The brittle-to-ductile transition in cold rolled tungsten: Low-temperature toughness opens a new era in industrial application of tungsten

C. Bonnekoha, H. Leistea, J. Hoffmanna, U. Jäntscha, A. Hoffmannb, J. Reisera

a Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, Germany
b Plansee SE, Flat Products, Reutte, Austria

Materials Science and Engineering (MSE) Congress, Darmstadt, 27.09.2018
Outline

- Motivation
- Methods
- Materials
- Results
- Summary
Outline

- Motivation
- Methods
- Materials
- Results
- Summary
Brittle-to-ductile transition (BDT) limits the field of application for safe operation of tungsten (W) above its BDT temperature ($\sim 680 \text{ K} - 880 \text{ K}$)\(^1\) – \(^3\)

Pre-deformation improves mechanical properties of pure W materials\(^4\) – \(^6\)

What mechanism is responsible for this improvement?
Outline

- Motivation
- Materials
- Methods
- Results
- Summary
Warm- and cold-rolled W sheets (log. 1.7 – 4.1, 1.0 mm – 0.1 mm thick) made of a **single hot-rolled plate** in cooperation with Plansee SE, Reutte
Outline

- Motivation
- Materials
- Methods
- Results
- Summary
Outline

- Motivation
- Materials
- Methods
- Results
- Summary
Methods | Fracture toughness tests

- SECT specimens with L-T crack system stressed by a modulus I load
- Parameter range: $120 \leq T \leq 580$ K and $0.01 \leq \frac{dK}{dt} \leq 100$ MPa m$^{0.5}$ s$^{-1}$

\[
K_Q = \frac{F_Q}{A} \sqrt{\pi a} Y
\]
Outline

- Motivation
- Materials
- Methods
- Results
- Summary
Outline

- Motivation
- Materials
- Methods

Results
- BDT temperatures
- BDT activation energies
- BDT / microstructure correlations

Summary
Results | BDT temperatures

![Graph showing BDT temperatures]

Results | BDT temperatures

![Graph showing BDT temperatures](image)

- K_q (MPa m^{0.5})
- T (K)

2.5WR

360 K

Room temperature

References:

Results | BDT temperatures

![Graph showing BDT temperatures](image)

Results | BDT temperatures

![Diagram showing BDT temperatures](image)

Ref:
Results | BDT temperatures

![Graph showing BDT temperatures](image)

4.1CR

208 K

$K_q / \text{MPa m}^{0.5}$

T / K

BDT temperature below RT (208 K, −65 °C) achieved by cold-rolling
Change in BDT controlling mechanism?
Results | BDT temperatures

- All materials exhibit a loading-rate dependence:
 - BDT temperature, i.e.: $T_{BDT} = f(dK/dt, \ldots)$
- BDT and crack-tip plasticity have to be thermal activated
Outline

- Motivation
- Methods
- Materials

Results

- BDT temperatures
- BDT activation energies
- BDT / microstructure correlations

Summary
Outline

- Motivation
- Methods
- Materials

Results
- BDT temperatures
- **BDT activation energies**
- BDT / microstructure correlations

Summary
Results | BDT activation energies

- Helmholtz free energy of activation for **kink-pair formation** \((\Delta F, \Delta G^*(0)) \) and temperature-dependent critical resolved shear stress \((\tau^*) \) available\(^9\)–\(^{11}\)
- Gibb energy of activation \(\Delta G^*(\tau^*) \) mandatory for comparison with \(E_{A(BDT)} \)

\[\text{Results} \]

BDT activation energies

- Helmholtz free energy of activation for **kink-pair formation** \((\Delta F, \Delta G^*(0)) \) and temperature-dependent critical resolved shear stress \((\tau^*) \) available\(^9\)–\(^{11}\)
- Gibb energy of activation \(\Delta G^*(\tau^*) \) mandatory for comparison with \(E_{A(BDT)} \)

Results | BDT activation energies

- Helmholtz free energy of activation for kink-pair formation ($\Delta F, \Delta G^*(0)$) and temperature-dependent critical resolved shear stress (τ^*) available\(^9\)–\(^{11}\)
- Gibb energy of activation $\Delta G^*(\tau^*)$ mandatory for comparison with $E_{A(BDT)}$

\[\Delta G(0), \Delta F \text{ eV} \]

\[T / \text{K} \]

\[200 \quad 300 \quad 400 \quad 500 \quad 600 \quad 700 \]

\[1.27 \quad 1.75 \quad 2.06 \]

Results | BDT activation energies

- Helmholtz free energy of activation for kink-pair formation (ΔF, $\Delta G^*(0)$) and temperature-dependent critical resolved shear stress (τ^*) available$^{9-11}$
- Gibb energy of activation $\Delta G^*(\tau^*)$ mandatory for comparison with $E_{A(BDT)}$

Outline

- Motivation
- Methods
- Materials
- Results
 - BDT temperatures
 - BDT activation energies
 - BDT / microstructure correlations
- Summary
C. Bonnekoh et al.: The brittle-to-ductile transition in cold rolled tungsten

Outline

- Motivation
- Methods
- Materials

Results
- BDT temperatures
- BDT activation energies
- BDT / microstructure correlations

Summary
Results | BDT / microstructure correlations

- Key properties: **grain size in ND** (λ_{HAGB}), **dislocation density** (ρ_D)

![Diagram showing grain size and dislocation density variations across warm-rolled and cold-rolled conditions](image)

Results | BDT / microstructure correlations

- Key properties: grain size in ND (λ_{HAGB}), dislocation density (ρ_D)

![Diagram showing $T_{\text{BDT}(1.0)}$, λ_{HAGB}, and ρ_D as functions of log strain (ε_{\log}).]

Results | BDT / microstructure correlations

- Key properties: grain size in ND (λ_{HAGB}), dislocation density (ρ_D)

- Mean spacing between sites of **dislocation nucleation** (λ) controls the BDT **temperature**
 - Spacing of primary nucleation sites: grain size in ND (λ_{HAGB})
 - Spacing of secondary nucleation sites: dislocation density ($\rho_D^{-0.5}$)
Outline

- Motivation
- Methods
- Materials

Results
- BDT temperatures
- BDT activation energies
- BDT / microstructure correlations

Summary
Outline

- Motivation
- Methods
- Materials
- Results
- Summary
Summary

- Five W sheets have been rolled out from a single hot-rolled plate by an industrial-scale production process.

- Cold-rolling shifts BDT temperature to 208 K (-65 °C) and causes room temperature ductility.

- Glide of screw dislocations still governs crack-tip plasticity even below room temperature.

- Spacing of nucleation sites along the crack front controls BDT temperature.

- Room temperature ductility in combination with an easily to scale-up production process opens a new era in the application of W as a powerful structural material.
Thank you for your attention

The authors are grateful to:
DFG, Grant RE3551/4-1
Plansee SE
Max-Planck-Institut für Eisenforschung GmbH

Results published in: