is the interfacial DL capacitance and Δ𝜙 is the difference between the 

electronic and ionic bulk phase potentials at the interface, i.e. Δ𝜙 = 𝜙el - 𝜙io. 𝐶DL
el/io

 is 

temperature dependent and for the case of commonly used composite electrodes such as 

Ni-YSZ and LSM-YSZ, set to electrochemical DL capacitance data obtained by Hendriks 

et al. for YSZ [65].  

The faradaic current source term accounts for the volumetric charge produced or consumed 

due to electrochemical reactions and its formulation depends on the electrochemical 

reaction system. It is defined in Chapter 4 when describing the ORR electrochemistry. 

With 𝑖el and 𝑖io evaluated, the net current density 𝑖 is calculated simply as 𝑖 = 𝑖el+ 𝑖io. As 

per common convention, 𝑖 is considered positive when it is drawn from the cell, i.e. SOFC 

mode and negative when supplied to the cell, i.e. SOEC mode. 

2.2.2 Boundary Conditions  

Equations 2.16 and 2.17, like Eqs. 2.2, 2.3, 2.5 and 2.6, are boundary value problems. For 

the electronic phase, the electron flux disappears at the electrode-electrolyte interface and 

conversely, for the ionic phase, the ion flux disappears at the current collector-electrode 

interface. Furthermore, the electronic phase potential is set to 𝐸cell at the current collector-

air electrode interface and zero at the current collector-fuel electrode interface. For a half-

cell, the electronic phase potential at the current collector-working electrode interface is 

set to 𝐸cell or -𝐸cell depending on whether the working electrode is the air electrode or the 

fuel electrode while the ionic phase potential at an equipotential surface in the electrolyte 

bulk, i.e. the reference electrode potential [66], is set to zero. Bessler et al. posited that the 
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electrolyte equipotential surface can be found in the vicinity of the electrolyte center [67] 

whilst Goodwin et al. assumed it is located at the interface between the working electrode 

and the electrolyte [41]. In this work, the location of the equipotential surface is 

approximated from the experimental ohmic drop. For thin electrolytes (~125-150 µm), the 

surface is found to be at the electrolyte-counter electrode interface, whereas for thick 

electrolytes (~2 mm), the surface is determined to be ~350 µm from the working electrode-

electrolyte interface. 

2.2.3 Interfacial Charge Transfer  

Due to the presence of the dense electrolyte, it is obvious that electrochemical reactions do 

not occur over the entire MEA. In fact, for cells made up of metal electrodes (pure 

electronic conductors) sintered to a purely ion conducting electrolyte (e.g. Pt|YSZ|Pt), 

electrochemical reactions occur only at the electrode-electrolyte interface since charge 

transfer is driven by the difference between the potentials of the ionic and electronic phases. 

Though modern day cells use composite electrodes containing both ionic and electronic 

phases, the ‘utilization region’ of the electrode where electrochemical reactions occur, is 

typically restricted to within ~10-20 µm on either side of the electrolyte [49,68,69]. As a 

result, the current density through the MEA, outside of this utilization region, is constant.  

For cells with thick electrodes, e.g. the fuel electrode-supported F-design planar cells from 

Forschungzentrum Jülich with a fuel electrode thickness of 1-1.5 mm [70], the utilization 

region is only a small fraction of the total thickness. Thus, it may be reasonable to assume 

that charge-transfer occurs within an infinitesimally small region around the electrode-

electrolyte interface. As a result, the spatially resolved charge conservation equation can 

be reduced to a potential balance at the interface and the electrochemical reactions 

occurring throughout the utilization volume of the composite electrodes may be lumped 

into fluxes at the electrode-electrolyte interface. This lumped and computationally cheap 

formulation is commonly called the ‘interfacial charge transfer model’. Zhu and Kee [71] 

have previously reported a very close agreement between the interfacial and distributed 

charge transfer models for a cell with a fuel electrode thickness of 400 µm and an air 

electrode thickness of 50 µm.  

The interfacial potential balance comprises of the reversible potential within the cell 𝐸rev, 
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the potential 𝐸cell drawn or supplied to the cell depending on whether the cell is in fuel cell 

or electrolysis mode, and all the irreversible potential sinks, or overpotentials, due to ohmic 

and activation losses that manifest when the cell is polarized. Since gas transport through 

the electrodes is modeled explicitly, the species activities required in the Nernst equation 

are evaluated at the electrode-electrolyte interface. Thus, the potential sink due to 

concentration losses is not included in the potential balance, 

 𝐸cell = 𝐸rev + 𝜂act,fe + 𝜂act,ae + 𝜂ohm (2.19)  

Here, the subscripts fe and ae denote the fuel electrode and air electrode respectively.     

𝐸rev, which is the maximum potential that can be drawn out from a cell in fuel cell mode, 

is a function of the operating cell temperature, pressure and gas composition as described 

by the Nernst equation, 

 𝐸rev =
Δ𝐺r

0

𝑛e,r𝐹
+

𝑅𝑇

𝑛e,r𝐹
ln (

∏ 𝑝𝑘

𝜈𝑘
′′

𝑘∈𝑅b

∏ 𝑝𝑘

𝜈𝑘
′

𝑘∈𝑅f

) (2.20)  

Here, Δ𝐺r
0 is the Gibbs free energy of the electrochemical reaction and 𝜈𝑘

′  and 𝜈𝑘
′′ are the 

stoichiometric coefficients of the reactants and products respectively. The partial pressure 

of each species 𝑘 reacting either in the forward reaction 𝑅f or in the backward reaction 𝑅b 

is denoted by 𝑝𝑘. The partial pressures are evaluated at the electrode-electrolyte interface. 

The ohmic overpotential 𝜂ohm is the irreversible loss of potential caused due to the intrinsic 

resistivity of a charge conductor in accordance with Ohm’s law. Its origins are microscopic 

and is caused due to the bulk flow of electrons through a conductor due to a potential 

difference across its ends. The electrons drift towards the positive potential and collide with 

the atoms of the conductor along the way causing them to take a more tortuous path instead 

of a straight one. In a solid oxide cell,  

 
ohm

= (
𝑡fe

𝜎fe
e +

𝑡elyt

𝜎elyt
+

𝑡ae

𝜎ae
e + 𝑅contact) 𝑖 (2.21)  

Here, 𝑖 is the current density flowing through the conductor, 𝑡fe, 𝑡elyt and 𝑡ae are the 

thicknesses of the fuel electrode, electrolyte and air electrode respectively and 𝜎elyt is the 

intrinsic conductivity, i.e. inverse of resistivity, of the dense electrolyte. The two remaining 

conductivities, 𝜎fe
e  and 𝜎ae

e  are the effective conductivities of the composite fuel and air 

electrodes. They are a function of the electrode microstructure and the intrinsic 
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conductivities of their bulk ionic and electronic phases. The method for evaluating these 

properties are discussed further in section 2.4 of this chapter. The last contribution to the 

ohmic overpotential, as specified in Eq. 2.21, is due to the contact resistance 𝑅contact. For 

button cells, this term is negligible since current collection is nearly perfect. However, in 

planar repeating units and stacks, current collection via interconnect ribs is more of a 

challenge and this term can become quite significant without the use of contact layers and 

optimal rib widths to help facilitate the conduction of charge from the electrodes to the 

interconnects [72–74].  

The activation overpotential 𝜂act, as the name suggests, is the potential spent to activate 

the electrochemical reactions when they are driven forward or backward from equilibrium. 

As mentioned earlier in this subsection, charge transfer is driven by the potential difference 

between the electrode and electrolyte at their interface, i.e. 𝜙fe - 𝜙elyt and 𝜙ae - 𝜙elyt. 

Therefore, 𝜂act,fe = (𝜙fe - 𝜙elyt) - (𝜙fe
eq

 - 𝜙elyt
eq

) and 𝜂act,ae = (𝜙ae - 𝜙elyt) - (𝜙ae
eq

 - 𝜙elyt
eq

). 

The well-known semi-empirical Butler-Volmer (B-V) equation is used to correlate 𝜂𝑎𝑐𝑡 

with the current density 𝑖 at each electrode-electrolyte interface. The general form is given 

as 

 𝑖 = 𝑖0 [exp (
𝑛e,r𝛽a𝐹𝜂act,fe/ae

𝑅𝑇
) − exp (−

𝑛e𝛽c𝐹𝜂act,fe/ae

𝑅𝑇
)] (2.22)  

Here, the subscripts a and c represent the anodic direction (producing e-) and cathodic 

direction (consuming e-) of a charge transfer reaction respectively. 𝛽a and 𝛽c are charge-

transfer coefficients in the anodic and cathodic directions and signify the portion of the 

total electric potential (𝐹(𝜙ae/fe - 𝜙elyt)) acting as the barrier for an electron jump in either 

direction [75,76]. Ergo, 𝛽a+𝛽c=1.  

When the cell is running in electrolysis mode, for example when investigating co-

electrolysis in Chapter 3, the second exponential term in Eq. 2.22 represents the 

electrochemical reduction of H2O and CO2 in the fuel electrode while the first exponential 

term represents O2 production in the air electrode. To catalyze these reactions and drive 

them from equilibrium in this desired direction, 
𝑓𝑒

 must become more negative and 
ae

 

more positive. Since 𝜙ae>𝜙elyt>𝜙fe, 𝜙ae must increase relative to 𝜙elyt while 𝜙fe must 

decrease, assuming 𝜙elyt is held constant at its equilibrium value. Therefore, increasing 
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𝐸cell = 𝜙ae - 𝜙fe above the equilibrium value 𝐸rev = 𝜙ae
eq

 - 𝜙fe
eq

 ‘activates’ and drives the 

electrolysis set of reactions forward leading to faster kinetics at higher 𝐸cell values. 

Similarly, in fuel cell mode, decreasing 𝐸cell below 𝐸rev drives the reactions in the reverse 

direction resulting in faster kinetics at lower 𝐸cell values. 

The exchange current density, 𝑖0 in Eq. 2.22, is a lumped parameter that accounts for the 

thermal part of the chemical potential of the reacting species, including the pre-factor, the 

thermal activation barrier and the reaction orders of the reacting species. The area of the 

three-phase boundary, i.e. the interface between the gas, electronic, and ionic phases where 

electrochemical reactions predominantly occur in composite electrodes, is also lumped into 

𝑖0. The exact form of 𝑖0 is specific to the reaction system studied and is defined in Chapter 

3 for the co-electrolysis reaction system. 

2.3 Energy Conservation 

2.3.1 Bulk gas phase 

Heat transport in the gas channels is one-dimensional along the flow direction and solely 

due to forced convection. In a single planar RU, the fluid temperature is evaluated as  

 

𝜕(𝜌g𝐶p,g𝑇g)

𝜕𝑡
=  −

𝜕(𝑢𝜌g𝐶p,g𝑇g)

𝜕𝑧
+

1

𝑡ch
ℎconv(𝑇ede − 𝑇g)

+
1

𝑡ch
ℎconv(𝑇ic − 𝑇g) 

(2.23)  

where, 𝐶p,g is the specific heat capacity of the gas stream and 𝑇g, 𝑇ede and 𝑇ic are the local 

gas, electrode and interconnect temperatures. The first term on the right-hand side 

represents the heat transported by the gas downstream via convection whilst the second 

and third terms account for the heat exchange with the electrode and the interconnect via 

convection.  

For a stack, the energy conservation equation is identical to Eq. 2.23 except that the two 

exchange terms are lumped into one, 

 
𝜕(𝜌g𝐶p,g𝑇g)

𝜕𝑡
=  −

𝜕(𝑢𝜌g𝐶p,g𝑇g)

𝜕𝑧
+

4

𝑑h
ℎconv(𝑇stack,s − 𝑇g) (2.24)  
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Here, 𝑇stack,s is the local temperature of the solid phase of the stack. The factor 
4

𝑑h
 arising 

from the integration over the finite volume is due to heat exchange between the gas and the 

electrode and interconnect surfaces. The hydraulic diameter 𝑑h is defined as [77] 

 𝑑h =  
2𝑤ch𝑡ch

(𝑤ch + 𝑡ch)
 (2.25)  

where, 𝑤ch is the width of the channel. 

The convective heat transfer coefficient in Eqs. 2.23 and 2.24 is given as  

 ℎconv =  
𝑁𝑢𝜆g

𝑑h
 (2.26)  

Here, 𝜆g is the thermal conductivity of the gas and the Nusselt number 𝑁𝑢 is evaluated 

from an empirical correlation for fully developed laminar flow in catalytic monolith 

channels [78]. The correlation, a function of the Graetz number 𝐺𝑧, considers an entrance 

region with a thermal boundary layer before converging to a constant value down the length 

of the channel, 

 𝑁𝑢 = 3.095 + 8.933 (
1000

𝐺𝑧
)

−0.5386

exp (−
6.7275

𝐺𝑧
) (2.27)  

  

and, 

 𝐺𝑧 =
𝑑h

𝑧
𝑅𝑒𝑃𝑟 (2.28)  

where, 𝑧 is the axial position and 𝑃𝑟 is the Prandtl number. 

2.3.2 Solid phase of a single Planar Repeating Unit 

The heat transport equation in the solid components of a single planar RU is solved in both 

the axial direction and along the thickness of the RU. The energy conservation equation is 

formulated by accounting for all three principle modes of heat transfer, namely, 

conduction, convection, and radiation. Heat sinks/sources due to the 

endothermic/exothermic electrochemical reactions at the electrode-electrolyte interface 

�̇�echem, the heterogeneous surface chemistry in the fuel electrode �̇�hchem and Joule heating 

due to irreversibilities such as the ohmic and activation overpotentials are also included. 

In the porous electrodes, 
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𝜌ede,s𝐶p,ede
e 𝜕𝑇ede

𝜕𝑡

=
𝜕

𝜕𝑦
(𝜆ede

e 𝜕𝑇ede

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜆ede

e 𝜕𝑇ede

𝜕𝑧
) +

𝑖2

𝜎ede
e

+ {
�̇�hchem,   within the fuel electrode
0,            within the air electrode

 

(2.29)  

where 𝜌ede,s is the density of the solid phase of the electrode, 𝐶p,ede
e  and 𝜆ede

e  are the 

effective specific heat capacity and effective thermal conductivity of the porous electrode. 

The first two terms on the right-hand side represent the two-dimensional heat conduction 

through the porous electrode whilst the third term is the Joule heating due to current 

conduction through the electrode. The final term is defined as  

 �̇�hchem = − ∑ 𝐻𝑘�̇�𝑘𝐴gas/ede
V

𝐾g

𝑘=1

 (2.30)  

where 𝐻𝑘 is the molar enthalpy of 𝑘. Additional heat source terms are added to the right-

hand side of Eq. 2.29 at the boundaries of the electrodes in the y-direction. At the electrode-

electrolyte interface, they are 
�̇�echem

𝜕𝑦
 and 

�̇�act

𝜕𝑦
 while at the electrode-channel/interconnect 

rib interface, they are 
�̇�contact

𝜕𝑦
, 

�̇�conv

𝜕𝑦
(

𝑤ch

𝑤RU
) and −

�̇�rad

𝜕𝑦
(

1

𝑤RU
). The factors (

𝑤ch

𝑤RU
) and (

1

𝑤RU
) 

which result from the integration of the heat fluxes �̇�conv =ℎconv(𝑇g − 𝑇ede) and �̇�rad over 

the finite-volume are a product of the varying geometries of the components and heat 

transfer areas (see Fig. 2.1(b) at the beginning of this chapter). 

The electrochemical heat source/sink �̇�echem is the reversible heat due to the reaction 

entropy Δ𝑆, 

 �̇�echem = −
𝑖

𝑛e,r𝐹
𝑇Δ𝑆r  (2.31)  

whereas the Joule heat due to activation losses �̇�act and the contact resistance between the 

electrode and the interconnect rib �̇�contact are given by 

 �̇�act = 𝑖 (
act,fe

+ 
act,ae

 ) (2.32)  

 �̇�contact = 𝑖2𝑅contact  (2.33)  
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Since, solid oxide cells operate typically at temperatures between 973K-1123K, heat 

transfer due to radiation must be considered. Damm and Fedorov [79] have previously 

shown that radiation within the MEA is negligible. Therefore, only surface-to-surface 

radiation between the electrodes and interconnects is modeled,  

 �̇�rad =
𝜎𝑆𝐵(𝑇ede

4 − 𝑇ic
4)

𝑅rad,ede→ic
 (2.34)  

Here, 𝑆𝐵𝐶 is the Stefan-Boltzmann constant and 𝑅rad,ede→ic is the thermal resistance to 

radiation and is a function of the areas of the electrode, interconnect and interconnect ribs 

participating in radiation exchange, the view factors between these areas 𝐹ede→ic and their 

total emissivities 𝜖𝑟𝑎𝑑, 

 𝑅𝑟𝑎𝑑,𝑒𝑑𝑒→𝑖𝑐 =
1 − 𝜖rad,ede

𝜖rad,ede𝑤ch
+

1

𝐹ede→ic𝑤ch
+

1 − 𝜖rad,ic

𝜖rad,ic(𝑤ch + 2𝑡ch)
 (2.35)  

where, 𝐹ede→ic = 𝐹ede→ic,plate + 2𝐹ede→ic,rib and is calculated from analytical expressions 

for parallel and perpendicular planes of finite length. 

In the dense electrolyte, the energy conservation equation is simply 

 

𝜌elyt,b𝐶p,elyt,b

𝜕𝑇elyt

𝜕𝑡

=
𝜕

𝜕𝑦
(𝜆elyt,b

𝜕𝑇elyt

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜆elyt,b

𝜕𝑇elyt

𝜕𝑧
) +

𝑖2

𝜆elyt,b
 

(2.36)  

where 𝜌elyt,b, 𝐶p,elyt,b and 𝜆elyt,b are the bulk density, specific heat capacity and thermal 

conductivity of the electrolyte material. 

Lastly, the temperature gradients in the fuel and air side interconnects are evaluated, 

 𝜌ic,b𝐶p,ic,b

𝜕𝑇ic

𝜕𝑡
=

𝜕

𝜕𝑦
(𝜆ic,b

𝜕𝑇ic

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜆ic,b

𝜕𝑇ic

𝜕𝑧
) (2.37)  

Similar to the porous electrodes, two additional terms ℎconv(𝑇g − 𝑇ic) (
𝑤ch

𝑣𝑜𝑙ic
) and 

�̇�rad

𝑣𝑜𝑙ic
 enter 

as source terms in Eq. 2.37 at the interconnect-channel interface, where the volume per unit 

length of the interconnect is calculated as  

 
𝑣𝑜𝑙ic = (𝑡ic + 𝑡ch)𝑤RU − 𝑤ch𝑡ch (2.38)  
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2.3.3 Solid phase of a stack of Planar Repeating Units 

The lumped approach to model all the solid (dense and porous) components of a stack of 

repeating units as a single phase has been previously reported to be a reasonable approach 

[80] and allows for its representation as a porous media with straight channels similar to a 

catalyst monolith (see Fig. 2.1(a) at the beginning of this chapter). Since the time-scale for 

heat transfer in the stack solid is now much larger than the time-scale for all the physics in 

a single RU, the stack solid phase temperature can be decoupled from the system of 

equations describing the RU, thereby improving both computational speed and stability 

[19,52]. 

The 3-D heat transport equation in the solid phase of the stack is formulated as  

𝜌stack,s𝐶p,stack
e 𝜕𝑇stack,s

𝜕𝑡

= ∇ ∙ (𝜆stack
e ∇𝑇stack,s)

+ ∑ ℎconv(𝑇g − 𝑇stack,s)

ch∈air,fuel

(
2(𝑤ch + 𝑡ch)

𝑤RU𝑡RU
) +

�̇�𝑖

𝑡RU

+ �̇�hchem (
𝑡fe

𝑡RU
) 

(2.39)  

where, 𝑡RU = 𝑡ic + 2𝑡ch + 𝑡ae + 𝑡elyt + 𝑡fe and �̇�𝑖 accounts for the net heat source/sink due 

to the endothermic/exothermic electrochemical reaction and the exothermic joule heating, 

 �̇�𝑖 = −𝑖 (𝐸cell +
Δ𝐻r

𝑛e,r𝐹
)  (2.40)  

�̇�𝑖 is positive in fuel cell mode while in electrolysis mode, it is positive above the 

thermoneutral voltage and negative below it. 

2.3.4 Boundary Conditions 

With the heat fluxes due to external sources already specified at the boundaries of the 

various components for their corresponding energy conservation equations, the remaining 

boundary conditions deal with the spatial gradients due to conduction. For the single RU, 

heat flux continuity is enforced at the electrode-interconnect rib interfaces, 
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 𝜆ede
e 𝑤RU

𝜕𝑇ede

𝜕𝑦
= (

1

𝜆rib,b 𝑤rib
+

1

𝜆ic,b 𝑤RU
)

−1
𝜕𝑇ic

𝜕𝑦
  (2.41)  

and at the electrode-electrolyte interfaces 

 𝜆ede
e 𝜕𝑇ede

𝜕𝑦
= 𝜆elyt,b

𝜕𝑇elyt

𝜕𝑦
  (2.42)  

To implement adiabatic conditions, the heat flux is set to zero at the edges of the modeling 

domain in the y and z-directions.  

For the stack model, a heat flux boundary condition, including convective and radiative 

heat exchange terms with the surroundings, was set at the edges of the 3-D modeling 

domain for the solid phase [52],    

 𝜆stack
e 𝜕𝑇stack,s

𝜕𝑦
= ℎsurr(𝑇stack,s − 𝑇surr) + 𝜖rad𝜎𝑆𝐵(𝑇stack,s

4 − 𝑇surr
4 ) (2.43)  

2.4 Effective Transport Properties 

The continuum approximation when applied to porous media, implicitly assumes a 

homogeneous distribution of the solid and fluid phase over a finite volume. To model 

transport phenomena, effective properties for the porous media need to be found which are 

not only the functions of their bulk phase values but also of the fraction of a given phase in 

the finite volume i.e. porosity, and the heterogeneity of the actual microstructure of the 

porous media, i.e. tortuosity factor. For diffusion in the fluid phase, the ratio of the porosity 

and tortuosity factor is a good approximation of the influence of the porous media on the 

bulk diffusivities as described earlier in Eqs. 2.10 and 2.11. However, for charge transport 

in the solid phase, factors like the interconnectedness or percolation of the solid clusters 

must also be considered.  

Bearing that in mind, Nam and Jeon [81] derived a relationship for the effective electrical 

conductivities for the composite porous electrodes,  

 𝜎ede
e = ∑ 𝜎𝑚,b[(1 − 𝜖)𝑣f,s,𝑚𝛾s,𝑚]

1.5

𝑚∈el,io

 (2.44)  

where, 𝜎𝑚,b is the temperature-dependent bulk conductivity and 𝑣f,s,𝑚 is the volume 

fraction of the phase 𝑚 (electronic or ionic) in the solid phase of the electrode. The 

percolation probability of phase 𝑚 through the solid phase of the electrode 𝛾s,𝑚 is a function 
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of the co-ordination number of particles of phase 𝑚, 𝑍𝑚,𝑚, and is given by a correlation 

developed by Bertei and Nicolella [82],  

 𝛾s,𝑚 = 1 − (
4.236 − 𝑍𝑚,𝑚

2.472
)

3.7

 (2.45)  

This correlation has been developed by non-linear least-square regression on simulated 

data of a random packing of spheres. As mentioned earlier, though there are limitations in 

assuming a packed bed of spheres to represent the real electrode microstructure, percolation 

theory does provide a better estimate of the effective transport properties than the oft-used 

Bruggeman correlation [83]. Percolation theory also accounts for sintering by defining a 

contact angle between neighboring particles to account for a region of overlap, thereby 

enabling the calculation of microstructural parameters like 𝐴gas/ede
V  used in Eqs. 2.5, 2.6 

and 2.30 and 𝑑pore used in Eq. 2.10 [84].  

For thermal transport, effective relationships between the bulk solid and fluid properties 

must be found to suitably represent the behavior of the porous electrodes. Since the bulk 

density of the gases is negligible compared to the solids, the bulk density of the solid phase 

is taken to be the density of the porous media. The effective specific heat capacity can be 

found by a simple parallel model weighted by the porosity, 

 𝐶p,ede
e = 𝜖𝐶p,g + (1 − 𝜖)𝐶p,s (2.46)  

However, the parallel model for the effective thermal conductivity is the theoretical 

maximum while the series model is the theoretical minimum. Thus, none of these models 

accurately depict reality. Thus, the geometric-mean model, which was found to be much 

more realistic for randomly structured porous media [85], was used, 

 𝜆ede
e = 𝜆g

𝜖𝜆s
1−𝜖 (2.47)  

Since the solid phase of the electrodes is a composite, Eqs. 2.46 and 2.47 were also applied 

to evaluate the specific heat capacity and thermal conductivity of the composite from the 

bulk conductivities of its constituents. In this case, 𝑣f,s,𝑚 replaced 𝜖 in the equations.  

The density and effective specific heat capacity of the lumped solid phase of the stack was 

also found by estimating the fractions of the stack volume occupied by each component 

and substituting it into the parallel model, 
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 𝜌stack
e = ∑ 𝑣f,stack,𝑞

𝑞

𝜌𝑞 
(2.48)  

 𝐶p,stack
e = ∑ 𝑣f,stack,𝑞

𝑞

𝐶p,𝑞 (2.49)  

Here, 𝑣f,stack,𝑞 is the volume fraction of component 𝑞 in the stack. 

The evaluation of the effective thermal conductivity for the stack solid is a bit more 

involved and requires the solution of two thermal resistance networks yielding separate 

𝜆stack
e  values for the radial and axial directions as depicted in Fig. 2.3 for the F-design 

stack. The two networks consist of a sequence of series and parallel thermal pathways and 

include both conduction through the solid components and radiative heat exchange 

between the electrodes and interconnects.  

 

Figure 2.3. Thermal resistance networks across a repeating unit of the F-design stack in (a) 

radial, i.e. along the stack thickness and (b) axial directions.  
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Chapter 3 

High Temperature Co-electrolysis – From 

Cells to Stacks5 
 

To help understand the effects of scaling up, the work presented in this chapter adopts a 

hierarchical continuum modeling approach to analyze the performance of a solid oxide co-

electrolysis stack. Initially, a transient isothermal model coupling 1-D gas transport through 

the porous electrodes’ thickness to heterogeneous and electrochemical reactions is used to 

calibrate the electrochemical model against button cell experiments conducted by Fu et al. 

[46].  The measurements were made at operating temperatures of 1083.15K and 1133.15K 

and for two different reactant compositions – 10% H2, 40%CO2, 50%H2O and 10% H2, 

30%CO2, 60%H2O. The commercially available ESC2 cell used by Fu consists of a dense 

Yttria Stabilized Zirconia (YSZ) electrolyte sandwiched between a porous Nickel-

Gadolinium Doped Ceria (Ni-GDC) cermet fuel electrode and a porous Lanthanum 

Strontium Manganite-Yttria Stabilized Zirconia (LSM-YSZ) composite air electrode [46]. 

The calibrated kinetic model is then utilized to model a single repeating unit (RU) of a 

stack of Ni-GDC|YSZ|LSM-YSZ cells under co-flow and adiabatic conditions. The RU 

geometry is based on the fuel electrode-supported F-design planar cells developed by 

Forschungzentrum Jülich [47]. In addition to heat and mass transport along the thickness, 

the RU model also includes thermo-fluidic transport along the flow direction as well as 

accounting for the influence of the interconnects, the interconnect ribs, and the air and fuel 

electrode contact layers. Since, the molar ratio of the produced syngas is critical for its use 

in industrial applications, the RU’s performance in producing two such H2:CO ratios, 

namely 2:1 for methanol, DME and Fischer-Tropsch (F-T) synthesis [86], and 1.05:1 for 

hydroformylation [87], is mapped as a function of parameters such as cell length, inlet gas 

velocity, operating temperature and cell voltage. The capital costs accrued in scaling up 

                                                 
5 Parts of this section have been taken from A. Banerjee, Y. Wang, J. Diercks and O. Deutschmann, 

Hierarchical Modeling of Solid Oxide Cells and Stacks producing Syngas via H2O/CO2 Co-electrolysis for 

Industrial Applications, Appl. Energy 230 (2018) 996-1013. 
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from a single RU to stacks of RUs capable of producing a commercial yield of syngas is 

also analyzed. Finally, the RU model is coupled to a transient 3–D heat transfer model for 

the stack taking into account energy exchanged with the surroundings. On comparing the 

performance of the stack to the RU, the merits and de-merits of such a tiered approach to 

stack engineering and operation is discussed. Time constants for charge, mass and heat 

transport through the stack over a myriad of operating intervals are also evaluated. 

3.1 Additional model details  

To facilitate a hierarchical modeling approach, a consistent set of model equations is 

required to simulate both a single cell and a stack of multiple cells performing co-

electrolysis of steam and carbon dioxide. Thus, the following assumptions, in addition to 

those previously listed in Chapter 2, are made to make the system of mathematical 

equations tractable and computationally efficient on the scale of a stack,  

1. The interfacial charge transfer model is employed. Thus, spatial distributions of the 

electronic and ionic phase potentials with respect to the electrode and electrolyte 

thickness are not evaluated. Menon et al. have already used the interfacial charge 

transfer model to reproduce the same experimental data set used to calibrate the 

electrochemical model in this study [20]. 

2. Modified Butler-Volmer type expressions informed by elementary step reaction 

mechanisms are used to formulate the kinetics of the charge transfer reactions at the 

electrode-electrolyte interfaces. 

3. The heterogeneous thermochemical reactions on the Ni surface in the Ni-GDC fuel 

electrode are modeled using a detailed elementary step reaction mechanism. The 

kinetics are formulated using the mass-action law for each step and the chemical 

activities are evaluated using the mean-field approximation. 

Keeping these assumptions in mind, the features added to the model for this study are 

discussed in the following sub-sections. 

3.1.1 Electrochemistry 

Both H2O and CO2 undergo reversible electrochemical reduction simultaneously during 

co-electrolysis. At the fuel electrode-electrolyte interface, 
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  H2Og + 2efe
− + VO,elyt

∙∙ ⇌ H2,g + OO,elyt
x  (3.1)  

 CO2,g + 2efe
− + VO,elyt

∙∙ ⇌ COg + OO,elyt
x  (3.2)  

and at the air electrode-electrolyte interface, 

 2OO,elyt
x ⇌ O2,g + 2VO,elyt

∙∙ + 4eae
−  (3.3)  

Therefore, individual potential balances are constituted for the two parallel pathways, 

 𝐸cell = 𝐸rev,H2O + 𝜂act,fe,H2O + 𝜂act,ae,H2O + 𝜂ohm,H2O (3.4)  

 𝐸cell = 𝐸rev,CO2
+ 𝜂act,fe,CO2

+ 𝜂act,ae,CO2
+ 𝜂ohm,CO2

 (3.5)  

Here, the subscripts H2O and CO2 denote the H2O and CO2 pathway respectively. The 

reversible potentials for each pathway are evaluated as    

 𝐸rev,H2O =
Δ𝐺H2O

0

2𝐹
+

𝑅𝑇

2𝐹
ln (

𝑝H2,fe/elyt𝑝O2,ae/elyt
1/2

𝑝H2O,fe/elyt
) (3.6)  

 

 

𝐸rev,CO2
=

Δ𝐺CO2

0

2𝐹
+

𝑅𝑇

2𝐹
ln (

𝑝CO,fe/elyt𝑝O2,ae/elyt
1/2

𝑝CO2,fe/elyt
) (3.7)  

The ohmic overpotentials due to the current densities in the H2O and CO2 pathways are 

evaluated by Eq. 2.21 in Chapter 2. A modified form of the Butler-Volmer (B-V) equation, 

derived by considering the rate-limiting step of elementary electrochemical reaction 

mechanisms for the H2O [50] and CO2 pathways [88], implicitly relates the activation 

overpotentials to the current density of their corresponding pathways,  

 𝑖H2O = 𝑖0,H2O [exp (
(1 + 𝛽a)𝐹

act,H2O,fe

𝑅𝑇
) − exp (−

𝛽c𝐹
act,H2O,fe

𝑅𝑇
)] (3.8)  

 𝑖CO2
= 𝑖0,CO2

[exp (
𝛽a𝐹𝜂act,CO2,fe

𝑅𝑇
) − exp (−

(1 + 𝛽c)𝐹𝜂act,CO2,fe

𝑅𝑇
)] (3.9)  

 𝑖O2
= 𝑖0,O2

[exp (
𝛽a𝐹𝜂act,ae

𝑅𝑇
) − exp (−

𝛽c𝐹𝜂act,ae

𝑅𝑇
)] (3.10)  

The shift in the charge transfer coefficients in the anodic and cathodic branches of Eqs. 3.8 

and 3.9 respectively, occurs due to the reduction of a mechanism with multiple charge 

transfer steps into a single step [50]. 

For H2O reduction and oxygen production [50], 𝑖0 is expressed as 
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 𝑖0,H2O = 𝐴H2Oexp (−
𝐸H2O

𝑅𝑇
)

(𝑝H2,fe/elyt/𝑝H2

∗ )
1/4

(𝑝H2O,fe/elyt)
3/4

1 + (𝑝H2,fe/elyt/𝑝H2

∗ )
1/2

 (3.11)  

 𝑖0,O2
= 𝐴O2

exp (−
𝐸O2

𝑅𝑇
)

(𝑝O2,ae/elyt/𝑝O2

∗ )
1/4

1 + (𝑝O2,ae/elyt/𝑝O2

∗ )
1/2

 (3.12)  

while for CO2 reduction [88], it takes the form  

 𝑖0,CO2
= 𝐴CO2

exp (−
𝐸CO2

𝑅𝑇
)

(𝑝CO2,fe/elyt/𝑝CO,fe/elyt)
1/4

1 + (𝑝CO,fe/elyt/𝑝CO
∗ ) + (𝑝CO2,fe/elyt/𝑝CO2

∗ )
 (3.13)  

Here, 𝐴𝑘 and 𝐸𝑘 constitute the Arrhenius-type temperature dependency of 𝑖0,𝑘 and are fitted 

to experimental data while the parameter 𝑝𝑘
∗  is obtained from the equilibrium constant for 

the adsorption-desorption of species 𝑘 on the Ni surface [50,88]. The complex reaction 

orders of the reacting species in Eqs. 3.11-3.13 are a consequence of reducing the 

elementary reaction mechanisms to a single rate-limiting step. 

With the current densities in the H2O and CO2 pathways evaluated, the overall current 

density can be calculated. Whilst, the most simple approach would be to simply sum the 

contribution of the two parallel pathways [16], it has been observed that their contributions 

to the overall current density is not equal [2,18,46,89,90]. Thus, a weighting factor 𝑤fac 

needs to be introduced, 

 𝑖 = 𝑤fac𝑖H2O + (1 − 𝑤fac)𝑖CO2
 (3.14)  

Although constant values of 𝑤fac based on experimentally measured data have been used 

in the literature [2,18], here 𝑤fac is treated as a simple function of the relative availability 

of H2O and CO2 at the fuel electrode-electrolyte interface, 

 𝑤fac =
𝑋H2O,fe/elyt

(𝑋H2O,fe/elyt + 𝑋CO2,fe/elyt)
 (3.15)  

3.1.2 Heterogeneous chemistry 

With the electrochemical reactions considered to be occurring only at the electrode-

electrolyte interface, the reaction source term �̇�𝑘 entering the mass balances equations in 

the finite volumes of the electrodes is either zero for the air electrode or is given by Eq. 

3.16 for the fuel electrode, 
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 �̇�𝑘 = ∑(𝜈𝑘,𝑖
′′ − 𝜈𝑘,𝑖

′ )𝑘f,𝑖 ∏ [𝑋]
𝑗

𝜈𝑗,𝑖
′

𝐾g+𝐾s

𝑗=1

𝐾r

𝑖=1

 (3.16)  

Here, 𝐾r is the total number of surface reactions, 𝜈𝑘,𝑖
′′  and 𝜈𝑘,𝑖

′  are the stoichiometric 

coefficients of the species 𝑘 in the 𝑖th reaction on the product and reactant sides 

respectively, 𝐾s is the total number of surface species adsorbed, 𝜈𝑗,𝑖
′  are the stoichiometric 

coefficients of all reactants 𝑗 in the reaction 𝑖.  

The forward reaction rate constant 𝑘f,𝑖 is evaluated from a heterogeneous reaction 

mechanism consisting of 42 elementary steps describing adsorption/desorption of gas 

phase H2, H2O, CO, CO2, CH4 and O2 to/from the Ni surface, WGS/RWGS reactions, 

methanation steps, steam/dry reforming of methane, oxidation of C1 species and formation 

of a carbon monolayer on the Ni surface [91]. The mechanism has been able to accurately 

reproduce different sets of experiments on steam reforming of CH4 over the temperature 

range 900K – 1350K. A modified Arrhenius-type expression describes the forward rate 

constant of the ith elementary step in the mechanism,  

 𝑘f,𝑖 = 𝐴𝑖𝑇𝜅𝑖exp (−
𝐸a,𝑖

𝑅𝑇
) ∏ exp (−

𝜉𝑗,𝑖𝜃𝑗

𝑅𝑇
)

𝐾s

𝑗=1

 (3.17)  

Here, 𝐴𝑖  is the pre-exponential factor, 𝜅𝑖 introduces temperature dependency for the pre-

factor, 𝐸a,𝑖 is the activation energy and 𝜉𝑗,𝑖 is an additional dependency of surface coverage 

on activation energy to account for lateral interactions. 

A key requirement of all reaction mechanisms is thermodynamic consistency. At 

equilibrium,  

 𝐾𝑖 =
𝑘f,𝑖

𝑘b,𝑖
= exp (−

𝛥𝐺𝑖
0

𝑅𝑇
) (3.18)  

Even though the reaction mechanism was formulated as a series of irreversible forward and 

backward steps, the pair of rate constants for the irreversible steps that constitute a 

reversible reaction satisfy Eq. 3.18 at equilibrium [91]. 

3.1.3 Performance Metrics 

To characterize the performance of the solid oxide electrolyzer, suitable metrics for 

performance need to be defined. Here, the metrics chosen are overall efficiency 𝜂 and net 
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syngas yield 𝛾syn.  

The overall efficiency is defined simply as ratio of the total energy output to the total energy 

input. The energy output is essentially the total heat of combustion of the syngas produced 

whilst the energy input is the electrical power supplied to the cell as well as the sensible 

heat required to raise the temperature of the fuel and air streams from ambient to the 

specified inlet temperature, 

𝜂 =
(�̇�o,H2

− �̇�i,H2
)𝐿𝐻𝑉H2

+ (�̇�o,CO − �̇�i,CO)𝐿𝐻𝑉CO

𝑤RU𝐸cell ∫ 𝑖𝑑𝑧
𝐿RU

0
+ �̇�i,ach ∫ 𝐶p,g,ach𝑑𝑇

𝑇i,ach

𝑇∞
+ �̇�i,fch ∫ 𝐶p,g,fch𝑑𝑇

𝑇i,fch

𝑇∞

 (3.19)  

Here, �̇�i and �̇�o are the total mass flow rate of the gas streams at the inlet and outlet, and 

the subscripts ach and fch denote air and fuel channels respectively. The ambient 

temperature 𝑇∞ is taken to be 298.15K and the lower heating values (LHV) of H2 and CO 

is used. This definition of efficiency is identical to the one used by Luo et al. [2] and is 

intended to be a conservative one as depending on the end use, the higher heating values 

(HHV) of H2 and CO can also be used. Moreover, the presence of an effective high 

temperature heat exchanger at the gas outlet, as is normally the case in practical 

applications, will also raise the overall efficiency. 

The net syngas yield 𝛾syn is the ratio of the moles of syngas produced per mole of input 

H2O and CO2, 

 𝛾syn =
(𝑋o,H2

− 𝑋i,H2
) + (𝑋o,CO − 𝑋i,CO)

𝑋i,H2O + 𝑋i,CO2

 (3.20)  

The net syngas yield is perhaps a more useful metric than reactant conversion since it 

specifically focuses on the output gases of interest.  

3.2 Computational Procedure 

The model computes steady-state current density, velocity, concentration, surface 

coverage, and temperature profiles for an applied cell voltage and inlet temperature, 

velocity and gas composition at ambient pressure. The coupled continuity equations for 

mass, momentum, charge and energy described in Chapter 2, are solved in the button cell 

and the single planar RU by discretizing the modeling domain into 45 and 70 finite volume 

elements of equal size, Δ𝑦 and Δ𝑧, in the y- and z-directions respectively. The spatial 
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derivatives in the governing equations for mass, momentum and energy are approximated 

as finite differences by the method of lines in each finite volume. Thereby, the partial 

differential equations in time and space are reduced to ordinary differential equations in 

time which are solved transiently using the semi-implicit solver LIMEX [92]. The algebraic 

equations for charge conservation coupled to the differential equations are solved using a 

non-linear damped Newton-iteration solver [51]. The conservation equations for mass and 

momentum, which are hyperbolic for the bulk gas phase and parabolic for the porous 

electrodes, form an iterative loop along with the charge balance equations. A space 

marching algorithm is adopted to solve the resulting system of differential-algebraic 

equations for the single planar RU where each axial element of the RU is solved to 

convergence and the next element is initialized with the solution of the previous converged 

element. This leads to an overall ‘1-D+1-D’ or quasi-2D effect. The fully 2-D heat transport 

equation (parabolic in time but elliptical in space) wraps around this inner loop and the 

entire transient system attains steady-state after a few iterations, typically under 15 minutes 

on a quad-core processor.  

The solution of the governing equations for the stack is similar to the solution of the RU, 

with the outer iterative loop now being replaced by the 3-D transient heat transport equation 

for the solid phase of the stack. Since, the stack consists of a large number of repeating 

units, the solution of each RU becomes the bottleneck in terms of computation time. 

Therefore, an algorithm was developed to choose a single RU from a cluster having the 

same or a very similar local temperature field and assume its performance to be 

representative of the entire cluster [52]. Although this measure helps reduce the 

computational cost significantly, depending on the boundary conditions and the size of the 

stack, the computational time required to attain steady-state can vary from a day to a week 

depending on the size and number of cells in the stack.  

The computer program describing the button cell, single planar RU and stack model is 

written in FORTRAN and is a part of the software package DETCHEM [93]. 

Since the goal of this study is to investigate the performance of the RU, and ultimately the 

stack, for two specified H2:CO ratios, the inlet fuel composition must be adjusted and the 

entire solution procedure for each configuration repeated till the desired output syngas ratio 

is attained. Depending on the initial guesses for the inlet feed composition, tens of 
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simulations may need to be run for one set of parameters. Subsequently, mapping the 

performance as a function of the applied voltage, inlet gas temperature, inlet gas velocity 

and cell length requires several hundreds of simulations. To do so with full 3-D stack 

simulations would result in quite a significant computational time and effort. Thus, the 

performance of a single RU is mapped first, and the stack is modeled only at certain 

selected operating points. 

3.3 Results and Discussion 

The geometries for the button cell and planar RU as well as the microstructural and 

electrochemical parameters required by the model are listed in Table 3.1. The RU width is 

estimated by considering the 80 cm2 active area of the F-design cell [70] to be a square of 

sides 8.94 cm which is, in turn, comprised of 20 repeating units of 4.47 mm width. The 

interconnect rib width is set to half the channel width to keep concentration losses and 

contact resistances realistic [72–74]. The thermal properties of the porous composite 

electrodes listed in the table are the effective values of the solid phase after factoring in the 

porosity. 

3.3.1 Comparison of model and experiment 

Figure 3.1 shows the comparison between simulated and experimental polarization curves 

measured by Fu et al. [46] for two operating temperatures and two inlet fuel compositions. 

The two sets of curves agree very well over the entire range of conditions studied and the 

model is also able to accurately predict the experimental open-circuit voltage (OCV). Apart 

from the curve for 𝑇=1133.15K in Fig. 3.1(a), the current density of the ESC2 cell was 

under -1 A cm-2 and the cell temperature increased by a mere 5K [46] thereby giving the 

isothermal approach of modeling the button cell credence. However, the isothermal 

approach may break down when trying to predict performance at limiting current densities 

of ~-2 A cm-2 where cell temperatures increase by up to 25K [46,90].  

The parameters defining the temperature and reaction order dependency that have been 

tuned to reproduce the button cell measurements are listed in Table 3.2. The 

electrochemical model was calibrated to this set of experimental data since the operating 

conditions closely resembled the range of conditions to be used for the performance 

analysis of the RU and stack. The syngas ratios necessary for F-T synthesis and   
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TABLE 3.1.  Input model parameters 

Parameter Value Reference 

Button Cell – ESC2 

Fuel electrode thickness 40 µm [46] 

Electrolyte thickness 90 µm [46] 

Air electrode thickness 40 µm [46] 

Inlet gas velocity 0.3 m s-1 Estimate 

Planar RU – F-design 

Fuel electrode thickness 1010 µm [70] 

Electrolyte thickness 10 µm [70] 

Air electrode (LSM-YSZ) layer thickness 15 µm [70] 

Air electrode (LSM) layer thickness 70 µm [70] 

Interconnect thickness 0.75 mm [13] 

Gas channel thickness 1 mm Estimate 

RU width 4.47 mm Estimate 

Gas channel width 2.98 mm Estimate 

Interconnect rib width 1.49 mm Estimate 

General  

Pressure 1 atm [46] 

Mole fraction of oxygen in air channel 0.211 [46] 

Porosity 0.35 [20] 

Particle diameter 2.5 µm [20] 

Ni volume fraction 0.5 Estimate 

GDC volume fraction 0.5 Estimate 

LSM volume fraction 0.5 Estimate 

YSZ volume fraction 0.5 Estimate 

Ni surface site density 2.66×10-9 mol cm-2 [20] 

Material Properties 

Electronic conductivity of Ni 3.27×104-10.653T [94] 

Ionic conductivity of GDC (1.45×105/T)∙e-7818.1/T S cm-1 [42] 

Density of porous Ni-GDC 5140.4 kg m-3 [95,96] 

Specific heat capacity of porous Ni-GDC 352.8 [97,98] 

Thermal conductivity of porous Ni-GDC 4.0 [99,100] 

Total emissivity of fuel electrode 0.5 Estimate 

Ionic conductivity of YSZ 3.34×102∙e-10300/T S cm-1 [101] 

Density of YSZ 5938.0 kg m-3 [102] 

Specific heat capacity of YSZ 620.0 [103] 

Thermal conductivity of YSZ 2.1 [103] 

Electronic conductivity of LSM (8.885×105/T)∙e-1082.5/T S cm-1 [104] 

Density of porous LSM-YSZ 3815.0 kg m-3 [102,105] 

Specific heat capacity of porous LSM-YSZ 398.0 [103,106] 

Thermal conductivity of porous LSM-YSZ 3.5 [103,107] 

Total emissivity of air electrode 0.8 Estimate 

Density of Crofer 22 APU 7700.0 kg m-3 [108] 

Specific heat capacity of Crofer 22 APU 660.0 [108] 

Thermal conductivity of Crofer 22 APU 24.0 [108] 

Total emissivity of interconnect 0.3 Estimate 

Ni mesh-Crofer 22 APU contact resistance 0.01 Ω-cm2 [108] 

(La,Sr)CoO3-Crofer 22 APU contact resistance 0.025 Ω-cm2 [108] 



39 

 

 

 

Figure 3.1. Steady-state polarization curves for simulation and experiment (Fu et al. [46]) 

at 𝑇 = 1083.15K and 𝑇 = 1133.15K, fed with an fuel composition of (a) 𝑋i,H2
= 0.1, 𝑋i,CO2

= 

0.3, 𝑋i,H2O = 0.6 and (b) 𝑋i,H2
= 0.1, 𝑋i,CO2

= 0.4, 𝑋i,H2O = 0.5.  
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TABLE 3.2.  Electrochemical parameters for modified B-V model fitted to data from Fu et al. [46]. 

Fit Parameter Value 

H2Og + 2efe
− + VO,elyt

∙∙ ⇌ H2,g + OO,elyt
x  

Pre-exponential Factor 3.57×106 A cm-2 

108.4×103 J mol-1 Activation Energy 

Anodic charge-transfer coefficient 0.7 

CO2,g + 2efe
− + VO,elyt

∙∙ ⇌ COg + OO,elyt
x  

Pre-exponential Factor 1.48×106 A cm-2 

131.38×103 J mol-1 Activation Energy 

Anodic charge-transfer coefficient 0.5 

2OO,elyt
x ⇌ O2,g + 2VO,elyt

∙∙ + 4eae
−  

Pre-exponential Factor 1.06×105 A cm-2 

Activation Energy 122.5×103 J mol-1 

Anodic charge-transfer coefficient 0.55 

hydroformylation require ~30-50% of CO2 in the feed and the 10% of inlet H2 is necessary 

to prevent the oxidation of Ni in the Ni-GDC fuel electrode.   

To test the thermal model and evaluate the differences between the ESC2 and F-design 

cells, the results from adiabatic simulations of single planar repeating units of both 

configurations are compared against syngas yield and temperature data for the single ESC2 

cell [46] as illustrated in Fig. 3.2. At low-moderate voltages (~1.1V- 1.4V) the syngas yield 

of the ESC2 RU is only slightly lower than the measured values due to the additional 

contact resistance from the interconnects while the F-design RU yields more syngas than 

the measured ESC2 cell owing to its fuel electrode-supported geometry. Moreover, because 

of the smaller active area, the temperature of both repeating units is lower than the single 

cell measurements. The higher temperatures in the F-design RU as compared to the ESC2 

RU is governed by the interplay between the heat adsorbed by the electrochemical 

reduction of H2O and CO2 and the ohmic heat released. The heat released/consumed due 

to thermochemistry on the Ni surface and the heat delivered by the input gases are 1-2 

orders of magnitude lower than the afore-mentioned electrochemical heating terms. The 

~1010 µm fuel electrode in the F-design RU, as compared to the ~40 µm fuel electrode in 

the ESC2 RU, affords a significantly larger reaction area which leads to higher current 

densities in the F-design RU between 1.1-1.4V. For example, at 1.36V, the length-averaged 

current density rises from ~-0.525 A cm-2 in the ESC2 RU to ~-0.674 A cm-2 in the F-

design RU.  
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Figure 3.2. Syngas yield and cell temperature for simulation and experiment (Fu et al. [46]) 

at an inlet composition of 10% H2, 30% or 40% CO2 and balance H2O. 

However, at 1.844V the model slightly overestimates the performance of the ESC2 RU in 

contrast to the single cell while the F-design RU has a lower syngas yield due to diffusion 

limitations through the ~1010 µm thick fuel electrode. The lower 𝛾𝑠𝑦𝑛 also leads to the F-

design RU being hotter despite its current density being limited to ~-1.23 A cm-2 as 

compared to ~-1.375 A cm-2 in the ESC2 RU. This is because the ~99% reactant conversion 

in the ESC2 RU leads to the heat consumed due to electrochemistry and the ohmic heating 

to be on the same order of magnitude whereas ohmic heating in the F-design RU is an order 

of magnitude larger than the electrochemical heat consumption due to a comparatively 

lower reactant conversion of ~88%.  

Figure 3.3 illustrates the species mole fraction profiles along the channel length and fuel 

electrode thickness. Looking at the H2O profile in the fuel channel outlet, there is a slight 

increase during the first 3 mm for both configurations. This increase in 𝑋𝐻2𝑂 is a result of 

the RWGS shift reaction on the Ni surface between the inlet CO2 and H2. However, as 

elucidated by the radial species profiles along the fuel electrode, the RWGS reaction is 

more dominant in the ESC2 RU since the RWGS reaction overlaps with the  
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Figure 3.3. Mole fractions of H2O, CO2, H2 and CO as a function of the fuel channel axial 

position z and the fuel electrode radial position y. The open symbols are the outlet mole 

fractions measured by Fu et al. [46].  

electrochemical reaction zones. For the thicker F-design fuel electrodes, the radial species 

profiles show that the RWGS reaction dominates over only a tiny zone (~100 µm) near the 

gas channel interface with the rest of the electrode dominated by the electrochemical 

reactions. The predominance of the RWGS reaction at the RU inlet has been previously 

reported by Stoots et al. [109]. Despite the equilibrium being shifted in direction of the 

RWGS reaction throughout the entire length of the ESC2 and F-design repeating units (the 

ratio of the equilibrium constant to the reaction quotient is less than 1 throughout), it is 

overwhelmed by the electrochemical reduction of H2O and CO2 as evidenced by the 
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monotonic decrease in 𝑋𝐻2𝑂 and 𝑋𝐶𝑂2
 and increase in 𝑋𝐻2

 and 𝑋𝐶𝑂 along the length of the 

channel after the first 3 mm.     

As shown in Fig. 3.3, the close agreement between the outlet gas composition for the 

simulated ESC2 RU and the measured ESC2 cell indicate that the relative contributions of 

the H2O and CO2 electrochemical pathways to the overall performance and the interplay 

between the charge transfer reactions and heterogeneous surface reactions on Ni are 

congruent with experiments.  

3.3.2 Performance analysis of F-design RU 

Having found the F-design RU to perform better than the ESC2 RU over the voltage range 

typically used to operate co-electrolysis cells and stacks (1.1V-1.4V), the performance of 

the F-design RU over this voltage range is analyzed for production of syngas (H2:CO) in 

ratios of 2:1 for F-T synthesis and 1.05:1 for hydroformylation.  

Figure 3.4 shows 3-D contour maps with the vertical axis denoting the RU efficiency and 

the color scale indicating total syngas yield over the RU length and inlet gas velocity 

horizontal parameter space. The maps encompass inlet gas temperatures of 1073.15K and 

1123.15K and a voltage range of 1.1V-1.4V. For a single performance map at a given 

temperature and applied voltage, 𝜂 and 𝛾syn are directly proportional to one another and to 

𝐿RU while being inversely proportional to 𝑢i. The contours depicting isolines for 𝜂 and 𝛾syn 

correspond to isolines for residence time of the reacting species in the RU i.e. 𝐿RU/ 𝑢i. Due 

to the slow kinetics of the electrochemical and thermochemical reactions in the RU, 

increasing residence time by tweaking 𝐿RU and 𝑢i leads to an increase in 𝜂 and 𝛾syn over 

the range of 𝐿RU and 𝑢i reported in the figure. 

Increasing the applied voltage from 1.1V to 1.4V, in general, leads to an increase in 𝜂 and 

𝛾syn. At 𝑇g,i=1073.15K (see Fig. 3.4(a)), 𝜂 and 𝛾syn are maximum at 1.4V, though the 

relative increase in peak efficiencies diminish with increasing voltages. The peak 

efficiencies at 1.3V and 1.4V are nearly identical. At 𝑇g,i=1123.15K, the RU efficiency 

now attains a maximum at 1.3V as shown in Fig. 3.4(b). In fact, the peak efficiency at 1.2V 

is still higher than the peak efficiency at 1.4V despite the corresponding yield at 1.4V being 

~1.8 times the yield at 1.2V. The shift of the peak efficiency maxima towards lower   
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Figure 3.4. Performance maps of a F-design RU producing a H2:CO ratio of 2:1 over 𝐸cell 

= 1.1V - 1.4V at (a) 𝑇g,i = 1073.15K and (b) 𝑇g,i = 1123.15K. 
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voltages with increasing heat input is a result of the thermodynamics of the 

electrochemistry governing the electrolyzer. Thermodynamically, the total electrical 

energy that needs to be supplied decreases with increasing temperature, even though the 

total heat required for the endothermic electrochemical reactions increases slightly [110]. 

This is one of the major advantages of high temperature electrolysis over low temperature 

electrolysis as cheap heat energy can be used to offset more expensive electrical energy as 

input [110], enabling cells to be operated at voltages below thermoneutral thereby 

preventing overheating and improving the reliability and lifetime of the electrolyzer. 

However, the significantly improved yields at higher voltages for both 1073.15K and 

1123.15K illustrate the need to arrive at a compromise between the syngas yield required 

and the desired efficiency.  

The interplay between efficiency and syngas yield is further highlighted by the 

performance maps of the F-design RU at inlet gas temperatures of 973.15K and 1023.15K 

depicted in Fig. 3.5. While both 𝜂 and 𝛾syn decrease significantly overall with decreasing 

temperature and voltage, comparing the peak values for 𝜂 and 𝛾syn for different voltages  

 

Figure 3.5. Performance maps of a F-design RU producing a H2:CO ratio of 2:1 for 𝐸cell = 

1.3V and 1.4V and 𝑇g,i = 973.15K and 1023.15K. 
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and temperatures emphasize the increasingly dominant role of temperature over applied 

voltage. Increasing the cell voltage from 1.3V to 1.4V increases the peak RU efficiency by 

~6 percentage points at 𝑇g,i=973.15K and only ~3 percentage points at 𝑇g,i=1023.15K. 

However, for 𝐸cell=1.3V, raising 𝑇g,i from 973.15K to 1023.15K improves the peak RU 

efficiency by ~14 percentage points. This trend is only amplified when looking at peak 

syngas yield. Increasing the operating temperature not only affects the thermodynamics but 

also drastically improves the kinetics of the reactions inside the electrolyzer.  

In the same vein, the amount of CO2 required in the feed to produce the 2:1 H2:CO syngas 

ratio decreases from ~44% to ~33% on increasing 𝑇g,i from 973.15K to 1123.15K. Since, 

the energy (and monetary) costs of capturing and feeding CO2 to the electrolyzer is higher 

than feeding steam, the dependency of efficiency on temperature can be expected to be 

even higher than shown here. Thus, the benefits of using an external heat source such as 

waste heat from high-temperature industrial processes, nuclear power, renewable energy, 

etc. to raise the electrolyzer temperature is multitudinous. 

Figure 3.6 depicts the performance of the F-design RU when producing syngas in the 

H2:CO ratio of 1.05:1 for hydroformylation. Essentially, changing the H2:CO ratio from 

2:1 to 1.05:1 requires more CO2 in the feed which in turn, operates the electrolyzer at a 

lower current density for a given applied voltage. The performance maps in the figure look 

virtually the same as the performance maps for the corresponding voltages in Fig. 3.4. This 

is a very important result as it underlines the ability of the electrolyzer to produce syngas 

in different H2:CO ratios under the same operating conditions with very similar 

performance. This syngas ratio flexibility gives SOECs a leg up on conventional gas-to-

liquids syngas production methods like CPOX and SMR [8]. 

Though the syngas yields are lower due to the lower current densities and higher CO2 in 

the inlet, the RU efficiencies for H2:CO ratio of 1.05:1 are slightly higher than the 

corresponding efficiencies for H2:CO ratio of 2:1. The improved efficiencies indicate that 

the WGS/RWGS reactions on the Ni surface help counteract the reduced electrochemical 

conversion of H2O and CO2 to an extent and mitigate a 1:1 decrease in syngas yield with 

decreasing electrical power input. 

The change to a more CO enriched fuel output also impacts the coverages of the two 
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Figure 3.6. Performance maps of a F-design RU producing a H2:CO ratio of 1.05:1 for 𝐸cell 

= 1.3V and 1.4V at (a) 𝑇g,i = 1073.15K and (b) 1123.15K. 

dominant surface species on Nickel, i.e. Hs and COs. On switching from a desired output 

H2:CO ratio of 2:1 to 1.05:1, the Hs coverage on Ni decreases from 0.15-0.2 to 0.1-0.15 

while the COs coverage on Ni increases from 0.25-0.3 to 0.35-0.4 over the range of 

conditions studied. The Cs coverage on Ni also increases from ~1e-8 to ~1e-6 though the 

mechanism by Maier et al. [91] can only capture the formation of a single monolayer of 

elemental carbon on the Ni surface. A carbon activity factor, aC, which indicates the 

thermodynamic favorability of the dissolution, oversaturation and inward growth of solid 

C on Ni is also evaluated [111]. Over the range of conditions studied in Figs. 3.4-3.6, aC is 

less than 1 implying that the Ni surface is not susceptible to coking.       

As mentioned earlier, in all the maps shown in Figs. 3.4-3.6, at a given voltage and   

temperature, the efficiency is directly proportional to syngas yield and in turn, the residence 

time. However, for the range of operating voltages and temperatures studied, SOCs are 

typically co-limited by reaction kinetics and reactant transport through the thick porous 

fuel electrodes [48]. Thus, it is expected that beyond a certain threshold value, the 
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efficiency will be inversely proportional to the residence time due to reactant starvation 

near the fuel electrode-electrolyte interface. This threshold residence time is evaluated with 

the help of Fig. 3.7. At 𝐸cell=1.3V and 𝑇g,i=1123.15K, Fig. 3.7(a) shows that the RU 

efficiency decreases below inlet gas velocities of ~0.2 m s-1 and ~0.4 m s-1 for fixed RU 

lengths of 8.94 cm and 18.94 cm respectively. Conversely, Fig. 3.7(b) shows that 

increasing the RU length beyond ~28.5 cm for an inlet gas velocity of 0.6 m s-1 also 

decreases the RU efficiency. Based on these results, a threshold residence time of ~0.47 s 

can be evaluated. Though the syngas yield may increase beyond this threshold residence 

time as shown in the figure, the very high reactant conversion rates (>96%) lead to the 

dearth of reactants in the RU and do not justify the additional electrical energy input 

required to convert them into product.  

Along with 𝜂, 𝛾syn also decreases below 0.15 m s-1 for a RU length of 8.94 cm due to the 

production in parallel of ~5% methane. The faster methane production kinetics can be 

attributed to the increasing mole fractions of CO and H2 (~33% and ~65% respectively at 

𝑢i ≤ 0.15 m s-1) in the fuel electrode which leads to methanation on Ni in accordance with 

the mechanism by Maier et al [91]. Menon et al. [20] have shown via a reaction flow 

analysis that the primary pathway for methanation is the formation of elemental carbon 

from CO followed by hydrogenation of the surface carbon. However, they make note that 

Maier’s mechanism has certain assumptions for the methanation steps that may not hold 

for SOCs, thus warranting further investigation. Additionally, operating at or above the 

threshold residence time increases the C coverage on Ni to ~1e-5 and makes the Ni surface 

more favorable to coking (aC >1). For a RU length of 8.94 cm, at 𝑢i = 0.2 m s-1, aC = 1.1 

while at 𝑢𝑖 = 0.1 m s-1, aC increases to 19 near the fuel channel outlet assuring Ni coking 

[111]. 

The importance of long residence times for maximizing performance, especially reactant 

conversion, is obviously well-known to researchers, with inlet gas velocities in the range 

of 0.05 m s-1 to 0.4 m s-1 typically used to test lab-scale co-electrolysis cells and stacks 

[13,109,112]. However, these lab-scale electrolyzers must be scaled up to produce syngas 

in industrially relevant quantities, i.e. in the range 2500 kg day-1 - 7500 kg day-1, that is 

required to operate commercial F-T synthesis plants [8].  
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Figure 3.7. Efficiency and syngas yield of a F-design RU producing a H2:CO ratio of 2:1 

as a funciton of (a) inlet gas velocity and (b) RU length for 𝐸cell=1.3V and 𝑇g,i=1123.15K. 



50 

 

To help analyze the effects of such a scale up, a 3-D contour plot with the vertical axis 

representing the electrolyzer capital cost in Euros and the color bar denoting the total mass 

of syngas produced per day in the H2:CO ratio of 2:1 by a single cell, i.e. 20 repeating units, 

�̇�syn is shown in Fig. 3.8. The two quantities are plotted as a function of the RU length 

and inlet gas velocity horizontal parameter space for a fixed applied voltage of 1.3V and 

inlet gas temperature of 1123.15K. The electrolyzer capital cost is estimated by evaluating 

the active electrolyzer area required to produce 5000 kg day-1 of syngas and by assuming a 

cost per active area of 1500€ m-2 [21].  

The isolines for �̇�syn are directionally opposite to the corresponding isolines for 𝜂 and 𝛾syn 

in Fig. 3.4(b). While Figs. 3.4-3.7 show that high values for 𝜂 and 𝛾syn can be obtained by 

increasing the residence time, Fig. 3.8 shows that �̇�syn is directly proportional to both 𝐿RU  

 

Figure 3.8. 3-D Contour map of the estimated F-design Electrolyzer capital cost and total 

mass of syngas produced per day in the H2:CO ratio of 2:1 by a single cell (=20 RU) as a 

function of inlet gas velocity and RU length for 𝐸cell = 1.3V and 𝑇g,i = 1123.15K. The 

capital cost is calculated based on the active electrolyzer area required to produce a 

commercially relevant quantity of 5000 kgs of syngas per day [21]. 
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and 𝑢i, i.e. a product of the residence time and the reactant flow rate. This is equivalent to 

the trade-off between cell efficiency and power density in SOFC mode. However, the 

electrolyzer size and cost follows a trend opposite to both �̇�syn, and 𝜂 and 𝛾syn since the 

lowest capital costs and smallest electrolyzer areas are attained with short repeating units 

and high gas velocities. As an example, on decreasing 𝑢i from 1.2 m s-1 to 0.2 m s-1, for a 

RU length of 8.94 cm the capital cost rises by ~81% from ~€307,000 to ~€556,500 (or, 

~205 m2 to ~371 m2) whereas for a RU length of 18.94 cm, the capital cost increases by 

~50% from ~€396,500 to ~€595,300 (or ~264 m2 to ~397 m2). This is because for any 

given inlet velocity, the peak current density is obtained within ~3 mm from the inlet after 

which, it monotonically decreases along the length of the stack in conjunction with reactant 

concentration.  

Figure 3.7 has previously shown that high performance can be attained by simply adjusting 

the gas velocity to reach the threshold residence time for a given RU length. Thus, based 

on the capital cost trends, it seems reasonable to fabricate smaller repeating units and then 

adjust the gas velocity to a value which represents a reasonable compromise between 

capital cost and performance. Fu et al. [21] have previously reported the annual operational 

cost of the electrolyzer (~90% of which is the cost of CO2 and electricity) to be significantly 

larger than the capital cost. Thus, such a study would suggest operating the electrolyzer 

near the threshold residence time to be optimal provided there are no size constraints. This 

conclusion is further backed up by the analysis of temperature gradients across commercial 

scale stacks presented in the following sub-section.  

3.3.3 Performance analysis of F-design stacks  

Aside from electrolyzer cost and size, the effect of scaling up from cells to stacks on the 

reliability and lifetime of these devices also needs to be investigated. To that end, 

temperature gradients across medium and large stacks are evaluated since thermally 

induced failure modes are the major cause of shorter cell lifetimes [9]. Figures 3.9 and 3.10 

show axial cut-away views of 3-D temperature profiles for F-design stacks with a length 

of 8.94 cm under different operating conditions. For both figures presented, the 

surrounding temperature is set equal to the inlet gas temperature in order to physically 

represent the common approach of testing stacks in a furnace with a set temperature.  
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Figure 3.9. Axial cut-away views of 3-D temperature profiles for a 40-cell stack producing 

a H2:CO ratio of 2:1 with 𝐿RU = 8.94 cm and 𝑢i = 0.6 m s-1, operating at 𝑇g,i = 𝑇surr = 

1123.15K and (a) 𝐸cell = 1.4V and (b) 𝐸cell = 1.3V. 
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Figure 3.10. Axial cut-away view of 3-D temperature profile of a 40-cell stack producing 

a H2:CO ratio of 2:1 with 𝐿RU = 8.94 cm, operating at 𝑇g,i = 𝑇surr = 1123.15K, and (a) 𝐸cell 

= 1.3V and 𝑢i = 0.2 m s-1 and (b) 𝐸cell = 1.4V and 𝑢i = 1.2 m s-1. 
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Figure 3.9 illustrates the impact of operating voltage and furnace temperature on the 

temperature profile for a 40-cell stack. When operating at 1.4V, above the thermoneutral 

voltage, the heat release due to joule heating, thermochemistry on Ni surface and the heat 

delivered to the stack by the input gases exceeds the heat required to drive the 

electrochemical reactions. As a result, the stack heats up to ~5K-16K above the set furnace 

temperature of 1123.15K (Fig. 3.9(a)). For every axial section, there is a central hot spot 

with heat flowing radially outward towards the corners of the stack. Conversely, on running 

the stack below thermoneutral at 1.3V, the heat release due to joule heating, Ni surface 

thermochemistry and heat delivered to the stack by the input gases are not sufficient to 

drive the electrochemical reactions. Ergo, the entire stack is colder than the set furnace 

temperature of 1123.15K by ~4K-11K (Fig. 3.9(b)). Heat now flows radially inward from 

the corners towards a central cold spot for each axial section. These results illustrate that 

cells at the stack corners perform differently vis-à-vis cells at the stack center. The area of 

the central hot/cold region also lends credence to the assumption of an isolated RU at the 

stack center to be effectively adiabatic. 

Figure 3.10 illustrates the influence of inlet gas velocity and in turn, current density on 

stack temperature. On decreasing the inlet gas velocity from 0.6 m s-1 to 0.2 m s-1 to reach 

the threshold residence time and thereby maximize performance, the temperature profile 

flattens out over the 40-cell stack operating below thermoneutral at 1.3V as shown in Fig. 

3.10(a). The slightly higher temperatures can be attributed to the much lower average 

current densities at 𝑢i= 0.2 m s-1 (~-0.365 A cm-2) as compared to 𝑢i= 0.6 m s-1 (~-0.467 A 

cm-2) due to the smaller volume of reactants processed by the electrolyzer. When running 

the stack above thermoneutral at 1.4V, Fig. 3.10(b) reveals that increasing 𝑢i to 1.2 m s-1 

to reduce electrolyzer cost and size, also leads to slightly lower temperatures as compared 

to 𝑢i=0.6 m s-1. Despite a 9% increase in average current density at 𝑢i=1.2 m s-1 (~-0.777 

A cm-2) as compared to 𝑢i= 0.6 m s-1 (~-0.713 A cm-2), the increased fuel and air velocities 

sufficiently improve convective heat transfer between the fluid and solid phases of the stack 

to counteract the additional joule heating. This illustrates why one of the most common 

methods of stack temperature control is flowing excess air through the air channel. The 

movement of the central hot spot down the length of the stack on increasing 𝑢i
 from 0.6 m 

s-1 to 1.2 m s-1 is indicative of the reduction in the relative decrease in current density over 

the 8.94 cm stack length (~35% for 𝑢i= 0.6 m s-1 and ~17% for 𝑢i= 1.2 m s-1). 
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Figure 3.11 evaluates the impact of scaling up from a single repeating unit to a stack on 

efficiency and syngas yield. To characterize stack performance, three representative 

repeating units are selected. The first RU is at the center, the second at the side and the 

third at the bottom corner of the stack. These three repeating units are enough to account 

for the various temperature localities across the stack cross-section. Based on the different 

conditions studied, the performance of the single RU is quite representative of the stack 

performance. For the 40-cell stack, the figure shows that the single RU provides a slightly 

conservative projection of stack performance at an operating voltage of 1.4V and a furnace 

temperature of 1123.15K while at 1.3V it marginally overpredicts the stack performance. 

Moreover, the performance at the stack side and corner improves as compared to the center 

with decreasing voltage since the stack center cools down (see Fig. 3.9).  

3.3.4 Transient operation of F-design stacks  

The results presented thus far report the steady-state performance of the F-design stack. 

Obviously, the transient model described in this study can also be used to simulate the 

dynamics of stack operation. The analysis of transients is of interest when the electrolyzer 

stack is integrated with the electric grid and can help identify strategies to ensure a constant 

stream of products and to minimize thermal transients leading to mechanical stress and 

strain. 

 

Figure 3.11. Efficiency and syngas yield (H2:CO = 2:1) of a single repeating unit and three 

representative repeating units of a stack with a length of 8.94 cm and an inlet gas velocity 

of 0.6 m s-1. 
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Figure 3.12 is a snapshot of various intervals of operation for an 80-cell stack with a length 

of 8.94 cm and an inlet gas velocity of 0.6 m s-1. The multiple operating intervals include 

switching the stack between co-electrolysis, H2O electrolysis and CO2 electrolysis modes 

as well as step changes in voltage and inlet gas temperature. The current density and outlet 

gas composition of the RU at the stack center change rapidly at the beginning of each 

interval as evinced by a time constant 𝜏const (time taken to reach 90% of steady- state 

value) of <1 s. After, they creep towards their steady state dictated by the slow response of 

the stack temperature (𝜏const= ~800-900 s) as previously shown by Luo et al. for tubular 

cells [19]. 

On replacing the CO2 in the inlet with Ar at 2050 s, in accordance with prior reports in the  

 

Figure 3.12. Mean stack temperature, and mean current density and outlet gas composition 

from RU at stack center for various operating intervals of an 80-cell stack with a length of 

8 .94 cm and an inlet gas velocity of 0.6 m s-1.  
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literature [46,89], the current density decreases as the stack switches from co-electrolysis 

to pure steam electrolysis. The decrease in current density implies that the product yield is 

higher during co-electrolysis than pure steam electrolysis since CO2 is converted into CO 

via a combination of the RWGS and electrochemical reduction reactions. Switching from 

steam electrolysis to pure CO2 electrolysis at 3050 s reduces the current density by a factor 

of ~1.4 also in agreement with measurements for fuel-electrode supported cells [89]. The 

rise and fall in stack temperature when switching between co-electrolysis to steam 

electrolysis and subsequently to CO2 electrolysis is because the operating voltage (=1.3V) 

is above the thermoneutral voltage for H2O electrolysis but below the thermoneutral 

voltage for CO2 electrolysis. 

Although the snapshot exhibited is for less than a couple of hours of stack operation, it 

serves to demonstrate the capability of the model to simulate stack transients. Provided the 

model is coupled with ‘realistic’ mechanisms to capture long-term degradation, stack 

reliability and lifetime studies for operating intervals of 10,000-100,000 hrs or more could 

potentially be simulated, saving precious time and cost of experimental testing and vastly 

speeding up the stack design process. The bottleneck however, very clearly, is the 

development of such credible long-term degradation mechanisms.  



58 

 

Chapter 4 

Elementary Kinetics of the Oxygen 

Reduction/Evolution Reaction on LSM-

YSZ Composite Electrodes6 
 

To help develop an intrinsic micro-kinetic mechanism for O2 reduction/evolution on LSM-

YSZ composites, the work presented in this chapter integrates ORR elementary kinetics 

into a fully transient continuum model of an LSM-YSZ half-cell. The half-cell consists of 

a porous LSM-8YSZ (8 mol% Yttria in Zirconia) composite air electrode sintered to a 

dense 8YSZ electrolyte. In addition to an elementary kinetic ORR model, the model also 

incorporates gas transport through the porous air electrode while charge transport through 

the MEA is modeled using the distributed charge transfer model. The coupled transport 

and kinetic model so developed is then used to simulate three separate experimental studies 

conducted by Barbucci et al. [43], Cronin et al. [44] and Nielsen and Hjelm [45] to ensure 

realistic kinetic and thermodynamic parameters for the ORR mechanism. The experimental 

data sets consist of transient electrochemical impedance spectra and steady-state Tafel plots 

measured over a temperature range of 873 K – 1173 K and an oxygen partial pressure (𝑝O2
) 

range of 0.05 atm – 1 atm. Three separate ORR mechanisms, each including parallel 

surface and bulk reaction pathways driven by three different electric phase potentials, are 

modeled to identify the mechanism which best describes the three sets of experiments. The 

rate limiting steps for each mechanism are also identified with the aid of a sensitivity 

analysis. 

4.1 Micro-kinetic modeling of electrochemistry 

The micro-kinetic elementary step approach has two important advantages over the more 

commonly used B-V approach. The first is that this approach makes no a priori assumption 

about the rate limiting step (RLS). The reaction can thus have a single RLS or be co-limited 

                                                 
6 Parts of this section are taken with permission from [49] A. Banerjee, O. Deutschmann, Elementary kinetics 

of the oxygen reduction reaction on LSM-YSZ composite cathodes, J. Catal. 346 (2017) 30-49. 
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by multiple RLSs. The second advantage is that the Nernst potential, valid only at 

thermodynamic equilibrium, is not required in the model formulation. This ensures a more 

accurate prediction of the open circuit voltage (OCV) for fuel cells operating with non-

equilibrated gas mixtures, for e.g. when modeling DIR cells [67]. 

The incorporation of a detailed elementary step approach to modeling electrochemical 

reactions is facilitated by the following assumptions 

1. The modeling domain (air electrode + electrolyte) is isothermal. 

2. The principle of electroneutrality holds in the air electrode. 

3. ORR is modeled by resolving the global reaction into a series of reversible steps 

involving reaction intermediates with each step being thermodynamically consistent 

and obeying the law of mass action. The chemical activities of the reacting species are 

set equal to their concentrations, which are evaluated using a mean-field 

approximation. 

4. There are no reactions occurring at the current collector-air electrode and air electrode-

electrolyte interfaces due to the small reactive area available in contrast to the reactive 

area of the porous air electrode composite matrix. 

5. Direct oxygen adsorption on YSZ is not considered due to unfavorable kinetics relative 

to oxygen adsorption on LSM. 

In light of these assumptions, the various facets of the micro-kinetic model are described 

in the following sub-sections. 

4.1.1 ORR mechanisms 

Since the goal of this study is to develop a robust and intrinsic mechanism, a thorough 

investigation of the most pervasive ORR mechanisms in the SOC literature is essential. In 

this study, three such mechanisms are selected and illustrated in Fig. 4.1. When compared 

against experimental data, the impact (or lack thereof) of the various individual 

steps/intermediates posited by each mechanism on macroscopic parameters like current 

density and polarization resistance are elucidated. All of these mechanisms were postulated 
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at least as far back as 1996 and 1997 by Adler et al. [113] and van Heuveln and 

Bouwmeester [114] among others. The mechanisms have in common one gas-phase 

species (O2,g), four LSM bulk lattice species (VO,LSMb

∙∙ , VO,LSM2PB

∙∙ , OO,LSMb

x  and OO,LSM2PB

x ), 

two YSZ surface species (OYSZs

2−  and □YSZs
) and two YSZ bulk lattice species (VO,YSZb

∙∙  and 

OO,YSZb

x ). In addition, mechanism 1 comprises of four LSM surface species (O2,LSMs
, 

OLSMs
, OLSM3PB

 and □LSMs
), mechanism 2 comprises of five LSM surface species (O2,LSMs

, 

OLSMs
, OLSMs

− , OLSM3PB

−  and □LSMs
) and mechanism 3 comprises of four LSM surface 

species (O2,LSMs

− , OLSMs

− , OLSM3PB

−  and □LSMs
). Here, 2PB refers to the two-phase boundary 

i.e. the LSM-YSZ bulk interface, 3PB is the three-phase boundary, i.e. the interface 

between the gas-phase and LSM and YSZ surfaces, and □LSMs
 and  □YSZs

 represent vacant 

surface sites on LSM and YSZ respectively.  

The variation in number and type of LSM surface species from one mechanism to the next 

signifies that the difference between the mechanisms center around the steps posited to 

describe O2 surface kinetics on LSM. Mechanism 1 is the simplest and is commonly 

adopted in the field of heterogeneous catalysis to describe oxygen incorporation in non-

stoichiometric oxides [115]. It assumes that the reaction intermediate which spills over onto 

the YSZ surface at the 3PB and/or gets incorporated into a bulk LSM vacancy is a neutral 

oxygen ad-atom, OLSMs
. No surface-to-bulk charge transfer steps are considered. 

Mechanisms 2 and 3 contradict this hypothesis and posit the formation of the ionized 

reaction intermediate OLSMs

−  because of surface-to-bulk charge transfer in LSM. The 

discrepancy between mechanisms 2 and 3 lies in the steps leading up to the formation of 

OLSMs

− . While mechanism 2 posits physisorption of O2,g on the LSM surface followed by 

dissociation and a surface to bulk charge transfer step to form OLSMs

− , mechanism 3 

proposes that O2,g first undergoes chemisorption on the LSM surface to form the superoxo-

like ad-atom O2,LSMs

− . The superoxo-like species then dissociates in conjunction with 

surface-to-bulk charge transfer into two OLSMs

−  ions. Although mechanism 2 is frequently 

used in the literature to describe ORR [116–119], mechanism 3 has also garnered tenability 

based on quantum chemical calculations [28,35,37,38].  

Although the surface pathway is dominant in porous LSM-YSZ composite air electrodes 

 



61 

 

 

Figure 4.1.  Schematic of the detailed ORR mechanisms used in the model. 
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[32,116,117,120], the mechanisms have been adapted to include the bulk pathway for O2 

reduction in parallel. Studies conducted by Horita et al. [121] and Brichzin et al. [122] 

show that for dense microelectrodes, the bulk pathway continues to be important at high 

cathodic polarization even when the 3PB length is high. Moreover, Adler surmises in his 

review of ORR on LSM air electrodes that hysteretic effects with time constants of several 

hours caused by polarization (as observed by McIntosh et al. [123]) can perhaps be 

attributed to the transition from the surface to the bulk pathway when the air electrode is 

maintained at high cathodic polarization for a considerable time [24]. Considering these 

observations, it seems prudent to include the bulk pathway and isolate its contribution, if 

any. 

4.1.2 ORR kinetics 

The faradaic current source term entering the distributed charge transfer equations, as 

shown in section 2.2.1 in Chapter 2, is a result of the charge-transfer reactions occurring 

between the LSM and YSZ phases, 

 𝑖F
V = −2𝐹(𝐴LSM/YSZ

V 𝑟2PB + 𝜆3PB
V 𝑟3PB) (4.1)  

Here, 𝜆3PB
V  is the volumetric three phase boundary length, and 𝑟2PB and 𝑟3PB are the rates 

of the charge transfer reactions at the 2PB and 3PB respectively. 

The molar production rate of species 𝑘 due to both surface and CT reactions, �̇�𝑘, needs to 

be taken into account when conserving mass across a finite volume in the air electrode. It 

is evaluated here as 

 �̇�𝑘 = 𝑓 ∑ 𝜈𝑘,𝑗

𝑗

𝑟𝑗 (4.2)  

where 𝑗 represents a reaction in which species 𝑘 is involved and 𝑓 is a factor that has 

different values for different types of reactions,  

1. for a surface reaction or a surface-to-bulk charge transfer reaction, 𝑓=1, 

2. for the charge transfer reaction at the 3PB, 𝑓=𝜆3PB
V /𝐴s

V where s denotes the surface on 

which the species is located, and 

3. for the charge transfer reaction representing the bulk pathway, 𝒇=𝟏/𝑨𝐬
𝐕. 

For a given mechanism, the law of mass action gives the rate of an elementary step 𝑝,  
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 𝑟𝑝 = (𝑘𝑓,𝑝 ∏ 𝑐𝑖

𝜈𝑖
′

− 𝑘𝑏,𝑝 ∏ 𝑐𝑖

𝜈𝑖
′′

𝑖∈𝑅b,𝑝𝑖∈𝑅f,𝑝

) (4.3)  

The species activity 𝑐𝑖 is equal to volumetric concentrations for gas-phase species, surface 

concentrations for surface species and mole fractions for bulk lattice species. The rate 

coefficients of the reactions are given by modified Arrhenius expressions,  

 𝑘𝑝 = 𝐴 exp (
𝐸a

𝑅𝑇
) exp (−

𝑛e,𝑝𝛽𝐹𝐸CT

𝑅𝑇
) (4.4)  

where 𝐸CT is the potential difference between the phases participating in a CT reaction and 

the charge transfer coefficient 𝛽 is fixed at 0.5. For a surface reaction, 𝐸CT is zero and Eq. 

4.4 reduces to a purely thermally activated expression. For a CT reaction, an additional 

exponential dependence on 𝐸CT is introduced in accordance with transition state theory 

(TST) [75,76,124–126]. This additional activation barrier for gaining/losing an electron is 

a measure of the band gap between the electron donor and electron acceptor phases relative 

to the Fermi level. 

As evident from Fig. 4.1, for each mechanism CT reactions occur at three different regions, 

namely, the LSM surface exposed to the gas phase, the 2PB, and the 3PB. On the LSM 

surface exposed to the gas phase, a DL is formed due to the oxygen anions adsorbed on the 

LSM surface and the electron holes in the LSM bulk while at the 2PB a DL results from 

the lattice oxygen in the LSM bulk and the oxygen vacancies in the YSZ bulk. On applying 

TST to the CT reactions, the potential difference across each interface is expressed as a 

function of the potentials of each participating phase, 

 𝐸LSMs/b
= 𝜙LSMb

− 𝜙LSMs
 (4.5)  

 𝐸2PB = 𝜙LSMb
− 𝜙YSZb

 (4.6)  

 𝐸3PB = 𝜙LSMb
+ 𝜙LSMs

− 2𝜙YSZs
 (4.7)  

Since, 𝜙LSMs
 is not evaluated directly, 𝐸LSMs/b

 across the DL between the LSM surface 

and LSM bulk is evaluated using the Helmholtz model which treats the DL as a parallel 

plate capacitor with homogeneous charge distribution [64]. The Poisson’s equation can 

then be solved to relate the potential across the DL, 𝐸LSMs/b
, to the area specific charge and 

in turn, the surface coverage of anions 𝜃OLSMs
𝑛− , 
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 𝐸LSMs/b
=

𝐹ΓLSM

𝐶DL

LSMs/b
∑ 𝜃OLSMs

𝑛−  (4.8)  

Here, 𝐶DL

LSMs/b
 is the DL capacitance at the LSM surface-LSM bulk interface (which is 

equivalent to the ratio of dielectric constant to ionic radius) and 𝜃OLSMs
𝑛−  is the coverage of 

an oxygen ion species adsorbed on the LSM surface. At the 2PB, 𝐸2PB across the DL is 

calculated directly from Eq. 4.6 after 𝜙LSMb
 and 𝜙YSZb

 have been evaluated using Eqs. 

2.16 and 2.17 in Chapter 2. To evaluate 𝐸3PB, it is assumed, that unlike the LSM phase, the 

potential difference between the YSZ surface and the bulk layer just below the YSZ surface 

is negligible i.e. 𝜙YSZs
= 𝜙YSZb

. Then combining Eqs. 4.5, 4.6 and 4.7 yields 

 𝐸3PB = 2𝐸2PB − 𝐸LSMS/B
 (4.9)  

The mechanistic details as well as the corresponding kinetic data (except the fit parameters) 

is given in Table 4.1 for mechanism 1, Table 4.2 for mechanism 2 and Table 4.3 for 

mechanism 3. Pre-exponential factors (𝐴) and activation energies (𝐸a,f) are provided only 

for the forward reaction since the backward reaction rate constants are calculated from 

thermodynamic data to ensure consistency.  

TABLE 4.1.  ORR Mechanism 1. □𝐋𝐒𝐌𝐬
 and □𝐘𝐒𝐙𝐬 denote vacant LSM and YSZ surface sites. 

Reaction 𝐴 𝐸a,f (kJ mol-1) Reference 

R1 O2,g + □LSMs
⇌ O2,LSMs

 1×10-4 a 0.0 [127] 

R2 O2,LSMs
+ □LSMs

⇌ 2OLSMs
 Fit Fit - 

R3 OLSMs
⇌ OLSM3PB

 9.45×1010 s-1 144.73 [38,128] 

R4 OLSM3PB
+ □YSZs

⇌ OYSZs

2− + □LSMs
+ 2hLSMb

∙  Fit Fit - 

R5 OYSZs

2− + VO,YSZb

∙∙ ⇌ OO,YSZb

x + □YSZs
 1.84×1013 s-1 90.9 [40] 

R6 OLSMs
+ VO,YSZb

∙∙ ⇌ OO,YSZb

x + □LSMs
+ 2hLSMb

∙  4.87×107 s-1 270.29 [129] 
a 

sticking coefficient 

 

TABLE 4.2.  ORR Mechanism 2. □𝐋𝐒𝐌𝐬
 and □𝐘𝐒𝐙𝐬

 denote vacant LSM and YSZ surface sites. 

Reaction 𝐴 𝐸a,f (kJ mol-1) Reference 

R1 O2,g + □LSMs
⇌ O2,LSMs

 1×10-4 a 0.0 [127] 

R2 O2,LSMs
+ □LSMs

⇌ 2OLSMs
 1.87×1021 cm2 mol-1 s-1

 22.19 [37] 

R3 OLSMs
⇌ OLSMs

− + hLSMb

∙  Fit Fit - 

R4 OLSMs

− ⇌ OLSM3PB

−  9.45×1010 s-1 144.73 [38,128] 

R5 OLSM3PB

− + □YSZs
⇌ OYSZs

2− + □LSMs
+ hLSMb

∙  Fit Fit - 

R6 OYSZs

2− + VO,YSZb

∙∙ ⇌ OO,YSZb

x + □YSZs
 1.84×1013 s-1 90.9 [40] 

R7 OLSMs

− + VO,YSZb

∙∙ ⇌ OO,YSZb

x + □LSMs
+ hLSMb

∙  4.87×107 s-1 270.29 [129] 
a 

sticking coefficient 
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TABLE 4.3.  ORR Mechanism 3. □𝐋𝐒𝐌𝐬
 and □𝐘𝐒𝐙𝐬 denote vacant LSM and YSZ surface sites. 

Reaction 𝐴 𝐸a,f (kJ mol-1) Reference 

R1 O2,g + □LSMs
⇌ O2,LSMs

− + hLSMb

∙  1×10-4 a 0.0 [127] 

R2 O2,LSMs

− + □LSMs
⇌ 2OLSMs

− + hLSMb

∙  Fit Fit - 

R3 OLSMs

− ⇌ OLSM3PB

−  9.45×1010 s-1 144.73 [38,128] 

R4 OLSM3PB

− + □YSZs
⇌ OYSZs

2− + □LSMs
+ hLSMb

∙  Fit Fit - 

R5 OYSZs

2− + VO,YSZb

∙∙ ⇌ OO,YSZb

x + □YSZs
 1.84×1013 s-1 90.9 [40] 

R6 OLSMs

− + VO,YSZb

∙∙ ⇌ OO,YSZb

x + □LSMs
+ hLSMb

∙  4.87×107 s-1 270.29 [129] 
a 

sticking coefficient 

For mechanism 1, step R1 represents the physisorption of O2 on LSM. The reaction is a 

stick reaction with no activation barrier. The pre-factor describes the probability of O2 

adsorption on the LSM surface and is evaluated using a sticking coefficient 𝑆0, 

 𝐴R1 =
𝑆0

ΓLSM
∙ √

𝑅𝑇

2𝜋𝑊O2

 (4.10)  

𝑆0 is set equal to the value previously used by DeCaluwe et al. [127] based on data 

published by Jiang et al. [130] for O2 adsorption on LSM. The physisorbed O2 then 

dissociates to the atomic species O in step R2. The kinetic parameters of this step are 

obtained through fitting.  

Step R3 represents the diffusion of the ad-atom O along the LSM surface to the 3PB. The 

rate of this step is equivalent to a surface diffusion flux gradient and the rate coefficient is 

proportional to 𝐷s/𝛿s
2 [35], 

 𝑘R3 = 𝑘f,R3 = 𝑘b,R3 =
𝐷s

𝛿s
2

∙ 𝜃□LSMs
 (4.11)  

The mean distance for surface diffusion 𝛿s is set to 5 nm based on prior work by Goodwin 

et al. [41] and la O’ et al. [128] on microelectrodes and the surface diffusivity 𝐷s is 

evaluated using an Arrhenius expression. The activation energy for surface diffusion is 

taken to be 1.5 eV in congruence with the measured range in the literature [32,128]. The 

pre-factor represents the jump frequency for 1-D diffusion. Considering only nearest-

neighbor uncorrelated jumps, 

 𝐴𝐷s
=

1

2
𝜈𝑙2 (4.12)  

where 𝜈 is the vibrational frequency of the ad-atom O on LSM and 𝑙 is the jump distance 

(taken here to be the lattice constant) [38]. The rate coefficient is also weighted by the 
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coverage of vacant surface sites since there is no surface diffusion when all surface sites 

are occupied, i.e. when 𝜃□LSMs
= 0.  

Once the reaction intermediate O has reached the 3PB, it consumes two electrons from the 

LSM bulk and the O2− ion so formed spills over onto the YSZ surface. The rate parameters 

for this step R4 are obtained through fitting. Step R5 represents the incorporation of the 

O2− ion from the YSZ surface into the YSZ bulk. The pre-factor and activation energy for 

this step are related to the O2 vacancy diffusivity in the YSZ bulk since it is assumed here 

that the YSZ surface is merely the boundary of the YSZ bulk lattice. The correlations used 

are analogous to Eqs. 4.11 and 4.12 and have been derived previously by Vogler et al. [40]. 

The activities of the bulk lattice species, VO,YSZb

∙∙  and OO,YSZb

x , are fixed at their bulk mole 

fractions, 𝑋VO,YSZb
··  = 0.0374 and 𝑋OO,YSZb

×  = 0.9626, set by the Yttria doping level for 8 

mol% Yttria in Zirconia [41].  

Having traversed the traditional surface pathway for O2 reduction on porous composite 

cathodes, step R6 describes the bulk pathway. In Table 4.1, the elementary steps for the 

bulk pathway, namely, the formation and incorporation of O2− into the LSM bulk, bulk 

diffusion of O2− through the LSM bulk, and CT at the 2PB are lumped into a single step. 

However, in formulating the kinetics of step R6, all three elementary steps are considered, 

 B1: OLSMs
+ VO,LSMb

·· ⇌ OO,LSMb

x + □LSMs
 (4.13)  

 B2 ∶  OO,LSMb

x ⇌ OO,LSM2PB

x  (4.14)  

 B3 ∶ OO,LSM2PB

x + VO,YSZb

∙∙ ⇌ OO,YSZb

x + VO,LSM2PB

··  (4.15)  

Although it is certainly possible to include all three steps kinetically, it would introduce 

additional fit parameters for steps B1 and B3 due to the absence of literature data. 

Moreover, measurements made on dense LSM microelectrodes, where the bulk pathway is 

considerably more dominant relative to the porous geometry studied here [131], have 

shown that step B2 is the RLS above 973K [128]. Therefore, assuming the bulk diffusion 

of O2− through the LSM bulk to be the RLS and the other two steps to be ‘fast’ i.e. in 

equilibrium, the following rate expression for step R6 (which is different from the typical 

mass-action kinetic formulation for steps R1-R5) is obtained,  
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  𝑟R6 = 𝑘R6 (
3

𝑉m,LSM
) ((

𝑎

1 + 𝑎
−

𝑏

1 + 𝑏
) +

2𝐹Δ𝜙LSMb

𝑅𝑇
(

1

1 + 𝑎
)) (4.16)  

The above equation is essentially a modified Nernst-Planck equation for O2 vacancy flux 

(see the Appendix for more details). The factor (
3

𝑉m,LSM
) converts the bulk mole fractions 

of OO,LSMb

x  and OO,LSM2PB

x  into bulk molar concentrations with 𝑉m,LSM representing the 

lattice molar volume of LSM. The terms (
𝑎

1+𝑎
−

𝑏

1+𝑏
) and 

2𝐹𝛥𝜙LSMb

𝑅𝑇
(

1

1+𝑎
) represents the 

O2 vacancy flux through the LSM bulk due to diffusion and migration respectively. Here, 

 𝑎 = e
−Δ𝐺B1

𝑅𝑇 ∙
𝜃𝑂LSMs

𝜃□LSMs

 (4.17)  

 𝑏 = e
Δ𝐺B3

𝑅𝑇 ∙
𝑋OO,YSZb

×

𝑋VO,YSZb
··

∙ e
2𝐹𝐸2PB

𝑅𝑇
 
 (4.18)  

where 𝛥𝐺B1 and 𝛥𝐺B3 are the Gibbs free energy change for steps B1 and B3 respectively. 

Finally, the rate coefficient 𝑘R6 in Eq. 4.16 is given by 

 𝑘R6 =
𝐷VO,LSMb

··
e

𝛿b
 (4.19)  

Here, 𝛿b is the mean distance for bulk diffusion and is assumed equal to the finite volume 

cell thickness (see the Appendix). 𝐷VO,LSMb
··

e  is the effective O2 vacancy diffusivity through 

the LSM bulk and is a function of the tracer self-diffusion coefficient, 𝐷VO,LSMb
··

∗ , and the 

electrode microstructure. It is evaluated from percolation theory in a manner similar to 

𝜎el,LSM
e  and 𝜎io,YSZ

e  (see section 2.4 in Chapter 2). Since, the O2 vacancy fraction in the bulk 

LSM lattice increases at high cathodic polarizations, i.e. at low 𝑝O2
,  

 𝐷VO,LSMb
··

∗ = 𝐷VO,LSMb
··

∗,0 ∙ 𝑝O2

−𝑛 (4.20)  

Here, 𝐷VO,LSMb
··

∗,0
 (tracer self-diffusion coefficient at 𝑝O2

= 1 bar) and the negative exponent 

𝑛 (=0.41) are obtained from measurements made by de Souza et al. [129,132].  

Moving on to mechanism 2, the kinetics of step R1 is identical to mechanism 1. However, 

step R2 is assumed to be fast and the kinetic parameters of this step are taken from quantum 

chemical simulations performed by Choi et al. [37]. The parameter values result in a rate 
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coefficient similar to one published for O2 dissociation on LSCF [42]. For the following 

surface-to-bulk charge transfer step R3, 𝐴R3 and 𝐸a,f,R3 are fit parameters. For the 

subsequent steps R4-R6, the kinetics are derived as stated for steps R3-R5 of mechanism 

1. For the bulk pathway, step R7, the factor 𝑎 representing the rate of incorporation of the 

reaction intermediate O− into the LSM bulk (given by Eq. 4.17) is augmented by an 

additional exponential dependence on the electric potential difference between the LSM 

surface and bulk, 𝐸LSMs/b
, due to electron-hole transfer from the LSM bulk to the surface. 

Finally, for mechanism 3, step R1 represents the chemisorption of gas-phase O2 on the 

LSM surface, which translates kinetically to an additional exponential dependence of 𝑘f,R1 

on 𝐸LSMs/b
 due to surface-to-bulk charge transfer. The activation energy 𝐸a,f,R1 remains the 

same as for mechanisms 1 and 2. The so-formed superoxo-like ad-atom O2
− dissociates into 

two O− ad-atoms on the LSM surface by consuming another electron from the LSM bulk 

in step R2. The kinetic parameters of this step are obtained through fitting. The method for 

acquiring kinetics for the remaining steps R3-R6 are the same as for steps R4-R7 of 

mechanism 2. 

4.1.3 ORR thermodynamics 

With the forward reaction rate coefficients specified, the backward reaction rate coefficient 

follows from thermodynamic consistency, 

 𝑘b = 𝑘fe
Δ𝐺r

0

𝑅𝑇  (4.21)  

where Δ𝐺r
0 is the standard Gibbs free energy change for the reaction and is evaluated using 

the thermodynamic properties of the species, i.e. molar enthalpies 𝐻𝑘 and entropies 𝑆𝑘 

listed in Table 4.4. Typically, for non- equimolar reactions, e.g. step R1 for mechanisms 1, 

2 and 3, the right-hand side term in Eq. 4.21 is multiplied by a reference molar 

concentration to obtain the correct units for 𝑘b. However, since the thermodynamic data 

for O2,LSMs
 and O2,LSMs

−  are set such that 𝐴b,R1 and 𝐸a,b,R1 for mechanisms 1, 2 and 3 

correspond to the Arrhenius expression published by Choi for desorption of O2 from LSM 

which already possesses the right units [37], this reference concentration is not necessary. 

The enthalpy of OLSMs
 and OLSMs

− /OLSM3PB

−  is a fit parameter for mechanisms 1 and 2 

whereas for mechanism 3, the enthalpy of OLSMs

−  is evaluated from its enthalpy of formation  
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TABLE 4.4.  Thermodynamic data (enthalpies and entropies) for gas phase, surface and bulk species used in 

Mechanisms 1, 2 and 3 at T=1073 K. 

Species, 𝒌 𝑯𝒌 (kJ mol-1) 𝑺𝒌 (J K-1 mol-1) Reference 

 Mech 1 Mech 2 Mech 3 Mech 1 Mech 2 Mech 3 Mech 1 Mech 2 Mech 3 

Gas phase 

O2 25 246 [93] 

LSM phase 

□LSM𝑠
 0 0 reference species 

O2,LSMs
 -74.38 - 182.45 - [37] - 

O2,LSMs

−  - -74.38 - 182.45 - [37] 

 OLSMs
 -40 - 91.22 - Fit - 

OLSMs

−  - -165 -93.65 - 91.22 - Fit [35] 

OLSM3PB

−  - -165 -93.65 - 91.22 - Fit [35] 

LSM bulk 

VO,LSMb

∙∙  0 0 reference species 

OO,LSMb

x  -148.24 91.22 [133] 

YSZ surface 

□YSZs
 0 0 reference species 

OYSZs

2−  -227 91.22 [40] 

YSZ bulk 

VO,YSZb

∙∙  0 0 reference species 

OO,YSZb

x  -236 91.22 [40] 

relative to O2 gas [35]. The enthalpies of OYSZs

2−  and OO,YSZb

x  are set according to prior work 

in the literature [40,41,134]. To reduce the number of fit parameters, the entropies of the 

afore-mentioned species are set such that Δ𝐺r, for all steps except R1, is a function of 

reaction enthalpy only. Additionally, the enthalpies and entropies of the reference species 

(□LSMs
, □YSZs

, VO,LSMb

·· , VO,LSM2PB

··  and VO,YSZb

∙∙ ) are set to zero. Lastly, the enthalpy of 

OO,LSMb

x  is derived from equilibrium constant data [133] for the oxygen incorporation 

reaction into the LSM bulk in the oxygen excess region (𝑝O2
>10-5 atm).  

4.2 Computational Procedure 

To solve the coupled system of governing equations described in Chapter 2 alongside the 

micro-kinetic ORR mechanisms, the modeling domain is discretized into n finite volume 

elements of equal size Δ𝑦 along the air electrode thickness such that Δ𝑦 ≫ 𝑑p. The total 

number of elements varies from 10-30 depending on the thickness of the air electrode. In 

each finite volume element so formed, the spatial derivatives are resolved into algebraic 

expressions using the method of lines, thus converting the partial differential equations in 

time and space into ordinary differential equations in time only. The resulting differential 

algebraic system of equations are solved transiently using the semi-implicit solver LIMEX 
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[92]. The model computes a steady-state current density for an applied cell voltage and 

generates a Tafel plot by doing so for a range of applied cell voltages. To simulate electro-

impedance spectra, the model uses a rapid exponential step voltage excitation method as 

published by Bessler [135].  

4.3 Results and Discussion 

4.3.1 Comparison of mechanisms against experimental data  

To ensure a realistic set of kinetic and thermodynamic parameters, the mechanisms are first 

calibrated against experimental data measured by Barbucci et al. [43]. The baseline model 

parameters describing the geometry and microstructure of the cell configuration tested by 

Barbucci along with the electrochemical properties of the materials are listed in Table 4.5. 

The kinetic parameters for mechanisms 1, 2 and 3 that yield the best fits to Barbucci’s 

measurements are listed in Table 4.6.  

Figures 4.2 – 4.5 present a comparison of the simulated impedance spectra at open-circuit 

voltage (OCV) against Barbucci’s experimental data for all three mechanisms. Figures 4.2 

and 4.3 depict the Bode plots with the positive y-axis representing the real part of the 

complex impedance and the negative y-axis representing the imaginary part of the complex 

impedance. Figures 4.4 and 4.5 show the Nyquist plots. The ohmic drop across the 

electrolyte has been subtracted from the real part of the complex impedance in all the plots 

to focus solely on the electrode response. Moreover, since the experimental data refers to  

TABLE 4.5.  Baseline model parameters 

Parameter Value Reference 

Air electrode thickness 43 µm [43] 

Electrolyte thickness 2000 µm [43] 

Pressure 1 atm [43] 

Inlet gas velocity 10 m s-1 Estimate 

Porosity 0.4 Estimate 

Porosity gradient 0.103 cm-1 [136] 

Tortuosity factor 2 Estimate 

Particle diameter 0.3 µm [43] 

LSM volume fraction 0.5 [43] 

YSZ volume fraction 0.5 [43] 

Gas/LSM double layer capacitance 10 µF cm-2 [64] 

LSM/YSZ double layer capacitance 1.067×10-6 ·T-7.438×10-4 F cm-2 [65] 

LSM surface site density 1.15×10-9 mol cm-2 Estimate 

YSZ surface site density 1.25×10-9 mol cm-2 [41] 
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TABLE 4.6.  Kinetic parameters for mechanisms 1, 2 and 3 obtained by fitting to experimental data [43]. 

Reaction 𝐴 𝑬𝐚,𝐟 (kJ mol-1) 

Mechanism 1 

R2 O2,LSMs
+ □LSMs

⇌ 2OLSMs
 5×1022 cm2 mol-1 s-1 154.4 

R4 OLSM3PB
+ □YSZs

⇌ OYSZs

2− + □LSMs
+ 2hLSMb

∙  7.5×1018 cm3 mol-1 s-1
 154.4 

Mechanism 2 

R3 OLSMs
⇌ OLSMs

− + hLSMb

∙  5×1013 cm2 mol-1 s-1 154.4 

R5 OLSM3PB

− + □YSZs
⇌ OYSZs

2− + □LSMs
+ hLSMb

∙  4.5×1017 cm3 mol-1 s-1 154.4 

Mechanism 3 

R2 O2,LSMs

− + □LSMs
⇌ 2OLSMs

− + hLSMb

∙  2.6×1026 cm2 mol-1 s-1 190 

R4 OLSM3PB

− + □YSZs
⇌ OYSZs

2− + □LSMs
+ hLSMb

∙  7.5×1017 cm3 mol-1 s-1 144.73 

the complete symmetrical cell response, the simulated impedances have been multiplied 

by two. On perusing the figures, it evident that all three mechanisms can match the 

relaxation frequency of the single impedance feature (~1-10 Hz) and estimate the 

impedance magnitudes over the entire range of conditions studied. The largest 

discrepancies are ~20% for mechanism 1 when simulating experiments at high 𝑝O2
 (0.5 

atm and 1 atm). 

 

Figure 4.2.  Bode plots of experimental (Barbucci et al. [43]) and simulated impedance 

spectra over T = 973 K – 1123K at OCV and 𝑝O2  = 0.21 atm. 
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Figure 4.3.  Bode plots of experimental (Barbucci et al. [43]) and simulated impedance 

spectra over 𝑝O2
 = 0.08 atm – 1 atm and OCV at (a) T = 1073K and (b) T = 973K. 
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However, the overall shape of the experimental spectra is best captured by mechanisms 1 

and 3. The Nyquist plots show that the experimental spectra have the characteristic 

depressed shape as expected of these types of air electrodes. The spectra begin with a high 

frequency (HF) feature having a 45° slope before transitioning into a depressed 

semicircular feature at intermediate to low frequencies (LF). The simulated spectra for each 

mechanism are all variations of this depressed shape and can be attributed to the interplay 

between transport and kinetics. For example, the spectra corresponding to mechanism 2 

have a HF slope greater than 45° and a more pronounced LF semicircle suggesting a greater 

contribution of kinetics to the impedance than what has been measured experimentally. On 

the other hand, for mechanisms 1 and 3 the relative contributions of transport and kinetics 

to the impedance are commensurate with the experiments. 

Since the impact of polarization on LSM-YSZ composite air electrodes are well known, 

steady-state Tafel plots over an overpotential (η) range of -1V to +1V were also used to 

compare simulations with experiment. All three mechanisms can quantitatively fit the data  

Figure 4.4. Nyquist plots of experimental (Barbucci et al. [43]) and simulated impedance 

spectra over T = 973 K – 1123K at OCV and 𝑝O2  = 0.21 atm. 
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Figure 4.5. Nyquist plots of experimental (Barbucci et al. [43]) and simulated impedance 

spectra over 𝑝O2
 = 0.08 atm – 1 atm and OCV at (a) T = 1073K and (b) T = 973K. 
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and reproduce the general trend without any fictitious limiting currents at high 

overpotentials as illustrated in Fig. 4.6. The slight discrepancy between the experimental 

and simulated curves, especially at higher overpotentials, may be attributed to the 3- 

electrode configuration used by Barbucci for the polarization measurements as compared 

to the 2-electrode symmetrical cell configuration used for the EIS measurements at OCV. 

Having obtained the set of best fit parameters, each mechanism is used to simulate 

experiments conducted by Cronin et al. [44] and Nielsen and Hjelm [45] without 

reparametrizing the kinetics and thermodynamics. The model parameters describing the 

cell configurations tested by Cronin and Nielsen are listed in Table 4.7.  

A comparison of the simulated spectra against data measured by Cronin over T=973K – 

1073K and 𝑝O2
=0.05 atm – 0.5 atm is shown in Fig. 4.7.  The experimental data has been 

corrected to remove a HF feature (~10 kHz) to ensure a more equitable comparison 

between simulation and experiment. The HF feature is attributed to grain boundary  

 

Figure 4.6.  Steady-state polarization curves for experiment (Barbucci et al. [43]) and 

simulation over an overpotential range of -1V to +1V at 𝑝O2  = 0.21 atm and T = 973K – 

1073K. 



76 

 

TABLE 4.7.  Model parameters used to compare the mechanisms against experiments conducted 

by Cronin et al. [44] and Nielsen and Hjelm [45]. 

Parameter Value Reference 

 Cronin Nielsen Cronin Nielsen 

Air electrode Thickness 10.25 µm 20 µm [44]  

Electrolyte Thickness 125 µm 150 µm Estimate [45] 

Porosity 0.49 0.4 [44] Estimate 

Porosity Gradient 0 Estimate 

Tortuosity 2.64 2 [44] Estimate 

Particle diameter 0.29 µm Estimate 

LSM volume fraction 0.4765 0.5 [44] [45] 

YSZ volume fraction 0.5235 0.5 [44] [45] 

Gas/LSM specific surface area     

 Mechanism 1 9.7×104 cm-1 1.72×105 cm-1 [44] Estimate 

 Mechanism 2 9.7×104 cm-1 1.15×105 cm-1 [44] Estimate 

 Mechanism 3 9.7×104 cm-1 1.72×105 cm-1 [44] Estimate 

LSM/YSZ specific surface area 1.07×105 cm-1 [44] 

LSM/YSZ double layer capacitance   

 Mechanism 1 4.268×10-6 ·T-2.975×10-3 F cm-2 Estimate 

 Mechanism 2 1.281×10-5 ·T-8.926×10-3 F cm-2 Estimate 

 Mechanism 3 4.268×10-6 ·T-2.975×10-3 F cm-2 Estimate 

Specific three phase boundary length   

 Mechanism 1 9.5×108 cm-2 2.55×109 cm-2 [44] Estimate 

 Mechanism 2 9.5×108 cm-2 

9.5×108 cm-2 

[44] 

 Mechanism 3 [44] 

resistance in the YSZ electrolyte and/or secondary phase formation at the composite air 

electrode-electrolyte interface [45] and is not accounted for by the model. The plots show 

that while all three mechanisms can reasonably match the relaxation frequency in the Bode 

plot (Fig. 4.7a), mechanism 1 fails to estimate the impedances in the Nyquist plot (Fig. 

4.7b). Mechanisms 2 and 3 perform reasonably well over the entire range of conditions, 

though mechanism 3 best captures the overall shape of the spectra. 

When comparing the mechanisms against data measured by Nielsen and Hjelm in Fig. 4.8, 

a trend similar to that seen with the Cronin data set, is observed. While mechanisms 2 and 

3 area able to adequately reproduce the measured spectra over the entire data set, 

mechanism 1 begins to deviate incrementally with decrease in operating temperature. 

These deviations become more pronounced at temperatures below 973 K where the 

mechanisms have not been calibrated previously. 

At first glance, Figs. 4.7 and 4.8 seem to suggest that there is a different RLS for mechanism  
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Figure 4.7. (a) Bode and (b) Nyquist plots of experimental (Cronin et al. [44]) and 

simulated impedance spectra over 𝑝O2  = 0.05 atm – 0.5 atm and T = 973K – 1073K at OCV. 

The experimental data has been corrected to remove the high frequency impedance feature 

due to grain boundary resistance in the YSZ phase unaccounted by the model. 
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Figure 4.8. Nyquist plots of experimental (Nielsen and Hjelm [45]) and simulated 

impedance spectra over T = 873K – 1173K at OCV. Unless mentioned otherwise, 𝑝O2  = 

0.21 atm for all cases. The experimental data has been corrected to remove the high 

frequency impedance feature due to grain boundary resistance in the YSZ phase 

unaccounted by the model. 

1 as compared to mechanisms 2 and 3. A different RLS would certainly explain why one 

mechanism would behave so differently than another under the same set of conditions. To 

investigate this further, a model-based sensitivity analysis is performed on all three 

mechanisms and is discussed in the following section. 

4.3.2 Sensitivity Analysis  

The RLSs for a given mechanism is identified by evaluating the sensitivity of the air 

electrode polarization resistance, 𝑅p, to the kinetic and charge transport parameters in the 

model. The linear estimate of the change in 𝑅p to a 1% change in each parameter 𝑃𝑖 was 

calculated in terms of the dimensionless elasticity index,  

 
𝐸𝐼 =

𝑃𝑖

𝑅p

𝜕𝑅p

𝜕𝑃𝑖
 (4.22)  

When 𝐸𝐼 = 1, 𝑃𝑖 is directly proportional to 𝑅p, while a value of 𝐸𝐼 = -1 indicates 𝑃𝑖 is 

indirectly proportional to 𝑅p. When 𝐸𝐼 = 0, 𝑃𝑖 is insensitive to 𝑅p. A process is rate limiting 
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when the associated parameter has an 𝐸𝐼 > 0.1 [40]. The elasticity index is a useful metric 

for sensitivity since it enables direct comparison between the different parameters without 

having to worry about their orders of magnitude. 

Figure 4.9 shows the sensitivities of the kinetic and charge transport processes to the 

polarization resistance at a given operating point for the three candidate mechanisms. The 

results at this point are representative of the entire range of conditions studied. The plot 

elucidates the difference between the three mechanisms. While ionic transport through the 

YSZ phase and charge transfer at the 3PB are common RLSs for all three mechanisms, 

mechanisms 2 and 3 have an additional RLS on the LSM surface. In fact, the surface step 

is the dominant RLS for mechanisms 2 and 3, while all surface steps are fast in mechanism 

1.  

In addition to identifying the RLSs for the three mechanisms, Fig. 4.9 also serves to 

highlight one of the pitfalls of the fitting approach commonly used in elementary kinetics. 

It is not satisfactory to simply calibrate a mechanism against one experimental data set, as 

even with an incorrect set of RLSs, a mechanism can adequately reproduce the data, as 

observed earlier in Figs. 4.2 – 4.6. Therefore, it is necessary to simulate other sets of 

experiments without re-fitting the kinetics and thermodynamics. Erroneous RLSs leading 

to deviations between mechanisms can be more clearly detected when the mechanisms are 

used as a predictive tool, particularly under conditions where they have not been calibrated.  

Based on the afore-mentioned results, mechanisms 2 and 3 emerge as the two best 

alternatives. Mechanism 3 captures the shape of the measured spectra better, particularly 

at higher frequencies, though owing to microstructure inhomogeneity in the actual 

measured electrodes and measurement uncertainty, it is a bit arbitrary to base a decision 

solely on this fact. From an engineering point-of-view, it may seem unnecessary to pick 

one mechanism over the other since both mechanisms 2 and 3 satisfy the primary objective 

of being ‘intrinsic’ mechanisms capable of quantitatively reproducing measured data from 

independent sources over a wide range of tested conditions. Adler et al. have also suggested 

previously that this degeneracy of mechanisms cannot be resolved without additional 

kinetic data distinct from the usual isotope exchange and EIS measurements at equilibrium 

[137]. However, while Adler’s supposition may largely hold true, for the specific case  
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Figure 4.9.  Sensitivity of the air electrode polarization resistance 𝑅p to kinetic and charge 

transport parameters for the candidate mechanisms. The panels show the elasticity index 

of 𝑅p at T = 1023K, 𝑝O2  = 0.21 atm and η = 0V. 
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studied here, a closer look at the set of parameters for mechanisms 2 and 3 seem to suggest 

that one mechanism is less plausible than the other. 

The activation energies of the two fitted elementary steps (R3 and R5 for Mechanism 2 and 

R2 and R4 for Mechanism 3), as listed in Table 4.6, are certainly within the commonly 

cited range of 1.5 eV – 2.1 eV for rate limiting processes on LSM and LSM-YSZ composite 

air electrodes [32,128]. Yet, it must be recognized that Mechanism 2 has additional 

thermodynamic fit parameters, namely the species enthalpy of OLSMs
 and OLSMs

− /OLSM3PB

−  

as listed in Table 4.4. Based on these fit values, the formation enthalpy of 2OLSMs

−  is ~-355 

kJ/mol (-3.7 eV) relative to O2 gas, significantly higher than the value of -2.2 eV reported 

in the literature [35,37]. For mechanism 3, as stated earlier in section 2.2, the species 

enthalpy of OLSMs

− /OLSM3PB

−  has been set to the literature value [35]. More importantly, the 

dissociation reaction forming atomic OLSMs
 in mechanism 2 is assumed to be fast with an 

activation energy of ~0.2 eV with the slow step being the surface-to-bulk charge transfer 

after dissociation. This assumption is in stark contrast with the accepted view in the 

literature of a charge transfer step preceding dissociation since the dissociation energy of 

O2,LSMs
 is over 5 eV whilst it is significantly lower for O2,LSMs

−  [28,35]. Thus, though there 

is evidence to suggest that a surface-to-bulk charge transfer step is a rate-limiting process 

for transition metal oxides [64], mechanism 2 is improbable. Consequently, mechanism 3 

is decidedly the most appropriate choice among the mechanisms considered in this study.  

Having identified mechanism 3 to be the most tenable, the sensitivity of 𝑅p to key 

electrochemical and structural model parameters was evaluated at three different 

temperatures, partial pressures of oxygen and overpotentials to try and shed light on the 

physics involved under diverse operating conditions. The model parameters used are the 

baseline values listed earlier in Table 4.5. The results of this more comprehensive 

sensitivity analysis are presented in Fig. 4.10. 

Looking at the electrochemical parameters first, as stated earlier in this section, three 

distinct processes emerge as rate-limiting namely, the dissociation of O2,LSMs

−  on the LSM 

surface, the charge transfer process at the 3PB and ionic transport through the YSZ phase 

of the air electrode. Adler in his review had highlighted that even though LSM behaved 

like a pure electronic conductor under these conditions, there might be a rate-limiting   
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Figure 4.10.  Sensitivity of the air electrode polarization resistance 𝑅p to model parameters for mechanism 3. The left panel shows the elasticity index 

of 𝑅p at 𝑝O2  = 0.21 atm and η = 0V, the central panel at T = 1023K and η = 0V and the right panel at T = 1023K and 𝑝O2  = 0.21 atm.  
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surface process in addition to the charge transfer process at the TPB [24]. In fact, he 

attributed the depressed shape of the spectra to a coupling between surface diffusion and 

dissociation/adsorption which leads to the well-known ‘Gerischer’ impedance. However, 

as the results indicate, for the case of composite air electrodes, the depressed shape is due 

to a coupling between the transport of oxide ions in the ion-conducting cluster of the air 

electrode and electrochemical reactions (both surface and 3PB). Surface diffusion is 

relatively insignificant which is to be expected due to the abundance of 3PB sites in such 

a composite microstructure and the very short (~nm) diffusion length scales. The same 

conclusions were also drawn by Barbucci et al. [43] when analyzing their experimental 

data. 

The coupling of ionic transport and kinetics for composite air electrodes has been described 

particularly well by Nielsen and Hjelm [45] in the language of equivalent circuits which is 

the most commonly used method to interpret impedance spectra in the SOC literature. They 

illustrate that the depressed shape purported to be a ‘Gerischer’ response can also be 

attained using the transmission line equivalent circuit model used first by de Levie to model 

porous electrodes [138]. The transmission line model is analogous to the physical 

electrochemical model developed in this study with the two transmission lines representing 

the electronic and ionic conduction networks in the air electrode connected to each other 

through an impedance due to electrochemical reactions. However, when one conduction 

network (electronic in this study) is much faster than the other, the transmission line model 

reduces to a Gerischer impedance.  

On scrutinizing the magnitudes of the individual sensitivities to 𝑅p, it is evident that the 

overall reaction is limited by the availability of  O− ions at the 3PB. The sensitivity plot 

shows that barring the negative overpotential case, 𝑅p increases with increase in rate of 

charge transfer at the 3PB and decreases on increasing the rate of dissociation of O2
−. The 

positive proportionality of 𝑅p to 𝑟3PB implies that the O− ions at the 3PB are consumed 

faster than they are produced through dissociation. This situation alleviates to a certain 

degree under cathodic polarization when the equilibrium for both reactions are further 

shifted in the forward direction. The supply of O− to the 3PB now measures up to the 

demand leading to a decrease in 𝑅p with increase in 3PB charge transfer rate.  
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Figure 4.11 digs deeper into the shifting demand and supply of the intermediate O− under 

polarization. For both cathodic and anodic polarization, the supply not only catches up to 

the demand but exceeds it under high polarizations. Consequently, a switchover of the 

dominant RLS, i.e. from the surface step R2 to the 3PB charge transfer step R4, takes place 

at η = -0.3V when the air electrode is in fuel cell mode and at η = 0.5V when the air 

electrode is in electrolysis mode. This is an important result to keep in mind when reducing 

such detailed mechanisms based on a single RLS.    

The bulk pathway is insignificant under the conditions investigated in this study as 

evidenced by the insensitivity of 𝑅p to the rate of step R6. Figure 4.12 is a plot of the 

volumetric faradaic current densities through the surface and the bulk against overpotential. 

As expected, at both T=1073K and 973K, the bulk pathway increases exponentially as η 

decreases from -0.5V to -1V. This rise takes place because at high cathodic polarizations 

(~ -0.5V), the Mn in the LSM bulk/surface becomes sufficiently reduced to exhibit bulk 

ionic conductivities similar to LSC or LSF [24]. However, as the figure elucidates, the bulk 

pathway is still ~2-3 orders of magnitude lower than the surface pathway, even at very high 

cathodic polarizations. 

 

 

Figure 4.11.  Sensitivity of the air electrode polarization resistance 𝑅p to (a) cathodic 

polarization and (b) anodic polarization for mechanism 3 at T = 1023K and 𝑝O2  = 0.21 atm.  
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Figure 4.12.  Variation of volumetric faradaic current densities at the two-phase boundary 

and three-phase boundary with overpotential for T = 1073 K and 973 K at 𝑝𝑂2  = 0.21 atm.  

Moving on to the structural parameters in Fig. 4.10, the dominance of the surface process 

relative to the 3PB process is reinforced by the high sensitivity of 𝑅p to 𝐴gas/LSM
V  

juxtaposed with a comparatively lower sensitivity to 𝜆3PB
V . Though this will be flipped at 

high overpotentials due to the switchover of the RLS as shown previously in Fig. 4.11. 

Although 𝑅p is insensitive to 𝐴LSM/YSZ
V  since the bulk pathway is negligible, 𝐴LSM/YSZ

V  does 

have an impact on the accumulation of charge at the LSM-YSZ interface which in turn, 

affects the relaxation frequencies in the impedance spectra. Having decoupled the 

dependency of 𝑑p, 𝜖 and 𝜏fac to effective transport properties and specific areas and lengths 

for the sensitivity plot, the insensitivity of 𝑅p to 𝑑p, 𝜖 and 𝜏fac convey the absence of any 

gas diffusion limitations through the pores. It also signifies that the kinetic parameters so 

obtained are likely independent of mass transport effects even though they may still be 

dependent on other factors like sintering temperature, polarization history, surface 

reconstruction due to compositional changes, etc.  

Lastly, the direct sensitivity of 𝑅p to the air electrode thickness, 𝑡ae, in Fig. 4.10 appears 

counter-intuitive at first but, nonetheless, was experimentally observed by Barbucci as 
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well. The researchers found that, in fact, 𝑅p decreased after an optimal thickness of ~40 

µm. The cause lies in the manufacturing process of the air electrodes. Barbucci noted that 

the air electrode porosity had a minor positive gradient going down from the current 

collector to the electrolyte interface. This gradient was quantified by Bertei et al. [136] and 

was included in the simulations as listed in Table 4.5. However, the sensitivity of 𝑅p to 𝑡ae 

(=43 µm) is weak since the utilization lengths of the air electrode was found to be ~18 µm 

at 1073 K and ~28 µm at 973 K as shown in Fig. 4.13.  

 

Figure 4.13.  Distribution of electronic and ionic current densities along the air electrode 

thickness for T = 1073 K and 973 K at η = -0.2 V and 𝑝O2  = 0.21 atm. CC denotes current 

collector. 
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Chapter 5 

Summary and Outlook7 

The details of a transient, multi-physics continuum model used to simulate solid oxide cells 

running in fuel cell and electrolysis modes have been elucidated in this present work. The 

model encompasses physics across multiple scales, including detailed elementary kinetic 

reactions on single particles at the nm scale, quasi 2-D mass, momentum, charge and 

energy transport in single cells at the µm-mm scales, and 3-D heat transfer in commercial 

stacks at the cm-m scale. Since the physics at each scale are all coupled to one another, a 

hierarchical approach is implemented to ensure a consistent mathematical framework. The 

various facets of the model are demonstrated via two example modeling studies. The 

examples chosen help showcase (i) the hierarchical nature of the model and (ii) the 

universality of the model.  

To understand the effects of scaling up from lab-scale single cells to commercial cell stacks 

on performance, cost and reliability, the first modeling study involved the simulation of a 

solid oxide cell producing syngas via co-electrolysis of H2O and CO2 in three different 

configurations – a button cell, a single repeating unit (RU) and a stack of up to 40 cells. 

The model was first tested against polarization, cell temperature and outlet gas composition 

data measured by Fu et al. [46] on single Ni-GDC|YSZ|LSM-YSZ cells for different inlet 

reactant compositions and operating temperatures. The model agreed very well with the 

experiments up to current densities of ~-1 A cm-2.  

The model was then used to analyze the performance of a single RU of a F-design stack 

[47] producing H2:CO in two feed ratios necessary for Fischer-Tropsch synthesis and 

hydroformylation. The performance metrics, efficiency and syngas yield, were 

characterized using 3-D contour maps as a function of RU length, inlet gas velocity, 

                                                 
7 Parts of this section are taken with permission from [49] A. Banerjee, O. Deutschmann, Elementary kinetics 

of the oxygen reduction reaction on LSM-YSZ composite cathodes, J. Catal. 346 (2017) 30-49 and from A. 

Banerjee, Y. Wang, J. Diercks and O. Deutschmann, Hierarchical Modeling of Solid Oxide Cells and Stacks 

producing Syngas via H2O/CO2 Co-electrolysis for Industrial Applications, Appl. Energy 230 (2018) 996-

1013. 
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operating voltage and operating temperature. Since the RU performance was co-limited by 

reactant diffusion across the thick fuel electrode and reaction kinetics over the range of 

operating voltages and temperatures studied, the RU efficiency and syngas yield increased 

with increase in residence time up to a certain value. Beyond this threshold residence time 

(~0.47 s at 1.3V and 1123.15K), reactant starvation caused mass transport limitations to 

become dominant resulting in a downturn in efficiency. The syngas yield corresponding to 

peak efficiency (~68.5%) was ~90%. The high CO and H2 contents in the fuel electrode at 

residence times > 0.47 s also increase the thermodynamic favorability for coking of Ni. 

Although syngas yield improved considerably with both increase in voltage and 

temperature, the relative gain in efficiency, as expected from thermodynamics, decreased 

as temperature increased from 973.15K to 1123.15K. Due to the increasingly endothermic 

nature of H2O and CO2 reduction, at 1123.15K, operating at 1.2V yielded a higher peak 

efficiency than at 1.4V. Additionally, the 3-D performance maps were found to be virtually 

unchanged when changing the current density and inlet CO2 to produce different H2:CO 

ratios. The ability to operate SOECs optimally under the same conditions and flexibly 

produce different H2:CO ratios without a downturn in performance is a major advantage 

over conventional syngas production routes.  

When scaling up from a single repeating unit to a stack to meet commercial syngas 

production demands, shorter cells were found to be more cost and size-effective than longer 

cells for a target syngas production rate. Operating an 8.94 cm long 40-cell F-design stack 

at 1.3V and an inlet gas velocity of 0.2 m s-1 to attain peak efficiency led to a stack 

temperature variation of only ~1K-4K below the furnace temperature of 1123.15K. 

However, the electrolyzer size and capital cost increased by ~81% compared to when the 

stack was run at an inlet velocity of 1.2 m s-1. Nevertheless, since operational cost 

dominates capital cost [21], operating the electrolyzer at low current densities to maximize 

efficiency or yield is the most attractive option in the absence of space constraints.   

Modeling a single repeating unit proved to be a computationally efficient method to 

evaluate stack performance. Over the range of conditions investigated, the single RU 

performance was representative of the performance of a 40-cell stack operating below 

1.4V, while above that voltage, the repeating unit provided a slightly conservative 

projection of the stack performance. However, this might not be the case when modeling 
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SOEC stacks fed by renewable inputs like solar and wind or when modeling the highly 

exothermic SOFC stacks. 

Finally, an investigation of the stack transients over a variety of operating conditions 

revealed the time constants of charge and mass transport to be insignificant compared to 

heat transport through the bulky thermal mass of the stack solid. The changes in product 

yield when switching between co-electrolysis, H2O electrolysis and CO2 electrolysis were 

congruent with previously reported measurements.  

While this modeling study highlighted the diagnostic and engineering capabilities of the 

model, the electrochemical model formulated, like most models in the literature, can only 

accurately reproduce the experimental data against which it was calibrated. Due to the 

randomness of the electrode microstructure resulting from the sintering process, gas and 

charge transport effects through the microstructure are typically lumped into kinetic fit 

parameters. Thus, these electrochemical models are unable to reproduce measurements 

from multiple cells with the same configuration and operated under the same conditions 

without re-parametrizing the kinetic fit parameters. However, evaluating kinetic 

parameters that are intrinsic to the material and decoupled from microstructural effects 

should be able to overcome this limitation. 

To that end, the second modeling study utilizes the model to compare three detailed, 

elementary kinetic mechanisms for the oxygen reduction/evolution reaction on LSM-YSZ 

composite air electrodes against measured EIS spectra and polarization curves from three 

distinct sources [43–45]. The comparisons are made over a wide range of temperatures, 

oxygen partial pressures and overpotentials. All three mechanisms provided reasonably 

good fits with the set of experimental data against which they were calibrated. However, 

mechanism 1 was unable to simulate the other two sets of experiments without 

reparametrizing the kinetics and thermodynamics due to an erroneous estimation of the rate 

limiting processes. To help decide on the most tenable mechanism between the intrinsic 

mechanisms 2 and 3, a more careful analysis of the kinetic and thermodynamic parameters 

was needed. Due to the improbable nature of a fast, neutral dissociation process and an 

unrealistic species enthalpy for the reaction intermediate O−, mechanism 2 was discarded 

and mechanism 3 proposing the chemisorption of O2 to form the super-oxo like species O2
− 

before ‘slowly’ dissociating to O− was selected.  
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A comprehensive model-based sensitivity analysis using the selected mechanism identified 

the rate limiting processes under varying operating conditions for the air electrode. Ionic 

transport through the YSZ phase in the air electrode, dissociation of O2
− on the LSM surface 

and charge transfer at the three-phase boundary were all found to be co-limiting over the 

entire range of operating conditions. The bulk pathway was found to be negligible relative 

to the surface pathway.  

Although the proposed mechanism was able to qualitatively and quantitatively reproduce 

a large set of experimental data obtained by different experimental groups testing 

composite air electrodes with different microstructures and under different operating 

conditions, it remains unclear how close the mechanism is to being the ‘true’ mechanism 

for LSM-YSZ composite air electrodes. The exact nature of the reaction intermediates and 

elementary steps are difficult to determine experimentally. Although, based on quantum 

chemical studies, the proposed mechanism is the most probable mechanism with the most 

stable reaction intermediates and transition states.  

Nonetheless, the study definitively shows that a surface process on LSM is rate limiting 

whether that be dissociation or surface to bulk charge transfer (or both) for these types of 

air electrodes. A mechanism that assumes 3PB charge transfer to be the only rate limiting 

step, is unable to quantitatively reproduce experimental data. Therefore, optimizing LSM 

specific surface area is equally as important as optimizing the 3PB length. Though, in 

practice, both parameters go hand-in-hand. However much more significantly, the study 

presents an intrinsic mechanism for ORR kinetics on LSM-YSZ composites that is capable 

of simulating air electrode polarization for different microstructures and operating 

conditions.  

The results of the two modeling studies are the first steps towards the eventual target of 

developing a universal predictive tool for modeling SOCs. Combining a hierarchical SOC 

model with intrinsic electrochemical kinetics engenders a model tailored to design, monitor 

and control SOCs and future work can take further strides to realize such a tool. For 

example, developing linear state-space models from the differential form of the governing 

equations presented here can lead towards physics-based real-time monitoring and control 

models for SOCs. It would also be interesting to obtain intrinsic electrochemical kinetics 

for the fuel electrode, e.g. Ni-YSZ, and combine it with the LSM-YSZ kinetics developed 
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here and test the electrochemical model against the numerous polarization curves available 

in the literature for Ni-YSZ|YSZ|LSM-YSZ cells. Moreover, the elementary kinetic 

approach is especially conducive to developing electrode degradation mechanisms due to 

impurities, secondary phase formation at the electronic/ionic interfaces, surface 

reconfiguration due to polarization, etc. On uncovering such a reliable long-term 

degradation mechanism, the hierarchical stack model developed in this study can then be 

utilized to estimate stack lifetime and reliability by evaluating long-term stack performance 

over hundreds of thousands of hours thereby saving precious experimental time and cost 

as well as accelerating the design process. The integration of the hierarchical SOC model 

into a system-level model to move further up in scale is also interesting. 
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Appendix8 

The purpose of this appendix is to provide further details about the derivation of the 

reaction rate expression used to evaluate the contribution from the bulk pathway. As stated 

earlier in section 2.2, the bulk pathway comprises of three reactions, viz., the incorporation 

of the oxygen anion into the LSM bulk lattice (B1), oxygen transport through the LSM 

bulk (B2) and oxygen transfer from the LSM lattice to the YSZ lattice at the bulk LSM-

bulk YSZ interface (B3). Using mass-action law, the net rates of reactions B1 and B3 for 

mechanism 1 are  

 𝑟B1 = 𝑘f1
𝑐OLSMs

𝑋VO,LSMb
·· − 𝑘b1

𝑋OO,LSMb
x 𝑐□LSMs

 (A.1)  

 

𝑟B3 = 𝑘f3
𝑋OO,LSM2PB

x 𝑋VO,YSZb
∙∙ exp (−

2𝛼𝐹𝐸2PB

𝑅𝑇
)

− 𝑘b3
𝑋OO,YSZb

x 𝑋VO,LSM2PB
·· exp (

2(1 − 𝛼)𝐹𝐸2PB

𝑅𝑇
) 

(A.2)  

The rate of reaction B2 is evaluated using the Nernst-Planck equation for oxygen vacancy 

transport, 

 
𝑟B2 = −𝐷VO,LSMb

··
e (

𝜕𝑐VO,LSMb
··

𝜕𝑦
+

2𝐹

𝑅𝑇
𝑐VO,LSMb

··
𝜕𝜙LSMb

𝜕𝑦
) 

(A.3)  

Moreover, since the only species occupying the oxygen lattice site in LSM and YSZ are 

OO
x  and VO

··,  

 𝑋VO
·· = 1 − 𝑋OO

x  (A.4)  

(Note that all the symbols used in the appendix have the same meanings as in the body of 

the paper.) 

As discussed earlier in section 2.2, reaction B2 is assumed to be the rate limiting step, i.e. 

reactions B1 and B3 are in equilibrium and 𝑟R6 = 𝑟B2. Therefore, setting the LHS = RHS 

in Eqs. A.1 and A.3 and substituting Eq. A.4,   

 
𝑋VO,LSMb

·· =
1

1 + 𝑎
 (A.5)  

                                                 
8 Parts of this section are taken with permission from [49] A. Banerjee, O. Deutschmann, Elementary kinetics 

of the oxygen reduction reaction on LSM-YSZ composite cathodes, J. Catal. 346 (2017) 30-49. 
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𝑋𝑋VO,LSM2PB

·· =
1

1 + 𝑏
 (A.6)  

where 

 
𝑎 = e

−Δ𝐺B1
𝑅𝑇 ∙

𝜃OLSMs

𝜃□LSMs

 (A.7)  

 
𝑏 = e

Δ𝐺B3
𝑅𝑇 ∙

𝑋OO,YSZb
×

𝑋VO,YSZb
··

∙ e
2𝐹𝐸2PB

𝑅𝑇
  (A.8)  

Now, re-writing Eq. A.3 in discrete form by assuming that the mean length scale for 

vacancy transport though the LSM bulk is equal to the discretized thickness of a finite 

volume element Δ𝑦 and noting that the bulk vacancy mole fraction can be converted into 

volumetric vacancy molar concentration using the relation 

 
𝑐VO

·· =
3

𝑉m,LSM
𝑋VO

··  (A.9)  

Eq. A.10 yields the final form of reaction rate 𝑟R6 used in the model, 

 
𝑟R6 = 𝑟B2 =

𝐷VO,LSMb
··

e

Δ𝑦
(

3

𝑉m,LSM
) ((

𝑎

1 + 𝑎
−

𝑏

1 + 𝑏
) +

2𝐹Δ𝜙LSMb

𝑅𝑇
(

1

1 + 𝑎
)) (A.10)  
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